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ABSTRACT

Nanostructured single-crystal silicon exhibits a remarkable increase in the figure of merit for

thermoelectric energy conversion. Here we theoretically and experimentally(partial) inves-

tigate a similar enhancement for polycrystalline silicon structured as an inverse opal. An

inverse opal provides nanoscale grains and a thin-film like geometry to scatter phonons pref-

erentially over electrons. Using solutions to the Boltzmann transport equation for electrons

and phonons, we show that the figure of merit at 300 K is fifteen times that of bulk single-

crystal silicon. Our models predict that grain boundaries are more effective than surfaces in

enhancing the figure of merit. We provide insight into this effect and show that preserving

a grain size smaller than the shell thickness of the inverse opal increases the figure of merit

by as much as 50% when the ratio between the two features is a third. At 600 K, the figure

of merit is as high as 0.6 for a shell thickness of 10 nm. We also measured the thermal con-

ductivity of such nanostructures, and a more accurate thermal transport model is provided

based on the experimental results.
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CHAPTER 1

INTRODUCTION

1.1 Background and General Concepts

The efficiency of energy conversion in a thermoelectric material depends on the thermoelec-

tric figure of merit, ZT where T is the absolute temperature and Z is a material parameter

equal to S2σeffec/κeffec. Here S is the Seebeck coefficient, σeffec is the effective electrical con-

ductivity and κeffec is the effective thermal conductivity. A reduction in thermal conductivity

enhances the figure of merit for thermoelectric materials [1, 2, 3, 4, 5]. Nanostructures, in

particular, facilitate such reduction [3], mostly through phonon boundary scattering. A

striking example is single-crystal silicon whose figure of merit increases fifty times compared

to the bulk when structured in the form of nanowires[6, 7] or membranes with arrays of

holes [8, 9]. In this thesis, we show that similar enhancement in the figure of merit is pos-

sible in polysilicon structured in the form of an inverse opal. The structure we propose has

the advantages of lower material cost and a thin-film geometry that enables better device

engineering.

Inverse opals [10](Figure 1.1) are a class of self-assembled colloidal structures [11, 12]

where material is deposited in the interstices of a colloidal crystal followed by removal of

the original template. These structures attract interest in photonics where their three-

dimensional periodicity creates complete photonic band gaps in certain cases [13]. The

phenomena we seek to exploit here does not depend on band gaps but rather on scattering.

The large surface area to volume ratio and small grain size available in inverse opals facilitates

enhanced phonon scattering. These processes also affect electron transport but to a lesser

extent. In typical applications, the thermoelectric material is doped to reduce its resistivity

to ∼mΩ-cm. At such doping, the electron mean free path in silicon is .10 nm at room
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Figure 1.1: The schematic of an inverse opal unit cell.

temperature and largely dominated by impurity scattering.

Previous theoretical work on the thermoelectric properties of regular opals suggests that

there is no enhancement in the figure of merit compared with the bulk. Sofo and Mahan [14]

modeled conduction in a regular opal as a random walk in a lattice, with residence time

within sites. This gives rise to a linear relation between the carrier mean free path and the

diffusion coefficient, such that the opal preserves the figure of merit of the bulk material.

Unlike opals, diffusion in inverse opals is not a site hopping phenomena but is instead, related

to transport along continuous thin sections containing grain boundaries. We show that this

partially decouples charge and heat transport with a net enhancement in the figure of merit.

The opal geometry modifies flow fields such that the effective conductivity of an inverse

opal thin-film is different from the intrinsic conductivity. However, the ratio of the effective

electrical to thermal conductivity is the same as the ratio of the intrinsic material conduc-

tivities, since electrical and thermal flow fields remain similar inside an inverse opal [15].

Thus, the geometry in itself does not affect the figure of merit in the continuum limit.

The overall resistance posed by the structure does depend on geometry as emphasized

above. The relation between the effective conductivity and the intrinsic conductivity can

deviate substantially from the effective medium theory [16, 17] at large porosities or in the

case of large differences in conductivities between air and the solid comprising the inverse

opal. The inverse opal of interest here has a face-centered cubic (FCC) lattice. Figure 1.1

shows the schematic of an inverse opal. Typical inverse opals made from self-assembled oxide
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spheres, possess shell thickness, d in the range ∼15–35 nm and inner diameters, Rinner in the

range ∼100–300 nm [12]. The relationship between the inner diameter of the sphere and the

shell thickness is well defined if the pores in the opal structure are filled to the maximum at

86% [18]. The FCC opal has a filling factor of 74%, and the maximum filling factor of the

inverse opal is 86%×(1-0.74)∼=22%. Using this figure, d is approximately equal to 9.2% of

Rinner if we ignore the holes in Figure 1.1 and is equal to 12% of Rinner [18] if we account for

the presence of these holes. In either case, we expect porosities exceeding 0.75 and cannot

employ the effective medium approximation to estimate the effective conductivities. We use

instead the relations provided by a boundary integral solution to the flow fields [15]. At the

theoretical minimum porosity of ∼ 78%, the effective conductivity is ∼11.5% of the intrinsic

material conductivity.

1.2 Structure of the Thesis

The rest of the thesis is organized as follows.

In Chapter 2 we theoretically investigate the individual behaviors of thermal conductivity,

electrical conductivity and the Seebeck coefficient in polysilicon inverse opals as a function

of shell thickness and grain size. We consider detailed electron scattering mechanisms to

investigate charge transport. In modeling phonon transport, we pay special attention to

phonon-electron scattering and propose an improved model compared to the existing lit-

erature. Our work provides insight into the relative effects of surface and grain boundary

scattering on thermoelectric properties. We estimate the figure of merit for polysilicon in-

verse opals to be as high as 0.15 at 300 K and ∼0.6 at 600 K, comparable to recently reported

thin film thermoelectric materials [19] that are more complex and expensive to manufacture.

In Chapter 3 we present the thermal conductivity measurements of 3 samples with different

shell thicknesses but fabricated in the same manner. We employed the 3ω [20] method to do

the measurement and went down to as low as 15 K. The thermal conductivity measurement

advances the understanding of phonon transport in extremely porous structure. It also

provides useful information in various applications that utilizes such structure, e.g. the

emitter in a solar cell.
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Finally, we summarize the theoretical and experimental findings in Chapter 4.
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CHAPTER 2

THEORETICAL MODELING

In this chapter, we use the relation between the effective conductivity and the intrinsic

material conductivity but modify the intrinsic conductivity from the bulk to account for sub-

continuum transport. In effect, we assume that the inverse opal geometry affects transport

at continuum scales but does not affect transport at sub-continuum scales. We justify this

approach based on the dimensions of the opals under consideration. Inverse opals of interest

possess shell thicknesses comparable to the carrier mean free paths. However, the particle

diameter is substantially larger than the mean free path. Thus, the geometry for solving

the Boltzmann equation reduces from that of the inverse opal to that of a regular thin film.

Details such as curvature of the segments are ignored in the sub-continuum solution and

accounted for in the continuum solution. We model charge and heat transport to obtain the

intrinsic material properties of an inverse opal below.

2.1 Thermoelectric Properties

In this section, we compute the intrinsic electrical conductivity, thermal conductivity and

Seebeck coefficient of a polysilicon inverse opal. Previous theoretical work[21, 22, 23, 24, 25]

has considered charge conduction in bulk polysilicon in great detail. Here, we consider energy

dependent relaxation times and employ a distribution function that accounts for both film

thickness and grain boundaries. We also obtain the diffusion and phonon-drag components

of the Seebeck coefficient directly from the solution to the Boltzmann equation in a thin

film geometry while accounting for grain boundaries. In considering thermal transport, we

make several modifications compared to the existing literature on modeling polysilicon [26]

to improve the accuracy of predictions. Specifically, we propose a new model for phonon-
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electron scattering based on deformation potentials.

2.1.1 Electrical Conductivity

Charge transport in an inverse opal occurs along the interstices of the original opal. The

diameter of the colloidal particles forming the opal are typically 200–600 nm [12] and the

interstices have thickness in the range 15–35 nm. We assume the inverse opal to be perfect,

yielding continuously joined interstices. The thickness of these thin segments is comparable

to the carrier mean free paths and the boundaries are expected to alter the carrier distribution

as is typical in thin films. We neglect the effect of the curvature since this is relatively small

compared to the effect of the shell thickness. We note that this may not necessarily be the

case with inverse opals formed from much smaller particles (≤50 nm).

The problem reduces to charge transport in a thin, polycrystalline film with background

scattering processes. We model such a film along the lines proposed by Mayadas and

Shatzkes [27]. We summarize the main idea here for the sake of completeness. In this

approach, a δ-function represents a columnar grain boundary and perturbation theory pro-

vides the wave vector dependent relaxation time as

τ−1
e-g =

ve

l

R

1−R
k

|kx|
· 1− e−4k2xs

2

1 + e−4k2xs
2 − 2e−k2xs2 cos(2kxl)

, (2.1)

where k and ve are the wavevector and the speed of electron, R is the reflection coefficient,

taken to be 1/2, l and s are average grain size and standard deviation. We obtain the

latter from a normal distribution fit to the data in Ref.[28] and find this to be 1/3 of l. We

further integrate the relaxation time over different directions in k-space to obtain an energy

dependent τ−1
e-g (E).

Considering an electron confined along the z−direction by the film thickness, d and travel-

ing in the presence of an electrical field
−→
E and a temperature gradient ∇T , both transverse

to the film thickness and along the x−direction, the Boltzmann transport equation is

vz
∂f1

∂z
− eEvx

∂f0

∂E
+ vx

∂f0

∂x
=

f1

τ ∗(E)
, (2.2)
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Figure 2.1: Scattering rates of electrons for different processes in silicon at 300 K. Solid
lines represent scattering mechanisms insensitive to doping. Dashed and dot-dashed lines
represent doping levels of 1017 cm-3 and 1019 cm-3 respectively. The shell thickness and
average grain size are both 25 nm.

where f1 is the deviation from the equilibrium distribution f0, that arises due to confinement

along z. The temperature gradient is set to zero in the electrical conductivity calculation,

such that ∂f0/∂x vanishes. We note that τ ∗ is an energy dependent background relaxation

time in our work and is not a constant as originally considered by Mayadas and Shatzkes [27].

Using Matthiessen’s rule, the background relaxation rate is related to individual relaxation

rates as τ ∗−1 =
∑
τ−1
i , where i represents electron-phonon, electron-impurity, electron-

electron, and plasmon scattering. We use deformation potentials [29] to model intravalley

and intervalley phonon scattering. Following Fischetti [30], we use the Brooks-Herring for-

mula [31] to compute the relaxation time due to ionic impurities. We account for phase

shift [32] at doping levels greater than 1017 cm-3 to correct the Born approximation in the

Brooks-Herring formula. Electron-electron scattering does not affect mobility directly, as

momentum is transferred between electrons. This, however, modifies the energy distribu-
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tion and is accounted for in our calculations [32]. Finally, we follow Fischetti [30] in the

treatment of plasmon scattering. Figure 2.1 plots different scattering rates as a function

of the electron energy. We include a simplistic boundary scattering rate, τ−1
e-b = v/d here

for comparison. We discard this in favor of the exact Boltzmann solution when calculating

mobility below. The figure plots ionic impurity and plasma scattering rates at two different

impurity concentrations to illustrate the dependence of doping.

By applying boundary conditions, Eq. 2.2 is solved as

f1 =

−eEτ
∗vx

∂f0

∂E

[
1− e−z/vzτ∗

]
, vz > 0

−eEτ ∗vx∂f0

∂E

[
1− e(d−z)/vzτ∗

]
, vz < 0

(2.3)

for purely diffuse surface scattering. The current density Jx(z) is then

Jx(z) = − 1

4π

∫ ∞
0

∫ 2π

0

∫ π

0

fD(E)evx sin θdθdϕdE. (2.4)

Here f = f0 + f1 is the total distribution function, D(E) = E1/2[3(2m)3/2]/(π2~3) is the

density of states assuming parabolic bands. The density-of-states effective mass, m of a

single valley is 0.32m0 where m0 is the rest mass of a free electron.We use the conductivity

effective mass, mc = 0.26m0 in converting the electron velocity to energy in Eq. 2.4. The

electrical conductivity and mobility are respectively σ = 1/(Ed)
∫ d

0
Jx(z)dz and µ = σ/(en),

where n is the electron number density.

Figure 2.2 plots the resulting mobility in a polysilicon inverse opal as a function of doping.

The shell thickness and grain size are both 25 nm. We report calculations on bulk single-

crystal, thin-film single-crystal, and bulk polysilicon for comparison. The agreement with

the data for single-crystal bulk silicon is good as expected. We now turn our attention to

polysilicon. Dopant segregation is an important factor in the mobility of polysilicon, which in

turn depends strongly on the doping method [35] and annealing conditions [36]. Ion implan-

tation introduces dopant segregation at the grain boundaries [36] while in-situ doping [37]

appears to avoid this. Since inverse opals must be doped in-situ, data from in-situ doped

polysilicon samples provide the right comparison. The measured mobility [37] in polysilicon
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Figure 2.2: Electron mobility in bulk and thin-film single-crystal silicon, bulk polysilicon
and polysilicon inverse opals at 300 K. The shell thickness and grain size are both 25 nm.
The data are from Ref. [33] (open circles) and Ref. [34] (crosses).

nanowires doped with phosphorus at 3 × 1019 cm-3 and 2 × 1020 cm-3 are respectively 69

cm2/Vs and 25 cm2/Vs, comparable with our calculated values. The measurements did not

include characterization of grain size. However, since the samples were annealed at a low

temperature (6000C for 12 hours), we expect small grains. Siebe et al. [38] also reported

similar mobility for in-situ phosphorus doped polysicon at 2× 1020 cm-3, with average grain

size of 20–30 nm. Our calculations are thus consistent with the limited set of data available

in the literature.

Our calculations show that while surface and grain boundary scattering reduce mobility

significantly at low doping, the reduction is ∼ 30% above doping levels of 1019 cm-3 when the

average grain size and shell thickness are both 25 nm. Overall, the electrical conductivity

reduces by ∼92% of the bulk value. A larger part of the reduction stems from geometry

that affects flow fields. We note that we have ignored any deactivation of donors in these

calculations. Deactivation arises from reduced screening of the impurity potential due to

low dielectric constant of the surroundings. In silicon nanowires, for example, significant
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deactivation occurs [39] at diameters less than 20 nm, when the doping level is 3 × 1019

cm-3. Given the thin film geometry, we expect this deactivation to occur at even smaller

dimensions in inverse opals and neglect it in our work.

2.1.2 Thermal Conductivity

The lattice thermal conductivity of polysilicon can be expressed as

κ =
1

3

1

2π2kBT 2

∑
λ

∫
0

qc (~ω)2ω2e~ω/kBT

[e~ω/kBT − 1]
2 τ(q)dq, (2.5)

where λ represents different phonon polarizations, kB is the Boltzmann constant, ~ is the

reduced Planck’s constant, and q is the phonon wave number. In this paper, we use the

linear dispersion relation proposed by Holland [40] that fits the thermal conductivity data

for bulk silicon reasonably well. The phonon frequency, ω is given by ω = vλq, where vλ is

the phonon propagation speed.

The thermal conductivity of doped polysilicon is extensively studied in the literature [26].

Scattering mechanisms of interest include Umklapp scattering, isotope and impurity mass

difference scattering, surface and grain boundary scattering, and phonon-electron scattering.

We use scattering rates from the literature [41] for Umklapp and mass difference scattering.

These are of the form τ−1
u = BTω2e−C/T , and τ−1

m = V0Γ/(4πv3
s)ω

4, where B = 1.9 × 1019

s/K, C = 160 K are constants determined from bulk thermal conductivity data, vs is sound

velocity, V0 is the volume per atom, and Γ is defined as Γ =
∑

j fj(1−Mj/M)2. Here, fj is

the percentage of atom type j, whose mass is Mj, and M is the average atomic mass. The

effect of both isotope and impurity scattering can be evaluated using this equation.

We use a frequency dependent[42] grain boundary scattering rate,

τ−1
p-g =

vs

αl

ω

γωc

. (2.6)

where α, γ are dispersion dependent constants [42], ωc is the cut-off frequency for each linear

segment in Holland’s [40] dispersion. We use τ−1
p-b = vs/Fd as the boundary scattering rate,

where F is a geometric parameter.
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With the high doping required in thermoelectric applications, phonon-electron scattering,

which is otherwise neglected, assumes importance. In modeling the thermal conductivity of

doped polysilicon films, Asheghi et al. [43] employed a deformation potential to calculate

the phonon-electron interaction. However, the deformation potential was fit at each doping

level, which reduces the physical significance of the model. In a different paper, Zou [44]

assumed the scattering rate to be linear in the carrier concentration, which is only valid at

low doping levels. Here we develop a new expression that accounts for low as well as high

doping.

We start with the transition rate used in the calculation of electron relaxation time due

to phonon scattering [45]:

S(p,p′) =
πmDA

2

~ρvspV
δ

(
±cosθ +

~q
2p
∓ ω

veq

)
, (2.7)

where p, p′ are the momentum of an electron before and after scattering, θ is the angle

between the two directions, DA is the magnitude of the deformation potential, ρ is the

density of silicon, and V is a normalization volume. The δ-function ensures momentum and

energy conservation. High frequency phonons are unlikely to be scattered as electrons in the

conduction band of n-type silicon are only thermally excited and do not possess sufficient

energy. Due to symmetry, only longitudinally polarized phonons scatter electrons [46].

Instead of summing over the phonon wave number as in the case of electron transport,

we sum the transition rate over spins, valleys and all final electronic states to evaluate the

phonon relaxation time due to electron scattering,

τ−1
p-e =

∑
↑,valley,p′

S(p,p′)f(p)(1− f(p′)). (2.8)

Here, f(p) is the probability of an available electron to be scattered while (1 − f(p′)) is

the probability of availability of the final state to be scattered into. Noting that electrons

have the same spin and remain in the same valley before and after the scattering process,

summations over spins and valleys give degeneracies of 2 and 6 respectively. After the

summation, τp-e is only a function of the phonon wave number q.
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Figure 2.3: Thermal conductivity as a function of doping concentration at 300 K. The
open circles, triangles and squares are measurement values from Ref. [43, 47, 48]. The red,
green and blue curves are calculations for P-doped 3 µm thick, As-doped 174 nm thick,
and As-doped 74 nm thick single-crystal silicon films respectively.

We set the deformation potential, DA to 9 eV, which is the value determined from fits to

mobility data[29]. Figure 2.3 compares the available experimental data for n-doped silicon

films with calculations. The predictions agree well with the data which, however, are a lim-

ited set. We note that the agreement arises without any specific fitting to doping dependent

thermal conductivity data.

Using Eq. 2.5 and accounting for porosity, we can calculate the effective thermal conduc-

tivity of inverse opals of different shell thicknesses. We assume the grain size to be the same

as the shell thickness in these calculations and take the geometric parameter F to be 1 in the

boundary scattering rate. Figure 2.4 shows the calculated effective thermal conductivity for

inverse opals doped with As at 4× 1019 cm-3. The overall reduction in thermal conductivity

is ∼ 99.6% when compared to bulk silicon.
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Figure 2.4: The calculated effective thermal conductivity of polysilicon inverse opals as a
function of shell thickness. We assume the average grain size to be equal to the shell
thickness in these calculations.

2.1.3 Seebeck Coefficient

The Seebeck coefficient, or thermopower, of a semiconductor arises due to carrier diffusion

as well as phonon-drag [49]. We discuss each in turn, starting with the diffusion component.

Solving Eq. 2.2 in the presence of a temperature gradient yields the contribution due to

carrier diffusion. This solution is

f1 =

τ
∗vx

(
−eE ∂f0

∂E
+
∂f0

∂x

) [
1− e−z/vzτ∗

]
, vz > 0

τ ∗vx

(
−eE ∂f0

∂E
+
∂f0

∂x

) [
1− e(d−z)/vzτ∗

]
, vz < 0

. (2.9)

Here ∂f0/∂x can be expressed in terms of the temperature gradient as

∂f0

∂x
= −∂f0

∂E

E − EF
T

∇xT. (2.10)
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Setting Jx (Eq. 2.4) to zero, we obtain the diffusion part of the Seebeck coefficient as

Sd = −∆V

∆T

= − 1

eT

∫ Φ(E)
∂f0

∂E
D(E)E(E − Ef )τ ∗dE∫

Φ(E)
∂f0

∂E
D(E)Eτ ∗dE

 (2.11)

where the function

Φ(E) =

∫ d

0

{∫ π/2

0

sin3 θ
[
1− e−z/vzτ∗

]
dθ

+

∫ π

π/2

sin3 θ
[
1− e(d−z)/vzτ∗

]
dθ

}
dz (2.12)

arises due to the confinement along the z-direction. The extent to which this extra ener-

gy dependence, φ(E) modifies the Seebeck coefficient from the bulk value depends on the

asymmetry of this function with respect to the Fermi energy. Essentially, the function φ(E)

modifies the mean scattering time from τ ∗ to φ(E) × τ ∗. When the film thickness is much

smaller than the background mean free path, φ(E)×τ ∗ scales as E−1/2, similar to the acous-

tic phonon relaxation time. At low doping, this has little effect on the Seebeck coefficient,

similar to phonon scattering. At high doping, this reduces the Seebeck coefficient by over-

whelming ionic impurity scattering. The dominant scattering time scales as E−1/2 in inverse

opals instead of the usual E3 dependence in case of dominant impurity scattering. We find

the reduction to be quite small in the calculations reported below.

We now turn our attention to the phonon-drag component. This arises due to momentum

transfer from phonons to electrons, and thus depends on electron-phonon interactions as

well as other phonon relaxation processes. At low temperatures, the drag contributes to

most of the thermopower owing to large phonon relaxation times. The contribution reduces

significantly at room temperature due to the dominance of Umklapp scattering that reduces

phonon mean free paths. Phonon drag has a lesser contribution in low dimensional structures

since low frequency phonons that are the main contributors, are randomized by surfaces and

grain boundaries. When these interactions are dominant, the phonon drag contribution is

effectively zero. Even though we do not expect phonon drag to be a major contributor
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Figure 2.5: The Seebeck coefficient at 300 K as a function of doping. The solid lines
represent phonon-drag, carrier diffusion and total Seebeck coefficients respectively in
single-crystal bulk silicon. The dashed line is the Seebeck coefficient in polysilicon inverse
opals. The open circles are data from Ref. [52].

to the Seebeck coefficient of inverse opals, we include it here for completeness. Wu et

al. [50] derived a phonon frequency dependent expression for the phonon drag component

using hydrodynamic equations [51] of electron transport. They introduced a non-equilibrium

phonon distribution, that models a net momentum transfer between electrons and phonons

along a preferred direction. Using their derivation, the phonon drag component is

Sg = − 1

V ne

∑
λ,q

(~w)2

kBT 2

qx
2

q2

τ−1
e-p

τ−1
e-p + τ−1

p

n′
(

~ω
kBT

)
, (2.13)

where τ−1
p sums all phonon scattering events except phonon-electron interactions and n′

(
~ω
kBT

)
is the first derivative of Bose-Einstein distribution with respect to ~ω

kBT
. Even though the

summation is over all phonon modes, only longitudinal acoustic phonons provide phonon-

drag.

In using this model, we first need to fit the deformation potential to the Seebeck data [52]
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and find that DA=1.9 eV fits the Seebeck data for lightly doped single-crystal silicon at

300 K [53, 52] well. We note that this is different from the value that fits both mobility

and thermal conductivity data. We suspect that the discrepancy arises due to limitations

of the above phonon drag model. The phonon drag component remains constant in bulk

silicon until doping exceeds 1017 cm-3 when it begins to decrease as shown in Figure 2.5.

Applying this model to polysilicon inverse opals, we find that the phonon-drag component

is negligible. The Seebeck coefficient arises almost entirely due to carrier diffusion. There

is a small difference between the diffusion component in polysilicon inverse opals and bulk

silicon, at doping levels above 1017 cm-3 due to differences in the dominances of scattering

mechanisms. Surface and grain boundary scattering dominates in inverse opals while ionic

impurity scattering dominates in bulk silicon, leading to slight differences in the Seebeck

coefficient, as discussed previously.

2.2 Results and Discussion

In this section, we combine the thermoelectric properties from the previous section to further

investigate thermoelectric energy conversion in inverse opals. Figure 2.6 plots the power

factor of polysilicon inverse opals with shell thickness 25 nm. We assume that the structure

has been sufficiently annealed such that the grain size is comparable to the shell thickness.

We plot the power factors for bulk silicon, a single-crystal 25 nm thick silicon film and

bulk polysilicon respectively for comparison. The power factor peaks at 4 × 1019 cm-3 in

all cases which is a property of the band structure, and is unaffected by shell thickness or

grain boundaries. The plateau in the curve for bulk silicon after ∼ 1018 cm-3 arises due

to decrease in the phonon drag component of the Seebeck coefficient. This vanishes in all

other structures due to an overall reduction in the phonon drag component. Reduction in

electrical conductivity reduces the peak power factor by ∼94% in the inverse opal.

The reduction in power factor is effectively countered by a more dramatic reduction in

thermal conductivity. Figure 2.7 plots the ratio of electrical to thermal conductivities in

comparison to the ratio in bulk single-crystal silicon as a function of varying feature sizes.

The grain size is set equal to the shell thickness in all calculations. At a feature size of 25 nm,
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Figure 2.6: The power factor for different silicon structures at 300 K as a function of
doping.

boundary scattering in thin films increases this ratio by an order of magnitude compared

to bulk silicon. Grain boundaries are slightly better than crystal surfaces in providing

such enhancement. In bulk polysilicon, the enhancement is approximately fourteen times

compared to bulk single-crystal silicon. The inverse opal geometry combines both surface

and grain boundary scattering and provides an enhancement of∼18 compared to bulk silicon.

A surprising result in the above figure is that grain boundary scattering is better than

surface scattering in enhancing the figure of merit in inverse opals. Exploring this further,

Figure 2.8 compares the energy dependent mean free paths for electrons and phonons at a

grain size of 25 nm. We use the scattering rates described in Eq. 2.1 and Eq. 2.6. The figure

also shows the energy independent Casimir limit [54] for mean free path from boundary

scattering. Grain boundary scattering reduces the mean free paths of electrons and phonons

similarly up to energies of ∼0.01 eV (2.4 THz). At higher energies, the electronic mean

free path saturates at ∼13 nm while the phonon mean free path continues to decrease

sharply. Since the transport of electrons with energy .0.01 eV is limited by ionic impurity

scattering rather than grain boundary scattering, grain boundaries do not affect charge
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curves. Grain boundaries contribute more to the enhancement than surfaces as evident
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opals combine both effects and are slightly better than bulk polysilicon when the grain size
equals the shell thickness.

transport significantly in the range of feature sizes considered here. The impact on heat

conduction is, however more dramatic since the mean free path of room temperature phonons

is reduced well below the Casimir limit.

Referring again to Figure 2.7, the larger surface area in an inverse opal does not provide

a dramatic increase compared to bulk polysilicon when the grain size in the inverse opal

equals the shell thickness. However, unlike bulk polysilicon, the grain size in an inverse opal

is limited by the shell thickness which provides an opportunity to further reduce the grain

size for optimal ZT . We explore this below in our discussion on the figure of merit. The

enhancement factor for inverse opals increases to ∼28 as the shell thickness and grain size

decrease to 10 nm. In contrast, the enhancement using a 10 nm thin film is only a half of

this. It is clear that theoretically, grain boundary scattering has a greater impact on the

figure of merit than boundary scattering. We have discussed the reason for this above. We
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Figure 2.8: The mean free path of electrons and phonons due to grain boundary scattering
as a function of energy. Mean free paths for electrons are consistently larger than those for
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explore the relative magnitudes in the context of inverse opals next.

Figure 2.9 shows the figure of merit at 300 K and 600 K for polysilicon inverse opals

based on the above calculations. We include the electronic contribution to the thermal

conductivity here using the Wiedemann-Franz law. This results in a modest increase in the

thermal conductivity by ∼ 5 % at 300 K. The ratio, r is the ratio between the average grain

size and the shell thickness. In typical inverse opals, the shell thickness is &15 nm. The

upper bound on grain size is the shell thickness[55], corresponding to r=1. For the lower

limit, we consider grains &5 nm, to avoid quantum confinement effects[56] that would reduce

the free carrier concentration. This corresponds to r=1/3 for a shell thickness of 15 nm.

For shell thicknesses in the range 20–50 nm, the figure of merit increases by ∼50 % at 300

K when the average grain size is a third of the shell thickness. At 10 nm shell thickness,

maintaining the grain size at a third of the shell thickness results in a ∼25 % increase in ZT .

For shell thicknesses in the range 10–25 nm, the figure of merit ranges between 0.12–0.15 at
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300 K when r=1/3. The same range of features provides a range of 0.36–0.60 in ZT at 600

K. Thus, the impact of decreasing feature size is not significant at room temperature but is

substantial at elevated temperatures.

These calculations show that inverse opals with features .25 nm that maintain a grain

size smaller than the shell thickness provide a significant enhancement in the figure of merit

and are comparable to single-crystal silicon nanowires. Overall, the figure of merit remains

inferior when compared to data from single wires [6]. However, any practical implementation

using nanowires requires an array of wires with substantial variations in properties and

inferior electrical contact resistances [57] when compared to inverse opals [58, 59]. It is

difficult to claim that the non-idealized conversion efficiency will necessarily be superior

for nanowires. There remain substantial practical challenges with inverse opals as well.

Doping is a key practical issue [59]. In-situ doping [38, 60] during film deposition followed

by annealing and activation at relatively low temperatures is needed to prevent grain growth

significantly [61]. This should form the emphasis of future experimental work in this area.

20



2.3 Conclusion

In summary, we present a model for thermoelectric properties of highly doped polysilicon

inverse opals. Nanoscale grains in addition to the large surface area available for scattering

phonons result in a net enhancement in the figure of merit for thermoelectric energy conver-

sion. A surprising result is that a smaller grain size yields a larger ZT . We understand this

in terms of the relative impact of nanoscale grains on electron versus phonon transport. We

find that ZT exceeds 0.1 at room temperature and can be as high as 0.6 at 600 K. Future

experimental work should investigate the fabrication of inverse opals with small grain sizes

as well as the possibility of doping the structures in-situ followed by low temperature anneal-

ing to preserve grain size. This work provides theoretical understanding of charge and heat

transport in nanostructured inverse opals, and suggests directions for future experiments on

the thermoelectric properties of these materials.
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CHAPTER 3

EXPERIMENTS AND RESULTS

In this chapter, I will mainly discuss the thermal conductivity measurement and present the

results up to date. We measure the thermal conductivity of polysilicon inverse opal using

the 3ω method. The measurement went down to as low as 15 K. Various characterization

techniques were involved in this measurement. We use transmission electron microscopy

and X-ray diffraction to characterize the grain size. Finally, an empirical model for thermal

conductivity of inverse opal structure is provided based on the results.

3.1 Sample Fabrication

The silica colloids were made using the well-known Stober method [62] and the opals were

assembled by vertical deposition [63] as shown in Figure 3.1a. We can vary the thickness of

the opal structure (i.e. number of layers) either by increasing the solid content of the silica

spheres in the solvent (which is ethanol in our case) or the temperature of the incubator.

We usually grow the opal for overnight in the incubator at 35–37 ◦C. The opal structure

is shown in Figure 3.1b and c. Due to the nature of the vertical deposition method, the

number of layers increases from one edge and reaches a constant for the rest of the sample.

Under these conditions, we usually get 5–10 layers of sillica colloids. After that we deposit

amorphous silicon on the opal structure by chemical vapor deposition (CVD) at 325 ◦C for

5 hours under pressure ∼ 10−6 mbar. The pores in the opal structure is filled to its maxima.

We then annealed the sample at 1000 ◦C for 10 hours in the tube furnace under forming gas

to recrystallize the amorphous silicon. The temperature ramping rate is 10 ◦C per minute.

The silica opals were then removed with an ethanol solution of hydrofluoric acid (5%). The

sample was left in the solution for 20–25 minutes, rinsed gently with ethanol and dried in
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Figure 3.1: a. Opal assembly schematic. SEM of opal structure before CVD: b. side view,
c. top view; d. Silicon inverse opal. The scale bar is 1 µm in all SEMs.

the hood. The inverse opal structure is shown in Figure 3.1d.

3.2 Thermal Conductivity Measurements

3.2.1 The 3ω Method

Any measurement on thermal conductivity requires two quantities: the heat flow and the

temperature gradient. The 3ω method [20, 64] is a frequency domain method that uses a

resistive metal line (in most cases) to both act as a heater and a thermometer. The good

accuracy in heat flow and temperature change makes this method very powerful in measuring

thermal conductivity of thin films. A 3ω device usually consists of a bulk substrate, a thin

film of interest and a heater (thermometer) as shown in Figure 3.2. If the thin film is

electrically conductive, a dielectric layer is required to prevent any electrical leakage from

the heater. In this measurement, we deposit∼100 nm silicon dioxide to ensure good electrical
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insulation. The metal heater is fabricated using gold evaporation through a shadow mask.

Figure 3.2: The schematic of a 3ω device.

When an AC current of frequency ω is supplied by a current (or voltage) source, the heater

generates a heat flow that has a DC component and an AC component oscillating at 2ω.

The AC heating produces a temperature fluctuation at the same frequency, ∆T2ω. Since

the resistance of the heater is temperature dependent, the temperature fluctuation brings

a resistance change, which is also oscillating at 2ω. The 1ω current and the 2ω resistance

change generate a 3ω voltage V3ω, through which, ∆T2ω can be extracted, hence the thermal

property of the sample. The relationship between ∆T2ω and V3ω is given by [20]

∆T2ω = 2
V3ω

V0

R0

(
dR

dT

)−1

, (3.1)

where R0 is the average resistance of the heater, V0 the 1ω voltage across the heater and V3ω

is the 3ω voltage generated in the heater. dR/dT is the temperature coefficient of the heater

resistance, which is obtained by differentiating the heater calibration curve (resistance as a

function of temperature).

The schematic circuit diagram is shown in Figure 3.3. We use a lock-in amplifier (SR830)

to detect the voltage at 3ω. Since SR830 has a high dynamic reserve (>100dB) and is able

to pick up the 3ω voltage from the large background 1ω signal [64], we did not use any noise

cancelation scheme, such as nulling a bridge [65]. We use the built-in voltage generator in
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Figure 3.3: The schematic circuit diagram of the experiment set up.

the lock-in to supplier the current to the heater. While this practice simplifies the whole

set up, it creates a small issue: the measured 3ω voltage, V3ω,m is not the one generated

by the heater, V3ω, as a voltage source has a small internal resistance that is comparable

to the heater resistance. To convert the measured value to the generated value, we use the

following relation:

V3ω =
Rext +R0

Rext

V3ω,m, (3.2)

where Rext is the total resistance in the circuit except the heater. Note that in the case of

a current source (sufficiently large Rext), V3ω is equal to V3ω,m.

3.2.2 Data Reduction

The temperature oscillation in Eq. 3.1 has the information of the thermal properties of the

material underneath. By employing a thermal model and fitting the experimental data, the

thermal conductivity of the thin film can be deduced.

In the case that the thermal penetration depth L =
√

(α/2ω) is much larger than the

thin film thickness t and the heater width 2b, but still smaller than the substrate thickness,

and 2b is large compared to t, the heat equation has a simpler form [20]:

∆T =
P

πLκs

(
0.5 ln

(αs
b2

)
− 0.5 ln(2ω) + 0.923− iπ

4

)
+

Pt

2bLκf
. (3.3)
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Here, P is the Joule heating power, L the heater width, κ and α are the thermal conductivity

and diffusivity, and the subscript s, f are for substrate and film. Note that in Eq. 3.3, the

first part on the right hand side is the temperature fluctuation in the substrate ∆Ts and the

second part is that in the film ∆Tf . The thermal conductivity of substrate and film can be

determined separately as follows:

κs = − P

2πL

(
d∆T

d ln(2ω)

)−1

; (3.4)

with the knowledge of κs, ∆Ts can be obtained, hence ∆Tf ; and then

κf =
Pt

2bL∆Tf
. (3.5)

However, the conditions above cannot always be satisfied, especially when the measure-

ment covers a wide range of temperatures. Borca-Tascuic [66] has worked out the analytical

solution to the N-layer system. In the case that the in-plane and out-of-plane thermal

conductivity are the same, the solution has the following form:

∆T =
−P
πlκ1

∫ ∞
0

1

A1B1

sin2(bλ)

b2λ2
dλ, (3.6)

where

Ai−1 =
Ai

κiBi
κi−1Bi−1

− tanh(φi−1)

1− Ai κiBi
κi−1Bi−1

tanh(φi−1)
, i = N...2

Bi =

(
λ2 +

i2ω

αi

)1/2

, φi = Bidi.

Here, λ is the integration variable, the subscript i denotes ith layer from the top and d is

the thickness of each layer. The value of An depends on the boundary condition (BC) of

the substrate (nth layer from the top). An is equal to − tanh(φn) for adiabatic BC, and

−1/ tanh(φn) for isothermal BC.

In our measurement, we use the full solution to the heat equations. The silicon inverse

opal layer is treated as a thin film on the substrate. Therefore, the thermal conductivity
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obtained from the fitting calculation is the effective thermal conductivity of the film. The

material conductivity is determined using the relationship[15] discussed in Chapter 1.

3.2.3 Experiment Details

The gold thermometer is calibrated in a cryostat to obtain the temperature coefficient

dR/dT . A helium dewar is connected to the cryostat using a transfer line and the cryo-

stat is controlled by a Lake Shore temperature controller. We use a lock-in amplifier to send

an AC current of ∼250 nA to the metal line and measure the voltage drop. Our measurement

went well below 50 K where the resistance temperature relationship is no longer linear. I use

the Bloch-Gruneisen Formula [67] to fit the calibration data and differentiate the analytical

curve at each temperature point to get dR/dT . The Bloch-Gruneisen Formula is

ρ(T ) = ρ(0) + A

(
T

TD

)n ∫ TD/T

0

xn

(ex − 1)(1− e−x)
dx, (3.7)

where x is the integration variable, ρ(0) is the residual resistivity due to defect scattering,

A is a constant that depends on the velocity of electrons at the Fermi surface, the Debye

radius and the number density of electrons in the metal. n is equal to 5 for simple metals.

TD is the Debye temperature. This formula fits our calibration data very well as shown

in Figure 3.4. I found that for each heater, TD is always slightly smaller than the Debye

temperature obtained from specific heat measurements.

As the temperature is reduced well below the Debye temperature, fewer phonon modes

become active. As a result, the resistivity usually drops the linear-like relationship with

temperature and finally reaches a constant value, known as the residual resistivity. This

value depends not only on the type of metal, but on its purity and thermal history. We

found that when the temperature is below 10 K, the resistance of the gold heater becomes

insensitive to temperature. Therefore, it is no longer capable of being a thermometer. The

data below 10 K is not included in the final thermal conductivity results. The temperature

coefficient, dR/dT , is shown in Figure 3.5 for one heater.

The first two points are very close to zero. As temperature increases, the coefficient dR/dT
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Figure 3.4: The heater resistance calibration (open circles) and the Bloch-Gruneisen
Formula fitting (solid line).

keeps increasing until 50 K, where it reaches its maxima. It then decreases gradually. The

temperature coefficient is almost constant above the Debye temperature (170 K for gold).

All the gold heaters exhibit similar trend.

Our ultimate goal is to obtain the thermal conductivity of the inverse opal layer by fitting

the temperature oscillation with the heat equations, i.e. Eq. 3.6. Therefore, we need to know

other parameters as accurate as possible to reduce the uncertainty in thermal conductivity.

The heater geometry is easily obtained from SEM images. The thickness of the silicon

dioxide layer is characterized on a dummy sample using ellipsometry. However, since the

opals were assembled by vertical deposition [63], the number of opal layers varies along one

direction. As a result, it is difficult to get the exact thickness of the inverse opal layer

underneath the heater. The layer thickness is a critical parameter and affects the resultant

thermal conductivity directly. In order to address this issue we use focused ion beam (FIB)

to cut an opening close to the heater and image the cross section at a tilted angle as shown

in Figure 3.6. The thickness is then obtained from the projected cross section. As the heater

sits on the top surface that is not perfectly flat, the thickness has an uncertainty that is
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Figure 3.5: The heater temperature coefficient plotted vs. temperature. The data below 10
K is abandoned.

comparable to the silica radius. The percentage uncertainty is smaller with multiple opal

layers.

3.2.4 Results

We use LabVIEW to control the instruments and take data from the lock-in amplifier.

Using Eq. 3.1 and 3.2, we know the temperature oscillation ∆T from the measured third

harmonic voltage, V3ω,m at each frequency. Since all the geometric parameters have been

determined, the only unknowns are the thermal properties of the inverse opal layer and

substrate (we use bulk properties of silicon dioxide). As discussed in previous sections, the

thermal conductivities of substrate and inverse opal layer can be determined separately from

the linear region. Figure 3.7 shows the temperature oscillation at 15 K normalized by power

and the fitting curve. Both in-phase and out-of-phase data are presented.

In the actual measurement, we found that the silicon dioxide contribution to the total

temperature oscillation is negligible. So is the contact resistance between heater and silicon
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Figure 3.6: The cross section of the inverse opal layer. The opening was cut by FIB.

dioxide. This is due to the large thickness (∼5 µm) and small effective thermal conduc-

tivity of the inverse opal layer, hence a large thermal resistance. As a result, most of the

temperature drop occurs in the inverse opal layer. The in-phase component is almost flat

in the low frequency region, indicating that the substrate thermal conductivity is very high,

which is indeed the case at low temperature. However, again, the temperature oscillation is

insensitive to the substrate, so the substrate thermal conductivity determined in this way

would have a relatively big uncertainty.

Theoretically, one can determine the heat capacity from the “tail” in the high frequency

region, where the thermal penetration depth is comparable to the inverse opal layer thickness.

However, we found that this method will only give us a rough value of the heat capacity.

The uncertainty is much larger than that in the thermal conductivity measurement.

By doing the fitting at each temperature, we get the temperature trend of thermal con-

ductivity. We have measured three samples with different shell thicknesses in total. The

diameters of silica spheres are 635 nm, 420 nm and 300 nm, and the corresponding shell

thicknesses are ∼38 nm, 25 nm and 18 nm. Figure 3.8 shows the complete experimental re-

sults in this study up to date. The right axis represents the effective thermal conductivity of

the inverse opal layer. This is obtained from fitting the temperature oscillation with the heat

equations. The effective thermal conductivities for all three samples are below 2 W/mK at

300K. This is no surprising because firstly the inverse opal layer is a extremely porous struc-
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Figure 3.7: Normalized temperature oscillation data (open circles) and fitting curve (solid
curves).

ture (78% porosity), secondly the small shell thickness and noncrystalline material enhances

phonon scattering.

The left axis is for the material thermal conductivity. The relationship between effective

and material thermal conductivity has been discussed in Chapter 1. As we fill the pores in the

opal assembly to its maxima, the ratio between effective and intrinsic material conductivity

is ∼0.115. The material conductivity allows us to investigate the phonon transport in such

small dimension polycrystalline structure. Comparing this figure with Figure 2.4 in Chapter

2, the trend at high temperature agrees with each other quite well. However, they don’t have

a good match at low temperatures. The reasons and possible modifications will be discussed

in later sections.

From the three different curves, there is a clear correlation between thermal conductivity

and shell thickness as expected. The larger the thickness is, the larger the thermal con-

ductivity. While phonon-surface and phonon-grain boundary scattering are dominant in all

three samples, Umklapp scattering is also very important in the large shell thickness sample,

as the thermal conductivity decreases at high temperature.
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Figure 3.8: Measured thermal conductivity of the inverse opal structure for different silica
sizes (or shell thickness). The left axis is for material thermal conductivity while the right
is for effective thermal conductivity of the layer.

3.3 Grain Size Characterization

As discussed in Chapter 2, grain boundary has a bigger impact on the thermal conductivity

than surface boundary. It is impossible to interpret the thermal conductivity results without

knowing the grain size. It has been found that the grains in recrystallized polycrystalline

material has a log-normal distribution [28, 42]. Also, the grain size of a thin film polycrys-

talline material is limited by the film thickness [55]. Therefore, given that the samples were

annealed at 1000 ◦C for 10 hours, we expect the grains in silicon inverse opal to have a

log-normal size distribution with average grain size similar to shell thickness.

A common way to characterize the grain size and its distribution is to use scanning electron

microscopy (SEM). SEM is able to image a large region that has hundreds of grains. However,

the lower limit for SEM is ∼50 nm, and our sample has much smaller grain size. The only

way to distinguish the atomic orientation is to use transmission electron microscopy (TEM).

Figure 3.11 shows the TEM image of an inverse opal with inner diameter of 300 nm. The
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shell thickness from the left image is larger because the breakage did not happen along the

diameter. The polycrystalline nature of the material is confirmed from image on the right.

The yellow dashed lines indicate grain boundaries. The grain size is indeed comparable to

shell thickness.

Figure 3.9: TEM of silicon inverse opal structure. The scale bars are 10 nm and 5 nm
respectively.

However, the region that a TEM image can cover is very limited. We often end up with

only several grains in one image. Given such small number of grains, we cannot extract the

size distribution. The average grain size will also have a large error. Therefore, we turned

to X-ray diffraction (XRD).

Figure 3.10: The schematic diagram of the XRD method.

XRD is a non-destructive method which reveals information about the crystal structure.

During the measurement, a beam of X-rays strikes a crystal and causes the beam of light

to spread into many specific directions. From the angles and intensities of these diffracted

beams, the crystal structure of the sample can be determined. In our case, the polysilicon
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inverse opal is on a single crystal silicon substrate, so the diffracted beam will have the

information of both single crystal silicon and polysilicon. However, the peaks are located at

different angles. From the shape of the polysilicon peaks, we can extract the average grain

size. The XRD method is easier and quicker than TEM. However, it cannot reveal the size

distribution of grains.
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Figure 3.11: Intensity counts from a typical XRD analysis. The peaks with vertical green
lines are from polysilicon inverse opal.

We use the Jade software to analyze the XRD data. The software analyzes each peak and

gives the average grain size for that atomic orientation. The average grain size for all the

atomic orientations is carried out by a weighted average based on the uncertainty in each

orientation. The average grain sizes for all three samples are listed in Table 3.1, with silica

diameter and shell thickness.

3.4 Discussion

We used the dispersion proposed by Holland [40] to calculate the thermal conductivity of

polysilicon inverse opal in Chapter 2. Now given the measured data, it is time to examine
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Table 3.1: Feature Size of Different Samples

Sample # Silica Diameter Shell Thickness Avg. Grain Size (uncertainty)

1 635 nm 38 nm 44(16) nm
2 420 nm 25 nm 24(4) nm
3 300 nm 18 nm 20(2) nm

the validity of the model. Again, we use Eq. 2.5 and the expressions of different scattering

rates in Chapter 2. The constants in the scattering rates are also the same. We plug in the

shell thickness and average grain size from Table 3.1. By changing α in Eq. 2.6, we try to

match the measured data. However, the fitting is not good as apparent in Figure 3.12.
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Figure 3.12: Comparison of the thermal conductivity data of polysilicon inverse opal with
Holland’s model.

The model consistently underestimates the thermal conductivity at low temperature. If we

want to match the low temperature data by increasing α, the high temperature data will be

way off. The reason for this discrepancy is the phonon dispersion we use, which overestimates

the speed of high energy phonons. Even though Holland used a cut-off frequency lower than

Debye frequency for LA branch, the phonon propagation speed is still too high near the

zone boundary. These low-speed high-energy phonons contribute a significant portion to
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heat capacity, but a lot less to thermal conductivity. In order to address this issue, we can

calculate the real dispersion relation using lattice dynamics with spherical shells as boundary

conditions. However, this is out of the scope of this study. Instead, we adopt Holland’s

dispersion with a lower cut-off frequency for LA phonons, ωc,LA. Due to the dominant

Umklapp scattering in bulk silicon, the selection of ωc,LA is not as important. However, this

cut-off frequency is particularly important for small dimension structures. We iteratively

determine ωc,LA as follows. First we adjust ωc,LA to fit the thermal conductivity data of

sample 1 (38 nm shell thickness). Second, using the new ωc,LA we adjust the constants in

Umklapp scattering, B and C to fit the bulk data. Then we adjust ωc,LA again with new

values of B and C. The iteration is continued until ωc,LA, B and C match data of both bulk

silicon and sample 1 reasonably well. The final values of ωc,LA, B and C are 5.1×1013 rad/s,

1.7× 1019 s/K and 150 K, respectively.
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Figure 3.13: Comparison of the bulk thermal conductivity data with Holland’s model (with
lower cut-off frequency).

Figure 3.13 shows the theoretical calculation of bulk silicon and the reported values [40]

from 10 K to 1000 K. The calculation matches the experimental data fairly well except for

some deviations between 10–50K, where impurity scattering is important in bulk silicon.
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Now let’s turn to the case of polysilicon inverse opal. We use the same procedure as

producing Figure 3.12, except that the cut-off frequency for LA branch is 5.1× 1013 rad/s.

By treating α in Eq. 2.6 as the only fitting parameter, we can fit the measured data fairly

well. However, the shape factor F in surface scattering is not accurate. The exact value is

not known at this point given the complex shape, but a quick guess gives a factor large than

1 as the surface to volume ration is smaller than nanowires. If we take F = 2, the fitting is

slightly better. The result is shown in Figure 3.14. The fitting parameter α is 1, 0.85 and

0.65 for sample 1, 2 and 3, respectively.
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Figure 3.14: Comparison of the thermal conductivity data of polysilicon inverse opal with
Holland’s model (with lower cut-off frequency).

Comparing Figure 3.14 with Figure 3.12, it is obvious that this model with a lower cut-off

frequency is much better than Holland’s model in predicting the thermal conductivity of

polysilicon inverse opal. However, the physics at low temperature is still unclear. While we

adopt the scattering rates for surface and grain boundary scattering from literature, there

is still an interplay between these two interactions. If I plot only the low temperature part

in a log-log scale, the thermal conductivity trend is more towards T 2 as in Figure3.15.

This trend is unlike the T 3 trend found in single crystal bulk silicon [40], large nanowires [68],
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Figure 3.15: Thermal conductivity data of polysilicon inverse opal at low temperature.

but similar to polysilicon [42]. The T 3 trend in thermal conductivity comes from the T 3

relation in heat capacity and a frequency independent phonon mean free path at low tem-

perature. In our case, T 2 trend implies that the mean free path is frequency dependent. We

have used Eq. 2.6 which gives a mean free path inversely proportional to ω. As a result,

the thermal conductivity should have a T 2 trend. However, unlike nanowires or polysilicon,

inverse opal has both the effects of surface boundary and grain boundary. Given the T 2

trend at low temperature, there could be two possible explanations. 1, surface scattering

is much smaller compared with grain boundary scattering. Effectively, the mean free path

at low temperature is determined by grain boundary. 2, surface scattering is also frequency

dependent. This is likely to be true for feature size smaller than 50 nm [68]. In this case,

one cannot decouple these two effects.

Given the limited sets of data and the coexistence of two scattering mechanisms, it is hard

to conclude which assumption is correct. Further study could focus on inverse opals with

big shell thickness but small grain size. By doing so, the impact of surface scattering can be

reduced as grain boundary scattering would be dominant. Again, to achieve small grains,

low temperature annealing is necessary. On the other hand, study on surface scattering
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can be carried out with silicon thin films. The dimension should be less than 50 nm, as

is in inverse opals. The surface conditions should be carefully characterized, e.g. surface

roughness and native oxide. All these conditions could affect the scattering processes.
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CHAPTER 4

SUMMARY AND CONCLUSIONS

The efficiency of energy conversion in a thermoelectric material depends on the thermoelec-

tric figure of merit, ZT . A reduction in thermal conductivity enhances the figure of merit

for thermoelectric materials. We have shown that similar enhancement in the figure of merit

is possible in polysilicon inverse opal. We present a model for charge and thermal transport

in highly doped polysilicon inverse opals. Nanoscale grains in addition to the large surface

area available for scattering phonons result in a net enhancement in the figure of merit for

thermoelectric energy conversion. A surprising result is that a smaller grain size yields a

larger ZT . We understand this in terms of the relative impact of nanoscale grains on electron

versus phonon transport. We find that by tuning the relationship between shell thickness

and grain size, ZT exceeds 0.1 at room temperature and can be as high as 0.6 at 600 K.

We also present the thermal conductivity measurements of 3 different samples. We find

that the porous structure exhibits extremely low thermal conductivity (< 2W/mK at room

temperature). The thermal conductivity is further reduced with smaller shell thickness. We

obtain the intrinsic material thermal conductivity from boundary integral solution to the

flow fields. The intrinsic material thermal conductivity can be described by the kinetic the-

ory with effective mean free path. The phonon mean free path is limited by the surface

and grain boundaries. The T 2 trend in thermal conductivity at low temperature implies

the mean free path is frequency dependent. However, the coexistence of surface and grain

boundary scattering complicates the analysis. To decouple these two effects needs more ex-

perimental work. The thermal conductivity measurements also suggests that any application

that utilizes inverse opal structure (e.g. the emitter in a solar cell) needs careful thermal

design, so that overheating is minimized.

Future experimental work could go two directions. To make a realistic thermoelectric
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material, one should investigate the fabrication of inverse opals with small grain sizes as well

as the possibility of doping the structures in-situ followed by low temperature annealing to

preserve grain size. The doping step is critical as the performance of a thermoelectric device

is directly affected. To preserve small grains is challenging. On one hand, high temperature

is required to recrystalize the structure and remove defects. On the other hand, grains will

grow under high temperature, which is not desired for ZT . The condition of annealing

should become the emphasis in future work.

To understand the scattering mechanisms, one should make structures that can decouple

the two dominant scattering processes at low temperature. Inverse opals with big shell

thickness but small grain size could help reduce the impact of surface scattering, as grain

boundary scattering would be dominant. Again, to achieve small grains, low temperature

annealing is necessary. On the other hand, study on surface scattering can be carried out with

silicon thin films. The dimension should be less than 50 nm, as is in inverse opals. Silicon

thin films can be released from an SOI wafer. One possible route is to use a suspended

platform [68] to measure the thermal conductivity of thin films.
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