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Abstract

Vibrational many-body methods for molecules and extended systems have been developed that can account for the

effects of anharmonicity in the potential energy surfaces (PESs) on energies and other observable properties. For

molecules, we present a general scheme to calculate anharmonic vibrational frequencies and vibrationally-averaged

structures along with applications to some key species in hydrocarbon combustion chemistry: HCO+, HCO, HNO,

HOO, HOO−, CH+
3 , and CH3. We propose a hybrid, compact representation of PESs that combines the merits of two

existing representations, which are a quartic force field (QFF) and numerical values on a rectilinear grid. We employed

a combination of coupled-cluster singles and doubles (CCSD), CCSD with a second-order perturbation correction in

the space of triples [CCSD(2)T] and in the space of triples and quadruples [CCSD(2)TQ], and a correlation-consistent

basis set series to achieve the complete-correlation, complete-basis-set limits of the potential energy surfaces. The

mean absolute deviation between the predicted and the observed frequencies is 11 cm−1.

For extended systems, we generalized the formulations of the vibrational self-consistent field (VSCF), vibrational

Møller–Plesset perturbation (VMP), and vibrational coupled-cluster (VCC) methods on the basis of a QFF in normal

coordinates. We have identified algebraically and eliminated several terms in the formalisms of VSCF that have

nonphysical size dependence, leading to compact and strictly size-extensive equations. This size-extensive VSCF

method (XVSCF) thus defined has no contributions from cubic force constants and alters only the transition energies

of the underlying harmonic-oscillator reference from a subset of quartic force constants. The mean-field potential

of XVSCF felt by each mode is shown to be effectively harmonic, making the XVSCF equations subject to a self-

consistent analytical solution without a basis-set expansion and matrix diagonalization, which are necessary in VSCF.

We implemented the XVSCF method for finite systems, and applied it to polyacenes up to tetracene as well as to

a model system of a linear chain of masses interacting through a quartic force field. We showed that the results of

XVSCF and VSCF approach each other as the size of the system is increased, implicating the inclusion of unnecessary,

nonphysical terms in VSCF. We have also shown that apart from reducing the scaling of the VSCF calculation from

quartic to quadratic, XVSCF is nearly three orders of magnitude faster than VSCF implemented with a reduced set of

force constants. The second-order VMP and VCC methods based on the XVSCF reference are shown to account for

anharmonic effects due to all cubic and quartic force constants in a size-extensive fashion.
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We also presented the Γ approximation for extended systems, which amounts to including only in-phase phonons

throughout the generation of PES and solution of the vibrational Schrödinger equation. We computed the frequencies

of the infrared- and/or Raman-active vibrations of polyethylene and polyacetylene using this approximation and we

have shown that accounting for both electron correlation and anharmonicity is essential in achieving good agreement

between computed and observed frequencies.
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Finally, I would like to thank my family for their endless support. My wife, Sevnur, probably suffered most during

my studies. It is very hard to express my gratefulness to her, for her love and patience.

I would like to also leave a note here for my niece, Demir, and my daughter, Asya, who joined our life recently.

You brought the sunlight to us, I hope we can prepare a brighter future for you.

vi



Table of Contents

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Molecular Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Born-Oppenheimer approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Vibrational Hamiltonian and normal coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Potential energy surface representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5.1 n-Mode representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5.2 Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5.3 Taylor expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Vibrational many-body methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6.1 Vibrational self-consistent field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6.2 Vibrational perturbation theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6.3 Vibrational configuration-interaction theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.7 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Chapter 2 Anharmonic calculations for small molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Theory and computational procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Electronic part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Hybrid potential energy surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.3 Vibrational part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Combustion chemistry applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.1 HCO+ (X̃1Σ+) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 HCO (X̃2A′) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.3 HNO (X̃1A′) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.4 HOO (X̃2A′′) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.5 HOO− (X̃1A′) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.6 CH+

3 (X̃1A′1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.7 CH3 (X̃2A′′2 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Chapter 3 First-principles methods for anharmonic lattice vibrations . . . . . . . . . . . . . . . . . . . 48
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 Electronic structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 Vibrational structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.1 Normal coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.2 Anharmonic potential energy functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3.3 Self-consistent field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.4 Size-extensive self-consistent field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3.5 Perturbation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3.6 Configuration-interaction theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

vii



3.3.7 Coupled-cluster theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Chapter 4 Size-extensive vibrational self-consistent field method . . . . . . . . . . . . . . . . . . . . . . 70
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2 Size-extensive vibrational self-consistent field theory . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3 Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3.1 VSCF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.2 XVSCF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4 Numerical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.5 Size-extensivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.7 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.8 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Chapter 5 Anharmonic frequencies of polyethylene and polyacetylene in the Γ approximation . . . . . . 88
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.2 Computational methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2.1 Electronic part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2.2 Vibrational part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.3.1 Polyethylene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.3.2 Polyacetylene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.5 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Chapter 6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

viii



Chapter 1

Introduction

Vibrational spectroscopy is one of the primary experimental sources for information on the composition and the

structural and dynamical properties of molecular and condensed phase systems. Understanding the spectrum using

some approximate physical models and assigning the vibrational band-origins to specific vibrational modes predicted

by these models is a task in theoretical chemistry.1 Predictive theoretical simulations based purely on ab initio methods

became possible in the past 20 years. This owes much to the development of predictive electronic structure methods2

which can be used to produce potential energy surfaces (PESs), without any empirical models. These PESs become a

part of the equation of motion of nuclei within the Born-Oppenheimer framework.3

Wave function based ab initio methods for electronic structure calculations have come to a level that chemical

accuracy (1 kcal/mol) can be attained for total electronic energies of small molecules composed of main group el-

ements.4, 5 Even higher accuracy can be expected for properties that depend on relative energies like vibrational

transition energies. With such high accuracy in electronic energies, the usual harmonic treatment of vibrations became

inadequate and wave function based ab initio methods for vibrations that can account for anharmonic effects must be

developed and applied.6–9 Apart from quantitative failure, the harmonic approximation cannot explain bond dissoci-

ation, intensity borrowing, Fermi resonance10 and vibrationally averaged properties including thermal expansion of

solids.11

The overarching goal of this thesis is to develop a predictive computational capability to perform vibrational

analyses for molecules and extended systems. Our analyses consist in (1) the converging electronic structure methods

that generate accurate potential energy surfaces, (2) the compact and systematic representations of the PESs, and (3)

the hierarchical vibrational many-body methods that can include the effects of anharmonicity on energies and other

observable properties to any desired extent.

Step (1) is further divided into three parts. The first one is to find the equilibrium geometry, and then the second

is to perform a normal mode analysis to generate the normal coordinates and harmonic frequencies. The third part is

to run the electronic energy calculations to generate the PES expressed in a mathematical form which depends on the

choice in step (2).

For the PES representation, step (2), the common choice is to either use a Taylor expansion or tabulated values
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of energies on a grid. Both have certain advantages and disadvantages that are discussed in Section 1.5.2 and 1.5.3.

We also propose a new, compact representation of PESs (Section 2.2.2) that combines the merits of two existing

representations, while minimizing their shortcomings.

For step (3), the vibrational self-consistent field (VSCF),12 second-order Møller–Plesset perturbation (VMP),,13

configuration-interaction (VCI)14 and coupled-cluster (VCC)15 methods have been developed in complete analogy to

the corresponding methods for electronic structures. Just as electronic counterparts, these systematic methods can in

principle solve the vibrational Schrödinger equation of a given PES essentially exactly if the rank of these methods is

raised to a sufficiently high level.

1.1 Outline

We propose our predictive scheme for gas phase molecules, and introduce a new type of PES representation in Chapter

2. Derivations of the size-extensive generalizations of the vibrational many-body methods are given in Chapter 3. It

is followed by Chapter 4 where we present the definition and implementation of the size-extensive VSCF (XVSCF)

method for finite systems and show applications on a linear atomic chain and a series of polyacenes. In Chapter 5, we

introduce the Γ approximation which considers only in-phase vibrations and present applications on polyethylene and

polyacetelyne. Finally, we give a brief summary of the thesis in Chapter 6. In the rest of this chapter, we explain the

basic concepts and methods that are used throughout the thesis.

1.2 Molecular Hamiltonian

In the non-relativistic regime, the molecular Hamiltonian can be written as:

H = −

N∑
I=1

1
2mI
∇2

I +

N∑
I=1

N∑
J>I

ZIZJ

RIJ
−

n∑
i=1

1
2
∇2

i +

n∑
i=1

n∑
j>i

1
ri j
−

N∑
I=1

n∑
i=1

ZI

riI
(1.1)

where N and n refers to total number of nuclei and electrons, respectively, and atomic units are used throughout this

thesis. The analytical solutions of the time-independent Schrödinger equation for this Hamiltonian cannot be obtained

except for the special case of N = n = 1, which corresponds to the hydrogen-like atoms. However, as the system gets

larger, even numerical solutions become difficult without using effective approximations.
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1.3 Born-Oppenheimer approximation

Within this approximation, one can write the electronic-only Hamiltonian as,

He = −

n∑
i=1

1
2
∇2

i +

n∑
i=1

n∑
j>i

1
ri j
−

N∑
I=1

n∑
i=1

ZI

riI
(1.2)

where nuclear coordinates are considered as parameters. The eigenvalue Ee of this Hamiltonian enters to the nuclear

Hamiltonian,

HN = −

N∑
I=1

1
2mI
∇2

I +

N∑
I=1

N∑
J>I

ZIZJ

RIJ
+ Ee(RN). (1.3)

Sum of the last two terms is the total energy for fixed nuclei and can be represented by V(RN). The latter is generally

referred to as the PES. Once the electronic and nuclear Schrödinger equations are solved, the total wave function can

be written as a product of the eigenfunctions of the electronic and nuclear Hamiltonians:

Ψ = Ψe(re; RN)ΨN(RN), (1.4)

where Psie is the electronic wave function, PsiN is the nuclear wave function, and the semicolon separates variables

from parameters.

1.4 Vibrational Hamiltonian and normal coordinates

The nuclear problem differs from the electronic one in many ways. One difference is that the nuclear problem is

closer to the classical regime, so we can make use of classical mechanics to simplify some aspects of the problem.

Another difference is that, indistinguishability of the particles is much less a concern in small-amplitude vibrations and

can be relatively easily taken into account in rotations. For vibrational problems we are concerned with, the nuclear

Schrödinger equation serves as the sole equation of motion with no constraint imposed on the wave function with

respect to particle interchanges.

The nuclear Hamiltonian given in Equation (1.3) is invariant under translation and rotation of the molecule as

a rigid body. By using a space-fixed frame where the origin is at the center of mass of the molecule, translational

motion can easily be taken out. To separate rotational degrees of freedom, one needs to use a body-fixed frame which

rotates with the molecule. This part is the most complicated part in the derivation of the vibrational Hamiltonian16 for

two reasons: there is no unique way of choosing the body-fixed frame, and the kinetic energy term in the vibrational

Hamiltonian becomes very complicated. One of the most common choices for the body-fixed frame is the one Eckart

suggested17 which requires minimization of the angular momentum with respect to this frame. Such a choice also
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minimizes the coupling between rotation and vibration. It should be noted that there is no possible transformation to

completely get rid of this coupling.18

We can introduce the normal coordinates using the classical harmonic theory of small vibrations. There exists a

set of coordinates, Qk, that reduces the kinetic and potential energy terms (without anharmonic terms) in this simple

form:

T =
1
2

3N∑
k=1

Q̇2
k , V =

1
2

3N∑
k=1

λkQ2
k (1.5)

where the potential energy term has no cross term and λk are the square of harmonic frequencies. Such coordinates are

known as normal coordinates and they can be obtained from the eigenvectors of the Hessian (mass-weighted second-

order energy derivatives with respect to nuclear displacements) matrix at the equilibrium geometry of the molecule.

They are orthogonal to each other, and each represents simultaneous linear motion of nuclei with the same frequencies

and phases, but with different amplitudes. Therefore, these coordinates are non-local and rectilinear. It has been

shown that19 normal coordinates satisfy the Eckart condition and harmonic frequencies corresponding to translational

and rotational modes are identically zero. Given the classical form by Wilson and Howard,20 the derivation of the

quantum mechanical Hamiltonian in terms of normal coordinates was first given by Darling and Deninson21 and later

put in simpler forms for nonlinear22 and linear23 molecules by Watson.

For nonlinear reference configurations, the vibration-only part of the Watson Hamiltonian in normal coordinates

is

Ĥ = −
1
2

M∑
i=1

∂2

∂Q2
i

+ V (Q1, . . . ,QM) +
1
2

∑
αβ

π̂αµαβπ̂β −
1
8

∑
α

µαα, (1.6)

where M is the total vibrational degrees of freedom, and V represents the Born-Oppenheimer PES. The last two

terms involve µαβ which is the generalized inverse inertia tensor. The third term represents the Coriolis coupling

and contains the so-called vibrational angular momenta operator, π̂α. These terms cause singularities in the Watson

Hamiltonian for linear geometries, thereby greatly complicating a robust computer implementation. In principle, these

terms are important only for the molecules that have large rotational constants (small moments of inertia) like the water

molecule. Studies on the water molecule6, 24, 25 show that although the errors (relative to the full Watson Hamiltonian

results) can be severe for high-lying vibrational states, they are only around 10 cm−1 for the fundamentals. While

an implementation of the Watson Hamiltonian is mandatory to obtain spectroscopic accuracy (<1 cm−1) for light

molecules and successful applications for small molecules exist in the literature,26 we neglect the last two terms in

Equation (1.6) which is justifiable for the target accuracy of a few 10 cm−1 for general polyatomic molecules. This

is consistent with our neglect of core-correlation corrections, relativistic effects, non-Born–Oppenheimer effects, etc.

It should be also noted that the effect of these terms decreases as the size of the molecule increases and vanishes
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completely for extended systems. The Watson Hamiltonian without the rovibrational coupling terms reads as

H = −
1
2

M∑
i=1

∂2

∂Q2
i

+ V (Q1, . . . ,QM) . (1.7)

This form of the Hamiltonian is valid for both linear and nonlinear molecules without any forms of singularity. All

the vibrational calculations presented in this thesis are based on this Hamiltonian.

1.5 Potential energy surface representations

There are two main challenges in finding compact mathematical representations of the Born–Oppenheimer PES in the

vibrational Hamiltonian: the presence of higher-order coupling of all the modes (contrary to the electronic Hamiltonian

which has only up to two-body interactions) and lack of a closed analytical form (again, contrary to the electronic

Hamiltonian where particle-particle interactions are Coulombic).

1.5.1 n-Mode representation

The n-mode representation (nMR) addresses the first issue by using a many-body expansion for the PES. A restricted

two-mode representation has been initially proposed by Jung and Gerber27 and extensively used in many studies. A

general solution to this problem has been developed by Carter, Culik, and Bowman,28 who represent the M-mode PES

as a sum of one-, two-, up to n-mode coupling terms. nMR-PES is given as,

V(Q1, . . . ,QM) = Vref +
∑

i

Vi(Qi) +
∑
i< j

Vi j(Qi,Q j) +
∑

i< j<k

Vi jk(Qi,Q j,Qk) + . . . (1.8)

and truncated after the n-mode coupling term. Such an expansion is exact when all the couplings are included (n = M).

The crucial point is that each coupling term in the expansion should be zero if any of the coordinates is zero to ensure

that there is no over counting of the terms. The advantage of this representation is its rather quick and easily testable

convergence. Wu et al.29 demonstrated the convergence of the nMR expansion on CH4 and its isotopomers which

have nine-dimensional PESs. All fundamentals are found to be converged within 5 cm−1 at 3MR-PESs. The nMR

expansion also allows for the multi-resolution approach,30, 31 where each term in the expansion can be obtained with

different electronic structure methods allowing a considerable saving in computational time without a significant loss

of accuracy.
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1.5.2 Grid

In the grid representation, the second problem is partially addressed. It discretizes the PES on a grid, such as a

rectilinear grid with P points along each normal coordinate.32, 33 This approach would require PM points to represent

a global PES, and due to this exponential scaling, grid based PESs are not practical for large molecules. Grid PESs are

thus ideally suited to a combination with the nMR scheme which reduces the scaling to
(

M
n

)
Pn.34–36 The most common

choice of grid along each normal coordinate is the one associated with a Gauss-Hermite quadrature that would give

very accurate integrations to solve the vibrational Schrödinger equation. Ten points in each normal coordinate has

been shown to be sufficient35 for several low-lying vibrational states of small molecules.

1.5.3 Taylor expansion

An inexpensive alternative to grid based representation is a low-order truncation of the multinomial Taylor expansion

of PES around a reference geometry.

V = Vref +
∑

i

FiQi +
1
2

∑
i, j

Fi jQiQ j +
1
6

∑
i, j,k

Fi jkQiQ jQk +
1

24

∑
i, j,k,l

Fi jklQiQ jQkQl + . . . , (1.9)

where the summation indices i, j, k, and l run from 1 through M. The force constants, F, are the derivatives of the

PES at some judiciously chosen reference geometry, typically, the equilibrium geometry, with respect to the normal

coordinates. The quartic force fields (QFFs), Taylor expansions truncated at the fourth order, are among the most

efficient and compact PES representations for low-lying vibrational states. Expanded by normal coordinates around

the equilibrium geometry, the gradients (Fi) and the cross terms in the Hessian (Fi j with i , j) vanish. With this

assumption and also organizing terms according to the number of different modes involved, we can rewrite Equation

(1.9) as

V = Vref +
∑

i

(
1
2

FiiQ2
i +

1
6

FiiiQ3
i +

1
24

FiiiiQ4
i

)
+

∑
i, j

(
1
2

Fii jQ2
i Q j +

1
8

Fii j jQ2
i Q2

j +
1
6

Fiii jQ3
i Q j

)

+
∑
i, j,k

(
1
6

Fi jkQiQ jQk +
1
4

Fii jkQ2
i Q jQk

)
+

∑
i, j,k,l

1
24

Fi jklQiQ jQkQl. (1.10)

Truncation of Equation (1.10) after the second, third, and fourth term amounts to using the nMR approximation with

n = 1, 2, and 3, respectively, within the framework of the QFF.
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The number of single point energy calculations for a QFF scales as M4 but that can be reduced to Mn when the

nMR approximation is used. Despite its lower cost and analytical expression for the PESs, QFFs cannot describe

strong Morse-like anharmonicity and tend to exhibit fortuitous minima in the regions away from the equilibrium

geometries.8, 37 Errors (with respect to accurate grid PESs) in the frequencies of stretching modes involving hydrogen

motions can be as large as 20 cm−1 (see Section 2.2.2) and nonphysical states supported by the fortuitous minima

can appear. Another possible source of error in QFFs is the difficulty in evaluating accurately the coefficients of the

expansion by numerical (finite-difference) differentiation. Analytical derivatives can improve this accuracy and reduce

the number of single point energy calculations considerably.

1.6 Vibrational many-body methods

Once the PES is expressed in an appropriate mathematical function, the remaining task is to solve the vibrational

Schrödinger equation for the PES. This is carried out with one or more of the following vibrational many-body

methods.

1.6.1 Vibrational self-consistent field theory

In the vibrational self-consistent field (VSCF) method, we seek variationally the best wave function of the Hartree

product form for a molecule whose equilibrium structure belong to an Abelian point group,

Φs(Q1, . . . ,QM) =

M∏
m=1

φsm (Qm), (1.11)

where φsm is a one-mode function (modal) of normal coordinate Qm and s is a string of quantum numbers s1, . . . , sm, . . . , sM

specifying the vibrational state with M modes. We vary modals such that the expectation value of the vibrational

Hamiltonian Ĥ in Φs reaches a minimum with the constraint that each modal remains normalized. This results in a set

of coupled one-dimensional eigenvalue equations:

Ĝm,s|φsm〉 = εsm |φsm〉, m = 1, . . . ,M, (1.12)

where εsm is the energy of the modal and the mean-field operator Ĝ has the form,

Ĝm,s = 〈Ψm,s|Ĥ|Ψm,s〉, (1.13)
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with

Ψm,s =
∏
i,m

φsi (Qi). (1.14)

By multiplying Equation (1.12) with φ∗si
and integrating, one can see that εsm also gives the total VSCF energy of the

state s,

εsm = 〈Φs|Ĥ|Φs〉 ≡ EVSCF
s . (1.15)

Since the mean-field operator Ĝm,s for a specific mode requires the knowledge of all the other modals, each equa-

tion is coupled to all the others. A standard way to solve this coupled system of equations is the self-consistent iterative

procedure that starts with an initial guess of the VSCF wave function and ends when the subsequent iterations yield

essentially the same result for the energies and/or the wave functions. One needs to perform an (M–1)-dimensional

integration in Equation (1.13), which becomes computationally the most demanding part of the method as the number

of modes increases.

Introducing the explicit form of the vibrational Hamiltonian given in Equation (1.7), the mean-field operator

assumes the form,

Ĝm,s = −
1
2
∂2

∂Q2
m

+ Um,s(Qm), (1.16)

where the one-mode function, Um,s(Qm), is the mean-field potential felt by mode m in the presence of others. For a

QFF PES [Equation (1.10)], the mean-field potential is given by

Um,s(Qm) = U(0)
m,s + U(1)

m,sQm +
1
2

U(2)
m,sQ

2
m +

1
6

U(3)
m,sQ

3
m +

1
24

U(4)
m,sQ

4
m (1.17)

with

U(0)
m,s = Vref +

∑
i

′
−1

2

〈
∂2

∂Q2
i

〉
+

1
2

Fii〈Q2
i 〉 +

1
6

Fiii〈Q3
i 〉 +

1
24

Fiiii〈Q4
i 〉


+
∑
i, j

′
(

1
2

Fii j〈Q2
i 〉〈Q j〉 +

1
8

Fii j j〈Q2
i 〉〈Q

2
j〉 +

1
6

Fiii j〈Q3
i 〉〈Q j〉

)

+
∑
i, j,k

′
(

1
6

Fi jk〈Qi〉〈Q j〉〈Qk〉 +
1
4

Fii jk〈Q2
i 〉〈Q j〉〈Qk〉

)
+
∑
i, j,k,l

′ 1
24

Fi jkl〈Qi〉〈Q j〉〈Qk〉〈Ql〉, (1.18)
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U(1)
m,s =

∑
i

′
(

1
2

Fiim〈Q2
i 〉 +

1
6

Fiiim〈Q3
i 〉

)
+

∑
i, j

′
(

1
2

Fi jm〈Qi〉〈Q j〉 +
1
2

Fii jm〈Q2
i 〉〈Q j〉

)
+
∑
i, j,k

′ 1
6

Fi jkm〈Qi〉〈Q j〉〈Qk〉, (1.19)

U(2)
m,s = Fmm +

∑
i

′
(
Fimm〈Qi〉 +

1
2

Fiimm〈Q2
i 〉

)
+

∑
i, j

′ 1
2

Fi jmm〈Qi〉〈Q j〉, (1.20)

U(3)
m,s = Fmmm +

∑
i

′

Fimmm〈Qi〉, (1.21)

U(4)
m,s = Fmmmm, (1.22)

where 〈 f (Qi)〉 is a shorthand notation for 〈φsi | f (Qi)|φsi〉 and the primes on the summation symbols indicate that the

mth mode is excluded from the sums.

The set of coupled eigenvalue equations, Equation (1.12), does not have an analytical solution. We must, therefore,

resort to a numerical solution by expanding each modal in the basis of, typically, the harmonic oscillator (HO) wave

functions,

φsm (Qm) =

Nm−1∑
n=0

Cn,smχn,m(Qm), (1.23)

where Nm is the number of the HO basis functions and Cn,sm is an expansion coefficient. The nth-order HO basis

function is given by

χn,m(Qm) = Nn,mHn(
√
ωmQm) exp

(
−ωmQ2

m/2
)
, (1.24)

where Nn,m is the normalization constant,Hn is an Hermite polynomial of order n, and ωm is the harmonic frequency

for mode m. The expansion coefficients are determined by solving the matrix eigenvalue equation,

Nm−1∑
n=0

Gn′nCn,sm = Cn′,smεsm , (1.25)

where Gn′n = 〈χn′,m|Ĝm,s|χn,m〉. Hence, the algorithm of VSCF involves repeated diagonalization of the G matrix for

each mode until self consistency across all the modes is attained. These matrix elements can be evaluated analytically

and those that are necessary to implement VSCF with a QFF are given explicitly in Table 1.1.

VSCF method captures a significant portion of anharmonicity, EAnharm
s , which can be defined as the difference of

the total energy, Es, from that in the harmonic approximation,

EAnharm
s = Es −

∑
m

(sm + 1/2)ωm. (1.26)
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If all the modes were uncoupled as the 1MR approximation, VSCF method would give the exact energies, Es = EVSCF
s .

Anharmonic terms beyond 1MR (also known as off-diagonal anharmonic terms), give rise to coupling between the

modes and VSCF describes this coupling in a mean-field approximation. To capture the rest of the anharmonicity,

one needs anharmonic many-body methods that go beyond VSCF. Such methods are better known as vibrational

correlation methods and are built upon the VSCF wave function. In this context, the vibrational correlation energy can

be defined as,

ECorr
s = Es − EVSCF

s . (1.27)

1.6.2 Vibrational perturbation theories

Rayleigh-Schrödinger perturbation theory is a standard method to address many-body problems. It partitions the

Hamiltonian into an exactly solvable part, Ĥ(0), and a smaller perturbation term, Ĥ′. Eigenfunctions and eigenvalues

are expanded in a Taylor series in λ, which is used as an ordering parameter and set to one when perturbation series

are defined at each order.

Ĥ = Ĥ(0) + λĤ′ (1.28)

Ψs = Ψ
(0)
s + λΨ

(1)
s + λ2Ψ

(2)
s + . . . (1.29)

Es = E(0)
s + λE(1)

s + λ2E(2)
s + . . . (1.30)

The zeroth, first and second order energies are given, respectively, as,

E(0)
s = 〈Ψ

(0)
s |Ĥ

(0)|Ψ
(0)
s 〉, (1.31)

E(1)
s = 〈Ψ

(0)
s |Ĥ

′|Ψ
(0)
s 〉, (1.32)

E(2)
s =

∑
s′,s

|〈Ψ
(0)
s |Ĥ′|Ψ

(0)
s′ 〉|

2

E(0)
s − E(0)

s′
. (1.33)

For anharmonic vibrational problems, there are two ways of partitioning the Hamiltonian. In the first one, known as

vibrational perturbation theory (VPT), the zeroth order Hamiltonian is the Hamiltonian in the harmonic approximation,

which has analytical solutions.

Ĥ(0) = −
1
2

∑
i

∂2

∂Q2
i

+
1
2

∑
i

FiiQ2
i (1.34)
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If the full Hamiltonian has a QFF PES, the perturbation has the form

Ĥ′ =
∑

i

(
1
6

FiiiQ3
i +

1
24

FiiiiQ4
i

)
+

∑
i, j

(
1
2

Fii jQ2
i Q j +

1
8

Fii j jQ2
i Q2

j +
1
6

Fiii jQ3
i Q j

)

+
∑
i, j,k

(
1
6

Fi jkQiQ jQk +
1
4

Fii jkQ2
i Q jQk

)
+

∑
i, j,k,l

1
24

Fi jklQiQ jQkQl. (1.35)

Since harmonic oscillator eigenfunctions are either even or odd, expectation values of an odd power of normal coor-

dinate in a harmonic oscillator wave function vanish identically. Therefore the first order correction has contributions

from only certain types of quartic force constants.

E(1)
s = 〈Ψ

(0)
s |

∑
i

1
24

FiiiiQ4
i +

∑
i, j

1
8

Fii j jQ2
i Q2

j |Ψ
(0)
s 〉 (1.36)

Since the above expression has at most a double summation, the cost of the calculation scales with M2. The second

order correction to the energy [Equation (1.33)] has contributions from all the force constants. The summation over

the states can be classified according to the number of modes that differ from the target state s. Nonvanishing integrals

in the denominator, that differs by a single mode (singles) have the form:

〈s|
1
6

FiiiQ3
i +

∑
j,i

1
2

Fi j jQiQ2
j |s ± 1i〉, (1.37)

〈s|
1

24
FiiiiQ4

i +
∑
j,i

1
4

Fii j jQ2
i Q j

2|s ± 2i〉, (1.38)

〈s|
1
6

FiiiQ3
i |s ± 3i〉, (1.39)

〈s|
1
24

FiiiiQ4
i |s ± 4i〉, (1.40)
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Doubles:

〈s|
1
6

Fi j j jQiQ3
j +

1
6

Fiii jQ3
i Q j +

∑
k,i, j

1
4

Fi jkkQiQ jQ2
k |s ± 1i ± 1 j〉, (1.41)

〈s|
1
2

Fi j jQiQ2
j |s ± 1i ± 2 j〉, (1.42)

〈s|
1
8

Fi j j jQ2
i Q2

j |s ± 2i ± 2 j〉, (1.43)

〈s|
1
6

Fi j j jQiQ3
j +

1
6

Fiii jQ3
i Q j|s ± 1i ± 3 j〉. (1.44)

Triples:

〈s|
1
6

Fi jkQiQ jQk |s ± 1i ± 1 j ± 1k〉, (1.45)

〈s|
1
4

Fi jkkQiQ jQ2
k |s ± 1i ± 1 j ± 2k〉, (1.46)

Quadruples:

〈s|
1

24
Fi jklQiQ jQkQl|s ± 1i ± 1 j ± 1k ± 1l〉, (1.47)

where |s′〉 = |s ± 1i〉 denotes the state of which the, ith mode has quantum number si + 1 while all the other quantum

numbers in the state s′ are identical to those of the state s. For a QFF PES there is at most quadruples contribution to

the second order energy and due to the four-fold summations, the cost of the calculations grow as M4.

The second choice for partitioning the Hamiltonian is based on the VSCF solution and analogous to the Møller-

Plesset (MP) perturbation38 in electronic structure theory. VMP was initially proposed by Norris et al.13 in 1996. The

zeroth-order Hamiltonian and the perturbation in VMP is

Ĥ(0)
r =

∑
m

Ĝm,r =
∑

m

(
−

1
2
∂2

∂Q2
m

+ Um,r(Qm)
)
, (1.48)

Ĥ′r = V(Q1, . . . ,QM) −
∑

m

Um,r(Qm), (1.49)
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where r refers to the reference state for which the VSCF calculation is performed. Based on the choice of r, there are

two types of VMP calculations for excited states: one is based on an excited-state Hartree wave function constructed

with the virtual states of the ground state VSCF solution, and the other uses the excited-state VSCF wave function

optimized for each target state. The former is referred to as ground-state VMP (gsVMP) while the latter is referred

to as state-specific VMP (ssVMP). It should be noted that for ssVMP, the partition of the Hamiltonian changes with

states of interest.

The zeroth order wave function is identical to the VSCF solution (see Section 1.6.1),

Ψ
(0)
s = Φs, (1.50)

and the zeroth order energy is given by,

E(0)
s = 〈Φs|

∑
m

Ĝm,r|Φs〉 = MEVSCF
s , (1.51)

The first order correction to the energy is,

E(1)
s = 〈Φs|Ĥ − Ĥ(0)|Φs〉 = (1 − M)EVSCF

s . (1.52)

Therefore, the energy up to first order is the same as the VSCF energy:

E(0)
s + E(1)

s = EVSCF
s (1.53)

The second order energy has contributions from all the anharmonic force constants except the diagonal ones (anhar-

monic terms in 1MR PES); the latter are already accounted completely in the VSCF solution.

The VMP method has been successful for problems with only moderate mode-mode coupling. However, if there

is a strong coupling or degeneracy, then VMP2 fails due to the form of the denominator in Equation (1.33). A quasi-

degenerate version of VMP2 has been developed by Yagi et al.39 based on van Vleck perturbation theory. It is also

found that40 higher order corrections (VMP3 and further) are more prone to divergences and generally VMP2 often

gives the most reasonable result in the perturbation series.

1.6.3 Vibrational configuration-interaction theory

Variational calculations for anharmonic vibrations date back to 1975 when Whitehead and Handy’s work on triatomic

molecules was published.32 A formalism analogous to the configuration-interaction method in electronic structure
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theory41 was later developed by Tobin and Bowman et al. in 1980.14 The basic idea of the configuration-interaction

methods is to diagonalize the Hamiltonian in a basis of M-mode Hartree-product functions, to obtain variationally

the best wave function within the basis set. One-mode functions from which the Hartree product is formed, typ-

ically VSCF modals, are also expanded in a basis-set formed by suitable one-dimensional functions, e.g. the HO

eigenfunctions (see Section 1.6.1).

The form of the VCI wave function is,

ΨVCI
s (Q1, . . . ,QM) =

K∑
s′

Cs′
s Φs′ (Q1, . . . ,QM) (1.54)

where K is the total number of Hartree products (or configurations). VCI coeffients, Cs′
s are obtained by variationally

minimizing the energy,

EVCI
s = 〈ΨVCI

s |Ĥ|ΨVCI
s 〉. (1.55)

Computationally, this is done by forming the Hamiltonian matrix in the basis of modals, Φs′ , and diagonalizing. The

eigenvectors give the VCI coefficients, and the eigenvalues give the energies. If we could have a complete basis set and

a full configuration space, we would have the exact energies for all the states. With a finite basis set and configuration

space, we would get an upper bound for the energies.

One can either use a HO basis set, or eigenfunctions of a ground state VSCF solutions to form the configuration

space. The latter is expected to converge more rapidly since VSCF solutions already includes a significant portion of

anharmonicity.

One of the practical disadvantages of the VCI method is its cost, since the order of the full Hamiltonian matrix

scales as NM , where N is the number of basis functions for each mode. Therefore, except for the smallest molecules,

a full VCI calculation is not feasible and one needs to select the important configurations to reduce the size of the

matrix and carefully check for the convergence of the solution.

There are several criteria that one can use to restrict the size of the configuration space. The most effective one is to

arrange the configuration space according to the number of excited-state HO or VSCF modals in the Hartree product

basis. With this arrangement, Equation (1.54) takes the form,

ΨVCI
s = C0Φ0 +

∑
i

∑
r

Cr
i Φ

r
i +

1
2

∑
i, j

∑
r,t

Crt
i jΦ

rt
i j + . . . , (1.56)

where indices i, j, . . . denote which mode(s) are excited and s, t, . . . denotes the level of excitation for the corresponding

mode. The first summation corresponds to single excitations and a VCI calculation truncated at this level is referred

as VCI singles or VCIS and similarly, including two-mode excitations, doubles, one has VCISD, and so on. For a
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three-mode system VCI with singles, doubles and triples (VCISDT) amounts to full VCI. Additional criteria can be

used to restrict the level of excitation. That is, one can set a maximum value of excitation for each mode and/or restrict

the total excitation by using a cut-off for s+ t + . . . < S sum−max. Alternatively, an energy based cut-off value can also be

used to restrict the configuration space. There are various other techniques to increase the speed of VCI calculations

as implemented by different groups.8, 15, 42

Apart from the practical limitations of the VCI method, it has a more fundamental shortcoming of not being size

consistent and its accuracy is known to deteriorate with system size, giving no anharmonic correction beyond the

reference method in the bulk limit. A detailed discussion on this issue is given in Section 3.3.6.

1.7 Tables

Table 1.1: The elements of the matrix representation of various operators ( f (Qm) = ∂2/∂Q2
m,Qm,Q2

m,Q
3
m,Q

4
m) in the

harmonic oscillator basis functions, 〈χn′,m| f (Qm)|χn,m〉. Only n > n′ cases are shown, since the operators considered

are Hermitian. All matrix elements vanish when n > n′ + 4.

n − n′ ∂2/∂Q2
m Qm Q2

m Q3
m Q4

m

0 −ωm(n + 1/2) 0 (n + 1/2)/ωm 0 {6n(n + 1) + 3}/4ω2
m

1 0
√

n/2ωm 0 3(n/2ωm)3/2 0

2 ωm
√

n(n − 1)/2 0
√

n(n − 1)/2ωm 0 (n − 1/2)
√

n(n − 1)/ω2
m

3 0 0 0
√

n(n − 1)(n − 2)/(2ωm)3/2 0

4 0 0 0 0
√

n(n − 1)(n − 2)(n − 3)/4ω2
m
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Chapter 2

Anharmonic calculations for small
molecules

2.1 Introduction

Predictive chemical computing2 based on converging electron-correlation methods combined with systematic basis

sets43, 44 have come to a stage that it is now possible to routinely predict the electronic properties of small but general

polyatomic molecules within controlled accuracy.

The objective of this chapter∗ as well as several other recent studies in our group2, 46–48 is to extend the domain of

predictive computing to bound nuclear motions, i.e., anharmonic molecular vibrations, vibrationally-averaged prop-

erties, and various molecular spectra. In addition to providing computed properties and spectra that can be directly

compared with the observed, they can serve as an independent and reliable source of chemical information of which

direct experimental measurements may be technically difficult, expensive, and/or dangerous.

As described in Chapter 1, the predictive vibrational analyses consist in (1) converging electronic structure methods

for generating accurate potential energy surfaces (PESs), (2) compact and systematic representations of the PESs, and

(3) hierarchical vibrational many-body methods that can include vibrational anharmonicity and anharmonic mode-

mode coupling to any desired extent.

For (1), we employ the converging series of combined coupled-cluster (CC) and perturbation theories, i.e., coupled-

cluster singles and doubles (CCSD),49, 50 CCSD with a second-order triples correction abbreviated as CCSD(2)T,51 and

CCSD with a second-order triples and quadruples correction or CCSD(2)TQ
51 in this chapter. For stable molecules near

their equilibrium geometries, this is perhaps among the most rapidly converging series of electron-correlation methods.

The complete-basis-set (CBS) limits are reached by extrapolation with the correlation-consistent basis sets,52 although

an effort to eliminate this step with the aid of the so-called R12 or F12 methods53 is underway in our group.5, 54, 55

For (2), we propose a new hybrid representation of PESs, which combines a Taylor expansion truncated at the

fourth order (a quartic force field or QFF) and numerical energy values on a rectilinear quadrature grid (a grid PES)

both in the so-called nMR (n-mode representation) approximation.27, 28 The QFFs are among the most accurate and

compact PES representations for low-lying vibrational states35, 56–62 . However, they cannot describe strong Morse-like
∗The work in this chapter has been published in Ref. 45. Reprint permission is granted by Taylor & Francis.
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anharmonicity and tend to exhibit fortuitous minima in the regions away from the equilibrium geometries.8, 37 When

VCI is applied to these QFFs, errors (with respect to grid PESs) in the frequencies of stretching modes involving

hydrogen motions can be as large as 20 cm−1 (see below) and nonphysical states supported by the fortuitous minima

can appear. Such nonphysical states can be easily identified by an inspection of wave functions or, alternatively, a

Morse-like63 or similar coordinate transformations37 can be applied before the VCI step to avoid both problems. In

this chapter, however, we circumvent them by improving the global representation of a PES qualitatively by com-

bining a QFF and a grid PES35, 36, 64 while further improving the local representation near the equilibrium geometry

quantitatively. Grid PESs maintain an equal accuracy (subject to errors in electronic structure methods used) in the

entire geometry domain covered by the grids, but they are exponentially expensive to compute (without nMR approx-

imation) as the number of atoms increases. The new hybrid representation combines a QFF obtained by high-rank

electronic structure methods in the CBS limits and a grid PES obtained by low-rank methods and smaller basis sets.

The proposed hybrid QFF/grid PESs are expected to be most meritorious when applied to large-amplitude motions

and highly excited vibrational states. The QFFs, grid PESs, and hybrid QFF/grid PESs are defined in normal coordi-

nates.19 Although local coordinates may be more suitable for large-amplitude motions or highly excited vibrational

states, we adopt normal coordinates for their unambiguousness, convenience, and generality8, 19, 36, 63–65 .

Vibrational many-body problems in these PESs are solved by vibrational self-consistent-field (VSCF)66–69 , second-

order Møller–Plesset perturbation (VMP2),13, 27, 31, 64 and general-order configuration-interaction (VCI)12 methods im-

plemented in the SINDO program developed by Yagi.70 See Section 1.6, or a recent review8 for the details of these

methods as well as the vibrational coupled-cluster methods (VCC)15 added recently to the repertory of vibrational

many-body methods. Although this method is not used in this chapter, it is a promising method for its size-extensivity

which makes it the right tool for larger systems where a full VCI is not applicable. The necessary molecular integrals

are computed over the harmonic oscillator basis functions along the normal coordinates. Together, our composite vi-

brational method can attain complete-correlation, CBS (CC-CBS) limits in anharmonic frequencies and vibrationally-

averaged properties in a cost-effective fashion (although its applicability to large molecules is still limited).

We apply the method to seven key species in hydrocarbon combustion: the formyl cation (HCO+), the formyl rad-

ical (HCO), the nitrosyl hydride (HNO), the hydroperoxy radical (HOO), the hydroperoxy anion (HOO−), the methyl

cation (CH+
3 ), and the methyl radical (CH3). Some are important in atmospheric and/or interstellar chemistry also.

There is a considerable lack of experimental data of molecular constants of these species, since most of them are unsta-

ble under typical laboratory conditions and, therefore, their characterization calls for a predictive theory. For instance,

the transition frequencies of one of the fundamentals of CH3 and CH+
3 as well as all of the fundamentals of HOO− are

unknown, in spite of the significance of these species and their vibrational spectra as a source of information about

hydrocarbon combustion processes. Furthermore, the comparison of predicted frequencies and rotational constants
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with the observed values, when available, serves as a rigorous test of the validity and accuracy of the computational

scheme, including the hybrid QFF/grid PESs proposed in this chapter.

There has been a considerable body of work26, 58–62, 71, 72 reporting high accuracy anharmonic frequencies of fun-

damental vibrations of small molecules. Some of these works are based on QFF in tailored coordinates, vibrational

perturbation theories including Coriolis coupling, and various CBS extrapolations of electronic energies, including

small electronic effects such as core correlation and relativistic effects as well as diagonal Born–Oppenheimer correc-

tions. In contrast to these previous high-accuracy studies, this chapter and a few previous studies2, 46, 47 from our group

aim at establishing blackbox computational procedures for low-lying anharmonic vibrational frequency calculations

applicable generally and unambiguously to various polyatomic molecules in the same sense of “model chemistry”

advocated by Pople (see, e.g.,73) in electronic structure theory. The reliance on normal modes, the mixed use of QFF,

grid, and hybrid QFF/grid PES representations, and the open-ended combinations of systematic electronic and vibra-

tional many-body methods in this work are to achieve good balance between general applicability of the theories,

robustness and availability of the implementations, and high (if not the highest) accuracy. A wider range of molecules

(seven species) that are studied in one place is also to show the generality of our model chemistry, its uniform ac-

curacy, and affordability of computations both in terms of computational cost and the ease of use for non-experts of

computational chemistry.

It will be shown that the hybrid PESs constitute a uniform and inexpensive improvement over both QFFs and grid

PESs. When combined with the CC-CBS electronic structure method and VCI, it reproduces the frequencies of the

fundamentals within the mean absolute deviation of 11 cm−1 and the maximum deviation of 41 cm−1. Our calcu-

lated results are reliable predictions (within ca. 20 cm−1) for the hitherto-undetermined fundamental frequencies of

HOO−, CH+
3 , and CH3. The predicted rotational constants also serve as an additional basis for correct band assign-

ments, although in some instances they are found to be unreliable because of strong centrifugal distortion and Coriolis

coupling, which are neglected in this work. The vibrationally-averaged structural parameters are expected to be accu-

rate to within several thousandths of 1 Å and are possibly more accurate than experimentally derived values. While

our computational scheme is still severely limited in its applicability to large molecules, it is a general, predictive,

blackbox method applicable to any polyatomic molecule.

2.2 Theory and computational procedure

2.2.1 Electronic part

Geometry optimization and normal coordinate calculations were performed with CCSD(2)T with the aug-cc-pVDZ

basis set. All PESs of a molecule were represented in this single set of coordinates to facilitate the CC-CBS extrap-
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olation. Three different CBS extrapolation schemes [Equations 2.1-2.3] were examined on the basis of the CCSD

energies obtained with the aug-cc-pVXZ basis sets in the range of X = D, T, and Q (abbreviated hereafter as “aXZ”).

The first of these is the exponential–Gaussian three-point extrapolation formula advocated by Peterson, Woon, and

Dunning,74 which assumes the energy obtained with the l-th basis set (l = 2, 3, and 4 correspond to X = D, T, and Q,

respectively) satisfy the following equation,

E (l) = ECBS + A exp [− (l − 1)] + B exp
[
− (l − 1)2

]
, (2.1)

where A, B, and ECBS are constants (the last quantity corresponds to the CBS total energy). The second is the power

law three-point formula proposed by Martin and Lee,75 which can be written as

E (l) = ECBS + A(l + 1/2)−4 + B(l + 1/2)−6, (2.2)

where the meaning of the variable l and the constants are the same as in Eq 2.1. The third is the two-point formula of

Helgaker et al:76

∆E(l) = ∆ECBS + Al−3 (2.3)

where ∆E(l) and ∆ECBSrepresent the correlation energy of the l-th basis set (with l = 3 and 4) and at the CBS limit,

respectively. The CBS correlation energies obtained with the third extrapolation formula was combined with the

Hartree–Fock (HF) energies in the CBS limit obtained by Eq 2.1 or 2.2. Table 2.1 shows that there is no significant

difference in anharmonic vibrational frequencies among these formulas for the purpose of this chapter. This result

also indicates the robustness of our final predictions with respect to the arbitrary choice of empirical extrapolation

formulas. We elected to use Eq 2.1 for the rest of the calculations without assuming any superiority of this formula

over the others. The CC-CBS limits (ECC−CBS) were obtained by the following formula:77

ECC−CBS =
(
ECCSD/CBS − ECCSD/aDZ

) ECCSD(2)T /aTZ − ECCSD(2)T /aDZ

ECCSD/aTZ − ECCSD/aDZ
+ ECCSD(2)T Q/aDZ. (2.4)

This procedure will not yield the absolute energies accurately but is expected to minimize the errors in the energy

differences, i.e., the shape of the PESs. To obtain a CC-CBS energy, one must execute only three single-point energy

calculations at the CCSD/aQZ, CCSD(2)T/aTZ, and CCSD(2)TQ/aDZ levels. The CCSD/aTZ energy is obtained as a

byproduct of the CCSD(2)T/aTZ calculation and the CCSD/aDZ and CCSD(2)T/aDZ energies from CCSD(2)TQ/aDZ.

These were carried out within the frozen core approximation using the NWCHEM78 and ACES II79 programs.
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2.2.2 Hybrid potential energy surface

The simplified vibrational Hamiltonian is given as,

Ĥ = −
1
2

m∑
i=1

∂2

∂Q2
i

+ V̂ (Q1, . . . ,Qm) (2.5)

for both linear and nonlinear molecules without any forms of singularity. The motivation behind neglecting the

rotation-vibration coupling terms is given in Section 1.4. This is also consistent with our neglect of core-correlation

corrections, relativistic effects, non-Born–Oppenheimer effects, higher-order correlation effects, etc. However, as

we shall show in the following, the approximate Hamiltonian used in this chapter is likely responsible for some

pronounced errors in predicted vibrationally averaged rotational constants.

For the PES, we adopted the nMR approximation (See Section 1.5.1 for more details) that expressed V̂ as a

sum of one-, two-, up to m-mode coupling terms and truncated the sum after the n-mode coupling terms. We used

n = 3 or the 3MR approximation, which amounted to a non-truncated PES for nonlinear triatomic molecules. We

defined a rectilinear grid along the CCSD(2)T/aDZ normal coordinates centered at the CCSD(2)T/aDZ optimized

geometry. Eleven grid points were placed along each normal coordinate according to the Gauss–Hermite quadrature

rule and single-point electronic structure calculations were performed on the geometries of these points. In the 3MR

approximation, there were
(

m
3

)
113 grid points in total, if we disregard symmetry advantages. This number has been

shown to be sufficient35 for several low-lying vibrational states of the molecules studied here. Grid-based algorithms

for anharmonic vibrational problems are quite old,32, 33 but they became routine35, 36, 64 only after they were combined

with the nMR approximation. An inexpensive alternative is the QFFs, which are computed by a finite difference

method described in Refs.,56, 57 requiring only a few tens of single-point energy calculations to compute. We used

both representations in this work with SINDO that took advantage of the Abelian sub-group of the symmetry group

of a molecule. While highly accurate near the equilibrium geometries, the QFFs become progressively unrealistic as

the geometries are more distorted. They also cannot dissociate bonds and often deflect downwards away from the

equilibrium geometries, often causing artificial minima in a PES. The grid PESs do not share these shortcomings,

but they are exponentially expensive to compute. Here, we propose a new hybrid representation, which combines the

merits of the grid and QFF representations, while keeping the overall computational cost manageable. It involves a

grid and QFF obtained at the same low electronic structure level and another QFF at a higher electronic structure level

and adds the difference between high- and low-level QFFs to the low-level grid PESs:

Ehybrid = EQFF/high − EQFF/low + Egrid/low, (2.6)

where EQFF/high and EQFF/low are the energies at a given grid point obtained by evaluating the quartic polynomial
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functions of high- and low-level QFFs, respectively, and Egrid/low is the energy value directly computed at the grid

point at the low-level method. The left-hand side is the hybrid QFF/grid PES defined numerically on the same grid

and approximates the grid PES obtained at the high-level method.

The remarkable performance of this hybrid representation can be seen in Table 2.2 in which anharmonic vibra-

tional frequencies of HOO− obtained with five different PESs are compared. Relative to the grid PES obtained by

CCSD(2)T/aTZ, which serves as the accurate and very expensive reference, the two PESs obtained by CCSD/aDZ suf-

fer from large errors in excess of 30 cm−1 in the vibrational energies. These are clearly due to the inherent errors in the

CCSD/aDZ regardless of the representation (grid or QFF). If we raise the electronic structure level to CCSD(2)T/aTZ

(the same as the reference), however, the QFF representation is still responsible for an error of –22 cm−1 in the O–H

stretching frequency. When these three PESs (the bottom three rows) are combined and the hybrid QFF/grid PES is

formed, the errors become uniformly small (within 3.1 cm−1). They are much smaller than those obtained with any

of the three constituent PESs. Note also that forming the hybrid PES is an order of magnitude less expensive than

generating the corresponding grid PES and, furthermore, the advantage of the former is expected to grow as molecules

become larger. We adopted the hybrid representation for all the molecules studied here. We chose CCSD/aDZ as the

low electronic structure level to obtain the grid PES and the CC-CBS composite defined by Eq 2.4 for the QFFs. Four

PES scans (three QFF calculations for CC-CBS and one grid PES calculation for forming the hybrid PES) were run

for each molecule, apart from the geometry optimization and normal coordinate determination.

2.2.3 Vibrational part

With the accurate PESs thus obtained, we solved the vibrational Schrödinger equation with the VSCF, VMP2 and

VCI methods (the VSCF and VMP2 results are not shown, for more details on these methods see Section 1.6), us-

ing SINDO. The full VCI method was applied to the nonlinear and linear triatomic molecules (involving 1331 and

14641 excited VSCF configurations, respectively). For tetratomic molecules, we examined two configuration selec-

tion schemes. In one, all VSCF configurations that involved simultaneous excitations of up to three modals (21561

configurations) were included. In the other, simultaneous excitations of up to four modals were allowed but the sum

of vibrational quanta was limited to 15. There were 30011 VSCF configurations in the latter. It was confirmed that

the fundamental frequencies obtained in either of these schemes were converged within 1 cm−1 of the limits with

respect to the configuration space size. The vibrationally-averaged structural parameters (at zero temperature) were

obtained by using the VCI wave functions. The expectation values of the relative nuclear positions in the normal

mode coordinates were calculated and then they were transformed into the Cartesian coordinates. The vibrationally-

averaged rotational constants were computed by evaluating the rigid-rotor formulae of the rotational constants with

the vibrationally-averaged nuclear coordinates. Note that there are at least two approximations in this treatment. First,
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they do not correspond to the expectation values that are observed as rotational constants. Second, they neglect rovi-

brational coupling such as centrifugal distortion and Coriolis coupling. As a result, the computed rotational constants

can deviate, sometimes significantly, from experimental values and are at best of a semi-quantitative value.

2.3 Combustion chemistry applications

2.3.1 HCO+ (X̃1Σ+)

The formyl cation (HCO+) in its X̃1Σ+ state is a linear molecule ubiquitous in interstellar medium80 and also in hy-

drocarbon flames.81 Buhl and Snyder82 observed an interstellar transition which was identified computationally by

Klemperer83 as a rotational transition of HCO+. Klemperer’s computational assignment was supported theoretically84

and subsequently confirmed experimentally.85 Its rotational and vibrational transitions have been thoroughly charac-

terized by microwave86–94 and infrared laser spectroscopy.95–104 There have been many computational studies on the

structure, PES,105–110 and rovibrational spectra111–114 of HCO+. Some111, 113, 114 are based on CCSD with noniterative

triples [CCSD(T)] while Ref. 112 on the multireference configuration interaction (MRCI) and their results on anhar-

monic vibrational frequencies agree with one another, attesting to the limited multireference character of the wave

function of HCO+.

Table 2.4 compiles the experimental frequency of the fundamental transitions and four of the most accurate com-

puted frequencies by other groups as well as our computed frequencies. Mladenovi and Schmatz113 computed ener-

gies at 842 geometries with CCSD(T)/cc-pVQZ and obtained anharmonic fundamental frequencies by a variational

method. They are within 5 cm−1 of the observed. The authors state the fitting of the PES by analytical functions

has an inherent error of 9 cm−1 (the standard deviation), but the error may be mostly due to geometries with high

energies and it is possible that the fundamental frequencies can have higher accuracy than the fitting error. However,

the result obtained by van Mourik, Dunning, and Peterson114 using CCSD(T) and a larger basis set (aug-cc-pVQZ)

has slightly greater errors, suggesting that the accurate agreement of Mladenovic and Schmatz is likely due to some

error cancellation between residual basis set effects and other small electronic effects neglected in their work.

Puzzarini et al.112 used MRCI/cc-pVQZ to obtain a sextic force field, and evaluated spectroscopic parameters by

second-order perturbation theory. They also scaled this force field empirically and used variational methods to solve

for rovibrational energy levels, which yielded the fundamental frequencies within 2 cm−1 of the experimental values.

An earlier work of Martin et al.111 was based on CCSD(T)/cc-pVTZ QFF and, because of the smallness of the basis

set, had slightly greater errors.

The harmonic frequencies obtained at the CCSD(2)T/aDZ level, which serve as the basis of our subsequent anhar-

monic calculations, indicate small anharmonicity in the ν2 (bend) and ν3 (C–O stretch). The CC-CBS extrapolation of
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the PES in the QFF representation and a full VCI calculation indeed increases the error in the ν2 frequency from 7 to

24 cm−1, while they bring the computed frequency of ν1 (C–H stretch) in much better accord with experiment (3072

and 3089 cm−1, respectively). This error in the ν2 frequency is largely due to the QFF and can be removed effectively

by switching to the hybrid QFF/grid PES. With the latter, the VCI method places the fundamental frequencies at 3083,

823, and 2175 cm−1, which agree with the corresponding experimental values (3089, 830, and 2184 cm−1) within 9

cm−1. While similar or more accurate agreement has been reported by the previous studies, we note that our pro-

posed method is a black-box approach applicable to general polyatomic molecules with minimum molecule-specific

adjustments of coordinates, PES representations, etc. Accuracy higher than this (9 cm−1) cannot be expected without a

CC-CBS extrapolation and inclusion of rovibrational couplings, non-Born–Oppenheimer effects, and small electronic

effects such as core correlation and relativistic effects.26, 72 The frequencies obtained by the individual methods that

lead to the CC-CBS limit (see Section 2.2) are listed in Table S-1. These results reveal that the error arising from basis

set truncation and that from the higher-order excitations tend to have opposite signs. Similar pattern was observed for

all the molecules studied here. The success of the previous results,111, 113, 114 therefore, may be partly because of the

cancellation of the errors between them, especially for the C–O stretching mode due to its slower convergence in both

limits.

Table 2.5 compares the vibrationally-averaged rotational constants (B’s) with the observed88, 96–98 for four low-

lying states. While the absolute values of the calculated constants have errors on the order of 1%, their variation

with vibrational states is remarkably accurately reproduced by our scheme. Note that the harmonic approximation is

incapable of describing such variation. These computed state-specific rotational constants can, therefore, serve as a

useful, independent source of information for correct band assignments, when the assignments based on calculated

and observed frequencies alone are inconclusive (which is, however, not the case with HCO+). The potential curves

along the C–H and C–O stretches are Morse-like and the corresponding vibrations increase the average C–H and C–O

bond lengths, respectively. They result in noticeable reductions in the rotational constants in the (1000) and (0001)

states. The bending vibration in the linear molecule, in contrast, has a net effect of pulling the terminal H and O atoms

closer, causing the rotational constant in the (0110) state to be slightly greater than the zero-point value. Judging from

the computed and observed rotational constants, the predicted C–O and C–H bond lengths should be within several

thousandths of 1 Å of the experimental values (unknown).

2.3.2 HCO (X̃2A′)

Unlike its cationic counterpart, the formyl radical (HCO) in its X̃2A′ state is bent. The radical was first identified

in ethylene flame115 and was found to be responsible for the blue emission bands known as the hydrocarbon flame
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bands. It is also an intermediate in the formation of HCO+ in hydrocarbon flames. A characterization of the radical

was performed by electronic absorption spectroscopy during the flash photolysis of acetaldehyde and other aldehydes,

identifying two additional absorption bands as the transitions from the ground state in the bent structure to excited

states in linear configurations.116, 117 The vibrational frequencies for C–H stretching,118–122 bending117, 122–126 and

C–O stretching121, 126–128 of HCO were measured by several experimental groups.

There is a considerable amount of computational studies on the PES of HCO,114, 129–151 a significant proportion

of which concerns with its anharmonic vibrations. Bowman, Bittman, and Harding132 reported its PES obtained with

the configuration-interaction singles and doubles (CISD) and a double-ζ basis set plus some empirical corrections.

This PES (called BBH potential) was modified and used in many subsequent dynamics calculations.135–137, 141, 143, 146

Werner et al.144 employed MRCI with a quadruple-ζ basis set and obtained the fundamental anharmonic frequen-

cies that agreed with the experimental values accurately except for the ν3 (C–O stretch), which was 24 cm−1 too

low. Serrano-Andrs, Forsberg, and Malmqvist148 obtained similar results using a 177-point PES obtained with the

multireference second-order perturbation method (CASPT2). The CCSD(T)/aQZ work of van Mourik, Dunning,

and Peterson,114 in contrast, obtained quantitative agreement between the computed and observed ν2 (bend) and ν3

(C–O stretch) frequencies, but the predicted ν1 (C–H stretch) frequency was too high by 26 cm−1. Marenich and

Boggs150 performed all-electron CCSD(T) calculations in the CBS limits and observed similar overestimation of the

ν1 frequency, causing them to question the experiments. However, the same authors151 subsequently improved their

calculations by including fifth- and sixth-order force constants along the C–H stretch (133 single-point calculations in

total) and obtained the computed ν1 and ν3 frequencies which were, nonetheless, still too low by 19 cm−1 and too high

by 17 cm−1, respectively.

The observed120, 121, 124 and computed114, 144, 148, 151 anharmonic fundamental frequencies of HCO are compared

in Table 2.5. Our VCI results based on the CC-CBS, hybrid QFF/grid PES are within 6 cm−1 of the experimental

values. Again, the QFF representation of essentially the same PES leads to a much greater error of 30 cm−1 in ν1

(C–H stretch), underscoring the utility of the hybrid representation, particularly, in this strongly anharmonic mode.

Our variational method (VCI) indicates a small mode-mode coupling (ca. 5% in the wave function) between the first

overtone of ν2 and fundamental ν1, which is in agreement with Bowman, Bittman, and Harding. While the previously

computed frequencies listed in Table 2.7 generally agree well with the experiment, our CC-CBS values are in the most

accurate and uniform agreement with the observed.

Table 2.8 compares the vibrationally-averaged structures and rotational constants with experimental values123, 152–154

for four low-lying states. The two sets of experimental zero-point structures differ from each other by hundredths of 1

Å or a few degrees. The computed and observed structures agree within this inherent ambiguity in the experimental

structural parameters. The computed rotational constants B and C also agree well with the observed within a few
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percent, whereas the computed rotational constant A suffers from a greater error of ca. 5%, which is likely due to the

neglect of rovibrational coupling in our computation. In fact, there are large discrepancies between the values of A in

the (010) state between our prediction and Ref. 151, the origin of which is unclear. The computed values of B and C

in the (010) state are similar to those in the (000) state, which is supported by experiments.

2.3.3 HNO (X̃1A′)

Nitrosyl hydride or nitroxyl (HNO) in its X̃1A′ state is a bent molecule of considerable importance in combustion

chemistry as an intermediate in the formation of the air pollutant NO.155 It has also recently gained attention in bio-

chemistry and pharmacology as possible endogenous signaling species.156, 157 The observation of HNO was made

initially in a flash photolysis158 and subsequently by infrared spectroscopy in an argon matrix.159 It has been also

observed in interstellar medium by radio detection.160 Its fundamental vibrational frequencies were analyzed by

electronic emission spectroscopy,161 absorption spectroscopy162 and by electronic and vibrational emission spec-

troscopy.163 They were confirmed by matrix-isolation infrared spectroscopy164 and then improved in accuracy by

laser Stark spectroscopy165 which allowed a complete analysis of bending and C–O stretching fundamentals. Accu-

rate measurements of the C–H stretch frequency were made by infrared absorption166 and emission spectroscopy.167

A number of other experimental studies on its microwave absorption168, 169 were reported on this molecule.

Among numerous computational studies on the PES of HNO,170–179 the anharmonic vibrational analysis by Dateo,

Lee, and Schwenke177 is the most pertinent to our work. They established a QFF in an internal coordinate using the

CCSD(T)/cc-pVQZ method. The frequencies with the QFF were in good agreement with the observed, although the

frequency of ν1 (N–H stretch) was somewhat too low (by 17 cm−1). Mordaunt et al. 179 employed MRCI with a

triple-ζ basis set to scan the three lowest-lying PESs, which were subsequently scaled empirically to yield accurate

fundamental frequencies. Also, HNO has the longest known N–H (equilibrium) bond length of 1.053 Å and its

accurate structure has been under considerable scrutiny by Lee180 and later by Demaison et al.181, 182

Table 2.10 and Table 2.11 list the anharmonic vibrational frequencies and vibrationally-averaged structures and

rotational constants of HNO and compare them with the observed. Our CC-CBS PES in the hybrid QFF/grid represen-

tation reproduces the frequencies within 7 cm−1 of the experimental values.165, 166 State-specific rotational constants

were reported154, 158, 165, 166 for all four states considered in Table 2.11. While the computed absolute values of the

rotational constants can have errors in excess of a few percents, their variation across states (i.e., vibration-rotation

coupling) is semi-quantitatively reproduced by theory. For instance, the (010) state has slightly greater values of

A and B than the (001) state and this trend is predicted correctly by our calculation. Note that the order of these

two states can be reversed in the harmonic approximation,180 causing an incorrect band assignment in the past. Our
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ability to compute state-specific rotational constants with sufficient accuracy will be helpful to avoid such problems.

The vibrationally-averaged structural parameters are expected to be an order of magnitude more accurate than the

rotational constants and should be within several thousandths of 1 Å of the true values. Our calculation favors the

experimental zero-point geometry of Dalby.158

2.3.4 HOO (X̃2A′′)

The hydroperoxy radical (HOO) is an intermediate in the reaction H + O2 → OH + O, which has been referred to

as “the single most important chemical reaction in combustion” in Ref. 183. It also plays a key role in atmospheric

chemistry because the reverse reaction of the above is responsible for ozone destruction.184 The reaction involves a

conical intersection on the PES of HOO and its characterization is a challenging theoretical problem. Hence, there

is an extensive literature on the PES of HOO; for a recent survey, the reader is referred to Xie et al.185 Several

spectroscopic studies were performed to accurately measure the frequencies of the O–H stretch,186 bend,187, 188 and

C–O stretch.187, 189–191 Electron paramagnetic resonance measurements192, 193 also yielded ground state parameters.

Walch and Duchovic194 employed MRCI to generate a PES expressed as a QFF and obtained the anharmonic

frequencies of fundamentals, which deviated from the observed by up to 108 cm−1. Xu et al.195 computed energies

at 15000 geometries by MRCI with the Davidson correction with the aug-cc-pVQZ basis set. They solved the vi-

brational Schrödinger equation by the Lanczos method196 and obtained vibrational energies up to 7000 cm−1. They

subsequently improved their PES and achieved the vibrational state calculations up to the dissociation limit.185, 197, 198

Their computed frequencies of the fundamentals197 were in excellent agreement with the observed (within 8 cm−1).

Among the other computational studies, those that are closely related to this one are Refs.199–209

Our calculated anharmonic frequencies agree with experiment186, 188, 190 within 23 cm−1. The errors are small but

somewhat larger (especially for ν3 or the O–O stretch) than those in the other molecules studied in this work. Since the

full VCI method is used for this radical and the differences between QFF and hybrid QFF/grid representations are no

greater than the other cases, the electronic structure methods are likely the primary source of the errors. Although the

CC-CBS limits are supposed to be reached, the extrapolation formulae assume the validity of perturbation treatments

of triple and quadruple excitations. It is possible that this assumption is not entirely valid for this radical at certain

geometries. Comparing our vibrational state energies with the results of Xu et al.,185 we find that both studies are in

perfect agreement in the assignments of the states up to 5500 cm−1. Below this threshold, the experimental energies

tend to fall in between our computed values and those of Xu et al., the latter being always the lower bound. This

suggests that our PES is slightly more strongly curved than the true PES.

Notwithstanding the slight increase in the errors in the anharmonic frequencies, our calculations reproduce the

variation in the rotational constants with respect to vibrational states well. The variations of B and C are smaller but
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their trends are accurately predicted. The computed rO–O and aHOO are in agreement with the observed, whereas it

is hard to gauge the accuracy of rO–H because the experimental values are scattered. We expect that our computed

structures have uniform accuracy of a few tenths of 1% regardless of the types of atoms involved or vibrational states.

2.3.5 HOO− (X̃1A′)

In contrast to its neutral counterpart, the literature on the hydroperoxy anion (HOO−) is scarce. There is only one

report on its photoelectron spectrum,210 which provides an approximate frequency of 775 ± 250 cm−1 for ν3 (O–O

stretch). On the theory side, Horn et al.211 obtained a 144-point PES with the CCSD(T)/aug-cc-pVTZ method and

predicted the anharmonic frequencies of the fundamentals listed in Table 2.16. Chan et al.212 performed QCISD(T)/6-

311++G(2df,pd) energy calculations at 1535 geometries and fitted the PES with a 120-parameter analytic function

with a root mean square error of 223 cm−1. The predicted frequencies of the fundamentals obtained with this PES differ

from those of Horn et al. by up to 80 cm−1. Botschwina and Horn206 upgraded the previous results211 by increasing the

electronic structure theory level to CCSD(T)/aug-cc-pVQZ. The predicted frequencies were close (within 11 cm−1)

to the values of Horn et al. Computational simulations of their photoelectron spectra were also performed for this

anion.213–215

Our predicted values of the fundamental frequencies display the same general trend observed for the other bent

triatomic molecules: small anharmonicity in ν2 and ν3 frequencies and a slightly greater improvement in the ν1 fre-

quency by the hybrid QFF/grid representation. Our best theoretical predictions (CC-CBS/hybrid/VCI) agree with

those of Botschwina and Horn206 within 11 cm−1 and with those of Horn et al.211 within 15 cm−1. They differ from

the values suggested by Chan and Hamilton212 by 78 and 54 cm−1 in ν1 and ν3, respectively. As in the case with

the neutral, the ν3 (O–O stretch) frequency shows slightly slower convergence with respect to the electronic structure

level and the basis set size (see Table S-5). We, therefore, expect that our predicted frequencies are approximately

within 10, 10, and 20 cm−1 of the true ν1, ν2, and ν3 frequencies, respectively. The uncertainty in the observed ν3

frequency210 appears to be much smaller than 250 cm−1.

Our predicted zero-point bond lengths (Table 2.17) agree well with the observed values,210 whereas the computed

bond angle is considerably smaller than the observed. The disagreement is due the fact that the bond angle (and one

of the bond lengths) was simply assumed rather than determined experimentally.210 The values reported by other

theoretical studies also favor our prediction.206, 211–215 Unlike the experimental determination of these parameters

via the interpretation of the spectra, our computed values are expected to have uniform accuracy across different

parameters. The predicted rotational constants will be helpful for band assignments, when state-specific rotational

constants of HOO− are observed.
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2.3.6 CH+
3 (X̃1A′1)

The methyl cation is among the most important carbonium ions. It is highly reactive and commonly found in the

discharges from hydrocarbon combustion. CH+
3 in its X̃1A′1 state has a planar equilibrium geometry belonging to the

D3h group. Despite its importance, there is a lack of high resolution spectroscopic data for CH+
3 primarily because

of its polymerization in discharges.216 Oka and co-workers216–218 observed the accurate frequency of the degenerate

C–H stretch (ν3) by infrared spectroscopy. There have also been reports219–222 on the frequencies of the umbrella

(out-of-plane or OPLA) mode (ν2) and deformation mode (ν4) primarily with photoelectron spectroscopy. However,

no observed frequency of the non-degenerate C–H stretch (ν1) has been available yet.

Following earlier computational studies,223–228 Yu and Sears229 performed a CC-CBS extrapolation akin to ours

in the PES scan of CH+
3 . They employed the approach of Halkier et al.230 based on the CCSD(T)/cc-pVTZ and

cc-pVQZ energies at 227 geometries. The PES was expressed as a QFF in an internal coordinate. The raw PES was

found to overestimate the frequencies of some of the fundamentals by 30 cm−1 and a coordinate scaling was applied

to achieve the best overall agreement. The frequencies of Yu and Sears in Table 2.19 correspond to the scaled PES

and experimental frequencies are taken from Refs.216–222

Anti-symmetric C–H stretch (ν3) and deformation (ν4) modes of CH+
3 are doubly degenerate due to the D3h

symmetry. The 3MR approximation and our use of C2v computational symmetry throughout the calculations can

cause these degenerate modes to be treated in a non-equivalent manner. However, the lifting of degeneracy still stays

about 1 cm−1 for both modes with the grid and hybrid QFF/grid PES representations. On the other hand, in the

QFF calculations, the degeneracy of the ν3 mode is lifted by 10 cm−1, while that of the deformation mode is hardly

affected. This is probably due to inevitable errors in finite-difference numerical differentiation used to obtain the QFF

that are particularly large for ν3 which experiences a strongly anharmonic Morse-type potential. We simply report the

average of the two frequencies for the QFF results. It should be noted that the hybrid QFF/grid method resists to such

numerical errors and preserves the degeneracy within 1 cm−1, which is another advantage of our proposed scheme.

Although our CC-CBS calculations do not involve any coordinate scaling, their frequencies are in generally good

agreement with the predictions of Yu and Sears. Hence, 2940 ± 20 cm−1 serves as a reliable predicted value of the

frequency of ν1, the experimental value of which is still unknown. The frequencies of the two other modes (ν2 and ν4)

are exceedingly close to each other and the correct assignment on the basis of the observed and calculated frequencies

alone is difficult. Here, our vibrationally-averaged rotational constants (shown in Table 2.20) can be useful in assisting

in experimental spectroscopic studies. The theory predicts the C–H bond length and hence the values of both B and

C are noticeably different between (0100) and (0001) states, which can, therefore, be spectroscopically discernible

by rotational constants. The vibrational state dependence of the measured values of B and C are consistent with our

prediction, although the absolute computed values of B can be erroneous by 2%.

28



The wave functions of the (0010) and (0001) states transform as e′ and are doubly degenerate. The vibrationally-

averaged structures in these states belong to of the C2v group, which is the Abelian sub-group of the D3h and the

computational symmetry used in our calculation. For instance, one of the degenerate (0010) states has the C–H bond

lengths of 1.1020, 1.1187, and 1.1187 Å and the HCH bond angles of 120.17, 120.17, and 119.65 degrees, whereas

the other has the bond lengths of 1.1245, 1.1079, and 1.1079 Å and the bond angles of 119.83, 119.83, and 120.34

degrees. Because the degenerate states can be rotated by an arbitrary unitary transformation, these structures by

themselves do not have particular physical significance. However, the averages of the C–H bond lengths (1.113 Å)

and bond angles (120.0 degree) are invariant to this rotation and it is meaningful to compare these averages with the

structures of other states. In the (0010) state, the average C–H bond length experiences a net increase of 0.01 Å from

the zero-point value, reflecting the Morse-like shape of the C–H stretch. In our rigid-rotor treatment, the rotational

constants of a degenerate state can be computed either from the averaged and hence D3h structure or from two C2v

structures and then averaged afterwards. The values in Table 2.20 were obtained in the latter procedure. Owing to

this ambiguity in our rigid-rotor treatment, the computed rotational constants are expected to be less accurate than the

vibrationally-averaged structures.

2.3.7 CH3 (X̃2A′′2 )

As its cationic counterpart, the methyl radical (CH3) in the X̃2A′′2 state has a planar structure that belongs to the D3h

group. The planarity was a subject of controversy partly because of the rather small frequency (606 cm−1) of the

umbrella (OPLA) vibration (ν2) that had been viewed as an indication of non-planar geometry until the planarity was

confirmed spectroscopically by Yamada, Hirota, and Kawaguchi.231 The frequency of the symmetric C–H stretch

fundamental (ν1) was the subject of many spectroscopic studies.232–236 Those of the umbrella (OPLA) (ν2)231, 237, 238

and anti-symmetric C–H stretch (ν3)239–244 were also measured accurately. For the deformation (ν4), approximate

values of its frequency were obtained245–248 by the matrix isolation technique and they were in the range of 1396 to

1403 cm−1. No gas-phase measurements have so far been reported for this mode.

A considerable number of computational studies on CH3 were reported,223–225, 249–257 but most of them focused on

its electronic structure, geometry, and frequencies in the harmonic approximation and only a few were concerned with

anharmonic vibrations. Surratt and Goddard224 solved the one-dimensional vibrational Schrödinger problem along

the umbrella mode (ν2), assuming the planar equilibrium geometry and obtained the frequency of 585 cm−1, which

was in good agreement with the observed (606 cm−1). Botschwina, Flesch, and Meyer252 obtained a QFF in just

two vibrational degrees of freedom with the coupled electron pair approximation (CEPA) method. Their computed

frequencies of ν1 and ν2 were 63 and 8 cm−1 too high and too low, respectively. More recently, Neto, Chakravorty, and
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Machado257 performed the CBS extrapolation of the calculated C–H bond length and harmonic frequencies calculated

at the CCSD(T) level. According to their study, large anharmonic contributions of 80–150 cm−1 exist inν1, ν2, and ν3.

Table 2.22 compares our computed frequencies with the observed231, 234, 239, 245, 247 as well as the previous calcula-

tions.224, 252, 257 Our CC-CBS/hybrid/VCI frequencies are in good agreement with the observed although the error in

the frequency of ν2 (42 cm−1) appears to be slightly outside the usual range. This may be due to a vibronic coupling

between the ground and excited electronic states, as suggested by Burdett258 and Yamada et al.231 Another possible

source of the error is the neglect of the rovibrational coupling in this study, which is known to be generally greater

in out-of-plane modes.259 Our predicted frequency of ν4 is somewhat smaller than those measured in the matrices. A

part of the error might be ascribed to matrix shifts, which are positive and do not exceed ca. 20 cm−1 forν4.

Table 2.23 compares the vibrationally-averaged bond lengths and rotational constants with the observed.231, 234, 239, 244

The latter is available for three of the low-lying vibrationally excited states as well as for the zero-point vibrational

state. The computed values of C (corresponding to the rotations around the C3 axis) reproduce the observed trend

across different states reasonably well, although the agreement cannot be said to be quantitative. The theory also cor-

rectly predicts the increase in the C–H bond lengths in the (1000) state, which is clearly due to the Morse-like shape

of the C–H stretch potential. However, it completely fails in reproducing even the signs of variation in the C–H bond

lengths upon excitation to the (0100) and (0010) states. Although the bending vibrations usually decrease the average

bond lengths and our result for the (0100) state appears to follow this trend, the experimental result234 indicates the

opposite. The predicted values of B do not agree well with the observed for almost all states considered. This may

underscore the significance of the rovibrational couplings and also possibly be related to the aforementioned vibronic

coupling operating in this molecule.

2.4 Conclusion

An accurate and predictive scheme to compute low-lying vibrational wave functions and energies of polyatomic

molecules is proposed with applications to the seven key species of hydrocarbon combustion. The results have been

compared with experimental values, whenever the latter are available. The agreement between theory and experiment

for fundamental frequencies is within 11 cm−1 (the mean absolute deviation) for all the molecules. When only the

triatomic molecules are considered, this deviation reduces to 7 cm−1; the agreement in CH+
3 and CH3 is slightly worse

partly because of the 3MR approximation and larger rovibrational couplings. For HOO−, CH+
3 , and CH3, of which

some or all of experimental data for the fundamental transition frequencies are unknown, our predicted frequencies are

expected to be no more than 20 cm−1 away from the correct values. In most cases, the vibrationally-averaged structural

parameters and rotational constants reproduce their trend observed across different vibrational states. However, there
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have been cases where the vibrationally-averaged rotational constants obtained in the rigid-rotor approximation are

qualitatively incorrect. The core of this scheme is the converged PESs in wide areas of the geometry space obtained

by combining different electronic structure methods [CCSD, CCSD(2)T, and CCSD(2)TQ] and basis sets (aDZ, aTZ,

and aQZ) to extrapolate the CC-CBS limit. The results of these individual calculations are also presented in corre-

sponding tables. This CC-CBS extrapolation is feasible because a common set of normal coordinates is used. The

PESs generated by this method are represented by QFFs and numerical values on rectilinear grids, but the new hybrid

representation has also been proposed to avoid the shortcomings of the former. This hybrid representation has been

shown to be a uniform and inexpensive improvement over QFFs or grid PESs. The vibrational Schrödinger equation

has been solved by VCI, which is exact for the triatomic molecules (all configurations are included) and sufficiently

converged for the tetratomic molecules.

The approximations involved in this scheme are the Born–Oppenheimer approximation, the neglect of rovibra-

tional coupling (centrifugal distortion and Coriolis coupling), non-relativistic treatment, the neglect of core-correlation

effects, the higher-order electron-correlation and mode-mode coupling, etc. This scheme is inadequate for highly-

excited vibrations or very large-amplitude vibrations owing to our dependence on normal coordinates. Although the

use of internal coordinates and keeping all the terms in Watson Hamiltonian can avoid such problems in triatomic

molecules, our scheme is expected to be more widely and generally applicable to larger polyatomic molecules with

small amplitude vibrations.

2.5 Tables

Table 2.1: Comparison of the fundamental vibrational transitions energies (in cm−1) of HNO obtained with different

CBS extrapolations. Correlation energy (∆E) is obtained by CCSD method and aXZ basis sets are used where X = D,

T, and Q.

HF CBS ∆E CBS (100)a (010)a (001)a

Eq (2.1) Eq (2.1) 1542.5 1655.6 2760.8

Eq (2.2) Eq (2.2) 1543.5 1658.8 2760.9

Eq (2.1) Eq (2.3)b 1543.2 1657.0 2763.3

Eq (2.2) Eq (2.3)b 1543.5 1658.5 2763.2

a The vibrational quanta of the N–H stretch, bend,

and N–O stretch, respectively.

b The aTZ and aQZ basis sets are used.
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Table 2.2: Comparison of the three fundamental vibrational transitions energies (in cm−1) of HOO− obtained with

three PES representations (QFF, grid, and hybrid QFF/grid) and the full VCI. Except for the grid CCSD(2)T/aTZ

results (the top row), which serve as the accurate reference frequencies, the differences from the reference values are

shown.

PES (100)a (010)a (001)a

CCSD(2)T/aTZ (grid) 3572.2 1082.2 747.7

Hybrid QFF/gridb +3.1 +0.5 +0.2

CCSD(2)T/aTZ (QFF) –21.5 +1.2 –11.6

CCSD/aDZ (grid) +2.0 +17.4 +0.3

CCSD/aDZ (QFF) –19.3 +24.6 –5.0

a The vibrational quanta of the O–H stretch, bend,

and O–O stretch, respectively.

b Combines the PESs in the last three rows.
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Table 2.3: Fundamental vibrational transition energies (in cm−1) of HCO+.

Method (1000)a (0110)a (0001)a

CCSD/aDZ/grid/VCI 3092 833 2200

CCSD/aDZ/QFF/VCI 3077 822 2199

CCSD(2)T/aDZ/QFF/VCI 3053 801 2131

CCSD(2)TQ/aDZ/QFF/VCI 3049 795 2114

CCSD/aTZ/QFF/VCI 3098 836 2236

CCSD(2)T/aTZ/QFF/VCI 3071 813 2167

CCSD/aQZ/QFF/VCI 3101 837 2250

a The vibrational quanta of the C–H stretch, bend, and

C–O stretch, respectively.

Table 2.4: Fundamental vibrational transition energies (in cm−1) of HCO+.

Method (1000)a (0110)a (0001)a

Experiment 3088.74b 829.72c 2183.95d

CC-CBS/hybrid/VCIe 3083 823 2175

CC-CBS/QFF/VCIe 3072 806 2176

CCSD(2)T/aDZ/harmonice 3214 837 2160

Mladenovic and Schmatz113 3086 831 2179

Puzzarini et al.112 3090f 831f 2183f

Martin, Taylor and Lee111 3088 824 2166

van Mourik, Dunning, and Peterson114 3083 823 2177

a The vibrational quanta of the C–H stretch, bend, and C–O stretch, re-

spectively.

b Amano.96

c Davies and Rothwell.98

d Foster, McKellar, and Sears.99

e This work. The CC-CBS results are based on the CCSD/(aDZ, aTZ,

aQZ), CCSD(2)T/(aDZ, aTZ) and CCSD(2)TQ/aDZ energies.

f The PES was scaled empirically.
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Table 2.5: Vibrationally-averaged bond lengths (in Å) and rotational constant (B) (in cm−1) of HCO+ computed by the

CC-CBS/hybrid/VCI method (experimental values, when available, in parentheses).

Statea (0000)a (1000)a (0110)a (0001)a

rC–O
b 1.112 1.113 1.112 1.118

rC–H
b 1.096 1.127 1.081 1.099

B 1.48 (1.49)c 1.46 (1.48)d 1.49 (1.49)e 1.46 (1.48)f

a The vibrational quanta of the C–H stretch, bend, and C–O

stretch, respectively.

b The equilibrium bond lengths are 1.10474 (rC–O) and

1.09725 Å(rC–H) according to Woods.91

c Sastry, Herbst, and de Lucia.88

d Amano.96

e Davies and Rothwell.98

f Davies, Hamilton, and Rothwell.97
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Table 2.6: Fundamental vibrational transition energies (in cm−1) of HCO.

Method (100)a (010)a (001)a

CCSD/aDZ/grid/VCI 2428 1069 1877

CCSD/aDZ/QFF/VCI 2402 1069 1872

CCSD(2)T/aDZ/QFF/VCI 2363 1060 1829

CCSD(2)TQ/aDZ/QFF/VCI 2358 1057 1813

CCSD/aTZ/QFF/VCI 2450 1088 1913

CCSD(2)T/aTZ/QFF/VCI 2413 1077 1865

CCSD/aQZ/QFF/VCI 2449 1092 1927

a The vibrational quanta of the C–H stretch, bend, and

C–O stretch,respectively.

Table 2.7: Fundamental vibrational transition energies (in cm−1) of HCO.

Method (100)a (010)a (001)a

Experiment 2434.48b 1080.76c 1868.17c

CC-CBS/hybrid/VCId 2432 1079 1874

CC-CBS/QFF/VCId 2403 1081 1870

CCSD(2)T/aDZ/harmonicd 2683 1100 1848

Werner et al.144 2446 1081 1844

Serrano-Andrs, Forsberg, and Malmqvist148 2443 1072 1851

van Mourik, Dunning, and Peterson114 2461 1079 1866

Marenich and Boggs151 2416 1076 1885

a The vibrational quanta of the C–H stretch, bend, and C–O stretch, respec-

tively.

b Dane et al.120

c Johns, McKellar, and Riggin.124

d This work. The CC-CBS results are based on the CCSD/(aDZ, aTZ, aQZ),

CCSD(2)T/(aDZ, aTZ) and CCSD(2)TQ/aDZ energies.

35



Table 2.8: Vibrationally-averaged bond lengths (in Å) and angle (in degrees) and rotational constants (A, B, and C) (in

cm−1) of HCO computed by the CC-CBS/hybrid/VCI method (experimental values, when available, in parentheses).

Statea (000)a (100)a (010)a (001)a

rC–H 1.141 (1.151b, 1.125c) 1.199 1.133 1.140

rC–O 1.180 (1.178b, 1.175c) 1.176 1.180 1.188

aHCO 124.3 (123.0b, 125.0c) 123.7 124.5 124.1

A 23.2 (24.3d, 24.3e) 20.9 23.6 23.1

B 1.48 (1.47d, 1.49e) 1.48 1.48 (1.50)c 1.47

C 1.39 (1.37d, 1.40e) 1.38 1.40 (1.39)c 1.38

a The vibrational quanta of the C–H stretch, bend, and C–O

stretch, respectively.

b Ogilvie.154

c Brown and Ramsay.123

d Hirota.153

e Brown, Radford, and Sears.152
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Table 2.9: Fundamental vibrational transition energies (in cm−1) of HNO.

Method (100)a (010)a (001)a

CCSD/aDZ/grid/VCI 2701 1518 1616

CCSD/aDZ/QFF/VCI 2701 1512 1613

CCSD(2)T/aDZ/QFF/VCI 2637 1480 1553

CCSD(2)TQ/aDZ/QFF/VCI 2627 1467 1532

CCSD/aTZ/QFF/VCI 2749 1531 1629

CCSD(2)T/aTZ/QFF/VCI 2681 1496 1565

CCSD/aQZ/QFF/VCI 2757 1538 1645

a The vibrational quanta of the N–H stretch, bend, and

N–O stretch, respectively.

Table 2.10: Fundamental vibrational transition energies (in cm−1) of HNO.

Method (100)a (010)a (001)a

Experiment 2683.95b 1500.82c 1565.35c

CC-CBS/hybrid/VCId 2683 1503 1572

CC-CBS/QFF/VCId 2679 1499 1568

CCSD(2)T/aDZ/harmonicd 2909 1531 1590

Dateo, Lee, and Schwenke177 2667 1507 1571

Mordaunt et al.179 2682e 1502e 1563e

a The vibrational quanta of the N–H stretch, bend, and N–O

stretch, respectively.

b Johns, McKellar, and Weinberger.166

c Johns and McKellar.165

d This work. The CC-CBS results are based on the CCSD/(aDZ,

aTZ, aQZ), CCSD(2)T/(aDZ, aTZ) and CCSD(2)TQ/aDZ ener-

gies.

e The PES was scaled empirically.
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Table 2.11: Vibrationally-averaged bond lengths (in Å) and angle (in degrees) and rotational constants (A, B, and C) (in

cm−1) of HNO computed by the CC-CBS/hybrid/VCI method (experimental values, when available, in parentheses).

Statea (000)a (100)a (010)a (001)a

rN–H 1.075 (1.09b, 1.063c) 1.124 1.071 1.075

rN–O 1.213 (1.209b, 1.212c) 1.208 1.217 1.221

aHNO 108.4 (108.0b, 108.6c) 108.7 108.4 108.5

A 18.2 (18.5)d,e 16.8 (17.7)d 18.3 (18.8)d,e 18.2 (18.6)d,e

B 1.40 (1.41)d,e 1.41(1.42d) 1.39 (1.41)d,e 1.38 (1.40)d,e

C 1.30 (1.31)d,e 1.30 (1.31d) 1.30 (1.29d, 1.30e) 1.29 (1.30d, 1.29e)

a The vibrational quanta of the N–H stretch, bend, and N–O stretch, respectively.

b Ogilvie.154

c Dalby.158

d Johns, McKellar, and Weinberger.166

e Johns and McKellar.165
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Table 2.12: Fundamental vibrational transition energies (in cm−1) of HOO.

Method (100)a (010)a (001)a

CCSD/aDZ/grid/VCI 3447 1409 1090

CCSD/aDZ/QFF/VCI 3426 1410 1088

CCSD(2)T/aDZ/QFF/VCI 3380 1383 1054

CCSD(2)TQ/aDZ/QFF/VCI 3366 1374 1045

CCSD/aTZ/QFF/VCI 3476 1420 1136

CCSD(2)T/aTZ/QFF/VCI 3422 1390 1101

CCSD/aQZ/QFF/VCI 3489 1431 1154

a The vibrational quanta of the O–H stretch, bend, and

O–O stretch, respectively.

Table 2.13: Fundamental vibrational transition energies (in cm−1) of HOO.

Method (100)a (010)a (001)a

Experiment 3436.20b 1391.75c 1097.63d

CC-CBS/hybrid/VCIe 3447 1399 1121

CC-CBS/QFF/VCIe 3424 1400 1118

CCSD(2)T/aDZ/harmonice 3628 1428 1080

Walch and Duchovic194 3356 1415 1206

Xu et al.197 3433 1389 1090

a The vibrational quanta of the O–H stretch, bend, and O–O

stretch, respectively.

b Yamada, Endo, and Hirota.186

c Nagai, Endo, and Hirota.188

d Johns, McKellar, and Riggin.190

e This work. The CC-CBS results are based on the

CCSD/(aDZ, aTZ, aQZ), CCSD(2)T/(aDZ, aTZ) and

CCSD(2)TQ/aDZ energies.
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Table 2.14: Vibrationally-averaged bond lengths (in Å) and angle (in degrees) and rotational constants (A, B, and C) (in

cm−1) of HOO computed by the CC-CBS/hybrid/VCI method (experimental values, when available, in parentheses).

Statea (000)a (100)a (010)a (001)a

rO–H 0.984 (1.006b, 0.977c) 1.022 0.977 0.983

rO–O 1.333 (1.333b, 1.334c) 1.330 1.337 1.345

aHOO 104.6 (104.4b, 104.1c) 105.0 104.9 104.0

A 20.2 (20.4)d 18.8 (19.6)e 20.5 (21.0)f 20.1 (20.3)g

B 1.12 (1.12)d 1.12 (1.12)e 1.11 (1.12)f 1.10 (1.11)g

C 1.06 (1.06)d 1.06 (1.06)e 1.05 (1.05)f 1.04 (1.04)g

a The vibrational quanta of the O–H stretch, bend, and O–O stretch, re-

spectively.

b Ogilvie.154

c Barnes, Brown, and Radford.193

d Barnes et al.192

e Yamada, Endo, and Hirota.186

f Nagai, Endo, and Hirota.188

g Johns, McKellar, and Riggin.190
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Table 2.15: Fundamental vibrational transition energies (in cm−1) of HOO−.

Method (100)a (010)a (001)a

CCSD/aDZ/grid/VCI 3574 1100 748

CCSD/aDZ/QFF/VCI 3553 1107 743

CCSD(2)T/aDZ/QFF/VCI 3516 1090 688

CCSD(2)TQ/aDZ/QFF/VCI 3503 1060 648

CCSD/aTZ/QFF/VCI 3591 1118 796

CCSD(2)T/aTZ/QFF/VCI 3551 1083 736

CCSD/aQZ/QFF/VCI 3610 1129 802

a The vibrational quanta of the O–H stretch, bend, and

O–O stretch, respectively.

Table 2.16: Fundamental vibrational transition energies (in cm−1) of HOO−.

Method (100)a (010)a (001)a

Experiment 775 ± 250b

CC-CBS/hybrid/VCIc 3587 1088 739

CC-CBS/QFF/VCIc 3561 1084 742

CCSD(2)T/aDZ/harmonicc 3768 1109 725

Horn et al.211 3585 1073 728

Chan and Hamilton212 3665 1079 685

Botschwina and Horn206 3581 1084 728

a The vibrational quanta of the O–H stretch, bend, and O–

O stretch, respectively.

b Oakes, Harding, and Ellison.210

c This work. The CC-CBS results are based on the

CCSD/(aDZ, aTZ, aQZ), CCSD(2)T/(aDZ, aTZ) and

CCSD(2)TQ/aDZ energies.
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Table 2.17: Vibrationally-averaged bond lengths (in Å) and angle (in degrees) and rotational constants (A, B, and C) (in

cm−1) of HOO− computed by the CC-CBS/hybrid/VCI method (experimental values, when available, in parentheses).

Statea (000)a (100)a (010)a (001)a

rO–H 0.969 (0.97b,c) 1.006 0.958 0.967

rO–O 1.525 (1.50)b 1.520 1.535 1.541

aHOO− 97.7 (104b,c) 98.5 97.2 96.7

A 19.5 18.2 19.9 19.5

B 0.87 0.87 0.86 0.85

C 0.83 0.83 0.82 0.82

a The vibrational quanta of the O–H stretch, bend,

and O–O stretch, respectively.

b Oakes, Harding, and Ellison.210

c Assumed values.210
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Table 2.18: Fundamental vibrational transition energies (in cm−1) of CH+
3 .

Method (1000)a (0100)a (0010)a (0001)a

CCSD/aDZ/grid/VCI 2935 1385 3099 1375

CCSD/aDZ/QFF/VCI 2930 1381 3106 1371

CCSD(2)T/aDZ/QFF/VCI 2919 1376 3096 1365

CCSD(2)TQ/aDZ/QFF/VCI 2917 1375 3095 1365

CCSD/aTZ/QFF/VCI 2945 1390 3106 1389

CCSD(2)T/aTZ/QFF/VCI 2931 1384 3094 1381

CCSD/aQZ/QFF/VCI 2948 1391 3110 1392

a The vibrational quanta of the symmetric C–H stretch (a′1), um-

brella (a′′2 ), anti-symmetric C–H stretch (e′), and deformation (e′),

respectively.

Table 2.19: Fundamental vibrational transition energies (in cm−1) of CH+
3 .

Method (1000)a (0100)a (0010)a (0001)a

Experiment 1359 ± 7b 3108.38c 1370 ± 7b

CC-CBS/hybrid/VCId 2940 1383 3096 1384

CC-CBS/QFF/VCId 2933 1383 3099e 1385

CCSD(2)T/aDZ/harmonicd 3037 1418 3247 1429

Yu and Sears229 2942f 1378f 3108f 1387f

a The vibrational quanta of the symmetric C–H stretch (a′1), umbrella

(a′′2 ), anti-symmetric C–H stretch (e′), and deformation (e′), respec-

tively.

b Liu, Gross, and Suits.222

c Crofton et al.216

d This work. The CC-CBS results are based on the CCSD/(aDZ, aTZ,

aQZ), CCSD(2)T/(aDZ, aTZ) and CCSD(2)TQ/aDZ energies.

e The average of 3094 and 3105 cm−1 (see text).

f The PES was scaled empirically.
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Table 2.20: Vibrationally-averaged C–H bond length (in Å) and rotational constants (B and C) (in cm−1) of CH+
3

computed by the CC-CBS/hybrid/VCI method (experimental values, when available, in parentheses).

Statea (0000)a (1000)a (0100)a (0010)a (0001)a

rC–H 1.102 (1.1)b 1.112 1.100 1.113c 1.101d

B 9.18 (9.36)e 9.02 9.21 (9.1)f 9.00g 9.20h(9.1)f

C 4.59 (4.61)b 4.51 4.61 4.50 4.60

a The vibrational quanta of the symmetric C–H stretch (a′1), um-

brella (a′′2 ), anti-symmetric C–H

b Crofton et al.216

c One of the degenerate states has the bond lengths of 1.1245,

1.1079 and 1.1079 Å and bond angles of 119.83, 119.83, and

120.33 degrees. The other has the bond lengths of 1.1020,

1.1187 and 1.1187 Å and bond angles of 120.17, 120.17, and

119.65 degrees.

d One of the degenerate states has the bond lengths of 1.1030,

1.0997 and 1.0997 Å and bond angles of 119.67, 119.67, and

120.67 degrees. The other has the bond lengths of 1.0983,

1.1020 and 1.1020Å and bond angles of 120.33, 120.33, and

119.35 degrees.

e Jagod et al.218

f Liu, Gross, and Suits.222

g The average of 9.06 and 8.94 cm−1.

h The average of 9.24 and 9.16 cm−1.
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Table 2.21: Fundamental vibrational transition energies (in cm−1) of CH3.

Method (1000)a (0100)a (0010)a (0001)a

CCSD/aDZ/grid/VCI 2992 546 3132 1369

CCSD/aDZ/QFF/VCI 2987 559 3130 1365

CCSD(2)T/aDZ/QFF/VCI 2972 556 3116 1358

CCSD(2)TQ/aDZ/QFF/VCI 2970 556 3114 1357

CCSD/aTZ/QFF/VCI 3011 579 3146 1386

CCSD(2)T/aTZ/QFF/VCI 2995 576 3131 1377

CCSD/aQZ/QFF/VCI 3015 581 3153 1387

a The vibrational quanta of the symmetric C–H stretch (a′1), um-

brella (a′′2 ), anti-symmetric C–H stretch (e′), and deformation (e′),

respectively.
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Table 2.22: Fundamental vibrational transition energies (in cm−1) of CH3.

Method (1000)a (0100)a (0010)a (0001)a

Experiment 3004.4b 606.45c 3160.82d (1396e, 1403f )

CC-CBS/hybrid/VCIg 3002 565 3139 1377

CC-CBS/QFF/VCIg 2998 580 3139h 1375

CCSD(2)T/aDZ/harmonicg 3103 498 3292 1407

Surratt and Goddard224 585

Botschwina, Flesch, and Meyer252 3067 598

Roberto-Neto, Chakravorty, and Machado257 3129i 524i 3313i 1424i

a The vibrational quanta of the symmetric C–H stretch (a′1), umbrella (a′′2 ), anti-symmetric

C–H stretch (e′), and deformation (e′), respectively.

b Triggs et al.234

c Yamada, Hirota, and Kawaguchi.231

d Amano et al.239

e A matrix-isolation study by Snelson.245

f A matrix-isolation study by Momose et al.247

g This work. The CC-CBS results are based on the CCSD/(aDZ, aTZ, aQZ), CCSD(2)T/(aDZ,

aTZ) and CCSD(2)TQ/aDZ energies.

h The average of 3133 and 3144 cm−1 (see text).

i CCSD(T)/CBS in the harmonic approximation.
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Table 2.23: Vibrationally-averaged C–H bond length (in Å) and rotational constants (B and C) (in cm−1) of CH3

computed by the CC-CBS/hybrid/VCI method (experimental values, when available, in parentheses).

Statea (0000)a (1000)a (0100)a (0010)a (0001)a

rC–H 1.087 (1.079)b 1.097 (1.084)b 1.080 (1.097)b 1.098c(1.085)b 1.086d

B 9.43 (9.58)e 9.26 (9.49)b 9.56 (9.26)e 9.26f(9.47)e,g,h 9.47i

C 4.72 (4.74)e 4.63 (4.69)b 4.78 (4.81)e 4.63 (4.70)g,h 4.73

a The vibrational quanta of the symmetric C–H stretch (a′1), umbrella (a′′2 ), anti-

symmetric C–H stretch (e′), and deformation (e′), respectively.

b Triggs et al.234

c One of the degenerate states has the bond lengths of 1.0864, 1.1031 and 1.1031 Å

and bond angles of 120.27, 120.27, and 119.47 degrees. The other has the bond

lengths of 1.1086, 1.0925, and 1.0925 Å and bond angles of 119.75, 119.75, and

120.49 degrees.

d One of the degenerate states has the bond lengths of 1.0882, 1.0843 and 1.0843 Å

and bond angles of 119.68, 119.68, and 120.65 degrees. The other has the bond

lengths of 1.0826, 1.0870, and 1.0870 Å and bond angles of 120.32, 120.32, and

119.36 degrees.

e Yamada, Hirota, and Kawaguchi.231

f The average of 9.30 and 9.21 cm−1.

g Amano et al.239

h The average of 9.50 and 9.43 cm−1.

i Kawaguchi.244
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Chapter 3

First-principles methods for anharmonic
lattice vibrations

3.1 Introduction

Electronic structures of infinitely extended systems with one-dimensional periodicity (e.g. crystalline polymers) can

be characterized accurately by crystalline orbital (CO) theory.260–262 They are based on size-extensive approximations

such as the Hartree–Fock (HF),263–265 second- and third-order Møller–Plesset perturbation (MP2 and MP3),266–268

and coupled-cluster singles and doubles (CCSD) methods.51, 268 The corresponding methods for vibrational structures

have also been established8, 269–271 presently for molecules only as the vibrational self-consistent field (VSCF),67–69, 272

vibrational Møller–Plesset perturbation (VMP),13, 40, 273 vibrational configuration-interaction (VCI),12 and vibrational

coupled-cluster (VCC) methods (for more details see Section 1.6).274–277 They allow anharmonicity in potential energy

surfaces (PES) and resulting mode-mode coupling to be accounted for in vibrational spectra46, 47 and vibrationally

averaged properties.2, 45 However, these vibrational methods have not thus far been applied to anharmonic lattice

vibrations in solids apart from a few notable exceptions;278–280 nor have their formalisms been shown rigorously to

have the correct size dependence and be safely applicable to extended systems. For a pioneering analysis of this issue,

the reader is referred to Christiansen.15

The objective of this chapter∗ is to present size-extensive generalizations of the VSCF, first- and second-order

VMP (VMP1 and VMP2), and VCC methods for extended systems of one-dimensional periodicity in delocalized

normal coordinates. The conclusion drawn should be applicable to extended systems of two- and three-dimensional

periodicity. The size dependence of the methods is determined by inspecting the asymptotic functional dependence of

various quantities that enter their formalisms upon the number (K) of k vectors in the first Brillouin zone (BZ).262, 282

The analysis has revealed that copious terms in the formalisms of VSCF have nonphysical size dependence. These

terms have been identified algebraically and eliminated so that compact and strictly size-extensive equations are ob-

tained for a quartic force field (QFF), defining the size-extensive VSCF method (XVSCF) as well as the VMP and

VCC methods in a QFF (XVMP and XVCC) based on a XVSCF reference. The XVSCF method has no contributions

from cubic force constants and alters only the frequencies of the underlying harmonic-oscillator reference from a sub-
∗The work in this chapter has been published in Ref. 281. Reprint permission is granted by American Institute of Physics.
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set of quartic force constants. It also provides a way to evaluate an anharmonic correction to the lattice structure due to

cubic force constants of a certain type. The VMP2 and VCC methods include the anharmonic effects due to all cubic

and quartic force constants in a size-extensive fashion. It is also shown algebraically that VCI lacks size-extensivity.

This chapter reports only the equations defining these methods and a formal analysis of size-extensivity.

3.2 Electronic structures

This section briefly reviews the established formalism of the MP2 CO method to illustrate the algebraic method of

analyzing size-extensivity. In the periodic boundary conditions, a one-dimensional extended system is viewed as a

ring of K identical repeat units. A symmetry-adapted orbital such as a canonical Hartree–Fock (HF) orbital is then

delocalized over the entire ring and has the Bloch form:

ϕpkp = K−1/2
∑
µ

∑
m

cµpkp
exp(−imkpa)χµ(r − ma), (3.1)

where cµpkp
is an expansion coefficient, m is the unit cell index and runs over all K unit cells in the system, a is the

lattice vector, and χµ(r−ma) is the µth atomic orbital (AO) centered in the mth unit cell. Each orbital is characterized

by the linear quasi-momentum kp, which can take one of the following K distinct values:

kp =
2n
K
, {n ∈ Z|0 ≤ n < K}, (3.2)

where the unit of length is adopted in which |a| = π. Notice the dual role played by K in the periodic boundary

conditions: K is the nominal size of the extended system and also the number of distinct k vectors in the first BZ. We use

this knowledge to establish whether a method is size-extensive and, therefore, applicable to extended systems.262, 282

Take the MP2 theory51 as an example. The correlation energy of the entire ring is given by

EMP2 =
∑

i, j,a,b

∑
ki,k j,ka

viki jk j

akabkb

(
2viki jk j

akabkb
− viki jk j

bkbaka

)∗
eiki + e jk j − eaka − ebkb

, (3.3)

where the CO-based one- and two-electron integrals are related to the AO-based counterparts defined elsewhere51 by

epkp = K0
∑
µ,ν

∑
m

cµ∗pkp
cνpkp

exp(−imkpa) f µ(0)
ν(m) , (3.4)

vpkpqkq

rkr sks
= K−1

∑
κ,λ,µ,ν

∑
m1

∑
m2

∑
m3

cκ∗pkp
cλrkr

cµ∗qkq
cνsks

exp
{
i(−m1kr + m2kq − m3ks)a

}
vκ(0)µ(m2)
λ(m1)ν(m3). (3.5)

The k summation (BZ integration) in Equation (3.3) is only three-fold although there are four distinct k vectors in the
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summand. This is because the v integrals vanish identically unless the following momentum conservation condition is

satisfied:

ki + k j − ka − kb = 2n, {n ∈ Z}. (3.6)

We can establish262 the size-extensivity of MP2 by inspecting the K dependence of the quantities entering Equation

(3.3). The numerator in the equation displays K−2 dependence as v is inversely proportional to K [Equation (3.5)].

The denominator does not depend on K because of Equation (3.4). The three-fold k summation gives rise to the factor

of K3. Together they make EMP2 exhibit asymptotic K1 dependence and thus proportional to size, as expected for a

size-extensive theory.

3.3 Vibrational structures

3.3.1 Normal coordinates

The normal coordinates and harmonic-oscillator wave functions283, 284 form the basis of our theories. Harmonic force

constants of an extended system of one-dimensional periodicity may be obtained in Cartesian coordinates as

Fµ(0)ν(m) =
∂2V

∂Xµ(0)∂Xν(m)
, (3.7)

where V is an electronic energy of the whole system and Xν(m) is the νth Cartesian coordinate in the mth unit cell. While

V is size-extensive, the force constants are size-intensive because they are associated with spatially local coordinates.

Its discrete Fourier transform defines the dynamical force-constant matrix,

Fµν
k =

∑
m

Fµ(0)ν(m) exp(−imka), (3.8)

and the dynamical mass-weighted force-constant matrix,

F̃µν
k = m−1/2

µ Fµν
k m−1/2

ν , (3.9)

where mν is the atomic mass associated with the νth Cartesian coordinate. The diagonalization of the latter yields

squared harmonic frequencies (ω2
pkp

) and normal-mode vectors (Cµ
pkp

) as eigenvalues and eigenvectors, respectively:

∑
ν

F̃µν
kp

Cν
pkp

= ω2
pkp

Cµ
pkp
. (3.10)
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The pth branch of the phonon dispersion curves can be obtained by plotting the frequency ωpkp as a function of

the linear quasi-momentum kp. There are 3N such branches (N is the number of atoms in a unit cell) and they are

categorized into 3N−4 (3N−3) optical and 4 (3) acoustic phonon branches (the values in parentheses are for a linelike

polymer).

A complex normal coordinate is defined as the orthonormal linear combination of mass-weighted Cartesian coor-

dinates,285

Qpkp = K−1/2
∑
ν

∑
m

m1/2
ν Cν

pkp
exp(−imkpa)Xν(m), (3.11)

which satisfies Q∗pkp
= Qp−kp . In the BO approximation, the vibrational Hamiltonian is

Ĥn = −
1
2

∑
p

∑
kp

∂2

∂Q∗pkp
∂Qpkp

+ V, (3.12)

where V (the potential energy surface or PES) is an electronic energy of the whole system (not an energy per unit cell).

In the harmonic approximation,

V = VHRM ≡
1
2

∑
p

∑
kp

ω2
pkp

Q∗pkp
Qpkp . (3.13)

The normal coordinates of the first kind,285 which are real, can be defined by

Qpkp = 2−1/2
(
qpkp + iq̄pkp

)
, (3.14)

Q∗pkp
= 2−1/2

(
qpkp − iq̄pkp

)
, (3.15)

except when kp = 0 in which case Qp0 = Q∗p0 = qp0 (q̄p0 is not defined). They satisfy the relations, qp−kp = qpkp and

q̄p−kp = −q̄pkp , and, therefore, the nonredundant set of independent k vectors in these coordinates spans just one half

BZ. In these coordinates, the Hamiltonian in the harmonic approximation reduces to the sum of the Hamiltonians of

independent harmonic oscillators,

ĤHRM = −
1
2

∑
p

∑
kp

′ ∂2

∂q2
pkp

−
1
2

∑
p

∑
kp

′ ∂2

∂q̄2
pkp

+
1
2

∑
p

∑
kp

′

ω2
pkp

q2
pkp

+
1
2

∑
p

∑
kp

′

ω2
pkp

q̄2
pkp
, (3.16)

where the primes indicate that the summations are taken over only the nonredundant set of k vectors. The vibrational

Schrödinger equation of this Hamiltonian is subject to complete separation of variables and can thus be solved exactly.

For a state characterized by a string of quantum numbers v ≡ v1k0 . . . v(3N)kK/2 v̄1k1 . . . v̄(3N)kK/2 , the wave function and
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energy of the whole system are given by

Φv
HRM =

∏
p

∏
kp

′

η
vpkp

pkp
(qpkp )

∏
p

∏
kp

′

η
v̄pkp

pkp
(q̄pkp ), (3.17)

Ev
HRM =

∑
p

∑
kp

′

ωpkp

(
vpkp + 1/2

)
+

∑
p

∑
kp

′

ωpkp

(
v̄pkp + 1/2

)
, (3.18)

where the symbols with overbars are associated with q̄pkp and those without overbars with qpkp . The one-mode wave

function with the quantum number vpkp is

η
vpkp

pkp
(qpkp ) = Nvpkp

Hvpkp
(ω1/2

pkp
qpkp ) exp(−ωpkp q2

pkp
/2). (3.19)

The explicit expressions of the normalization coefficients Nvpkp
and the Hermite polynomials Hvpkp

are found in many

places.19 The functional forms of η
vpkp

pkp
and η

v̄pkp

pkp
are identical to each other when vpkp = v̄pkp . It is evident that ωpkp

and Ev
HRM are K0 (size-intensive) and K1 (size-extensive) quantities, respectively.

3.3.2 Anharmonic potential energy functions

There are a number of ways to approximate V .286 In view of the enormous dynamical degrees of freedom in an

extended system, one practical way will be to expand V in a Taylor series and truncate it after a finite order. A QFF

(Refs.56 and57) in the normal coordinates is written as

V =
∑

p

Fp0Qp0 +
1
2!

∑
p,q

∑
kp

Fpkpqkq Qpkp Qqkq +
1
3!

∑
p,q,r

∑
kp,kq

Fpkpqkqrkr Qpkp Qqkq Qrkr

+
1
4!

∑
p,q,r,s

∑
kp,kq,kr

Fpkpqkqrkr sks Qpkp Qqkq Qrkr Qsks (3.20)

=
∑

p

Fp0qp0 +
1

2!2

∑
p,q

∑
kp

Fpkpqkq

(
qpkp qqkq + 2iqpkp q̄qkq − q̄pkp q̄qkq

)
+

1
3!23/2

∑
p,q,r

∑
kp,kq

Fpkpqkqrkr

(
qpkp qqkq qrkr + 3iqpkp qqkq q̄rkr − 3qpkp q̄qkq q̄rkr − iq̄pkp q̄qkq q̄rkr

)
+

1
4!22

∑
p,q,r,s

∑
kp,kq,kr

Fpkpqkqrkr sks

(
qpkp qqkq qrkr qsks + 4iqpkp qqkq qrkr q̄sks − 6qpkp qqkq q̄rkr q̄sks

−4iqpkp q̄qkq q̄rkr q̄sks + q̄pkp q̄qkq q̄rkr q̄sks

)
, (3.21)

where the summations take into consideration the fact that the force constants (F) in the normal coordinates vanish

identically unless the sum of the momenta is conserved (see below). The second equality follows from Equations

(3.14) and (3.15). When the k summations are taken over the whole first BZ (as in the above equation), the factor

of 2−1/2 needs to be associated with each qpkp or q̄pkp except qp0. This exception is not made explicit for notational
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simplicity unless k vectors are specifically zero.

The following analysis does not substantially depend on this particular truncation order and can thus be extended

readily to a higher-order truncated Taylor expansion of V (if not to a grid-based numerical representation). As will

become clear, cubic and quartic force constants give rise to leading-order anharmonic contributions to lattice structures

and energies, respectively, and, in this sense, a QFF is the lowest-order truncation that is meaningful for the analysis.

In the Cartesian coordinates, the same QFF can be expressed as

V =
∑
κ

∑
m1

Fκ(m1)Xκ(m1) +
1
2!

∑
κ,λ

∑
m1,m2

Fκ(m1)λ(m2)Xκ(m1)Xλ(m2)

+
1
3!

∑
κ,λ,µ

∑
m1,m2,m3

Fκ(m1)λ(m2)µ(m3)Xκ(m1)Xλ(m2)Xµ(m3)

+
1
4!

∑
κ,λ,µ,ν

∑
m1,m2,m3,m4

Fκ(m1)λ(m2)µ(m3)ν(m4)Xκ(m1)Xλ(m2)Xµ(m3)Xν(m4) (3.22)

= K
∑
κ

Fκ(0)Xκ(0) +
K
2!

∑
κ,λ

∑
m1

Fκ(0)λ(m1)Xκ(0)Xλ(m1) +
K
3!

∑
κ,λ,µ

∑
m1,m2

Fκ(0)λ(m1)µ(m2)Xκ(0)Xλ(m1)Xµ(m2)

+
K
4!

∑
κ,λ,µ,ν

∑
m1,m2,m3

Fκ(0)λ(m1)µ(m2)ν(m3)Xκ(0)Xλ(m1)Xµ(m2)Xν(m3), (3.23)

where the second equality exploits the translational invariance of the force constants in the Cartesian coordinates such

as

Fκ(m1)λ(m2)µ(m3)ν(m4) = Fκ(0)λ(m2−m1)µ(m3−m1)ν(m4−m1). (3.24)

The factor of K that multiplies each sum in Equation (3.23) underscores the fact that the terms in V are individually

size-extensive (K1). The two sets of force constants are related to each other by the following transformations:

Fpkp = K1/2∆kp

∑
κ

m−1/2
κ Cκ∗

pkp
Fκ(0), (3.25)

Fpkpqkq = K0∆kp+kq

∑
κ,λ

∑
m1

m−1/2
κ m−1/2

λ Cκ∗
pkp

Cλ∗
qkq

Fκ(0)λ(m1) exp(im1kqa), (3.26)

Fpkpqkqrkr = K−1/2∆kp+kq+kr

∑
κ,λ,µ

∑
m1,m2

m−1/2
κ m−1/2

λ m−1/2
µ

×Cκ∗
pkp

Cλ∗
qkq

Cµ∗
rkr

Fκ(0)λ(m1)µ(m2) exp
{
i(m1kq + m2kr)a

}
, (3.27)

Fpkpqkqrkr sks = K−1∆kp+kq+kr+ks

∑
κ,λ,µ,ν

∑
m1,m2,m3

m−1/2
κ m−1/2

λ m−1/2
µ m−1/2

ν Cκ∗
pkp

Cλ∗
qkq

Cµ∗
rkr

Cν∗
sks

×Fκ(0)λ(m1)µ(m2)ν(m3) exp
{
i(m1kq + m2kr + m3ks)a

}
, (3.28)

where ∆ ensures that these force constants are nonvanishing when and only when the normal coordinates involved
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satisfy the momentum conservation condition,285 namely,

∆k = K−1
∑

m

exp(ikma) =


1, k = 2n, {n ∈ Z},

0, otherwise.
(3.29)

These expressions indicate that the nth-order force constants in the normal coordinates scale as K1−n/2 (Ref. 285).

Furthermore, since the normal coordinates are centered at the equilibrium lattice structure, we have

Fpkp = 0, (3.30)

Fpkpqkq = δpq∆kp+kqω
2
pkp
. (3.31)

3.3.3 Self-consistent field theory

A VSCF wave function67–69 of the state characterized by the string of quantum numbers v is the product,

Φv
VSCF =

∏
p

∏
kp

′

ζ
vpkp

pkp
(qpkp )

∏
p

∏
kp

′

ζ
v̄pkp

pkp
(q̄pkp ), (3.32)

where ζ
vpkp

pkp
is a one-mode function (modal) of qpkp with the quantum number vpkp and the linear quasi-momentum kp in

the pth phonon branch and ζ
v̄pkp

pkp
defined accordingly. It is expanded as a linear combination of the harmonic-oscillator

wave functions with the same p and kp attributes:

ζv
pkp

(qpkp ) =
∑

w

Dwv
pkp
ηw

pkp
(qpkp ), (3.33)

where D is an expansion coefficient and some subscripts are omitted for notational simplicity. We vary ζ such that the

expectation value of Ĥn in the wave function Φv
VSCF becomes a minimum. This leads to coupled eigenvalue equations

that need to be solved self-consistently for all p’s and kp’s:

∑
w

Guw
pkp

Dwv
pkp

= Duv
pkp

Ev
pkp
, (3.34)

where Ev
pkp

is the energy of the modal ζv
pkp

and Guw
pkp

is an element of the matrix representation of Ĝ in the harmonic-

oscillator basis,

Guw
pkp

= 〈ηu
pkp
|Ĝv

pkp
|ηw

pkp
〉 (3.35)
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with

Ĝv
pkp

= −
1
2

∂2

∂q2
pkp

+ Uv
pkp

(qpkp ). (3.36)

Here U is an effective one-mode (thus one-dimensional) potential for the mode pkp and is the expectation value of V

in the product of all modals except for the one in question,

Uv
pkp

(qpkp ) = 〈Φv
pkp
|V |Φv

pkp
〉 (3.37)

with

Φv
pkp

= Φv
VSCF/ζ

vpkp

pkp
(qpkp ). (3.38)

Through this potential, Equation (3.34) for one mode couples with the corresponding equations for all the other modes.

When V is a QFF, U is also a quartic function of qpkp and is written as

Uv
pkp

(qpkp ) = U0 + U1qpkp +
1
2!

U2q2
pkp

+
1
3!

U3q3
pkp

+
1
4!

U4q4
pkp
. (3.39)

Let us first clarify what the correct dependence of U should be. Note that U is a one-dimensional potential for the

mode pkp, whose associated kinetic energy part scales as K0. The third and subsequent terms that depend on qpkp

must, therefore, scale as K0 and determine the size-intensive (K0) transition energies and the shapes of the modals.

The first term (U0), on the other hand, is a constant representing the sum of the energies of all the other modes and

should be size-extensive (K1). The second term (U1qpkp ) should be zero for U to have the correct size dependence.

We shall now show, however, that Equation (3.39) does not formally satisfy these criteria.

Substituting Equation (3.21) into Equation (3.37), we find the constant to be

U0 =
∑

q

Fq0〈qq0〉 +
1

2!2

∑
q,r

∑
kq

Fqkqrkr

(
〈qqkq〉〈qrkr 〉 − 〈q̄qkq〉〈q̄rkr 〉

)
+

1
2!2

∑
q

∑
kq

Fq−kqqkq

(
〈q2

qkq
〉 + 〈q̄2

qkq
〉
)

+
1

2!2

∑
q,r

∑
kr

Fq0r−krrkr 〈qq0〉
(
〈q2

rkr
〉 + 〈q̄2

rkr
〉
)

+
1

3!23/2

∑
q,r,s

∑
kq,kr

Fqkqrkr sks

(
〈qqkq〉〈qrkr 〉〈qsks〉 − 3〈qqkq〉〈q̄rkr 〉〈q̄sks〉

)
+

1
2!2!2!22

∑
q,r

∑
kq,kr

Fq−kqqkqr−krrkr

(
〈q2

qkq
〉 + 〈q̄2

qkq
〉
) (
〈q2

rkr
〉 + 〈q̄2

rkr
〉
)

+
1

4!22

∑
q,r,s,t

∑
kq,kr ,ks

Fqkqrkr skstkt

(
〈qqkq〉〈qrkr 〉〈qsks〉〈qtkt 〉 + 〈q̄qkq〉〈q̄rkr 〉〈q̄sks〉〈q̄tkt 〉
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−6〈qqkq〉〈qrkr 〉〈q̄sks〉〈q̄tkt 〉
)

+ . . . , (3.40)

where 〈qqkq〉 and 〈q2
qkq
〉 are the short-hand notations of 〈ζ

vqkq

qkq
|qqkq |ζ

vqkq

qkq
〉 and 〈ζ

vqkq

qkq
|q2

qkq
|ζ

vqkq

qkq
〉, respectively, and 〈q̄qkq〉 and

〈q̄2
qkq
〉 are defined accordingly. It should be understood that the summations must exclude the mode pkp because of

Equation (3.38). The second term in the right-hand side also excludes qqkq = qrkr as it is included in the third term.

This second term involves the summation over only kq but not kr because Fqkqrkr vanishes unless kq + kr = 2n (n is an

integer). The terms that involve odd numbers of q̄ do not appear in this equation because it satisfies the antisymmetry

relation, q̄q−kq = −q̄qkq , and the k summations are taken over the whole first BZ.

The right-hand side of Equation (3.40) does not have consistent K dependence. The first term scales as K1/2

because Fq0 is a K1/2 quantity and 〈qq0〉 = 〈ζ
vq0

q0 |qq0|ζ
vq0

q0 〉 is independent of K. The second and third terms scale as K1

because Fqkqrkr has the K0 dependence and the summation over kq gives rise to the factor of K1. In the same way, we

find the K dependence of the fourth and fifth terms to be K1/2 and K3/2, respectively. The sixth and seventh terms with

the quartic force constants scale as K1 and K2, respectively. To summarize, only the quadratic terms and the terms

with quartic force constants of the type Fq−kqqkqr−krrkr display the correct K1 dependence in U0.

The fact that U0 is a sum of terms with varied K dependence does not immediately mean that VSCF lacks size-

extensivity. This is because the terms with nonphysical K dependence may be shown to vanish in the bulk (K = ∞)

limit. The terms whose K dependence is K1/2 or a weaker power of K become asymptotically negligible as compared

with the size-extensive (K1) terms. It should also be noticed that the other terms with nonphysical K dependence

always involve the expectation values of odd powers of the normal coordinates in ζ. Therefore, if ζ can be shown to

be symmetric (i.e., even or odd) with respect to the origin as is a harmonic-oscillator wave function centered at the

equilibrium lattice structure, these terms also vanish by symmetry and the entire expression remains size-extensive

(K1) in the bulk limit. That ζ is a harmonic-oscillator wave function (but with a frequency differing from ω) is indeed

the case under certain circumstances to be specified below.

The gradient in Equation (3.39) is given by

U1 = ∆kp Fp0 +
∆kp

2!2

∑
q

∑
kq

Fp0q−kqqkq

(
〈q2

qkq
〉 + 〈q̄2

qkq
〉
)

+
∑

q

Fpkpqkq〈qqkq〉 +
1

2!21/2

∑
q,r

∑
kq

Fpkpqkqrkr

(
〈qqkq〉〈qrkr 〉 − 〈q̄qkq〉〈q̄rkr 〉

)
+

1
3!2

∑
q,r,s

∑
kq,kr

Fpkpqkqrkr sks

(
〈qqkq〉〈qrkr 〉〈qsks〉 − 3〈qqkq〉〈q̄rkr 〉〈q̄sks〉

)
+ . . . , (3.41)

where qqkq , qrkr , and qsks must differ from qpkp . The terms in the right-hand side scale as K1/2, K1/2, K0, K1/2, and

K1, respectively. Their sum, therefore, does not exhibit well-defined K dependence. The third and subsequent terms
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vanish by symmetry if ζ is a harmonic-oscillator wave function for the reason described above. The first term (Fp0) is

zero at the equilibrium lattice structure, but the second term is not; it represents the leading-order anharmonic effect

on the lattice structure (see below). Note that the cubic force constants that enter this important term have the form

Fp0q−kqqkq . The VSCF method is not size-extensive unless the sum of the first two terms (“VSCF gradient”) vanishes

for every in-phase coordinate (qp0). This point will be expounded at the end of this subsection.

The quadratic force constant is expanded as

1
2!

U2 =
1
2!

Fp−kp pkp +
1
2!

∑
q

Fp−kp pkpq0〈qq0〉 +
1

2!2!2

∑
q

∑
kq

Fp−kp pkpq−kqqkq

(
〈q2

qkq
〉 + 〈q̄2

qkq
〉
)

+
1

2!2!2

∑
q,r

∑
kq

Fp−kp pkpqkqr−kq

(
〈qqkq〉〈qrkq〉 + 〈q̄qkq〉〈q̄rkq〉

)
+ . . . , (3.42)

where qq0, qqkq , and qrkq must differ from qpkp . U2 does not scale consistently, either, as the second (cubic) term scales

as K−1/2 and differently from the other terms, which are K0 quantities. However, the second term vanishes in the bulk

limit and the fourth term is also zero by symmetry if ζ is a harmonic-oscillator wave function.

The cubic and quartic force constants are given by

1
3!

U3 =
1

3!21/2 Fpkp pkp pkp +
1

3!2

∑
q

Fpkp pkp pkpqkq〈qqkq〉 +
1

2!2

∑
q

Fp−kp pkp pkpq−kp〈qqkp〉, (3.43)

1
4!

U4 =
1

4!2
Fpkp pkp pkp pkp +

1
3!2

Fp−kp pkp pkp pkp +
1

2!2!22 Fp−kp pkp p−kp pkp . (3.44)

These expressions exhibit the K−1/2 and K−1 dependence, respectively, and thus vanish in the bulk limit. Generally, if

we assume that ζ is a harmonic-oscillator wave function, we can show that the nth-order force constants in U decay

as K1−n/2 or more rapidly regardless of the highest order of the force constants present in V .

Let us now suppose that all VSCF gradients [the sum of the first two terms in the right-hand side of Equation (3.41)]

are made to vanish by choosing an appropriate lattice structure (see the next subsection). The force constants and

normal coordinates are determined at this origin. With U3 and U4 vanishing asymptotically, U reduces to a canonical

harmonic potential (with zero off-diagonal quadratic force constants) in these normal coordinates at K = ∞. Each

modal (ζv
pkp

or ζ v̄
pkp

) is, therefore, a harmonic-oscillator wave function along the corresponding normal coordinate but

with a different (i.e., renormalized) frequency. The change in frequency occurs because U2 has a contribution from the

quartic force constants Fq−kqqkqr−krrkr . The modal is centered at the lattice structure with which the normal coordinates

are determined and hence the expectation value of an odd power of qpkp in ζv
pkp

is zero by symmetry. Hence, with this

choice of the lattice structure and normal coordinates, the VSCF equations become asymptotically size-extensive.

Alternatively, one can maintain the equilibrium lattice structure as the origin (where V is at minimum and Fp0 = 0)

and neglect cubic force constants, which also restores size-extensivity in VSCF. Under this approximation, Uv
pkp

again
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becomes a canonical, renormalized harmonic potential. A modal in this potential must be symmetric (even or odd)

with respect to the origin, erasing all nonphysical terms in Uv
pkp

. Conversely, when nonzero VSCF gradients are

retained in the equations, the size-extensivity of VSCF cannot be proven.

3.3.4 Size-extensive self-consistent field theory

The foregoing discussion reveals that the VSCF equations are plagued with terms with nonphysical K dependence,

which are, however, shown to vanish under some circumstances. It is desirable to restore strict size-extensivity in

the equations by retaining only the nonvanishing terms in U’s that have the correct K dependence. We introduce the

following restricted form of a QFF,

VXVSCF =
1

2!2

∑
p

∑
kp

Fp−kp pkp

(
q2

pkp
+ q̄2

pkp

)
+

1
2!2!2!22

∑
p,q

∑
kp,kq

Fp−kp pkpq−kqqkq

(
q2

pkp
+ q̄2

pkp

) (
q2

qkq
+ q̄2

qkq

)
(3.45)

=
1
2!

∑
p

∑
kp

′

Fp−kp pkp

(
q2

pkp
+ q̄2

pkp

)
+

1
2!2!2!

∑
p,q

∑
kp,kq

′

Fp−kp pkpq−kqqkq

(
q2

pkp
+ q̄2

pkp

) (
q2

qkq
+ q̄2

qkq

)
, (3.46)

where qpkp must differ from qqkq and it should understood that the factor of 2−1/2 associated with each appearance of

qpkp or q̄pkp in Equation (3.45) is replaced by unity when kp = 0. For this QFF, we can write the one-mode potential

of VSCF that has the correct size-dependence as follows:

Uv
XVSCF(qpkp ) = 〈Φv

pkp
|VXVSCF|Φ

v
pkp
〉 = UXVSCF

0 +
1
2!

UXVSCF
2 q2

pkp
(3.47)

with

UXVSCF
0 =

1
2!

∑
q

∑
kq

′

Fq−kqqkq

(
〈q2

qkq
〉 + 〈q̄2

qkq
〉
)

+
1

2!2!2!

∑
q,r

∑
kq,kr

′

Fq−kqqkqr−krrkr

(
〈q2

qkq
〉 + 〈q̄2

qkq
〉
) (
〈q2

rkr
〉 + 〈q̄2

rkr
〉
)
, (3.48)

and

1
2!

UXVSCF
2 =

1
2!

Fp−kp pkp +
1

2!2!

∑
q

∑
kq

′

Fp−kp pkpq−kqqkq

(
〈q2

qkq
〉 + 〈q̄2

qkq
〉
)
, (3.49)
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where qqkq and qrkr differ from qpkp and qqkq = qrkr and q̄qkq = q̄rkr are excluded from the summation in Equation

(3.48). Equation (3.47) is a sum of the size-extensive (K1) constant and the size-intensive (K0) quadratic function.

The vibrational Schrödinger problem with this harmonic potential can be solved analytically to yield size-intensive

transition energies that include the effects of anharmonicity due to Fp−kp pkpq−kqqkq . We call this method size-extensive

VSCF or XVSCF (see also the methods of renormalized and self-consistent phonons).287 The one-mode potential

given above varies with all the other modals through the last term of Equation (3.47) and, therefore, the XVSCF

equations [Equations (3.34)–(3.36)] must be solved self-consistently. The modal ζ
vqkq

qkq
(ζ

v̄qkq

qkq
) is a harmonic-oscillator

wave function in qpkp (q̄pkp ) but with a different frequency than that of η
vqkq

qkq
(η

v̄qkq

qkq
). The total energy of the state v is

the expectation value of the Hamiltonian with VXVSCF in the XVSCF wave function and is written as

Ev
XVSCF = −

1
2

∑
p

∑
kp

′

〈ζ
vpkp

pkp
|
∂2

∂q2
pkp

|ζ
vpkp

pkp
〉 −

1
2

∑
p

∑
kp

′

〈ζ
v̄pkp

pkp
|
∂2

∂q̄2
pkp

|ζ
v̄pkp

pkp
〉

+
1
2!

∑
p

∑
kp

′

Fp−kp pkp

(
〈q2

pkp
〉 + 〈q̄2

pkp
〉
)

+
1

2!2!2!

∑
p,q

∑
kp,kq

′

Fp−kp pkpq−kqqkq

(
〈q2

pkp
〉 + 〈q̄2

pkp
〉
) (
〈q2

qkq
〉 + 〈q̄2

qkq
〉
)
, (3.50)

where qpkp (q̄pkp ) must not coincide with qqkq (q̄pkp ). Each term in the right-hand side scales as K1 and the sum is,

therefore, strictly size-extensive. It should be evident that the sextic force constants of the type Fp−kp pkpq−kqqkqr−krrkr and

analogous higher even-order force constants can also be included in a size-extensive fashion, defining sextic, octic,

etc. VSCF methods.

As discussed in the previous subsection, the necessary condition for the size-extensivity of VSCF is that all VSCF

gradients vanish. In XVSCF introduced above, such terms are excluded from VXVSCF defined above so that the re-

sulting equations are manifestly size-extensive. They are, however, related to an anharmonic correction to the lattice

structure (more specifically, to the atomic positions but not to the lattice constants). The anharmonic correction (q̃p0)

measured in the real normal coordinates of the first kind is the one at which the VSCF gradients vanish identically:

∂Ũv
XVSCF(qp0)
∂qp0

∣∣∣∣
qp0=q̃p0

= 0 (3.51)

with

Ũv
XVSCF(qp0) = ŨXVSCF

0 + ŨXVSCF
1 qp0 +

1
2!

ŨXVSCF
2 q2

p0. (3.52)
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The gradient of Ũv
XVSCF is given, according to Equation (3.41), by

ŨXVSCF
1 = Fp0 +

1
2!

∑
q

∑
kq

′

Fp0q−kqqkq

(
〈q2

qkq
〉 + 〈q̄2

qkq
〉
)
, (3.53)

whereas the expressions of ŨXVSCF
0 and ŨXVSCF

2 can be readily inferred from Equations (3.48) and (3.49), for instance,

ŨXVSCF
2 = Fp0p0 +

1
2!

∑
q

∑
kq

′

Fp0p0q−kqqkq

(
〈q2

qkq
〉 + 〈q̄2

qkq
〉
)
. (3.54)

With these force constants, the anharmonic correction to the structure in the state v due to the cubic force constants of

the type Fp0q−kqqkq is

q̃p0 = −ŨXVSCF
1 /ŨXVSCF

2 . (3.55)

Since ŨXVSCF
1 and ŨXVSCF

2 scale as K1/2 and K0, respectively, the anharmonic correction (q̃p0) in the normal coordinate

is a K1/2 quantity. When expressed in spatially local coordinates such as the Cartesian coordinates, the correction X̃ν(0)

is given by

X̃ν(0) = K−1/2m−1/2
ν

∑
p

Cν∗
p0q̃p0, (3.56)

which has the correct K0 dependence.

Equation (3.55) can be evaluated approximately and expediently by using the harmonic-oscillator wave functions

as modals, that is, 〈qqkq〉 ≈ 〈η
vqkq

qkq
|qqkq |η

vqkq

qkq
〉, and so forth. However, the fully self-consistent XVSCF procedure must

simultaneously satisfy Equation (3.51) to determine the lattice structure that ensures its size-extensivity and the VSCF

equations with the potential given by Equation (3.47). These two problems are coupled through the VSCF modals.

3.3.5 Perturbation theory

With a XVSCF wave function as the reference, the first- and second-order size-extensive VMP perturbation corrections

to the energy (Ev
XVSCF) of the state v due to anharmonicity (denoted XVMP1 and XVMP2, respectively) are given by

Ev
XVMP1 = Ev

XVSCF + 〈Φv
VSCF|ṼXVSCF|Φ

v
VSCF〉 (3.57)
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and

Ev
XVMP2 = Ev

XVMP1 +
∑

w

|〈Φv
VSCF|ṼXVSCF|Φ

w
VSCF〉|

2

Ev
XVSCF − Ew

XVSCF
, (3.58)

where the summation runs over all states w except for the state v and its degenerate states (if any). The operator

ṼXVSCF is the perturbation (the fluctuation potential) defined by the Møller–Plesset partitioning,13, 40, 273

ṼXVSCF = V − VXVSCF. (3.59)

It should be recalled that, under the assumption that makes VSCF size-extensive, namely, the first two terms of

Equation (3.41) are zero or neglected, ζ becomes a harmonic-oscillator wave function centered at the origin (but not

corresponding to VHRM). Therefore, the expectation value of an odd power of the normal coordinates in ζ vanishes by

symmetry. In a QFF, therefore, we have

〈Φv
VSCF|ṼXVSCF|Φ

v
VSCF〉 = 0 (3.60)

and

Ev
XVMP1 = Ev

XVSCF, (3.61)

which is size-extensive. That the reference modals are symmetric (even or odd) with respect to the origin ensures the

disappearance of non-size-extensive terms involving Fp0 and Fp0q−kqqkq .

The XVMP2 energy (Ev
XVMP2) is expressed as

Ev
XVMP2 = Ev

XVMP1 +
∑

p

|Vvp
wp |

2

Ev
XVSCF − Ew

XVSCF
+

1
2!

∑
p,q

∑
kp

′ |Vvpvq
wpwq |

2

Ev
XVSCF − Ew

XVSCF

+
1
3!

∑
p,q,r

∑
kp,kq

′ |Vvpvqvr
wpwqwr |

2

Ev
XVSCF − Ew

XVSCF
+

1
4!

∑
p,q,r,s

∑
kp,kq,ks

′ |Vvpvqvrvs
wpwqwrws |

2

Ev
XVSCF − Ew

XVSCF
, (3.62)

where p is a compound index of p and kp and corresponds to a member of the nonredundant set of normal coordinates

of the first kind, namely, the union of {qpkp } and {q̄pkp } in the half BZ. The k summations in the above expression are

redundant as the summations over p, q, etc. imply them, but they are made explicit for the sake of clarifying the K

dependence. The V matrix elements are defined by

Vvp
wp = 〈Φv

XVSCF|ṼXVSCF|Φ
wp
vp 〉, (3.63)
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Vvpvq
wpwq = 〈Φv

XVSCF|ṼXVSCF|Φ
wpwq
vpvq 〉, (3.64)

Vvpvqvr
wpwqwr = 〈Φv

XVSCF|ṼXVSCF|Φ
wpwqwr
vpvqvr 〉, (3.65)

and so forth, where Φ
wp
vp denotes a one-mode excited XVSCF wave function in which the quantum number of the mode

p is raised from vp to wp. The modes p, q, r, and s must be distinct from one another.

Of all p’s, only those with kp = 0 can contribute to the second sum in the right-hand side of Equation (3.62), that

is,

∑
p

|Vvp
wp |

2

Ev
XVSCF − Ew

XVSCF
=

∑
p

∑
wpkp

|V
vpkp
wpkp
|2

Ev
XVSCF − Ew

XVSCF
(3.66)

with

V
vpkp
wpkp

= ∆kp Fp0〈ζ
vp0

p0 |qp0|ζ
wp0

p0 〉

+
∆kp

2!

∑
q

∑
kq

′

Fp0q−kqqkq〈ζ
vp0

p0 |qp0|ζ
wp0

p0 〉

(
〈ζ

vqkq

qkq
|q2

qkq
|ζ

vqkq

qkq
〉 + 〈ζ

v̄qkq

qkq
|q̄2

qkq
|ζ

v̄qkq

qkq
〉

)
. (3.67)

The first term in the right-hand side of Equation (3.67) scales as K1/2 because Fp0 is a K1/2 quantity. The other term

also has the K1/2 dependence because Fp0q−kqqkq scales as K−1/2 and the k summation gives rise to the factor of K1.

The numerator of Equation (3.66) is, therefore, a K1 quantity. The denominator is a XVSCF transition energy and is

size-intensive (K0). Overall, Equation (3.66) scales correctly as K1 and is size-extensive.

Remembering that p can stand for either qpkp or q̄pkp , we find that the third term in the right-hand side of Equation

(3.62) consists of three sums:

1
2!

∑
p,q

∑
kp

′ |Vvpvq
wpwq |

2

Ev
XVSCF − Ew

XVSCF
=

1
2!

∑
p,q

∑
kp

′ ∑
wpkp ,wqkq

|V
vpkp vqkq
wpkp wqkq

|2

Ev
XVSCF − Ew

XVSCF

+
1
2!

∑
p,q

∑
kp

′ ∑
w̄pkp ,w̄qkq

|V
v̄pkp v̄qkq

w̄pkp w̄qkq
|2

Ev
XVSCF − Ew

XVSCF

+
∑
p,q

∑
kp

′ ∑
wpkp ,w̄qkq

|V
vpkp v̄qkq

wpkp w̄qkq
|2

Ev
XVSCF − Ew

XVSCF
, (3.68)

where

V
vpkp vqkq
wpkp wqkq

=
1
2

Fpkpqkq〈ζ
vpkp

pkp
|qpkp |ζ

wpkp

pkp
〉〈ζ

vqkq

qkq
|qqkq |ζ

wqkq

qkq
〉

+
1

2!2

∑
r

∑
kr

′

Fpkpqkqr−krrkr 〈ζ
vpkp

pkp
|qpkp |ζ

wpkp

pkp
〉〈ζ

vqkq

qkq
|qqkq |ζ

wqkq

qkq
〉
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×
(
〈ζ

vrkr
rkr
|q2

rkr
|ζ

vrkr
rkr
〉 + 〈ζ

v̄rkr
rkr
|q̄2

rkr
|ζ

v̄rkr
rkr
〉
)
, (3.69)

V
vpkp v̄qkq

wpkp w̄qkq
=

i
2

Fpkpqkq〈ζ
vpkp

pkp
|qpkp |ζ

wpkp

pkp
〉〈ζ

vqkq

qkq
|q̄qkq |ζ

wqkq

qkq
〉

+
i

2!2

∑
r

∑
kr

′

Fpkpqkqr−krrkr 〈ζ
vpkp

pkp
|qpkp |ζ

wpkp

pkp
〉〈ζ

vqkq

qkq
|q̄qkq |ζ

wqkq

qkq
〉

×
(
〈ζ

vrkr
rkr
|q2

rkr
|ζ

vrkr
rkr
〉 + 〈ζ

v̄rkr
rkr
|q̄2

rkr
|ζ

v̄rkr
rkr
〉
)
. (3.70)

The definition of V
v̄pkp v̄qkq

w̄pkp w̄qkq
can be obtained by interchanging v with v̄ and w with w̄ in Equation (3.69). Notice that

V
vpkp v̄qkq

wpkp w̄qkq
contains terms with odd numbers of q̄ and pure imaginary factors. In VMP2, these terms are squared before

the k summation is taken and, therefore, can make nonvanishing contributions unlike in XVSCF. The two-mode V

matrix elements scale as K0, making Equation (3.68) a K1 quantity and size-extensive.

Likewise, the fourth term in Equation (3.62) is an abbreviated notation of the sum of four terms:

1
3!

∑
p,q,r

∑
kp,kq

′ |Vvpvqvr
wpwqwr |

2

Ev
XVSCF − Ew

XVSCF
=

1
3!

∑
p,q,r

∑
kp,kq

′ ∑
wpkp ,wqkq ,wrkr

|V
vpkp vqkq vrkr
wpkp wqkq wrkr

|2

Ev
XVSCF − Ew

XVSCF

+
1
3!

∑
p,q,r

∑
kp,kq

′ ∑
w̄pkp ,w̄qkq ,w̄rkr

|V
v̄pkp v̄qkq v̄rkr

w̄pkp w̄qkq w̄rkr
|2

Ev
XVSCF − Ew

XVSCF

+
1
2!

∑
p,q,r

∑
kp,kq

′ ∑
wpkp ,w̄qkq ,w̄rkr

|V
vpkp v̄qkq v̄rkr

wpkp w̄qkq w̄rkr
|2

Ev
XVSCF − Ew

XVSCF

+
1
2!

∑
p,q,r

∑
kp,kq

′ ∑
wpkp ,wqkq ,w̄rkr

|V
vpkp vqkq v̄rkr

wpkp wqkq w̄rkr
|2

Ev
XVSCF − Ew

XVSCF
, (3.71)

where

V
vpkp vqkq vrkr
wpkp wqkq wrkr

=
1

23/2 Fpkpqkqrkr 〈ζ
vpkp

pkp
|qpkp |ζ

wpkp

pkp
〉〈ζ

vqkq

qkq
|qqkq |ζ

wqkq

qkq
〉〈ζ

vrkr
rkr
|qrkr |ζ

wrkr
rkr
〉, (3.72)

V
vpkp vqkq v̄rkr

wpkp wqkq w̄rkr
=

i
23/2 Fpkpqkqrkr 〈ζ

vpkp

pkp
|qpkp |ζ

wpkp

pkp
〉〈ζ

vqkq

qkq
|qqkq |ζ

wqkq

qkq
〉〈ζ

v̄rkr
rkr
|q̄rkr |ζ

w̄rkr
rkr
〉, (3.73)

and so forth. These and other three-mode V matrix elements scale as K−1/2. The numerators of Equation (3.71) are,

therefore, invariably K−1 quantities. Since the two-fold k summation contributes the factor of K2, we find Equation

(3.71) size-extensive also.

Generally, an n-mode V matrix element is a K1−n/2 quantity just as is an nth-order force constant in the normal

coordinates. With this knowledge, the fifth term in Equation (3.62) with quartic force constants and thus the VMP2

correction as a whole can be shown to be size-extensive. Clearly, quintic, sextic, and all higher-order force constants

can contribute to VMP2 in a size-extensive fashion, defining quintic, sextic, etc. VMP2 methods.

Alternatively, the harmonic-oscillator wave function Φv
HRM can be used as the reference. The first- and second-
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order perturbation corrections288, 289 to Ev
HRM of the state v are given by

Ev
VPT1 = Ev

HRM + 〈Φv
HRM|ṼHRM|Φ

v
HRM〉 (3.74)

and

Ev
VPT2 = Ev

VPT1 +
∑

w

|〈Φv
HRM|ṼHRM|Φ

w
HRM〉|

2

Ev
HRM − Ew

HRM
, (3.75)

where the summation runs over all states w except for the state v and its degenerate states. The operator ṼHRM denotes

the perturbation (the fluctuation potential) defined as

ṼHRM = V − VHRM. (3.76)

When V is a QFF, we call this method size-extensive VPT1. Its energy, Ev
XVPT1, can be written simply as288, 289

Ev
XVPT1 = Ev

HRM +
1

2!2!2!

∑
p,q

∑
kp,kq

′

Fp−kp pkpq−kqqkq

(
〈q2

pkp
〉 + 〈q̄2

pkp
〉
) (
〈q2

qkq
〉 + 〈q̄2

qkq
〉
)
, (3.77)

where qpkp (q̄pkp ) must differ from qqkq (q̄qkq ) and the integral 〈q2
pkp
〉 is understood to designate 〈η

vpkp

pkp
|q2

pkp
|η

vpkp

pkp
〉, which

can be evaluated analytically (see Table 2.27 of Ref. 285 or Appendix III of Ref. 19). Quadratic force constants do not

appear in this expression because of Equation (3.76). No expectation values of odd powers of the normal coordinates

enter them, either, because of symmetry. Ev
VPT1 is size-extensive (K1) as Fp−kp pkpq−kqqkq is a K−1 quantity and the two-

fold k summation gives rise to the factor of K2. This expression is consistent with the anharmonic correction in the

XVSCF energy given by Equation (3.50) and reduces to the latter exactly when the XVSCF modals (ζ’s) coincide with

the harmonic-oscillator wave functions (η’s). As in VSCF, the sextic force constants of the type Fp−kp pkpq−kqqkqr−krrkr

and higher even-order force constants can be included in VPT1 in a size-extensive fashion.

In a QFF, the second-order anharmonic correction [Equation (3.75)] is expressed as

Ev
XVPT2 = Ev

XVPT1 +
∑

p

|Wvp
wp |

2

Ev
HRM − Ew

HRM
+

1
2!

∑
p,q

∑
kp

′ |Wvpvq
wpwq |

2

Ev
HRM − Ew

HRM

+
1
3!

∑
p,q,r

∑
kp,kq

′ |W
vpvqvr
wpwqwr |

2

Ev
HRM − Ew

HRM
+

1
4!

∑
p,q,r,s

∑
kp,kq,kr

′ |W
vpvqvrvs
wpwqwrws |

2

Ev
HRM − Ew

HRM
, (3.78)

where the summations exclude terms with vanishing denominators. Each sum in the right-hand side can be expanded

similarly as Equations (3.66), (3.68), and (3.71). Elements of the W matrices are defined by Equations (3.67), (3.69),

(3.70), (3.72), (3.73), etc., in which the XVSCF modals (ζ’s) are systematically replaced by the harmonic-oscillator
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wave functions (η’s). We call this method size-extensive VPT2 or XVPT2. Equation (3.18) can be used to simplify

the denominators, which are size-intensive (K0). It can be readily shown that each term in the right-hand side of

Equation (3.78) is size-extensive (K1) by recognizing that an n-mode W matrix element scales as K1−n/2 and an n-fold

k summation gives rise to the factor of Kn. In the second-order correction also, higher-order force constants can be

included without impairing size-extensivity.

3.3.6 Configuration-interaction theory

A VCI wave function12 of the state v in a QFF is a linear combination of the ground and excited XVSCF wave

functions,

Φv
XVCI = Φv

XVSCF +
∑

p
Cwp

vp Φ
wp
vp +

1
2!

∑
p,q

∑
kp

′

Cwpwq
vpvq Φ

wpwq
vpvq

+
1
3!

∑
p,q,r

∑
kp,kq

′

Cwpwqwr
vpvqvr Φ

wpwqwr
vpvqvr + . . . . (3.79)

The expansion can be truncated after the n-fold excited contribution, defining n-mode XVCI or XVCI(n). Substituting

this wave function into the Schrödinger equation,

ĤnΦv
XVCI = Ev

XVCIΦ
v
XVCI, (3.80)

and requiring that it be satisfied within the same function space spanned by the XVSCF wave functions that are used

to expand the XVCI wave function, we arrive at the XVCI equations to be solved for the unknown coefficients C’s:

Ev
XVCI = Ev

XVSCF +
∑

p
Vvp

wpCwp
vp +

1
2!

∑
p,q

∑
kp

′

Vvpvq
wpwqCwpwq

vpvq + . . . , (3.81)

Ev
XVCIC

wp
vp = Vwp

vp + Ewp
XVSCFCwp

vp +
∑

q
Vwpvq

vpwq Cwq
vq +

∑
r

Vvr
wr

Cwpwr
vpvr

+
1
2!

∑
q,r

∑
kq

′

Vwpvqvr
vpwqwrC

wqwr
vqvr + . . . , (3.82)

Ev
XVCIC

wpwq
vpvq = Vwpwq

vpvq + Ewpwq
XVSCFCwpwq

vpvq +
∑

r
Vwpwqvr

vpvqwr Cwr
vr

+
∑

r
Vwpvr

vpwr Cwqwr
vqvr

+
∑

r
Vwqvr

vqwr Cwpwr
vpvr + . . . , (3.83)

and so forth, where p, q, and r are distinct from one another and Ewp
XVSCF denotes the energy of the XVSCF wave

function in which the quantum number of the mode p is raised from vp to wp. The V matrix elements are defined by
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Equations (3.63)–(3.65) as well as by

Vwp
vp = 〈Φ

wp
vp |ṼXVSCF|Φ

v
XVSCF〉, (3.84)

Vwpvq
vpwq = 〈Φ

wp
vp |ṼXVSCF|Φ

wq
vq 〉, (3.85)

Vwpvqvr
vpwqwr = 〈Φ

wp
vp |ṼXVSCF|Φ

wqwr
vqvr 〉, (3.86)

and so forth. They also scale as K1−n/2, where n is the number of modes involved.

With this, we find it impossible to assign well-defined K dependence to C’s. Let us examine the K dependence

of Equation (3.81). The left-hand side and the first term in the right-hand side are size-extensive (K1) quantities. For

the subsequent terms to be size-extensive, n-mode CI coefficients must scale as K1−n/2. In this way, for instance,

Vvpvq
wpwq and Cwpwq

vpvq in the second term both scale as K0 and the summation over kp gives rise to the factor of K1,

making the third term in the right-hand side overall size-extensive (K1). Let us now consider Equation (3.82). The

left-hand side is a K3/2 quantity because, according to the preceding analysis, Ev
XVCI and Cwp

vp scale as K1 and K1/2,

respectively. This contradicts the K1/2 dependence of the right-hand side except for the second term, which scales as

K3/2. Therefore, XVCI is not size-extensive. An analysis of Equation (3.83) only reinforces this conclusion. Notice

that the K dependence of the so-called “disconnected” terms is different and thus incompatible with that of “connected”

terms; the disconnected terms, in this case, are the products of E, V , and/or C’s with no common summation index

such as the left-hand side of Equation (3.82) and the second term in the right-hand side of the same.

3.3.7 Coupled-cluster theory

The VCC method introduced by Christiansen274–277 is size-extensive (see also Refs.290–293). An algebraic proof of this

is given here on the basis of an analysis of the K dependence. A VCC wave function in a QFF (XVCC) with a XVSCF

reference is written as

Φv
XVCC = Φv

XVSCF +
∑

p
T wp

vp Φ
wp
vp +

1
2!

∑
p,q

∑
kp
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T wpwq
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1
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∑
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T wp
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+
1
3!

∑
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∑
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′
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wpwqwr
vpvqvr +

1
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∑
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∑
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′

T wpwq
vpvq T wr

vr
Φ

wpwqwr
vpvqvr

+
1
3!

∑
p,q,r
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vp T wq

vq T wr
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Φ
wpwqwr
vpvqvr +

1
4!

∑
p,q,r,s

∑
kp,kq,kr

′

T wpwqwrws
vpvqvrvs Φ

wpwqwrws
vpvqvrvs

+
1
3!

∑
p,q,r,s

∑
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′

T wpwqwr
vpvqvr T ws

vs
Φ

wpwqwrws
vpvqvrvs + . . . , (3.87)

66



where T ’s are the unknown coefficients (“T amplitudes”) determined by the equations to be discussed shortly. Again,

p, q, r, and s denote compound indices of distinct modes. The number of modes in T can be limited to n, defining

n-mode XVCC or XVCC(n). This equation is distinguished from the XVCI counterpart [Equation (3.79)] by the

presence of the terms containing two or more T ’s such as the fourth term in the right-hand side. Therefore, Φv
XVCC has

contributions from the XVSCF wave functions that are excited in as many modes as there are in the whole system (in

this case, 3NK).

The T amplitudes are determined by requiring that the XVCC wave function satisfy the Schrödinger equation,

ĤnΦv
XVCC = Ev

XVCCΦv
XVCC, (3.88)

within the space spanned by the XVSCF reference and its excited wave functions up to n modes. In this way, we

have the same number of equations as unknowns, which includes the energy Ev
XVCC. For instance, the projections

of Equation (3.88) onto the XVSCF reference (Φv
XVSCF) and one-mode excited wave functions lead to the so-called

energy and T1 amplitude equations, respectively, which read

Ev
XVCC = Ev

XVSCF +
∑

p
Vvp

wp T wp
vp +

1
2!

∑
p,q

∑
kp

′

Vvpvq
wpwq T wpwq

vpvq

+
1
2!

∑
p,q

Vvpvq
wpwq T wp

vp T wq
vq + . . . , (3.89)

and

Ev
XVCCT wp

vp = Vwp
vp + Ewp

XVSCFT wp
vp +

∑
q

Vwpvq
vpwq T wq

vq +
∑

r
Vvr

wr
T wpwr

vpvr +
∑

r
Vvr

wr
T wp

vp T wr
vr

+
1
2!

∑
q,r

∑
kq

′

Vwpvqvr
vpwqwr T

wqwr
vqvr +

1
2!

∑
q,r

Vwpvqvr
vpwqwr T

wq
vq T wr

vr
+ . . . . (3.90)

Note that the third term in the right-hand side of Equation (3.89) has a summation over kp while the subsequent (fourth)

term does not. This is because T wp
vp vanishes unless the momentum conservation condition (∆kp = 0) is satisfied.

Equation (3.89) or the energy equation is size-extensive. Remembering that the n-mode V matrix elements scale

as K1−n/2 and assuming (as in XVCI) that the n-mode XVCC coefficients (the Tn amplitudes) are also the K1−n/2

quantities, we find that each term in Equation (3.89) scales consistently as K1. Therefore, the left-hand side (Ev
XVCC)

is size-extensive (K1).

The T1 amplitude equation [Equation (3.90)] is not manifestly size-extensive. This can be seen by comparing the

left-hand side, which is a K3/2 quantity as Ev
XVCC and T wp

vp scale as K1 and K1/2, respectively, with the first term in

the right-hand side (Vwp
vp ), which exhibits the K1/2 dependence. However, multiplying Equation (3.89) with T wp

vp and
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subtracting it from Equation (3.90), we can bring the latter in a manifestly size-extensive form as

(
Ev

XVSCF − Ewp
XVSCF

)
T wp

vp = Vwp
vp +

∑
q

Vwpvq
vpwq T wq

vq +
∑

r
Vvr

wr
T wpwr

vpvr

+
1
2!

∑
q,r

∑
kq

′

Vwpvqvr
vpwqwr T

wqwr
vqvr +

1
2!

∑
q,r

Vwpvqvr
vpwqwr T

wq
vq T wr

vr
+ . . . . (3.91)

The right-hand side of this equation consists of connected terms only, that is, the sums of products of V and T ’s that

share at least one common summation index. For instance, the fifth term in the right-hand side of Equation (3.90) is

disconnected as none of the indices of T wp
vp is a summation index; this term cannot be seen in Equation (3.91). The

size-extensivity of the above equation can be verified by inspection of each term. The factor in the left-hand side,(
Ev

XVSCF − Ewp
XVSCF

)
, is a transition energy and size-intensive (K0), whereas T wp

vp is assumed to be a K1/2 quantity. The

left-hand side, therefore, scales as K1/2. The first term in the right-hand side is a K1/2 quantity. The second term also

displays the K1/2 dependence because Vwpvq
vpwq and T wq

vq scale as K0 and K1/2, respectively. In this way, all terms can be

shown to scale consistently as K1/2.

The T2 amplitude equation is obtained by the projection of Equation (3.88) on to two-mode excited XVSCF wave

functions (Φwpwq
vpvq ). They can furthermore be recast into the manifestly size-extensive, connected form as

(
Ev

XVSCF − Ewpwq
XVSCF

)
T wpwq

vpvq = Vwpwq
vpvq +

∑
r

Vwpwqvr
vpvqwr T wr

vr

+
∑

r
Vwpvr

vpwr T wqwr
vqvr +

∑
r

Vwqvr
vqwr T wpwr

vpvr + . . . . (3.92)

It can be readily shown that each term in this equation consistently scales as K0 using the fact that the n-mode V matrix

elements and Tn amplitudes both scale as K1−n/2. This procedure can be repeated for T3 and higher-order T amplitude

equations, proving the size-extensivity of XVCC.

Higher-order force constants can be included in VCC without impairing the size-extensivity or the need for adjust-

ing the VSCF reference wave function accordingly. VCC can also be defined analogously for the harmonic-oscillator

reference wave function by simply replacing the V matrix elements by the corresponding W matrix elements and

Ev
XVSCF by their harmonic counterparts. VCC remains size-extensive after these replacements.

3.4 Conclusions

The issue of size-extensivity of vibrational many-body methods has been analyzed on the basis of the dependence of

terms in their formalisms on the number (K) of k vectors in the first BZ, which is a measure of the system size. The

aim has been to make these methods applicable to anharmonic lattice vibrations in solids. Taking a one-dimensional
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solid with a QFF PES as an example, the compact and strictly size-extensive equations of VSCF have been proposed,

introducing the XVSCF method. It accounts for the effect of anharmonicity due to quartic force constants of the

type Fp−kp pkpq−kqqkq on the transition energies and that due to cubic force constants of the type Fp0q−kqqkq on the lattice

structures. Size-extensive VMP1, VMP2, and VCC in a QFF have been defined with the XVSCF wave function as

the reference by elucidating the K scaling of integrals and excitation amplitudes. Size-extensive VPT1 and VPT2

in a QFF using the harmonic-oscillator reference wave function have also been considered. These methods and the

conclusions about their size-extensivity can be readily generalized to two- and three-dimensional solids as well as

to a Taylor expansion of PES truncated at any arbitrary order. This analysis, however, cannot be applied to a grid

representation of PES. An algebraic proof of the lack of size-extensivity in VCI has also been given. This chapter

concentrates on these formal aspects, specifically the structure of size-extensive vibrational many-body methods for

anharmonic lattice vibrations.
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Chapter 4

Size-extensive vibrational self-consistent
field method

4.1 Introduction

In the last decades, vibrational spectroscopies have not only improved their spectral resolution but also extended their

applicability to larger and more complex systems such as proteins, enzymes, and even tissues.294, 295 Parallel to these

experimental advances, computational abilities to simulate high-resolution vibrational spectra from the first principles

have developed, which can sometimes even challenge experimental accuracy.26 However, such high-accuracy calcula-

tions are currently limited to small molecules (up to five or so atoms) and one needs to establish general computational

methods to solve vibrational Schrödinger equations for larger molecules and solids. There are at least three issues to

be addressed to achieve this goal.

The first issue is the definition of the kinetic-energy operator in the Hamiltonian. The analytical forms of the

kinetic-energy operator tailored to given small molecules have been useful,296–298 but they cannot be generalized easily

to larger molecules. A widely accepted solution to this is the use of the Watson Hamiltonian22, 23 and of its various

approximations, which have the simple, universal kinetic-energy operator expressed in the normal coordinates. This

has proven satisfactory insofar as the vibrational modes do not involve large-amplitude motions.

The second issue is the need for a compact and accurate mathematical representation of the potential energy

surface (PES) in the Hamiltonian, which is a (3N–5)- or (3N–6)-dimensional entity, if not approximated, where

N is the number of nuclei. A variety of representations have been proposed.299–302 Among them, of fundamental

importance are the Taylor series expansion,303 the grid-based representations,34–36 and the many-body expansion or

the so-called n-mode representation (nMR),27, 28 which limits the maximum number of modes to be coupled to n and

can be used in conjunction with either of the first two representations.

Once the Hamiltonian is defined, the third issue arises as to how one should approximate the wave function and

solve the vibrational Schrödinger equation economically. In analogy to the ab initio molecular orbital methods for

electronic structures, there are systematic approximations for anharmonic vibrational wave functions. The mean-

field approach is known as the vibrational self-consistent field (VSCF) method.66–69 This method was applied to

anharmonic vibrational density of states of a protein304 and to thermal effects on molecular properties,305 where it
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turned out to be the most time-consuming step, leading to a search for more efficient implementations.306 It also pro-

vides a reference wave function for vibrational “correlation” methods such as vibrational Møller–Plesset perturbation

(VMP),13, 27, 34, 273 vibrational coupled-cluster (VCC),15, 290 and vibrational configuration interaction (VCI)14 methods.

The single most important criterion by which to judge the validity of these approximations for larger molecules and

solids is size consistency or, equivalently, size extensivity. A size-extensive method yields total energies of chemical

systems that are asymptotically proportional to their volumes.307 The mean-field method for electronic structures,

the Hartree–Fock (HF) method, and correlation corrections thereof such as Møller–Plesset perturbation and coupled-

cluster methods are known to be size extensive, whereas truncated configuration interaction methods are not. The

size extensivity or the lack thereof can be determined unambiguously by the diagrammatic criterion or the underlying

algebraic criterion that relies on the polynomial dependence of the terms in the formalisms for periodic systems on the

number of wave vector sampling points in Brillouin-zone integrations.

In Chapter 3, we have investigated the size extensivity of VSCF, VMP, VCC, and VCI with these criteria and found

that numerous terms in the formalism of VSCF have nonphysical size dependence. Eliminating these terms, we have

defined compact and strictly size-extensive equations of VSCF on the basis of a quartic force field (QFF) in the normal

coordinates.308 It has been shown that second-order VMP and VCC methods in the QFF based on the size-extensive

VSCF are also size extensive, while truncated VCI methods are not.

In this chapter∗, we report the definition and programmable equations of the size-extensive VSCF (XVSCF) as well

as the initial implementation and applications of XVSCF with a QFF. We shall show that not only are the equations of

XVSCF drastically simplified as they retain only strictly size-extensive terms, its implementation is also considerably

streamlined with no need for a matrix diagonalization unlike any implementation of VSCF. Consequently, XVSCF

is three orders of magnitude faster than VSCF, when they both are implemented similarly by us, while yielding

comparable results in applications for larger molecules. This implies numerically that VSCF include unnecessary,

nonphysical terms that vanish in the bulk limits as our analysis of its formalism suggests. We believe that XVSCF

must replace VSCF in future applications and as the basis of VMP and VCC.

4.2 Size-extensive vibrational self-consistent field theory

In Chapter 3, we revealed that the numerous terms in the one-mode function, Um,s(Qm), of VSCF exhibit nonphysical

size dependence. This analysis was based on the polynomial dependence of terms in the corresponding formalism for

periodic solids on the number of wave vector sampling points in Brillouin-zone integrations, which is equivalent to the

diagrammatic criterion.307 Eliminating these spurious terms from the formalisms, we arrived at a strictly size-extensive

extension of VSCF, which is called XVSCF.
∗The work in this chapter has been publshed in Ref. 309. Reprint permission is granted by American Institute of Physics.
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Out of the terms in the QFF, the ones that display the correct size dependence are of the form,308

V4 = Vref +
∑

i

1
2

FiiQ2
i +

∑
i, j

1
2!22 Fii j jQ2

i Q2
j . (4.1)

Hence, linear, cubic, and higher odd-order force constants cannot contribute to VSCF in a size-extensive fashion and

are absent in the XVSCF formalism. Also, a small subset of quartic and higher even-order force constants can appear

in XVSCF. Unlike VSCF, XVSCF requires the PES to be expanded in a Taylor series,308 the truncation order of which

is indicated as the subscript on V . While we have only implemented XVSCF(4) in this work, which uses V4, we can

readily generalize the definition of Vn for XVSCF(n) with an even truncation order, n:

V6 = V4 +
∑
i, j,k

1
3!23 Fii j jkkQ2

i Q2
j Q

2
k , (4.2)

V8 = V6 +
∑
i, j,k,l

1
4!24 Fii j jkkllQ2

i Q2
j Q

2
k Q2

l , (4.3)

and so forth.

XVSCF(n) is defined as VSCF using Vn instead of V . Thus, we solve

G̃m,s|φ̃sm〉 = ε̃sm |φ̃sm〉, m = 1, . . . ,M, (4.4)

with

G̃m,s = −
1
2
∂2

∂Q2
m

+ Ũm,s(Qm), (4.5)

where we distinguish the XVSCF quantities from the VSCF counterparts by tildes. The one-mode function of XVSCF,

Ũm,s(Qm), can be shown to be harmonic for Vn for any value of n,

Ũm,s(Qm) = Ũ(0)
m,s +

1
2

Ũ(2)
m,sQ

2
m, (4.6)

with

Ũ(0)
m,s = Vref +

∑
i

′
−1

2

〈
∂2

∂Q2
i

〉
+

1
2

Fii〈Q2
i 〉


+
∑
i, j

′ 1
2!22 Fii j j〈Q2

i 〉〈Q
2
j〉

+
∑
i, j,k

′ 1
3!23 Fii j jkk〈Q2

i 〉〈Q
2
j〉〈Q

2
k〉
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+
∑
i, j,k,l

′ 1
4!24 Fii j jkkll〈Q2

i 〉〈Q
2
j〉〈Q

2
k〉〈Q

2
l 〉

+ . . . , (4.7)

Ũ(2)
m,s = Fmm +

∑
i

′ 1
21 Fiimm〈Q2

i 〉

+
∑
i, j

′ 1
2!22 Fii j jmm〈Q2

i 〉〈Q
2
j〉

+
∑
i, j,k

′ 1
3!23 Fii j jkkmm〈Q2

i 〉〈Q
2
j〉〈Q

2
k〉

+ . . . , (4.8)

where the primes on the summation symbols indicate that the mth mode is excluded from the sums. XVSCF(n)

truncates Equations (4.7) and (4.8) after the (n/2)th terms. For instance, the one-mode functions of XVSCF with a

QFF or XVSCF(4) are given by

Ũ(0)
m,s = Vref +

∑
i

′
−1

2

〈
∂2

∂Q2
i

〉
+

1
2

Fii〈Q2
i 〉


+
∑
i, j

′ 1
2!22 Fii j j〈Q2

i 〉〈Q
2
j〉, (4.9)

Ũ(2)
m,s = Fmm +

∑
i

′ 1
21 Fiimm〈Q2

i 〉. (4.10)

In contrast to VSCF, Equation (4.4) can be solved analytically and without any need for a basis-set expansion or

matrix diagonalization because the one-mode functions are effectively harmonic, which, however, include the effects

of quartic and higher even-order force constants of certain types. Hence, the mth modal of XVSCF is simply a HO

wave function,

φ̃sm (Qm) = Ñsm,mHsm (
√
ω̃mQm) exp(−ω̃mQ2

m/2), (4.11)

with the frequencies ω̃m being related to the one-mode functions by

ω̃m =

√
Ũ(2)

m,s. (4.12)

Because the matrix elements of various operators appearing in Equations (4.7) and (4.8) depend on the modals and

their frequencies (see Table 1.1), Equation (4.12) and Equations (4.7) and (4.8) or Equations (4.9) and (4.10) must still

be solved iteratively until the self consistency is achieved.
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Using Table 1.1, Equations (4.7) and (4.8) can be written explicitly in terms of {ω̃i}, s, and force constants as

Ũ(0)
m,s = Vref +

∑
i

′

(ω̃2
i + Fii)

si + 1/2
2ω̃i

+
1
2!

∑
i, j

′

Fii j j
si + 1/2

2ω̃i

s j + 1/2
2ω̃ j

+
1
3!

∑
i, j,k

′

Fii j jkk
si + 1/2

2ω̃i

s j + 1/2
2ω̃ j

sk + 1/2
2ω̃k

+ . . . , (4.13)

Ũ(2)
m,s = Fmm +

∑
i

′

Fiimm
si + 1/2

2ω̃i

+
1
2!

∑
i, j

′

Fii j jmm
si + 1/2

2ω̃i

s j + 1/2
2ω̃ j

+ . . . . (4.14)

The total XVSCF energy of the state s is then written as

Ẽs = (sm + 1/2)ω̃m + Ũ(0)
m,s (4.15)

or

Ẽs = Vref +
∑

i

(ω̃2
i + Fii)

si + 1/2
2ω̃i

+
1
2!

∑
i, j

Fii j j
si + 1/2

2ω̃i

s j + 1/2
2ω̃ j

+
1
3!

∑
i, j,k

Fii j jkk
si + 1/2

2ω̃i

s j + 1/2
2ω̃ j

sk + 1/2
2ω̃k

+ . . . , (4.16)

where the summations in this equation do not exclude any particular mode.

The total XVSCF energy given by these expressions is rigorously extensive (namely, asymptotically proportional

to size) in the diagrammatic sense. Figure 4.1 is a diagrammatic expression of Equation (4.16), which consists of only

closed, connected diagrams. Here, the filled circle vertex with two edges represents ω̃iω̃ j + Fi j with its two edges

signifying normal modes i and j. A filled circle vertex with n edges (an nth-order vertex) with n > 2 corresponds

to an nth-order force constant with each edge specifying a normal mode involved. A loop means two normal modes

coincide and the summation must be taken of the force constant over that normal mode index (say, i) together with a

factor of (si + 1/2)/2ω̃i. We must associate a factor of 1/m! for m equivalent loops. An nth-order vertex or nth-order

force constant is shown to exhibit the V1−n/2 dependence on the volume V of the system308 and each loop gives rise to

a factor of V . This is sufficient to show that each diagram in Fig. 4.1 scales as V and is extensive.
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The XVSCF equations given here can be applied to an individual target state s to determine its wave function

and total energy. However, when using this state-specific approach, one should be cautious about two issues. First,

a nonlinear optimization for any state other than the ground state cannot be proved to be variational since the wave

functions optimized individually for different states are not necessarily orthogonal. Second, the transition energies

obtained as the energy differences between these states may not be shown to be intensive (namely, asymptotically

constant with size). Therefore, we propose the XVSCF method to be used only for the ground state and the transition

energies to be obtained by Equation (4.15). The fundamental transition frequency of the mth mode is thus ω̃m, which

is intensive.

It may be worth clarifying precisely what we mean by the lack of size extensivity in VSCF and its practical

consequences. VSCF is not size extensive in the sense that its working equations contain numerous terms that have

nonphysical size dependence.308 Under the conditions of usual calculations, these nonphysical terms decrease with

size and eventually vanish in the bulk limit and the VSCF transition frequencies converge towards the ones from

XVSCF. Hence, for a larger system, VSCF is a wasteful equivalent of XVSCF as the computational cost of the former

scales as O(Mn), where M is the number of modes and n is the truncation rank of the Taylor expansion of a PES,

while the cost of the latter is only O(Mn/2). Even when only the subset of force constants used in XVSCF is retained

in VSCF, the latter is considerably slower than the former, as we shall demonstrate below. Also note that VSCF

with 1MR reduces to the harmonic approximation and captures no anharmonicity in the bulk limit. Therefore, the

practical consequence of the difference between VSCF and XVSCF is the significant lack of efficiency in VSCF when

the system is large. Furthermore, the terms that involve cubic force constants of the Fi j j type and higher odd-order

force constants of certain types have the effect of shifting the minima of the mean-field potentials of VSCF away from

the equilibrium geometry,308 making the expansion of wave functions by basis functions centered at the equilibrium

geometry less effective for larger systems. Another potential practical consequence is, therefore, the lack of stability

in the algorithm to solve the working equations of VSCF when the system is large. The numerical proof of these

assertions is given in the Appendix.

When the system is relatively small, VSCF is generally more accurate than XVSCF since the former takes into

account O(Mn) force constants while the latter does only O(Mn/2) force constants. Furthermore, VSCF can be used in

conjunction with virtually any mathematical representation of a PES including grid-based ones, which may be more

suitable for large-amplitude motions. XVSCF, on the other hand, is defined only for a PES expanded in a Taylor

series, although the truncation rank can be arbitrary. This limitation arises because a Taylor series expansion in the

normal coordinates has well-defined size dependence (see above), which is essential for our purpose of constructing

size-extensive vibrational methods.
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4.3 Implementations

The XVSCF method with a QFF [XVSCF(4)] as well as VSCF with a QFF have been implemented as a part of the

general vibrational many-body program package MaVi.310 All calculations described below have been performed with

MaVi except the PES scan and the generation of QFF’s. The latter have been done with the Sindo code written by

Yagi.70

4.3.1 VSCF

Among the terms of Equation (1.17), U(0)
m,s is the most time-consuming to evaluate as it involves a four-fold summation.

However, since it is just a constant, it can be neglected during the iterative solution of VSCF. It is evaluated only once

and included in the total energy after the iterative solutions converge. The VSCF algorithm implemented by us is

summarized in Fig. 4.2.

The operational cost associated with the diagonalization of the G matrix (Step 6 of Fig. 4.2) is O(NitMN3
m), where

Nit is the number of iterations (typically, not exceeding 10), M is the number of modes, and Nm is the number of HO

basis functions of the mth mode. We have used Nm = 20 in all the calculations discussed below. The costs of building

U(0)
m,s (Step 9) and U(1)

m,s (Step 4) increase as O(NitM4) and O(M3), respectively. Obtaining all necessary force constants

in a QFF (Step 0) may require O(M4) single-point electronic structure calculations. The overall scaling of the cost of

VSCF with a QFF is, therefore, M4. The nMR approximation can reduce it to Mn.

4.3.2 XVSCF

Not only is XVSCF size extensive and theoretically more sound than VSCF, its algorithm is considerably streamlined

than that of the latter. The algorithm of XVSCF is outlined in Fig. 4.3. The calculation of Ũ(2)
m,s scales linearly with the

number of modes for XVSCF(4), hence a single iteration involves only O(M2) operations. Unlike VSCF, XVSCF does

not require basis-set expansion or matrix diagonalization. Consequently, XVSCF is nearly three orders of magnitude

faster than VSCF, which are implemented similarly by us, even when the latter takes into account only the quadratic

and quartic force constants of Fii j j type (see Fig. 4.4). A VSCF calculation that takes into account a whole QFF

costs even more and the cost also increases much more rapidly (as M4) with M. One iteration of the self-consistent

solution (Steps 2–6 of Fig. 4.3) of the XVSCF equation takes less than one second on a single 1.3-GHz processor for a

molecule with 6,600 modes. The convergence of the self-consistent iterations is also observed to be rapid. The errors

in ω̃’s become less than 10−10 cm−1 after seven iterations.

VSCF with the quadratic and quartic force constants of Fii j j type is in fact an alternative way to perform a

XVSCF(4) calculation, although the former involves diagonalization of the G matrix and is thus not an efficient

76



implementation (see Fig. 4.4). We have compared the result of this calculation with that of XVSCF(4) to verify our

XVSCF(4) implementation.

4.4 Numerical Applications

We applied XVSCF(4) and VSCF with QFF’s implemented in MaVi to H2O as well as benzene and polyacenes of

increasing sizes, namely, naphthalene, anthracene, and tetracene. The QFF of H2O was computed at the MP2/aug-cc-

pVTZ level and those of benzene and polyacenes at the MP2/STO-3G level using NWChem311 and Sindo,70, 303 The

focus of these applications in this chapter is to elucidate the comparative performance of XVSCF(4) and VSCF and

its size dependence and, therefore, the accuracy of the PES and QFF’s is not our primary concern.

Tables 4.1 lists the fundamental frequencies of H2O computed by the harmonic approximation, XVSCF(4), and

VSCF as well as vibrational full configuration interaction (VCI) using either V in Equation (1.10) or V4 in Equa-

tion (4.1). Generally, the XVSCF(4) frequencies are in much worse agreement with the exact, VCI(V) results than the

VSCF ones simply because XVSCF(4) takes into account only a small subset of the QFF and no cubic force constants,

in particular. In some cases, XVSCF(4) even gives the wrong sign in the anharmonic corrections to the harmonic fre-

quencies. For the bending mode (ν1) of H2O, in which cubic force constants do not play a significant role, XVSCF(4)

captures almost as much anharmonic effects as VSCF.

XVSCF(4) agrees excellently with VCI(V4) for all modes examined here. This supports our assertion that the

poor agreement between XVSCF(4) and VCI(V) is traced almost entirely to the difference in the force constants

included in these two methods. We note, furthermore, that the effects of these additional force constants in VSCF,

while unquestionably important in small molecules, are to be washed out with increasing molecular size (see below).

Neither VCI(V4) nor VCI(V) is size extensive.

Figure 4.5 compares the anharmonic corrections to the harmonic fundamental frequencies of benzene and poly-

acenes obtained by XVSCF(4), VSCF with the QFF in the 1MR approximation, and VSCF with the QFF in the 2MR

approximation. In benzene, XVSCF(4) systematically underestimates the anharmonic corrections as compared with

VSCF(2MR) or even with VSCF(1MR) in some instances. This is traced, again, to the fact that XVSCF(4) excludes

all cubic and many quartic force constants, which are considered in VSCF(2MR) or even in VSCF(1MR). However,

VSCF(1MR) turns out to be extremely poor in describing the C–H stretching vibrations (modes 25–30), in which

anharmonic mode-mode couplings must be significant.

As we increase the size of the polyacenes, XVSCF(4) and VSCF(2MR) become closer to each other, while

VSCF(1MR) is in worse agreement with VSCF(2MR) than XVSCF(4). The mean absolute devitations between

XVSCF(4) and VSCF(2MR) decrease from 12.4 (benzene) to 9.8 (naphthalene), 9.3 (anthracene), and 8.9 cm−1
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(tetracene) as we increase the size of the molecules. This is the numerical manifestation of the fact that the cubic

and quartic force constants included in VSCF but excluded in XVSCF(4) have nonphysical size dependence and their

contributions vanish gradually with increasing size. In other words, VSCF(2MR) is nearly three orders of magni-

tude more expensive than XVSCF(4) with no additional benefit in accuracy of their results for large molecules and

solids. This is particularly evident in the C–H stretching vibrations of each molecule which can be discerned from

the rest by their large anharmonic corrections. For these modes, the mean absolute devitations between XVSCF(4)

and VSCF(2MR) decrease from 21.4 (benzene) to 17.0 (naphthalene), 14.0 (anthracene), and 12.0 cm−1 (tetracene),

moreover this gradual convergence can also be inferred from the figure. It is also clear that VSCF(1MR) captures inad-

equately small portions of anharmonic corrections in larger molecules. In fact, VSCF(1MR) reduces to the harmonic

approximation in the bulk limit, while VSCF(2MR) to XVSCF(4) in the same limit.

4.5 Size-extensivity analysis

Here we analyze the size dependence of the mean-field potentials and frequencies of VSCF and XVSCF using a

one-dimensional colinear chain of N + 1 unit masses experiencing a nearest-neighbor QFF of the form,

V(x1, . . . , xN+1) =

N∑
κ=1

1
2!

(xκ+1 − xκ)2

+

N∑
κ=1

1
3!

(xκ+1 − xκ)3

+

N∑
κ=1

1
4!

(xκ+1 − xκ)4, (4.17)

where xκ denotes the signed displacement from the equilibrium position of the κth mass. There are N vibrational

degrees of freedom in this system. The corresponding QFF in the normal coordinates can be obtained through the

following transformations,

Fi =
∑
κ

Cκ
i Fκ = 0, (4.18)

Fi j =
∑
κ,λ

Cκ
i Cλ

j Fκλ = δi jω
2
i , (4.19)

Fi jk =
∑
κ,λ,µ

Cκ
i Cλ

j C
µ
k Fκλµ, (4.20)

and

Fi jkl =
∑
κ,λ,µ,ν

Cκ
i Cλ

j C
µ
k Cν

l Fκλµν, (4.21)
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where ωi and Cκ
i denote the square root of the eigenvalue (harmonic frequency) and the κth element of the eigenvector,

respectively, of the mass-weighted Hessian matrix corresponding to the ith normal coordinate. The force constants

with the Greek subscripts are the original QFF in the Cartesian coordinates such as

Fκλµν =
∂4V

∂xκ∂xλ∂xµ∂xν
. (4.22)

The force constants in the normal coordinates can be used to carry out VSCF-QFF and XVSCF(4) calculations for the

chains with various lengths (simply referred to as VSCF and XVSCF in this section). The units are arbitrary.

First, let us consider VSCF in the 1MR approximation for this system. Figure 4.6 shows that the mean and

maximum deviations in the frequencies between the VSCF and harmonic approximations decrease exponentially with

N (the number of modes or the measure of system size). This numerically demonstrates that VSCF-1MR, while

being an exact anharmonic treatment of diatomic molecules, reduces to the harmonic approximation in the bulk limit,

capturing no anharmonicity whatsoever. In other words, VSCF-1MR is not size extensive. The situation is analogous

to a truncated CI for electronic structures, which is not size extensive and yields vanishing correlation energies in the

bulk limit, reducing to a wasteful equivalent of HF.307

When we retain the full QFF, we encounter a convergence problem with VSCF (but not with XVSCF) as N is

increased, which is another manifestation of the lack of size extensivity in VSCF. With increasing N, we find that

more and more basis functions per mode are needed to expand even the lowest-lying modals of VSCF. This is because

these modals acquire greater contributions from higher-lying excited HO basis functions in their expansions as N

increases. The source of this rather puzzling convergence problem can be understood by inspecting the VSCF mean-

field potentials, Um,s(Qm), for different values of N. Figures 4.7 and 4.8 plot U2,0(Q2) as a function of Q2, which is the

lowest-lying breathing vibration (m = 2) of the chain, at two different chain lengths, N = 4 and 16, respectively. The

XVSCF mean-field potentials, Ũ2,0(Q2), are also superimposed for comparison. As seen, the minimum of the VSCF

mean-field potential shifts away from Q2 = 0 as N is increased, while that of the XVSCF mean-field potential remains

at the origin (the equilibrium geometry). This explains the decreased effectiveness in expanding modals of the VSCF

mean-field potentials by the HO basis functions centered at the equilibrium geometry.

This observed shift of the minimum is anticipated in our prior analysis308 and is due to the cubic force constants of

the Fi j j type. These force constants lower the VSCF mean-field potentials by amounts that do not scale correctly with

size.308 In other words, both the vertical and horizontal shifts of the mean-field potentials by the Fi j j force constants

are the direct evidence of the lack of size extensivity of VSCF. While the shapes of the mean-field potentials and thus

the transition frequencies are unchanged by these force constants, the total energies and the stability of the algorithm

of VSCF are negatively affected. In the expressions of the XVSCF frequencies, these and other cubic force constants
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are, therefore, not present. We did not encounter the convergence problem in the VSCF calculations of polyacenes

with such severity. This was probably because most of the contributions from Fi j j vanished due to symmetry and the

size of the system was not too large.

If we exclude the cubic force constants of the Fi j j type from the QFF, VSCF no longer experiences the aforemen-

tioned convergence problem because it restores the minimum of the mean-field potentials at the equilibrium geometry.

However, VSCF in this approximation still differs from XVSCF because VSCF involves other cubic and quartic force

constants not included in XVSCF. These extra force constants vanish in the bulk limit. Figure 4.9 compares the mean-

field potentials of VSCF (with no Fi j j) and XVSCF at N = 64. The two mean-field potentials are indistinguishable

from each other, indicating that the force constants included only in VSCF at an enormously increased computational

cost indeed play no role in the final computational results in the bulk limit. Furthermore, the figure supports our claim

that the VSCF mean-field potentials become quadratic in the bulk limit. XVSCF utilizes this fact at the formalism

level and its mean-field potentials are quadratic by definition. This must not to be taken to mean that XVSCF reduces

to the harmonic approximation; the effectively quadratic mean-field potentials of XVSCF include the effect of Fii j j.

Finally, the deviations between the VSCF (with no Fi j j) and XVSCF frequencies are plotted as a function of N in

Fig. 4.10. The VSCF results rapidly approach those of the XVSCF ones with increasing N in spite of numerous more

contributions considered in the former. This numerically proves that these contributions in VSCF are not size extensive

and vanish in the bulk limit, making VSCF a wasteful equivalent of diagrammatically size-extensive XVSCF.

4.6 Conclusion

This chapter has introduced the theory, programmable equations, algorithms, and initial implementation as well as

numerical applications of XVSCF using a QFF [XVSCF(4)] in normal coordinates. Note that XVSCF is not an

approximation to VSCF; Being a size-extensive mean-field theory for vibrations, XVSCF replaces VSCF. XVSCF

is thus built on the diagrammatic size-extensivity criteria307, 308 with its definitions expressed by connected diagrams

only [Fig. 4.1]. It is, therefore, expected to maintain uniform accuracy across different molecular sizes from small

molecules to solids. Although a decisive numerical proof is hard to achieve (the analytical, diagrammatic proof is given

in this chapter and elsewhere307, 308), we have demonstrated the gradual convergence of XVSCF(4) and VSCF(2MR).

Since XVSCF(4) includes only a small subset of quartic force constants, which makes the one-mode function always

effectively harmonic, the XVSCF equations can be solved without a need for an expansion of modals with basis

functions or matrix diagonalization. Consequently, our XVSCF(4) code is nearly three orders of magnitude faster

than the VSCF code implemented by us similarly including just the same set of force constants. VSCF with a full set

of QFF scales as M4 where M is the number of modes and is even more expensive than XVSCF(4), which scales as
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M2.

It should be noted that XVSCF(4) is the lowest member of a systematic hierarchy of the XVSCF(n) approximations

defined by various truncation orders of a Taylor series expansion of a PES. For instance, with sextic force constants

of Fii j jkk type, we can define XVSCF(6). XVSCF(n) also forms the basis of size-extensive correlated anharmonic

vibrational methods such as size-extensive VMP (XVMP2) and size-extensive VCC (XVCC), which can restore the

effects of force constants excluded in XVSCF in a size-extensive fashion.308 Implementations of these methods are

underway in our laboratory and will be reported separately.

After the publication of this study, we have been notified by Makri about earlier work on quantum dissipative

dynamics that have similar conclusions to ours.312–314

4.7 Figures

Ẽs = Vref +� + � + � + . . .

Figure 4.1: Diagrammatic expression of Equation (4.16).

0: Input M, s, Fii, Fi jk, Fi jkl, etc.

1: Construct an initial guess for Cn,sm

2: Repeat

3: For m = 1 to M do

4: Calculate U
(1)
m,s, U

(2)
m,s, U

(3)
m,s, and U

(4)
m,s

5: Form the G matrix

6: Diagonalize the G matrix to determine ǫsm
and Cn,sm

7: End for

8: Until all ǫsm
cease to change more than a threshold

9: Calculate U
(0)
m,s and Es

Figure 4.2: The algorithm of VSCF.

0: Input M, s, Fii, Fii j j (i , j), etc.

1: Construct an initial guess for ω̃m

2: Repeat

3: For m = 1 to M do

4: Calculate Ũ
(2)
m,s and ω̃m

5: End for

6: Until all ω̃m cease to change more than a threshold

7: Calculate Ũ
(0)
m,s and Ẽs

Figure 4.3: The algorithm of XVSCF.
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number of modes (M). The systems used consist of up to 100 noninteracting anthracene molecules. In VSCF, only the

quadratic force constants and quartic force constants of Fii j j type are included, resulting in quadratic overall scaling

of CPU time as a function of M in both VSCF and XVSCF. A VSCF calculation with a full QFF involves O(M4)

operations.

82



-140

-100

-60

-20

 20

 60

 5  10  15  20  25  30

A
n
h
a

rm
o

n
ic

it
y
 (

c
m

-1
)

(a)

XVSCF(4)
VSCF-1MR
VSCF-2MR

-140

-100

-60

-20

 20

 60

 5  10  15  20  25  30  35  40  45  50

A
n

h
a
rm

o
n

ic
it
y
 (

c
m

-1
)

(b)

XVSCF(4)
VSCF-1MR
VSCF-2MR

-140

-100

-60

-20

 20

 60

 10  20  30  40  50  60  70

A
n
h

a
rm

o
n
ic

it
y
 (

c
m

-1
)

(c)

XVSCF(4)
VSCF-1MR
VSCF-2MR

-140

-100

-60

-20

 20

 60

 10  20  30  40  50  60  70  80  90

A
n
h

a
rm

o
n
ic

it
y
 (

c
m

-1
)

(d)

XVSCF(4)
VSCF-1MR
VSCF-2MR

Figure 4.5: The anharmonic corrections (in cm−1) to the fundamental frequencies of (a) benzene, (b) naphthalene,

(c) anthracene, and (d) tetracene obtained by XVSCF(4), VSCF(1MR), and VSCF(2MR). The modes (the horizontal

axes) are numbered for each molecule in the increasing order of their harmonic frequencies.
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Figure 4.6: The mean and maximum deviations in the frequencies between of the VSCF-1MR and harmonic approx-

imations as a function of the number of modes (N). The dataset includes the zero-point energies per mode and the

fundamental transition frequencies.
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Figure 4.7: The VSCF (U2,0) and XVSCF (Ũ2,0) mean-field potentials along the breathing mode in the chain with

N = 4.
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Figure 4.8: The VSCF (U2,0) and XVSCF (Ũ2,0) mean-field potentials along the breathing mode in the chain with

N = 16.
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Figure 4.9: The VSCF (U2,0) and XVSCF (Ũ2,0) mean-field potentials along the breathing mode in the chain with

N = 64. The QFF excludes the force constants of the Fi j j type (see text for details).
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Figure 4.10: The mean and maximum deviations in the frequencies between of VSCF and XVSCF as a function

of the number of modes (N). The dataset includes the zero-point energies per mode and the fundamental transition

frequencies. The QFF excludes the force constants of the Fi j j type (see text for details).
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4.8 Tables

Table 4.1: The fundamental frequencies (in cm−1) of H2O obtained by the harmonic approximation, XVSCF(4), VCI

with V4 [Equation (4.1)], VSCF, and VCI with V [Equation (1.10)].

Mode Harmonic XVSCF(4) VCI(V4) VSCF VCI(V)

ν1 1628 1543 1542 1562 1557

ν2 3822 3875 3871 3727 3682

ν3 3948 3993 3988 3815 3792

Table 4.2: The fundamental frequencies (in cm−1) of CO2 obtained by the harmonic approximation, XVSCF(4), VCI

with V4 [Equation (4.1)], VSCF, and VCI with V [Equation (1.10)].

Mode Harmonic XVSCF(4) VCI(V4) VSCF VCI(V)

ν1 656 641 641 652 651

ν2 1305 1305 1305 1297 1252

ν3 2379 2365 2365 2348 2344
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Chapter 5

Anharmonic frequencies of polyethylene
and polyacetylene in the Γ approximation

5.1 Introduction

The vibrational configuration-interaction (VCI) method12 and even the vibrational self-consistent field (VSCF) method67–69

under certain circumstances are not size-extensive and cannot, therefore, be applied to anharmonic lattice vibrations.281

One straightforward way of restoring size-extensivity in these methods is to invoke the Γ approximation.315–318 It re-

stricts the wave vectors (k vectors) included in the Brillouin zone (BZ) integrations to those that correspond to the

in-phase ones, namely, those occurring at the Γ point (k = 0) in the phonon dispersion curves. In addition to render-

ing virtually any vibrational method size-extensive, it has the following three important advantages: (1) While the Γ

approximation can yield the energies of the in-phase (k = 0) vibrations only, such vibrations are of particular interest

as they are the only ones observable by infrared and/or Raman spectroscopies according to their selection rules. The

approximation, therefore, constitutes one of the most efficient ways of probing these important modes selectively. (2)

The approximation requires only those force constants with respect to in-phase (k = 0) and real normal coordinates,

which can be obtained without having to lift periodic symmetry in electronic structure calculations. The crystal orbital

(CO) methods260, 261, 319 based on the periodic boundary conditions can thus be used to obtain these force constants

adopting the most compact unit cell, namely, without the so-called supercell or frozen phonon approach. (3) It is

efficient and also accurate as demonstrated in this work, although it neglects anharmonic phonon-phonon coupling

across different linear quasi-momenta (k vectors).

In this chapter∗, we study the validity of the Γ approximation in quantitative, anharmonic treatments8, 269–271 of the

in-phase lattice vibrations of polyethylene and polyacetylene, the frequencies of which have been measured by infrared

and Raman spectroscopies.321–326 The individual effects of electron correlation and anharmonicity are quantified by

using the Gaussian-basis-set CO methods260, 261, 319 at the Hartree–Fock (HF)263–265 and second-order Møller–Plesset

perturbation (MP2) levels266, 327 for electrons and VSCF, VCI, and vibrational MP2 (VMP2)13 methods in the Γ ap-

proximation for vibrations. We show that the VCI and VMP2 calculations based on the potential energy surface

(PES) obtained by MP2 can reproduce the observed frequencies of infrared and Raman bands of polyethylene and
∗The work in this chapter has been published in Ref. 320. Reprint permission is granted by American Institute of Physics.
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polyacetylene with remarkable accuracy, suggesting that the anharmonic phonon-phonon coupling across different k

vectors may indeed be weak. It is also shown numerically that electron correlation enhances anharmonicity in the

PES significantly. Fermi resonances in polyethylene have also been identified and semi-quantitatively explained by

our calculations.

5.2 Computational methods

5.2.1 Electronic part

The equilibrium structures of the infinite chains of all-trans polyethylene (the C2H4 unit cell) and polyacetylene (the

C2H2 unit cell) were determined by the HF CO method with the 6-31G* basis set using the analytical gradients328

implemented in the polymer program.319 The structural parameters thus obtained are compiled in Table 5.1. The

harmonic force constants along in-phase (k = 0) collective atomic coordinates were obtained by numerical differ-

entiation of the analytical gradients. With these, the normal coordinates and associated harmonic frequencies of the

k = 0 phonons were determined. There are 14 and 8 nonzero frequencies at k = 0 in polyethylene and polyacetylene,

respectively.

The PES’s of these polymers are, therefore, 14- and 8-dimensional quantities even in the Γ approximation. They

were approximated by quartic force fields (QFF’s)56, 303 in the n-mode coupling (nMR) scheme28 with n = 3. Further-

more, one-, two-, and three-mode coupling contributions (V1, V2, and V3, respectively) were computed by different

electronic structure methods, which is an example of the multiresolution PES scheme.30, 273, 329–331 Note that the ge-

ometries and normal coordinates used were no longer those of the multiresolution PES’s thus defined.

The electronic structure methods employed for polyethylene were MP2/6-31G* for V1 and V2 and HF/6-31G* for

V3. These calculations included the 6 and 10 nearest neighbor cells in the lattice sums for the short- and long-range

interactions (S = 6 and L = 10), respectively, and 20 k points in the first BZ (K = 20).308, 332 The Namur cutoff

criterion333 was used. For polyacetylene, we used MP2/6-31G** for V1 and V2 and HF/6-31G* for V3. The values of

lattice sum parameters were S = 6, L = 12 and K = 24 for polyacetylene. The values of L and K were increased to

20 and 40, respectively, in the 2MR HF/6-31G* calculations for both polymers to verify that the results obtained were

within 1 cm−1 of the converged.

The CO calculations, being completely independent of one another, were executed in parallel on a supercomputer

at the University of Florida High-Performance Computing Center.
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5.2.2 Vibrational part

The Γ approximation315–318 reduces the vibrational Hamiltonian to

Ĥ = −
1
2

3N−4∑
p=1

∂2

∂Q2
p

+ V(Q1, . . . ,Q3N−4), (5.1)

where N is the number of atoms in the unit cell, Qp is an in-phase normal coordinate, and superfluous k indices

are omitted. The anharmonic vibrational problem of a polymer in the Γ approximation resembles that for an isolated

molecule and thus the sindo program70 designed for molecules was used to solve the VSCF, VMP2, and VCI equations

of polymers by simply adjusting the number of vibrational degrees of freedom to 3N − 4. Rovibrational couplings are

nonexistent in solids.285

The VSCF equation was solved for each of the k = 0 vibrational states in the basis of 21 lowest-energy harmonic-

oscillator wave functions. The VMP2 correction was made, using the same basis, to each of these states using as

the reference a product of the VSCF modals determined for the ground (zero-point) state.31 The VCI calculations

were performed using as a basis up to quadruply excited VSCF states of which the sums of their vibrational quantum

numbers were less or equal to 5 in polyethylene or 7 in polyacetylene. These VSCF wave functions were, in turn,

expanded by the 11 lowest-energy harmonic-oscillator wave functions. The results were found to change no more than

a few cm−1 upon increasing these parameters.

Approximate MP2 harmonic frequencies of polyethylene (6-31G*) and polyacetylene (6-31G**) were obtained

by retaining only the quadratic force constants in the PES’s and carrying out VCI calculations. They were approximate

because the geometries at which these force constants were obtained were not the equilibrium ones. Since a normal

coordinate analysis does not depend on the origin of the coordinates, the correct harmonic frequencies should be

obtained regardless of the origin insofar as the PES is strictly harmonic. The very presence of anharmonicity, however,

makes these frequencies differ from those obtained at the equilibrium geometries.

5.3 Results and discussion

5.3.1 Polyethylene

The vibrations in polyethylene have been well characterized283, 334–336 except for ν3(π) (see below) and are, therefore,

an ideal basis on which to assess the validity and accuracy of the approximations employed. An infinite all-trans chain

of polyethylene belongs to a factor group isomorphous to the point group D2h and it has 14 k = 0 vibrations that are

either infrared- or Raman-active with the C2H4 translational repeat unit. infrared- or Raman-active, where the phase

refers to that between two adjacent CH2 oscillators. See Ref. 334 for the labeling convention of the modes.
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Table 5.2 lists the harmonic and anharmonic frequencies of k = 0 phonons obtained with the HF/6-31G* PES.

Since electron correlation is neglected, accurate results cannot be expected. This table illustrates how the results

converge as we include higher-dimensional slices of the anharmonic PES, namely, V1, V2, and V3. Surprisingly, the

inclusion of anharmonicity at the 1MR level (V1) does not improve upon the harmonic results and in fact slightly

deteriorates them. Among the four highest-lying modes, only one [ν1(0)] of them, which is the symmetric stretch

(ag) of four C–H bonds and whose potential is Morse-like, is improved by the 1MR treatment. The inclusion of 2MR

(V2) noticeably reduces both the maximum and mean absolute deviations by ≈ 40 %, although the deviations are

still in excess of 140 cm−1. The 3MR results are only a marginal improvement upon the 2MR ones, indicating that

the simultaneous interactions of three distinct phonons are negligible in polyethylene, whereas those of two distinct

phonons are not.

Table 5.3 compiles the frequencies of the k = 0 phonons obtained with the PES’s that are at least partly evalu-

ated by MP2 and include up to 3MR. The inclusion of electron correlation reduces the mean absolute deviation in

harmonic frequencies by one third, but the remaining errors are still substantial, underscoring the equal significance

of anharmonicity and electron correlation in this example. When the effects of anharmonicity are included by VCI,

the computed frequencies agree well with the observed with the mean absolute deviation of 50 cm−1. Equally or

even more accurate agreement was obtained by one of the authors334 by harmonic frequencies evaluated by density-

functional calculations and scaled by a single empirical factor. The present first-principles calculations indicate that

the anharmonic corrections are not always positive [see, e.g., ν8(π)] and, therefore, that the agreement in this previous

work334 is partly due to the cancellation of errors between the empirical scaling and inevitable approximations in the

density functionals used.

The VSCF results are distinctly less accurate by a few tens of cm−1 on average than the VMP2 and VCI results.

This indicates that phonon-phonon couplings, which tend not to be included adequately by VSCF, are significant and

yet treatable as perturbation. Also, the good agreement between VCI and experiments suggests that the couplings

across different k vectors neglected in the Γ approximation are indeed not large. However, a definitive and quantitative

conclusion about this issue warrants a comparison with a calculation without the Γ approximation. The results obtained

with the two PES’s (A and B) are comparable with each other, indicating that essential electron-correlation effects are

in 1MR (V1). The greatest anharmonic effects (in excess of 200 cm−1) are in the frequencies of the C–H stretch (ν1 and

ν6). These are also the modes with the largest remaining errors as a QFF is inadequate for such strong anharmonicity.

Nielsen and Holland337 assigned a Raman band at 1415 cm−1 to ν3(π) (see also Ref. 338), whereas Snyder339, 340

suggested a revised assignment to a weaker Raman band at 1370 cm−1. However, the latter band was not observed in

a subsequent study325, 326 performed at low temperatures for high-density polyethylene. Our calculation predicts the

frequency of ν3(π) to fall in the range of 1421–1438 cm−1 and clearly favors the original assignment by Nielsen and
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Holland.337

An inspection of the VCI wave functions reveals the presence of Fermi resonance10 between the fundamental

of ν2(0) and the first overtone of ν8(π), whose transition energies nearly coincide. The VCI calculation (PES A)

predicts two ag states at 1498 and 1542 cm−1 above zero point with the contributions of the ν2(0) harmonic-oscillator

wave function being approximately 60 and 30 %, respectively. The Fermi doublet has been observed in Raman

spectra,325, 341, 342 which display two peaks at ca. 1442 and 1468 cm−1 with 2:1 intensity ratio. Our calculation can

thus reproduce, albeit only semi-quantitatively, the frequency difference between the Fermi doublet peaks as well

as their intensity ratio from the first principles.47 The VCI calculation also predicts Fermi resonances in the C–H

stretching region.

5.3.2 Polyacetylene

All-trans polyacetylene343 is a prototypical Peierls insulator with alternating C=C and C–C bonds. The structure with

the C=C and C–C bonds reversed can be superimposed on the original structure and, in this sense, polyacetylene

is said to have a doubly degenerate ground state.344 In other words, the PES of polyacetylene along the coordinate

connecting these two equivalent structures (“the dimerization coordinate”) is a highly anharmonic double well. The

normal coordinates of the in-phase C=C stretch (ν2) and the in-phase C–C stretch (ν4) are largely parallel to this

dimerization coordinate.345 Furthermore there is strong electron correlation involving the highest-occupied (C=C

bonding and C–C antibonding) and the lowest-unoccupied (C=C antibonding and C–C bonding) CO’s.345 Therefore,

both electron correlation and anharmonicity are expected to affect the frequencies of the phonons in polyacetylene,

particularly, those of ν2 and ν4.

Polyacetylene has 8 optical phonon branches and their k = 0 modes can be classified according to the factor

group isomorphous to the point group C2h. Table 5.4 compares the anharmonic frequencies obtained with the 1MR,

2MR, and 3MR representations of the HF/6-31G* QFF as well as the harmonic frequencies. At 1MR level, only the

frequencies of the ag modes are improved over the harmonic approximation, while the inclusion of the phonon-phonon

coupling in 2MR leads to considerable reductions in the maximum and mean absolute deviations in all modes. The

3MR results are close to the 2MR ones except for ν5 for which the difference is 71 cm−1. This large difference is a

result of the mixing (ca. 20%) of this mode with the combination tone of ν2 and ν6, which is accounted for only at

the 3MR level and higher. The deviations from the observed values are large particularly for ν2 (≈ 350 cm−1) and

ν4 (≈ 200 cm−1), substantiating the assertion made previously that electron correlation influences these two modes

especially strongly.345

Table 5.5 summarizes the results obtained with 3MR PES’s that are partially electron correlated at MP2/6-31G**.

The MP2 harmonic frequencies deviate particularly severely from the observed for ν2 (≈ 270 cm−1) and ν4 (≈ 120
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cm−1), which underscores the fact that the lack of electron correlation alone does not cause the large errors; electron

correlation and anharmonicity are equally significant. In fact, there is evidence that these two effects are not only

individually important, but they enhance each other. The decreases in frequencies of ν2 and ν4 by the inclusion of

anharmonicity are only 53 and 23 cm−1 according to VCI with HF/6-31G* QFF (Table 5.4). The harmonic frequencies

of the same modes drop by 131 and 101 cm−1 upon the inclusion of electron correlation. The sums of these individual

reductions in frequencies account for merely half of the errors in the HF harmonic frequencies, which are 397 and 220

cm−1. The electron-correlated calculations lowers the barrier of the double well potential to a greater extent than their

minima, making the potential not only softer but also more anharmonic. In this sense, the good agreement between

uniformly scaled harmonic frequencies obtained by a density-functional method346 and the observed is again to some

extent fortuitous.

The two multiresolution PES’s differ in the electronic structure theory to evaluate V2; PES A uses MP2/6-31G**

for V1 + V2, whereas V2 in PES B is based on HF/6-31G**. The VSCF, VMP2, and VCI results for PES A do not

constitute an improvement over those for PES B. This indicates, as in the case of polyethylene, that the essential

electron-correlation effects are in 1MR (V1) and the higher-dimensional slices of the PES can be treated by HF,

justifying the use of multiresolution PES’s. With PES A, we have encountered some difficulties achieving convergence

in the VSCF and VCI solutions for some ag modes, which are traced to the instability of MP2/6-31G** in evaluating

V2. If we assume that the aforementioned observation that the effect of electron correlation is largely confined in 1MR

(V1) holds true for these ag modes, the results obtained with PES B for all modes should be reliable. However, such

an assumption may well be invalid and the convergence of the calculated frequencies of the ag modes (ν2 and ν4, in

particular) should be viewed with some caution. VMP2 is more robust, yielding sensible results for all states. This is

because our VMP2 calculations use a VSCF reference configuration that is composed of modals determined for the

ground (zero-point) state, of which a VSCF iterative solution converges rapidly.

The calculated frequencies obtained with VCI and PES B agree excellently with the observed with the mean ab-

solute deviation of 36 cm−1. A similar degree of agreement can be seen in the results of VMP2 with PES A. The

inclusion of both anharmonicity and electron correlation is essential to achieve the agreement. Hirata345 proposed

attributing the infrared band at 1170 cm−1 to ν6. The calculated frequency of the same mode is 1195 cm−1 in excellent

agreement with this observed value (1170 cm−1). The present calculation is without empirical scaling of force con-

stants contrarily to the one adopted in Ref. 345 and the accurate agreement between theory and experiment renders an

independent and strong support of the assignment. The fact that the frequencies of ν2 (the C=C stretch) and ν4 (the

C–C stretch) calculated with QFF’s agree well with the observed implies either that the corresponding v = 1 states

lie below the barrier in the double-well potential or that the states experience a single-well diabatic potential owing to

strong electron-phonon coupling regardless of whether the states lie below or above the barrier. This issue warrants a
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quantitative, coupled electron-phonon treatment, which is beyond the scope of this work.

5.4 Conclusions

The key findings of this chapter can be summarized as follows: (1) the VSCF, VMP2, and VCI methods in normal

coordinates can be usefully applied to extended systems with the Γ approximation, providing anharmonic corrections

to frequencies of k = 0 phonons. (2) The anharmonic phonon-phonon coupling across different k vectors seems rather

insignificant for the polymers studied, although a definitive conclusion requires a comparison with calculations with-

out the Γ approximation. (3) In polyethylene and polyacetylene, electron correlation and anharmonicity are equally

significant and the inclusion of both is essential in achieving accurate frequencies. (4) The effect of electron corre-

lation is largely confined in the 1MR. (5) The VCI calculations have reproduced the observed frequency separation

and intensity ratio of the Fermi doublet of polyethylene involving the ν2(0) fundamental and the ν8(π) first overtone.

They also predicted the presence of Fermi resonances in the C–H stretching region. (6) The good agreement has been

obtained between the calculated and observed frequencies of ν2 and ν4 of polyacetylene with the multiresolution QFF.

This may suggest either that the corresponding states lie below the barrier in the dimerization potential or that they

experience diabatic single-well potential owing to strong electron-phonon coupling.

5.5 Tables

Table 5.1: The structural parameters (in Å and degrees) of polyethylene and polyacetylene obtained with HF/6-31G*.

Polymer rC−C rC=C rC−H aCCC aHCH aC=CH

Polyethylene 1.530 . . . 1.089 113.3 106.2 . . .

Polyacetylene 1.455 1.333 1.079 124.1 . . . 119.2
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Table 5.2: Harmonic (HRM) and anharmonic (VCI) frequencies (in cm−1) of the k = 0 phonons in polyethylene

obtained with the HF/6-31G* PES.

Mode Sym. HRM 1MR 2MR 3MR Obs.a

ν6(π) b1u 3244 3282 3116 3115 2920

ν6(0) b3g 3191 3231 3060 3083 2881

ν1(π) b2u 3192 3226 3076 3060 2850

ν1(0) ag 3185 3158 3018 3008 2846

ν2(π) b2u 1661 1662 1631 1619 1475

ν2(0) ag 1638 1639 1597 1616 1442

ν3(π) b1g 1571 1575 1558 1546 1412

ν7(π) b2g 1444 1449 1423 1413 1295

ν3(0) b3u 1315 1329 1309 1297 1173

ν7(0) b3g 1318 1320 1306 1294 1172

ν4(0) ag 1236 1231 1223 1222 1134

ν4(π) b1g 1138 1140 1130 1128 1062

ν8(0) au 1162 1177 1159 1147 1050

ν8(π) b1u 781 832 804 788 722

maxb 342 376 226 210

madb 189 201 141 136

a References 325, 326.

b The maximum and mean absolute deviations from the

observed.
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Table 5.3: Harmonic (HRM) and anharmonic (VSCF, VMP2, and VCI) frequencies (in cm−1) of the k = 0 phonons in

polyethylene obtained with the multiresolution 3MR PES’s computed by MP2/6-31G* and HF/6-31G*.

Mode Sym. PES Aa PES Bb Obs.c

HRMd VSCF VMP2 VCI VSCF VMP2 VCI

ν6(π) b1u 3244 3020 2995 2997 3023 2998 3000 2920

ν6(0) b3g 3204 2977 2958 2963 2979 2959 2964 2881

ν1(π) b2u 3177 2968 2906 2927 2971 2905 2929 2850

ν1(0) ag 3164 2963 2946 2925 2964 2945 2925 2846

ν2(π) b2u 1566 1546 1532 1530 1544 1530 1528 1475

ν2(0) ag 1543 1525 1507 1498 1523 1505 1494 1442

ν3(π) b1g 1430 1439 1424 1423 1438 1422 1421 1412

ν7(π) b2g 1337 1333 1320 1318 1331 1318 1317 1295

ν3(0) b3u 1201 1224 1207 1206 1223 1206 1205 1173

ν7(0) b3g 1235 1238 1224 1223 1236 1222 1221 1172

ν4(0) ag 1180 1169 1162 1163 1169 1162 1163 1134

ν4(π) b1g 1107 1103 1098 1099 1104 1098 1099 1062

ν8(0) au 1071 1098 1081 1080 1098 1081 1080 1050

ν8(π) b1u 693 781 757 753 780 756 752 722

maxe 327 118 100 82 121 99 83

made 127 68 49 48 68 48 47

a V1 + V2 computed by MP2/6-31G* and V3 by HF/6-31G*.

b V1 computed by MP2/6-31G* and V2 + V3 by HF/6-31G*.

c References 325, 326.

d Approximate values (see text).

e The maximum and mean absolute deviations from the observed.
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Table 5.4: Harmonic (HRM) and anharmonic (VCI) frequencies (in cm−1) of the k = 0 phonons in polyacetylene

obtained with the HF/6-31G* PES.

Mode Sym. HRM 1MR 2MR 3MR Obs.a

ν5 bu 3342 3408 3174 3245 3013

ν1 ag 3335 3283 3194 3177 2990

ν2 ag 1854 1834 1806 1801 1457

ν3 ag 1450 1448 1432 1427 1294

ν6 bu 1300 1327 1298 1290 1170

ν4 ag 1286 1282 1268 1263 1066

ν7 au 1160 1186 1143 1128 1012

ν8 bg 1034 1054 1025 1011 884

maxb 397 395 349 344

madb 234 242 182 182

a References 322–324.

b The maximum and mean absolute deviations from the

observed.
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Table 5.5: Harmonic (HRM) and anharmonic (VSCF, VMP2, and VCI) frequencies (in cm−1) of the k = 0 phonons

in polyacetylene obtained with the multiresolution 3MR PES’s computed by MP2/6-31G**, HF/6-31G**, and HF/6-

31G*.

Mode Sym. PES Aa PES Bb Obs.c

HRMd VSCF VMP2 VCI VSCF VMP2 VCI

ν5 bu 3304 3052 3076 3093 3061 3085 3099 3013

ν1 ag 3297 3066 3059 3052 3076 3070 3069 2990

ν2 ag 1723 —e 1441 —e 1411 1513 1463 1457

ν3 ag 1359 1342 1266 1347 1339 1225 1292 1294

ν6 bu 1199 1209 1195 1193 1212 1198 1195 1170

ν4 ag 1185 1155 1053 —e 1181 1146 1106 1066

ν7 au 1031 1060 1036 1032 1050 1026 1020 1012

ν8 bg 831 884 862 857 871 850 844 884

maxf 307 89 69 80 115 80 86

madf 144 48 33 44 54 54 36

a V1 + V2 computed by MP2/6-31G** and V3 by HF/6-31G*.

b V1 computed by MP2/6-31G**, V2 by HF/6-31G**, and V3 by HF/6-31G*.

c References 322–324.

d Approximate values (see text).

e No convergence.

f The maximum and mean absolute deviations from the observed.
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Chapter 6

Conclusions

In Chapter 2, we proposed an accurate and predictive scheme to compute low-lying vibrational wave functions and en-

ergies of polyatomic molecules with applications to the seven key species of hydrocarbon combustion: HCO+, HCO,

HNO, HOO, HOO−, CH+
3 , and CH3. A combination of coupled-cluster singles and doubles (CCSD), CCSD with a

second-order perturbation correction in the space of triples [CCSD(2)T] and in the space of triples and quadruples

[CCSD(2)TQ], and a correlation-consistent basis set series has been employed to achieve the complete-correlation,

complete-basis-set limits of the potential energy surfaces (PESs) of these species near equilibrium geometries. A new,

compact representation of PESs that combines two existing representations, namely, a fourth-order Taylor expansion

and numerical values on a rectilinear grid, has been proposed and shown to yield accurate frequencies, when com-

bined with vibrational general-order configuration-interaction method. The mean absolute deviation in the predicted

frequencies is 11 cm−1.

In Chapter 3, we derived size-extensive generalizations of the vibrational self-consistent field (VSCF), vibrational

Møller–Plesset perturbation (VMP), and vibrational coupled-cluster (VCC) methods for anharmonic lattice vibrations

of extended periodic systems on the basis of a quartic force field (QFF) in delocalized normal coordinates. Copious

terms in the formalisms of VSCF that have nonphysical size dependence are identified algebraically and eliminated,

leading to compact and strictly size-extensive equations. This size-extensive VSCF method (XVSCF) thus defined

has no contributions from cubic force constants and alters only the transition energies of the underlying harmonic-

oscillator reference from a subset of quartic force constants. It also provides a way to evaluate an anharmonic correc-

tion to the lattice structure due to cubic force constants of a certain type. The second-order VMP (VMP2) and VCC

methods in the QFF based on the XVSCF reference are shown to account for anharmonic effects due to all cubic and

quartic force constants in a size-extensive fashion. These methods can be readily extended to a higher-order truncated

Taylor expansion of a potential energy surface in normal coordinates. An algebraic proof of the lack of size-extensivity

in the vibrational configuration-interaction (VCI) method is also presented.

In Chapter 4, we report the definition, programmable equations, and corresponding initial implementation of the

size-extensive modification of VSCF, from which numerous terms with nonphysical size dependence in the original

VSCF equations have been eliminated. When combined with a quartic force field, this compact and strictly size-
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extensive VSCF (XVSCF) method requires only quartic force constants of the ∂4V/∂Q2
i ∂Q2

j type, where V is the

electronic energy and Qi is the ith normal coordinate. The effective (mean-field) potential of XVSCF felt by each

mode is shown to be harmonic, making the XVSCF equations subject to a self-consistent analytical solution without

matrix diagonalization or a basis-set expansion, which are necessary in VSCF. Consequently, XVSCF is nearly three

orders of magnitude faster than VSCF implemented similarly. Yet, XVSCF and VSCF are shown to yield comparable

results for larger molecules, implying numerically the inclusion of unnecessary, nonphysical terms in VSCF.

In Chapter 5, we computed the frequencies of the infrared- and/or Raman-active (k = 0) vibrations of polyethylene

and polyacetylene by taking account of the anharmonicity in the potential energy surfaces (PES) and the resulting

phonon-phonon couplings explicitly. The electronic part of the calculations is based on Gaussian-basis-set crystalline

orbital theory at the Hartree–Fock and MP2 levels, providing one-, two-, and/or three-dimensional slices of the PES

(namely, using the so-called n-mode coupling approximation with n = 3), which are in turn expanded in the fourth-

order Taylor series with respect to the normal coordinates. The vibrational part uses the VSCF, VMP2, and truncated

VCI methods within the Γ approximation, which amounts to including only k = 0 phonons. It is shown that accounting

for both electron correlation and anharmonicity is essential in achieving good agreement (the mean and maximum

absolute deviations less than 50, and 90 cm−1, respectively, for polyethylene and polyacetylene) between computed and

observed frequencies. The corresponding values for the calculations including only one of such effects are in excess

of 120 and 300 cm−1, respectively. The VCI calculations also reproduce semi-quantitatively the frequency separation

and intensity ratio of the Fermi doublet involving the ν2(0) fundamental and ν8(π) first overtone in polyethylene.
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[25] E. Mátyus, G. Czakó, B. T. Sutcliffe, and A. G. Császár. J. Chem. Phys. 127, 084102 (2007).

101



[26] O. L. Polyansky, A. G. Császár, S. V. Shirin, N. F. Zobov, P. Barletta, J. Tennyson, D. W. Schwenke, and P. J.
Knowles. Science 299, 539 (2003).

[27] J. O. Jung and R. B. Gerber. J. Chem. Phys. 105, 10332 (1996).

[28] S. Carter, S. J. Culik, and J. M. Bowman. J. Chem. Phys. 107, 10458 (1997).

[29] J. Wu, X. Huang, S. Carter, and J. M. Bowman. Chem. Phys. Lett. 426, 285 (2006).

[30] G. Rauhut. J. Chem. Phys. 121, 9313 (2004).

[31] K. Yagi, S. Hirata, and K. Hirao. Theor. Chem. Acc. 118, 681 (2007).

[32] R. J. Whitehead and N. C. Handy. J. Mol. Spectrosc. 55, 356 (1975).

[33] R. J. Whitehead and N. C. Handy. J. Mol. Spectrosc. 59, 459 (1976).

[34] G. M. Chaban, J. O. Jung, and R. B. Gerber. J. Chem. Phys. 111, 1823 (1999).

[35] K. Yagi, T. Taketsugu, K. Hirao, and M. S. Gordon. J. Chem. Phys. 113, 1005 (2000).

[36] S. Irle and J. M. Bowman. J. Chem. Phys. 113, 8401 (2000).

[37] R. Burcl, S. Carter, and N. C. Handy. Chem. Phys. Lett. 380, 237 (2003).

[38] C. Møller and M. S. Plesset. Phys. Rev. 46, 618 (1934).

[39] K. Yagi, S. Hirata, and K. Hirao. Phys. Chem. Chem. Phys. 10, 1781 (2008).

[40] O. Christiansen. J. Chem. Phys. 119, 5773 (2003).

[41] A. Szabo and N. S. Ostlund. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure
Theory (MacMillan, New York, 1982).

[42] Y. Scribano, D. M. Lauvergnat, and D. M. Benoit. J. Chem. Phys. 133, 094103 (2010).

[43] T. H. Dunning Jr. J. Chem. Phys. 90, 1007 (1989).

[44] R. A. Kendall, T. H. Dunning Jr., and R. J. Harrison. J. Chem. Phys. 96, 6796 (1992).
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