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ABSTRACT 

 

 

            Historically, frogeye leaf spot (FLS; caused by Cercospora sojina) of soybean has been 

observed more frequently in the southern U.S. than the north central U.S. However, in recent 

years, FLS field observations have been on the increase in the north central U.S., including 

Illinois. To better understand the survival rate of C. sojina in Illinois, a field study was conducted 

at three locations: Monmouth (west-central Illinois), Urbana (east-central Illinois), and Dixon 

Springs (southeastern Illinois). At each location, soybean leaves affected by FLS were placed at 

depths of 0, 10, and 20 cm and retrieved after 12, 19, and 24 months. To determine the viability 

of C. sojina in the collected leaves, a greenhouse bioassay was developed. Survival of C. sojina 

declined with time equally at all three locations through 19 months. After 24 months, C. sojina 

from leaves collected from Monmouth and Urbana was no longer viable, but the fungus was still 

active in leaves collected from Dixon Springs. Depth of leaf placement had no effect on survival 

of C. sojina. These results suggest that planting a non-host crop for two years in central Illinois 

will reduce the level of C. sojina inoculum to a negligible amount; however, soybean farmers in 

southern Illinois may need a longer rotation for FLS management. 

          Another topic addressed in this dissertation was the monitoring of Quinone outside 

inhibitor (QoI) fungicide resistance in C. sojina.  QoI fungicides have been effective in 

managing frogeye leaf spot, but the risk of selecting C. sojina strains with resistance to this class 

of fungicides is considered high. A QoI fungicide resistance monitoring program was initiated, in 

which sensitivities to azoxystrobin, pyraclostrobin, and trifloxystrobin were determined in C. 

sojina isolates collected prior to QoI fungicide use on soybean (baseline population) and C. 

sojina isolates collected from soybean fields in 2007, 2008, and 2009.  For the baseline 
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population, the mean effective fungicide concentration at which 50% of the conidial germination 

was inhibited (EC50) was determined to be 0.01287, 0.00028, and 0.00116 µg/ml for 

azoxystrobin, pyraclostrobin, and trifloxystrobin, respectively. When mean EC50 levels of 2007, 

2008, and 2009 C. sojina isolates were compared to baseline C. sojina EC50 levels, a small but 

statistically significant (P ≤ 0.05) shift towards less sensitivity was observed for trifloxystrobin 

in 2009. In 2010, QoI fungicide resistant isolates were found at two locations in Illinois, one 

location in Kentucky, and two locations in Tennessee. QoI fungicide sensitivity levels of the 

resistant isolates were over 200-fold higher than baseline isolates using petri dish assays. A 

greenhouse trial was conducted with a QoI-resistant C. sojina isolate from Tennessee and a QoI-

sensitive baseline isolate. FLS caused by the QoI-resistant isolate was not significantly (P ≤ 

0.05) reduced with QoI fungicides compared to a water control, but FLS caused by the QoI-

sensitive isolate was significantly reduced with QoI fungicides compared to a water control. 

Several fungicides in the demethylation inhibitor (DMI) group and the methyl benzimidazole 

carbamate (MBC) fungicide, thiophanate methyl significantly reduced FLS caused by the QoI-

resistant or QoI-sensitive isolate compared to their respective water controls. These results 

indicate that C. sojina isolates resistant to QoI fungicides are present in Illinois, Kentucky, and 

Tennessee, and that FLS caused by QoI-resistant isolates may be managed with DMI or MBC 

fungicides. To develop the best management tactics for control of FLS caused by QoI resistant C. 

sojina and the best fungicide resistance management tactics, a better understanding of how QoI 

resistant C. sojina isolates compare to QoI sensitive isolates in their biology and their 

aggressiveness in causing FLS on different soybean cultivars is needed. Results from a 

laboratory study indicated that no differences in mycelial morphology, number of spores 

produced after 5 days, and radial growth after 6 or 12 days were observed between QoI resistant 
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and sensitive C. sojina isolates. Results from a greenhouse study indicated that on a FLS 

susceptible cultivar (‘Blackhawk’), QoI resistant C. sojina isolates caused significantly (P ≤ 0.05) 

greater disease severity than QoI sensitive isolates 7 to 8 days after inoculation, but no 

differences in severity were observed after 9 days. On a FLS resistant cultivar with the Rcs3 gene 

for resistance (‘Davis’), QoI resistant C. sojina isolates caused significantly greater disease 

severity than QoI sensitive isolates 8 to 14 days after inoculation. In general, these comparisons 

between QoI resistant and sensitive C. sojina isolates indicate that they are similar in growth and 

sporulation, but the QoI resistant isolates were slightly more aggressive in causing greater FLS 

severity on soybean.      
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CHAPTER ONE: INTRODUCTION AND OVERVIEW 

 Cercospora sojina   

          Frogeye leaf spot (FLS), caused by Cercospora sojina Hara, was first reported in Japan in 

1915 (Hara, 1915). The first occurrence of C. sojina causing FLS on soybean in the United 

States was in South Carolina in 1924 (Melchers, 1925). After 1924, FLS was also found in 

Mississippi and Louisiana (Haskell, 1926; Lehman, 1928). Since 1929, FLS has been observed 

in several soybean–producing states at various times (Athow and Probst, 1952). FLS also has 

been reported from Australia, Canada, China, Germany, Japan, Manchuria, and Russia (Athow 

and Probst, 1952). In countries with a tropical climate, such as Brazil, Argentina, South Africa, 

Nigeria and Zimbabwe, FLS can cause severe yield losses. In the United States, FLS 

traditionally has occurred mostly in the southern parts of the United States, but recently it has 

caused soybean yield reductions in Iowa (Yang et al., 2001) and Wisconsin (Mengistu, et al., 

2002). The disease is favored by a combination of warm winter temperatures and the cultivation 

of susceptible soybean cultivars in the northern states.  The practice of conservation tillage that 

leaves pathogen-infested plant debris on the soil surface may also be a factor in the increased 

occurrence of this disease. The estimate of soybean yield suppression due to FLS in the USA 

from 1996 (about 23,1000 tons) to 2007 (about 270,1000 tons) was about 11 times greater than  

the level observed in the other main soybean-producing countries in 2006 (Wrather and 

Koenning, 2009).  Estimated reduction of soybean yields (thousand metric tons) due to FLS was 

about 10 times (350 to 35) higher than that observed in other countries in 2008  (Wrather et al., 

2010). The recent increase in the range and severity of FLS has caused concern and interest 

among the soybean research community throughout the United States (Mian et al., 2008). 
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          C. sojina overwinters in infected seeds and infested soybean residue. Seeds initially are 

infected from pod lesions, but healthy seeds may become contaminated with conidia or mycelia 

during harvest. Heavily infected seeds generally have poor germination and lead to weak and 

stunted seedlings with lesions on cotyledons. Spores from cotyledons may continue to infect 

leaves. Young leaves that are not fully expanded are highly susceptible, while fully expanded 

leaves are more resistant to invasion (Phillips, 1999). Conidia on lesions normally appear 8-12 

days following inoculation. However, under continuous moist, warm conditions, conidia may 

appear as early as 48 hrs after inoculation. Conidia are carried short distances by air currents and 

splashing rain, and they cause secondary infections throughout the season under favorable 

conditions.  Zhong et al. (1991) found there were no differences in disease severity among the 

treatments in which seeds infected with different lesion rates were planted into separate plots. 

This indicates that the infested seeds are not a major source of inoculum. The parts (leaf, pod and 

stem) of the soybean were buried in different environments and at different depths, in the 

following year, the observations of different plant parts at different times showed that conidia 

were produced on both leaves and pods, which indicated that infected residue is the major source 

of inoculum for FLS (Ma and Li, 1987).   

In the field, symptoms most often develop after flowering. The early common symptoms 

are small circular dark-brownish spots that appear on the leaves. These spots finally enlarge to a 

diameter of 1-5 mm, and the brown spots are surrounded by narrow, dark reddish brown margins. 

Older spots are light to dark brown, translucent, and have white centers. Several spots may 

merge into larger, irregular spots. When spots cover about 50% of the leaf area, leaves blight, 

wither, and then fall prematurely.  The number of lesions on the plant will continue to increase as 
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long as the weather is favorable for infection. If favorable conditions for infection continue late 

into the season, the fungus will infect pods and seeds.  

         Three major dominant genes in soybean confering reistance to C. sojina are Rcs1, Rcs2, 

and Rcs3 (Athow and Probst, 1952; Athow, et al., 1962; Phillips and Boerma, 1982).  

Physiological races of C. sojina with virulence to Rcs1 and Rcs2 have been reported (Athow and 

Probst, 1952; Athow et al., 1962). Cultivars with Rcs genes may have only occasional spots, 

which are often small and nonsporulating (Athow and Probst, 1952). The Rcs3 gene, which was 

found in the soybean cultivar ‘Davis’, has been able to confer resistance to all known races of C. 

sojina that occurred in the United States (Phillips and Boerma, 1982; Pace et al., 1993). Seed-

applied fungicides can reduce the risk of seed borne C. sojina inoculum. Foliar-applied 

fungicides sprayed at late flowering and early seed (R2-R5) growth stages (Fehr and Caviness, 

1977) may provide some protection against C. sojina infection (Akem, 1995). Crop rotation and 

burying affected crop residues will reduce disease incidence (Phillips, 1999).             

QoI fungicide and fungicide resistance 

         The quinone outside inhibitor (QoI) class of fungicides is one of the most important for 

plant disease management in agricultural systems. QoI fungicides represent a relatively new 

class of compounds developed from the natural fungicidal derivation strobilurin A, which is a 

secondary metabolite produced by the basidiomycota wood-rotting fungus, Strobilurus 

tenacellus (Clough et al., 1996). These fungicides have the ability to inhibit mitochondrial 

respiration by binding at the Qo site of cytochrome b (Gerth et al., 1980; Zhang et al., 1998). 

This blocks electron transfer between cytochrome b and cytochrome c1, which, in turn, disrupts 

the energy cycle within the fungus by blocking the production of ATP (Becker et al., 1981; Anke, 

1995; Bartlett et al., 2002). Many studies have shown that alternative oxidase (AOX) plays an 
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important role in the branched respiratory chain. AOX is a strobilurin–insensitive terminal 

oxidase that allows electrons to bypass Complex III from ubiquinol. Salicylhydroxamic acid 

(SHAM) is one of the characteristic inhibitors of AOX (Wood and Hollomon, 2003).  

The QoI fungicides currently are used for the management of several agronomic and 

horticultural crop diseases. These fungicides provide control of fungal pathogens from major 

divisions of fungi, such as Ascomycota and Basidiomycota, and provide control of some 

pathogens in Oomycota (Ammermann et al., 1992; Jordan et al., 1999). Studies with 

azoxystrobin (Godwin, 1994, 1997), trifloxystrobin (Margot et al., 1998), and pyraclostrobin 

(Ammermann et al., 2000, Stierl et al., 2000) have demonstrated that the spore germination and 

the zoospore development are particularly sensitive to QoI fungicide. Because of this, QoI 

fungicides have a high level of preventative activity. Curative activity and antisporulation 

activity also have been reported (Bartlett et al., 2002; Wong and Wilcox, 2001; Anesiadis et al., 

2003). Some diseases are not controlled at all by QoI fungicides, and several pathogens have 

quickly developed resistance.            

          Resistance to QoI fungicides has been reported in over twenty fungal species (Fungicide 

resistance action committee, 2011), and the Fungicide Resistance Action Committee (FRAC) has 

determined that QoI fungicides have a high risk of selecting for fungicide resistant strains. The 

target site cytochrome bc-1 protein is encoded by a mitochondrial gene for which DNA repair 

mechanisms are less effective than for nuclear DNA genes. Consequently, genes encoded in the 

mitochondrial DNA are more likely to mutate (Zheng and Kokller, 1997). According to recent 

FRAC reports, three mutations are responsible for QoI fungicide resistance (Fungicide resistance 

action committee, 2006). These mutations occur in the cytochrome b gene, and are single amino 

acid shifts.  When glycine is replaced with alanine at position 143, it is known as the G143A 



5 
 

mutation; this is the most common of all the QoI fungicide resistance mutations. When 

phenyalanine is replaced with leucine at position 129, it is known as the F129L mutation, and 

when glycine is replaced with arginine at position 137, it is known as the G137A mutation. Of 

these mutations, the G143A is the most severe, because the resistance factor (sensitivity of 

resistant strain / sensitivity of sensitive strain) generally is greater than 100.  

Fitness, aggressiveness, and adaptation of fungicide resistant isolates 

           Fitness of fungicide resistant isolates is an important parameter affecting the risk of 

developing practical resistance. Understanding the fitness of QoI-resistant strains would have 

significant benefits for fungicide resistance management. Studies on a QoI resistant mutant of 

Saccharomyces cerevisiae revealed that mitochondria of most mutations were impaired, and 

electron flow through the cytochrome bc1 complex was reduced (Köller et al., 2001). Further 

evidence of fitness penalties were observed for several QoI resistant isolates of fungi such as 

Ustilago maydis (Ziogas et al., 2002), Cercospora beticola (Malandraki et al., 2006), and 

Botrytis cinerea (Markoglou et al., 2006). However, in other studies, no fitness penalties were 

found in some of QoI resistant isolates, such as a G143A mutant of Blumeria graminis (Chin et 

al., 2001), and laboratory – selected G143A mutants of Magnaporthe grisea (Avila-Adame and 

Köller, 2003). In many studies with other fungicides, fitness was estimated by measuring spore 

formation, mycelium growth rate, pathogenicity, or survival, but it is unclear whether these 

parameters correlate with the fitness of QoI resistance. Van der Plank (1963) developed the 

concept that the cost of qualitative virulence was the reduction in pathogen fitness induced by a 

mutation from avirulence to qualitative virulence. Recent progress in plant pathogen genomics 

has shown that mutation from avirulence to qualitative virulence gene modification was caused 

by single–base mutation or a large chromosome deletion (Gout et al., 2007). Therefore, genetic 
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correlation between traits, either positive or negative (trade–off) may constrain quantitative trait 

evolution, such as aggressiveness (disease severity, infection efficiency, latent period, spore 

production rate, infectious period and lesion size) and fitness. The study of the relationship 

between aggressiveness and fitness showed that Cochliobolus carbonum presented a low 

aggressiveness level on maize, but greater survival rate; whereas Cochliobolus beterostrophus 

presented greater aggressiveness level, but had a low survival rate (Leonard et al., 1988). Carson 

(1998) also found a negative correlation between the survival of C. beterostrophus on the soil 

surface and their aggressiveness. Another study of Phytophthora infestans on potato tubers found 

no correlations between aggressiveness mearsured as lesion size, sporulation and latent period 

and overwinter survival (Montarry et al., 2007). These results indicate that pathogen 

aggressiveness played an important role for the population studies on pathogen adaptation.  

Research on latent period and sporulation per lesion of Pyrenophora teres fungicide resistant 

isolates showed that pathogen aggressiveness was not associated with resistance to triadimenol 

or propiconazol (Peever and Milgroom, 1994). Potato leaf lesions caused by metalaxyl-resistant 

isolates of P. infestans were larger than those lesions caused by metalaxyl-sensitives isolates of P. 

infestans in the absence of selection pressure. However, there was no significant difference in 

sporulation capacity (Kadish and Cohen, 1998a; Kadish and Cohen, 1998b). Additionally, no 

significant difference in aggressiveness was observed between mefenoxam-resistant and -

sensitive P. erythroseptica isolates in the absence or presence of mefenoxamselection pressure 

(Taylor et al., 2006). Another interesting report was that isolates of M. graminicola from wheat 

plots receiving fungicide applications were more aggressive than isolates from wheat plots 

unprotected by fungicide (Cowger and Mundt, 2002). However, it is important to note that very 
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few reports on the aggressiveness and adaptation of QoI resistant isolates of fungal 

phytopathogens are currently available. 

Fungicide resistance management 

          Fungicide usage to control of Cercospora leaf spot caused by C. beticola in North Dakota 

and Minnesota is a very well documented example of fungicide resistance management. C. 

beticola has a history of developing resistance to different fungicides (Weiland et al., 2001). 

Resistance to the methyl benzimidazole carbamate (MBC) fungicide thiophanate methyl became 

widespread in the 1980s. Resistance to triphenyltin hydroxide was first reported in 1994, and 

resistance to demthylation inhibitor (DMI) fungicides began in 2000. However, in the last 10 

years, fungicide resistance is being successfully managed in the sugar beet production areas in 

North Dakota and Minnesota; resistance to thiophanate-methyl is declining because of less 

thiophanate-methyl usage in 2006 and 2008. No triphenyltin hydroxide resistant isolates were 

found because of an absence of selection pressure; and isolates with reduced-sensitivity to DMI 

fungicides became less prevelant because of alternative fungicide usage (Secor, et al., 2010). 

Tank-mixing and rotating different fungicide classes were also used to manage fungicide 

resistance on C. beticola. The above strategies may be used for management of QoI fungicide 

resistance in other crops.  
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CHAPTER TWO: SURVIVAL OF CERCOSPORA SOJINA ON SOYBEAN DEBRIS IN 

ILLINOIS 

ABSTRACT 

         Historically, frogeye leaf spot (FLS); caused by Cercospora sojina) of soybean has been 

observed more frequently in the southern U.S. than in the North Central U.S. However, in recent 

years, FLS field observations have been on the increase in the North Central U.S., including 

Illinois. To better understand the survival rate of C. sojina in Illinois, a field study was conducted 

at three locations: Monmouth (west-central Illinois), Urbana (east-central Illinois), and Dixon 

Springs (southeastern Illinois). In fields at each location, soybean leaves affected by FLS were 

placed at depths of 0, 10, and 20 cm and retrieved after 12, 19, and 24 months. To determine the 

viability of C. sojina in the collected leaves, a greenhouse bioassay was developed. Survival of 

C. sojina declined with time equally at all three locations over 19 months. After 24 months, C. 

sojina from leaves collected from Monmouth and Urbana was no longer viable, but the fungus 

was still active in leaves collected from Dixon Springs. Depth of leaf placement had no effect on 

the survival of C. sojina. These results suggest that planting a non-host crop for two years in 

central Illinois will reduce the level of C. sojina inoculum to a negligible amount; however, 

soybean farmers in southern Illinois may need a longer rotation for FLS management. 

INTRODUCTION 

     Frogeye leaf spots (FLS), caused by Cercospora sojina Hara, is one of the most 

important diseases of soybean (Glycine max (L.) Merr.). This disease is especially severe in the 

warm humid areas of the world (Akem, 1992; Ploper, 2001; Phillips and Boerma, 1981; Phillips, 

1999). In the U.S., it has recently been identified as far north as Iowa, Wisconsin and Ohio 
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(Yang et al., 2001; Mengistu et al., 2002; Cruz and Dorrance, 2009). Soybean yield losses due to 

FLS primarily occur because of a reduction in photosynthetic area and premature defoliation 

(Akem, 1994). The estimated annual soybean yield reductions caused by frogeye leaf spot in the 

United States ranged between 183,868 and 345,148 metric tons from 2006 to 2009 (Koenning 

and Wrather, 2010). In U.S. experimental field research plots, the greatest soybean yield 

reductions caused by FLS were about 21% and 31% (Laviolette et al., 1970; Mian et al., 1998).   

     Cercospora sojina survival in infected seeds and residue of soybean are the major 

inoculum sources of FLS (Ma et al., 1987; Grau et al., 2004). C. sojina in soybean residue in 

different environments buried in 0 to 20 cm soil survived after one year in the northeast China 

(Ma et al., 1987). It was generally thought that C. sojina could not survive in northern areas of 

the U.S. (Grau et al, 2004), but it was reported that the pathogen survived successfully after one 

winter in infested soybean leaves on the surface of fields in Ohio (Cruz and Dorrance, 2009). 

FLS is a polycyclic disease, and warm and humid weather is necessary for infection and multiple 

disease cycles. In practice, planting pathogen-free seed, burying infected soybean residue, 

rotating with non-host crops, planting resistant cultivars, and applying foliar fungicides are used 

to manage FLS (Phillips, 1999). 

      Research on the biology of C. sojina has provided evidence that suitable temperatures for 

conidia germination are from 24-26°C, that conidia were viable for 7 days at 20-22°C, and that 

the optimal temperature for mycelium growth is between 21 and 26°C (Zhong et al., 1989; Cruz 

and Dorrance, 2009). However, the viability and longevity of this pathogen in soybean residue in 

northern U.S. regions have not been determined.  
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      The objective of this study was to evaluate the survival rate of C. sojina in affected 

soybean leaf debris at different regions of in Illinois when buried at three depths over a two-year 

period.       

MATERIALS AND METHODS  

 Sample collection and treatment in the field 

           Soybean leaves severely infected with C. sojina (>70% disease severity) were collected 

from fields at Dixon Springs, IL in September 2008.  Ten leaflets were placed in nylon bags and 

sealed in protective fiberglass mesh sacks. The sacks were placed on the soil surface or buried in 

the soil at depths of 10 or 20 cm in fields at University of Illinois research farms located near 

Urbana, Monmouth and Dixon Springs, IL (Fig. 2.1). Soil characters, latitude and longitude of 

the three locations are listed in Table 2.1. Temperature and relative humidity (RH) sensors 

(WatchDog, Spectrum
@

 technology, Inc. Plainfield, IL) were placed at three depths to record 

temperature and RH hourly. Precipitation data were provided by research farm staff. Treatments 

at the three depths were replicated four times at each site. Sacks were placed in the field in 

November 2008. Twelve sample sacks (four from each depth) from each location were retrieved 

at each sample time, and samples from Monmouth and Dixon Springs were collected at 7, 12, 19 

and 24 months after placement (June and November in two years).  Due to a collection mistake, 

samples at Urbana were collected at 12, 19, and 24 months, but not at 7 months. The retrieved 

leaves were removed from the sacks, air dried at room temperature for at least 5 days, after 

which they were ground to a fine powder by hand and placed in a sterile plastic vial to be used to 

inoculate soybean leaves in the greenhouse. 
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Inoculation of C. sojina in the greenhouse 

         The viability of C. sojina was tested on the leaves of the susceptible soybean cultivar 

‘Asgrow 3101’ in an air conditioned room in the greenhouse. Soybean plants were grown in 

trays (26.46 x 52.96 x 5.84 cm) with 24 individual pots (7.88 x 5.72 x 5.84 cm) that contained a 

potting mix (Sunshine Mix 1, Sun Gro Horticulture Inc., Bellevue, WA). Pots were placed in a 

larger tray (53.66 x 26.67 x 6.35 cm) so that plants could be watered from the bottom.  Before 

inoculation, soybean plants were watered until the potting mix was saturated, and wet paper 

towels were placed on the soil surface between plants to increase the relative humidity (RH). Ten 

day old soybean seedlings (VC stage) were inoculated with the previously prepared diseased leaf 

powder. The abaxial surface of unifoliolate leaves (50-75% unrolled) was sprayed with a 

solution of 0.005 % Tween 20 in dH2O until leaves were wet , then 0.05 g of powder inoculum 

was placed on one abaxial leaf surface for each treatment. The control treatments included 

inoculation with sterilized soybean leaf powder and a non-inoculated control. All of the 

treatments were arranged in one tray using a completely randomized design. All samples were 

replicated 4 times in separate trays. The inoculated plants were then covered with a transparent 

plastic dome (15.24 x 53.34 x 27.94 cm) and incubated for 6 days to maintain high RH (≥90%). 

After 6 days, plastic domes were removed, and plants were maintained for 15 days, after which 

time the number of lesions per leaf was counted. The temperature of the potting mixture surface 

was 25 ± 2 °C without plastic domes and 23 ± 2 °C with plastic domes. Supplemental lighting 

was used (high pressure sodium 1000 watt) with a photoperiod of 14 hours. Plants were watered 

daily as needed. Because of limited space, inoculations of all samples from different locations 

collected at different times were assayed over multiple trials. Therefore, inoculation with 1 x 10
4 
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conidia suspension of C. sojina on the leaves at every trial was used as an internal control to 

check optimal conditions for C. sojina infection.     

Data analysis   

           Because data from the 7 month collection time were missing from the Urbana location, 

only data from the 12, 19, and 24 month collection times were used for data analyses to compare 

locations, collection times, and burial depths. Levene's test for variance homogeneity of conidia 

–inoculated control trials indicated that trial variances were not statistically different from each 

other; therefore data from all trials were combined together for further analysis. Analysis of 

variance (ANOVA) was conducted using the general linear model procedure (PROC GLM) in 

SAS (version 9.2, SAS Inc., Cary, NC) to determine the effects of the fixed nested three-factors 

(time, location and depth) on the viability of C. sojina. All factors were fixed and depth nested 

within locations. Least significant different (LSD) at α=0.05 was calculated to compare 

differences in average number of lesions per leaf produced from inocula buried at different 

depths over time at different locations. Simple linear regression analysis was performed to 

predict inoculum viability and combined the three depths with time using the mathematical 

equation y= aX+b, in which Y= predicted log transformation lesion number per leaf, b=number 

of lesions produced at the beginning of the experiment (or viability calculated at time zero), and 

a=rate of viability decline at time X. For regression analysis, the data transformed for normality 

and the data from the 7 month collection time were included for Dixon Springs and Monmouth. 

RESULTS 

          The main factors of location and sampling time had a significant (P < 0.0001) effect on 

survival of C. sojina, but the main factor of depth did not (Table 2.2).  No interactive effects 
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were significant. The greatest survival of C. sojina was observed in leaf debris collected at Dixon 

Springs (southeastern Illinois), which was significantly better than survival in leaf debris 

collected at Urbana (east-central Illinois) or Monmouth (west-central Illinois) (Fig. 2.2).  No 

differences in C. sojina survival were observed between leaf debris collected at Urbana and 

Monmouth.  Survival of C. sojina was greatest in leaf debris collected after 12 or 19 months, 

which was significantly better than the survival in debris collected after 24 months (Fig. 2.3).        

          Combined across the different burial depths, regression analysis results indicate that the 

rate of survival was decreased at similar rates (rate = 0.03 to 0.04) for all three locations (Fig. 

2.4).  The coefficients of determinations were relatively high for each location, indicating that 

the linear regression models fit the data relatively well. The models that fit the data the best were 

from Dixon Springs and Monmouth (R
2
 = 0.72 and 0.70, respectively), while the model for 

Urbana had a slightly lower coefficient of determination (R
2
 = 0.52).   

           The three locations represented three different kinds of weather in Illinois. The mean 

daily temperature of Dixons Spring was about 2°C higher than Urbana over the entire year. The 

spring, summer, and fall mean daily temperatures were similar at Urbana and Monmouth, but in 

winter, Monmouth was about 1 to 2°C colder than Urbana. The lowest mean daily temperature of 

all three locations was from December to February: -12°C at Dixon Springs, -21°C at Urbana 

and -25°C at Monmouth.  Highest daily temperatures (about 30°C) were similar from the middle 

of June to August at all three locations. There was a great deal of fluctuation in the mean daily 

temperature at the soil surface, and it was sometimes warmer than the temperature beneath the 

surface, but the sub-surface temperatures were generally 1 to 2°C warmer than the soil surface 

temperatures. During the winter months, temperatures at the 20 cm soil depth were 1 to 2°C 
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warmer than those at the 10 cm soil depth, but soil at the 10 cm depth was warmer than soil at 

the 20 cm depth during the other seasons. Soil temperatures are summarized in Fig. 2.5.  

           The mean daily relative humidity of the three locations ranged from 45% to 95% (Fig. 

2.6).  The mean daily precipitation at Dixon Springs and Monmouth was similar in two different 

years, but the precipitation at Urbana was somewhat less (Fig. 2.7).   

 DISCUSSION 

 In this study, C. sojina inoculum in soybean leaf debris was viable after overwintering 

successfully at three different locations in Illinois for up to 24 months, which is the longest field 

survival period reported for this pathogen. Cruz and Dorrance (2009) reported that C. sojina 

survived in leaf debris for 7 months at two locations in Ohio, and Ma and Li (1987) reported that 

C. sojina could survive for up to 12 months in China. In a similarly-designed study to the one 

conducted in Illinois, Khan et al. (2008) evaluated the survival of a similar fungus, C. beticola, in 

North Dakota, and they reported that C. beticola survived up to 22 months. In light of the results 

from the Illinois study, soybean growers in Illinois should consider rotating to a non-host crop 

for two seasons after a severe outbreak of frogeye leaf spot in a soybean field. In the Illinois 

study, the greatest reduction in C. sojina viability was found between the 19 month and 24 month 

collection periods. The 19 month collection period would approximately represent June in the 

second season following the soybean crop initially affected by frogeye leaf spot. This 19 month 

collection period would be the approximate time that C. sojina conidia would be present, 

splashing onto leaves, and causing infections in that second season. 

 Survival of C. sojina was the highest at the Dixon Springs location in southeastern 

Illinois. The Dixon Springs location had the warmest winter temperatures compared to the other 

locations. Of two counties in Ohio, more C. sojina conidia were obtained from the leaf debris 
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that had overwintered in the southern most county (Clark) compared to a county that was more 

northern (Wayne) after 7 months (Cruz and Dorrance, 2009). Historically, frogeye leaf spot has 

caused more severe losses to soybean in the southern U.S. compared to the north central U.S. 

(Wrather and Koenning, 2009). Warmer temperatures in the southern U.S. and southern areas of 

Illinois likely provide a better climate for C. sojina survival and increase the risk of frogeye leaf 

spot damage in those areas. It is not known why warmer soil temperatures benefited C. sojina 

survival, other than the simple conclusion that the cold temperatures were detrimental to the 

survival of C.sojina. Differences in soil temperature could have resulted in differences in 

microbial activity at the different locations, which could have led to different decomposition 

rates of leaf debris. Other factors may have had an effect on the survival of C. sojina, such as soil 

type, soil pH, and soil moisture content. Based on these findings, soybean growers in southern 

Illinois should be more aware of the threat of frogeye leaf spot and should use preventative 

tactics to manage frogeye leaf spot because of the increased risk due to better survival of C. 

sojina and potentially greater inoculum levels each season. 

 In this study, burial depth of leaf debris had no effect on C. sojina survival. Burying 

infested soybean debris using tillage is recommended as a potential frogeye leaf spot 

management tactic (Phillips, 1999). In light of the Illinois findings, burying the soybean debris 

will not affect survival of C. sojina; however, it may reduce the impact of C. sojina inoculum 

from infested debris, since conidia that are buried would not be able to splash onto soybean 

leaves and cause infections. The results of the Illinois trial are different from those reported by 

Khan et al. (2008), who, working with a similar pathogen, reported that C. beticola survival was 

greatest in sugarbeet leaf debris left on the soil surface compared to debris that was buried at 10 
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or 20 cm, and they attributed the differences to a greater debris decomposition rate from greater 

microorganism activity within the soil. 

           In this study, soybean leaves infected by C. sojina were able to support C. sojina survival 

for at least 12 months at different locations in Illinois with the greatest survival occurring in 

southeastern Illinois (Dixon Springs). Based on these results, soybean farmers in southern 

Illinois may need to rotate to a non-host crop for two years, while farmers in central Illinois may 

only require rotating to a non-host crop for one year to manage the risk of losses due to frogeye 

leaf spot. Because no differences in C. sojina survival were observed among leaves at different 

soil depths, tillage may not be needed as a frogeye leaf spot management practice in Illinois.
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TABLES  

Table 2.1. Soil parameters and locations of field research sites.  

 
Location Soil type pH Soil Drainage Latitude Longitude 

Dixon Springs Grantsburg silt 6.0 Moderately well drained 37
◦
 26'05.31"N 88

◦
40'07.46"W 

Monmouth Osca Silt Loam 6.6 Very good 40
◦
 56'13.14" N 90

◦
43'23.93"W 

Urbana Drummer 6.5 Average 40
◦
 04'13.72"N 88

◦
13'08.06"W 
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Table 2.2. Analysis of variance of Cercospora sojna survival at various soil depths over time at 

three locations in Illinois.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source F value P > F 

Location 21.83 <0.0001 

Month 113.22 <0.0001 

Location*Month 0.78 0.5415 

Depth (Location) 1.62 0.1502 
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FIGURES 

 

 

 

Figure 2.1. Locations of soybean leaf burial sites at Dixon Springs, Urbana and Monmouth, IL.  
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Figure 2.2. Frogeye leaf spot lesions on soybean leaves inoculated with Cercospora sojina 

infected leaf residue that was buried in Dixon Springs, Urbana and Monmouth, IL. Values 

presented are combined over times of collection (12, 19, and 24 months) and depths of leaf burial 

(0, 10, and 20 cm) (α=0.05).  
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Figure 2.3. Frogeye leaf spot lesions on soybean leaves inoculated with Cercospora sojina 

infected leaf residue that was buried in Dixon Springs, Urbana and Monmouth, IL at 0, 10 and 20 

cm depths. Values presented represent means over location and depth of leaf burial (α=0.05). 
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Figure 2.4. Linear regression of log(lesion/leaf) values combined over three leaf burial depths (0, 

10, and 20 cm) at Dixon Springs, Urbana and Monmouth, IL over four sampling times. 
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Figure 2.5. Mean daily temperatures at three locations over two years. 
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Figure 2.5. Continued. 
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Figure 2.6. Mean daily relative humidity at three locations over two years. 
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Figure 2.6. Continued. 
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Figure 2.7. Mean daily precipitation levels at three locations over two years. 
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Figure 2.7. Continued. 
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CHAPTER THREE: SENSITIVITY OF CERCOSPORA SOJINA POPULATION TO 

QUINONE OUTSIDE INHIBITOR FUNGICIDES 

ABSTRACT 

          Frogeye leaf spot, caused by Cercospora sojina, causes yield reductions to soybean 

(Glycine max (L) Merr.) grown worldwide.  Quinone outside inhibitor (QoI) fungicides have 

been effective in managing frogeye leaf spot, but the risk of selecting C. sojina strains with 

resistance to this class of fungicides is considered to be high.  A QoI fungicide resistance 

monitoring program was initiated, in which levels of sensitiviy to azoxystrobin, pyraclostrobin, 

and trifloxystrobin were determined in C. sojina isolates collected prior to QoI fungicide use on 

soybean (baseline population) and in C. sojina isolates collected from soybean fields in 2007, 

2008, and 2009.  For the baseline population, the mean effective fungicide concentration at 

which 50% of the conidial germination was inhibited (EC50) was determined to be 0.01287, 

0.00028, and 0.00116 µg/ml for azoxystrobin, pyraclostrobin, and trifloxystrobin, respectively. 

When mean EC50 levels of 2007, 2008, and 2009 collected C. sojina isolates were compared to 

baseline C. sojina EC50 levels, a small but statistically significant (P ≤ 0.05) shift towards less 

sensitivity was observed for trifloxystrobin in 2009.  Although small (<1.5-fold), this shift in 

sensitivity indicates a risk of selecting for C. sojina strains with reduced sensitivity to QoI 

fungicides, and fungicide sensitivities should continue to be monitored in the future.  
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 INTRODUCTION 

 Frogeye leaf spot, caused by the fungus Cercospora sojina Hara, causes yield reductions 

to soybean (Glycine max (L.) Merr.) worldwide (Wrather et al., 2010). In the United States, 

estimated annual soybean yield reductions caused by frogeye leaf spot ranged between 183,868 

and 345,148 metric tons from 2006 to 2009 (Koenning and Wrather, 2010).  In experimental 

field research plots in the United States, the greatest soybean yield reductions caused by frogeye 

leaf spot were reported to be 21% and 31% (Laviolette et al., 1970; Mian et al., 1998).  The use 

of host resistance has been an economical and effective way to manage frogeye leaf spot, but the 

development of new virulent races of C. sojina has been a historical and current threat (Athow et 

al., 1962; Mian et al., 2008; Phillips and Boerma, 1980; Ross, 1968).   

           Foliar fungicides have been evaluated for their effectiveness in controlling frogeye leaf 

spot.  In past studies, benomyl, a methyl benzimidazole carbamate (MBC) fungicide, was shown 

to significantly reduce frogeye leaf spot severity in treated research plots (Akem, 1995; Akem 

and Dashiell, 1994; Backman et al., 1979; Dashiell and Akem, 1991).  More recently, quinones 

outside inhibitor (QoI) and demethylation inhibitor (DMI) fungicides have proven to be 

efficacious in controlling frogeye leaf spot (Dorrance et al., 2010; Galloway, 2008; Nelson et al., 

2010).  Although effective in managing frogeye leaf spot, QoI fungicides have been determined 

to have a high risk of target fungi developing resistance to them and over 30 fungal pathogen 

species across 20 genera have been reported to show field resistance toward QoI fungicides 

(Fungicide Resistance Action Committee, 2011). 

           Because of the high risk of resistance developing to QoI fungicides, it is important that 

baseline sensitivities of isolates of C. sojina to QoI fungicides be established and a QoI fungicide 

resistance monitoring program be established that will be able to detect shifts in sensitivity.  The 
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objectives of this research were to (i) establish baseline sensitivities of C. sojina to the QoI 

fungicides azoxystrobin, pyraclostrobin, and trifloxystrobin and (ii) compare QoI fungicide 

sensitivities of C. sojina isolates collected from fields applied with QoI fungicides in 2007, 2008, 

and 2009 with the baseline sensitivities. 

MATERIALS AND METHODS   

Collection, isolation, maintenance, and preparation of C. sojina isolates 

 For determining baseline sensitivity levels, 55 C. sojina isolates were obtained from 7 

different states (Table 3.1).  All baseline isolates were collected from soybean fields prior to QoI 

fungicide registration on soybean in the United States.  In 2007, 2008, and 2009, C. sojina 

isolates were collected from soybean fields (Table 3.2).  In the majority of the fields in which 

isolates were collected in 2007-2009, either a QoI fungicide or a QoI + DMI fungicide mixture 

had been applied.  The soybean fields in which C. sojina isolates were collected from 2007 to 

2009 included both university research and commercial production fields.   

            To obtain pure C. sojina cultures from soybean leaflets, frogeye leaf spot lesions were 

evaluated for C. sojina sporulation using a dissecting microscope.  If the lesions were not 

sporulating, leaflets were placed in a humidity chamber (a sealed clear plastic box with sterile 

distilled water-dampened filter paper at the bottom) for 12-24 hours to encourage sporulation.  

Sterile distilled water (2 µl) was placed onto sporulating lesions with a micropipette, and conidia 

and water were then drawn back up and deposited onto soybean stem lima bean agar (SSLBA) 

(Phillips and Boerma, 1980) amended with rifampicin (25 mg/L) in petri dishes (100 mm 

diameter) and spread with a sterile bent glass rod.  After 18 hours, a germinating conidium from 

each isolate was selected and aseptically transferred to a separate petri dish containing SSLBA, 
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incubated for 7 days under 12 hours fluorescent and black lights / 12 hours darkness at 25°C.  

Agar plugs (0.6 cm
2
) with mycelia and conidia were stored in a 15% glycerol solution in sterile 

cryogenic tubes at -80°C.   

           For all QoI fungicide sensitivity experiments, isolates were prepared using methods 

adapted from Bradley and Pedersen (2011). Thawed fungal plugs were placed onto SSLB media 

amended with rifampicin and were incubated for 7 days at 25°C under 12 hours fluorescent and 

black lights / 12 hours darkness to produce conidia.  These isolates were sub-cultured several 

times to produce enough conidia to run the assays.  Conidial suspensions were prepared by 

placing 4 or 5 plugs (1 cm
2
) containing conidia, mycelia, and SSLB media into 20 ml sterile 

glass tubes, adding 4 ml sterile distilled water, and vortexing for 30 seconds.  The conidial 

suspension was filtered through 4 layers of cheese cloth into a sterile glass tube.The 

concentration of the conidial suspension was adjusted to 1 × 10
5
 conidia/ml after initial 

concentration estimates were determined using a hemacytometer.  

 Determination of alternative respiration in C. sojina 

 C. sojina when exposed to a QoI fungicide (azoxystrobin).  Previous research has shown 

that some fungi possess an alternative respiration pathway which allows them to bypass complex 

III and IV in the The objective of this experiment was to determine whether alternative 

respiration is induced in mitochondrial respiration chain, which is accounted for by the presence 

of the respiratory enzyme alternative oxidase (Kubicek et al, 1980; Minagawa and Yoshimoto, 

1987).  The alternative respiration pathway has allowed some fungal spores to germinate in the 

presence of high doses of QoI fungicides in vitro (Olaya and Koller, 1999; Olaya et al., 1998; 

Vincelli and Dixon, 2002; Ziogas et al., 1997). The addition of salicylhydroxamic acid (SHAM; 
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Sigma-Aldrich, St. Louis, MO) has been used effectively in QoI fungicide sensitivity assays to 

prevent fungi from using an alternative respiration pathway (Olaya and Koller, 1999).   

          Five C. sojina baseline isolates (S5, S9, S10, S13, and S22) were randomly selected to test 

the effect of azoxystrobin fungicide on conidial germination with and without the addition of 

SHAM in the media.  A stock solution of technical-grade azoxystrobin (96% a.i.; Syngenta Crop 

Protection) was prepared at a concentration of 100 mg/ml in acetone.  Serial dilutions of the 

azoxystrobin stock solution were prepared in acetone and amended to potato dextrose agar (PDA; 

Becton, Dickinson, and Company, Franklin Lakes, NJ) at 0, 0.0001, 0.001, 0.01, and 0.1µg/ml.  

In addition, SHAM at 60 µg/ml dissolved in methanol was either added or not added to the PDA.  

All amendments were added to the autoclaved PDA after it had cooled to 55°C.  C. sojina 

conidial suspensions were prepared for each isolate as previously described above, and 75 µl of 

the conidial suspensions were pipetted onto the amended PDA surface, spread with a sterile bent 

glass rod, and incubated in the dark for 15-18 hours at 26°C. Two replicate petri dishes (60 mm 

diameter) were prepared for each azoxystrobin-SHAM × C. sojina isolate combination. Using a 

compound microscope, germination was determined for 50 conidia per petri dish.  A conidium 

was considered to be germinated if the germ tube was at least as long as the length of the 

conidium. 

 For each of the replicate plates, conidial germination was converted to percent inhibition 

compared with the no-azoxystrobin control plates by 100 – ([percent germination of 

azoxystrobin-amended]/[mean percent germination of control]).  The azoxystrobin fungicide 

concentration that effectively inhibited conidial germination by 50% of the azoxystrobin control 

(EC50) was determined for each C. sojina isolate by linear interpolation using the two 

concentrations that bracketed 50% (Wise et al., 2008).  The experiment was arranged in using a 
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completely randomized design (CRD) and was repeated once.  Data from each experiment were 

first analyzed separately using the general linear model procedure (PROC GLM) in SAS 

(Version 9.2; SAS Institute, Inc., Cary, NC) to compute variances; then, a two-tailed F test for 

equality of variances was conducted to determine whether data from trials could be combined.  

Combined data were analyzed using PROC GLM in SAS, and least-square means t tests (PDIFF 

option in SAS) were used to compare EC50 values of the eight C. sojina isolates with SHAM 

versus without SHAM.   

 Fungicide sensitivity testing of C. sojina populations 

 Technical grade formulations of azoxystrobin (96% a.i.; Syngenta Crop Protection), 

pyraclostrobin (98% a.i.; BASF Corporation), and trifloxystrobin (98% a.i.; Bayer CropScience) 

were used to prepare stock solutions at concentrations of 100 mg/ml in acetone.  Serial dilutions 

in acetone were prepared for each fungicide. C. sojina fungicide sensitivity was assessed by 

determining conidial germination on PDA amended with different concentrations of each 

fungicide.  Azoxystrobin was added to PDA at 0.0001, 0.001, 0.01, 0.1, and 1 µg/ml, and 

pyraclostrobin and trifloxystrobin were each added to PDA at 0.00001, 0.0001, 0.001, 0.01, and 

0.1µg/ml after PDA had cooled to 55°C after autoclaving.  Non-fungicide-amended PDA also 

was included.  SHAM dissolved in methanol was added to all media at 60µg/ml when the media 

had cooled to 55°C after autoclaving.  Azoxystrobin, pyraclostrobin, and trifloxystrobin EC50 

values were determined for the C. sojina baseline isolates (Table 2.1), and isolates collected in 

2007, 2008, and 2009 (Table 3.2) using the methods described above. 

 Because of limited space, fungicide sensitivities of all C. sojina isolates (baseline, 2007, 

2008, and 2009) were assayed over multiple trials.  A reproducibility test described by Wong and 

Wilcox (2000) was used to validate each trial.  An internal control C. sojina baseline isolate (S9) 
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was randomly selected, and EC50 values were determined in eight separate trials for azoxystrobin, 

pyraclostrobin, and trifloxystrobin using methods described in section of determination of 

alternative respiration.  The mean, standard error, and 95% confidence interval were calculated 

for this isolate as described by Wong and Wilcox (2000).  If the EC50 value of the internal 

control isolate did not fall within the 95% confidence interval in the trials designed to establish 

baseline sensitivities for all of the isolates, those trials were dropped and repeated until the EC50 

of the internal control isolate was within the 95% confidence interval.  For each trial, isolates 

were assayed on two replicate plates.  Each isolate was assayed in at least two separate trials.   

 For each fungicide – C. sojina population (baseline, 2007, 2008, and 2009) combination, 

mean and median EC50 values were calculated.  Within a fungicide, the mean EC50 values for 

each C. sojina population were compared using Tukey’s honestly significant difference (HSD) 

test (alpha = 0.05) in SAS. 

RESULTS  

Determination of alternative respiration in C. sojina 

 The analysis of variance of EC50 values of the eight C. sojina isolates exposed to 

azoxystrobin with and without SHAM indicated that the main effects of isolate and SHAM were 

significant (P = 0.0119 and 0.0001, respectively), but the interaction of isolate × SHAM was not 

significant (P = 0.1271).  In three of the five isolates tested, EC50 values were significantly (P ≤ 

0.05) greater when SHAM was not included in the azoxystrobin-amended media (Table 3.3).  

These results indicated that alternative respiration may exist in C. sojina; therefore, SHAM was 

used to inhibit alternative respiration in subsequent C. sojina QoI fungicide sensitivity assays.  
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Fungicide sensitivity testing of C. sojina populations 

 The range of EC50 values determined for C. sojina baseline isolates exposed to 

azoxystrobin was 0.00297-0.03241 µg/ml, with a mean and median of 0.01287 and 0.01252 

µg/ml, respectively.  The azoxystrobin baseline EC50 values were not normally distributed (P = 

0.0023) (Figure 3.1).  The ranges of azoxystrobin EC50 values determined for C. sojina isolates 

collected in 2007, 2008, and 2009 were 0.00297-0.02574, 0.00171-0.03088, and 0.00249-

0.03162 µg/ml, respectively.  The mean and median azoxystrobin EC50 values for C. sojina 

isolates collected in 2007, 2008, and 2009 were 0.00966 and 0.00903µg/ml, 0.01506 and 

0.01499µg/ml, and 0.01627 and 0.01614 µg/ml, respectively.   

 The range of EC50 values determined for C. sojina baseline isolates exposed to 

pyraclostrobin was 0.00014-0.00076 µg/ml, with a mean and median of 0.00028 and 0.00025 

µg/ml, respectively.  The pyraclostrobin baseline EC50 values were not distributed normally (P = 

0.0001) (Figure 3.2).  The ranges of pyraclostrobin EC50 values determined for C. sojina isolates 

collected in 2007, 2008, and 2009 were 0.00007-0.00057, 0.00004-0.00052, and 0.00015-

0.00074 µg/ml, respectively.  The mean and median pyraclostrobin EC50 values for C. sojina 

isolates collected in 2007, 2008, and 2009 were 0.00026 and 0.00026µg/ml, 0.00027 and 

0.00029µg/ml, and 0.00031 and 0.00029 µg/ml, respectively.   

 The range of EC50 values determined for C. sojina baseline isolates exposed to 

trifloxystrobin was 0.00018-0.00311 µg/ml, with a mean and median of 0.00116 and 0.00107 

µg/ml, respectively.  The trifloxystrobin baseline EC50 values were not distributed normally (P = 

0.0006) (Figure 3.3).  The ranges of trifloxystrobin EC50 values determined for C. sojina isolates 

collected in 2007, 2008, and 2009 were 0.00015-0.00293, 0.00005-0.00309, and 0.00013-

0.00277 µg/ml, respectively.  The mean and median trifloxystrobin EC50 values for C. sojina 
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isolates collected in 2007, 2008, and 2009 were 0.00116 and 0.00114µg/ml, 0.00153 and 

0.00149µg/ml, and 0.00163 and 0.00158 µg/ml, respectively.   

 Compared to the mean azoxystrobin and pyraclostrobin EC50 values of the baseline 

isolates, mean azoxystrobin and pyraclostrobin EC50 values of isolates collected in 2007, 2008, 

or 2009 did not significantly differ from their respective mean baseline EC50 value (Table 3.4).  

Compared to the mean trifloxystrobin EC50 value of the baseline isolates, isolates collected in 

2009 had a significantly greater mean trifloxystrobin EC50 value. 

DISCUSSION 

 Results of our research indicate that some C. sojina isolates had significantly greater 

azoxystrobin EC50 values when SHAM was not added to the media.  This is an indication that C. 

sojina may be able to use the alternative respiration pathway to overcome the inhibitory action of 

QoI fungicides in vitro.  This has been reported in a number of different fungi (Olaya and Koller, 

1999; Vincelli and Dixon, 2002; Wise et al., 2008; Ziogas et al., 1997), including C. zeae-maydis 

(Bradley and Pedersen, 2011), which is in the same genus as C. sojina.  Reportedly, the 

alternative respiration pathway is not believed to occur in nature because plant-produced 

flavones prevent the induction of alternative oxidase (Mizutani et al., 1996; Olaya and Koller, 

1999; Olaya et al., 1998).  In light of our results, SHAM should be added to media to prevent 

alternative oxidase when conducting in vitro QoI fungicide sensitivity assays with C. sojina. 

 Differences in the intrinsic activity on C. sojina conidial germination were observed 

among the QoI fungicides evaluated in this study.  Based on mean EC50 levels, intrinsic activity 

was greatest with pyraclostrobin, followed by trifloxystrobin, followed by azoxystrobin.  This is 

similar to what was reported with C. zeae-maydis when the same QoI fungicides were evaluated 

for their activity on conidial germination (Bradley and Pedersen, 2011).  In C. beticola, the 
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intrinsic activity of pyraclostrobin on conidial germination was greater than that of 

trifloxystrobin (Secor et al., 2010).  Although these differences in in vitro activity on C. sojina 

conidial germination were observed in our laboratory setting, differences in efficacy for frogeye 

leaf spot control are not always observed among fungicide products containing these QoI active 

ingredients when evaluating them for control of frogeye leaf spot in the field (Grybauskas and 

Reed, 2006; Shaner and Buechley, 2007). 

 Shifts toward reduced fungicide sensitivity historically have been common in plant 

pathogenic species of Cercospora.  Populations of C. arachidicola and C. beticola with 

resistance to methyl benzimidazole carbamate (MBC) fungicides were first reported several 

years ago (Bugbee, 1996; Campbell et al., 1998; Clark et al., 1974; Georgopoulos and Dovas, 

1973; Littrell, 1974; Rupel and Scott, 1974; Smith and Littrell, 1980; Weiland and Halloin, 

2001), and populations of C. kikuchii, another soybean pathogen, have been reported to have 

resistance to thiophanate methyl, an MBC fungicide (Imazaki et al., 2006).  In addition, 

populations of C. beticola with reduced sensitivity to triphenyltin hydroxide (Bugbee, 1995; 

Bugbee, 1996; Campbell et al., 1998; Giannopolitis, 1978) and DMI fungicides (Karaoglanidis et 

al., 2000; Karaoglanidis et al., 2002; Secor et al., 2010) have been reported.  Field resistance to 

QoI fungicides in speices of Cercospora has not been reported, but Malandrakis et al. (2006) 

obtained pyraclostrobin fungicide-resistant strains of C. beticola in the laboratory through 

ultraviolet mutagenesis.  In addition, Secor et al. (2010) reported that some individual isolates of 

C. beticola had a 400-fold shift towards reduced sensitivity to pyraclostrobin.  In light of the 

history of other Cercospora species shifting towards less sensitivity and resistance to some 

fungicides, in addition to our results showing a statistically significant shift toward less 

sensitivity to the QoI fungicide trifloxystrobin, it is important that C. sojina populations continue 
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to be monitored for their sensitivities to QoI fungicides.  In addition, baseline sensitivities and 

resistance monitoring of C. sojina to other fungicide classes (such as DMI and MBC fungicides) 

should be initiated.   
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TABLES  

Table 3.1. Isolates of Cercospora sojina from soybean collected prior to 2001 used to determine 

baseline sensitivities to quinone outside inhibitor fungicides. 

 

State Isolates 

Alabama S28, S29, S31, S32, S33, S35, S37, S39 

Arkansas S96, S97, S99, S100 

Georgia S1, S3, S5, S6, S7, S9, S10, S11, S12, S13, S14, S16, S18, S19, S40, S134 

Illinois S127 

Iowa S123, S124, S125 

Louisiana S82, S83, S111, S114 

Mississippi S85, S86, S90, S92, S95, S101, S102, S105, S106, S107, S108, S115, S116, 

S119, S121, S122 

South Carolina S128, S130 

Wisconsin S126 
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Table 3.2. Isolates of Cercospora sojina collected from soybean in 2007, 2008, and 2009. 

 

 

 

  

Year State County No. of isolates 

2007 Illinois Gallatin 4 

  Henry 4 

  Logan 1 

  Pope 5 

  Tazewell 1 

  Vermillion 3 

  Warren 4 

2008 Illinois Alexander 42 

  Warren 2 

 Missouri Sainte Genevieve 2 

2009 Illinois Alexander 16 

  Gallatin 2 

  Piatt 11 

  Pope 3 

  White 1 

 Missouri Sainte Genevieve 7 
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Table 3.3. Sensetivity of Cercospora sojina baseline isolates to azoxystrobin measured as 

effective concentration at which 50% of conidial germination was inhibited (EC50) in 

nonamended potato dextrose agar and salicylhydroxamic acid (SHAM)-amended potato dextrose 

agar. 

a
 P value for individual isolates were determined using least-square means t tests; P value for 

comparison of overall isolate means of nonamended and SHAM-amended was determined from 

an F test. 

  

 EC50 (µg/ml)  

Isolate Nonamended SHAM-amended P value
a 

S5 0.0237 0.0200 0.4381 

S9 0.0208 0.0182 0.0173 

S10 0.0274 0.0185 0.0182 

S13 0.0228 0.0205 0.3166 

S22 0.0274 0.0226 0.0074 

Mean 0.0243 0.0200 0.0001 
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Table 3.4. Comparison of mean effective fungicide concentrations that inhibited conidial 

germination by 50% (EC50) for baseline Cercospora sojina isolates and isolates collected in 

2007, 2008, and 2009.   

a
 Means within a column followed by the same letter are not significantly different according to 

Tukey’s honestly significant difference test (alpha = 0.05). 

  

Population      Azoxystrobin EC50 

(µg/ml)
a 

    Pyraclostrobin EC50 

  (µg/ml)
a 

   Trifloxystrobin EC50 

              (µg/ml)
a 

Baseline 0.01287 ab 0.00028 a 0.00116 b 

2007 0.00966 b 0.00026 a 0.00116 b 

2008 0.01506 a 0.00027 a 0.00153 ab 

2009 0.01627 a 0.00031 a 0.00163 a 
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FIGURES  

 

 

Figure 3.1. Frequency distribution of effective azoxystrobin concentrations that inhibited 

conidial germination by 50% (EC50) for baseline Cercospora sojina isolates and isolates 

collected in 2007, 2008, and 2009.   
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Figure 3.2. Frequency distribution of effective pyraclostrobin concentrations that inhibited 

conidial germination by 50% (EC50) for baseline Cercospora sojina isolates and isolates 

collected in 2007, 2008, and 2009.   
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Figure 3.3. Frequency distribution of effective trifloxystrobin concentrations that inhibited 

conidial germination by 50% (EC50) for baseline Cercospora sojina isolates and isolates 

collected in 2007, 2008, and 2009.   
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CHAPTER FOUR: QOI FUNGICIDE RESISTANT CERCOSPORA SOJINA AND 

MANAGEMENT WITH ALTERNATIVE FUNGICIDE CHEMISTRIES 

ABSTRACT 

          Frogeye leaf spot (FLS), caused by Cercospora sojina, causes yield reductions of soybean 

(Glycine max (L) Merr.) grown in the United States and other countries. A primary method of 

managing FLS is the use of foliar fungicides in the quinone outside inhibitor (QoI) class.  

Because QoI fungicides have a high risk of fungal pathogens developing resistance to them, a 

fungicide resistance monitoring program was established for C. sojina which included the 

determination of baseline sensitivities to QoI fungicides. QoI fungicide resistant isolates were 

found at two locations in Illinois, one location in Kentucky, and two locations in Tennessee. QoI 

fungicide sensitivity levels of the resistant isolates were over 200-fold higher than baseline 

isolates using petri dish assays. A greenhouse trial was conducted with a QoI-resistant C. sojina 

isolate from Tennessee and a QoI-sensitive baseline isolate to: i) confirm that the putative QoI-

resistant isolates could cause FLS on leaves treated with QoI fungicides; and ii) determine if 

fungicides with other modes of action could control FLS caused by the QoI-resistant isolates. In 

greenhouse trials, FLS caused by the QoI-resistant isolate was not significantly (P ≤ 0.05) 

reduced with QoI fungicides compared to a water control, but FLS caused by the QoI-sensitive 

isolate was significantly reduced with QoI fungicides compared to a water control. Several 

fungicides in the demethylation inhibitor (DMI) group and the methyl benzimidazole carbamate 

(MBC) fungicide, thiophanate methyl, significantly reduced FLS caused by the QoI-resistant and 

QoI-sensitive isolates compared to their respective water controls.  These results indicate that C. 

sojina isolates resistant to QoI fungicides are present in Illinois, Kentucky, and Tennessee, and 

that FLS caused by QoI-resistant isolates may be managed with DMI or MBC fungicides.      
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INTRODUCTION 

          Frogeye leaf spot (FLS) of soybean is caused by the fungal pathogen, Cercospora sojina 

Hara, and is an economically important disease in hot humid soybean-producing regions such as 

Brazil, China, Nigeria, and the southern U.S. (Phillips, 1999). In the U.S., it has recently been 

identified in areas as far north as Iowa, Wisconsin and Ohio (Yang et al., 2001, Mengistu et al., 

2002). The estimate of soybean yield suppression due to FLS in the U.S. increased from 

approximately 23,000 to 270,000 metric tons from 1996 to 2007 (Wrather and Koenning, 2009). 

The recent increase in FLS range and severity has caused concern and interest among the 

soybean disease research groups throughout the U. S. (Mian, 2008). The use of resistant soybean 

cultivars is one of the best ways to manage frogeye leaf spot. Regardless of the availability of 

resistant soybean cultivars, foliar fungicides are still used as a method to manage FLS and other 

foliar diseases of soybean. 

         Quinone outside inhibitor (QoI) fungicides are one of the most recent groups of chemicals 

that play an important role in plant protection against many phytopathogenic fungi including 

(Anke et al 1997; Ammermann et al., 1992). QoI fungicides specifically inhibit cell respiration 

by binding at the ubiquinol oxidation center (Qo site) of the mitochondrial cytochrome bc1 

complex II (Sauter et al., 1999; Bartlett et al., 2002). QoI fungicides have been classified as 

having a high risk of fungi developing resistance to them because of their specific, single–site 

mode of action (Brent, 2007). The first QoI fungicide resistant phytopathogenic fungus observed 

was Blumeria graminis on wheat, which was reported in Germany in 1998 (Sierotzki et al., 

2000b; Chin et al., 2001). About 27 QoI fungicide resistant fungal species have been 

documented in the world and are listed by the Fungicide Resistance Action Committee (2012) 

such as Blumeria graminis (Sierotzki et al., 2000a), Mycosphaerella fijiensis (Sierotzki et al., 
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2000a), Venturia inaequalis (Steinfeld et al., 2001), Mycosphaerella graminicola (Fraaije et al., 

2005), Colletotrichum graminicola (Avila-Cruz et al., 2003), Plasmopara viticola (Chen et al., 

2007), and Alternaria spp. (Ma et al., 2003). In most phytopathogenic fungi, resistance was 

conferred by the single point mutation known as G143A, a glycine-to-alanine substitution at 

amino acid codon 143. This G143A mutation expresses high (complete) resistance, and has no 

significantly negative effect on enzyme activity (Brasseur et al., 1996). Other mutations, such as 

the F129L mutation (phenylalanine to leucine substitution at codon 129) and the G137R 

mutation (glycine to arginine substitution at codon 137), have been shown to cause moderate 

(partial) resistance (Sierotzki et al., 2000a, 2000b). Because of the single-site mode of action, 

intensive use of QoI fungicides can increase selection pressure to favor resistant strains in 

pathogen populations (Bartlett et al., 2002; Gisi et al., 2002). 

          Fungicide applications to soybean have significantly increased over the past five years due 

to claims of both a reduction in foliar disease and an increase in “plant health”(Wise and Mueller, 

2011). QoI fungicide active ingredients currently registered on soybean include azoxystrobin, 

fluoxastrobin, pyraclostrobin, and trifloxystrobin. The most important effect of QoI fungicides is 

their high efficacy in controlling infections at the first developmental stages (spore germination, 

zoospore release and motility) of the pathogen (Bartlett et al., 2002). Two families of fungicides 

are primarily used to effectively manage soybean foliar disease in practice. QoI fungicides are 

most effective when they are applied before infection takes place or at the very early stages of 

disease development (Bartlett et al., 2002). Demethylation inhibitor (DMI) fungicides can be 

applied after infection takes place but are most effective when applied at early stages of disease 

development to inhibit germ tube elongation, fungal penetration and mycelial growth (Mercer,, 

1991; Burden, et al., 1989). Some fungicide products registered for use on soybean contain both 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Sierotzki%20H%22%5BAuthor%5D
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a QoI and a DMI active ingredient, such as Quilt or Quilt Xcel (azoxystrobin + propiconazole; 

Syngenta Crop Protection, Greensboro, NC), Stratego (trifloxystrobin + propiconazole; Bayer 

CropScience, Research Triangle Park, NC), and Stratego YLD (trifloxystrobin + 

prothioconazole; Bayer CropScience). These products are useful for broad spectrum disease 

control and may help slow down the selection of isolates that are resistant to a particular class of 

fungicides (Giesler and Gustafson, 2008). Thiophanate methyl, a methyl benzimidazole 

carbamate (MBC) fungicide, sometimes is used to manage soybean diseases too. All three of the 

fungicide classes mentioned (QoI, DMI, and MBC) face resistance problems because of their 

specific sites of action. In Europe, some of the DMI fungicides have disappeared from the 

marketplace as resistance to them developed, and they no longer provided any benefit or 

advantage in plant disease control programs (Mueller and Bradley, 2008). Control failure due to 

resistance development to MBC was found in brown rot (M. fructicola) within a few years of 

MBC introduction in the mid-1960s (Anonymous, 1980). In the 1970s, benomyl, an MBC 

fungicide, was used extensively to control eyespot on wheat until resistance developed. After 

resistance developed to benomyl, none of the MBC fungicides could be used for managing this 

disease because the resistant strains of eyespot were as fit as susceptible strains (King and Griffin, 

1985; Murray et al., 1990; Murray, 1996). Another well-documented example is the sustained 

resistance of C. beticola on sugar beet to MBC fungicides in Greece (Dovas et al., 1976). 

          Based on the results of QoI fungicide sensitivity assays on the C. sojina isolates collected 

in 2007, 2008 and 2009, the sensitivity distributions of C. sojina to QoI fungicides had slightly 

shifted over the years (see Chapter 3). The objectives of this study were to: (i) monitor for QoI 

fungicide resistance in C. sojina isolates collected from different states in 2010, and (ii) 



65 
 

determine if FLS caused by C. sojina isolates with resistance to QoI fungicides in vitro could be 

controlled by QoI fungicides and other fungicide classes under greenhouse conditions. 

MATERIALS AND METHODS  

QoI fungicide resistance monitoring  

           In total, 179 isolates of C. sojina were collected in 2010 from soybean production fields 

receiving QoI fungicide applications. Of the 179 isolates, 54 were collected from two Tennessee 

counties, 13 from one Kentucky County, 88 from six Illinois counties, 9 from two Mississippi 

counties, and 15 from two Indiana counties (Table 4.1). Drs. Melvin Newman (University of 

Tennessee), Don Hershman (University of Kentucky), Tom Allen (Mississippi State University), 

and Kiersten Wise (Purdue University) collected and sent the FLS-affected soybean leaf samples 

to the University of Illinois from Tennessee, Kentucky, Mississippi, and Indiana, respectively. 

Leaf samples from Illinois were collected by personnel in Dr. Carl Bradley’s research program at 

the University of Illinois. 

           C. sojina isolates were obtained via single spore isolation directly from diseased tissue. 

Single conidia were transferred to petri dishes (100 mm diameter) containing soybean stem and 

lime bean agar (SSLB) with rifampicin (25 mg/liter) (Phillips and Boerma, 1980). These isolates 

were then incubated about one week under alternate light (fluorescent with black light 12 hours) 

and darkness (12 hours) in a growth chamber (25 ± 2°C) until the agar surface was covered with 

mycelia and conidia. Plugs with mycelia and conidia were stored in 1.5 ml micro centrifuge 

tubes containing 15% glycerin and frozen at -80°C for later use. 

 Technical grade formulations of azoxystrobin, trifloxystrobin, and pyraclostrobin were 

used to prepare stock solutions at a concentration of 100µg/ml in acetone. Serial dilutions in 
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acetone were prepared for each fungicide. Azoxystrobin was amended to potato dextrose agar 

(PDA) at 0.0001, 0.001, 0.01, 0.1, and 1 µg/ml. Trifloxystrobin or pyraclostrobin were amended 

to PDA at 0.00001, 0.0001, 0.001, 0.01 and 0.1µg/ml after PDA had been cooled to about 60°C 

after autoclaving. A stock solution of salicylhydroxamic acid (SHAM) was prepared at a 

concentration of 100 mg/ml in methanol. It was then added to all fungicide-amended media at a 

concentration of 60 μg/ml to inhibit the effects of the alternative oxidative pathways that some 

fungi use to overcome QoI fungicide toxicity in fungicide sensitivity assays in vitro (Bartlett et 

al., 2002; Wise et al., 2008).  

C. sojina isolate preparation and conidia harvesting methods were adapted from Bradley 

and Pedersen (2011) and Wise et al. (2008). Thawed fungal plugs were placed onto SSLB media 

amended with rifampicin and were incubated in a growth chamber about one week to produce 

conidia. These isolates were subcultured on new SSLB agar several times to produce enough 

conidia to run the assays. Conidial suspensions were prepared by placing 4 or 5 plugs (1cm
2
) 

containing conidia, mycelia, and SSLB media into 20 ml sterile glass tubes, adding 4ml sterile 

distilled water, and vortexing for 30 seconds. The conidial suspension was filtered through four 

layers of cheesecloth a sterile tube to remove any hyphal filaments. The concentration of the 

conidial suspension was adjusted to approximately 1 x 10
5 
conidia per ml using a 

hemacytometer, and 75 µl of the conidial suspension was pipetted onto the fungicide-amended 

media surface, spread with a sterile bent glass rod, and incubated for 15-18 hours at 26°C in the 

dark. Using a compound microscope (10× magnification), fifty conidia were evaluated per petri 

dish by visually assessing conidia germination. Conidia with germination tubes at least as long as 

the conidia were considered germinated. For each of the two replicate dishes, conidial 

germination was converted to percent inhibition compared with the 0 µg/ml fungicide control 
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treatment by: 100 ([percent germination of fungicide-amended/[mean percent germination of 

0µg/ml]). The concentration of fungicide that effectively reduced conidial germination by 50% 

relative to the untreated control (EC50) was determined for each C. sojina isolate by linear 

interpolation using the two concentrations (Wise et al., 2008). 

          Because of limited space and time, fungicide sensitivities of C. sojina isolates were 

assayed over multiple trials. The reproducibility test described by Wong and Wilcox (2000) was 

used to validate each trial.  C. sojina isolate S9 was used as an internal control for its sensitivity 

to azoxystrobin, trifloxystrobin and pyraclostrobin. If the EC50 value of the internal control 

isolate did not fall within the 95% confidence interval in the test trial, the trial was dropped and 

repeated until the EC50 of the internal control isolate was within its 95% confidence interval. 

 Initially, all 179 C. sojina isolates collected in 2010 were going to be assayed, and their 

EC50 values of QoI fungicides were going to be calculated using the methods above. However, 

when the C. sojina isolates sent from Lauderdale County, TN were assayed, their EC50 values 

were >100 fold higher than mean EC50 values of baseline C. sojina isolates (see Chapter 3 for 

mean EC50 values of baseline isolates). To increase the efficiency of monitoring for QoI resistant 

isolates, it was decided that discriminatory doses of azoxystrobin, pyraclostrobin, and 

trifloxystrobin would be established that would distinguish between QoI sensitive and resistant 

C. sojina isolates. Once established, the discriminatory doses would then be used to evaluate the 

rest of the C. sojina isolates. If additional QoI resistant C. sojina isolates were identified using 

the discriminatory doses, those isolates would then be assayed on all of the fungicide 

concentrations and their EC50 values would be calculated using the methods above.            

 To establish discriminatory doses of QoI fungicides that would distinguish QoI resistant 

and sensitive C. sojina isolates, twenty-six C. sojina isolates from Lauderdale County, TN that 



68 
 

had been found to have very high EC50 values of QoI fungicides and 26 C. sojina baseline 

isolates were used for this study. Isolates were tested on PDA amended with azoxystrobin or 

trifloxystrobin at 0, 0.01, 0.1, 1, 10, or 100µg/ml or PDA amended with pyraclostrobin at 0, 

0.0001, 0.01, 0.1, 1, or 10µg/ml. SHAM was added to all of the fungicide concentration 

treatments at 60µg/ml. 

           The method to determination of discriminatory dose was the same as the fungicide assay 

used to determine for baseline sensitivities (see Chapter 3). Seventy five µl of the conidial 

suspension (1 x 10
5 
conidia per ml) were pipetted onto the fungicide-amended media surface 

spread with a sterile bent glass rod and incubated for 15-18 hours at 26°C in the dark. Using a 

compound microscope, fifty conidia were counted per treatment replication. Conidia with 

germination tubes at least as long as the length of conidia was considered germinated. Two 

replicate petri dishes (60 mm diameter) were prepared for each fungicide × C. sojina isolate 

combination for each fungicide concentration test. The petri dishes were arranged using a 

completely randomized design.  Isolates were assayed on two replicate plates. Each isolate was 

assayed in at least two separate trials. QoI resistant isolate CS1036 and sensitive baseline isolate 

S9 were used as internal controls. 

 Greenhouse fungicide study  

          Seeds of a soybean cultivar susceptible to FLS (Asgrow 3101) were planted in 5 x 5 cm 

pots with Sunshine Mix 1 (Sun Gro Horticulture Inc., Bellevue, WA), placed in 20 x 30 cm trays, 

and  grown under 1000 watt high pressure sodium bulbs set for a 12-h photoperiod, at 23 ± 1°C. 

After emergence, plants were thinned to 3 seedlings per pot; the plants in two pots were used as 

the experiment unit. Fungicide treatments and a water control were applied to 10 day old 

soybean plants inside a mechanized spray chamber.  Fungicide treatments included the QoIs 
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azoxystrobin at 0.28 kg a.i./ha (Quadris, Syngenta Crop Protection), pyraclostrobin at 0.22 kg 

a.i./ha (Headline, BASF Corp. Research Triangle Park, NC), fluoxastrobin at 0.20 kg a.i./ha 

(Evito, Arysta LifeScience, Cary, NC), and trifloxystrobin at 0.13 kg a.i./ha (Gem, Bayer 

CropScience).  DMI fungicide treatments included prothioconazole at 0.10 kg a.i./ha (Proline, 

Bayer CropScience), propiconazole at 0.19 kg a.i./ha (Tilt, Syngenta Crop Protection), 

tebuconazole at 0.13 kg a.i./ha (Bayer CropScience), tetraconazole at 0.08 kg a.i./ha (Domark, 

Valent BioSciences, Walnut Creek, CA), and flutriafol at 0.13 kg a.i./ha (Cheminova Inc., 

Research Triangle Park, NC). In addition, the MBC fungicide thiophanate methyl (Topsin M, 

United Phosphorus Inc., King of Prussia, PA) was evaluated at 0.59 kg a.i./ha. One day after 

fungicide treatments were applied, the unifoliolate leaves of the soybean plants were inoculated 

with either a QoI-resistant (isolate CS1036) or a sensitive (isolate S9) C. sojina isolate with a 

hand mist sprayer containing a conidial suppension (6 × 10
4
 condia per ml). The inoculated 

plants were then covered with a transparent plastic dome for 4 days to maintain high relative 

humidity (RH) (≥90%). Disease severity was rated 10 days after inoculation by visually 

estimating the percent area of the unifoliate leaves covered with FLS lesions. The experiment 

was designed as a split-plot arrangement in a randomized complete block (RCB). Isolates were 

considered as the whole plot factors and fungicide treatment as the subplot with four replicates. 

All main effects were considered fixed factors. The average disease severity was calculated for 6 

plants from each experimental unit. The trial was repeated once over time.  

Data analysis for greenhouse study 

          Data from each experiment were analyzed first separately using the general linear model 

procedure (PROC GLM) in SAS (version 9.2; SAS Institute, Inc., Cary, NC) to compute the 

variances. If the Brown and Forsythe's F test indicated homogenous variance, data from trials 
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were combined for further analysis. Disease severity data of greenhouse fungicide treatment 

were transformed to percent disease control through (1-(severity of treatment /severity of 

water))*100. The disease control data were transformed using logArcsin prior to analysis.   

PROC MIXED in SAS (version 9.2; SAS Institute, Inc., Cary, NC) was used to evaluate analysis 

of variance. Multiple comparisons (LSD) of fungicide interactions with pathogen strain were 

calculated using pdmix800 (α = 0.05) in SAS (A. M. Saxton, University of Tennessee, 

Knoxville, TN). 

RESULTS 

QoI fungicide resistance monitoring 

             The analysis of variance from in vitro fungicide sensitivity assays showed that error 

variance of mean EC50 values were homogenous (P ≥ 0.05). Thus, the four trials of different 

fungicide assays for C. sojina isolates collected in 2010 and baseline isolates were combined for 

further analysis. For the establishment of discriminatory doses of fungicides, the concentrations 

that completely inhibited conidial germination of the QoI sensitive isolates but allowed at least 

50% of the conidia of the QoI resistant isolates to germinate were 1 μg/ml of azoxystrobin, 1 

µg/ml of trifloxystrobin, and 0.1 μg/ml of pyraclostrobin. These fungicide concentrations were 

determined to be the discriminatory doses that can be used to distinguish between QoI resistant 

and QoI sensitive C. sojina isolates.  

Twenty-seven C. sojina isolates collected from Tennessee, 3 isolates from Kentucky, and 

3 isolates from Illinois had EC50 values at least 100-fold greater than the mean EC50 values from 

C. sojina baseline isolates for azoxystrobin, pyraclostrobin, and trifloxystrobin and were 

considered to be resistant to QoI fungicides (Tables 4.1 and 4.2). C. sojina isolates with these 
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high EC50 values were found in two different locations in Tennessee (Gibson and Lauderdale 

Counties), one location in Kentucky (Caldwell County), and two different locations in Illinois 

(Gallatin and Pope Counties). All of the isolates (26 out of 26) from the Lauderdale County, TN 

location had very high EC50 levels, but the frequency of isolates with high EC50 values were 

lower at the other locations, ranging from 3.5% (Gibson County, TN; one out of 28 isolates) to 

23.1% (Caldwell County, KY; 3 out of 13 isolates).     

Greenhouse fungicide study  

           The data from the two greenhouse experiments had homogeneous variances according to 

the Brown and Forsythe's Test; therefore, the data from the two experiments were combined 

together for further analysis. Significant interactions were observed between C. sojina isolates 

and fungicide treatments (P < 0.0001).  Significant main effects of the fungicides and the C. 

sojina isolates also were observed (P < 0.0001) (Table 4.3). All fungicides tested provided 

moderate to high levels of control of FLS caused by the QoI sensitive C. sojina isolate (at least 

60% control; Fig. 4.1). The QoI fungicides tested (azoxystrobin, pyraclostrobin, fluoxastrobin, 

and trifloxystrobin) provided little to no control of FLS caused by the QoI resistant C. sojina 

isolate (≤25% control); however, all of the DMI fungicides and thiophanate methyl provided 

moderate to high levels of control of FLS caused by the QoI resistant C. sojina isolates 

(approximately ≥75% control).  

DISCUSSION 

 Isolates of C. sojina with high EC50 values of the QoI fungicides azoxystrobin, 

pyraclostrobin, and trifloxystrobin were identified at two locations in Tennessee, two locations in 

Illinois, and one location in Kentucky. FLS caused by one of these isolates was not controlled 
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with QoI fungicides in the greenhouse, indicating that these isolates are resistant to QoI 

fungicides. The fields in which the QoI resistant isolates were collected differed in their histories 

of management practices. The field located in Lauderdale County, TN had been cropped to 

soybean since at least 2007 using no-tillage practices. QoI fungicides had been applied to the 

crops since at least 2009, and the field had a history of FLS (M. Newman, personal 

communication). The farmer of this field had reported a lack of FLS control in 2010 after two 

applications of fungicides containing QoI active ingredients. The Gibson County, TN field had 

been cropped to soybean since at least 2007 and had been used as a University of Tennessee 

research site since then to test foliar fungicides from different classes on soybean (M. Newman, 

personal communication). The two fields in Illinois and the field in Kentucky were most recently 

planted to soybean in 2008, and FLS had been observed in the past but was not a frequent 

problem (C. Bradley and D. Hershman, personal communications). The Illinois and Kentucky 

fields were being used as research sites to test foliar fungicides from different classes on soybean 

by the University of Illinois and University of Kentucky in 2010. Foliar fungicides had been 

applied to the Illinois and Kentucky fields or in adjacent fields in the past, but on a very 

infrequent basis.  

All of the C. sojina isolates recovered from the Lauderdale County, TN field were 

resistant to QoI fungicides, while less than 25% of the C. sojina isolates recovered from the 

Illinois and Kentucky fields were resistant to QoI fungicides. Considering that the Lauderdale 

County, TN field had been continuously cropped to soybean without tillage for several years, the 

level of C. sojina inoculum likely was high. In addition, QoI fungicides (and no other classes) 

had been applied to the same field for several years. Considering all of this, the selection 

pressure being applied to the C. sojina population was greatest in the Lauderdale County, TN 
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field, which likely was the reason that all recovered C. sojina isolates were resistant to QoI 

fungicides. Selection pressure was lowest at the Illinois and Kentucky fields, where the fields 

had been rotated to other crops and fungicide use was infrequent, which is why QoI resistant C. 

sojina isolates were recovered less frequently than QoI sensitive isolates. Although the Gibson 

County, TN field had a history of fungicide use, fungicides from other classes in addition to QoI 

fungicides had been applied. The fact that other classes of fungicides were applied in this field 

may have slowed down the selection for C. sojina isolates with QoI resistance, which may be 

why QoI resistant isolates made up less than 4% of the isolates recovered. The differences in 

frequencies of recovered QoI resistant C. sojina isolates indicate that in situations where the only 

FLS management practice used was the application of QoI fungicides (i.e. Lauderdale County, 

TN field), the risk of fungicide resistance and the frequency of fungicide resistant isolates may 

be greatest.  In addition, in fields where additional practices are used to manage FLS, such as 

crop rotation and use of different fungicide classes (i.e. Illinois and Kentucky fields), the risk of 

fungicide resistance and the frequency of fungicide resistant isolates may be lower. In light of 

these findings, it is apparent that a risk of selecting QoI resistant isolates, even in areas where 

fungicides are not frequently used, is still present. The high genetic variability within C. sojina, 

as observed by Bradley et al. (unpublished), may be a component of this risk, and only one QoI 

fungicide application may result in the selection of QoI resistant isolates in such a highly 

variable fungus. 

The magnitude of the shift in QoI fungicide sensitivity from the C. sojina baseline 

isolates compared to the QoI resistant isolates is very high (>100 fold). In general, isolates that 

are at least 100 fold less sensitive to QoI fungicides have the G143A mutation (Fungicide 
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Resistance Action Committee, 2004). Additional research is needed to verify if resistance to QoI 

fungicides in C. sojina is due to the G143A mutation. 

In light of the confirmation of the presence of QoI resistant C. sojina isolates in several 

states, additional surveys should be conducted to determine if resitant isolates are present in 

other counties and states where soybean is grown. The development of the discriminatory doses 

will help speed up the diagnosis of QoI resistant isolates, since isolates can be tested on media 

amended with only one concentration of fungicide rather than several. If the specific mutation 

responsible for QoI resistance in C. sojina is determined, PCR assays may be developed that can 

identify QoI resistant C. sojina isolates directly from C. sojina – infected soybean leaf DNA. 

This would significantly increase the efficiency of detecting QoI resistant isolates, as C. sojina 

would not have to be isolated and cultured from the plants. Such PCR assays have been 

successfully utilized in other fungicide resistance monitoring programs (Ma and Michailides, 

2005; Avenot and Michailides, 2010). 

 In areas with high risk of FLS causing yield reductions to soybean, fungicide resistance 

management tactics should be implemented. According to Hewitt (1998), important anti-

resistance strategies include: using fungicides only when necessary; applying fungicides at the 

manufacturer’s recommended rate; avoiding multiple applications of fungicides with the same 

mode of action; applying combinations of fungicides with different modes of action; and 

avoiding treatments of large areas. Results of the greenhouse fungicide study indicated that 

fungicides in the DMI and MBC classes could be used to control FLS caused by a QoI resistant 

C. sojina isolate. When foliar fungicides are needed to control FLS, farmers should consider 

applying fungicides from the DMI or MBC classes, perhaps in combination with a QoI 

http://www.scopus.com/authid/detail.url?authorId=7005809664&eid=2-s2.0-77954887528
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fungicide. This practice should provide adequate control of FLS, while implementing a 

recommended anti-resistance strategy. 

One of the fungicide resistance management strategies reported by Peever and Milgroom 

(1995) is to delay the evolution of resistance by using cultural methods, such as host plant 

resistance and crop rotation, to reduce the growth rates of both resistant and sensitive isolates. 

Soybean cultivars with high levels of resistance to C. sojina are available for farmers to plant, 

especially those in the southern U.S. In fields with histories of FLS, farmers should first use 

cultural practices, such as crop rotation and resistant cultivars, to manage FLS and not rely solely 

on fungicides. Cultivars that contain the Rcs3 gene have been shown to confer resistance to all 

known races of C. sojina that occur in the U.S. (Cruz and Dorrance, 2009; Mian et al., 1998; 

Phillips, 1999; Phillips and Boerma, 1982). 

As recommended by Hewitt (1998), using fungicides only when necessary is an 

important anti-resistance strategy. The use of QoI foliar fungicides on field crops for reasons 

other than disease control (i.e. physiological benefits) is being promoted (Wise and Mueller, 

2011). In controlled studies, physiological effects, such as delaying senescence, altering amounts 

of plant hormones, increasing activity of antioxidative enzymes, and increasing nitrate reductase, 

have been reported (Glaab and Kaiser, 1999; Grossman et al., 1999; Grossman and Retzlaff, 

1997; Ruske et al., 2003; Wu and von Tiedemann, 2001; Wu and von Tiedemann, 2002; Ypema 

and Gold, 1999). The increased use of QoI fungicides on field crops for reasons other than 

disease control could increase the selection of QoI resistant C. sojina isolates and isolates of 

other fungal pathogens of field crops; thus, it is important that farmers should apply fungicides 

only for purposes of disease management. 
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TABLES   

Table 4.1. Collection locations, total number of isolates, and number of QoI resistant isolates of 

C. sojina collected in 2010. 

 

 

 

 

 

 

 

  

State County Total no. of isolates No. of QoI resistant isolates 

Tennessee Gibson 28 1 

Tennessee Lauderdale 26 26 

Kentucky Caldwell 13 3 

Illinois Gallatin 19 2 

Illinois  Pope 5 1 

Illinois Warren 19 0 

Illinois DeKalb 13 0 

Illinois St. Clair 20 0 

Illinois Alexander 12 0 

Mississippi Rankin 5 0 

Mississippi Washington 4 0 

Indiana Tippecanoe 15 0 
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Table 4.2. Effective concentrations of azoxystrobin, pyraclostrobin, and trifloxystrobin 

fungicides in which 50% conidial germination was inhibited (EC50) for QoI fungicide resistant 

Cercospora sojina isolates collected in 2010 and the mean EC50 values for baseline C. sojina 

isolates. 

 

State County Isolate Azoxystrobin Pyraclostrobin Trifloxystrobin 

 EC50 (µg/ml)  

Tennessee Gibson CS10117 2.9951 0.3964 1.1309 

Tennesee  Lauderdale CS1023 3.0129 0.3318 1.0489 

  CS1024 3.5403 0.4461 1.3954 

  CS1025 3.1068 0.3182 0.9028 

  CS1026 3.0041 0.2980 1.0111 

  CS1027 3.0460 0.3486 1.2362 

  CS1028 3.6752 0.3047 1.1454 

  CS1029 3.9555 0.2975 0.4140 

  CS1030 3.1448 0.3068 0.8148 

  CS1031 3.0515 0.3051 0.7086 

  CS1032 3.0684 0.2994 0.8070 

  CS1033 3.1623 0.2879 0.8150 

  CS1034 2.9762 0.2995 0.4381 

  CS1035 3.0124 0.3214 0.8034 

  CS1036 3.0515 0.2971 0.6904 

  CS1037 3.2581 0.2998 0.7031 

  CS1038 3.1376 0.3256 1.1222 

  CS1039 3.0390 0.3051 1.3777 

  CS1040 3.0295 0.3453 0.6035 

  CS1041 3.2037 0.3088 0.6133 

  CS1042 3.1240 0.3068 0.6771 

  CS1043 3.4387 0.3321 0.9843 

  CS1044 3.3651 0.3452 0.7172 

  CS1045 3.2639 0.3113 1.1045 

  CS1046 3.2042 0.3415 0.6834 

  CS1047 3.1662 0.3475 1.2108 

Kentucky Caldwell CS1084 3.2750 0.3813 2.2565 

  CS1090 3.1255 0.3162 0.5733 

  CS1093 3.1623 0.3648 1.7004 

Illinois Gallatin CS1065 3.1623 0.3854 1.9012 

  CS1076 3.0804 0.3045 0.8216 

Illinois Pope CS10187 3.5664 0.4204 1.8248 

  Baseline 

Isolates 

0.01287 0.00028 0.00116 
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Table 4.3. Analysis of variance of frogeye leaf spot control with fungicides when soybean plants 

were inoculated with quinone outside inhibitor (QoI) fungicide resistant and QoI sensitive 

Cercospora sojina isolates in a greenhouse trial.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Effect Degrees of freedom F value P > F 

Pathogen 1 387.70 <0.0001 

Fungicides 12 49.85 <0.0001 

Pathogen × fungicides 12 13.21 <0.0001 
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FIGURES 

 

 

Figure 4.1.  Percent disease control ( (1-(severity of treatment /severity of water))*100) of 

frog eye leafspot resulting from infection by QoI-sensitive and QoI-resistant Cercospora sojina 

isolates of soybean plants following the application of foliar fungicides in a greenhouse trial. 
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CHAPTER FIVE: COMPARISON OF QUINONE OUTSIDE INHIBITOR FUNGICIDE 

RESISTANT AND SENSITIVE ISOLATES OF CERCOSPORA SOJINA 

ABSTRACT 

           Quinones outside inhibitor (QoI) fungicide resistant isolates of Cercospora sojina, causal 

agent of frogeye leaf spot (FLS) of soybean, have been reported in Illinois, Tennessee and 

Kentucky in the United States. To develop the best management tactics for control of FLS 

caused by QoI resistant C. sojina and the best fungicide resistance management tactics, a better 

understanding of how QoI resistant C. sojina isolates compare to QoI sensitive isolates in their 

biology and their aggressiveness in causing FLS on different soybean cultivars is needed. Results 

from a laboratory study indicated that no differences in mycelial morphology, number of spores 

produced after 5 days, and radial growth after 6 or 12 days were observed between QoI resistant 

and sensitive C. sojina isolates. Results from a greenhouse study indicated that on a FLS 

susceptible cultivar (‘Blackhawk’), QoI resistant C. sojina isolates caused significantly (P ≤ 0.05) 

greater disease severity than QoI sensitive isolates 7 to 8 days after inoculation, but no 

differences in severity were observed after 9 days. On an FLS resistant cultivar with the Rcs3 

gene for resistance (‘Davis’), QoI resistant C. sojina isolates caused significantly greater disease 

severity than QoI sensitive isolates 8 to 14 days after inoculation. In general, these comparisons 

between QoI resistant and sensitive C. sojina isolates indicate that they were similar in growth 

and sporulation, but the QoI resistant isolates were slightly more aggressive in causing greater 

FLS severity on soybean.      
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INTRODUCTION  

           Frogeye leaf spot (FLS), caused by Cercospora sojina Hara causes yield reductions to 

soybean in the southern and north central United States. FLS can be managed by applying foliar 

fungicides, planting resistant soybean cultivars, rotating to non-host crops, and tilling to speed up 

decomposition of infested soybean debris (Phillips, 1999). Despite the multiple tactics available 

to manage FLS, many farmers have relied almost exclusively on the application of quinone 

outside inhibitor (QoI) fungicides for control of this disease. Because of this heavy reliance on 

QoI fungicides, C. sojina isolates resistant to QoI fungicides began to be detected in 2010 (see 

Chapter 4). These QoI resistant C. sojina isolates were collected from soybean fields in 

Tennessee, Kentucky, and Illinois in 2010. In addition to the fact that these C. sojina isolates 

are >100 fold less sensitive to QoI fungicides than baseline isolates ( isolates collected before 

fungicide exposuring to them), preliminary results from characterization of the cytochrome b 

gene of these isolates indicate that the G143A mutation is responsible for QoI resistance in these 

isolates (Bradley et al., unpublished). The G143A mutation occurs when glycine is substituted 

for alanine at codon 143 (Fungicide Resistance Action Committee, 2006). Results of studies on 

QoI fungicide resistant G143A mutations in Sacchariomyces cerevisiae, Venturia inaequalis, 

Ustilago maydis, and Plasmopara viticola indicate that a fitness penalty occurred with these 

isolates because functionally impaired mitochondria had reduced electron flow through the 

cytochrome bc1 complex (Köller et al., 2001; Zheng et al., 2000; Ziogas et al., 2002; Heaney et 

al., 2000). However, no fitness penalty was found with some G143A mutations such as those in 

Blumeria graminis (Heaney et al., 2000), Magnaporthe grisea (Avila-Adame and Köller, 2003) 

and Magnaporthe oryzae (Ma and Uddin, 2009). Fungicide resistant mutants of M. grisea were 

significantly less virulent than the sensitive strains, based on disease severity assessments. No 
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differences in QoI resistant and sensitive M.grisea isolates were observed for colony size and 

conidia formation. (Avila-Adame and Köller, 2003). 

          Pathogen fitness has sometimes been linked to isolates with greater aggressiveness. In a 

study with Tapesia yallundae and T. acuformis (causal agents of eyespot on wheat), isolates 

resistant to the methyl benzimidazole carbamate (MBC) fungicide carbendazim were evaluated 

(Bierman et al., 2000). In this study, a 50% stable coexistence of carbendazim resistant and 

sensitive strains was observed in carbendazim treated plots from 1987 to 2000. However, 

dicarboximide fungicide resistant Botrytis cinerea on geranium completely replaced the sensitive 

strain after two applications of vincozolin, while the resistant isolate remained at the initial level 

of 0.02% of the population in absence of vinclozolin (Vali and Moorman, 1992). A QoI-resistant 

population of Erysiphe graminis f.sp. tritici on wheat increased slowly and remained steady on 

untreated host tissue over three generations (Chin et al., 2001). However QoI resistant 

Plasmorphara viticola failed to increase in the pathogen population because of being less fit than 

sensitive wild types (Heaney et al., 2000). In another report, an M. graminicola isolate from 

chlorothalonil fungicide sprayed plots was more aggressive than isolates from plots that did not 

receive fungicide applications, and more frequenty fungicide applications and higher dosages 

were associated more strongly with increased pathogen aggressiveness (Kema et al., 1996).  

          C. sojina is a dynamic pathogen with extensive virulence or race diversity. Mian et al. 

(2008) proposed 12 soybean differentials and 11 C. sojina races, representing the major diversity 

among the population of isolates in the U.S. Races 2, 3, 4 and 5 of C. sojina have been identified 

as the major sources of FLS in the U.S. (Athow et al., 1962; Ross, 1968; Phillips and Boerma, 

1981). Three resistant genes have been shown to condition resistance to these races; the Rcs1 

gene in `Lincoln’ confers resistance to race 1 of C. sojina (Athow and Probst, 1952), the Rcs2 
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gene in `Kent’ confers resistance to race 2 (Athow et al., 1962), and the Rcs3 gene from ‘Davis’ 

confers resistance to race 5 and to all other known races of C. sojina in the U.S. (Boerma and 

Phillips, 1984; Phillips and Boerma, 1982) and to all isolates from Brazil (Yorinori, 1992). Some 

other dominant genes for resistance to race 5 were found in ‘Ransom’, ‘Stonewall’, and ‘Lee’ 

(Pace et al., 1993), and another single dominant gene that conditioned resistance to many isolates 

of C. sojina was found in ‘Peking’ (Baker et al., 1999). However, the aggressiveness and host 

adaptation of QoI fungicide resistant C. sojina isolates are unknown. 

          The objective of our study was to compare QoI resistant and sensitive C. sojina isolates for: 

(i) number of spores produced in culture; (ii) radial growth in culture; and (iii) aggressiveness in 

causing FLS on a susceptible and a resistant soybean cultivars in the greenhouse based assays.  

MATERIALS AND METHODS 

 Sporulation and radial growth studies    

 A total of 24 (11 QoI resistant isolates and 13 QoI sensitive isolates) C. sojina isolates 

were used in sporulation and radial growth studies (Table 5.1). Each isolate was cultured from a 

single spore, obtained from a frogeye leaf spot lesion on a soybean leaf, and maintained on 

soybean stem and lima bean agar (SSLB) with rifampicin (25 mg/L) (Phillips and Boerma, 1980). 

The cultures were incubated for 5 days under alternating light (fluorescent with black light 12 

hours) and darkness (12 hours) at 25±2°C until the agar surface was covered with mycelia and 

conidia. Conidia were washed with 5 µl of sterilized water with a pipette and transferred onto 

SSLB agar in petri dishes, then spread across the agar surface using a sterile bent glass rod. After 

16 hours of incubation, six germinated spores were individually transferred onto SSLB agar. All 

of the plates were arranged randomly into two stacks at the same place on the laboratory bench at 
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room temperature. After five days, three well-sporulated colonies were cut and transferred 

separately into 1 ml microcentrifuge tubes containing 500 µl sterilized water for making 

suspension to calculate spores produced per colony. The colonies with spores and media were 

homogenized using toothpicks and mixed well by agitating with a vortex mixer. 10 µl of the 

resulting suspensions were then used to determine the concentration of spores with the aid of a 

hemacytometer. Another three colonies were left for measurement of radial growth. After 6 and 

12 days, colonies growing in petri dishes were scanned using a flatbed scanner (Expression 

1000XL; Epson America Inc., Long Beach, CA) and the mycelium growth area per colony was 

calculated using Assess 2.0 software (American Phytopathological Society, St. Paul, MN). Data 

were converted from area to radius values. Each isolate was assayed with two replications with 6 

subsamples for sporulation and radial growth. The experiment for sporulation and mycelium 

growth was arranged using a completely randomized design (CRD) and was repeated once. 

Comparison of isolates for aggressiveness in the greenhouse     

          A total of 10 C. sojina isolates were used to inoculate soybean plants in the greenhouse. 

Five isolates were resistant to QoI fungicides and five isolates were sensitive to QoI fungicides 

(Table 5.2). Cultures of each C. sojina isolate were maintained and conidia for inoculation were 

produced on SSLB agar. Conidia were collected from 5 day old colonies by placing all mycelia 

plugs with conidia into 150 ml sterilized water and agitating with the use of a vortex mixer for 2 

minutes. The suspensions were passed through 4 layers of cheesecloth to remove large mycelia 

fragments. Conidial suspensions were adjusted to approximately 6 × 10
4
 conidia per ml prior to 

use for inoculating plants in the greenhouse.        

           Seeds of soybean cultivars ‘Blackhawk’ (susceptible to FLS) and ‘Davis’ (resistant to 

FLS with the Rcs3 gene) were planted in 5 x 5 cm pots containing Sun Shine Mix 1 planting 
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medium (Sun Gro Horticulture Inc., Bellevue, WA). Plants in the pots were placed in a 20 x 30 

cm tray and grown under 1000 watt high pressure sodium bulbs set for a 12-h photoperiod, at 

23±1°C on benches in an air-conditioned greenhouse. In one tray, 12 pots were planted with 

‘Davis’, and another 12 pots were planted with ‘Blackhawk’. After emergence, seedlings were 

thinned to one per pot. Ten days after emergence, the unifoliolate leaves were inoculated with 

one of the C. sojina isolates. Two leaves per plant were sprayed with a C. sojina conidial 

suspension. The inoculated plants were then covered with a transparent plastic dome and 

incubated for 4 days to maintain high relative humidity (RH) levels (≥90%). Wet paper towels 

were placed on the soil surface to enhace humidity levels. Each cultivar × isolate treatment had 

three replicates, and the experiment was repeated twice over time.  

         In trial 1, percent diseased leaf area per leaf (disease severity) was visually estimated and 

recorded at 11 and 14 days after inoculation. In trial 2, disease severity was recorded at 7, 8, 9, 

10, 11, and 14 days after inoculation.   

Statistical analysis   

          The experiment for sporulation and mycelium growth was analyzed as a completely 

randomized design (CRD) and was repeated once. Data from each experiment were first 

analyzed separately using the general linear model procedure (PROC GLM) in SAS (Version 9.3; 

SAS Institute, Inc., Cary, NC) to compute variances; then, a two-tailed F test for equality of 

variances was conducted to determine whether data from trials could be combined. Combined 

data were analyzed using PROC GLM in SAS, and least significant difference (LSD; α = 0.05) 

analysis was used to compare sporulation and mycelial growth of different C. sojina isolates. 

Contrasts were used to compare QoI resistant and sensitive isolates of C. sojina.   
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          In the greenhouse study, the variance of the two trials was not homogeneous. Therefore, 

the data of two trials were analyzed separately. The data were transformed using log-

transformations inorder to normalize distributions. Data were analyzed as a factorial design with 

repeated measures.  The mixed model procedure (PROC MIXED) (SAS 9.3) was used to 

calculate the analysis of variance, and multiple comparisons of soybean cultivars, isolates, and 

dates, as well as their interactions, were conducted using pdmix800 (α = 0.05) in SAS (Arnold M. 

Saxton, University of Tennessee, Knoxville, TN). Contrast statements in SAS were used to 

compare groups of QoI resistant and sensitive isolates.  

RESULTS 

Sporulation and radial growth studies   

           Sporulation on SSLB agar varied among the 11 QoI resistants and 13 sensitive isolates 

(Table 5.1). The highest sporulation level observed was 11,083 conidia per area of colony with 

isolate CS1036, and the lowest level observed was 2,654 conidia per area of colony with isolate 

CS1033. Among all isolates, 8% had sporulation higher than 7,000 conidia per area of colony, 

and 17% were lower than 4,000 conidia per area of colony. Sporulation levels of isolates from 

Tennessee and Kentucky were more variable than were the sporulation levels of isolates from 

Illinois. Significant differences in sporulation were found among isolates within locations and 

within fungicide resistant and sensitive groups. However, the overall mean sporulation levels of 

QoI resistant isolates and sensitive isolates did not significantly differ from each other (Table 5. 

1).  

            Hyphal morphology and average radial growth of QoI resistant isolates were the same as 

the sensitive isolates after 6 and 12 days (Table 5.3). Analysis of growth of all isolates at 6 and 
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12 days showed that growth of isolates collected from the same locations were similar. 

Mycelium growth of all isolates was less variable than sporulation. 

Comparison of disease severity on soyeans among isolates in greenhouse based assays 

          Analysis of disease severity from two separate experiments showed similar results for 11 

and 14 repeated measurement (experiment 1 recorded disease data only at 11 and 14 days). 

Therefore, only the data from experiment 2 were used for analyzing repeated measures data at 7, 

8, 9, 10, 11, and 14 days. 

           Results of the analysis of variance showed significant differences in disease severity for 

main effects (soybean, isolate, and day), two way interaction effects (soybean × isolate and 

soybean × day) and three way interaction effect (soybean× isolate × day) (Table 5.4).  

   Frogeye leaf spot severity caused by the 10 C. sojina isolates significantly varied (Table 

5. 5). On the FLS susceptible soybean cultivar ‘Blackhawk’, FLS severity caused by the QoI 

resistant isolates was significantly greater than that caused by the QoI sensitive isolates at 7 and 

8 days after inoculation (Table 5.6; Fig. 5.1). However, at 9 to 14 days after inoculation, no 

significant differences between QoI resistant and sensitive isolates were observed for FLS 

severity. On the FLS resistant soybean cultivar ‘Davis’, FLS severity levels resulting from 

infection by the QoI resistant isolates did not significantly differ from those resulting from 

infection by the QoI sensitive isolates at 7 days after inoculation; however, from 8 to 14 days 

after inoculation, the QoI resistant isolates caused greater FLS severity than the QoI sensitive 

isolates. Overall, FLS severity levels on ‘Blackhawk’ were greater than those that developed on 

‘Davis’, no matter which isolates were used (Figs. 5.2 and 5.3).  
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DISCUSSION 

Sporulation and radial growth  

          A previous study of fitness-determining characteristics of pyraclostrobin (QoI fungicide) 

resistant mutants of Cercospora beticola showed that the mutations were pleiotropic, and had 

adverse effects on most of the mutant strains, such as reduction in sporulation (Malandrakis et al., 

2006). In another study, the laboratory mutation(s) of Botrytis cinerea for resistance to 

pyraclostrobin also had adverse effects on the ability of mutants to compete with the wild-type 

strain due to their reduced sporulation and/or spore germination, but had no effect on the 

mycelial growth of mutant isolates (Markoglou et al., 2006).  However, the G143A mutant of 

Magnaporthe grisea was not different from the wild-type strain when sporulation and mycelium 

growth were compared (Avila-Adame and Koller, 2003). In our study of C. sogina sporulation 

on SSLB agar, mean sporulation levels of QoI resistant isolates were not different from 

sporulation levels of sensitive C. sojina isolates. However, sporulation levels of both QoI 

resistant and sensitive isolates varied significantly. For example, mutant isolate CS1036, 

produced 2 to 5 times more conidia than most other isolates. Moreover, radial growth of CS1036 

was greater than most other isolates at 6 and 12 days, which indicates that it might compete 

successfully with QoI sensitive isolates and become a practical problem in soybean fields. Even 

though mean sporulation and radial growth of QoI resistant isolates were not different on average, 

there were significant differences in sporulation and radial growth among individual isolates. It is 

interesting that some of the QoI resistant isolates sporulated more rapdily than did the sensitive 

isolates; consequently, these resistant isolates produced more conidia than the sensitive isolates 

after only three days (data not shown). This may be related with why lesion development was 

one day earlier on ‘Blackhawk’ when inoculated with a QoI resistant C. sojina isolate as 
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compared to inoculation with a sensitive isolate. Further studies are needed to determine whether 

mutations in QoI resistance genes affect other fitness components (spore viability and 

susceptibility to changes in environment) and aggressiveness (lesion size, sporulation capacities 

on host leaf, and latent period) that might influence the competitive ability of QoI resistant 

isolates under field conditions.  

Comparison of isolates for aggressiveness  

          In the current experiment, aggressiveness was characterized/quantified in terms of the 

level of disease severity resulting from infection. Regardless of QoI sensitivity, isolates varied 

greatly in their aggressiveness levels. A high level of variability among C. sojina isolates also 

was observed in an AFLP genetic diversity study (Bradley et al., unpublished). The interesting 

result was that most of the QoI resistant isolates were more aggressive and showed greater levels 

of variation than did the sensitive isolates. Even though the sensitive isolates were collected from 

different geographical locations, they demonstrated similar levels of aggressiveness. These 

results indicate that aggressiveness of QoI resistance may be linked with fungicide resistant trait. 

Previous reports also showed that isolates of M. graminicola from fungicide treated fields were 

significantly more aggressive than isolates from the same cultivars that had not been treated with 

fungicides (Kema et al., 1996; Cowger and Mundt, 2002), which may indicate some reduction in 

fitness in the absence of fungicide. Fitness costs associated with resistance genes are important 

from an evolutionary perspective because they allow selection against resistance in absence of 

the fungicide, leading to a decrease in the frequency of resistant genes in the pathogen population 

(Brent, 1995; Fry and Milgroom, 1990). Examples of this are the decline in the frequency of the 

resistance characteristic in populations of Magnaporthe oryzae to azoxystrobin (QoI), 
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Cercospora beticola to demethylation inhibitors (DMI), and Phytophthora capsici to metalaxyl 

(Ma and Uddin, 2009; Staub,1991; Bruin and Edgington,1981).   

           Interactions of fungicide sensitive and insensitive isolates on cultivars may vary. 

Metalaxyl sensitive phenotypes of Phytophthora infestans were more aggressive than insensitive 

phenotypes on potato cultivars Cara and Stirling but not on Maris Piper (Day and Shattock, 

1997). Although some differences were observed between QoI resistant and sensitive isolates in 

their aggressiveness on the soybean cultivars Blackhawk and Davis, the differences were 

sometimes minor and were not always observed throughout the course of the experiment. Other 

reports have shown that resistant hosts select for more aggressive pathogens than do susceptible 

hosts (Schouten and Beniers, 1997; Pink et al., 1992; Cowger and Mundt, 2002). It is not 

surprising that, the model of Gandon and Michalakis (2000) predicts that increasing levels of 

quantitative host resistance will select for increasing levels of damage caused by a parasite to the 

host. Our results may further confirm previous findings that isolates collected from fungicide 

treated cultivars were more aggressive than those from non-treated cultivars (Kema et al., 1996; 

Cowger and Mundt, 2002). The multisite fungicide and partial host resistance resulted in 

qualitatively similar selective pressures on the fungal populations exposed to them. Even QoI 

resistant isolates were more aggressive on ‘Davis’ than sensitive isolates, and the disease severity 

caused by QoI resistant isolates on ‘Davis’ still was much lower than that which developed on 

‘Blackhawk’ (Table 5.4; Figs. 5.2 and 5.3). This indicates that the Rcs3 allele present in ‘Davis” 

conditioned resistance to both QoI resistant and sensitive C. sojina isolates, and that farmers 

should consider growing resistant cultivars with the Rcs3 allele as part of FLS management and 

fungicide resistance management programs.  
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           Overall, the genetic diversity and phenotypic differentiation of QoI resistant and sensitive 

isolates could have important implications for disease management. QoI resistant isolates of C. 

sojina might compete successfully with QoI sensitive isolates because of their aggressive 

potential to cause severe disease. 
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TABLES 

Table 5.1. Comparison of QoI fungicide resistant and sensitive Cercospora sojina isolates for 

sporulation (number of conidia) 5 days after single conidia were placed on soybean stem lime 

bean agar. 

a
Means followed by the same letter are not significantly different from each other (α = 0.05). 

 

  

Isolate QoI sensitivity Geographic origin Number of conidia
a
 

CS1036 Resistant Lauderdale Co., TN 11083 a 

CS1091 Sensitive Caldwell Co., KY 7421 b 

CS10127 Sensitive Gibson Co., TN 6854 bc 

CS1065 Resistant Gallatin Co., IL 6583 bcd 

CS1090 Resistant Caldwell Co., KY 6554 bcd 

CS10110 Sensitive Gibson Co., TN 6533 bcd 

CS10190 Sensitive Pope Co., IL 6196 bcde 

CS1084 Resistant Caldwell Co., KY 6088 bcde 

CS1054 Sensitive DeKalb Co., IL 5779 cdef 

CS1076 Resistant Gallatin Co., IL 5442 cdefg 

CS10117 Resistant Gibson Co., TN 5146 defgh 

CS10187 Resistant Pope Co., IL 4954 efghi 

CS1068 Sensitive Gallatin Co., IL 4925 efghi 

CS1093 Resistant Caldwell Co., KY 4788 efghi 

CS10186 Sensitive Pope Co., IL 4688 fghi 

CS10116 Sensitive Gibson Co., TN 4613 fghi 

CS1049 Sensitive DeKalb Co., IL 4271 ghij 

CS1082 Sensitive Gallatin Co., IL 4258 ghij 

CS1031 Resistant Lauderdale Co., TN 4038 ghijk 

CS107 Sensitive Warren Co., IL 3792 hijk 

CS1013 Sensitive Warren Co., IL 3604 ijk 

CS1044 Resistant Lauderdale Co., TN 3504 ijk 

CS1097 Sensitive Caldwell Co., KY 2788 jk 

CS1033 Resistant Lauderdale Co., TN 2654 k 

Mean of QoI resistant isolates      5530 a 

Mean of QoI sensitive isolates     5055 a 
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Table 5.2. Comparison of QoI fungicide resistant and sensitive Cercospora sojina isolates for 

radial growth 6 days and 12 days after single conidia were placed on soybean stem lime bean 

agar. 

*Isolate is resistant to QoI fungicides. 

a
Means followed by the same letter are not significantly different from each other (α = 0.05). 

 

 

 

Isolate 

 

Radius of 

mycelial growth 

after 6 days 

(mm)
a 

 

 

 

                Isolate 

 

Radius of 

mycelial growth 

after 12 days 

(mm)
a 

CS1036* 4.49 a CS1036* 9.36 a 

CS1033* 4.21 ab CS10190 8.66 ab 

CS10190 4.21 ab CS1033* 8.50 abc 

CS1031* 4.18 abc CS1031* 8.40 abcd 

CS10186 4.14 abcd CS1065* 8.30 bcde 

CS1068 4.08 abcde CS1054 7.73 bcde 

CS1054 3.99 abcdef CS1097 7.70 bcde 

CS1093* 3.97 abcdefg CS10186 7.62 cdef 

CS107 3.96 abcdefg CS10187* 7.58 cdef 

CS10187* 3.91 abcdefg CS1068 7.47 defg 

CS1090* 3.88 abcdefgh CS1076* 7.42 defgh 

CS1097 3.79 bcdegh CS1091 7.34 efgh 

CS1049 3.77 bcdefghi CS1049 7.26 fgh 

CS1065* 3.74 bcdefghi CS1090* 7.24 fgh 

CS1084* 3.71 bcdefghi CS107 7.24 fgh 

CS1044* 3.68 bcdefghi CS1044* 7.20 fgh 

CS1091 3.66 cdefghi CS10110 7.17 fgh 

CS10110 3.63 defghi CS1084* 7.13 fgh 

CS1082 3.59 efghi CS10116 7.08 fgh 

CS1076* 3.54 efghi CS1093* 7.05 fgh 

CS1013 3.52 fghi CS1082 6.91 fgh 

CS10117* 3.45 ghi CS10127 6.84 fgh 

CS10127 3.43 ghi CS10117* 6.53 gh 

CS10116 3.36 hi CS1013 6.43 gh 

Resistant isolates mean           3.88 a    Resistant isolates mean        7.70 a 

Sensitive isolates mean           3.78 a    Sensitive isolates mean        7.34 a 
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Table 5.3. Cercospora sojina isolates used to inoculate soybean cultivars ‘Blackhawk’ and 

‘Davis’ in a greenhouse study where isolates were compared for their aggressiveness in causing 

frogeye leaf spot. 

 

 

  

Isolate QoI fungicide sensitivity Geographic origin 

CS10187 Resistant Pope Co., IL 

CS10117 Resistant Gibson Co., TN 

CS1036 Resistant Lauderdale Co., TN 

CS1065 Resistant Gallatin Co., IL 

CS1093 Resistant Caldwell Co., KY 

CS10190 Sensitive Pope Co., IL 

CS10116 Sensitive Gibson Co., TN 

CS10654 Sensitive DeKalb Co., IL 

CS1082 Sensitive Gallatin Co., IL 

CS1091 Sensitive Caldwell Co., KY 



101 
 

Table 5.4. Analysis of variance of frogeye leaf spot severity with the main and interactive effects 

of soybean cultivar, QoI sensitivity of Cercospora sojina isolates, and days after inoculation in a 

greenhouse study. 

 

  

 

        Effect 

Degrees of 

freedom 

F-value P > F 

Cultivar 1 1302.0 0.0001 

QoI sensitivity 1 54.1 0.0001 

Cultivar × QoI sensitivity 1 13.4 0.0003 

Day 5 93.4 0.0001 

QoI sensitivity × day 5 26.1 0.0001 

Cultivar × day 5 0.7 0.6426 

Cultivar × day × QoI sensitivity 5 4.9 0.0003 
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Table 5.5. Effect of Cercospora sojina isolates resistant and sensitive to quinone outside 

inhibitor (QoI) fungicides on frogeye leaf spot severity. Mean results presented are averaged 

over two soybean cultivars (Davis and Blackhawk) and averaged over different rating dates (7, 8, 

9, 10, 11, and 14 days after inoculation) in the greenhouse. 

 

 

 

 

 

 

 

 

a
Means followed by the same letter are not significantly different from each other (α = 0.05). 

*Resistant to QoI fungicides 

 

 

 

  

Isolates        Severity (%)
a
 

CS10117* 12.30 a              

CS1065* 8.43 b                

CS1036* 8.25 b                

CS1093* 6.36 c                

CS1054 5.72 cd              

CS10116 5.46 cd              

CS10187* 4.69 de              

CS10190 4.68 de              

CS1082 4.52 de              

CS1091 4.16 e                

Resistant isolates mean 7.61 a 

Sensitive isolates mean 4.87 b 
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Table 5.6. Results of a greenhouse study comparing the effect of quinone outside inhibitor (QoI) 

fungicide resistant and sensitive C. sojina isolates’ aggressiveness in causing frogeye leaf spot 

severity on a susceptible (‘Blackhawk’) and resistant (‘Davis’) soybean cultivar at 7, 8, 9, 10, 11, 

and 14 days after inoculation. 

         

 

 

 

 

 

 

 

 

 

 

 

 

 

           

a
Means followed by the same letter are not significantly different from each other (α = 0.05). 

 

 

 

 

Cultivar QoI sensitivity Days after inoculation Disease severity (%)
a 

Blackhawk Resistant 7 4.63 gh 

Blackhawk Sensitive 7 1.73 kl 

Blackhawk Resistant 8 12.15 e 

Blackhawk Sensitive 8 7.81 f 

Blackhawk Resistant 9 21.04 cd 

Blackhawk Sensitive 9 19.01 d 

Blackhawk Resistant 10 31.24 bc 

Blackhawk Sensitive 10 31.59 bc 

Blackhawk Resistant 11 38.59 ab 

Blackhawk Sensitive 11 43.89 ab 

Blackhawk Resistant 14 49.38 a 

Blackhawk Sensitive 14 51.59 a 

Davis Resistant 7 1.21 lm 

Davis Sensitive 7 1.19 m 

Davis Resistant 8 2.67 ij 

Davis Sensitive 8 1.36 lm 

Davis Resistant 9 2.83 ij 

Davis Sensitive 9 1.40 lm 

Davis Resistant 10 2.97 ij 

Davis Sensitive 10 1.49 klm 

Davis Resistant 11 3.36 hi 

Davis Sensitive 11 1.58 kl 

Davis Resistant 14 5.83 fg 

Davis Sensitive 14 2.19 jk 
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FIGURES 

 

   

Figure 5.1. Symptoms of frogeye leaf spot caused by a quinone outside inhibitor (QoI) fungicide 

sensitive Cercospora sojina isolate (CS1036) (left) and a QoI resistant C. sojina isolate (CS1091) 

(right) on the susceptible soybean cultivar ‘Blackhawk’ 7 days after inoculation in the 

greenhouse. 
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Figure 5.2. Symptoms of frogeye leaf spot caused by a quinone outside inhibitor (QoI) fungicide 

resistant Cercospora sojina isolate (CS10117) on the resistant soybean cultivar ‘Davis’ ( left ) 

and susceptible cultivar ‘Blackhawk’ (right) at 14 days after inoculation in the greenhouse.  
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Figure 5.3. Symptoms of frogeye leaf spot caused by a quinone outside inhibitor (QoI) fungicide 

sensitive Cercospora sojina isolate (CS1054) on the resistant soybean cultivar ‘Davis’ ( left ) and 

susceptible cultivar ‘Blackhawk’ (right) at 14 days after inoculation in the greenhouse  
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