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Abstract

In this thesis we study some extremal problems related to colorings and list colorings of graphs and

hypergraphs. One of the main problems that we study is: What is the minimum number of edges

in an r-uniform hypergraph that is not t-colorable ? This number is denoted by m(r, t). We study

it for general r-uniform hypergraphs and the corresponding parameter for simple hypergraphs. We

also study a version of this problem for conflict-free coloring of hypergraphs. Finally, we also look

into list coloring of complete graphs with some restrictions on the lists.

Let t be a positive integer and n = ⌊log2 t⌋. Generalizing earlier known bounds, we prove that

there is a positive ǫ(t) such that for sufficiently large r, every r-uniform hypergraph with maximum

edge degree at most

ǫ(t) tr
( r

ln r

) n
n+1

is t-colorable. The above expression is also a lower bound for m(r, t).

A hypergraph is b-simple if no two distinct edges share more than b vertices. Let m(r, t, g)

denote the minimum number of edges in an r-uniform non-t-colorable hypergraph of girth at least

g. Erdős and Lovász [10] proved that

m(r, t, 3) ≥ t2(r−2)

16r(r − 1)2

and m(r, t, g) ≤ 4 · 20g−1r3g−5t(g−1)(r+1).

A result of Z. Szabó [30] improves the lower bound by a factor of r2−ǫ for sufficiently large r. We

improve the lower bound by another factor of r and extend the result to b-simple hypergraphs. We

also get a new lower bound for hypergraphs with a given girth. Our results imply that for fixed b, t

and ǫ and sufficiently large r, every r-uniform b-simple hypergraph H with maximum edge-degree

at most trr1−ǫ is t-colorable. Some results hold for list coloring, as well.

We also study the same problem for conflict-free coloring. A coloring of the vertices of a

hypergraph H is called conflict-free if each edge e of H contains a vertex whose color does not get

repeated in e. The smallest number of colors required for such a coloring is called the conflict-free
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chromatic number of H and is denoted by χCF (H). Pach and Tardos studied this parameter for

graphs and hypergraphs. Among other things, they proved that for a (2r− 1)-uniform hypergraph

H with m edges, χCF (H) has the order m1/r logm. They also asked whether the same result holds

for r-uniform hypergraphs. In this thesis we show that this is not necessarily true. Furthermore,

we provide lower and upper bounds on the minimum number of edges in an r-uniform simple

hypergraph that is not conflict-free k-colorable.

Another topic we study is ”choosability with separation” for complete graphs. For a graph G

and a positive integer c, let χl(G, c) be the minimum value of k such that one can properly color

the vertices of G from any lists L(v) such that |L(v)| = k for all v ∈ V (G) and |L(u) ∩ L(v)| ≤ c

for all uv ∈ E(G). Kratochv́ıl, Tuza and Voigt [24] asked to determine limn→∞ χl(Kn, c)/
√
cn, if

it exists. We prove that the limit exists and equals 1. We also find the exact value of χl(Kn, c) for

infinitely many values of n.

Section 2 deals with coloring of general hypergraphs. It is a joint work with A. Kostochka and

V. Rödl and appears in [22]. Section 3 deals with coloring of simple hypergraphsa. It is a joint work

with A. Kostochka and appears in [20]. In Section 4, we study conflict-free coloring of hypergraphs

and it is a joint work with A. Kostochka and T.  Luczak. It appears in [21]. Section 5 deals with

separated list coloring of complete graphs. It is a joint work with Z. Füredi and A. Kostochka and

appears in [14].
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Professors Füredi and West for their wonderful courses and fruitful discussions. I would also like
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Chapter 1

Introduction

1.1 Basic definitions for graphs and hypergraphs

In this section we review the basic terminology used throughout this thesis. For the most part we

follow the text of West [31].

For every x ∈ R, ⌊x⌋ and ⌈x⌉ denote the largest integer not greater than x and the smallest

integer not less then x, respectively. We sometimes use [n] to denote the set {1, 2, ..., n}.

A graph G with n vertices and m edges consists of a vertex set V (G) and an edge set E(G),

where each edge e ∈ E(G) consists of two (possibly equal) vertices called its endpoints. We write

uv for an edge {u, v}. We say that u and v are adjacent and that u and v are incident to e if

e = uv ∈ E(G). When two vertices are adjacent, they are neighbors.

A loop is an edge whose endpoints are identical. Multiedges are edges with the same pair of

endpoints. A graph is simple if it has no loops or multiedges.

The set of neighbors of a vertex v in a graph G is the neighborhood of v, denoted by NG(v) or

N(v). The number of edges incident to v is the degree of v, denoted by dG(v) or d(v). In other

words, |NG(v)| = dG(v). The minimum and maximum degree among the vertex degrees of G are

denoted by δ(G) and ∆(G), respectively. Graph G is regular if the degrees of all the vertices in G

are the same. G is d-regular if the degree of every vertex in G is d. The degree of an edge e is

the number of edges adjacent to e. Edge degree of G is the maximum of the degrees of the edges

among E(G), denoted D(G).

A path of length l in a graph G is an alternating sequence v0, e0, v1, e1, v2, ..., el−1, vl−1 of distinct

vertices and edges in G such that vi, vi+1 are incident to ei, for 0 ≤ i ≤ l−1. The distance between

two vertices is the number of edges in a shortest path having them as endpoints. A cycle of length l

in a graph G is an alternating cyclic sequence v0, e0, v1, e1, ..., el−1, v0 of distinct edges and vertices

in G such that vi is incident to ei−1, ei for 1 ≤ i ≤ l − 1 and v0 incident to e0, el−1. The girth of a

graph is the length of the smallest cycle in the graph.

A subgraph H of a graph G is a graph whose vertex set is a subset of V (G) and edge set is a

subset of E(G). A subgraph of G is an induced subgraph if it is obtained by undefining a set of

vertices. A complete graph on n vertices is a simple graph in which all vertices are pairwise adjacent.
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The isomorphism class of which is denoted by Kn. An independent set of vertices in a graph G is

a set S ⊆ V (G) whose elements are pairwise non-adjacent. The size of a largest independent set of

G is denoted by α(G). A bipartite graph is a graph whose vertices can be partitioned into two sets

such that each edge has one endpoint in each of these two sets. A graph G is connected if it has a

u, v-path whenever u, v ∈ V (G). The components of a graph are its maximal connected subgraphs.

A forest is a graph without cycles. A tree is a connected forest. A matching of size k is a forest

with k components such that each component has two vertices.

A t-coloring of a graph is a labeling of its vertices from a set S of size t. A proper t-coloring of a

graph is a t-coloring such that adjacent vertices are labeled by different elements. The elements of

S are called colors. The smallest t for which a graph has a proper t-coloring is called the chromatic

number of G and is denoted by χ(G).

Given a graph G, a list assignment L for G is an assignment of a set L(v) of colors for every

v ∈ V (G). We say that G is L-colorable, if there exists a proper coloring f of the vertices of G

from L, i.e. if f(v) ∈ L(v) for all v ∈ V (G) and f(u) 6= f(v) for all uv ∈ E(G). The list chromatic

number of G, denoted by χl(G), is the least k such that G is L-colorable whenever |L(v)| = k for

all v ∈ V (G). It is also sometimes called the choice number or the choosability of G.

A hypergraph H is a pair (V,E), where V is a set of vertices, and E is a set of non-empty subsets

of V called edges. In other words, a hypergraph is a set-system. The notion of a hypergraph is

a generalization of that of a graph since an edge can be incident to any number of vertices. A

hypergraph is r-uniform if all edges have size r. A 2-uniform hypergraph is a graph.

A cycle of length l in a hypergraph H is an alternating cyclic sequence v0, e0, v1, e1, ..., el−1, v0

of distinct edges and vertices in H such that vi ∈ ei−1 ∩ ei for 1 ≤ i ≤ l − 1 and v0 ∈ e0 ∩ el−1.

The girth of a hypergraph is the length of its shortest cycle. A hypergraph is simple if its girth is

at least 3, in other words, if every two distinct edges share at most one vertex.

The degree of a vertex is number of edges containing it. The degree of an edge is the number

of edges intersecting it. The maximum degree of H is the maximum of the degree of the vertices

among V (H), denoted ∆(H). Edge degree of H is the maximum of the degrees of the edges among

E(H), denoted D(H). A complete r-uniform hypergraph is a hypergraph where all possible
(|V |
r

)

edges are present. An independent set is a set of vertices such that no edge is entirely contained in

that set.

A proper t-coloring of a hypergraph is a labeling of its vertices from a set S of size t such that

every edge has vertices of at least two distinct colors. In other words, no edge is monochromatic

if the coloring is proper. The smallest t for which a hypergraph can be properly t-colored is the

chromatic number of H, denoted by χ(H). The list chromatic number for H is defined similary to

the list chromatic number of graphs. A rainbow coloring is a coloring of the vertices such that for

every edge the colors of all the vertices in that edge are distinct. In literature, rainbow coloring is
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sometimes referred to as strong coloring. A rainbow coloring is clearly a proper coloring.

1.2 Main results

One of the well-studied problems in graph theory is that of graph coloring. A graph is t-colorable

if it has a proper t-coloring; it is t-chromatic if χ(G) = t.

When edges of a graph represent conflicts among its vertices, the chromatic number represents

the minimum number of conflict-free classes (called color classes) needed to partition the vertex

set. Consider the problem of finding the minimum number of time periods needed to schedule

examinations. In this problem each course can be considered as a set of students and these sets

having common members require different ‘time slots’, so we seek the chromatic number of the

intersection graph of these sets. Among other applications, one of the most famous problems in

graph coloring is determining the chromatic number of a planar graph. Given any planar map,

what is the smallest number of colors needed to color the countries so that countries with common

boundaries gets different colors ? This problem was open for about 120 years and was solved in

1976. It says that 4 colors suffice to properly color any planar graph.

In a proper coloring, each color class is an independent set. Therefore a graph is t-colorable

if and only if it is t-partite. The 2-colorable graphs are precisely the graphs with no odd cycles

(bipartite graphs). Using breadth-first search it is easy to test in polynomial time if a graph is

2-colorable. For larger t there is no such known characterization of t-chromatic graphs. In fact it

is known that even testing whether a graph is 3-colorable is an NP-complete problem.

Even though it is computationally hard to say whether a graph is t-colorable, estimates for the

chromatic number can be given as upper and lower bounds in terms of other graph parameters

such as maximum degree, degeneracy, clique number, independence number, etc.

Many famous problems are associated with graph coloring. We have already seen one above,

the Four-Color Problem. Stated in a slightly different way, it is equivalent to say (by Wagner’s

Theorem) that if a graph G is 5-chromatic, then G has a K5-minor. This is a special case of

the more general conjecture of Hadwiger, which states that if a graph G is t-chromatic then it

has a Kt-minor. Hadwiger’s conjecture is considered as one of the deepest unsolved problems in

modern graph theory. Many extremal problems have also been considered in connection with graph

coloring. Ramsey’s theorem on edge-coloring of graphs states that given a copy of a complete graph

Kt, there exists a copy of a large enough complete graph Kn such that every edge coloring of Kn

with two colors contains a monochromatic copy of Kt. One is then interested in finding the smallest

n for which this holds.

Another extremal problem in connection with graph coloring arises from Turán’s Theorem. To

understand the structure of t-chromatic graphs one might want to know beside other things the

smallest and the largest size of t-chromatic graphs on n vertices. For the largest size of t-chromatic
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graphs on n vertices, it is easy to see it must be a complete multi partite graph with almost equal

parts (also called Turán Graph). Turán showed that in an n-vertex graph, if the number of edges

exceeds the size of Turán graph, then we are not only forced to use t + 1 colors, but also have a

copy of Kt+1 as a subgraph. For the minimum size, it is not too hard to see that any connected

graph with at most
(t
2

)
+ n− t− 1 edges is t-colorable. Without the restriction on n, the smallest

t-chromatic graph is Kt and has
(
t
2

)
edges. The problem of finding the smallest size of a t-chromatic

hypergraph is more interesting.

A proper t-coloring of a hypergraph is defined similarly. It is a coloring of the vertices of the

hypergraph from a set of t colors such that every edge has vertices of at least two distinct colors.

In other words, no edge is monochromatic. One of the very first results in this area was by Erdős

about 50 years ago. Since then hypergraph coloring has been studied by various mathematicians.

Some of the major tools in combinatorics such as the Lovász Local Lemma and the semirandom

method have been developed to solve problems in this area. Most of this thesis revisits some

classical problems in this area. We consider the following problems:

1. One of the main questions that we consider in this thesis is: Given the number of colors used

(say t), what is the smallest number of edges in a hypergraph H such that H is not t-colorable ?

Erdős was the first to study this problem. He defined m(r, t) to be the minimum number of edges

in an r-uniform hypergraph that is not t-colorable. For graphs (r = 2), as mentioned earlier

m(2, t) =
(t
2

)
and is achieved by the complete graph Kt. For hypergraphs it is not always the

case that the size of the complete r-uniform hypergraph is the smallest size of an r-uniform non

t-colorable hypergraph. For example, consider r = 3, t = 2. The smallest 3-uniform complete

hypergraph which is not 2-colorable has 10 edges, but the Fano plane has 7 edges and is not

2-colorable. Erdős [8, 9] proved that

2r−1 ≤ m(r, 2) ≤ r22r,

which was one of the first examples of the use of the Probabilistic Method in combinatorics. His

result extends for t colors, i.e tr−1 ≤ m(r, t) ≤ r2tr. Erdős and Lovász had in fact proved more

general results regarding the minimum edge degree of an r-uniform hypergraph for which it is not

k-colorable; we denote this value by D(r, t). Erdős and Lovász showed that

1

4
tr < D(r, t) ≤ 20r3tr−1.

This was done in their seminal paper [10] where they introduced the Local Lemma. The lower bound

was improved over the years by Beck, by Spencer and by Radhakrishnan and Srinivasan [28], who

showed that (for sufficiently large r,) D(r, 2) ≥ 0.17 · 2r
√
r/ ln r. In this thesis, using Kostochka’s

earlier results from [19], we extend Radhakrishnan and Srinivasan’s results for general (but fixed)

t. Let t be a positive integer and n = ⌊log2 t⌋. We prove that there is an ǫ = ǫ(t) > 0 such that for
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sufficiently large r,

D(r, t) ≥ ǫ(t) tr
( r

ln r

) n
n+1

.

Erdős and Lovász mentioned in their paper [10] that ”perhaps r2r is the correct order of magnitude

of m(2, r)”. Our result supports the intuition of Erdős and Lovász.

2. We also study the same problem for simple hypergraphs. One can define in general m(r, t, g)

to denote the minimum number of edges in an r-uniform non-t-colorable hypergraph of girth at

least g. For simple hypergraphs (g = 3), Erdős and Lovász proved that

t2(r−2)

16r(r − 1)2
≤ m(r, t, 3) ≤ 1600 · r4t2(r+1).

Szabó [30] improved the lower bound by a factor of r2−ǫ for sufficiently large r. In this thesis we

improve his lower bound by another factor of r by establishing a slightly more general result. We

show that

m(r, t, 2s + 1) ≥ tr(1+s)

rǫ
,

if r is large in comparison with t, s and 1/ǫ. Simple hypergraphs can be generalized in yet another

way. We say a hypergraph is b-simple, if every two edges intersect in at most b vertices. Let f(r, t, b)

denote the minimum number of edges in an r-uniform non-t-colorable b-simple hypergraph. We

show that for fixed t, b, and ǫ and sufficiently large r,

tr(1+1/b)

rǫ
≤ f(r, t, b) ≤ 40t2

(
trr2

)1+1/b
.

The upper bound was obtained by using techniques of Erdős and Lovász. These results for simple

hypergraphs hold for list coloring as well.

3. We again consider the same extremal problem but now for conflict-free coloring. It is a

generalized version of proper coloring in which each edge has a vertex whose color occurs exactly

once in that edge. This kind of coloring was introduced by Even et al. [12] in a geometric setting

with applications in a frequency allocation problem. It is an intermediate coloring between proper

coloring and rainbow coloring. It turns out that conflict-free chromatic number of a hypergraph is

related to another parameter called the tree-depth of a graph G, denoted by td(G). The concept

of tree-depth was introduced by Nešetřil and Ossona de Mendez [25]. In simple terms, the tree-

depth of a graph G is the minimum height of a rooted forest F such that G occurs as a subgraph

of closure of F , where the closure is defined in a certain way. Nešetřil and Ossona de Mendez

showed that given a graph G, if H is the hypergraph with vertex set V (G) whose edges are the

vertex sets of connected subgraphs of G, then td(G) = χCF (H). Pach and Tardos [26] analyzed the

conflict-free chromatic number for graphs and hypergraphs and studied its relationship with the

number of edges. They proved that for a (2r − 1)-uniform hypergraph H with m edges, χCF (H)
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is at most m1/r logm (Solving for the number of edges m in terms of the number of colors t and

r gives us a lower bound on the minimum number of edges in a (2r − 1)-uniform hypergraph H
that is not t-colorable.) They also raised the question whether the same result holds for r-uniform

hypergraphs (i.e., can this lower bound be improved?). In this thesis, we show that this is not true.

We establish this by showing that there exists an r-uniform hypergraph H with m edges such that

χCF (H) > Crm
2/(r+2)/ logm.

Furthermore, we provide lower and upper bounds on the minimum number of edges of an r-uniform

simple hypergraph that is not conflict-free t-colorable. For the lower bound, we show that

if r ≤ t/8 and m ≤ 4
t2r

( t
8(r−1))

r, then χCF (H) ≤ t for every r-uniform simple hypergraph H
with m edges. Moreover, for the upper bound, we show that

if r ≤ t, then there exists an r-uniform simple hypergraph H with (1 + o(1))(4t ln t)2(4e
2t
r )r

edges such that χCF (H) > t.

4. Finally we consider list colorings of complete graphs. It is easy to see that χl(Kn) = χ(Kn) =

n, with lists of size n needed when the lists are identical; in other words, when the lists intersect a

lot. It is natural to ask what happens when the lists do not intersect too much. We say that a list

assignment L for a graph G is a (k, c)-list if |L(v)| = k for all v ∈ V (G) and |L(u) ∩ L(v)| ≤ c for

all uv ∈ E(G), that is for every edge, the lists of its endpoints have at most c colors in common.

Kratochv́ıl et al. [24] introduced χl(G, c) to be the least k such that G is L-colorable from each

(k, c)-list L. Among other results, they showed that

√
cn

2
≤ χl(Kn, c) ≤

√
2ecn.

Problem 1 in their paper asks whether limn→∞ χl(Kn, c)/
√
cn exists. Solving their problem, we

prove that the limit exists and is equal to 1. We also find the exact value of χl(Kn, c) for infinitely

many values of n by showing that if q is a prime power, c < q − 1 and c divides q − 1, then

χl(Kn, c) = q + 1, ∀n ∈ [
q2 − 1

c
+ 2,

1

c
(q2 +

c+ 3

c+ 1
q − 2(c − 1)

c+ 1
)].

6



Chapter 2

Coloring hypergraphs with few edges

2.1 Introduction

Let H be a hypergraph with vertex set V (H) and edge set E(H). Recall that H is called r-uniform

if all the edges of H have size r. Also recall that a mapping c : V (H) → {1, 2, 3, ...} of V (H) is a

proper coloring of H if no edge of H is monochromatic. The minimum number of colors required

for such a coloring is called the chromatic number of H, and is denoted by χ(H).

It is easy to see that if a hypergraph has very few edges, then one can properly color it with few

colors. On the other hand if a hypergraph has many edges then it becomes harder to color with

few colors. A natural question that arises is : Given the number of colors used (say t), what is

the smallest number of edges in a hypergraph H such that H is no longer t-colorable ? Erdős was

interested in studying this relationship between χ(H) and the number of edges of H. Let m(r, t)

denote the minimum number of edges in an r-uniform hypergraph that is not t-colorable. The most

studied case is the case t = 2 (In literature this property of a hypergraph being 2-colorable has also

been referred to as Property B, where given a family of sets F , one partitions the ground set into

two sets X and Y in such a way that every set in F meets both X and Y ). Erdős [8, 9] proved that

2r−1 ≤ m(r, 2) ≤ r22r, which was one of the first examples of the use of the Probabilistic method

in Combinatorics. Then Beck [6] improved the lower bound to 2rr1/3−ǫ and Spencer [29] presented

a simpler proof of Beck’s bound based on random recoloring. Radhakrishnan and Srinivasan [28]

further improved it by proving the following.

Theorem 1. [28] For every c < 1/
√

2, there exists an r0 = r0(c) such that for every r > r0,

m(r, 2) ≥ c2r
√
r/ ln r.

Erdős [9] and Erdős and Lovász [10] said that “perhaps, the order of magnitude of m(r, 2) is r2r”.

Repeating the argument of Erdős [8, 9], one can see that for every t ≥ 2, there exists C = C(t)

such that tr−1 ≤ m(r, t) ≤ Cr2tr.

Recall that ∆(H) is the maximum degree of vertices in H and D(H) is the maximum of the

edge degrees over all the edges of H.

In Erdős and Lovász’s seminal paper [10] (where the Lovász Local Lemma appeared), they

7



proved the following bound.

Theorem 2 ([10]). If t, r ≥ 2, then every r-uniform hypergraph with D(H) ≤ 1
4t
r is t-colorable. In

particular, if ∆(H) ≤ 1
4 t
rr−1, then H is t-colorable.

The proof works also for list coloring. A remarkable feature of this result is that it works for

all t, r ≥ 2, and in many cases the bound is rather close to the best possible. In particular, Erdős

and Lovász [10] showed that the bound cannot be significantly improved even if we consider only

hypergraphs with high girth. A corollary from one of their results is the following.

Theorem 3 ([10]). For each t, r, g ≥ 2, there exists an r-uniform hypergraph of girth g with

maximum edge degree at most 20r3tr−1 that is not t-colorable.

This last bound was recently slightly improved for t < r by Kostochka and Rödl [23].

Theorem 4 ([23]). For each t, r, g ≥ 2, there exists an r-uniform hypergraph of girth g with

maximum edge degree at most r⌈r tr−1 ln t⌉ that is not t-colorable.

Let us denote by D(r, t) the minimum D such that there exists an r-uniform non-t-colorable

hypergraph G with maximum edge degree D, then the above results can be summarized as follows.

1

4
tr < D(r, t) ≤ min{20r3tr−1, r⌈r tr−1 ln t⌉}.

Elaborating the proof of a lower bound on m(r, 2), and using the Lovász Local Lemma, Radhakr-

ishnan and Srinivasan [28] improved the lower bound on D(r, t) for t = 2 and large r.

Theorem 5 ([28]). If r is sufficiently large, then every r-uniform hypergraph with D(r, t) ≤ 0.17 ·
2r
√
r/ ln r is 2-colorable.

The main result of this chapter is the following extension of Theorem 5 for fixed t and large r.

Theorem 6. For every integer t ≥ 2, let ǫ = ǫ(t) = exp{−4t2} and n = n(t) = ⌊log2 t⌋. Then

for every sufficiently large r, every r-uniform hypergraph with maximum edge degree at most D =

ǫtr
(
r

ln r

) n
n+1 is t-colorable. In other words,

D(r, t) > ǫtr
( r

ln r

) n
n+1

.

The proof of Theorem 6 heavily uses the proof of the following result by Kostochka [19].

Theorem 7 ([19]). For every positive integer t, let ǫ = ǫ(t) = exp{−4t2} and n = n(t) = ⌊log2 t⌋.
Then for every r > exp{2ǫ−2},

m(r, t) ≥ ǫtr
( r

ln r

) n
n+1

.
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The proof also uses some ideas of Radhakrishnan and Srinivasan [28] and the Lovász Local

Lemma.

In Section 2.2, a semi-random procedure Evolution is described and some of its simple properties

are derived. In Section 2.3 we study the structure of so called cause trees arising in the analysis

of Evolution. In the next two sections we define some auxiliary “bad” events and estimate their

probabilities. Using the independence structure of these auxiliary events and the Lovász Local

Lemma, in the final section we show that for hypergraphs satisfying the conditions of Theorem 6,

with positive probability Evolution gives a proper t-coloring. This means that such a coloring

exists.

This is a joint work with A. Kostochka and V. Rödl and appears in [22].

2.2 Coloring procedure Evolution and its properties

Let t, n and ǫ be as in the statement of the theorem. Let r ≥ exp{2ǫ−2(n+1)}. Throughout the

chapter we will use the following notation: c = − ln ǫ = 4t2, z = ⌊cr/ ln r⌋. Fix some 0 < p < 2−t
rr.

Then there is the unique positive integer s such that sp ≤ ln r
(n+1)r < (s+ 1)p. Let G = (V,E) be an

r-uniform hypergraph with maximum edge degree at most D = ǫtr
(
r

ln r

) n
n+1 .

The coloring procedure Evolution described below consists of n+1 stages, and every stage apart

from Stage 0 consists of s steps. For 1 ≤ l ≤ n and 1 ≤ i ≤ s, Step (l − 1)s + i is the ith step in

Stage l.

We also fix a linear order L on V (G). Now, the procedure works as follows.

Stage 0. Color every vertex v ∈ V (G) randomly and independently, with a color φ(v) ∈
{0, 1, 2, . . . , t−1} chosen uniformly in this set. Also for every v ∈ V (G), define the random variable

I(v) with the values in {1, 2, . . . , sn} ∪ {∞} as follows:

Pr{I(v) = x} =

{
p, if x ∈ {1, 2, . . . , sn};

1 − psn, if x = ∞.
(2.1)

Each random variable I(v) is defined to be mutually independent of all other I(w).

Stage l, l = 1, . . . , n.

STEP i+s(l−1), 1 ≤ i ≤ s. Following order L, for one by one vertex v ∈ V (G), check whether

(C1) I(v) = (l − 1)s+ i and

(C2) v belongs to an edge that was monochromatic, say, of color α, before Stage l, and still is

monochromatic at the current moment.

If both conditions (C1) and (C2) hold, then recolor v with color α + 2l−1 (modulo t). Otherwise,

do nothing with v.

Remark 1. By Condition (C1), each vertex can be recolored at most once.
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Remark 2. As it follows from the description of the procedure, every step consists of |V (G)|
smaller steps (one per vertex).

Lemma 8. For every w, q ≥ 1, every set W ⊆ V with |W | = w, and every set Q ⊆ {1, 2, . . . , sn}
with |Q| = q, the probability that for each vertex v ∈W , I(v) ∈ Q is at most (qp)w.

PROOF. For every vertex v ∈ V (G) and every 1 ≤ l ≤ n and 1 ≤ i ≤ s, Pr{I(v) = s(l−1)+i} =

p. Therefore, the probability that I(v) ∈ Q is at most qp. The mutual independence of all I(v)

yields the lemma.

For an edge e ∈ E and 1 ≤ l ≤ n, let M(e, l) = {v ∈ e : I(v) ≤ sl}.

Lemma 9. For every e ∈ E and 1 ≤ l ≤ n,

Pr{|M(e, l)| ≥ z} ≤ ǫ0.5r.

PROOF. It is enough to prove the lemma for l = n. By Lemma 8, this probability is at most

(
r

z

)
(nsp)z ≤

(er
z

)z ( n ln r

(n+ 1)r

)z
≤
(
ne ln r

z(n+ 1)

)z
.

Since r is large and z = ⌊cr/ ln r⌋ > n,

ne ln r

z(n+ 1)
≤ e ln r

z + 1
≤ e ln2 r

cr
≤ r−0.6.

Thus (
ne ln r

z(n+ 1)

)z
≤
(
r−0.6

)(cr/ ln r)−1
< e−0.5cr = ǫ0.5r.

Lemma 10. If a vertex is of color α at the end of Stage l, l ≥ 1, then at the end of Stage 0 it can

be colored only with colors α, α− 20, α− 21, . . ., α− 2l−1 (modulo t).

PROOF. By Remark 1, every vertex can be recolored at most once and by definition, a vertex

of color β can be recolored during Stage j only with color β + 2j−1 (modulo t).

Definition [Blaming edges]. If an edge e0 becomes monochromatic of color α during Stage l,

then it must contain at the end of Stage 0 a vertex of color α − 2l−1. Suppose that at the end of

Stage 0 it contained vertices of colors α− 2l1−1, . . . , α− 2lh−1, where lh = l and l1 < l2 < . . . < lh.

Then for every 1 ≤ j ≤ h, there exists an edge ej and a vertex vj ∈ e0 ∩ ej such that

(a) ej was monochromatic of color α− 2lj−1 at the end of Stage lj − 1;

(b) vj was recolored with α during Stage lj and it was the last vertex of this color in e0 recolored

with α.

In this case we say that e0 and vj lj-blame ej .
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Remark 3. Since in every step of procedure Evolution the vertices of G are considered con-

secutively, every edge e can blame only an edge sharing exactly one vertex with e.

Remark 4. It might be that an edge e0 can blame more than one edge containing the same

vertex vj. On the other hand, by definition, e0 cannot blame an edge containing another vertex

v ∈ e0 with φ(v) = φ(vj).

Definition [Cause trees]. If an edge e0 is monochromatic of color α at the end of Stage l,

then a cause tree T = T (e0, α, l) is a subset of edges of G defined by induction on l as follows.

The set T always contains e0. If e0 was monochromatic of color α already after Stage 0, then

T = {e0} for every l. Suppose that at the end of Stage 0 edge e0 contained vertices of colors

α− 2l1−1, . . . , α− 2lh−1, where lh = l and l1 < l2 < . . . < lh. Suppose further that for j = 1, . . . , h,

edge e0 lj-blames edge ej . Then

T = T (e0, α, l) = {e0} ∪
h⋃

j=1

T (ej , α− 2lj−1, lj − 1).

Remark 5. By Remark 4 and the definition of cause trees, it could be that in the same

outcome of Evolution for the same triple (e0, α, l), we can construct several distinct cause trees

T = T (e0, α, l).

Definition [Levels of edges]. If T = T (e0, α, l) is defined as above, then we also say that

e1, e2, . . . , eh are the edges of level 1 of T , the edges blamed by the edges of level 1 are the edges of

level 2 of T , and so on. Thus, if an edge e of a cause tree has vertices of exactly t distinct colors

at the end of Stage 0, then e blames either t− 1 or t other edges.

2.3 Structure of cause trees

Since each vertex can be recolored at most once, each edge at different stages of Evolution can

become monochromatic with at most two colors. Furthermore, if an edge e was monochromatic of

a color α1 after Stage l1 and becomes monochromatic of a color α2 6= α1 after Stage l2, then e has

to be monochromatic of color α1 already after Stage 0 and all vertices of e change their color to

α2 = α1 + 2l2−1 at Stage l2. In this case, each cause tree for e considered after Stage l2 has exactly

one edge of level 1.

In view of this, if an edge e becomes monochromatic exactly once during Evolution, then

the corresponding color α is called the main color of e and denoted by µ(e), and if e becomes

monochromatic twice, then the main color of e, µ(e), is the first of these two colors.

If e is monochromatic of some color α after some Stage l, then we say that e is an l-unlucky

edge.
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Lemma 11. If e0 is an l-unlucky edge with a cause tree T , then the main colors of all the edges of

T are distinct.

PROOF. If e and e′ are edges of T , then there exist two sequences e0, e1, . . . , eq = e and

e′0 = e0, e
′
1, . . . , e

′
q′ = e′ such that ej lj-blames ej+1 for j = 0, 1, . . . , q − 1 and e′j i

′
j-blames e′j+1 for

j = 0, 1, . . . , q′ − 1. Furthermore, l0 > l1 > · · · > lq−1, i
′
0 > i′1 > · · · > i′q−1, and the sequences

l0, l1, . . . , lq and i′0, i
′
1, . . . , i

′
q are not identical. Thus, the numbers 2l0−1 + 2l1−1 + . . . + 2lq−1−1

and 2i
′

0−1 + 2i
′

1−1 + . . . + 2
i′
q′−1

−1
are distinct and differ by less than t. On the other hand, by

definition, the main color of e is α − 2l0−1 − 2l1−1 − . . . − 2lq−1−1 and the main color of e′ is

α− 2i
′

0−1 − 2i
′

1−1 − . . .− 2
i′
q′−1

−1
. This proves the lemma.

Lemma 12. Suppose that e0 is an l-unlucky edge with a cause tree T . If e and e′ are edges of T

and neither of them blames the other, then e and e′ are disjoint.

PROOF. Assume that e and e′ have a common vertex v and both belong to T . Then there

exist two sequences e0, e1, . . . , eq = e and e′0 = e0, e
′
1, . . . , e

′
q′ = e′ such that ej lj-blames ej+1 for

j = 0, 1, . . . , q − 1 and e′j i
′
j-blames e′j+1 for j = 0, 1, . . . , q′ − 1. Furthermore, l0 > l1 > · · · > lq−1,

i′0 > i′1 > · · · > i′q−1.

Claim 1. lq−1 6= i′q′−1.

Proof of Claim. If lq−1 = i′q′−1, then e and e′ both were monochromatic at the end of Stage

lq−1 − 1. But by Lemma 11, their main colors differ. This proves the claim.

Thus below we can assume that lq−1 < i′q′−1. It follows that e ceased to be monochromatic

before e′ did. In particular, v was recolored from µ(e) to µ(e′). This yields that

µ(e′) − µ(e) (modulo t) is a power of 2. (2.2)

Claim 2. µ(e′) − µ(e) = 2lq−1−1 modulo t.

Proof of Claim. Recall that

µ(e′) − µ(e) = (α− 2i
′

0−1 − 2i
′

1−1 − . . .− 2
i′
q′−1

−1
) − (α− 2l0−1 − 2l1−1 − . . .− 2lq−1−1).

In this expression, α cancels out and every other summand apart from 2lq−1−1 is divisible by 2lq−1 .

Together with (2.2), this yields the claim.

Claim 2 implies that v was recolored during Stage lq−1 and thus µ(e′) = µ(eq−1). This contra-

dicts Lemma 11.
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Lemma 13. Let λ(l) denote the maximal possible number of edges in a cause tree T for an unlucky

edge e0 under the condition that µ(e1) − µ(e2) ∈ {1, 2, . . . , 2l−1} (modulo t) for every pair of edges

(e1, e2) such that e1 blames e2. Then for every l ≥ 0, λ(l) ≤ 2l. In particular, each cause tree has

at most 2n ≤ t edges.

PROOF. If e1 l1-blames e2 and e2 l2-blames e3, then l2 < l1. Thus, under conditions of the

lemma, for the root e0 and an arbitrary edge e of the tree, we have

µ(e0) − µ(e) ∈ {1, 2, . . . , 2l−1 + 2l−2 + · · · + 1} = {1, 2, . . . , 2l − 1}.

Now, Lemma 11 implies that T has at most 1 + (2l − 1) edges.

Below we will analyze which subsets of edges of G can form cause trees T (e, α, l) for some values

of e, α and l. Lemma 12 implies that every cause tree T = T (e, α, l) is an r-uniform hypergraph

tree in the ordinary sense rooted at e. Moreover, every vertex of such a tree belongs to at most two

edges of this tree. In connection with this, let us fix some notation. Everywhere below, when we

say “r-tree”, we mean an r-uniform hypergraph tree in which every vertex belongs to at most two

edges of this tree. Often, we will consider rooted r-trees. The root of an r-tree will be an edge of

this r-tree, and not a vertex. By a sub-r-tree of G we mean an r-tree that is a subhypergraph of G.

Given an r-tree T with a root e0, the children of e0 are the edges adjacent to e0, and for e ∈ E(T )

at distance d from e0 (in T ), the children of e are the edges adjacent to e that are at distance d+ 1

from e0. Naturally, the descendants of an e ∈ E(T ) are its children, children of children and so on.

If e1 is a descendant of e2, then e2 is an ancestor of e1. For an r-tree T with a root e0 and another

edge e1 of T , by T (e1) we denote the subtree of T formed by e1 and all its descendants. We will

use the following fact on sub-r-trees of r-uniform hypergraphs.

Lemma 14. Let H be an r-uniform hypergraph with maximum edge degree at most D. Let e0 ∈
E(H). Then e0 belongs to at most (4D)y−1 sub-r-trees of H with y edges.

PROOF. Let T be a sub-r-tree of H containing e0 with |E(T )| = y. Consider T as a rooted r-

tree with root e0. Order the edges of T e0, e1, . . . , ey−1 starting from e0 using Breadth-First search.

We say that T has type (h0, . . . , hy−2) if for i = 0, . . . , y − 2, edge ei has exactly hi children. Since

h0 + . . .+hy−2 = y− 1, the number of distinct types does not exceed the number of representation

of y−1 as the sum of y−1 of ordered nonnegative summands, which equals
((y−1)+(y−1)−1

y−2

)
< 4y−1.

When we know the type of T , then for every edge ei, i ≥ 1, we know the immediate ancestor (father

edge). So, we can embed a tree T of a given type, edge by edge into G. Furthermore, at each step

i, i ≥ 1, we have at most D choices for our edge among the edges of G adjacent to its father edge.

Thus, e0 belongs to at most Dy−1 r-trees of given type with y edges. Since the number of distinct

types is at most 4y−1, this proves the lemma.
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2.4 Auxiliary events

The goal of this section is to introduce auxiliary events that imply the “bad” events in Evolution

and are easier to control. In the next section we estimate probabilities of these auxiliary events.

Let e ∈ E(G), α ∈ [t], l ∈ {1, . . . , n} and T be a sub-r-tree of G rooted at e. Then let

W (e, α, T, l) be the event that edge e is monochromatic of color α after Stage l of Evolution, and

a cause tree for this is T . Also, let e1, . . . , eq be the edges of T of the first level, i.e., the edges of

T sharing a vertex with e. For j ∈ [q], let e ∩ ej = {vj}. Let Q
.
= {v1, . . . , vq}.

If W (e, α, T, l) occurs, then the following properties hold.

(W1) For every v ∈ e, φ(v) ∈ {α} ∪ φ(Q) ⊆ {α,α − 20, α− 21, . . . , α− 2l−1} (modulo t).

Proof: By the definition of cause trees and Lemma 10.

(W2) For j ∈ [q], φ(vj) 6= α, and for distinct j and j′, φ(vj′) 6= φ(vj). In particular, if Aj =

Aj(e, φ) = {v ∈ e : φ(v) = φ(vj)}, then all sets Aj are disjoint subsets of e.

Proof: By the definition of cause trees, for each j ∈ [q], vj is the last vertex of color φ(vj) that

changed its color to α. This implies both statements.

(W3) I(v) ≤ ls for each v ∈ ⋃q
j=1Aj . Moreover, for each j ∈ [q], if vj becomes of color α at Stage

lj , then

(W4) α− φ(vj) = 2lj−1;

(W5) the event W (ej , φ(vj), T (ej), lj − 1) occurs;

(W6) for every u ∈ ej with I(u) > (lj − 1)s, we have also I(u) ≥ I(vj); and

(W7) for each u ∈ Aj − vj, (lj − 1)s+ 1 ≤ I(u) ≤ I(vj).

Proof: Since each v ∈ ⋃q
j=1Aj has changed its color by Stage l, by condition (C1) in the

definition of Evolution, (W3) follows. Statement (W4) also follows from the definition of Evolution.

If ej were not monochromatic of color φ(vj) after Stage lj − 1, then vj would not obtain color α

blaming ej. This yields (W5). If some u ∈ ej would have (lj − 1)s < I(u) < I(vj), then by the

definition of Evolution, it would mean that u did not change its color before Stage lj , and so it

should change its color at the moment I(u), i.e. earlier than vj did, in which case vj would not

blame ej . This contradiction proves (W6). Now (W7) follows from the facts that all vertices in Aj

must change their colors in Stage lj (in order to change it from φ(vj) to α) and that vj is the last

vertex in Aj that changes its color.

(W8) If e was already monochromatic after Stage l− 1, then for each v ∈ e, I(v) /∈ [s(l− 1) + 1, sl].

Proof: If e were monochromatic after Stage l − 1, and I(v) ∈ [s(l − 1) + 1, sl] for some v ∈ e,

then v would change its color, and so W (e, α, T, l) would not happen.

Unfortunately, events W (e, T, α, l) and W (e′, T ′, α′, l′) can be dependent even if V (T ′) is disjoint

from V (T ). So, for each e0 ∈ E(G), each sub-r-tree T of G with root e0 and |E(T )| ≤ t, and each

color α, we will introduce the auxiliary event W̃ (e0, α, T, l) that contains the event W (e0, α, T, l),

and in addition essentially possesses properties (W1)–(W8) above, but does not depend on the
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values of φ(u) and I(u) for all u /∈ V (T ). We define these events by induction on the number of

edges in T .

If E(T ) = {e0}, then the event W̃ (e0, α, T, l) means that all of the following holds

(i) φ(e0) is monochromatic of color α,

(ii) |M(e0, n)| < z, and

(iii) I(v) > ls for every v ∈ e0.

Suppose that the event W̃ (e0, α, T, l) is defined for all parameters e0, α, T, l such that |E(T )| < y.

Let e0 ∈ E(G), α ∈ [t], and T be any sub-r-tree T of G with root e0 and y edges. Let e1, . . . , eq be

the edges of T sharing a vertex with e. For j ∈ [q], let e∩ ej = {vj}. Let Q
.
= {v1, . . . , vq}. We say

that W̃ (e0, α, T, l) occurs, if either |M(e, n)| ≥ z for at least one e ∈ E(T ) or all of the following

holds:

(W̃1) For every v ∈ e, φ(v) ∈ {α} ∪ φ(Q) ⊆ {α,α − 20, α− 21, . . . , α− 2l−1} (modulo t).

(W̃2) For j ∈ [q], φ(vj) 6= α, and for distinct j and j′, φ(vj′) 6= φ(vj). In particular, if

Aj = Aj(e, φ) = {v ∈ e : φ(v) = φ(vj)}, then all sets Aj are disjoint.

(W̃3) I(v) ≤ ls for each v ∈ ⋃qj=1Aj . Moreover, for each j ∈ [q], if (lj − 1)s + 1 ≤ I(vj) ≤ slj,

then

(W̃4) α− φ(vj) = 2lj−1;

(W̃5) event W̃ (ej , φ(vj), T (ej), lj − 1) occurs;

(W̃6) for every u ∈ ej with I(u) > (lj − 1)s, we have also I(u) ≥ I(vj), and

(W̃7) for each u ∈ Aj − vj, (lj − 1)s+ 1 ≤ I(u) ≤ I(vj).

(W̃8) If event W̃ (e0, α, T, l − 1) occurs, then for each v ∈ e0, I(v) /∈ [s(l − 1) + 1, sl].

The following two lemmas justify the introduction of the events W̃ (e, α, T, l).

Lemma 15. Let e0 ∈ E(G), α ∈ [t], l ∈ {0, . . . , n} and T be a sub-r-tree of G with root e0. If the

event W (e0, α, T, l) occurs, then the event W̃ (e0, α, T, l) also occurs.

PROOF. Suppose that for some values of the parameters e0, T , l, and α, W (e0, α, T, l) occurs

but W̃ (e0, α, T, l) does not occur. We may choose this pair so that for all subtrees of T this does

not happen, and that for given e0, T , α and for l′ < l, this does not happen.

Let us check which of the properties in the definition of W̃ (e0, α, T, l) may fail. Since (W̃1) and

(W̃2) coincide with (W1) and (W2), respectively, they hold. For the same reason, properties (W̃4),

(W̃6), and (W̃7) hold. Property (W̃5) follows from (W5) and the minimality of our counterexample.

The property I(v) ≤ ls for each v ∈ ⋃j≥1Aj (first line of (W̃3)) follows from the fact that otherwise,

by the definition of Evolution, some vertex in
⋃q
j=1Aj would not change its color to α.
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Assume finally that (W̃8) does not hold, in other words, that W̃ (e0, α, T, l − 1) occurs, and for

some v ∈ e0, I(v) ∈ [s(l − 1) + 1, sl]. By (W8), this implies that W (e0, α, T, l − 1) does not occur,

i.e., after Stage l − 1, e0 is not monochromatic of color α. It follows that in order e0 to become

monochromatic of color α after Stage l, we need I(u) ∈ [s(l− 1) + 1, sl] for some u ∈ ⋃q
j=1Aj. On

the other hand, by (W̃3) for the event W̃ (e0, α, T, l−1), I(u) ≤ (l−1)s for each u ∈ ⋃q
j=1Aj. This

contradiction finishes the proof of the lemma.

Lemma 16. Let e0 ∈ E(G), α0 ∈ [t], l0 ∈ {0, . . . , n}, and T0 be a sub-r-tree of G with root e0.

Then W̃ (e0, α0, T0, l0) is independent of all events W̃ (e, α, T, l) such that V (T ) ∩ V (T0) = ∅.

PROOF. By definition, the events W̃ (e0, α0, T0, l0, ψ(e0)) are completely defined when we know

the values of φ(v) and I(v) for all v ∈ V (T0). This yields the lemma.

2.5 Probabilities of auxiliary events

Lemma 17. Let D := ǫtr
(
r

ln r

) n
n+1 and G be an r-uniform hypergraph with maximum edge degree

at most D. Let e ∈ E(G), α ∈ [t], and 0 ≤ l ≤ n. Let T be a rooted sub-r-tree of G with root e. If

T has y edges, then

Pr(W̃ (e, α, T, l)) ≤ ǫD−y
( r

ln r

) n−l
n+1

.

PROOF. We use induction on l. Consider first l = 0. If W̃ (e, α, T, 0) occurs, then by (W̃1),

φ(v) = α for each v ∈ e. Thus, in this case

Pr(W̃ (e, α, T, 0)) = t−r =
ǫ

D

( r

ln r

) n
n+1

.

This proves the case l = 0.

Now, suppose that the lemma holds for every l′ < l. Consider the event W̃ (e, α, T, l) for some

e ∈ E(G), an r-tree T with y edges rooted at e, and α ∈ [t]. Let X(T ) denote the event that

|M(e′, n)| ≥ z for at least one e′ ∈ E(T ), and X(T ) be its complement. Suppose that the event

W̃ (e, α, T, l) ∩X(T ) occurs.

Let e1, . . . , eq be all the edges of T that share a vertex with e. For j = 1, . . . , q, let {vj} = e∩ ej
and let yj be the number of edges in T (ej). Let Q

.
= {v1, . . . , vq}. By (W̃3), for each j ∈ [q], there

exists an lj ∈ [l] such that s(lj − 1) < I(vj) ≤ slj . Moreover, by (W̃4) and (W̃2), all lj are distinct.

Let Θ0 = Θ0(q, l) be the set of vectors (x1, . . . , xq) such that (a) xj ∈ [l] for each j ∈ [q], and

(b) all x1, . . . , xq are distinct. By the previous paragraph,

W̃ (e, α, T, l) ∩X(T ) = W̃ (e, α, T, l) ∩X(T ) ∩ {(j1, . . . , jq) ∈ Θ0}. (2.3)
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Let Θ1(q, l) = Θ0(q, l − 1), i.e. the set of (x1, . . . , xq) ∈ Θ0 such that xj ≤ l − 1 for all j ∈ [q]. Let

Θ2 = Θ2(q, l) = Θ0(q, l) − Θ1(q, l). For i = 1, 2, let

Fi(e, α, T, l) = W̃ (e, α, T, l) ∩X(T ) ∩ {(j1, . . . , jq) ∈ Θi}.

By (2.3),

W̃ (e, α, T, l) ⊆ X(T ) ∪ F1(e, α, T, l) ∪ F2(e, α, T, l). (2.4)

Our goal is to prove that for i = 1, 2,

Pr(Fi(e, α, T, l)) ≤ 0.4ǫD−y
( r

ln r

) n−l
n+1

. (2.5)

Since by Lemma 9, Pr(X(T )) ≤ tǫ0.5r < 0.1ǫD−y, (2.4) and (2.5) will imply the lemma.

Observe that the condition “xj ≤ l − 1 for all j ∈ [q]” in the definition of Θ1(α, l) implies that

if W̃ (e, α, T, l) occurs, then all conditions (W̃1)–(W̃ 8) are satisfied for the event W̃ (e, α, T, l − 1).

By the induction assumption,

Pr(W̃ (e, α, T, l − 1)) ≤ ǫD−y
( r

ln r

)(n−l+1)/(n+1)
. (2.6)

Let Z(e, l) be the event that for each v ∈ e − M(e, l − 1), I(v) /∈ {s(l − 1) + 1, . . . , sl}. If

W̃ (e, α, T, l) ∩ X(T ) holds, then by (W̃8), Z(e, l) occurs. Since all random variables I(v) are

mutually independent,

Pr({Z(e, l) | W̃ (e, α, T, l − 1)}) ≤
(

1 − lps

1 − (l − 1)ps

)r−|M(e,l−1)|

≤ (1 − ps)r−|M(e,l−1)|. (2.7)

Therefore,

Pr({Z(e, l) | W̃ (e, α, T, l − 1)}) ≤
∑

M⊂e

Pr{M = M(e, l − 1)}(1 − ps)r−|M |.

By Lemma 9, Pr(|M(e, l − 1)| ≥ z) ≤ ǫ0.5r. Hence

∑

M⊆e

Pr{M = M(e, l − 1)}(1 − ps)r−|M | ≤ ǫ0.5r +
∑

M⊆e : |M |<z

Pr{M = M(e, l − 1)}(1 − ps)r−|M | ≤

≤ ǫ0.5r + (1 − ps)r−z ≤ ǫ0.5r + exp{−psr(1 − c

ln r
)}.

Since ps ≥ ln r
(n+1)r − p, by the definition of p and s,

exp{−psr(1 − c

ln r
)} ≤ exp{−(

ln r

n+ 1
− pr)(1 − c

ln r
)} ≤ exp{− ln r

n+ 1
+

c

n+ 1
+ pr}.
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Recall that c = − ln ǫ. Since p < 2−t
rr, pr < c

n+1 and hence

exp{− ln r

n+ 1
+

c

n+ 1
+ pr} ≤ r

−1
n+1 e2c/(n+1) ≤ 1

ǫ
r

−1
n+1 .

Recall that ln r ≥ 2ǫ−2(n+1) and ǫ = exp{−4t2}. So,

1

ǫ
r

−1
n+1 ≤ 1

ǫ

( r

ln r

) −1
n+1

ǫ2 ≤
( r

ln r

) −1
n+1

exp{−4t2} < 0.1
( r

ln r

) −1
n+1

.

By this and (2.6),

Pr(F1(e, α, T, l)) ≤ Pr(W̃ (e, α, T, l − 1) ∩X(T ))Pr({Z(e, l) | W̃ (e, α, T, l − 1) ∩X(T )}) ≤

≤ ǫ0.5r + 0.1ǫD−y
( r

ln r

)n−l+1
n+1

− 1
n+1

.

Since ǫ0.5r−1 < 0.01D−t ≤ 0.01D−y , this implies (2.5) for i = 1.

Now we will prove (2.5) for i = 2. Suppose that F2(e, α, T, l) occurs. Then there exists j∗ ∈ [q]

such that lj∗ = l. Also, for every j ∈ [q], there exists hj ∈ [s] such that I(vj) = s(lj − 1) + hj .

By (W̃5), for every j ∈ [q], the event W̃ (ej , α − 2lj−1, T (ej), lj − 1) occurs. For j ∈ [q], let

Aj = {v ∈ e : φ(v) = φ(vj)} and aj = |Aj | − 1. Let W̃6(j, h) be the event that for every u ∈ ej

with I(u) > (lj − 1)s, we have also I(u) ≥ (lj − 1)s + h, and W̃7(j, h) be the event for each

u ∈ Aj − vj , (lj − 1)s + 1 ≤ I(u) ≤ (lj − 1)s + h. By (W̃6) and (W̃7), for each j ∈ [q], both

W̃6(j, hj) and W̃7(j, hj) occur.

For a vector (l1, . . . , lq), let Ψ(l1, . . . , lq) be the set of colorings ψ of e such that all of the fol-

lowing holds:

(P1) ψ(vj) = α− 2lj−1 for all j ∈ [q].

(P2) ψ(v) ∈ {ψ(v1), . . . , ψ(vq), α} for all v ∈ e.

Thus, in order F2(e, α, T, l) to occur, all of the following should happen:

(F0) X(T ) occurs.

(F1) For some l1, . . . , lq ∈ [l] and h1, . . . , hq ∈ [s], I(vj) = s(lj − 1) + hj for all j ∈ [q].

(F2) For these l1, . . . , lq ∈ [l] and h1, . . . , hq ∈ [s], each of W̃ (ej , α − 2lj−1, T (ej), lj − 1) occurs

and each of W̃6(j, hj) occurs.

(F3) φ(e) ∈ Ψ(l1, . . . , lq).
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(F4) For each j ∈ [q], W̃7(j, hj) occurs.

So, we estimate

Pr(F2(e, α, T, l)) ≤

≤
∑

(l1,...,lq)∈Θ2

s∑

h1=1

s∑

h2=1

. . .
s∑

hq=1

Pr




q⋂

j=1

{I(vj) = s(lj − 1) + hj}


× (2.8)

× Pr




q⋂

j=1

(
W̃ (ej , α− 2lj−1, T (ej), lj − 1) ∩ W̃6(j, hj)

)

× (2.9)

×
∑

ψ∈Ψ(l1,...,lq)

Pr


{φ(e) = ψ |

q⋂

j=1

(
W̃ (ej , α− 2lj−1, T (ej), lj − 1) ∩ W̃6(j, hj)

)
}


× (2.10)

× Pr
({
W̃7(j, hj) | {φ(e) = ψ} ∩

q⋂

j=1

W̃ (ej , α− 2lj−1, T (ej), lj − 1) ∩ W̃6(j, hj)
})
. (2.11)

We first deal with (2.8). Since all I(v) are independent, by (2.1),

Pr(

q⋂

j=1

{I(vj) = s(lj − 1) + hj}) = pq. (2.12)

Since the vertex sets of T (ej) for distinct j are disjoint and by Lemma 16, for every j the

event W̃ (ej , α − 2lj−1, T (ej), lj − 1) ∩ W̃6(j, hj) depends only on the values of I(v) and φ(v) for

v ∈ V (T (ej)),

Γ(j, hj)
.
= Pr




q⋂

j=1

(
W̃ (ej , α− 2lj−1, T (ej), lj − 1) ∩ W̃6(j, hj)

)

 =

=

q∏

j=1

Pr
(
W̃ (ej , α− 2lj−1, T (ej), lj − 1) ∩ W̃6(j, hj)

)
.

If T (ej) has yj edges, then by the induction assumption,

Pr(W̃ (ej , α− 2lj−1, T (ej), lj − 1)) ≤ tǫD−yj
( r

ln r

)(n−lj+1)/(n+1)
.

Let us estimate γ(j, hj)
.
= Pr

(
{W̃6(j, hj) | W̃ (ej , α− 2lj−1, T (ej), lj − 1)}

)
. If v ∈ ej −M(ej , lj −
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1) − vj , then

Pr(I(v) ≥ (lj − 1)s + hj) =
1 − p(lj − 1)s− p(hj − 1)

1 − p(lj − 1)s
≤ 1 − p(hj − 1).

By the independence of I(v) for distinct v, similarly to (2.7) and the argument following (2.7), we

have

γ(j, hj) ≤
∑

M⊆ej

Pr{M = M(ej , lj − 1)}(1 − p(hj − 1))r−|M |−1 ≤ ǫ0.5r+

+
∑

M⊆e : |M |<z

Pr{M = M(hj − 1)}(1 − p(hj − 1))r−|M |−1 ≤ ǫ0.5r + (1 − p(hj − 1))r−z .

Since ǫ0.5r ≤ 0.1(1 − ps)r ≤ 0.1(1 − p(hj − 1))r−z, we conclude that

Γ(j, hj) ≤
q∏

j=1

tǫD−yj
( r

ln r

)(n−lj+1)/(n+1)
1.1(1 − p(hj − 1))r−z. (2.13)

Now we evaluate (2.10) and (2.11). Observe that each event W̃ (ej , α− 2lj−1, T (ej), lj − 1) already

fixes the color of vj in φ, but all other vertices of e are “free”. So, for each ψ ∈ Ψ(l1, . . . , lq),

Pr({φ(e) = ψ |
q⋂

j=1

W̃ (ej , α− 2lj−1, T (ej), lj − 1) ∩ W̃6(j, hj)}) ≤ tq−r. (2.14)

Next, observe that the event
⋂q
j=1 W̃7(j, hj) does not depend on

q⋂

j=1

W̃ (ej , α− 2lj−1, T (ej), lj − 1) ∩ W̃6(j, hj),

since it relates only to the values of I(u) for u ∈ e−Q. For each j ∈ [q] and each u ∈ Aj − vj, we

have Pr
(
(lj − 1)s + 1 ≤ I(u) ≤ (lj − 1)s + hj

)
= phj . Since each ψ ∈ Ψ(l1, . . . , lq) is completely

defined when we choose disjoint sets A1− v1, . . . , Aq− vq in e−Q, the expression in the lines (2.10)

and (2.11) does not exceed

tq−r
r−q∑

a1=0

r−q−a1∑

a2=0

. . .

r−q−a1−...−aq−1∑

aq=0

(
r − q

a1

)(
r − q − a1

a2

)
. . .

(
r − q − a1 − . . .− aq−1

aq

) q∏

j=1

(phj)
aj .

(2.15)

Thus pugging (2.12), (2.13) and (2.15) into (2.8)–(2.11), we have that Pr(F2(e, α, T, l)) does

not exceed
∑

(l1,...,lq)∈Θ2

s∑

h1=1

s∑

h2=1

. . .

s∑

hq=1

r−q∑

a1=0

r−q−a1∑

a2=0

. . .

r−q−a1−...−aq−1∑

aq=0

tq−r× (2.16)
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×
q∏

j=1

(
ptǫD−yj

( r

ln r

)(n−lj+1)/(n+1)
1.1(1 − p(hj − 1))r−z

(
r

a1

)(
r

a2

)
. . .

(
r

aq

)
(phj)

aj

)
. (2.17)

We now will simplify and estimate the expressions in (2.16) and (2.17). First observe that

(1 − p(hj − 1))r−z ≤ (1 − p)(r−z)(hj−1). Thus since 0 < p < 2−t
rr and hj ≤ s ≤ ln r

p(n+1)r , we have

1.1(1 − p(hj − 1))r−z ≤ 1.1(1 − p)(r−z)(hj−1) ≤ 1.2(1 − p)(r−z)hj .

For j = q, q − 1, . . . , 1 (in this order), we can estimate

p

s∑

hj=1

r−q−a1−...−aj−1∑

aj=0

(
r

aj

)
1.2(1 − p)(r−z)hj(hjp)

aj ≤ 1.2p

s∑

hj=1

(1 − p)rhj−zs
r∑

aj=0

(
r

aj

)
(hjp)

aj ≤

≤ 1.2p(1 − p)−zs
s∑

hj=1

(1 − p)rhj(1 + hjp)
r ≤ 1.2pe

pzs
1−p

s∑

hj=1

(1 − p)rhj(1 + hjp)
r ≤

≤ 1.2pe
z ln r

(1−p)(n+1)r

s∑

hj=1

(1 − p)rhj (1 + p)rhj ≤ 1.2(ps)e
c

(1−p)(n+1) .

Since ps ≤ ln r
r(n+1) , n+ 1 ≥ 2, and c = 4t2 = − ln ǫ, we have

1.2(ps)e
c

(1−p)(n+1) ≤ 1.2
ln r

r(n + 1)
ǫ−1/2(1−p) < e−3t2/2 ln r

r(n+ 1)ǫ
.

Thus,

Pr(F2(e, α, T, l)) ≤
∑

(l1,...,lq)∈Θ2

t−rD−y1−...−yq

q∏

j=1

(
ǫt2
( r

ln r

)n−lj+1

n+1
e−3t2/2 ln r

r(n+ 1)ǫ

)
. (2.18)

Note that

t−rD−y1−...−yq = t−rD−y+1 ≤ D−yǫ
( r

ln r

) n
n+1

. (2.19)

Recall that by the definition of Θ2, there is j∗ such that lj∗ = l. For every other j, we estimate

ǫt2
( r

ln r

)n−lj+1

n+1
e−3t2/2 ln r

r(n+ 1)ǫ
≤ t2

n+ 1
e−3t2/2 <

1

n+ 1
, (2.20)

but for j = j∗ we gain more. By (2.18), (2.19), and (2.20), we have

Pr(F2(e, α, T, l)) ≤
∑

(l1,...,lq)∈Θ2

(
D−yǫ

( r

ln r

) n
n+1

)
ǫ
( r

ln r

)n−lj∗+1

n+1
t2e−3t2/2 ln r

rǫ(n+ 1)
(n+ 1)−q+1.
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Note that since lj∗ = l, the summands in the last expression do not depend on the choice of

(l1, . . . , lq) ∈ Θ2. Since |Θ2| ≤ (l + 1)q ≤ (n+ 1)q, we have

Pr(F2(e, α, T, l)) ≤
(
D−yǫ

( r

ln r

) n
n+1

)
ǫ
( r

ln r

)n−l+1
n+1

t2e−3t2/2 ln r

rǫ
=

= t2e−3t2/2ǫD−y
( r

ln r

) n−l
n+1 ≤ 0.4ǫD−y

( r

ln r

) n−l
n+1

.

This proves (2.5) for i = 2 and thus the lemma.

Applying Lemma 17 for l = n, we get the following immediate consequence.

Corollary 18. Let e ∈ E(G) and α ∈ [t]. Let D := ǫtr
(
r

ln r

) n
n+1 . Let T be a rooted sub-r-tree of G

with root e. If T has y edges, then

Pr(W̃ (e, α, T, n)) ≤ ǫD−y.

2.6 Proof of Theorem 6

Recall the following version of the Lovász Local Lemma.

Theorem 1 ([2]). Let A1, A2, ..., AN be any events. Let S1, S2, ..., SN be subsets of [n] such that for

each i, Ai is independent of the events {Aj : j ∈ ([N ]−Si)}. If there exist numbers x1, x2, ..., xN ∈
[0, 1) such that for all i ∈ [N ], Pr[Ai] ≤ xi

∏
j∈Si

(1 − xj), Then,

Pr[
∧

i∈[N ]

Ai] ≥
∏

i∈[N ]

(1 − xi) > 0.

Radhakrishnan and Srinivasan used it in the following form.

Lemma 19 ([28]). Let A1, A2, ..., AN be any events. Let S1, S2, ..., SN be subsets of [N ] such that

for each i, Ai is independent of the events {Aj : j ∈ ([N ]−Si)}. If for all i ∈ [N ], Pr(Ai) <
1
2 and

∑
j∈Si

Pr(Aj) ≤ 1
4 , then Pr[

∧
i∈[N ]

Ai] > 0.

PROOF: We show that if the conditions of this lemma hold, then the conditions of Theorem 1

hold for xi = 2Pr(Ai), i ∈ [N ]. Indeed, with so defined xi, inequality

Pr[Ai] ≤ xi
∏

j∈Si

(1 − xj)
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follows if
∏
j∈Si

(1 − xj) ≥ 1
2 holds. Furthermore,

∏

j∈Si

(1 − xj) ≥ 1 −
∑

j∈Si

xj = 1 − 2
∑

j∈Si

Pr(Aj) ≥
1

2
(since

∑
j∈Si

Pr(Aj) ≤ 1
4).

Hence by Theorem 1, we have the result.

Lemma 20. Let 0 < ǫ ≤ 4−tt−4. If Pr(W̃ (e, α, T, n)) ≤ ǫD−y for every α ∈ [t], every sub-r-tree T

of G with y ≤ t edges and for every e ∈ E(T ), then with positive probability, none of these events

occurs.

PROOF: Consider the probability space of the outcomes of Evolution. Let the events A1, . . . , AN

be the events W̃ (e, α, T, n) for all e ∈ E(G), all α ∈ [t] and sub-r-trees T of G containing e

with at most t edges. It is enough to verify that the conditions of Lemma 19 hold for our events

A1, . . . , AN . Each of the conditions Pr(W̃ (e, α, T, n)) < 1/2 immediately follows from Corollary 18.

By Lemma 16, for the event Ai = W̃ (e, α, T, n), we we can take Si equal to the set of all events

W̃ (e′, α′, T ′, n) such that V (T ′) ∩ V (T ) 6= ∅.

Now, fix an event Ai = W̃ (e, α, T, n), where T has y edges, and estimate
∑
j∈Si

Pr(Aj). Let

W̃ (e′, α′, T ′, n) ∈ Si and suppose that the size of T ′ is y′. Then some edge e′′ of T ′ intersects V (T )

(in particular, e′′ can be an edge of T , too). The number of ways to choose an edge that intersects

V (T ) is at most D + 1 if y = 1, and is at most yD, if y > 1. By Lemma 14, G contains at most

(4D)y
′−1 r-trees of size y′ containing edge e′′. In each of such trees, there are y′ ways to choose a

root, e′, and t ways to choose the color α′. Since Pr(W̃ (e′, α′, T ′, n)) ≤ ǫD−y′ , it follows that

∑

j∈Si

Pr(Aj) ≤
t∑

y′=1

tD · (4D)y
′−1y′tǫD−y′ =

t∑

y′=1

t2y′4y
′−1ǫ ≤ t44t−1ǫ. (2.21)

Since 0 < ǫ ≤ 4−tt−4, the last expression in (2.21) is at most 1/4. Thus we are done by Lemma 19.

Now we are ready to complete the proof of Theorem 6. Indeed, let G be a hypergraph satisfying

the conditions of the theorem. Consider procedure Evolution. By Corollary 18, for each y-edge

r-tree T , each edge e ∈ E(T ) and each α ∈ [t], Pr(W̃ (e, α, T, n)) ≤ ǫD−y. For t ≥ 2, we have ǫ =

exp{−4t2} < 4−tt−4. So, by Lemma 20, with positive probability none of the events W̃ (e, α, T, n)

occurs. It follows that in some outcome of Evolution none of the events W̃ (e, α, T, n) occurs. By

Lemma 15, in this outcome none of the events W (e, α, T, n) occurs. But then the resulting t-coloring

will be proper.
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Chapter 3

Coloring simple hypergraphs with few

edges

3.1 Introduction

We now turn our attention from coloring of general hypergraphs (discussed in the previous chapter)

to coloring of simple hypergraphs. Recall that a hypergraph is called simple if every two edges

intersect in at most one vertex. A hypergraph is simple if the girth is at least three. As before, one

can ask a similar question: Given the number of colors used (say t), what is the smallest number

of edges in a simple hypergraph H such that H is no longer t-colorable ? More generally, one

might also fix the girth of a hypergraph. Let m(r, t, g) denote the smallest number of edges in an

r-uniform hypergraph with girth at least g and chromatic number at least t + 1. In their seminal

paper [10], Erdős and Lovász gave the upper bound

m(r, t, g) ≤ 4 · 20g−1r3g−5t(g−1)(r+1) (3.1)

for all g and the lower bound

m(r, t, 3) ≥ t2(r−2)

16r(r − 1)2
(3.2)

for simple hypergraphs. The ratio of the upper bound to the lower bound for simple hypergraphs

is only r7. The bound (3.2) was derived from the famous result stated in Theorem 2.

To derive the bound, they used an interesting trick of trimming. We discuss trimming in Subsec-

tion 3.3.1.

Szabó [30] refined the second part of the bound of Theorem 2 for simple hypergraphs as follows.

Theorem 21. If t ≥ 2 and ǫ > 0 are fixed and r is sufficiently large, then every r-uniform simple

hypergraph H with maximum degree at most trr−ǫ is t-colorable.

Actually, Szabó proved the theorem only for t = 2, since that was what he needed for his

applications, but the technique works for any fixed t. Again, applying trimming and this theorem,

one easily gets that for fixed t and ǫ and large r,

m(r, t, 3) ≥ t2r

r1+ǫ
. (3.3)
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Here we consider simple and so called b-simple hypergraphs. A hypergraph H is b-simple if

|e ∩ e′| ≤ b for every distinct e, e′ ∈ E(H). Sometimes, b-simple hypergraphs are called partial

Steiner systems. A 1-simple hypergraph is a simple hypergraph.

The main result of this chapter (we state it in the next section) says that for fixed t ≥ 2

and ǫ > 0 and sufficiently large r, if a simple r-uniform hypergraph H cannot be colored with t

colors, then either it has a vertex of degree greater than r tr, or there are “many” vertices of degree

greater than trr−ǫ. This will improve the bound (3.3) by a factor of r. Our result also yields an

improvement of the edge-degree version of Theorem 2 for simple hypergraphs as follows.

Theorem 22. If b ≥ 1, t ≥ 2 and ǫ > 0 are fixed and r is sufficiently large, then every r-uniform

b-simple hypergraph H with maximum edge-degree at most trr1−ǫ is t-colorable.

The theorem holds also for list colorings. In order to keep proofs easier to read, we give the

proof for ordinary colorings and comment at the end of the chapter how to adapt the proofs to list

coloring.

Let f(r, t, b) denote the fewest possible number of edges in an r-uniform b-simple hypergraph

that is not t-colorable. From our main result we deduce that for fixed t, b and ǫ > 0 and sufficiently

large r,

f(r, t, b) ≥ tr(1+1/b)

rǫ
. (3.4)

It turns out that in terms of r the bound cannot be improved by more than a polynomial factor.

Using the Erdős–Lovász technique [10] for proving (3.2), we show that for large r,

f(r, t, b) ≤ 40t2
(
trr2

)1+1/b
. (3.5)

We also use our main result and trimming to derive the following lower bounds on m(r, t, g) for

arbitrary fixed g (in [10], the bound was only for g = 3):

m(r, t, 2s + 1) ≥ tr(1+s)

rǫ
, (3.6)

if r is large in comparison with t, s and 1/ǫ.

The structure of the rest of the chapter is as follows. In the next section we prove the main

result. In Section 3.3, lower bounds on the size of non-t-colorable hypergraphs are given. In

Section 3.4, bound (3.5) is derived. We conclude the chapter with some comments. In particular,

we comment on list colorings of hypergraphs.

This is a joint work with A. Kostochka and appears in [20].
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3.2 Coloring simple hypergraphs with bounded edge degrees

Szabó’s theorem says that for large r, every r-uniform simple hypergraph with the degree of each

vertex at most trr−ǫ is t-colorable. Our result extends the conclusion to r-uniform simple (and

b-simple) hypergraphs in which the degree of each edge is at most trr1−ǫ.

A vertex v of H is low, if deg(v) ≤ trr−ǫ and high otherwise. For an edge e, let L(e) (respectively,

H(e)) be the set of low (respectively, high) vertices in e. An edge e is light, if |H(e)| ≤ 0.5r and

heavy otherwise.

For a given ǫ > 0, an r-uniform hypergraph H is (t, ǫ)-sparse if

∆(H) ≤ tr r, and (3.7)

every vertex of H is in at most tr/rǫ heavy edges. (3.8)

Our main result is the following.

Theorem 23. If b ≥ 1, t ≥ 2 and ǫ > 0 are fixed and r is sufficiently large, then every r-uniform

b-simple (t, ǫ)-sparse hypergraph H is t-colorable.

In order to derive Theorem 22 from our main result, we observe that for sufficiently large r,

every not (t, 0.5ǫ)-sparse hypergraph H has an edge of degree greater than trr1−ǫ. This is trivial

if (3.7) does not hold. Suppose now that (3.8) does not hold, in particular that some edge e in H
is heavy. Then the sum of degrees of vertices in e is greater than 0.5rtrr1−0.5ǫ. Since every edge

e′ 6= e contributes at most b to this sum, e itself contributes r, and r0.5ǫ > 4b, the degree of e in H
is greater than trr1−ǫ. This proves Theorem 22 (modulo Theorem 23).

3.2.1 Szabó’s approach and the structure of the proof

We follow the ideas of Szabó [30]. He used the following lemma of Beck [6], who in turn used the

Lovász Local Lemma.

Lemma 24 (Beck). Let X be a finite set and B1,B2,...,Bs be not necessarily distinct subsets of

X with |Bi| ≥ r. For every i, let fi : Bi → {1, 2, ..., t} be a given t-coloring of Bi. If

∑

i:p∈Bi

(1 − 1

r
)−|Bi|t−|Bi| ≤ 1

r
(3.9)

for every p ∈ X, then there exists a t-coloring f : X → {1, 2, ..., t} such that f |Bi 6= fi.

Szabó’s idea of the proof is the following. Let H be an r-uniform simple hypergraph satisfying

the conditions of his theorem. Szabó starts from a t-coloring of vertices of H where each vertex

is colored with a color uniformly at random chosen from the set {1, . . . , t} independently from all
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other vertices. He considers a special set of so called configurations that are pairs (Bi, fi), where

Bi ⊆ V (H) and fi is a given t-coloring of Bi. The meaning of configurations, is that they are bad

situations that may cause some edges to become monochromatic after special recolorings in the

future. He proved that

(a) if f is any (not necessarily proper) t-coloring of V (H) and none of his configurations occurs,

then some vertices of H can be recolored so that the resulting t-coloring of H is proper;

(b) Inequality (3.9) holds for every p ∈ V (H).

Together with Lemma 24, this yields that H has a proper t-coloring. Observe that each con-

figuration B ⊆ V (H) contributes to the sum in (3.9) the amount (1 − 1
r )−|B|t−|B|, and we will

call this expression the contribution of B. To prove that (3.9) holds, for every “bad” configuration

B ⊆ V (H), Szabó estimated its contribution.

We will use the same scheme with somewhat changed rules of recoloring and somewhat different

configurations.

Another idea of Szabó is that in each edge e of H he chooses a subset R(e) such that later, if e

is monochromatic, then he tries to recolor only vertices in R(e) and does not touch other vertices.

This choice allows to decrease the number of “bad” configurations whose contributions we need

to estimate. The structure of our proof is the following. In the next subsection, we construct a

subset R(e) of each edge e. Later, if e becomes monochromatic, we will try to recolor only vertices

in R(e). In Subsection 3.2.3 we give the main proof assuming that we have some bounds on the

contributions of “bad” configurations. In Subsections 3.2.4 and 3.2.5 we prove these bounds on

contributions.

3.2.2 Choosing R(e)

Lemma 25. Let k ≤ r/3. Then in every light edge e, we can choose a k-element set R(e) ⊆ L(e)

so that for each low vertex v,

| {e : v ∈ R(e)} |≤ tr

rǫ
4k

r
. (3.10)

Proof. Consider the bipartite graph G[X,Y ], where X is the set of light edges in H, Y is the set

of low vertices in H, and xy ∈ E(G) if and only if edge x contains vertex y in H. By the definition

of light edges, each vertex in X has degree in G at least r/2. By the definition of low vertices,

dG(v) ≤ tr/rǫ for every v ∈ Y . Let G1 be the graph obtained from G by splitting every vertex

v ∈ Y into ⌈2dG(v)/r⌉ vertices, each with degree at most ⌈r/2⌉.
Let G2 be obtained from G1 by deleting some edges so that the degree of every vertex x ∈ X

becomes ⌈r/2⌉. By Konig’s theorem, there exists a proper edge-coloring φ of G2 with ⌈r/2⌉ colors.

Let G3 be the subgraph of G2 formed by the edges with colors {1, 2, ...k} in φ. Finally, let G4 be

obtained from G3 by gluing back all the split vertices in Y . By construction, G4 is a spanning

subgraph of G, and the degree of every vertex x ∈ X in G4 is exactly k. The degree in G4 of every
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vertex v ∈ Y is at most

k⌈2dG(v)/r⌉ ≤ k

⌈
tr

rǫ
2

r

⌉
.

The last expression for large r does not exceed the RHS of (4.4).

For every edge e in H, let R(e) be the set of vertices adjacent to vertex e in G4. By the

properties of G4, the lemma holds for these R(e).

Lemma 26. Let k ≤ r/3. Then in every heavy edge e, we can choose a k-element set R(e) ⊆ H(e)

so that for each heavy vertex v,

| {e : v ∈ R(e)} |≤ tr

rǫ
4k

r
. (3.11)

Proof. By (3.8), every vertex is in at most tr r−ǫ heavy edges. We essentially repeat the proof of

Lemma 25, only replacing light edges with heavy and low vertices with high ones.
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Figure 3.1: An example of a Configuration of Type 1.

3.2.3 Configurations and the main proof

We start from a random t-coloring f of vertices of H where each vertex v is colored with a color

f(v) uniformly at random chosen from the set {1, . . . , t} independently from all other vertices.

Configurations of Type 1: A configuration of Type 1, C(j,m,m′,m1, . . . ,mm), with parame-

ters j,m,m′,m1, . . . ,mm consists of 1 +m+m′ + (m1 + . . .+mm) (not necessarily distinct) edges

D,B1, . . . , Bm′ , C1, . . . , Cm, A1,1, . . . , A1,m1 , A2,1, . . . , Am,mm arranged and colored so that:

(α1) There are m′ distinct vertices b1, . . . , bm′ in H(D) such that bi ∈ R(Bi) for i = 1, . . . ,m′.

(α2) There are m distinct vertices c1, . . . , cm in L(D) such that ci ∈ R(Ci) for i = 1, . . . ,m.

(α3) All B1, . . . , Bm′ , C1, . . . , Cm are distinct.

(α4) All vertices in D − {b1, . . . , bm′ , c1, . . . , cm} are colored with color j + 1 (modulo t).
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(α5) All vertices in B1, . . . , Bm′ are colored with j.

(α6) For i = 1, . . . ,m, H(Ci) contains mi distinct vertices ai,1, . . . , ai,mi such that ai,i′ ∈ R(Ai,i′)

for all i′ = 1, . . . ,mi.

(α7) Vertex ai1,i′1 may coincide with ai2,i′2 , when i1 6= i2, in which case Ai1,i′1 should coincide with

Ai2,i′2). If ai1,i′1 6= ai2,i′2 , then Ai1,i′1 6= Ai2,i′2 .

(α8) For every i = 1, . . . ,m all vertices in Ci − {ai,1, . . . , ai,mi} are colored with j.

(α9) All vertices in all A1,1, . . . , A1,m1 , A2,1, . . . , Am,mm are colored with j − 1 (modulo t).

Comments. Since b1, . . . , bm′ ∈ H(D), each of B1, . . . , Bm′ is a heavy edge. For the same

reason, each of A1,1, . . . , A1,m1 , A2,1, . . . , Am,mm is heavy. Similarly, each of C1, . . . , Cm is a light

edge.

In a configuration of Type 1, edge D is called the leading edge, edges B1, . . . , Bm′ are type B

edges, edges C1, . . . , Cm are type C edges. Vertices b1, . . . , bm′ and c1, . . . , cm are special in C. The

size of a configuration is the cardinality of the union of its edges.

Let k = ⌈20ǫ ⌉. In the next subsection, we will prove that for every vertex p in H, the total

contribution of configurations of Type 1 containing p such that at least one of m,m′,m1, . . . ,mm

exceeds k is o(1/r).

Configurations of Type 2a: There is a heavy edge B such that for each vertex b ∈ R(B)

there is a configuration Cb of Type 1 with m = 0 and m′ ≤ k such that b is special and B is an

edge of type B in Cb.
Configurations of Type 2b: There is a light edge C such that for each vertex c ∈ R(C) there

is a configuration Cc of Type 1 with each of m′,m,m1, . . . ,mm at most k such that c is special and

C is an edge of type C in Cc.
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Figure 3.2: An example of a Configuration of Type 2b.
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In Subsection 3.2.5 we prove that for every vertex p in H, the total contribution of configura-

tions of Types 2a and 2b containing p is o(1/r). These facts together with Lemma 24 yield that

there exists a t-coloring f ′ avoiding configurations of Type 1 with at least one of m′m,m1, . . . ,mm

exceeding k and also avoiding all configurations of Type 2a and 2b. This coloring f ′ might have

monochromatic edges, but we shall see that we can recolor some of the vertices and get a proper

t-coloring.

First recoloring: Since configurations of Type 2a do not appear in f ′, for every heavy

monochromatic edge B (say, of color j(B)), there exists a vertex b(B) ∈ R(B) such that there

is no configurations of Type 1 with a leading heavy edge D such that b(B) is a special vertex in

D and B is a Type B edge in this configuration. For every monochromatic heavy edge B, recolor

b(B) with color j(B) + 1 (modulo t). By the choice of b(B), we recolored only some high vertices.

We claim that the new coloring f ′′ does not have monochromatic heavy edges. Indeed, suppose

that some heavy edge D is monochromatic of color j in f ′′. This means that it was not monochro-

matic of color j in f ′, since in that case, a vertex of R(D) would be recolored to j+1. So, there are

vertices b1, . . . , bm′ in H(D) that were recolored from color j − 1, and for each bi, there is a heavy

edge Bi with bi ∈ R(Bi) that was monochromatic in f ′ and bi = b(Bi). So, we have a configuration

of Type 1 in f ′ that contradicts the definition of the vertex b(B1).

Second recoloring: Let C be a monochromatic edge of color j(C) in the new coloring f ′′. By

above, it is a light edge, and in f ′ C either was monochromatic of the same color, or some vertices

b1, . . . , bm′ ∈ H(C) were of color j(C)−1, and each bi was in R(Bi) for some heavy monochromatic

edge Bi and was recolored because of this edge. Suppose that for every c ∈ R(C), there is a

configuration of Type 1 in coloring f ′′ with m1 = m2 = . . . = mm = 0 = m′ and the leading

edge containing c as a special vertex, where C is a Type C edge. Then each such configuration

in f ′′ corresponds to some more general configuration of Type 1 in coloring f ′. It follows that

we encounter a configuration of Type 2b in f ′, a contradiction to the choice of f ′. Thus, every

monochromatic edge C in the new coloring f ′′ contains a vertex c(C) ∈ R(C) such that there is no

configuration of Type 1 in coloring f ′′ with the leading edge containing c as a special vertex such

that m1 = m2 = . . . = mm = 0 = m′ and C is a Type C edge in this configuration.

For every monochromatic edge C in f ′′, recolor c(C) with color j(C) + 1. Observe that at this

second recoloring, we recolored only low vertices. Assume that some edge D is monochromatic in the

new coloring f (of color j(D)). If it was also monochromatic in f ′′, then D is light, and some vertex

of R(D) would be recolored; so this is not the case. Thus, there are vertices c1, . . . , cm in L(D) that

were recolored from color j(D)−1, and for each ci, there is a light edge Ci with ci ∈ R(Ci) that was

monochromatic in f ′′ of color j(D) − 1 and ci = c(Ci). Furthermore, since Ci was monochromatic

in f ′′, either it also was monochromatic in f ′ or there are vertices ai,1, . . . , ai,mi ∈ H(C) of color

j(D)− 2 that were recolored in the first stage. In this case, in f ′ each ai,i′ was in R(Ai,i′) for some

heavy monochromatic edge Ai,i′ and was recolored in first stage because of this edge. Some vertices
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b1, . . . , bm′ in H(D) also could be recolored in the first stage. Thus, we have a configuration of

Type 1 in f ′, a contradiction to the choice of c(C1). Since we recolored high vertices in the first

stage and low at the second, no vertex is recolored more than once.

Thus, the theorem will be proved when we show that for every vertex p in H, the total contri-

bution of configurations of Type 1 containing p such that at least one of m,m′,m1, . . . ,m
′
m exceeds

k is o(1/r) and that the total contribution of configurations of Types 2a and 2b containing p is

o(1/r).

3.2.4 Handling configurations of Type 1

We will first consider some partial cases.

b b b b bbc
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Figure 3.3: An example of a Configuration of Type 1a.

Configuration of Type 1a: This is a configuration of Type 1 in which m1 = m2 = . . . = mm = 0

and k ≤ m+m′ ≤ r
10bk .

For convenience of notation in handling configurations of Type 1a, define Bm′+i = Ci for

i = 1, . . . ,m and let M = m + m′. For q = 1, . . . ,M , call edge Bq determined if it intersects with

∪i≤q−1Bi in at least b+ 1 vertices. Let p ∈ V (H) and z be a non-negative integer. Then the total

contribution φ1a(p,M, z,D) of all configurations of Type 1a, containing p such that p ∈ D and

exactly z edges in {B1, . . . , BM} are determined is estimated as follows:

(β1) The number of candidates for D containing p is at most deg(p) ≤ trr.

(β2) The number of ways to choose b1, . . . , bM in D is at most
(
r
M

)
.

(β3) The number of choices of colors for vertices in D such that vertices b1, . . . , bM are colored with

j and other are colored with j + 1 is t.
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(β4) The number of ways to choose which z edges Bi will be determined is
(M
z

)
.

(β5) By Lemmas 25 and 26, the number of ways to choose a non-determined Bi when we know

the corresponding special vertex is at most tr

rǫ
4k
r .

(β6) Since every determined edge contains some (b+ 1)-tuple of vertices in the union of “previous”

edges and these (b+ 1)-tuples should be distinct for different edges, the number of ways to choose

a determined Bi when we know the corresponding special vertex is at most
(
Mr
b+1

)
<
(
r2

b+1

)
< r2b+2.

(β7) Since

|
i⋃

l=1

Bl −
i−1⋃

l=1

Bl| ≥
{
r − b, if Bi is non-determined,

r −Mb, if Bi is determined,
(3.12)

and Mb ≤ r/10k, the size of each such configuration is at least r + (M − z)(r − b) + z 9r
10 .

Hence

φ1a(p,M, z,D) ≤ trr t

(
r

M

)(
M

z

)(
4k tr

r1+ǫ

)M−z

r2z(b+1)

(
r

t(r − 1)

)r+(M−z)(r−b)+0.9zr

.

Since
( r
M

)(M
z

)
≤ rM and

(
r
r−1

)r+(M−z)(r−b)+0.9zr
≤ 31+M , the last expression is at most

31+M (4k)M−z tr+1+r(M−z)−r−(M−z)(r−b)−0.9zr r1+M−(M−z)(1+ǫ)+2z(b+1).

Denoting the last expression by ψ1a(M,z), we have

ψ1a(M,z + 1)

ψ1a(M,z)
≤ 1

4k
t−r+(r−b)−0.9r r(1+ǫ)+2(b+1) =

1

4k
t−b−0.9r r2b+3+ǫ,

which is less than 1/4 for large r. Therefore,

M∑

z=0

φ1a(p,M, z,D) < 2ψ1a(M, 0) =

= 31+M2(4k)M tr+1+rM−r−M(r−b) r1+M−M(1+ǫ) = 6t r

(
12k tb

rǫ

)M
. (3.13)

Since for large r, 12k tb < rǫ/2, the last expression is less than 6t r1−0.5Mǫ. Since M ≥ k ≥ 20
ǫ ,

this is less than 6t r−9 = o(r−8). Thus, the total contribution φ1a(p,D) of all configurations of

Type 1a such that p ∈ D is less than

r∑

M=k

2ψ1a(M, 0) < r · o(r−8) = o(r−7).
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Now we calculate the contribution of configurations of Type 1a containing p such that p /∈ D. In

this case fix an edge Bi containing p in at most trr ways. Then we can choose vertex bi ∈ R(Bi) in

at most k ways and the edge D containing Bi in at most k trr ways. To choose the remaining M−1

special vertices in D there are only
( r−1
M−1

)
ways. Then using the same argument and almost the

same calculations as above we get that the total contribution here is at most k r times greater than
∑r

M=1 2ψ1a(M, 0). Hence the total contribution, φ1a(p) of all configurations of Type 1a containing

p is o( 1
r6

).

Configuration of Type 1b: We need this structure to handle configurations of Type 1 in which

m1 = m2 = . . . = mm = 0 and m+m′ ≥ r
10bk . But we consider a somewhat different situation: it is

a configuration of Type 1 in which m1 = m2 = . . . = mm = 0 and m+m′ = ⌊ r
10bk ⌋, but non-special

vertices in D also allowed to be colored with color j (and not only with j + 1). We will estimate

the contributions of such new configurations.

As in case of Type 1a, define Bm′+i = Ci for i = 1, . . . ,m and let M = m+m′.

For p ∈ V (H) and an integer z, let φ1b(p, z,D) denote the total contribution of all configurations

of Type 1b, containing p such that p ∈ D and exactly z edges among Bi are determined. We repeat

the first half of the argument for Type 1a, replacing (β3) by the following:

(β′3) The number of choices of colors for vertices in D such that vertices b1, . . . , bM are colored with

j and other are colored with j or j + 1 is t 2r−M .

Because of the extra factor of 2r−M , instead of (3.13), we get

M∑

z=0

φ1b(p, z,D) < 6t r

(
12k tb

rǫ

)M
2r−M .

Again, for large r, 12k tb < rǫ/2, and the last expression is at most 2r−M6t r1−0.5Mǫ. Since

M =
⌊

r
10bk

⌋
this is o(r−8).

Similarly to the argument for configurations of Type 1a, the contribution of configurations of

Type 1b containing p such that p /∈ D cannot exceed the last expression more than r2 times. Thus,

the total contribution φ1a(p)+φ1b(p) of all configurations of Types 1a and 1b containing p is o(r−6).

From now on, we consider only t-colorings of V (H) such that no configurations of types 1a or

1b occur.

Configuration of Type 1c: This is a configuration of Type 1 in which k ≤ m +m′ ≤ r
5bk .

By (α8) and (α9) in the definition configurations of Type 1, for every i = 1, . . . ,m, the set

Ci ∪
⋃mi
i′=1Ai′ with our coloring form a configuration of Type 1a or 1b if mi ≥ k. Since such

configurations are forbidden, we assume that mi < k for every i. Similarly, if m′ ≥ r
10bk , then the
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set B1 ∪ . . . Bm′ ∪D with our coloring forms a configuration of Type 1b, and so we consider only

the case m′ < r
10bk .

In order to calculate carefully the contributions of configurations of Type 1c, let m̂i denote the

number of edges in {Ai,1, . . . , Ai,mi} that are distinct from all Al,l′ for all l < i.

Let p ∈ V (H), k ≤ m + m′ ≤ r
5bk , and z, z′, m̂1, . . . , m̂m be non-negative integers. Let

M̂ = m̂1 + . . . + m̂m. Let φ1c(p,m
′,m, m̂1, . . . , m̂m, z, z

′,D) denote the total contribution of all

configurations of Type 1c with parameters m′,m, m̂1, . . . , m̂m containing p such that p ∈ D, exactly

z edges among B1, . . . , Bm′ , C1, . . . , Cm are determined, and exactly z′ other edges are determined.

We can estimate it as follows:

(γ1) The number of candidates for D containing p is at most deg(p) ≤ trr.

(γ2) The number of ways to choose b1, . . . , bm′ and c1, . . . , cm in D is at most
(

r
m+m′

)(
m+m′

m

)
.

(γ3) The number of choices of colors for vertices in D such that vertices b1, . . . , bm′ and c1, . . . , cm

are colored with j and all others are colored with j + 1 is t.

(γ4) The number of ways to choose which z edges among B1, . . . , Bm′ , C1, . . . , Cm will be deter-

mined is
(m′+m

z

)
.

(γ5) By Lemmas 25 and 26, the number of ways to choose a non-determined Bi when we know

bi ∈ R(Bi) or Ci when we know ci ∈ R(Ci) is at most tr

rǫ
4k
r .

(γ6) The number of ways to choose a determined edge Bi when we know bi ∈ R(Bi) or Ci when we

know ci ∈ R(Ci) is at most
((m+m′)r

b+1

)
<
( r2
b+1

)
< r2b+2.

(γ7) The number of ways to choose all vertices ai,i′ in C1 ∪ . . . Cm that will be colored with j − 1

is at most
(mr
M̂

)
.

(γ8) The number of ways to choose which z′ edges among Ai,i′ will be determined is
(M̂
z′

)
.

(γ9) The number of ways to choose a non-determined Ai,i′ when we know ai,i′ ∈ R(Ai,i′) is at most
tr

rǫ
4k
r .

(γ10) The number of ways to choose a determined edge Ai,i′ when we know ai,i′ ∈ R(Ai,i′) is at

most
(mrk
b+1

)
<
( r2
b+1

)
< r2b+2.

(γ11) To estimate the size of such a configuration, recall that m′+m ≤ r
5bk and that m̂i ≤ mi ≤ k−1

for each i. Therefore, m′ + m + M̂ ≤ k(m′ + m) ≤ r
5b . Similarly to (3.12), when we add edges

one by one to the configuration, every non-determined edge adds at least r − b vertices and ev-

ery determined edge adds at least r − b(m′ + m + M̂) ≥ r − r/5 = 4r/5 vertices to the union. It

follows that the size of each such configuration is at least r+(m+m′+M̂−z−z′)(r−b)+(z+z′) 4r
5 .

Hence φ1c(p,m
′,m, m̂1, . . . , m̂m, z, z

′,D) is at most

trr

(
r

m+m′

)(
m+m′

m

)
t

(
m′ +m

z

)( m∏

i=1

(
r

m̂i

))(
M̂

z′

)
×
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×
(

4ktr

r1+ǫ

)m+m′+M̂−z−z′

r(z+z
′)(2b+2)

(
r

t(r − 1)

)r+(m+m′+M̂)(r−b)−(z+z′)(0.2r−b)

.

Since r
r−1 < 31/r and

(
r

m+m′

)(
m+m′

m

)(
m′ +m

z

)( m∏

i=1

(
r

m̂i

))(
M̂

z′

)
≤

rm+m′

(m+m′)zrM̂M̂z′ ≤ rm+m′+M̂+z+z′ ,

φ1c(p,m
′,m, m̂1, . . . , m̂m, z, z

′,D) is at most

tr+1+r(m+m′+M̂−z−z′)−r−(m+m′+M̂)(r−b)+(z+z′)(0.2r−b)(4k)m+m′+M̂−z−z′×

×r1+m+m′+M̂+z+z′−(1+ǫ)(m+m′+M̂−z−z′)+(z+z′)(2b+2)31+m+m′+M̂ =

= t1+b(m+m′+M̂)−(z+z′)(0.8r+b)(4k)m+m′+M̂−z−z′r1−ǫ(m+m′+M̂)+(z+z′)(2b+4+ǫ)31+m+m′+M̂ .

Denoting the last expression by ψ1c(m+m′ + M̂, z + z′), we have

ψ1c(m+m′ + M̂, z + z′ + 1)

ψ1c(m+m′ + M̂ , z + z′)
≤ 1

4k
t−0.8r−b r2b+4+ǫ,

which is less than 1/4r for large r. Therefore,

m′+m∑

z=0

M̂∑

z′=0

φ1c(p,m
′,m, m̂1, . . . , m̂m, z, z

′,D) < 2ψ1c(m+m′ + M̂ , 0) =

= 6t r

(
12k tb

rǫ

)m+m′+M̂

. (3.14)

Observe that the last bound depends only on M̂ and not on the values of particular m̂1, . . . , m̂m.

Let

φ1c(p,m
′,m, M̂ ,D) =

∑

(m̂1,...,m̂m) : m̂1+...+m̂m=M̂

m+m′+M̂∑

z+z′=0

φ1c(p,m
′,m, m̂1, . . . , m̂m, z, z

′,D).

Since the number of m-tuples (m̂1, . . . , m̂m) with m̂1 + . . . + m̂m = M̂ is
(m+M̂−1

m−1

)
< 2m+M̂ , for

large r, by (3.14),

φ1c(p,m
′,m, M̂ ,D) ≤ 6t r

(
12k tb

rǫ

)m+m′+M̂

2m+M̂ ≤ 6t r1−0.5ǫ(m+m′+M̂).
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Since m + m′ ≥ k ≥ 20
ǫ , the last expression is o(r−8). Since m′ < k, m < r/k and M̂ < mk < r,

the total contribution of all configurations of Type 1c containing p such that p ∈ D, is at most

o(r−8) k
r

k
r = o(r−6).

Similarly to the case of configurations of Type 1a, the total contribution of all configurations of

Type 1c containing p such that p ∈ Bi, is at most r2 times greater than our bound above. The

bound for the total contribution of all configurations of Type 1c containing p such that p is in a

light edge Ci or in Ai,i′ is only k times greater than the bound above, since R(Ci) and R(Ai,i′)

consist only of low vertices. Hence, the total contribution, φ1c(p), of all configurations of Type 1c

containing p is o(r−4).

Configuration of Type 1d: We need it to handle configurations of Type 1 in which m+m′ ≥ r
5bk .

Since the situation with m′ ≥ r
10bk is covered by configurations of Type 1b, it is enough to consider

the following situation: Configuration of Type 1d is a configuration of Type 1 in which m = ⌊ r
10bk ⌋

and m′ = 0 but non-special vertices in D also allowed to be colored with color j. We will estimate

the contributions of such configurations.

Let p ∈ V (H), and z, z′, m̂1, . . . , m̂m be non-negative integers. Let M̂ = m̂1 + . . . + m̂m.

Let φ1d(p, m̂1, . . . , m̂m, z, z
′,D) denote the total contribution of all configurations of Type 1d with

parameters m̂1, . . . , m̂m containing p such that p ∈ D, exactly z edges among C1, . . . , Cm are

determined, and exactly z′ other edges are determined. The ingredients for an upper bound on

φ1d(p, m̂1, . . . , m̂m, z, z
′,D) are almost the same as for φ1c(p,m

′,m, m̂1, . . . , m̂m, z, z
′,D) above with

m′ = 0; the only difference is that Item (γ3) is replaced with

(γ′3) The number of choices of colors for vertices in D such that vertices c1, . . . , cm are colored with

j and all others are colored either with j or with j + 1 is t 2r−m.

Thus, repeating the argument for configurations of Type 1c, instead of (3.14), we will obtain

m∑

z=0

M̂∑

z′=0

φ1d(p, m̂1, . . . , m̂m, z, z
′,D) < 2r−m6t r

(
12k tb

rǫ

)m+M̂

. (3.15)

Since m = ⌊ r
10bk ⌋, the extra factor of 2r−m does not hurt our upper bounds, and we essentially

repeat the argument from (3.14) above for configurations of Type 1c.

Forbidding configurations of Types 1c and 1d forbids all configurations of Type 1 with m+m′ ≥
k.

36



3.2.5 Handling configurations of Type 2

Configuration of Type 2a: Let j ∈ {1, 2, ..., t}. Suppose that there exist k configurations of

Type 1a (for the same j) with edge sets (for l = 1, . . . , k) {D(l), B
(l)
1 , . . . , B

(l)
m′(l)} such that

(i) B
(1)
1 = B

(2)
1 = . . . = B

(k)
1 ,

(ii) all b
(1)
1 , b

(2)
1 , . . . , b

(k)
1 are distinct vertices, so that {b(1)1 , b

(2)
1 , . . . , b

(k)
1 } = R(B

(1)
1 )’

(iii) all edges D(l) and B
(l)
i are heavy.

Then the union of these k configurations is a configuration of Type 2a.

It is possible that D(l) = D(l′) for l 6= l′, but in this case, (since both b
(l)
1 and b

(l′)
1 are colored

with j) b
(l)
1 coincides with some b

(l′)
i such that B

(l′)
i is distinct from B

(1)
1 . Thus, in any case, there

are at least k distinct edges among D(l) and B
(l)
i . On the other hand, since large configurations of

Type 1a are forbidden, m′ and each of m′(l) is at most k. So, the total number of involved edges

is at most (k + 1)2. Since we have so few edges, in calculations we will not care about determined

edges, our only concern will be repetitions of edges.

Given a configuration of Type 2a, let x denote the number of distinct D(l). Order the edges of

our configuration so that first edge is B
(1)
1 followed by all of the D(l), and then all the other edges.

With a given ordering, for all suitable l, let m̂(l) denote the number of corresponding edges that

do not appear earlier in the order. Let M =
∑k

l=1 m̂(l).

Let p ∈ V (H). Let Φ = φ2b(p, m̂(1), . . . , m̂(k), x,B
(1)
1 ) denote the total contribution of all

configurations of Type 2a with the corresponding given parameters containing p such that p ∈ B
(1)
1 .

We can estimate Φ as follows:

(δ1) The number of candidates for B
(1)
1 containing p is at most trr.

(δ2) The number of partitions of R(B
(1)
1 ) into x non-empty sets is less than kx.

(δ3) The number of ways to choose for every of the x parts in the partition an edge containing this

class is at most (trr−ǫ)x, since the number of heavy edges containing any given vertex is at most

trr−ǫ. These edges will be our edges D(1), . . . ,D(k).

(δ4) The number of choices of color j is t.

(δ5) The number of ways to choose for every l ∈ {1, . . . , k}, vertices b1(l), . . . , bm̂(l)(l) is at most∏k
l=1

( r
m̂(l)

)
≤
(kr
M

)
≤ (kr)M .

(δ6) By Lemma 26, the number of ways to choose a B
(l)
i when we know bi(l) ∈ R(B

(l)
i ) is at most

tr

rǫ
4k
r .

(δ7) To estimate the size of such a configuration, recall that in total we have at most (k+1)2 edges.

Therefore, each edge has at most (k+1)2b vertices that are common with any other edge. It follows

that the size of each such configuration is at least (r − (k + 1)2b)(1 + x+M).

Hence

Φ ≤ trr

(
ktr

rǫ

)x
t (kr)M

(
4ktr

r1+ǫ

)M (
r

t(r − 1)

)(r−(k+1)2b)(1+x+M)

≤
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≤ kx+M+M4M r1−ǫx+M−(1+ǫ)M tr+rx+1+rM−(r−(k+1)2b)(1+x+M)31+x+M =

= kx+2M4M r1−ǫ(x+M) t1+(k+1)2b(1+x+M)31+x+M ≤ tr1+ǫ

(
12k2t(k+1)2b

rǫ

)1+x+M

.

The number of different presentations of M in the form M =
∑k

l=1 m̂(l) is at most
(M+k−1

M

)
<

2M+k−1. Therefore, the total contribution, φ2b(p, x,M,B
(1)
1 ), of all configurations of Type 2a with

given x and M containing p such that p ∈ B
(1)
1 for large r is at most

2M+k−1tr1+ǫ

(
12k2t(k+1)2b

rǫ

)1+x+M

≤ 2k−xtr1+ǫ−0.5ǫ(1+x+M).

By construction, M + x ≥ k. Hence, since k ≥ 20/ǫ,

φ2a(p, x,M,B
(1)
1 ) ≤ 2ktr−8 = o(r−7).

Since x ≤ k and M ≤ k2, the total contribution of all configurations of Type 2a containing p such

that p ∈ B
(1)
1 is also o(r−7). The total contribution of all configurations of Type 2a containing p

such that p ∈ D(l) for some l is estimated in practically the same steps and also is o(r−7). The same

holds for the total contribution of all configurations of Type 2a containing p such that p ∈ B(l)
i for

some l and i. Thus the total contribution, φ2a(p), of all configurations of Type 2a containing p is

o(r−6).

Configuration of Type 2b: Let j ∈ {1, 2, ..., t}. Suppose that there exist k configurations of

Type 1c (for the same j) with edge sets (for l = 1, . . . , k)

{D(l), B
(l)
1 , . . . , B

(l)
m′(l)

, C
(l)
1 , . . . , C

(l)
m(l)

, A
(l)
1,1, . . . , A

(l)
1,m1(l)

, . . . , A
(l)
m(l),mm(l)(l)

}

such that C
(1)
1 = C

(2)
1 = . . . = C

(k)
1 and all c

(1)
1 , c

(2)
1 , . . . , c

(k)
1 are distinct vertices, so that

{c(1)1 , c
(2)
1 , . . . , c

(k)
1 } = R(C

(1)
1 ). Then the union of these k configurations is a configuration of Type

2b. As in configurations of Type 1c, some representative vertices can coincide, in which case the

corresponding edges also should coincide.

It is possible that D(l) = D(l′) for l 6= l′, but in this case, (since both c
(l)
1 and c

(l′)
1 are colored

with j) c
(l)
1 coincides with some c

(l′)
i such that C

(l′)
i is distinct from C

(1)
1 . Thus, in any case, there

are at least k distinct edges among D(l) and C
(l)
i . On the other hand, since large configurations

of Type 1c are forbidden, each of m(l),m′(l),mi(l) is at most k. So, the total number of involved

edges is at most k(k + 1)2.

Given a configuration of Type 2b, let x denote the number of distinct D(l). Order the edges of

our configuration so that first is listed the edge C
(1)
1 , then all D(l), then all B

(l)
i (in any order), then

all C
(l)
i , and then all other edges. With a given ordering, for all suitable i and l, let m̂(l), m̂′(l),
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and m̂i(l) denote the number of corresponding edges that do not appear earlier in the order. Let

M =
∑k

l=1(m̂(l) + m̂′(l)) and

M̂ =
k∑

l=1

m∑

i=1

m̂i(l). (3.16)

Let p ∈ V (H). Let

Φ = φ2b(p, m̂
′(1), . . . , m̂′(k), m̂(1), . . . , m̂(k), m̂1(1), . . . , m̂1(k), . . . , m̂m(k), x, C

(1)
1 )

denote the total contribution of all configurations of Type 2b with the corresponding parameters

containing p such that p ∈ C
(1)
1 .

We can estimate Φ as follows:

(κ1) The number of candidates for C
(1)
1 containing p is at most trr.

(κ2) The number of partitions of R(C
(1)
1 ) into x non-empty sets is less than kx.

(κ3) The number of ways to choose for every of the x parts in the partition an edge containing this

class is at most (trr−ǫ)x, since every vertex in R(C
(1)
1 ) is a low vertex. These edges will be our

edges D(1), . . . ,D(k).

(κ4) The number of choices of color j is t.

(κ5) The number of ways to choose for every l ∈ {1, . . . , k}, vertices b1(l), . . . , bm̂′(l)(l) and

c2(l), . . . , cm̂(l)(l) in D(l) is at most
∏k
l=1

( r
m̂(l)+m̂′(l)

)(m̂(l)+m̂′(l)
m̂′(l)

)
.

(κ6) By Lemmas 25 and 26, the number of ways to choose a B
(l)
i when we know bi(l) ∈ R(B

(l)
i ) or

C
(l)
i when we know ci(l) ∈ R(C

(l)
i ) is at most tr

rǫ
4k
r .

(κ7) The number of ways to choose all vertices ai,i′(l) in ∪kl=1 ∪
m̂(l)
i=1 C

(l)
i that will be colored with

j − 1 is at most
(k2r
M̂

)
.

(κ8) The number of ways to choose an A
(l)
i,i′ when we know ai,i′(l) ∈ R(A

(l)
i,i′) is at most tr

rǫ
4k
r .

(κ9) To estimate the size of such a configuration, recall that in total we have at most (k + 1)3

edges. Therefore, each edge has at most (k + 1)3b vertices that are common with any other edge.

It follows that the size of each such configuration is at least (r − (k + 1)3b)(1 + x+M + M̂).

Hence

Φ ≤ trr

(
ktr

rǫ

)x
t

k∏

l=1

(
r

m̂(l) + m̂′(l)

)(
m̂(l) + m̂′(l)

m̂′(l)

)(
k2r

M̂

)(
4ktr

r1+ǫ

)M+M̂

×

×
(

r

t(r − 1)

)(r−(k+1)3b)(1+x+M+M̂)

.
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Since
(

r
r−1

)(r−(k+1)3b)(1+x+M+M̂ )
≤ 31+x+M+M̂ and

k∏

l=1

(
r

m̂(l) + m̂′(l)

)(
m̂(l) + m̂′(l)

m̂′(l)

)(
k2r

M̂

)
≤ rM (k2r)M̂ ,

we have

Φ ≤ kx+M+3M̂ 4M+M̂r1−xǫ−ǫ(M+M̂)tr+rx+1+r(M+M̂)−(r−(k+1)3b)(1+x+M+M̂)31+x+M+M̂

= kx+M+3M̂ 4M+M̂r1−ǫ(x+M+M̂)(3t(k+1)3b)1+x+M+M̂ ≤ r1+ǫ

(
12k3t(k+1)3b

rǫ

)1+x+M+M̂

.

The last bound does not depend on values of m̂(l), m̂′(l) and mi(l), but only on x,M, and M ′.

The number of different presentations of M in the form M =
∑k

l=1(m̂(l) + m̂′(l)) is at most(
M+2k−1

M

)
< 2M+2k−1. Similarly, the number of different presentations of M̂ in the form (3.16) is

at most the number of different presentations of M̂ as a sum of at most k2 nonnegative summands,

which is at most
k2∑

q=1

(
M̂ + q

q

)
≤

k2∑

q=1

(
M̂ + k2

q

)
≤ 2k

2+M̂ .

Therefore, the total contribution, φ2b(p, x,M, M̂ ,C
(1)
1 ), of all configurations of Type 2b with given

x,M, and M̂ containing p such that p ∈ C
(1)
1 is at most

2M+2k−1 2k
2+M̂ r1+ǫ

(
12k3t(k+1)3b

rǫ

)1+x+M+M̂

< 2(k+1)2 r1+ǫ

(
12k3t(k+1)3b

rǫ

)1+x+M+M̂

For large r, this does not exceed 2(k+1)2 r1+ǫ−0.5ǫ(1+x+M+M̂). As observed above, x+M ≥ k ≥ 20/ǫ.

Thus for large r, φ2b(p, x,M, M̂ ,C
(1)
1 ) = o(r−8). Since x ≤ k, M ≤ 2k2, and M̂ ≤ k3, the

total contribution, of all configurations of Type 2b containing p such that p ∈ C
(1)
1 is also o(r−8).

Similarly to the argument for configurations of Type 1c, the total contribution, of all configurations

of Type 2b containing p such that p ∈ D(l), or p ∈ Bi(l), or p ∈ Ci(l), or p ∈ Ai,i′(l) does not

exceed the obtained bound more than r2 times. Thus for large r, the total contribution, φ2b(p), of

all configurations of Type 2b containing p is o(r−6).

3.3 Lower bounds on the number of edges

3.3.1 Trimming

In order to get lower bound on the number of edges in an r-uniform (t + 1)-chromatic simple

hypergraph, Erdős and Lovász in [10] applied a simple but quite useful technique of trimming. A
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trimming of a hypergraph H is the hypergraph F (H) obtained from H by deleting from each edge a

vertex of maximum possible degree. Trimming has two useful properties: (a) if H is not t-colorable,

then F (H) also is; and (b) if H is simple and F (H) has a vertex of degree at least d, then H has at

least d+ 1 vertices of degree at least d. We will somewhat elaborate upon the notion of trimming.

For positive integers x and D, an edge A of a hypergraph H is (x,D)-heavy, if at least x vertices

in A have degree at least D in H. An (x,D)-trimming of a hypergraph H is the hypergraph Fx,D(H)

obtained from H in two steps: first choose in each edge A a vertex a(A) that is contained in the

most (x,D)-heavy edges; then replace each edge A with A− a(A). The ordinary trimming above

can be considered as a (1, 1)-trimming.

Let F
(m)
x,D (H) denote the hypergraph obtained from H by applying (x,D)-trimming m times.

Lemma 27. Let b, x, y, d, s, and D be positive integers and H be a hypergraph.

(a) If H is b-simple, F
(b)
x,D(H) has a vertex that belongs to at least d (x,D)-heavy edges and H has

y vertices that belong to at least d (x,D)-heavy edges each, then
(y
b

)
≥ d.

(b) If H has girth at least 2s+ 1, b ≤ s, and F
(b)
x,D(H) has a vertex that belongs to at least d (x,D)-

heavy edges, then H has at least (d− 1)b vertices at distance exactly b from v that belong to at least

d (x,D)-heavy edges each.

Proof. For convenience, denote F
(0)
x,D(H) = H. By definition, every edge A ∈ E(H) contains distinct

vertices a(1)(A), . . . , a(b)(A) such that for i = 1, . . . , b,

E(F
(i)
x,D(H)) = {A− {a(1)(A), . . . , a(i)(A)} : A ∈ E(H)}

and vertex a(i)(A) is contained in the most of (x,D)-heavy edges of the hypergraph F
(i−1)
x,D (H)

among the vertices in A(i−1) := A− {a(1)(A), . . . , a(i−1)(A)}.

Suppose that H is b-simple and v is a vertex in F
(b)
x,D(H) that belongs to at least d (x,D)-heavy

edges. Suppose that the edges A
(b)
1 , . . . , A

(b)
d of F

(b)
x,D(H) contain v. By the definition of (x,D)-

trimming, each of the vertices a(b)(A1), . . . , a(b)(Ad) is contained in at least d (x,D)-heavy edges

in F
(b−1)
x,D (H) (otherwise, v would be the corresponding a(b)(Ai)). Similarly, each of the vertices

a(b−1)(A1), . . . , a(b−1)(Ad) is contained in at least d (x,D)-heavy edges in F
(b−2)
x,D (H), and so on.

Let Y be the set of vertices in H that are contained in at least d (x,D)-heavy edges. By the

previous paragraph, each of the vertices a(j)(Ai) for i = 1, . . . , d and j = 1, . . . , b is in Y . Vertices

a(j)(Ai) and a(j
′)(Ai′) may coincide for distinct i and i′, but the sets {a(1)(Ai), . . . , a(b)(Ai)} should

be distinct for distinct i, since H is b-simple. Thus, the number of b-element subsets of Y is at least

d. This proves (a).

Suppose now that the girth of H is at least 2s + 1, b ≤ s, and v is a vertex in F
(b)
x,D(H) that

belongs to at least d (x,D)-heavy edges. Suppose that the edges A
(b)
1 , . . . , A

(b)
d of F

(b)
x,D(H) contain

v. As above, each of the vertices a(b)(A1), . . . , a(b)(Ad) is contained in at least d (x,D)-heavy edges

in F
(b−1)
x,D (H). Moreover, since the girth of H is at least three, all a(b)(A1), . . . , a(b)(Ad) are distinct
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and each of them is a neighbor of v. Thus, each of a(b)(Ai) is contained in some d (x,D)-heavy

edges A
(b−1)
i,1 , . . . , A

(b−1)
i,d . If b = 1, then we are done.

Suppose b ≥ 2. Then the girth of H is at least five and for each 1 ≤ i ≤ d, exactly one edge among

A
(b−1)
i,1 , . . . , A

(b−1)
i,d (namely, A

(b)
i ) contains v, and all others are almost disjoint amongst them and are

disjoint from all other A
(b−1)
j,1 , . . . , A

(b−1)
j,d for j 6= i. It follows that for all i1, i2 = 1, . . . , d such that

A
(b−1)
i1,i2

6= A
(b)
i1

, all vertices a(b−1)(A
(b−1)
i1,i2

) are distinct and each such a(b−1)(A
(b−1)
i1,i2

) belongs to at least

d (x,D)-heavy edges A
(b−2)
i1,i2,1

, . . . , A
(b−2)
i1,i2,d

in F
(b−2)
x,D (H) and is at distance 2 from v in H. In particular,

there are at least d(d−1) of them. Again, if b = 2, then we are done. Otherwise the girth of H is at

least seven and for all triples (i1, i2, i3) such that A
(b−2)
i1,i2,i3

6= A
(b−1)
i1,i2

, the sets A
(b−2)
i1,i2,i3

−a(b−1)(A
(b−1)
i1,i2

)

are disjoint from each other and from all edges (j1, j2, j3) for (j1, j2) 6= (i1, i2).

Continuing in this way, finally, we construct d(d − 1)b−1 distinct vertices a(1)(Ai1,i2,...,ib) such

that each of them belongs to at least d (x,D)-heavy edges in F
(0)
x,D(H) and is at distance exactly b

from v.

3.3.2 Size of (t+ 1)-chromatic b-simple hypergraphs

Theorem 28. Let t and b be positive integers, ǫ > 0, and r be sufficiently large in comparison

with t, b and ǫ. Let H be a (t + 1)-chromatic r-uniform b-simple hypergraph. Then H has at least

tr(1+1/b)r−ǫ edges.

Proof. Let x = ⌈(r− b)/2⌉ and D = ⌈tr−b/rǫ/3⌉. Let H1 = F
(b)
1,1 (H). By construction, H1 is (r− b)-

uniform and b-simple. Since H is not t-colorable, H1 is also not t-colorable. So, by Theorem 23,

either

(i) H1 has a vertex of degree at least tr−b (r − b), or

(ii) H1 has a vertex contained in at least D (x,D)-heavy edges.

If (i) holds, then by Lemma 27(a), H has at least (tr−b (r − b))1/b vertices of degree at least

tr−b (r − b). Hence the number of edges in H is at least

1

r

(
tr−b (r − b)

)1+1/b ≥ tr(1+1/b).

Suppose now that (ii) holds. Let Y be the set of vertices of degree at least D in H1. Each

(x,D)-heavy edge containing v interests Y − v in at least x − 1 vertices. No b-tuple of vertices of

Y − v is contained in more than one edge containing v. Therefore

(|Y |
b

)
≥ D

(
x− 1

b

)
.

For large r, this implies |Y |b ≥ D(r/3)b, so that the number of edges in H1 is at least

1

r
D1+1/b r

3
≥ 1

3

(tr−b
rǫ/3

)1+1/b ≥ tr(1+1/b)r−ǫ.
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3.3.3 Size of (t+ 1)-chromatic hypergraphs of girth 2s+ 1 and 2s+ 2

Theorem 29. Let t and s be positive integers, ǫ > 0, and r be sufficiently large in comparison

with t, s and ǫ. Let H be a (t + 1)-chromatic r-uniform hypergraph of girth at least 2s + 1. Then

H has at least tr(1+s)r−ǫ edges. Moreover, if the girth of H is at least 2s + 2, then H has at least

tr(1+s)r1−ǫ edges.

Proof. Let x = ⌈(r− 2s+ 1)/2⌉ and D = ⌈tr−2s+1/rǫ/3s⌉. Let H1 = F
(s)
1,1 (H) and H2 = F

(s−1)
x,D (H1).

By construction, H2 is (r − 2s + 1)-uniform. Since H is not t-colorable, H2 is also not t-colorable.

So, by Theorem 23, either

(i) H2 has a vertex of degree at least tr−2s+1 (r − 2s + 1), or

(ii) H2 has a vertex contained in at least D (x,D)-heavy edges.

If (i) holds, then H1 also has a vertex of degree at least tr−2s+1 (r− 2s+ 1). By Lemma 27(b),

H has at least (tr−2s+1 (r− 2s+ 1) − 1)s vertices of degree at least tr−2s+1 (r− 2s+ 1). Hence the

number of edges in H is at least

1

r

(
tr−2s+1 (r − 2s+ 1) − 1

)1+s ≥ tr(1+s)r.

Suppose now that (ii) holds. By Lemma 27(b), H1 contains a set F (s, v) of at least (D− 1)s−1

vertices at distance exactly s− 1 from v such that each of them is contained in at least D (x,D)-

heavy edges. Since the girth of H1 is at least 2s + 1, each u ∈ F (s, v) is contained in exactly one

edge M(u) on the unique shortest path from u to v. Also, if for u ∈ F (s, v) an edge A(u) 6= M(u)

meets or coincides with any edge containing any vertex w at distance at most s − 1 from v, then

H1 contains a cycle of length at most 2s, a contradiction.

Thus, we have a set F ′(s, v) of at least (D − 1)s (x,D)-heavy edges such that each edge in

F ′(s, v) contains exactly one of our (D−1)s−1 special vertices at distance s−1 from v and no other

vertices at distance at most s− 1 from v. This means that each of the edges in F ′(s, v) contains at

least x− 1 vertices of degree at least D that do not belong to any other edge in F ′(s, v). Since x is

about r/2 and r is much larger than s and t, it follows that the number of edges in H1 is at least

1

r
(D − 1)s+1(x− 1) ≥ 1

3
Ds+1 ≥ 1

3

( tr−2s+1

rǫ/3s
)1+s ≥ tr(1+s)r−ǫ.

This proves the statement for girth 2s+ 1.

Suppose that the girth of H is at least 2s+ 2. It (i) holds, then the statement is already proved

above. Suppose that (ii) holds. Then we construct F ′(s, v) exactly as in the previous paragraph.

Consider an edge A ∈ F ′(s, v) and any vertex z ∈ A of degree at least D that does not belong to

other edges in F ′(s, v). If any of the at least D− 1 distinct from A edges containing z contains also
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a vertex from any other edge in F ′(s, v), then H has a cycle of length 2s+ 1 or less. Thus all these

edges are distinct and the total number of them is at least

|F ′(s, v)|(x − 1)(D − 1) ≥ r

3
Ds+1 ≥ r

3

( tr−2s+1

rǫ/3s
)1+s ≥ tr(1+s)r1−ǫ.

3.4 Upper bound on f(r, t, b)

The Erdős–Lovász [10] bound (3.1) can be easily extended to b-simple hypergraphs as follows.

Theorem 30. If b ≥ 1 and t ≥ 2 are fixed and r is sufficiently large, then

f(r, t, b) ≤ 10t2
(
2trr2

)(b+1)/b
.

Proof. We follow the lines of the proof of Theorem 1′ in [10] by Erdős and Lovász.

Let

n =

⌈
4t
(

2trr2(b+1)
)1/b⌉

and m = 4n tr+1 ∼ 8t2
(
2trr2

)(b+1)/b
. (3.17)

We let H0 be the edgeless hypergraph with |V (H0)| = tn and for i = 1, . . . ,m will obtain Hi

from Hi−1 by adding an edge ei so that

(a) Hi remains b-simple and

(b) xi ≤ (1 − 1/4tr)xi−1, where xi is the number of n-element subsets of V (H0) = V (Hi) not

containing edges of Hi.

As in [10], if we manage (a) and (b) until i = m, then

xm ≤ x0

(
1 − 1

4tr

)m
=

(
tn

n

)(
1 − 1

4tr

)4ntr+1

≤ (te)n

etn
=

(
te

et

)n
< 1.

Suppose that (a) and (b) hold for i = 0, 1, . . . , j. Let S be an n-element subset of V (Hj) not

containing any edge of Hj. If an r-tuple R ⊂ S cannot be added to Hj because (a) would fail, then

R has b+ 1 elements in common with some ei, i ≤ j. The number of such R ⊂ S is at most

j

(
r

b+ 1

)(
n− b− 1

r − b− 1

)
≤ mrb+1

(b+ 1)!

(
n

r

)
rb+1

(n− b)b+1
=

mr2(b+1)

(b+ 1)!(n − b)b+1

(
n

r

)
.

By (3.17), for fixed b and t and for large r, we have

m
r2(b+1)

(b+ 1)!(n − b)b+1
≤ 4ntr+1 2r2(b+1)

(b+ 1)!nb+1
≤ 4tr+1 2r2(b+1)

2!(4t)b2trr2(b+1)
≤ 1

2
.

It follows that every n-element S ⊂ V (Hj) not containing any edge of Hi contains at least
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0.5
(n
r

)
candidates for ej+1. Therefore, some r-element subset ej+1 of V (Hi) is a candidate for at

least

xj · 0.5

(
n

r

)(
tn

r

)−1

≥ xj n(n− 1) . . . (n− r + 1)

2(tn)r

n-element subsets of V (Hj) not containing any edge of Hj . Since n ≥ 8r2,

xj n(n− 1) . . . (n− r + 1)

2(tn)r
≥ xj

2tr

(
n− r + 1

n

)r
≥ xj

4tr
.

Thus, if we choose this ej+1, then (a) and (b) hold for i = j + 1.

3.5 Comments

1. While all b, t, s and ǫ are considered fixed, they also can be viewed as very slowly growing

functions of r. For example, it is possible to consider ǫ = c log log log r
log log r for a small positive constant

c.

2. Condition (3.7) in the definition of (t, ǫ)-sparse r-uniform hypergraphs can be weakened by any

polynomial factor of r. The problem in sharpening our results is in (3.8).

3. The proofs of Theorems 23 and 22 and inequalities (4) and (5) can be adapted to list coloring.

In particular, the following statement holds (and implies the other results).

Theorem 31. If b ≥ 1, t ≥ 2, and ǫ > 0 are fixed and r is sufficiently large, then every r-uniform

b-simple (t, ǫ)-sparse hypergraph H is list t-colorable.

v

x

y

D

A

C1 Cm

Bm’

A

A11

1m1 21

Color jB1

z

Figure 3.4: Configuration of Type 1 for list colorings.
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We start from a random coloring f of vertices of H where each vertex v is colored with a color

f(v) uniformly at random chosen from its list List(v) independently from all other vertices. To

adapt the proof of Theorem 23, for each vertex v ∈ V (H), fix any bijection νv of the list List(v)

onto itself with νv(α) 6= α for each α ∈ List(v). In all recolorings during the proof, each vertex

v of color j will be tried to be recolored (if at all) into the color νv(j) (instead of color j + 1, as

it was in the proof in Section 3.2). So, the Configuration of Type 1 in Figure 1 will look more

like in Figure 3.4. In this picture, if the “main color” of the edge D is j, then f(v) = ν−1
v (j),

f(z) = ν−1
z (j), f(x) = ν−1

x (f(z)) = ν−1
x (ν−1

z (j)), f(y) = ν−1
y (f(z)) = ν−1

y (ν−1
z (j)), and so on. So,

the colors of vertices v and z (likewise, of x and y) can be different, but the structure remains

the same, and for each vertex, only one color is “dangerous” for the configuration. Similarly, we

define the other configurations. After these definitions and before any recoloring is done, all the

calculations will be the same as in Section 3.2, and the result follows.
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Chapter 4

Conflict-free coloring of hypergraphs

with few edges

4.1 Introduction

Let H be a hypergraph with vertex set V (H) and edge set E(H). We recall that a coloring

c : V (H) → {1, 2, 3, ...} of V (H) is a proper coloring of H if no edge of H is monochromatic. The

minimum number of colors required for such a coloring is called the chromatic number of H, and

is denoted by χ(H). A rainbow coloring of H is a proper coloring of H such that for every edge e,

the colors of all vertices of e are distinct. The minimum number of colors required for a rainbow

coloring is called the rainbow chromatic number of H, and is denoted by χR(H).

Even, Lotker, Ron and Smorodinsky [12] introduced (in a geometric setting) the following

intermediate coloring. A proper coloring of H is conflict-free if for each edge e of H, some color

occurs on exactly one vertex of e. In other words, every edge has a color that does not get repeated

in that edge. The minimum number of colors required for a conflict-free coloring is called the

conflict-free chromatic number of H, and is denoted by χCF (H). This concept was introduced in

connection with the following frequency assignment problem for cellular networks.

Consider a cellular network which has nodes as base stations (that act as servers). Clients are

connected to base stations; connections between clients and base stations are implemented by radio

links. Fixed frequencies are assigned to base stations to enable links to clients. Clients, on the

other hand, continuously scan frequencies in search of a base station with good reception. The

fundamental problem of frequency-assignment in cellular networks is to assign frequencies to base

stations so that every client, located within the receiving range of at least one station, can be

served by some base station, in the sense that the client is located within the range of the station

and no other station within its reception range has the same frequency. The goal is to minimize

the number of assigned frequencies since the frequency spectrum is limited and costly. In terms

of hypergraphs, if we form a hypergraph with vertices as base stations and edges correspond to

the sets of frequencies accessible to the clients, then the problem reduces to find the conflict-free

chromatic number of that hypergraph.

It turns out that conflict-free chromatic number of a hypergraph is related to another parameter

called the tree-depth of a graph G, denoted by td(G). The concept of tree-depth was introduced

by J. Nešetřil and Ossona de Mendez [25]. To define tree-depth, we need to introduce a few other
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concepts. A rooted forest is a disjoint union of rooted trees. The height of a vertex x in a rooted

forest F is the number of vertices of a path from the root to x. The height of F is the maximum

height of the vertices of F . A vertex x is an ancestor of y in F if x belongs to the path linking y

and the root of the tree of F to which y belongs. The closure clos(F ) of a rooted forest F is the

graph with vertex set V (F ) and edge set (x, y) : x is an ancestor of y in F . The tree-depth td(G)

of a graph G is the minimum height of a rooted forest F such that G ⊆ clos(F ). They proved the

following:

Theorem 32 ([25]). Given a graph G if H be the hypergraph with vertex set being V (G) and the

edge set being the vertices of connected subgraphs of G, then td(G) = χCF (H).

This kind of coloring was referred as centered coloring in their paper. They used the concept of

centered coloring and tree depth to determine whether a particular kind of generalized chromatic

number is bounded for any proper minor closed class of graphs.

Clearly, χ(H) ≤ χCF (H) ≤ χR(H) for every H with equalities when H is an ordinary graph.

Also for 3-uniform hypergraphs χ(H) = χCF (H). However, for general hypergraphs, the behavior

of χCF may significantly differ from that of χ and of χR. For example, if we truncate an edge of

a hypergraph, then χ cannot decrease, χR cannot increase, while χCF may increase, decrease, or

stay the same. As yet another example we mention that if H is a 106-uniform hypergraph with 10

edges, then χ(H) = 2 and χCF (H) can be 2, 3, or 4.

Recall that a hypergraph is called simple, if any two distinct edges share at most one vertex.

Also recall that the edge degree of an edge e in a hypergraph H is the number of other edges

intersecting e. The maximum of the edge degrees over all the edges of H is denoted by D(H).

Because of applications and interesting behavior, the parameter χCF (H) attracted considerable

attention (see, e.g. [3, 4, 5, 7, 12, 16, 27, 26]). The chromatic number of hypergraphs is discussed in

many papers. Some of them discuss the bounds on the chromatic number of uniform hypergraph in

terms of their size or maximum (edge) degree as discussed in the previous sections. Pach and Tardos

[26] analyzed the conflict-free colorings for graphs and hypergraphs. They proved the following.

Theorem 33 ([26]). χCF (H) ≤ 1/2 +
√

2m+ 1/4, for every hypergraph H with m edges. This

bound is tight.

They also showed the following result.

Theorem 34 ([26]). Let H be a hypergraph with m edges such that the size of every edge is at least

2r − 1. Then χCF (H) ≤ Crm
1/r logm, where Cr is a positive constant depending only on r.

In fact, they proved that the same bound holds for hypergraphs H in which the size of every edge

is at least 2r − 1 and D(H) ≤ m. They also posed the following question:
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Question: Is χCF (H) ≤ Crm
1/r logm, when every edge has size at least r and intersects at most

m others ?

We show that this is not necessarily true.

The goal is to give reasonable upper bounds on χCF (H) for r-uniform hypergraphs H with

given number of edges or maximum edge degree. It will turn out that for a given m, the nature

of the bounds for r-uniform hypergraphs with m edges strongly depends on whether r is small

or large with respect to m. We also derive similar bound for r-uniform simple hypergraphs. It

turns out that for positive integers r, t with r ≤ t/8, both upper and lower bounds on the minimum

number of edges in an r-uniform simple hypergraph that have no conflict-free colorings with t colors

are roughly squares of the corresponding bounds for hypergraphs without the restriction of being

simple.

In Section 4.2 we find how few edges may r-uniform hypergraphs have with χCF equal to 2

or 3. In particular, for arbitrarily large r for r-uniform hypergraphs H with just 7 edges we have

χCF (H) ≤ 4 and this bound is attained for some hypergraphs. In Section 4.3, we find upper bounds

on χCF (H) in terms of the size/maximum edge degree of H and present some constructions showing

that our bounds are reasonable. In Section 4.4, we do the same for simple r-uniform hypergraphs.

This is a joint work with A. Kostochka and T.  Luczak and appears in [21].

4.2 Conflict-free coloring of hypergraphs with very few edges

We define the s-blow up of a graph G to be the hypergraph formed by replacing every vertex v of

G with an s element set Bv. The set Bv is called a blob. If uv is an edge in G, then Bu ∪Bv is an

edge in the blow-up.

Observation 35. For a hypergraph H, if either the degree of every vertex of H is at most 1, or if

there is a vertex contained in every edge of H, then χCF (H) = 2.

Observation 36. Let r ≥ 2. If H is an r-uniform hypergraph which is not conflict-free 2-colorable,

then it has at least 3 edges and the only such graph with 3 edges is the (r/2)-blow up of K3.

Proof. By Observation 35, every hypergraph with 2 edges is conflict-free 2-colorable. Moreover, a

blow-up of K3 is not. Now assume that H is an r-uniform hypergraph with 3 edges e1, e2, e3 which

is not conflict-free 2-colorable. If every vertex has degree at most 1 or if there is a vertex of degree

3, then by Observation 35 it is conflict-free 2-colorable. So assume that the maximum degree is 2.

Without loss of generality assume that v ∈ e1 ∩ e2. If there exists u ∈ e3 − e1 − e2, then we color

v and u with color 1 and all the remaining vertices with color 2. This would give a conflict-free

2-coloring of H, a contradiction. Hence e3 ⊆ {e1 − e2} ∪ {e2 − e1}. Since H is r-uniform, we have

that e3 * e1 and e3 * e2. Thus, e1 ∩ e3 6= ∅ and the above argument holds if v is replaced by a
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vertex w ∈ e3. Consequently, e1 ⊆ {e2 − e3} ∪ {e3 − e2} and similarly e2 ⊆ {e1 − e3} ∪ {e3 − e1}.

Moreover, since H is r-uniform, it must be the (r/2)- blow up of K3. In particular, r is even.

Lemma 37. Let r ≥ 3. If H is an r-uniform hypergraph with at most 6 edges, then it is always

conflict-free 3-colorable. Moreover, if r ≥ 4 and r is divisible by 4, then there exists an r-uniform

hypergraph with 7 edges which is not conflict-free 3-colorable.

Proof. We first show that if H has at most 6 edges then χCF (H) ≤ 3. Let ∆(H) be the maximum

degree of H.

Case 1. ∆(H) ≥ 4. Let v be a vertex of degree at least 4. We color v with color 1. By

Observation 36, there is a conflict-free coloring of H− v with colors 2 and 3. This gives a conflict-

free 3-coloring of H.

Case 2. ∆(H) ≤ 2. Since χCF (G) ≤ ∆(G) + 1 for every hypergraph G we can conflict-free

3-color H (see [26]).

Case 3. ∆(H) = 3. Let v be a vertex of degree 3 contained in the edges e1, e2 and e3. If

H−{e1, e2, e3} = {e4, e5, e6} is conflict-free 2-colorable, then we color them conflict-free with colors

2 and 3, color v with color 1 and arbitrarily color the remaining vertices with colors 2 and 3. This

gives a conflict-free 3-coloring of H. If not, then by Observation 36, {e4, e5, e6} forms the (r/2)-blow

up of K3. We may assume that e4∪e5∪e6 = B4∪B5∪B6, where B4, B5 and B6 are the blobs e5∩e6,

e4∩e6 and e4∩e5, respectively. Now, suppose that there is a vertex u ∈ (e4∪e5∪e6)−(e1∪e2∪e3).
Without loss of generality assume that u ∈ B6. Let w be a vertex in B5. We now color v and

u with color 1, w with color 2 and the rest of the vertices with color 3. This gives a conflict-free

3-coloring of H. Hence {e4∪e5∪e6} ⊆ {e1∪e2∪e3}. Thus every vertex in {e4∪e5∪e6} has degree

3.

The above argument holds for each vertex u ∈ e4 ∪ e5 ∪ e6 by replacing v with u and e1, e2, e3 with

the three edges containing u. Hence by symmetry, the degree of every vertex of H is 3. We also

know that deleting any vertex, leaves a copy of the (r/2)-blow up of K3. Moreover, since H is

r-uniform, H must be the (r/2)-blow up of K4. A blow-up of K4 can be conflict-free 3-colored as

follows. In the first blob we color a vertex with color 1 and another with color 2 and the rest with

3. In the second blob we color one vertex with 2 and the rest with 3. In the third blob we color

one vertex with 1 and the rest with 3 and in the fourth blob we color everything with color 3.

Now to show that there exists a hypergraph H with 7 edges which is not 3-conflict-free colorable, we

consider the (r/4)-blow up of the Fano plane and take the complement of every edge. The resulting

hypergraph H has seven blobs B1, B2, ...B7 and the following edges: e1 = B1 ∪ B2 ∪ B6 ∪ B7,

e2 = B2 ∪B3 ∪B4 ∪B7, e3 = B4 ∪B5 ∪B6 ∪B7, e4 = B1 ∪B2 ∪B4 ∪B5, e5 = B1 ∪B3 ∪B4 ∪B6,

e6 = B2∪B3∪B5∪B6, and e7 = B1∪B3∪B5∪B7. Suppose that there is a conflict-free 3-coloring

f of H with colors 1, 2 and 3.
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Claim 1: No color can appear in exactly one blob.

Proof : Assume that a color, say 1, appears in exactly one blob. Consider the three edges e2, e3, e6

not containing B1. They must be conflict-free 2-colorable with colors 2, 3. But they form the

(r/2)-blow up of K3 which is not conflict-free 2-colorable, a contradiction.

Claim 2: No color can appear in exactly two blobs.

Proof : Suppose that color 1 appears in exactly two blobs. Let B1, B2 be the blobs containing

vertices of color 1. Consider the two edges e1, e4 containing both B1 and B2 and the edge e3

containing neither B1 nor B2. These three edges form the (r/2)-blow up of K3 with at least two

vertices of color 1 present in a single blob. All other vertices gets color 2 or 3. With these restrictions

there exists no conflict-free 3-coloring of the blow up of K3.

Hence by the above claims, every color appears in at least three blobs.

Since f is a conflict-free 3-coloring of H which has seven edges, some color is unique for at least

three edges. Assume that this color is 1.

Claim 3: A vertex with color 1 cannot be unique for more than one edge.

Proof : If not, then without loss of generality, assume that a vertex with color 1 belonging to B1 is

unique for edges e4 and e5. Hence the blobs B2, B3, B4, B5, B6 do not have any vertices of color 1.

So color 1 appears only in at most two blobs. This contradicts Claims 1 and 2.

Assume that a vertex of color 1 in B1 is unique for e1. So the blobs B2, B6, B7 do not have

vertices of color 1. Again without loss of generality assume that a vertex of color 1 in B3 is

unique for the edge e2. So the blob B4 does not have any vertex of color 1. Now there must be

a vertex of color 1 in B5 which is unique for e3. We now consider the edges e4, e5, e6. Each of

these edges contains exactly two vertices of color 1. We delete these vertices and consider the new

edges e′4, e
′
5, e

′
6. The hypergraph formed by these edges must be conflict-free 2-colorable with colors

2, 3. The edges e′4, e
′
5, e

′
6 form the ((r/2) − 1)-blow up of K3 which is not conflict-free 2-colorable,

a contradiction.

4.3 Conflict-free coloring of hypergraphs with few edges

Having dealt with small cases, now we study the bounds for the conflict-free chromatic number for

a general case. We start with a simple probabilistic fact we shall use later on.

Lemma 38. Color a set T of q points, randomly, with s colors, so that each of sq colorings is

equally likely. Let pq,s be the probability that no color appears exactly once on T and let p̂q,s be the

probability that at most one color appears exactly once on T . Then

pq,s ≤
(2q

s

)⌈q/2⌉
(4.1)
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and

p̂q,s ≤
(8q

s

)⌈(q−1)/2⌉
. (4.2)

Proof. To prove (1), let us randomly color all elements of T , one by one. Note that if no color

appears exactly once we shall use at most ⌊q/2⌋ of them, and the set T ′ of the elements that

are colored with a color which we have already used has at least ⌈q/2⌉ elements. Thus, since the

number of ways to choose T ′ is at most 2q, we get

pq,s < 2q
( q

2s

)⌈q/2⌉
≤
(2q

s

)⌈q/2⌉
.

In order to show (2), we again randomly color all elements of T one by one. Note that we shall

use at most q colors. Furthermore, in this case the set T ′ of the elements that are colored with

a color which we have already used has at least ⌈(q − 1)/2⌉ elements and the number of ways to

choose T ′ is at most 2q. Hence

p̂q,s < 2q
(q
s

)⌈(q−1)/2⌉
≤
(8q

s

)⌈(q−1)/2⌉
.

Now we can bound the χCF (H) for a general r-uniform hypergraph with m edges.

Theorem 39. Let H be a r-uniform hypergraph with m edges and maximum edge degree D(H).

(i) If D(H) ≤ 2r/2, and D(H) (and thus r) is large enough, then there exists a vertex coloring of

H with 120 lnD(H) colors such that each edge has at least one color appearing exactly once. In

particular,

χCF (H) ≤ 120 lnD(H) ≤ 120 lnm.

(ii) If m ≥ 2r/2, then χCF (H) ≤ 4r(16m)2/(r+2).

Proof. In order to show (i) we set p = 1.34 lnD(H)/r, choose a subset T̂ of vertices of H indepen-

dently with probability p, and then color each vertex of T̂ independently with one of s = 120 lnD(H)

colors. Let Ae be the event that no color appears exactly once in the edge e. Then, by Lemma 38,

Pr(Ae) ≤
i0∑

i=0

(
r

i

)
pi(1 − p)r−i

(2i

s

)i/2
+

r∑

i=i0+1

(
r

i

)
pi(1 − p)r−i

≤
i0∑

i=0

(
r

i

)
pi(1 − p)r−i

(2i0
s

)i/2
+

r∑

i=i0+1

(
r

i

)
pi(1 − p)r−i,

where here and below i0 = ⌊2.5 · 1.34 lnD(H)⌋.
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Since p ≤ 1.34(r/2)(ln 2)/r ≤ 0.47, for i ≥ i0 + 1 we have

( r
i+1

)
pi+1(1 − p)r−i−1

(r
i

)
pi(1 − p)r−i

≤ r

i

p

1 − p
≤ 1

2.5(1 − p)
<

1

1.325
.

so the second sum can be bounded from above by a geometric series and consequently

r∑

i=i0+1

(
r

i

)
pi(1 − p)r−i ≤ 4.08

(
r

i0 + 1

)
pi0+1(1 − p)r−i0−1.

Since
(r
j

)
≤ (erj )j and (1 − p)r−j ≤ (1 − p)r ≤ (e−pr/j)j we have

Pr(Ae) ≤
(

1 +
(√2i0

s
− 1
)
p
)r

+ 4.08
( erp

i0 + 1
· e−pr/(i0+1)

)i0+1

≤ exp(−0.76pr) + 4.08 exp
(
− 0.79 · 1.34 lnD(H)

)

≤ D(H)−1.01 + 4.08D(H)−1.05 ≤ 1/(4D(H))

for sufficiently large D(H). Consequently, D(H) Pr(Ae) < 1/4 and by Lovász Local Lemma, there

exists a conflict-free coloring of H with s = 120 lnD(H) colors, so (i) follows.

Now let s = 2r(16m)2/(r+2) and k = 2s. We shall show that H has a conflict-free coloring

with at most k colors. Let v be a vertex of maximum degree in H. Reserve a color c for v and

delete v along with all the edges containing it. Repeat this procedure and reserve a different color

every time we delete a vertex of maximum degree in the remaining hypergraph. This procedure is

repeated k/2 times. Let H1 denote hypergraph obtained by k/2 repetitions of this procedure. We

consider the following two cases.

Case 1. D(H1) < mr/(r+2). Color each vertex of H1 by a color chosen randomly among s

colors. Let Ae be the event that no color appears exactly once in the edge e. By Lemma 38,

Pr(Ae) < (2r/s)r/2. Thus for r ≥ 2,

4 ·D(H1) · Pr(Ae) < 4 ·mr/(r+2) · (2r/s)r/2 = 4 ·mr/(r+2) · (2r/2r(16m)2/(r+2))r/2 ≤ 1.

Hence by Lovász Local Lemma, there exists a conflict-free coloring of H1 with k/2 colors. Together

with the other k/2 colors, we have a conflict-free coloring of H with k = 2s = 4r(16m)2/(r+2) colors.

Case 2. D(H1) ≥ mr/(r+2). Note that since each time we have deleted a vertex of maximum

degree in the remaining hypergraph, we have removed at least ∆(H1) ≥ D(H1)
r ≥ mr/(r+2)

r edges k/2

times. Thus, m ≥ kmr/(r+2)/(2r) which implies k ≤ 2rm2/(r+2), a contradiction. This completes

the proof of (ii).
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It is not hard to see that the bound given by Theorem 39(i) is tight up to a constant factor.

Indeed, the following holds.

Proposition 40. For all m ≥ 1 and for all even r ≥ 2, there exists an r-uniform hypergraph H
with m edges such that χCF (H) > 1

2 log2m.

Proof. If 1 ≤ m ≤ 4, then 1
2 log2m ≤ 1, and the statement follows. Let m ≥ 5 and let n be

the largest integer such that
(n
2

)
≤ m. Let H′ be the (r/2)-blow up of Kn, where the blobs are

B1, . . . , Bn. Consider the hypergraph H obtained from H′ by adding m −
(n
2

)
isolated edges. By

construction, H has m edges.

Let k = ⌊log2 n⌋. Suppose that H has a conflict-free coloring f with k colors. For i = 1, . . . , n,

let Si be the set of colors that appear in the blob Bi. Since there are 2k − 1 nonempty distinct

subsets of the set {1, . . . , k} and n > 2k− 1, there are some 1 ≤ i < j ≤ n with Si = Sj . Then each

color occurs in the edge Bi ∪Bj an even number of times, a contradiction. So, χCF (H) ≥ 1 + k.

Since m ≤
(
n+1
2

)
− 1 = n2+n−2

2 < n2, we have log2m < 2 log2 n < 2(1 + k) ≤ 2χCF (H).

To construct a matching bound for Theorem 39(ii), when m is much larger than r, is a harder

task. Pach and Tardos [26] showed that if H is a r-uniform hypergraph with m edges, then

χCF (H) ≤ rm2/(r+1) logm, and they ask whether χCF (H) ≤ rm1/r logm. We answer their question

in the negative. More precisely, we show that if r is much smaller thanm, then there exists r-uniform

hypergraph H such that χCF (H) ≥ Crm
2/(r+2)/ logm. Let us start with a simple observation.

Observation 41. Given any coloring f of an n-element set with t colors, we can choose a family

Af of t disjoint sets such that each set in Af has size ⌊n/2t⌋ and is monochromatic.

Proof. Consider the color classes A1, A2, ...At. For each color class Ai we partition it into subclasses

Bij of size equal to ⌊n/2t⌋ until we cannot anymore. The last subclass say Bij′ for each i will have

size less than ⌊n/2t⌋. Summing the sizes of these Bij′ s we get at most n/2 vertices. The remaining

at least n/2 vertices give us a family of t sets such that each set in Af has size ⌊n/2t⌋ and is

monochromatic.

Theorem 42. For each positive even fixed r, there exists a constant cr ≤ 4(8e2/r)r/2 such that

for every integer t ≥ r/2, there exists an r-uniform hypergraph H with less than 1 + crt
(r+2)/2 log t

edges such that χCF (H) > t.

Proof. Consider a vertex set V of size n, a multiple of 4t. Let

m =
⌈
4(8e2/r)r/2t(r+2)/2 log t

⌉
. (4.3)

We form a random r-uniform hypergraph H with m edges by choosing m subsets F1, F2, ..., Fm of

V of size r randomly with equal probability and repetitions allowed. We will prove that with a

positive probability the conflict-free chromatic number of H is larger than t.
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Let f be any fixed t-coloring of V . By Observation 41, there exists a family Af of k sets

{A1, A2, ..., At} such that each of these sets has size ⌊n/2t⌋ and is monochromatic. So the probability

that edge Fi has a conflict is bounded from below by the probability that it has exactly 2 or

0 vertices from each of the sets in Af and no vertices outside Af , which, in turn, is equal to
(
t
r/2

)(
⌊n/(2t)⌋

2

)r/2(n
r

)−1
. Since

(n
t

)t
≤
(
n

t

)
≤
(en
t

)t
,

we get

Pr(edge Fi has a conflict) ≥
( t

r/2

)r/2( n2

16t2

)r/2( r2

e2n2

)r/2
=
( r

8e2t

)r/2
.

Consequently,

Pr(f is a conflict-free coloring of H) ≤
(

1 −
( r

8e2t

)r/2)m

< exp
(
−m

( r

8e2t

)r/2)
.

There are tn distinct colorings of V (H), so

Pr(H is conflict-free colorable with t colors) < tn exp
(
−m

( r

8e2t

)r/2)

≤ exp
(
−m

( r

8e2t

)r/2
+ n log t

)
.

If n = 4t, then by (4.3) the probability that H is conflict-free colorable is strictly smaller than

1. Hence there exists an r-uniform hypergraph G with m edges such that χCF (G) > t.

Remark: Solving (4.3) for t, we get t ∼ Crm
2/(r+2)/ logm, where Cr is a function of r. Thus, The-

orem 42 shows that for a given m and r ≤ Crm
2/(r+2)/ logm, there exists an r-uniform hypergraph

H with m edges such that χCF (H) > Crm
2/(r+2)/ logm.

4.4 Conflict-free coloring of simple hypergraphs

Although one can show that there exist simple r-uniform hypergraphs H with m = Cr such that

χ(H) = Θ(r), the second part of Theorem 39(ii) can be improved in the case of simple hypergraphs.

Let us start with the following simple consequence of Lemma 38.

Lemma 43. Let r ≤ t/8 and let H be an r-uniform hypergraph. If D(H) < 1
4( t

8r )⌈(r−1)/2⌉, then

there exists a vertex coloring of H with t colors such that each edge has at least two colors appearing

exactly once.
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Proof. Consider a random t-coloring of H and let Ae be the event that the edge e has at most one

color appearing exactly once. By Lemma 38, the probability of Ae, Pr(Ae) ≤ (8rt )⌈(r−1)/2⌉. Now

note that for a given edge e, the event Ae is independent of all but at most D(H) other events Ae′ .

Thus, for D(H) < 1
4( t

8r )⌈(r−1)/2⌉, we have 4 · Pr(Ae) · D(H) < 1, and so by Lovász Local Lemma

there exists a coloring where none of the events Ae occur. Consequently, there exists a coloring of

H with t colors such that every edge has at least two colors appearing exactly once.

Remark. By Lemma 40, for a given m, even if r is arbitrarily large (but even), there is an

r-uniform hypergraph H with m edges and χCF (H) > 0.5 log2m. There is no similar statement

for simple hypergraphs. Indeed, if the maximum edge degree of a simple r-uniform hypergraph H
is less than r, then we can choose in each edge e a vertex ve that belongs only to e. Then we color

each ve with 1, and every other vertex with 2. So, such a hypergraph has a conflict-free coloring

with just 2 colors.

Theorem 44. Let r ≤ t/8 and let H be an r-uniform simple hypergraph with m edges. If m ≤
1

16r(r−1)2 ( t
8(r−1))

r−2, then χCF (H) ≤ t.

Proof. Assume that χCF (H) > t. Let H1 be the hypergraph obtained from H by truncating

each edge e by a vertex ve of maximum degree. Observe that H1 is an (r − 1)-uniform simple

hypergraph and if f is a k-coloring of H1, then there exists an edge of H1 which has at most one

color appearing exactly once, otherwise H would be conflict-free t-colorable. Now by Lemma 43,

D(H1) ≥ 1
4( t

8(r−1))
⌈(r−2)/2⌉. Furthermore, H1 has a vertex of degree at least D(H1)/(r − 1). If

H1 has a vertex v of degree at least d, then every edge e in H1 containing v must have a vertex

ve whose degree in H is at least d. Moreover, since H is simple, all these d vertices are distinct.

Hence H has at least D(H1)/(r−1) vertices of degree at least D(H1)/(r−1). So by the degree-sum

formula,

m ≥ D(H1)2/r(r − 1)2 >
1

16r(r − 1)2

(
t

8(r − 1)

)r−2

.

Note that if we solve the equation m = 1
16r(r−1)2

( t
8(r−1))

r−2 with respect to t we get t ∼
C ′
rm

1/(r−2) so, for large r, the upper bound for the conflict-free chromatic number for simple

hypergraphs provided by Theorem 44 is roughly a square of the bound given by Theorem 39 for

the general case. The following result shows that, at least for large r, this estimate is not very far

from being optimal.

Lemma 45. Let r ≤ t. Then, there exists an r-uniform simple hypergraph H with

(1 + o(1))(4t ln t)2(4e
2t
r )r edges such that χCF (H) > t.

Proof. We first construct an auxiliary 4t-uniform simple hypergraph H1 as follows. Let q be a

prime which will be chosen later. The vertex set of H1 is S = S1 ∪ ...∪S4t where all Si are disjoint
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copies of GF (q) = {0, 1, ..., q − 1}. The edges of H1 are 4t-tuples (x1, ..., x4t) ∈ S1 × ... × S4t that

are solutions of the system of linear equations

4t∑

i=1

ijxi = 0, j = 0, 1, ..., 4t − 3, (4.4)

over GF (q).

For any fixed pair of variables in (4.4), we have a (4t− 2) × (4t− 2) system of linear equations

with Vandermond’s determinant which has a unique solution over GF (q). This means that H1 is

4t-uniform simple hypergraph with 4tq vertices in which each vertex is contained in q edges, so

|E(H1)| = q2.

Now from each edge e of H1 we choose an r-subset Ae randomly and independently. Let H be

the r-uniform simple hypergraph obtained from H1 by taking the subsets Ae as its edges. Our goal

is to show that with a positive probability the conflict-free chromatic number of H is large.

To this end, fix a coloring f . Let Be denote the event that the edge e has a conflict in the

coloring f , and p = Pr(Be). Arguing as in the proof of Theorem 42, one can show that

p ≥
( r

8e2t

)r/2
.

Since the edges of H were chosen independently, the probability that f is a conflict-free coloring of

H is (1 − p)q
2
. Moreover, the total number of colorings is t4tq, so the probability that there exists

a conflict-free coloring of H with t colors is at most t4tq · (1 − p)q
2
. This probability is less than 1,

provided

t4tq · e−pq2 < 1 ,

which holds whenever

q >
4t ln t

p
.

Now if we take the smallest prime q such that q > q0 = 4t ln t(8e
2t
r )r/2, then we have an r-uniform

simple hypergraph with q2 edges and χCF (H) > t. It is known (see, for instance, [17]) that one

can take q = (1 + o(1))q0. Hence

|E(H)| = (1 + o(1))(4t ln t)2
(8e2t

r

)r
.

Remark: Finally, let us remark that if we take t = r, then we get a simple r-uniform hypergraph

H with m = 2O(r) edges such that χ(H) > r = Ω(lnm), so Theorem 39(i) cannot be significantly

improved in the case of simple hypergraphs, at least when m grows exponentially with r.
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Chapter 5

Choosability with separation in

complete graphs

5.1 Introduction

List coloring of graphs is a generalized version of the ordinary vertex coloring problem. As in

ordinary vertex coloring, we pick a single color for each vertex, but the sets of colors available at

different vertices may be different. This model was introduced independently by Vizing [32] and

Erdős-Rubin-Taylor [11].

Given a graph G(V,E), a list L for G is an assignment to every v ∈ V (G) of a set L(v) of colors that

may be used for the coloring of v. We say that G is L-colorable, if there exists a proper coloring f

of the vertices of G from L, i.e. if f(v) ∈ L(v) for all v ∈ V (G) and f(u) 6= f(v) for all uv ∈ E. An

extensively studied parameter is the list chromatic number of G, χl(G), which is the least k such

that G is L-colorable, whenever |L(v)| = k for all v ∈ V (G). It is also sometimes called by choice

number, or choosability of G.

It is easy to see that χl(G) ≥ χ(G). Moreover, the list chromatic number for an n-vertex graph

can be as large as n, namely for complete graphs Kn when the lists are identical. It is natural to

ask what happens when the lists do not intersect too much.

We say that a list L for a graph G is a (k, c)-list if |L(v)| = k for all v ∈ V (G) and |L(u)∩L(v)| ≤ c

for all uv ∈ E(G), that is for every edge, the lists of its end points have at most c colors in common.

Kratochv́ıl, Tuza and Voigt [24] introduced χl(G, c), the least k such that G is L-colorable from

each (k, c)-list L. Among other results, they showed the following.

Theorem 46. [24]
√

cn
2 ≤ χl(Kn, c) ≤

√
2ecn.

They also asked the following problem.

Problem: Does limn→∞ χl(Kn, c)/
√
cn exist ?

We prove that the limit exists and is equal to 1. We also find the exact value of χl(Kn, c) for

infinitely many values of n.

This is a joint work with Z. Füredi and A. Kostochka and appears in [14].
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5.2 Upper Bound

We start by citing two known facts.

For the complete graph Kn and a list L, the vertex-color adjacency graph, F = F (V (Kn), UL), is

the bipartite graph whose partite sets are V (Kn) and UL =
⋃
v∈V (Kn)

L(v) with u ∈ V (Kn) being

adjacent to α ∈ UL if and only if α ∈ L(u).

Observation 47 (Vizing). [32] For every list assignment L for Kn, Kn has an L-coloring if and

only if the vertex-color adjacency graph F (V (Kn), UL) has a matching saturating V (Kn).

Lemma 48 (Johnson’s bound). [18] Let E1, ...Em be sets such that |Ei| ≥ k and |Ei ∩ Ej| ≤ c.

Then |⋃m
i=1Ei| ≥ mk2

mc+k−c .

The following lemma is a slight improvement of Lemma 48 when m = q + 2 and k = q.

Lemma 49. Let c ≥ 1. If L(V,E) is a q-uniform hypergraph such that |E| = q+2 and |e∩e′| ≤ c−1,

then |V | ≥ 1
c (q

2 + c+3
c+1q −

2(c−1)
c+1 ).

Proof. Let dv be the degree of vertex v, then we have

∑

v

(
dv
2

)
=
∑

e,e′∈E

|e ∩ e′| ≤ (c− 1)

(
q + 2

2

)
. (5.1)

∑

v

dv =
∑

e

|e| = (q + 2)q. (5.2)

Let t ≥ 2 be an integer. We multiply (5.1) by −1

(t
2)

, (5.2) by 2
t and sum them up. We also note the

fact that 2
t d− 1

(t
2)

(
d
2

)
≤ 1 when t ∈ {2, 3, ...} and d ∈ {1, 2, ...}. We now choose t = c+1 and we have

∑

v

1 ≥
∑

v

2

c+ 1
dv −

1(c+1
2

)
(
dv
2

)
≥ 2

c+ 1
q(q + 2) − 1(c+1

2

)(c− 1)

(
q + 2

2

)
=
q2 + c+3

c+1q −
2(c−1)
c+1

c
.

Hence |V | ≥ 1
c (q2 + c+3

c+1q −
2(c−1)
c+1 ).

Lemma 50. Let L be a list assignment such that |L(v)| ≥ q + 1 and |L(v1) ∩ L(v2)| ≤ c. Then

F (V (Kn), UL) has a matching saturating V (Kn) if n ≤ 1
c (q2 + c+3

c+1q −
2(c−1)
c+1 ).

Proof. We need to show that Hall’s condition holds in F , that is, |S| ≤ |N(S)|, for all S ⊆ V . For

this we consider the subgraph FS induced by vertices of S and N(S).

Case 1 : degFS
(α) ≤ q + 1, for all α ∈ N(S).

Counting edges in FS we have

|S|(q + 1) =
∑

v∈S |L(v)| =
∑

α∈N(S) degFS
(α) ≤ |N(S)|(q + 1),
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which implies |S| ≤ |N(S)|.

Case 2 : degFS
(α) ≥ q + 2, for some α ∈ N(S).

Suppose α ∈ L(v1)∩L(v2)∩ ...∩L(vq+2), where v1, ..., vq+2 ∈ S. Consider the sets L′
i = L(vi)\{α}.

Then |L′
i| ≥ q and |L′

i ∩ L′
j | ≤ c− 1, for all 1 ≤ i, j ≤ q + 2, i 6= j. We now consider a hypergraph

L with L′
i as its edges. By Lemma 49,

| ∪i L(vi)| ≥ 1 + 1
c (q2 + c+3

c+1q −
2(c−1)
c+1 ).

Now if Hall’s condition fails to hold, then |S| > |N(S)|, and thus

n ≥ |S| > |N(S)| ≥ | ∪i L(vi)| ≥ 1 +
1

c

(
q2 +

c+ 3

c+ 1
q − 2(c − 1)

c+ 1

)
,

which is a contradiction.

Remark: One could also use Lemma 48 in Case 2 of the Lemma 50 to obtain a slightly weaker

upper bound of q2(q+2)
c(q+1)−1 .

Observation 47 and Lemma 50 now yield the following Proposition.

Proposition 51. χl(Kn, c) ≤ q + 1 for n ≤ 1
c (q2 + c+3

c+1q −
2(c−1)
c+1 ).

5.3 Lower Bound

In this section we will obtain a lower bound on χl(Kn, c) and then use it to yield the main theorem

stated below

Theorem 52. Let c ≥ 1, then

(i) limn→∞ χl(Kn, c)/
√
cn = 1.

(ii)If q is a prime power, c < q − 1 and c divides q − 1, then χl(Kn, c) = q + 1, for all n ∈
[ q

2−1
c + 2, 1c (q

2 + c+3
c+1q −

2(c−1)
c+1 )].

To obtain a lower bound, we need to show that there is a particular (k, c) list assignment for Kn

for which it is not list-colorable. This particular list assignment will come from an auxiliary hyper-

graph. The construction of this hypergraph is based on [13] and is shown below.

Let q be a prime power and c an integer such that c < q − 1 and c divides q − 1. Let F

be the q-element finite field GF(q) and let h be an element of order c in the multiplicative

group F\{0}. Set H = {1, h, h2, ..., hc−1}. Then H is a c-element subgroup of F\{0}. Let

(a, b), (a′, b′) ∈ F × F\{(0, 0)}. We say that (a, b) ∼ (a′, b′), if there exists hα ∈ H such that

60



a′ = hαa and b′ = hαb. Note that ∼ is an equivalence relation and each equivalence class is a col-

lection of c elements in F× F\{(0, 0)}. Hence there are q2−1
c equivalence classes. The equivalence

class containing (a, b) will be denoted by 〈a, b〉.

Consider the set L〈a, b〉 = {〈x, y〉 : ax + by ∈ H}. Since H is a group, ax + by ∈ H implies

(h′a)x + (h′b)y ∈ H, for all h′ ∈ H. Hence L〈a, b〉 is well-defined.

Claim 1: Let (a, b), (a′, b′) ∈ F×F\{(0, 0)}. Then |L〈a, b〉| = q. Moreover, if (a, b) ≁ (a′, b′), then

either |L〈a, b〉 ∩ L〈a′, b′〉| = c or |L〈a, b〉 ∩ L〈a′, b′〉| = 0.

Proof: Let (a, b) ∈ F × F\{(0, 0)}. By symmetry we assume b 6= 0. Then for any given x and hα,

there is a unique solution of ax + by = hα. Hence there are exactly qc solutions. These solutions

come in equivalence classes and hence |L〈a, b〉| = q.

Now consider (a, b) ≁ (a′, b′). Then for given α and β, if the system of equations

ax+ by = hα

a′x+ b′y = hβ

has a solution, then it has a unique solution, since det

(
a b

a′ b′

)
6= 0. Hence for c2 values of

α and β there are c2 possible solutions. Since the solutions come in equivalence classes, either

|L〈a, b〉 ∩ L〈a′, b′〉| = c or |L〈a, b〉 ∩ L〈a′, b′〉| = 0.

Applying Claim 1 we obtain the following theorem.

Theorem 53 (Füredi). [13] Let L(V,E) be a hypergraph with the vertex set V = {〈a, b〉 : a, b ∈
F, (a, b) 6= (0, 0)} and the edge set E = {L〈a, b〉 : a, b ∈ F, (a, b) 6= (0, 0)}. Then L
(i) is a q-uniform hypergraph,

(ii) has q2−1
c vertices,

(iii) has q2−1
c edges such that every two edges intersect in at most c vertices.

We use the construction given in Theorem 53 to obtain another hypergraph which we shall use to

get our desired lower bound.

Claim 2: If Vm = {〈x, y〉 : y = mx}, then |Vm| = q−1
c and |Vm ∩ L〈a, b〉| ≤ 1, for each 〈a, b〉 ∈ V .

Proof: Given m, y = mx has q solutions in F× F. Since the solutions come in equivalence classes

y = mx has q−1
c solutions in V , where V is the vertex set of the hypergraph L from Theorem 53.

To prove the next claim, we might see the hypergraph L arising out of the affine plane geometry

AG(2, q) by combining c parallel lines of the form ax + by = hα for c values of α to get the set

L〈a, b〉. Now in AG(2, q) every two lines intersect in at most 1 point in F×F. Hence for each α the

line ax+ by = hα meets the line y = mx in at most 1 point in V (L) and thus |Vm ∩L〈a, b〉| ≤ 1. �

61



Consider the hypergraph H(V ′, E′) with

V ′ = V ∪ {x}, where x /∈ V

and E′ = E ∪ {{x} ∪ V1 ∪ V2 ∪ ... ∪ Vc, {x} ∪ Vc+1 ∪ Vc+2 ∪ ... ∪ V2c, ...},

where V,E, Vis sets considered in Claim 2. By Claim 2 and Theorem 53, |{x}∪V1 ∪V2 ∪ ...∪Vc| =

1 + c q−1
c = q and every two edges intersect in at most c vertices.

Thus H(V ′, E′) is a q-uniform hypergraph such that |V ′| = q2−1
c + 1 and |E′| > |V ′| such that

|e ∩ e′| ≤ c for every e, e′ ∈ E′.

Proposition 54. Let q be a prime power. If c < q− 1 and c divides q− 1, then χl(Kn, c) ≥ q + 1

for n ≥ q2−1
c + 2, that is χl(Kn, c) ≥

√
c(n− 2) + 1 + 1.

Proof. Let n = q2−1
c + 2. Consider the hypergraph H constructed above. Let f : V (Kn) → E′ be

a bijective mapping. For every v ∈ V (Kn) we let its list be L(v) = f(v). Then L is a (q, c)-list

assignment in which the total number of colors |V ′| < n. Hence there is no proper coloring of Kn

with this list assignment. Hence χl(Kn, c) ≥ q + 1 for n = q2−1
c + 2 and thus χl(Kn, c) ≥ q + 1 for

n ≥ q2−1
c + 2.

We shall use the following lemma to give a general lower bound for any n.

Lemma 55. [17] Let c ≥ 1, n be sufficiently large. Then the interval

[
√
c(n − 2) + 1 + 1 − n1/3,

√
c(n − 2) + 1 + 1] contains a prime q such that c divides q − 1.

Proposition 56. Let c ≥ 1. Then for every sufficiently large positive integer n,

χl(Kn, c) ≥ ⌊
√
c(n − 2) + 1 + 1⌋ − n1/3.

Proof. Given a sufficiently large n, consider the interval [
√
c(n− 2) + 1+1−n1/3,

√
c(n − 2) + 1+1].

By Lemma 55, this interval contains a prime q such that c divides q − 1. Let n′ = (q2−1)
c + 2. By

Proposition 54, χl(Kn′ , c) ≥
√
c(n− 2) + 1 + 1 = q + 1. Hence

χl(Kn, c) ≥ χl(Kn′ , c) ≥ q + 1 ≥ ⌊
√
c(n− 2) + 1 + 1⌋ − n1/3.

Propositions 51, 56 and 54 now imply Theorem 52.

For a fixed c ≥ 1, one might be interested in knowing what is the maximum value of χl(G, c) over

all n-vertex graphs G. Note that if H is an induced subgraph of G, then χl(H, c) ≤ χl(G, c), but

this may not hold true for non-induced subgraphs. Below are two examples of hypergraphs that

illustrate this fact for hypergraphs (We do not know of any examples for graphs yet).
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Example 1: Let the graph H = K3,27, where V (H) = A∪B, with |A| = 3, |B| = 27. Consider the

hypergraph G = H ∪B. Note that χ(H, 1) ≥ 4 (consider disjoint lists of size 3 on each vertex in A

and all the 27 transversals of size 3 on the vertices in B; this gives a improper coloring). Now to

show that χ(G, 1) ≤ 3. For that we see that if the lists of vertices in A, then one can give a proper

coloring by choosing two colors on A such that there is always a third color present in the lists of

vertices in B. Finally, if the lists of vertices in the A are disjoint, then a bad coloring can arise only

if all 27 transversals occur on the vertices in B. But then it is not a 1-separated list assignment

(since B forms an edge in G).

Example 2: The above example had edges of size 2 and one big edge. One might want the

hypergraph to be more uniform. For that we consider the graph H as above, and let B = B1 ∪B2,

where |B1| = 25, |B2| = 2. Consider the hypergraph G = K3,27 ∪ 25 edges of size 3 formed by

taking one vertex from B1 and the two vertices of B2. Now to show that χ(G, 1) ≤ 3.

Case 1 : If the lists of vertices in the A are disjoint and all 27 transversals occur on the vertices

in B: Lists in B1 can have at most one intersection with lists in B2. This make it impossible to

assign all the 27 lists to vertices in B.

Case 2 : If the lists of vertices in the A are disjoint and not all 27 transversals occur on the vertices

in B: We then color the vertices of A with one of the missing lists. The vertices in B2 since they

are in an edge have at least 5 distinct colors in the union of their lists. Taking away the colors used

on A leaves at least two distinct colors in their union and can thus be properly colored.

Case 3 : If the lists of vertices in the A are not disjoint: then one can give a coloring by choosing

two colors on A such that there is always a third color present in the lists of vertices in B. More-

over, with argument similar to case 2, vertices of B2 can be colored with distinct colors, giving G

a proper coloring.

One might still suspect that in the case of graphs, the complete graph requires the most number

of colors. We have the following conjecture.

Conjecture 57. If c, n ≥ 1 and G is an n-vertex graph, then χl(G, c) ≤ χl(Kn, c).
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