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ABSTRACT 

Fatigue is one of the main causes of structural failure. In fact, many structural systems such as 

bridges, offshore platforms, and aircraft are subjected to the risk of fatigue-induced failure 

caused by repeated loading over their life cycle. Therefore, structural systems should be designed 

and maintained such that they have an adequate level of structural redundancy to prevent local 

fatigue-induced failures from progressing toward system-level failure such as collapse, which 

may result in complete loss of the structural system and catastrophic consequences. For decision-

making with respect to the design, maintenance and retrofit of robust structural systems, it is thus 

essential to estimate their reliability and identify critical sequences of local failures leading to 

system failures. In addition, it is desirable to update the original reliability based on inspection 

results, which will facilitate reliability-based structural maintenance based on the actual 

conditions of structures. 

Performing reliability analysis and updating of fatigue-induced sequential failure of a 

structural system is a challenging task. First, the reliability analysis should be performed at the 

system level in conjunction with sophisticated finite element analysis to account for the complex 

behavior of the structure during fatigue-induced sequential failures including the impact of load 

re-distribution caused by failures at other locations. Second, one might need to explore a huge 

number of failure sequences to estimate the failure risk accurately, especially for complex 

structural systems with high level of redundancy. Third, for accurate system reliability updating, 

precise system reliability estimation should be performed first and then the results should be 

incorporated into a method that can update the original reliability based on inspection results. 

This thesis proposes novel finite-element-based methods for system reliability analysis 

and updating for structures that are subject to the risk of fatigue-induced sequential failures. First 
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of all, a new computational framework is developed which performs finite element reliability 

analysis (FE-RA) at the system level. While many of the existing FE-RA software packages aim 

at reliability analysis at the component level or have the limited capability of their FE modules, 

the new framework enables us to perform system reliability analysis in conjunction with 

sophisticated finite element analysis. Secondly, a new Branch-and Bound method employing 

system reliability Bounds (termed the B3 method) is developed to perform system reliability 

analysis for the fatigue-induced sequential failures of structures. Describing sequential failures as 

disjoint events, the B3 method enables us to estimate the system-level failure probability and 

identify critical failure sequences, more accurately and efficiently than other existing methods. 

The B3 method was originally developed for reliability analysis of discrete structures such as a 

truss, but the method is further developed for its applications to continuum structures. Lastly, a 

new reliability updating method employing the B3 method is proposed to update the system 

reliability analysis results based on structural inspections. The approach can update the original 

failure probability of structures based on various conditions observed during inspections for both 

truss and continuum structures. All of the proposed methods are applied to numerical examples 

of structural systems, and the results are compared with those by Monte Carlo simulations, which 

show that the proposed methods can perform system reliability analysis and updating in 

conjunction with finite element analysis, accurately and efficiently.  
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1. INTRODUCTION 

 

In recent decades, structural reliability theory has flourished to help engineers across various 

disciplines model uncertainties and quantify their impacts on analysis, design, and maintenance. 

Many methods and tools have been developed and applied to structural systems in civil, 

mechanical, nuclear, marine, and aerospace engineering (Thoft-Christensen 1998, Haldar 2006, 

Frangopol and Maute 2003, Moan 2005). A structural system often requires sophisticated 

methods of structural reliability analysis due to its complex failure mechanism. One of the 

examples showing such a challenge is the reliability analysis of structural systems subjected to 

sequential failures induced by fatigue. 

Fatigue is one of the main causes of the failure of structures. Many structural systems 

such as bridges, offshore platforms, and aircraft are subjected to the risk of failures caused by 

repeated loading over their life cycle (Byers et al. 1997, Karamchandani et al. 1992). However, it 

is difficult to predict fatigue-induced failures because fatigue is a complex process including 

various uncertainties, as proved by many laboratory experiment data (Haldar 2006). For this 

reason, many structural reliability methods were developed to analyze the uncertainties in terms 

of failure probability. 

Most of the existing studies about fatigue reliability focus on predicting the fatigue life of 

individual structural members. However, it is noted that a structure should be designed and 

maintained in terms of the system-level performance to achieve an adequate level of structural 

redundancy that would prevent local fatigue-induced failures from progressing toward 

exceedingly large damage such as structural system collapse. Although the system-level 

redundancy plays such an important role in preventing the failure of local members from 
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initiating the collapse of the structural system, there have been few research efforts for fatigue 

life prediction considering the system-level redundancy.  

For risk-informed structural design against fatigue-induced sequential failures, it is 

essential to estimate the reliability of a structural system and to identify critical sequences of 

local failures leading to a system failure. In addition, an adequate level of structural reliability 

needs to be guaranteed through structural maintenance such as inspection, as well as proper 

structural design, and it is thus required to update the original reliability based on inspection 

results. 

For accurate reliability analysis and updating of fatigue-induced sequential failures, it is 

necessary to develop an integrated reliability analysis framework that can address the followings: 

First, structural reliability analysis should be performed in conjunction with finite element (FE) 

analysis, so that structural responses which appear in the limit-state function describing the 

structural failure mode of interest can be evaluated accurately during reliability analysis. Even 

though there are a few computational platforms that link structural reliability analysis with FE 

analysis, most of them still have some limitations in that they perform reliability analysis at the 

component level without considering system-level failures or have FE modules with limited 

capabilities in their applications. 

Second, the sequential failure of a structure needs to be described as a complex “system” 

event which is a logical function consisting of multiple “component” events representing the 

failures of physical structural members or the occurrence of various failure modes. There have 

been many research efforts to develop an accurate and efficient method for the risk analysis of 

the many failure modes. In most cases, however, the existing methods aim to quantify the risks 

of individual local failures only. Such component reliability analysis may cause errors in 
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estimating the actual risk, and system reliability should be introduced to calculate the risk of 

sequential failure of structures accurately. 

Third, for a complex structural system, there exist a huge number of failure sequences to 

explore, which may require overwhelming computational and time costs. Thus, for an efficient 

risk analysis of sequential failure, it is indispensable to have a smart algorithm that minimizes the 

number of failure sequences to explore. Although many research efforts have been made to 

develop efficient searching schemes, these methods are still either time-consuming or prone to 

miss critical failure sequences. In addition, the methods may underestimate the risk due to 

heuristic rules or assumptions that are often introduced to enhance the efficiency of the search. 

Fourth, while fatigue-induced sequential failure is a critical failure mode of various 

structures, most of the existing studies of the system-level reliability analysis of fatigue-induced 

sequential failure have been undertaken for offshore structures, which are often modeled as 

discrete structures (e.g., truss). However, it is noted that reliability analysis for fatigue-induced 

sequential failure is important not only for discrete structures, but also for continuum structures 

such as subsystems in aircraft structures. Therefore, it is required to develop a novel method to 

perform system reliability analysis of fatigue-induced sequential failures for continuum 

structures. 

Lastly, it is beneficial to develop a new method to update the original reliability, which 

was calculated during structural design, based on the observations from structural inspections. 

Practically, the safety of a structural system can be guaranteed through not only proper structural 

design, but also structural maintenance such as inspection. However, many of the existing 

methods developed for reliability updating focus on structural components, and there are few 

studies about reliability updating for sequential failure of a structural system. For an effective 
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inspection planning, it is thus essential to develop a new method for estimating the reliability of 

structures against fatigue-induced sequential failures and updating the original reliability based 

on inspections accurately. 

These challenges motivated the research reported in this thesis, which focuses on 

developing novel frameworks and methods for system reliability analysis and reliability updating 

of fatigue-induced sequential failures based on finite element simulations. In order to overcome 

the aforementioned challenges, an FE-SRA (finite element system reliability analysis), an 

efficient path-searching algorithm, and a reliability updating technique are developed. First, an 

FE-SRA framework was developed by use of a newly-developed interface code that integrates a 

reliability analysis package and FE analysis software. This has been demonstrated through 

examples of structural systems. Second, a new branch-and-bound method that employs system 

reliability bounds (termed the B3 method) has been developed. The B3 method was first 

developed for system reliability analysis for discrete structures, and then further developed for 

continuum structures. The method enables us to estimate system-level failure probability and to 

identify critical fatigue-induced failure sequences accurately and efficiently, and is applicable to 

many types of structures from truss to continuum. Lastly, a reliability updating method 

employing the B3 method was developed to update the original reliability information of a 

structure based on inspection results. 

This Ph.D. thesis summarizes these developments and discusses the future research plan. 

Chapter 2 describes the newly-developed FE-SRA framework and the interface code named as 

FERUM-ABAQUS. Chapter 3 presents the B3 method which is developed for the system 

reliability analysis of fatigue-induced sequential failures in discrete structures. Chapter 4 

discusses the further development of the B3 method for its applications to continuum structures. 



5 
 

Chapter 5 introduces the new reliability updating method employing the B3 method. Lastly, 

Chapter 6 summarizes the major finding of this study and provides future research topics. 
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2. FINITE ELEMENT SYSTEM RELIABILITY ANALYSIS (FE-SRA) 

 

For accurate reliability analysis of fatigue-induced sequential failures, it is necessary to perform 

the reliability analysis at the system level in conjunction with sophisticated finite element (FE) 

analysis. This chapter introduces a new FE-SRA (finite element system reliability analysis) 

framework, which will be introduced in the next chapters as a crucial element of system 

reliability analysis and updating for fatigue-induced sequential failures. 

2.1. Literature Review 

In recent years, many research efforts have been made to perform structural reliability analyses 

with more realistic and complex structural models. The examples include suspension bridge 

(Imai and Frangopol 2002), wing torque box of aircraft (Lee et al. 2008), pylon of cable-stayed 

bridge (Song et al. 2008, Kang et al. 2012), and bridge structure system (Song and Kang 2009). 

In addition, sophisticated reliability methods have been developed to deal with complex failure 

mechanisms such as failure of rigid-plastic structure (Song and Der Kiureghian 2003), 

progressive yielding failure of indeterminate truss structure (Song and Kang 2009), and fatigue-

induced sequential failures of truss structure (Karsan and Kumar 1988, Karamchandani et al. 

1992, Wang et al. 2006). 

In such reliability analyses, it is essential to account for the uncertainties in loading, 

material properties, geometry, etc. Structural reliability analysis requires describing the limit-

state of interests mathematically, in terms of structural response quantities such as strain, 

displacement, stress, force, and energy (Sudret and Der Kiureghian 2000). If the limit-state can 

be represented by a simple algebraic function of random variables representing the 
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aforementioned uncertainties, one can easily perform reliability analysis. In dealing with many 

complex structural systems or failure mechanisms, however, sophisticated structural analyses 

employing a finite element model are needed to evaluate the structural response that appears in 

the limit-state function during the reliability analysis. Therefore, it is necessary to perform 

structural reliability analysis (RA) in conjunction with finite element (FE) analysis, which is 

often termed as finite element reliability analysis (FE-RA) in the literature (Sudret and Der 

Kiureghian 2000, Haukaas 2003, Lee et al. 2008). 

There have been active research efforts to connect the computational modules of FE 

analysis with those for reliability analysis, which resulted in computer software packages such as 

reliability package in OpenSees (Haukaas 2003), FERUM (Haukaas et al. 2003), and RELSYS 

(Estes and Frangopol 1998). Despite these recent advances, there are still two research needs in 

FE-RA. 

First, many of the existing FE-RA software packages mainly perform “component” 

reliability analysis. In other words, the FE reliability analysis is performed for individual failure 

modes of a structural member or location that are represented by single limit-state functions. 

This may lead to an inaccurate estimate on the failure probability of a structural system because 

the overall system-level risk of a structure often needs to be described by means of a “system” 

event, i.e. a logical function of “component” events representing physical components or various 

failure modes (Song and Der Kiureghian 2003, Song and Kang 2009, Lee et al. 2008). The 

failure of a structure may be described as a series, parallel, or general system event (Song and 

Der Kiureghian 2003, Song and Kang 2009, Lee et al. 2008), and this type of reliability analysis 

is often termed as system reliability analysis (SRA).  
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Another limitation of the existing FE-RA software packages is the limited capability of 

their FE modules. For accurate risk estimation, it is desirable that reliability software employs a 

finite element model that can represent the structural behavior most accurately. However, most 

of the existing FE-RA packages contain an FE analysis program whose capability and 

applicability are somewhat limited. In order to have more versatile FE-RA computing platform, 

therefore, it is desirable to develop an interface code between a reliability analysis code and 

general-purpose FE software such as ABAQUS® rather than employing an FE code included in 

the reliability software package. 

To overcome these challenges, advanced FE-RA software packages have been developed 

in recent years, such as NESSUS (SwRI 2009) and STRUREL (Gollwitzer et al. 2006) by 

combining a module of system reliability analysis with FE analysis software. In this Ph.D. 

research, an FE-SRA (FE system reliability analysis) framework that employs a new system 

reliability analysis method is developed (Lee et al. 2008), and an interface code between 

FERUM and ABAQUS® (termed the FERUM-ABAQUS) is developed as a computational 

platform of the research. FERUM (Finite Element Reliability Using Matlab) is a reliability 

analysis package developed by researchers at the UC Berkeley, which allows us to perform 

various reliability analyses (Haukaas et al. 2003). ABAQUS is widely used commercial software 

for FE analysis. By using these two software packages specialized in their own areas, it becomes 

possible to take full advantages of them and solve challenging problems. This chapter describes 

the proposed FE-SRA framework and demonstrates the interface code, FERUM-ABAQUS, with 

numerical examples of an aircraft wing torque box and a bridge pylon. 
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2.2. FE-SRA Using FERUM-ABAQUS 

2.2.1. FE component reliability analysis 

The first step of FE-SRA is to perform FE reliability analyses to compute the probabilities of all 

component failure events that are considered significant. Such an FE component reliability 

analysis is described as 

 
( ) 0

( ) 0 ( ) ,   1,...,
i

i i

g

P P g f d i n


    X

x

X x x   (2.1)

in which Pi and gi(X) respectively denote the probability and the limit-state function of the i-th 

component event, X is the vector of the random variables representing the uncertainties in the 

given problem, fx(x) is the joint probability density function (PDF) of X, and n is the total 

number of component events in the given system event. As previously stated, one approach to 

compute this probability by FE reliability analysis is to link a reliability analysis algorithm with 

an FE code so that the algorithm can import the values and/or sensitivities of gi(X) with respect 

to X, from the computational simulation. Figure 2.1 illustrates this approach and the data flows. 
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Figure 2.1 Data flows during FE reliability analysis 

 

For the numerical examples in this chapter, the first order reliability method (FORM) (see 

Der Kiureghian 2005 for a review) in an open-source reliability code FERUM is used to 

calculate the probability of “component” event in Eq. (2.1). The nonlinear constrained 

optimization problem during FORM analysis needs the values and gradients of the limit-state 

function at each step of the iteration. FERUM-ABAQUS is employed so that FERUM can obtain 

the output responses that appear in the limit-state functions (e.g., strain, displacement, stress, 

force, and energy results) and their gradients from an FE-based computational simulation. 

The component FE reliability analyses provide the probabilities of all the component 

failure events considered. For an accurate SRA, we also need to quantify the statistical 

dependence between the component failure events. For example, if component reliability 

analysis is performed by FORM, it is required for SRA to obtain the normalized negative 

gradient vectors (Der Kiureghian 2005) of the limit-state function, that is 
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)(/)( **
iiiii GG uu    (2.2)

where ( )iG   and ui
* respectively denote the gradient vector of the i-th limit-state function Gi(u) 

and the most probable point (or “design point”) in the space of uncorrelated standard normal 

random variables u. In this thesis, the gradient vectors and the normalized gradient vectors are 

given as row vectors. In system reliability analysis, these normalized gradient vectors are used to 

quantify the statistical dependence between the component events, and the procedure will be 

explained in the following section. 

An important by-product of FORM analysis is a set of importance measures that provide 

information as to the order of importance of the random variables. First, when the random 

variables X of a reliability problem are statistically independent, the order of importance of 

random variables can be determined in terms of the normalized negative gradient vectors in Eq. 

(2.2). However, when the random variables are statistically dependent, the following importance 

measure (Der Kiureghian 2005) should be introduced to define the relative importance of the 

random variables X: 

i

i

i

 u,x

u,x

α J D
γ

α J D
  (2.3)

where Ju,x denotes the Jacobian matrix of the transformation from X to u, and D denotes the 

diagonal matrix of standard deviations of X. The importance measure in Eq. (2.3) is a unit row 

vector defining the relative importance of the original random variables, and a positive (or 

negative) value of this vector indicates that the relevant random variable is of load (or capacity) 
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type. The element-squares of γi are widely used to quantify the relative contributions of the 

random variables to the variance of the limit-state function. 

Lastly, FORM analysis provides us with the sensitivities of the failure probability Pi with 

respect to statistical parameters (e.g., mean and standard deviation) of random variables 

(Bjerager and Krenk 1989). However, these sensitivities may have a scaling problem as 

sensitivity measures. For this reason, they are generally normalized by multiplying standard 

deviation of random variables to these sensitivities. For example, for the j-th random variable (i.e. 

Xj, j=1,…,Nrv) where Nrv is the total number of random variables, 

,
i

i j j

j

P
  


 (2.4a)

,
i

i j j

j

P
  


 

(2.4b)

in which μj and σj respectively denote the mean and standard deviation of the j-th random 

variable. The details of the importance measures and sensitivities from FORM can be found in 

Der Kiureghian (2005). 

2.2.2. FE system reliability analysis 

The main goal of SRA is to evaluate the probability of a system event that describes the failure 

of a structural system, that is 

















k Ci
isys

k

gPP 0)(X  (2.5)

where Ck denotes the index set of components in the k-th cut-set. This general “cut-set” 

formulation can also represent “series” systems (all the cut-sets have only one component) and 
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“parallel” systems (there is only one cut-set). In particular, when FORM is used for the 

component reliability analyses in Eq. (2.5), Psys can be approximately computed as 

 ( ) 0 ( ; )
k

sys i i N
k i C

P P P Z d


 
       

 



 z R z   (2.6)

where Ω denotes the failure domain approximated as a polyhedron determined by linear half 

spaces, βi = αiui
* is the reliability index of the i-th component event, Z = {Zi}, i = 1,…,n is the 

vector of standard normal random variables approximately describing the component events by 

βi – Zi ≤ 0, ( ; )N z R  is the joint PDF of Z, and R  is the correlation coefficient matrix of Z in 

which the correlation coefficient between Zi and Zj is computed as T

ij i j  α α  (Hohenbichler and 

Rackwitz 1983). 

In order to compute the probability of this logical function of component events from the 

results of individual component reliability analyses, various SRA algorithms have been 

developed, such as theoretical bounding formulas (Ditlevsen 1979), sequentially conditioned 

importance sampling (SCIS) (Ambartzumian et al. 1998), the product of conditional marginals 

(PCM) method (Pandey 1998), the multivariate normal integral method by Genz (1992) 

(applicable to series and parallel systems), and the first-order system reliability methods 

(Hohenbichler and Rackwitz 1983) (applicable to series and parallel systems directly, and to cut-

set and link-set systems indirectly in conjunction with bounding formulas). However, these 

existing methods for system reliability analysis are applicable to “series” and “parallel” systems, 

but not to “general” system events. In addition, they are not flexible in incorporating various 

types and amount of available information on components and their statistical dependence. 
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For these reasons, SRA methods such as the linear programming (LP) bounds method 

(Song and Der Kiureghian 2003, Der Kiureghian and Song 2008), the matrix-based system 

reliability (MSR) method (Kang et al. 2008, Song and Kang 2009, Nguyen et al. 2010b, 2011, 

Song and Ok 2010, Lee et al. 2011, Kang et al. 2012), and the sequential compounding method 

(SCM) (Kang and Song 2010) have been recently developed. These methods are capable of 

solving general system events with various merits. A more comprehensive review on SRA 

methods can be found in Kang (2011). In the examples of this chapter, FE-SRA employs the 

MSR method which is summarized as follows. 

First, consider a system event whose i-th component, i = 1,…,n has two distinct states, 

e.g. the failure and survival. The sample space can be subdivided into m (=2n) mutually exclusive 

and collectively exhaustive (MECE) events. These are named the “basic” MECE events and 

denoted by ej, j = 1,…,m. Then, any system event can be represented by an ‘‘event” vector c 

whose j-th element is 1 if ej belongs to the system event and 0 otherwise. Let pj = P(ej), j = 

1,. . . ,m, denote the probability of ej. Due to the mutual exclusiveness of ej’s, the probability of 

the system event Esys, i.e. P(Esys) is the sum of the probabilities of ej’s that belong to the system 

event. Therefore, the system probability is computed by the inner product of the two vectors, that 

is, 

  T

: j sys

sys sys j
j e E

P E P p


   c p   (2.7)

where p is the ‘‘probability” vector that contains pj’s and c is the “event” vector each of whose 

elements has 1 or 0 depending on whether ej belongs to Esys or not. The formulation in Eq. (2.7) 

can be generalized to compute the probabilities of multiple system events under multiple 

conditions of component failures by a single matrix multiplication (Lee et al. 2011).  
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Furthermore, the MSR method provides us with the normalized parameter sensitivities of 

the system failure probability, i.e. the sensitivities of system failure probability with respect to 

one-standard-deviation-changes of statistical parameters of random variables, based on the 

component-level parameter sensitivities as shown in Eqs. (2.4a) and (2.4b). 

,

sys

sys j j

j

P
  


 (2.8a)

,

sys

sys j j

j

P
  


 

(2.8b)

More details about the MSR method can be found in Song and Kang (2009), and the method is 

selected as an SRA method in this chapter because of the following merits over other existing 

methods: First, the probability of a system event is calculated by a simple matrix multiplication 

regardless of the complexity of the system definition. Second, the matrix-based formulation 

helps identify/handle the system events conveniently and compute the corresponding 

probabilities efficiently. Third, even when one has incomplete information on the component 

failure probabilities and/or their statistical dependence, the matrix-based framework still enables 

obtaining the narrowest possible bounds on any general system event using the LP bounds 

method. Fourth, once the probability of the system event is obtained, one can easily calculate the 

probabilities of other system events, conditional probabilities and component importance 

measures without additional probability calculations. Fifth, the recent developments of matrix-

based computer languages and software have rendered matrix calculations more efficient and 

easier to implement. Finally, the MSR method can account for the statistical dependence 

between components and compute the sensitivity of the system reliability with respect to design 

parameters for general system events.  
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2.3. Numerical Example I: Wing Torque Box 

2.3.1. Problem description 

The proposed framework for FE-SRA and the interface code, FERUM-ABAQUS, are 

demonstrated by a numerical example of a 4-bay wing torque box (Lee et al. 2008) shown in 

Figure 2.2.  

 

 

Figure 2.2 Wing torque box example 

 

This is a hypothetical example created to test the existing and new methods for 

quantifying the risk and uncertainty in a sub-structure of generic aircraft structures. The initial 

drawing was created by Air Force Research Laboratory (AFRL) for the purpose of this research. 

Its dimensions are 1.52 meters (60 inches) length, 0.64 meters (25.2 inches) width, and 7.6 to 

10.2 centimeters (3.0 to 4.0 inches) height. It is assumed that the main material of the wing box 

is Aluminum 7075-T6, which shows linear elasticity until it reaches yielding stress. The 
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structural system consists of numerous physical parts such as skins, spars, ribs, and connectors as 

shown in Figure 2.2. During FE reliability analyses, statistically independent random variables 

are assigned to describe the uncertainties in the material yield strengths and Young’s modulus of 

all the parts individually.  

In this example, three reference load combinations (A, B and C) are considered to 

represent random loading conditions. Each operational loading for the 4-bay wing box model is 

described by the combination of moments and torques applied to each end of the box, and a 

pressure distribution on the lower surface.  These load combinations are results of the 4-bay 

model being a portion of a complete wing. One of the three load cases is shown in Figure 2.3 

with the corresponding spatial distribution of Von-Mises stress computed by an FE analysis. It 

was noted that the maximum stress under the given load case “A” occurs at the front side of the 

inboard edge. The other two loading cases resulted in maximum stresses at similar locations. The 

actual loads can vary with the structural characteristics and flight patterns of aircraft, and 

environmental effects such as humidity and barometric pressure. 

 

 

Figure 2.3 Reference load case “A” and corresponding stress distribution by FE analysis 
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This example accounts for three kinds of uncertainties by use of random variables: (1) 

Young’s modulus; (2) yield strength; and (3) load scale factor in the load spectrum. The first two 

characterize the uncertainty in the material properties and capacities while the third represents 

the uncertainties in loads and demands. Table 2.1 summarizes the mean, coefficient of variation 

(c.o.v.) and the type of distribution used for each type of uncertainty in this example.  

 

 Mean c.o.v. Distribution Type 
Young’s modulus 71,700 (MPa) 0.100 Normal 

Yield strength 524 (MPa) 0.050 Lognormal 
Load scale factor 0.300 0.400 Lognormal 

 
Table 2.1 Statistical properties of random variables 

 

The wing torque box is composed of two skins, three ribs, four spars (one front spar, one 

rear spar, and two middle spars), and many connectors. Since they are usually manufactured 

using separate raw materials, statistically independent random variables are assigned to Young’s 

moduli of the nine parts. From preliminary FE reliability analyses, it was observed that the 

contribution of Young’s moduli of the connectors to the variance of the limit-state function is 

insignificant. Therefore, a single random variable represents Young’s moduli of all the 

connectors. This assumption helps reduce the number of random variables during FE reliability 

analyses. As a result, in this example ten random variables represent the uncertainty in Young’s 

moduli (two for skins, three for ribs, four for spars, and one for connectors). 

The statistical properties of the material yield strength were extracted from Military 

Handbook 5 (U.S. Department of Defense 2005), now known as Metallic Material Properties 
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Databook (MMPD), which provides two classes of guidelines on yield strength of the target 

material: A-basis and B-basis. These are nominal values of the strengths defined as of the 

thresholds of 99% and 90% exceedence probabilities, respectively. Assuming that the strengths 

follow a normal distribution, the mean and standard deviation of the experimental data of yield 

strength were back-calculated. 

The uncertain time variation of the intensity of the loading during a flight is characterized 

by use of FALSTAFF spectrum (Van Dijk and De Jonge 1975). It is assumed that all the loads in 

each load case, e.g., bending moment, torsion and pressure are in-phase and thus uniformly 

scaled by the spectrum. The FALSTAFF spectrum is normalized to the considered load cases so 

that 1.0 in the spectrum corresponds to the magnitudes in the given load case. Figure 2.4 shows 

the exceedence plot of peak values in the FALSTAFF spectrum. Based on this plot, the 

distribution of load scale factor is fitted to a log-normal distribution whose mean and c.o.v. are 

0.30 and 0.40, respectively (See Figure 2.5). 
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Figure 2.4 Exceedence Plot for FALSTAFF spectrum (Peak) 

 

 

Figure 2.5 Fitting plot to FALSTAFF spectrum 
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All the random variables are assumed to be uncorrelated except the three random 

variables used for the load scale factors. The statistical dependence between three loading cases 

is not known, so a parametric study is performed by varying correlation coefficient between the 

load cases. 

This example focuses on the failure due to yielding. Therefore, the failure of the i-th 

component is described by use of a limit-state function 

0)()()(  XXX ii
yig    (2.9)

where )(Xi
y  is the yield strength of the physical part (e.g., spars, skins), and ( )i X  is the 

maximum Von-Mises stress estimated by FE analysis. 

2.3.2. Analysis results 

Before performing reliability analyses, the maximum Von-Mises stress response of each part is 

computed by deterministic FE analyses by use of the mean values of the random variables in 

Table 2.1. The results are shown in Table 2.2. 

 

Maximum stress (MPa) Load A Load B Load C 
Upper skin 128.9 120.2 168 
Lower skin 132 (E6) 129.3 188.3 
Front spar 143.8 (E4) 162.2 (E3) 301.4 (E1) 

Middle spar (Inboard) 71.6 73.2 151.3 
Middle spar (Tip) 38.1 63.1 137.9 

Rear spar 77.9 92 210.6 
Rib (Inboard) 85.8 132.2 (E5) 269.8 (E2) 
Rib (Middle) 21.7 35.6 72.6 

Rib (Tip) 16.8 34.8 69.5 
 

Table 2.2 Maximum stress response for each part under three loading cases 
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The results of this preliminary deterministic analysis help identify important component 

events to be considered during system reliability analysis. Two yielding failure events with top 

maximum stress results for each load cases are selected as shown in Table 2.2 (in bold). These 

component events are denoted by E1 to E6. FE reliability analyses of these component events are 

performed individually by FORM using FERUM-ABAQUS. Table 2.3 shows the component 

failure probabilities. 

 

Component event  Failure probability (× 10–2) 
E1 (Load C; Front spar) 5.51989 
E2 (Load C; Rib inboard) 2.85896 
E3 (Load B; Front spar) 0.07515 
E4 (Load A; Front spar) 0.02923 
E5 (Load B; Rib inboard) 0.01010 
E6 (Load A; Lower skin) 0.01087 

 
Table 2.3 Probabilities of component failure events by FORM analysis 

 

The importance measure in Eq. (2.3) quantifies the relative contribution of the random 

variables to the total variance of the limit-state function. In this example, the load sale factors are 

identified as the most important ones with around 98% contribution for each component failure 

event. This relative importance may change if other failure modes such as fatigue are considered 

for reliability analyses. 

FORM analysis provides the sensitivity of the failure probability with respect to the 

statistical parameters as well. Using these component-level sensitivities, it is possible to compute 

the sensitivity-based importance measures in Eqs. (2.4a) and (2.4b). For example, the results for 
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the component event E1 are shown in Table 2.4, which confirms the dominance of the uncertainty 

in the loading to the component failure probability. 

 

Random variables 
1

1, j j

j

P
  


1

1, j j

j

P
  


 

Young’s 
modulus 

Connector −0.0011 0 
Rib (Inboard) −0.0973 0.0014 
Rib (Middle) −0.0019 0 

Rib (Tip) 0.001 0 
Lower skin −1.203 0.2071 
Upper skin 0.0442 0.0003 
Front spar 1.3034 0.2431 

Middle spar 
(Inboard) 

−0.0666 0.0006 

Middle spar (Tip) −0.002 0 
Rear spar −0.021 0.0001 

Load scale 
factor 

Combination A 0 0 
Combination B 0 0 
Combination C 3.402 5.317 

Yield strength (Front spar) −1.4354 0.3575 
 

Table 2.4 Sensitivity-based importance measures for E1 (× 10–2) 

 

In order to compute the system probability in Eq. (2.4), the correlation coefficient matrix 

R is constructed by the inner product of the negative normalized gradient vectors, i.e. Tρ ij i j α α . 

Table 2.5 shows the correlation coefficient matrix when the correlation coefficient between the 

scale factors of different load cases is assumed to be 0.4.  
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Correlation E1 E2 E3 E4 E5 E6 
E1 1 0.961 0.426 0.425 0.395 0.379 
E2  1 0.397 0.398 0.413 0.414 
E3   1 0.425 0.959 0.380 
E4    1 0.396 0.942 
E5  Symmetric  1 0.415 
E6      1 

 
Table 2.5 Correlation matrix with six component failure events 

 

One noticeable fact from this table is that there are strong correlations between the 

following event pairs: (E1 and E2), (E3 and E5), and (E4 and E6). These pairs respectively 

represent failure events under load cases A, B, and C, which also proves that loading scale 

factors are most contributory to the failure events. 

These results of component reliability analysis are used for system reliability analysis. 

Let us first consider the series system event of the identified components: 


6

1


i

isys EE   (2.10)

This means that the structural system “fails” if any of these six component events occurs. For the 

component failure events whose probabilities and correlations are shown in Tables 2.3 and 2.5, 

the probability of the system event in Eq. (2.10) is computed by the MSR method. Table 2.6 

compares the results by the MSR method with those by theoretical bounding formulas, i.e. Uni-

component bounds (Boole 1854) and Bi-component bounds formulas (Ditlevesen 1979). The 

results by the MSR method are included in the relatively wider bounds by theoretical bounding 

formulas. It is also noteworthy that the system failure probability is higher than the probability of 

the most likely component failure event E1. This means that component FE reliability analysis 



25 
 

may underestimate the risk of the overall system particularly when there is no dominant 

component event. 

 

Method System failure probability (× 10–2) 
MSR 5.7431 

Uni-component 
bounds 

5.5199 ~ 8.5042 

Bi-component 
bounds 

5.7104 ~ 5.7451 

 
Table 2.6 Failure probability of series system 

 

In order to investigate the effect of statistical dependence between different load cases on 

the system failure probability, FE system reliability analyses are performed with varying 

correlation coefficients between the three load scale factors. As previously stated, the correlation 

matrix in Table 2.5 is calculated with the assumption that the correlation coefficient between the 

scale factors of different load cases is 0.4. However, the correlation between the component 

events is affected by the correlation coefficient between load scale factors, which therefore 

affects the system probability as well. For a series system event, for example, it is known that 

high correlation between component events reduces the failure probability. Figure 2.6 shows the 

effect of the statistical dependence between the load scale factors on the system reliability 

estimates. Figure 2.6a shows the probabilities from the MSR method, Uni-component bounds, 

and Bi-component bounds. Figure 2.6b compares the results from the MSR method and Bi-

bounds only to show the effect of the statistical dependence more clearly. 
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Figure 2.6 Parametric study on the effect of correlation between load scale factors 

 

An important merit of the MSR method is that the method can estimate the probabilities 

of other system events of interest without significantly increasing computational cost. For 

example, suppose we are interested in the probability of a system event that the yielding failure 

occurs “only” by load case B, i.e. 

642153 )( EEEEEEEsys    (2.11)

Using the matrix procedure of the MSR (Song and Kang 2009) described in Eq. (2.8), one can 

easily find the new system vector that corresponds to the event in Eq. (2.11). The probability of 

this system event is computed as 4.1407×10−4 by the MSR analysis. 

In addition, the MSR method enables us to compute the sensitivities of the failure 

probability of the series system in Eq. (2.10) with respect to the means and standard deviations of 

(a) (b) 
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the random variables using the MSR method. Table 2.7 shows the sensitivity-based importance 

measures of the dominant random variables. 

 

Random variables ,

sys

sys j j

j

P
  

 ,

sys

sys j j

j

P
  


 

Young’s 
Modulus 

Rib (Inboard) −0.0614 0.00249 
Lower skin −1.0731 0.19713 

Front spar 1.1415 0.23371 
Middle spar 

(Inboard) 
−0.0641 0.00056 

Load scale 
factor 

Combination A 0.02004 0.0685 
Combination B 0.04757 0.1483 
Combination C 3.4817 5.5713 

Yield 
strength 

Front Spar −1.4894 0.38171 
Rib (Inboard) −0.00729 0.00348 
Lower skin −0.00155 0.00078 

 
Table 2.7 Sensitivities of failure probability of series system (× 10−2) 

 

2.4. Numerical Example II: Bridge Pylon 

2.4.1. Problem description 

This section provides another numerical example to demonstrate the proposed FE-SRA 

framework and FERUM-ABAQUS, a pylon structure of cable stayed bridge (Song et al. 2008, 

Kang et al. 2012), which is shown in Figure 2.7.  
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Figure 2.7 Pylon structure of cable stayed bridge 

 

The dimensions of the pylon structure are chosen based on an actual bridge design. The 

70-meter-long pylon has two symmetric arms, each of which consists of a main body with 

trapezoidal cross-section, 13 stiffeners, and 23 diaphragms. The dimensions of the left arm are 

shown in Figure 2.8. 

 

Z

X

  RP−1
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Figure 2.8 FE model of the left arm of the Pylon 

 

Real bridge structures are usually exposed to various kinds of loads. These loads are often 

combined into load cases based on possible loading scenarios. This example considers the 

following load combinations consisting of four types of design loads, i.e. dead load (D), live load 

(L), wind load in service (WL) and wind load out of service (W), which are widely used in 

bridge design practice: 

Load Combination 1 (LC1): D + L + WL 

Load Combination 2 (LC2): D + W                                                
(2.12)

The dead load (D) includes the self-weight and the pre-stress force of the cables. The live load (L) 

includes the loads caused by the traffic and the pedestrians. The in-service wind load (WL) 

represents the wind loads when the bridge is in service. The out-of-service wind load (W) models 

the wind loads when vehicles are prohibited to pass over the bridge due to the strong winds. In 

this example, the pylon structure is modeled independently from the entire bridge system by 

2.8m 

2.0m 

2.2m 

70.0m 

Diaphragms : 2 + 3@22 + 2m 
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giving proper boundary conditions: the bottom end of the pylon is assumed to be fixed, and a 

reasonable axial force, shear force, and moment are specified at the top end to describe the 

reactions to cable anchors. Figure 2.9 shows the free body diagrams of the pylon structure and 

boundary conditions for the four types of loads that are considered. 
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(iii) In-service wind load 
(WL: In-plane & Out-of-plane) 

 

 

 

 

 

 

 

 

 

(iv) Out-of-service wind load  
(W: In-plane & Out-of-plane) 

 

Figure 2.9 Loads considered during component and system reliability analysis 
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In this example, a total of 19 random variables are considered: 6 for Young’s moduli, 6 

for yield strengths, and 7 for the load scale factors. Table 2.8 lists the means, c.o.v.’s, and the 

distribution types for these variables.  

 

 Mean c.o.v. Distribution Type 

Young’s modulus 2×108 (KN/m2) 0.05 

Normal 

Yield strength 2.6×105 (KN/m2) 0.05 

Load scale 
factor 

Dead load 1.0 0.10 

Live load 1.0 0.20 

Wind load 1.0 0.40 
 

Table 2.8 Statistical properties of random variables in pylon system 

 

Each of the two symmetric pylon arms is composed of one main body, 13 stiffeners, and 

23 diaphragms. Based on findings from preliminary FE reliability analyses, a single random 

variable is assigned to represent the uncertainty of Young’s modulus or yield strength for the 

whole set of diaphragms or stiffeners in each arm. This leads to 12 random variables representing 

Young’s moduli and yield strengths of two main bodies, two groups of diaphragms, and two 

groups of stiffeners. To describe uncertainty in the load intensities, random load scale factors are 

introduced. Two random scale factors for dead load (self-weight and pre-stress), one for live load, 

and four for wind loads (in-plane and out-of-plane directions for W and WL load cases) are 

assigned. Figure 2.9 shows these load components that appear in the four types of loads that are 

considered. In this example, all the random variables are assumed to be statistically independent 

except for the following cases: First, it is assumed that all parts (i.e. bodies, stiffeners, and 

diaphragms) are made of the same steel from the same manufacturer, and thus they are highly 

correlated. The correlation coefficient between Young’s moduli of different parts is assumed to 
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be 0.9. The same assumption is made for yield strengths of different parts. For the four load scale 

factors related to wind loads, i.e. W (in-plane), W (out-of-plane), WL (in-plane) and WL (out-of-

plane), the correlation coefficients for the pairs of loads are assumed as follows: 

(1) {W (in-plane), W (out-of-plane)} and {WL (in-plane), WL (out-of-plane)} : 0.8 

(2) {W (in-plane), WL (in-plane)} and {W (out-of-plane), WL (out-of-plane)}: 0.6 

(3) {W (in-plane), WL (out-of-plane)} and {W (out-of-plane), WL (in-plane)}: 0.48 

Like the previous wing box example, it is assumed that the material used in the pylon 

structure shows linear elastic behavior until it reaches the yielding stress limit. For simplicity, 

this example also considers the yielding failures only. A component failure event, which can be 

defined for each combination of a selected physical component and a load case, is described as 

Eq. (2.9). 

2.4.2. Analysis results 

As done in the wing box problem, for efficient system reliability analysis, significant component 

events are identified as follows. By deterministic FE simulations using the mean values of the 

random variables, the locations with local maximum Von-Mises stresses, i.e. “hot spots” are first 

identified. Filtering hot spots with insignificant levels of stresses, component failure events are 

defined at two hot spots for each arm. Considering two symmetric arms and two load cases, i.e. 

LC1 and LC2, a total of eight component failure events Ei, i = 1,…,8 are identified. See Table 2.9 

for the identified component events and the failure probabilities computed by component 

reliability analyses.  
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Component events  Failure probability (× 10–3) 

E1 (LC1; hot spot on right body) 3.4342 

E2 (LC1; hot spot on left body) 3.4189 

E3 (LC1; hot spot on right stiffener) 0.1332 

E4 (LC1; hot spot on left stiffener) 0.1340 

E5 (LC2; hot spot on right body) 5.4255 

E6 (LC2; hot spot on left body) 5.4079 

E7 (LC2; hot spot on right stiffener) 0.2910 

E8 (LC2; hot spot on left stiffener) 0.2925 
 

Table 2.9 Probabilities of component failure events by FORM analysis 

 

After FORM analysis by use of FEUM-ABAQUS, the components are described by 

standard normal random variables and reliability indexes, i.e. ,i iZ    i = 1,…,8. The 

components E3 and E4 are neglected during the system reliability analysis because they are less 

than 5% of the probability of the most dominant component E5. Using FORM, the sensitivities of 

the component event probabilities with respect to distribution parameters are also calculated. 

These component-level sensitivities in Eqs. (2.4a) and (2.4b) are used in calculating the 

sensitivities of the system failure probability in Eqs. (2.8a) and (2.8b) by use of the MSR method. 

In order to determine the statistical dependence between component events, the correlation 

coefficient matrix of 1 2 5 6 7, , , ,Z Z Z Z Z  and 8Z  is constructed as given in Table 2.10. 

 

Correlation Z1 Z2 Z5 Z6 Z7 Z8 
Z1 1 0.9887 0.6129 0.6040 0.6032 0.6032 
Z2  1 0.6040 0.6129 0.6032 0.6032 
Z5   1 0.9929 0.9826 0.9826 
Z6    1 0.9826 0.9826 
Z7  Symmetric  1 0.9906 
Z8      1 

 
Table 2.10 Correlation coefficient matrix of six component failure events 
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First, a series system event consisting of the six components is considered. The system 

failure probability is computed as 9.492×10–3. Comparison with the MCS result (109 samplings, 

c.o.v. 3.25×10–4), 9.404×10–3, the MSR method turns out to provide a sufficiently accurate 

estimate. In addition, the event that at least one yielding failure occurs by the load combination 2 

(LC2) while no failure occurs by LC1 is expressed as  

1 2 5 6 7 8( )sysE E E E E E E       (2.13)

The probability of this general system event is calculated as 5.633×10–3, which is also 

sufficiently accurate, revealed by comparing against the results from the MCS (109 samplings, 

c.o.v. 4.30×10–4), 5.368×10–3. Furthermore, Table 2.11 shows the sensitivity-based importance 

measures of the general system event in Eq. (2.13) estimated by the MSR method. 
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Random variables 
sys

j j
j

P
  


 sys

j j
j

P
  


 

Young’s 
modulus 

Diaphragm (Left) –2.558×10-22 –1.175×10-27 

Diaphragm (Right) –6.335×10-8 1.422×10-9 

Body (Left) –3.552×10-22 –2.279×10-27 

Body (Right) 7.887×10-6 –1.753×10-6 

Stiffener (Left) –4.140×10-25 –1.049×10-27 

Stiffener (Right) –7.817×10-6 –8.985×10-7 

Load 
scale 
factor 

Dead load (Self weight) 2.709×10-4 6.530×10-6 

Dead load (Pre-stress) 6.319×10-4 3.603×10-5 

Live load 2.596×10-3 1.919×10-3 

In-service wind load 
(In-plane) 

7.690×10-3 1.812×10-2 

In-service wind load 
(Out-of-plane) 

1.452×10-3 2.940×10-3 

Out-of-service wind load  
(In-plane) 

1.372×10-2 3.279×10-2 

Out-of-service wind load  
(Out-of-plane) 

2.450×10-3 5.235×10-3 

Yield 
strength  

Body (Left) –3.322×10-3 3.009×10-3 

Stiffener (Left) –4.495×10-14 8.093×10-5 

Diaphragm (Left) 0 0 

Body (Right) –3.710×10-3 2.964×10-3 

Stiffener (Right) –2.333×10-14 8.170×10-5 

Diaphragm (Right) 0 0 

 
Table 2.11 Sensitivity-based importance measures of the means and standard deviations of  

the random variables relative to series system probability 
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2.5. Summary 

In summary, a new framework for finite element system reliability analysis (FE-SRA) was 

proposed using the matrix-based system reliability (MSR) method, and an interface code, 

FERUM-ABAQUS, was developed as a computational platform of the system reliability analysis. 

In the framework, the reliability analysis package FERUM repeatedly calls ABAQUS® to obtain 

structural responses during a component reliability analysis, and a system reliability analysis is 

performed by use of the results of the individual reliability analyses in the component level. The 

proposed framework allows us to compute the probabilities of general system events and their 

sensitivities with respect to design parameters based on the results of the component-level FE 

reliability analyses. These sensitivities are often useful; for example, they facilitate using 

gradient-based optimizer for reliability-based design optimization (Nguyen et al. 2010b) and 

reliability-based topology optimization (Nguyen et al. 2010a, 2011). Also, FERUM-ABAQUS is 

a more versatile computing platform than other existing FE-RA software. By employing 

ABAQUS® which is specialized in FE analysis, FERUM can perform reliability analysis most 

accurately based on sophisticated FE analysis. Finally, the proposed framework and FERUM-

ABAQUS were successfully demonstrated through numerical examples of an aircraft wing 

torque box and a bridge pylon. 
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3. SYSTEM RELIABILITY ANALYSIS OF FATIGUE-INDUCED SEQUENTIAL 

FAILURES BY BRANCH-AND-BOUND METHOD EMPLOYING SYSTEM 

RELIABILITY BOUNDS 

 

The development of an FE-SRA framework and interface code FERUM-ABQUS in Chapter 2 

enables us to perform reliability analysis for complex system failure event in conjunction with 

sophisticated FE simulations. As discussed in Chapter 1, reliability analysis of sequential failures 

additionally requires a method to perform selective search schemes using event-trees of potential 

failure sequences. This chapter introduces a new branch-and-bound method to perform system 

reliability analysis of fatigue-induced sequential failures accurately and efficiently. 

3.1. Literature Review 

A variety of structural systems are often subjected to the risk of sequential failures caused by 

fatigue (Byers et al. 1997, Karamchandani et al. 1992). These structural systems should be 

designed to have an sufficient structural redundancy so that local fatigue-induced failures do not 

progress toward exceedingly large damage such as system collapse. For example, it was reported 

that the capsizing of the drill platform “Alexander L. Kielland” in 1981 was initiated by a brace 

failure caused by a fatigue crack starting from a hydrophone support. The initial brace failure 

was followed by failures of other braces and eventually system collapse (Almar-Naess 1985, 

Moan 2005). Thus, in risk-informed decision-making on design, maintenance and retrofit for 

robust structural systems, it is essential to quantify the risk of fatigue-induced sequential failures 

and identify critical sequences of local failures. 
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A challenge in such reliability analysis is that the definition of system-level failure is not 

determined a priori, but identified through structural analyses while following an event-tree of 

potential sequences of failures. For a complex structural system, one might need to explore a 

large number of local failure sequences to obtain an accurate definition of the system failure. 

Moreover, quantifying the likelihood of each failure sequence requires component and system 

reliability analyses in conjunction with structural analyses in order to account for the effect of the 

load re-distributions and various uncertainties. Therefore, system reliability analysis of 

sequential fatigue-induced failures may require overwhelming computational cost. 

There have been several methodologies for performing system reliability analysis of 

sequential failures. Monte Carlo simulation (i.e. repeating computational simulations for many 

scenarios based on randomly-generated values of uncertain parameters) is the most 

straightforward and widely-used method (Ditlevsen and Bjerager 1989, Melchers 1994, Hu et al. 

1998); however, when structural analysis demands time-consuming computational simulations or 

the failure probabilities are low, the computational and time costs required for converged results 

can be exceedingly large. Therefore, researchers have developed various non-sampling-based 

methods such as incremental load method (Moses 1982), truncated enumeration method 

(Melchers and Tang 1984), -unzipping method (Thoft-Christensen and Murotsu 1986), and a 

method based on component importance factors (Gharaibeh et al. 2002). These methods perform 

selective search schemes using event-trees mostly based on the relative likelihoods of potential 

failure sequences. One of the most widely-used searching approaches is the so-called branch-

and-bound method (Murotsu 1984, Guenard 1984) that was introduced to identify critical 

sequences with significant likelihood in an efficient manner. Although many research efforts 

have been made to develop risk analysis methods based on the branch-and-bound approach 



40 
 

(Karsan and Kumar 1988, Karamchandani et al. 1992, Wang et al. 2006), these methods are still 

either time-consuming or prone to miss critical failure sequences. In addition, the methods may 

underestimate the risk due to heuristic rules or assumptions that were introduced to enhance their 

efficiency. 

According to Karamchandani et al. (1992), three techniques are commonly used to 

identify critical failure sequences: (1) deterministic search; (2) locally most-likely-to-fail-based 

search; and (3) branch-and-bound algorithm. First, the deterministic search approach (Thoft-

Christensen and Murotsu 1986, Gharaibeh et al. 2002) performs a deterministic structural 

analysis using the mean values of the random variables to identify a sequence of failures leading 

to structure collapse. To get additional sequences, one can modify the values of some variables 

and repeat the deterministic analysis. For example, one can strengthen sections or members 

(termed the “members” hereafter) that were involved in the identified sequence to search for 

additional failure sequences. However, this deterministic approach is prone to missing critical 

failure sequences because the sequences identified by this approach may not have the highest 

likelihood. 

The locally most-likely-to-fail-based search is a probabilistic extension of the 

deterministic search. The first step is to identify the member that is most likely to fail in the 

intact structure. A new structural analysis model is constructed to reflect the damage or failure of 

the identified member. Through component reliability analysis using the model, the most-likely-

to-fail member under the damage scenario is identified. This process is repeated until a system 

failure such as collapse is observed. This method can identify additional sequences by modifying 

some random variables, e.g., increasing the mean strength of a member that is involved in 

identified sequences. However, the sequences identified by this local search approach may not be 
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the most critical ones overall. For example, there may exists a member whose failure probability 

is lower than that of the most-likely-to-fail member, but the conditional probability of structure 

collapse given its failure can be fairly high. This important sequence may not be identified by the 

locally most-likely-to-fail-based search because it focuses only on the most-likely-to-fail 

members at each step. 

The branch-and-bound method (Murotsu 1984, Guenard 1984) is considered more 

accurate than the aforementioned methods. To identify system failure sequences that are 

“globally” most likely to occur, the method compares the probabilities of all the failure 

sequences that have been investigated during the search process and assumes further damage for 

the most likely sequence to continue the search. When the system failure of interest such as 

structural collapse is observed, the particular sequence is identified as a “system failure 

sequence.” Unless heuristic rules are introduced to truncate apparently insignificant sequences, 

the branch-and-bound method can identify system failure sequences in the decreasing order of 

their likelihood. This enables us to terminate the search process without ignoring significant 

system failure sequences. 

Although this selective search approach based on the probabilities of sequences helps 

reduce the number of sequences to explore, one still might need to explore a large number of 

sequences to obtain a reliable estimate on the structural system risk. This is due to the lack of 

reasonable criteria that would help terminate the search without underestimating the system-risk. 

The structural system failure event is often described as the union of the identified system failure 

sequences. During a search process, one can obtain a lower bound on the system failure 

probability by a system reliability analysis employing the identified failure sequences, which can 

be continuously updated as new failure sequences are identified. While the upper bound is 
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usually unknown, the trend of the lower bound updates alone cannot provide accurate 

termination criteria because the size of the updates on the lower bound caused by newly 

identified system failure sequences does not decrease monotonically due to the statistical 

dependence between identified failure sequences. This is the case even if the likelihood of 

identified sequences decreases monotonically. Therefore, a termination based on apparent 

convergence of the lower-bound may lead to underestimating the system risk. Moreover, one 

needs to perform a new system reliability analysis each time the lower-bound is updated. 

3.2. Branch-and-Bound Method Employing System Reliability Bounds (B3 method) 

A new branch-and-bound method employing system reliability bounds (termed the B3 method) is 

proposed to overcome the aforementioned challenges and to improve the efficiency and accuracy 

of risk analysis of a system with sequential failures. The search process of the B3 method 

identifies disjoint failure sequences in order to (1) obtain both the lower and upper bounds of the 

system failure probability; (2) achieve monotonic decrease in the size of identified failure 

sequences as the search process proceeds; and (3) update the bounds of the system risk without 

performing additional system reliability analyses. The development of the B3 method is two-

folds: (1) formulating limit state functions for disjoint failure sequences that can account for the 

interdependence between multiple crack growths through stress re-distributions; and (2) 

developing a branch-and-bound search scheme to systematically update the bounds on the 

system failure probability with reasonable termination criteria. 

3.2.1. Limit-state function formulations for disjoint failure sequences 

First, let us consider the following crack-growth model, which is often termed the Paris equation 

(Paris and Erdogan 1963): 



43 
 

 mKC
dN

da


 
(3.1)

where a denotes the crack length, N is the number of load cycles, C and m are the material 

parameters, and ∆K denotes the range of the stress intensity factor. When considering cyclic 

zero-to-tension loading with constant amplitude, the range of stress intensity factor can be 

estimated by Newman’s approximation (Newman and Raju 1981) as follows: 

aaYSK  )(  (3.2)

where S denotes the far-field stress “range” and Y(a) is the “geometry” function. Other 

mathematical formulas such as the Walker equation (Walker 1970) and the Forman equation 

(Forman et al. 1967) can also be introduced to represent more general loading conditions. 

However, it is beyond the scope of this research, so the Paris equation in Eq. (3.2) is used for the 

following derivation. When substituting Eq. (3.2) into Eq. (3.1), one can obtain 

1

( )

m

m da C S dN
Y a a

 
  

 
(3.3)

By integrating Eq. (3.3) from the initial condition to the current time point, the relationship 

between the time duration and the current crack length is derived as  

0

0

1

( )

a
m m

m

a

da C N S C T S
Y a a

      
  
  (3.4)

where a0 is the initial crack length, N is the total number of external loading applications with 

frequency ν0, and T denotes the time duration. Suppose a crack failure is defined as the event that 
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the length of a crack exceeds the critical crack length ai
c. In reality, it is a challenging issue to 

define the critical crack length, and one of the usual ways is to use the crack size measured when 

the stress intensity factor (K) reaches the fracture toughness (KC). Then, for a structure consisting 

of n structural members, the time required for the crack growth from ai
0 to ai

c at the i-th member 

(i = 1, …, n), Ti
0  is described as 

  0

0

0

0

1 1

( )

c
i

i

a

i m m s

ai

T da T
C S Y a a

 
   

  (3.5)

where ai
0 and Si

0 are the initial crack length and far-field stress range of the i-th member, 

respectively. The superscripts “0” in Ti
0 and Si

0 indicate that the structure has no preceding crack 

failures. Then, the limit-state function for the failure of the i-th member within an inspection 

cycle [0, Ts] is given as 

  0

0

0

0

1 1
( )

( )

c
i

i

a

i i s m m s

ai

g T T da T
C S Y a a

   
   

X  (3.6)

where X  denotes the vector of random variables representing uncertainties in the parameters of 

the problem such as material properties (C, m) and initial crack length (ai
0). In structural 

reliability analysis, “gi(X) ≤ 0” generally indicates the occurrence of a failure event. 

In order to identify the failure sequences as disjoint events (i.e. failure sequences that are 

mutually exclusive to each other) during the branch-and-bound search, let us first consider a 

scenario in which the i-th member fails before failures occur at any other members. This means 

that the time required to reach the critical crack length of the i-th member should be shorter than 
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those of the other members as well as the inspection cycle Ts. The probability of this scenario 

event is thus described as 

    0 0 0

i i l i s
l i

P P T T T T
 

   
 
   (3.7)

The event in Eq. (3.7) is a parallel system event consisting of n component events. The 

probability can be computed by a system reliability analysis employing the results by component 

reliability analyses of n individual events. Many existing methodologies mentioned in Section 

2.2.2 are applicable to solve the parallel-system reliability problem. 

Next, the probability that the j-th member fails following the failure of the i-th member is 

described as 

        0 0 0 0

,

i i i i

j i l i s j m i j s
l i m i j

P P T T T T T T T T T
   

           
      (3.8)

where Tj
i  denotes the inter-failure time required for the crack failure at the j-th member since the 

failure at the i-th. Since Ti
0 is always smaller than (Ti

0+ Tj
i), the second term in Eq. (3.8) can be 

eliminated, i.e.  

      0 0

,

i i i i

j i l j m i j s
l i m i j

P P T T T T T T T
   

          
     (3.9)

This can be generalized to failure sequences involving more than two member failures. For 

example, the probability of the progressive failure of the sequence {12…(i –1)i} is 

described as 
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 (3.10)

where Ti
1,…,(i-1) denotes the time required for the failure at the i-th member since the sequential 

failure {12…(i–1) }. 

Unlike Ti
0 in Eq. (3.5), i.e. the time until the first local failure for an undamaged structure, 

the inter-failure time terms for damaged structures (such as Ti
1,…,(i-1) in Eq. (3.10)) should be 

computed with the effects of load re-distributions considered. For convenient derivation of such 

time terms in terms of random variables, a recursive formulation is developed as follows. 

Consider an auxiliary “damage” function 

0

1
( )

( )

a

m

a

a da
Y a a


  
  (3.11)

For example, let us consider the failure sequence {12}. From Eq. (3.4), it is seen that 

1 0 0 0

2 2 0 1 2( ) ( ) ( )ma a C T S       (3.12a)

1 1 1

2 2 0 2 2( ) ( ) ( )c ma a C T S      (3.12b)

where a2
1 denotes the crack length at the member 2 at the moment the crack failure occurs at the 

member 1. Eqs. (3.12a) and (3.12b) respectively represent the growth of the crack at the member 

2 before and after the crack failure occurs at the member 1. Summing up Eqs. (3.12a) and 

(3.12b), one obtains 
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0 1 1 0 0

2 2 0 2 2 0 1 2( ) ( ) ( ) ( )c m ma a C T S C T S       (3.13)

Solving Eq. (3.13) for T2
1, 
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 

 (3.14)

It is noteworthy that the ratio of the far-field stress of the intact condition to that of the damaged 

state, S2
0/S2

1, incorporates the effect of the load re-distribution caused by the failure at member 1. 

Similarly, the time required for the crack failure at member 3 since the sequential failures {12} 

is derived as 

3

0
3

0 1
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  (3.15)

Through mathematical induction, a recursive formulation is derived for a general failure 

sequence {12…  (i –1) i} as follows: 
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 
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  (3.16)

Using Eq. (3.16), the time terms in Eq. (3.10) can be described in terms of deterministic and 

random parameters for any failure sequence. 
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The system failure sequences identified by a search process based on the limit-state 

formulation in Eq. (3.10) are disjoint (or mutually exclusive to each other) because of the events 

describing the order of the failure events, e.g., 0 0( ).i l
l i

T T
 

  Therefore, the system failure 

probability can be calculated by summing up the probabilities of the identified failure sequences 

without additional system reliability analysis to account for the statistical dependence between 

the sequences, i.e.  

11

( ) ( )
fs fsN N

sys i i
ii

P E P C P C


 
   

 
  (3.17)

where Ci (i=1,…,Nfs) denotes the identified system failure sequences and Nfs denotes the total 

number of the identified failure sequences. The probability of a system failure sequence, P(Ci), is 

obtained by a system reliability analysis using Eq. (3.10). This disjoint-event-based formulation 

enables the aforementioned merits of the B3 method. Although the formulation was derived 

based on the Paris equation and Newman’s approximation, this framework can be applied to 

other analytical crack-growth models based on far-field stress, if necessary. 

3.2.2. Systematic search scheme of the B3 method 

The proposed B3 method uses a systematic search scheme that employs the aforementioned 

disjoint cut-set formulation and recursive limit-state functions. The search process is explained in 

detail as follows using an example in Figure 3.1.  
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Figure 3.1 Search procedure by B3 method 

 

First, the lower and upper bounds of the system failure probability (denoted by Plow and 

Pupp) are set to be zero and one, respectively. These bounds are continuously updated as the 

search process identifies cases of system failures and non-failures and computes their 

probabilities. The search process starts with a node that contains all of the possible scenarios 

(“initial node”, shown at the far left in the figure). This is considered one of the “mixed” nodes, 

which are given as gray nodes in Figure 3.1. Mixed nodes contain both system failure and non-

failure cases. The stress distribution of the intact structure is obtained by a structural analysis. 

Next, a “branching” process is performed to find the probabilities of individual member 

failures from the current structural condition, i.e. Pi in Eq. (3.7). If the structural condition 
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represented by a current node has n structural members (or locations) of potential crack failures, 

this branching process transfers the probability in the current “parent” node to the (n+1) “child” 

nodes as shown in the second column of the nodes in Figure 3.1. As a result, the current “parent” 

node becomes “inactive,” i.e. stops contributing to the system probability calculations. Each of 

the first n child nodes, i.e. “1” through “n” in the figure, contains the probability that the 

corresponding member fails “first” (i.e. earlier than the others) during the given inspection cycle 

Ts. These are new “mixed” nodes and their probabilities are computed by system reliability 

analysis using Eq. (3.7). By contrast, the last “white” node, i.e. “0” in the figure, indicates the 

case that no further failure occurs during the inspection cycle. Since these (n+1) child nodes are 

mutually exclusive (or disjoint) and collectively exhaustive (MECE) events given the condition 

of their parent node, the probability of the white node is computed by the probability of the 

parent node minus the sum of the probabilities of all the other child nodes branching out from the 

parent node. The upper bound is now decreased by the probability of the white node. This is the 

“bounding” process to update the upper bound of the system failure probability. 

The next step is to compare all the active mixed nodes and find the one with the highest 

probability. Then, a new structural analysis is performed using a structural model representing 

the damage scenario of the active mixed node with the highest probability. If the structural 

analysis reveals that the selected node represents a system failure case (“black” nodes in Figure 

3.1), Plow is increased by the probability of the node, which is understood from Eq. (3.17). It is 

noted that the probability of the node has been already computed during the previous branching 

process. This is another “bounding” process to update the lower bound of the system failure 

probability. On the other hand, if the node with the highest probability does not represent a 
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system failure case, the aforementioned branching process is performed for the node to find the 

probabilities of the child nodes originating from the node. 

For the example in Figure 3.1, suppose the node “2”, i.e. the structure with member “2” 

damaged, has a higher probability than the other active mixed nodes and the structural analysis 

on the damage condition does not indicate a system failure. Then, a branching process is 

performed to find the probabilities of the sequences {21}, {23}, …, and {2n} by system 

reliability analysis using Eq. (3.9). After the branching process, the upper bound is decreased by 

the probability of “2-0.” Now, the probabilities of all the remaining active nodes “1”, “3”, …, 

“n”, “2-1”, “2-3”, …, and “2-n” are compared. Suppose the node “2-3” has the highest 

probability and a structural analysis with members 2 and 3 failed identifies a system failure event. 

The node becomes a system failure (“black”) node, and the lower bound of the system failure 

probability is increased by the probability of the current node, “2-3.” Then, the next most likely 

active node (e.g., “2-n” in Figure 3.1) is selected to perform another structural analysis. 

This iterative process of “branching” and “bounding” continues until the following 

termination criteria are satisfied. If finding the most critical paths is the main interest, one can 

stop the search process when the most recently identified system failure sequence has a 

probability lower than a given threshold, or when a desirable number of system failure sequences 

are identified. This is possible because the B3 method guarantees finding the failure sequences in 

the decreasing order of their probabilities. On the other hand, if estimating the system failure 

probability is of interest, the process can be terminated when the width of the bounds is 

negligible compared to the overall risk level estimated from the bounds. The search procedure of 

the B3 method is explained by a flow chart in Figure 3.2. 
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Figure 3.2 Flowchart of B3 method search procedure 

 

The B3 method does not rely on an arbitrary definition of system failure such as “x 

number of member failures (at y location) constitute a system failure,” (Karamchandani et al. 

1992, Shabakhty et al. 2003), but identifies system failures during the search procedure with help 

of computational simulations. Unlike the deterministic search and locally most-likely-to-fail-

based search methods, the B3 method performs a global search and identifies critical paths in the 

decreasing order of their probabilities. This is because the proposed search scheme performs a 

new structural analysis for the most likely node among all active mixed nodes. Moreover, the 
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analytical search framework decreases the required number of structural analyses compared to 

Monte Carlo simulation approaches, especially for low-probability system risk. 

The main difference between the B3 method and existing branch-and-bound-based 

methods is that the proposed method describes a system event by use of mutually exclusive (or 

disjoint) failure modes. By contrast, when a branch-and-bound method uses a non-disjoint cut-set 

formulation, the probability of a failure sequence is computed without considering the 

likelihoods of specific orders. For example, the probability of a sequence {12…  i –1 i} 

would be computed as 

      1,..., 1 0 0 1 0 1 1,..., 1

1 1 2 1 2

i i

i s s i sP P T T T T T T T T T            (3.18)

This is simplified as 

  1,..., 1 0 1 1,..., 1

1 2

i i

i i sP P T T T T      (3.19)

Compared to the corresponding formulation of the B3 method in Eq. (3.10), this probability is 

easier to obtain because one can compute this probability by a component reliability analysis 

rather than a system reliability analysis. However, the identified failure paths are non-disjoint 

and correlated, so the lower bound on the system failure probability should be computed by a 

system reliability analysis for the union of all identified failure paths, i.e.  

1

idN

low i
i

P P E


 
  

 
  (3.20)

where Ei is the occurrence of the i-th identified system failure sequence (i = 1,…,Nid) that 

appears in Eq. (3.19), and Nid is the total number of system failure modes identified by the 
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branch-and-bound search. By contrast, the B3 method updates the lower bound just by adding the 

probability of newly identified system failure sequences to the current bound. Moreover, the B3 

method can provide the upper bound as well, which helps provide reasonable termination criteria 

for the search process. 

In the existing methods, even though a branch-and-bound method can identify critical 

failure sequences in a decreasing order of their probabilities (unless heuristic or problem-

dependent truncation rules are introduced), the increments of the bounds caused by newly 

identified system failure sequences are not decreasing monotonically. This is due to the statistical 

dependence between the failure sequences. However, in the B3 method, the increments of the 

lower bound are the same as the probabilities of the identified system failure cases, which are 

found in the decreasing order. Therefore, the increments on lower bound are diminishing 

monotonically, which helps avoid continuing the search process unnecessarily. 

To achieve the aforementioned merits of the disjoint-cut-set formulation, the B3 method 

needs to perform more component and system reliability analyses than conventional branch-and-

bound methods. Considering the efficiency in the search process and accuracy in system failure 

probability calculations, this additional task is worthwhile especially when the computational 

cost of the structural or finite element analysis is dominant. The component reliability analysis 

method used in the B3 method should be able to identify the statistical dependence between the 

component events such that a system reliability analysis can be later performed with the 

dependence fully considered. The system reliability analysis method should be able to compute 

the probability of parallel systems accurately. In particular, the method should be able to handle 

parallel systems with a large number of component events because the number of component 

events quickly increases as the search process goes on. In this research, The First-Order 
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Reliability Method (FORM) and the Second-order Reliability Method (SORM) are employed. 

Both of them are widely-used component reliability analysis methods that can describe the 

dependence between component events using the normalized gradient vectors at the most 

probable failure points. A comprehensive review on these methods can be found in Der 

Kiureghian (2005). For the system reliability analysis, we use the multivariate normal integral 

method by Genz (1992) that can provide accurate estimation on the probabilities of large-size 

parallel systems using quasi-random integration points. 

3.3. Illustrative Example: Multi-layer Daniels System 

Daniels (1945) investigated the reliability of a bundle of ideally brittle wires that had identical 

and deterministic elastic moduli subjected to a deterministic load. In the example, wire strengths 

were assumed to be uncertain and statistically independent. It was also assumed that the 

deterministic load was equally distributed among the remaining wires. The system fails when all 

the members/wires fail. Based on these assumptions, the exact failure probability of the 

structural system was derived. This “Daniels system” is often used as a numerical example in 

developing and testing new system reliability analysis methods (Song and Der Kiureghian 2003, 

Straub and Der Kiureghian 2007, Kang et al. 2012, Gharaibeh et al. 2002, Lee and Song 2011a, 

b). The system failure event of a Daniels system is a complex system event because of the load 

re-distributions caused by member failures. In this chapter, the risk of fatigue-induced sequential 

failures of a multi-layer Daniels system (see Figure 3.3) is investigated to illustrate the proposed 

B3 method. In this example, the system failure is defined as an event that all the wires in one of 

the three stories fail. 
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Figure 3.3 A multi-layer Daniels system 

 

3.3.1. Problem description 

As shown in Figure 3.3, the structure consists of six bars that are assumed to be perfectly brittle 

and to have identical, deterministic elastic moduli. The cross sectional areas of the bars are 

assumed to be A1=0.03m2, A2=A3=0.015m2, and A4=A5=A6=0.01mm2. In this example, the 

uncertainties of C in Paris equation, initial crack length ai
0, and external load are described by 

random variables with the mean values 1.202×10−13 (mm/cycle/(MPa·mm)m), 0.11 (mm) and 

1,200 (kN), respectively. For the sake of simplicity, all of the random variables are assumed to 

follow lognormal distribution with the coefficient of variation (c.o.v.) of 0.1 and to be 

statistically independent of each other. The following deterministic parameters are used: the 

loading frequency (ν0): 500,000 (cycle/year), the inspection cycle (Ts): 4 years, m=3, Y(a)=3, and 

the critical crack lengths: a1
c=30mm, a2

c=a3
c=15mm, and a4

c= a5
c= a6

c=10mm. Assuming the 
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load is equally distributed over remaining bars on each story, the stress in each bar is calculated 

by dividing the external load 1,200 (kN) by the sum of the cross sectional areas of the remaining 

bars. In this illustrative example for the B3 method, these simple stress calculations constitute 

“structural analyses,” which were aforementioned in describing the B3 method. In applying the 

B3 method to real-scale complex structural systems, the computational costs for structural 

analyses become dominant during the search process. 

3.3.2. B3 method application 

As the first step, the lower bound Plow and upper bound Pupp values are initialized as 0 and 1, 

respectively. As shown in Figure 3.4, a branching is performed to compute the probability that 

the i-th member fails “first” in the intact structure during the inspection cycle [0, Ts] as in Eq. 

(3.7). 
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Figure 3.4 Results of the first branching 

 

For example, the probability that the 6th member fails within the inspection cycle and 

earlier than the other members, i.e. the probability of the node “6” in Figure 3.4, is calculated by 
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The component events in the parallel system in Eq. (3.22) are described as follows.  
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Preliminary analyses revealed that the nonlinearity of the limit-state functions in Eq. (3.22) may 

cause significant errors in component reliability analyses by FORM. Although SORM helps 

reduce the errors significantly, it is not desirable to use SORM for every component reliability 

analysis problem due to larger computational cost. Karamchandani et al. (1992) claimed the last 

component event in Eq. (3.21) (i.e. Eq. (3.22b)) governs the system probability and proposed to 

ignore the other components in evaluating the probability. To achieve reasonable accuracy 

without compromising computational efficiency, therefore, we employ FORM for all component 

events that do not involve Ts while we compute the probability of the last limit-state function, Eq. 

(3.22b), using SORM for accurate estimations. The results from this mixed approach will be 

presented and discussed in the following numerical examples through comparison with those by 

crude Monte Carlo simulations. 

Next, using the first-order concept of system reliability (Hohenbichler and Rackwitz 

1983), the probabilities of parallel systems such as the one in Eq. (3.21) are computed by 

evaluating a multi-variate normal integral. A parallel system with n component events is 

computed as follows.  
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(3.23)

where   is the domain of the parallel system event defined in the space of n standard normal 

random variables in Z, φ ( )n   is the joint probability density function of Z, R is the correlation 
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coefficient matrix of Z, and det R denotes the determinant of R. The component reliability 

indexes βi, i=1,…,n are obtained by FORM and SORM. The correlation coefficient matrix R can 

be determined from the inner products of negative normalized gradient vectors (Der Kiureghian 

2005) evaluated at the design points, which are again obtained by FORM. In this thesis, the 

multivariate normal integral method by Genz (1992) is used for evaluating these multi-variate 

normal integrals efficiently, even for the cases with a large number of component events. The 

MSR method is also applicable here. As previously stated, the B3 method entails many parallel 

system analyses, which made the method by Genz optimal in the numerical examples in this 

paper. 

Figure 3.4 shows the outcomes of the first branching, i.e. the probabilities of seven child 

nodes. Due to the given conditions and assumptions, the node numbers corresponding to the bars 

in the same layer show the same probabilities. The probability of the last white node is computed 

by the probability of the parent node (i.e. 1.0) minus the sum of the probabilities of the first six 

child nodes. The upper bound is decreased by this probability, i.e. Pupp=1−0.1605=0.8395. Now 

the probability of the initial node (i.e. 1.0) is transferred to its child nodes, which makes the 

initial node inactive. It is noted that only one structural analysis is required per branching 

regardless of the number of the child nodes. 

For the second branching, the active mixed nodes with the highest probabilities are 

identified. In this example, nodes “4”, “5”, and “6” have the highest probability. Any of the 

nodes with the same probability can be selected for the next branching and this does not affect 

the final result. Suppose the node “6” is selected. The corresponding structural member (i.e. the 

bar “6”) is removed from the system. Since the structure still survives, a structural analysis is 

performed to find the stresses after the load re-distribution caused by the failure of the bar. The 
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second branching is performed based on the results of the structural analysis. The outcomes of 

this branching are shown in Figure 3.5. 

 

 

Figure 3.5 Results after the second branching 
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technique discussed in Section 3.2, the next branching would start from node “6-4” or “6-5.” 

However, the branch-and-bound algorithm compares all active mixed nodes and chooses node “4” 

or “5” for the branching. After four more times of branching and four corresponding structural 

analyses, the event tree is expanded as shown in Figure 3.6.  
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Figure 3.6 Results after six times of branching 
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In the figure, only some of the active mixed nodes with relatively higher probability are 

displayed. Nodes “2-3” and “3-2” have the highest probabilities, so the next branching starts 

from one of these nodes. Suppose node “2-3” is selected for the next branching. However, this 

case causes system failure because all the bars in the second layer are disconnected. Therefore, 

node “2-3” is identified as the system failure node and the lower bound is increased by its 

probability (see Figure 3.7). 
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Figure 3.7 The first identification of system failure sequence 
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It is noteworthy that each structural analysis leads to either another branching or a system 

failure case identification, which decreases the upper bound or increases the lower bound. In 

other words, every structural analysis performed during the B3-based search contributes to 

narrowing the bounds of the system failure probability. In this example, the iterative process is 

terminated when the gap of the bounds becomes smaller than a prescribed percentage of the 

upper bound. Figure 3.8 shows the updates of the bounds with the number of “structural analyses” 

during the search. 

 

 

Figure 3.8 Updating of the bounds by the B3 method 
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structural analyses. To verify this result, crude Monte Carlo simulations are performed. For each 

set of generated random variables, the system failure/non-failure is checked by performing 

structural analyses while following an event tree of load re-distributions. After 107 simulations, 

the system failure probability is estimated as 6.050×10−3 with a coefficient of variation (c.o.v.) of 

4.053×10−3, which belongs to the interval by the B3 analysis. The average number of structural 

analyses for each Monte Carlo simulation is 1.017. Therefore, it is obvious that this sampling 

approach can be time-consuming or intractable especially when the computational cost of 

structural analyses are dominant. 

It is noted that the upper bound curve becomes almost flat relatively early in the search, 

at a level fairly close to the exact system failure probability by Monte Carlo simulations. This is 

because, as the search proceeds, structural analyses are performed for systems with more damage 

and less redundancy, which lead to more “system failure” cases and thus most of the following 

updates are made on the lower bound. Even if non-failure is observed and thus branching is 

performed, the proportion of the white node decreases as the system loses its redundancy. 

Therefore, in most cases, it is not necessary to wait until the bounds converge to each other too 

closely. For example, the upper bound reaches 6.067×10−3 only after 48 structural analyses in 

this study. The corresponding lower bound is 5.772×10−3 and the gap of the bounds is 5% of the 

upper bound value. The bounds achieved at the 5% gap termination point (i.e. when the gap is 5% 

of the upper bound) show enough accuracy in predicting the level of the system failure 

probability when compared to those at the 1% gap termination point. This means further search 

beyond the 5% termination point may harm the efficiency of the analysis unnecessarily. In other 

words, the 5% gap seems to allow for an optimal trade-off between accuracy and efficiency, and 
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we experienced similar trends in other examples. Therefore, in the following numerical examples, 

the B3 search will be terminated when the gap of the bounds reaches 5% of the upper bound. 

Another important objective of the B3 analysis is to identify critical system failure 

sequences efficiently. Table 3.1 shows the first twelve critical failure sequences identified by the 

B3 method along with the probabilities of the sequences by the B3 method and by crude Monte 

Carlo simulations. The entire set of critical failure paths identified until the 5% termination point 

is shown in Figure 3.9 following the order of their identification during the search. These results 

demonstrate that the B3 method identifies critical failure sequences in the decreasing order of 

their probabilities, which allows us to terminate the search without missing critical failure 

sequences. 

 

Failure 
sequence 

Probability by  
B3 method (×10−4) 

Probability by  
Monte Carlo simulation (×10−4) 

2 → 3 8.31 7.90 
3 → 2 8.31 8.20 

1 7.48 7.49 
4 → 5 → 6 4.94 4.90 
4 → 6 → 5 4.94 4.44 
5 → 4 → 6 4.94 4.89 
5 → 6 → 4 4.94 4.92 
6 → 4 → 5 4.94 5.26 
6 → 5 → 4 4.94 5.06 

4 → 1 0.39 0.37 
5 → 1 0.39 0.38 
6 → 1 0.39 0.39 

 
Table 3.1 Identified critical system failure sequences and probabilities 
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Figure 3.9 Probabilities of critical system failure sequences identified up to 5% termination 

point 
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Figure 3.10 Three-dimensional tripod jacket structure 
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The supports at the bottom are located at the corners of an equilateral triangle with sides of 30 

meters. The lengths of the sides decrease linearly over the height and are finally reduced to 10 
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thickness as shown in the figure. For example, “650×30” in the figure denotes a hollow section 
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geometry function Y(a) is assumed to be 3.0. Paris equation parameters C and m, and the initial 

crack lengths are described by random variables as described in the following section. 

The 70-meter-long bottom portion of the structure is in the sea water. Single cyclic 

horizontal loading is applied at the sea level of the column “2” as illustrated in Figure 3.10. For 

the sake of simplicity, it is assumed that the dynamic loading has constant amplitude, and the 

uncertainty in the amplitude is described by a random load-scale factor I. It is also assumed that 

each steel truss member shows linear elastic behavior until a crack failure occurs. This 

assumption is apprehensible because most fatigue-induced failures are caused by relatively low-

level stresses. Based on these assumptions, a deterministic structural analysis is performed for 

each damaged/undamaged condition considered during the search, and the calculated member 

stresses are multiplied by the uncertain load-scale factor I during the reliability analyses. The 

loading frequency (ν0) and the inspection cycle (Ts) are given as 500,000/year and 4 years, 

respectively, and these parameters are assumed to be deterministic. 

3.4.2. Statistical parameters 

The uncertainties by random variables are described in a similar manner to the original example 

in  Karamchandani et al. (1991, 1992) except for the Paris-equation parameters C and m. 

Kirkemo (1988) considered the following assumptions, i.e. (1) m and C are both deterministic, (2) 

m is deterministic, but C is uncertain, (3) C is deterministic, but m is uncertain, (4) m and C are 

both uncertain and described by uncorrelated random variables, and (5) m and C are both 

uncertain and described by negatively correlated random variables. It was recommended to use 

approaches (2) and (5) for a reasonable representation of the reality (Kirkemo 1988). Therefore, 

in this thesis, these two cases are considered as Case I and Case II, respectively. Case II 

considers uncertainties in both m and C whereas in Case I the given mean value of m will be 
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used as a deterministic parameter. Uncertainties in the initial crack lengths (a0) and the load-

scale factor (I) are also considered. 

The statistical properties of the random variables are summarized in Table 2. The values 

of these statistical parameters were determined based on a comprehensive literature survey 

(Kirkemo 1988, Moan et al. 1993, Millwater et al. 1994, Moan and Song 2000, Shabakhty et al. 

2003, Ayala-Uraga and Moan 2007, Moan and Ayala-Uraga 2008). In both cases, one random 

variable I  is used to describe the uncertainty in the loading. Each of 66 members in Cases I and 

II has two (C and a0) or three (C, m, and a0) random variables, respectively. Therefore, a total of 

133 and 199 random variables are used for Cases I and II, respectively. All random variables are 

assumed to be statistically independent of each other except for the following cases for which 

non-zero correlation coefficients are assigned: (1) between Paris equation parameters (C) of two 

different members (correlation coefficient 0.6); (2) between Paris equation parameters (m) of two 

different members (correlation 0.6); (3) between initial crack lengths (a0) of two different 

members (correlation 0.6); and (4) between C and m of two different or the same members 

(correlation −0.2). 

 

Random variables Mean c.o.v. 
Distribution 

type 
Number of 

random variables 
C  1.202×10−13 0.533 Lognormal 66 
m 3.0 0.02 Lognormal 66 

a0 (mm) 0.11 1.0 Exponential 66 
I 1.0 0.1 Lognormal 1 

 
Table 3.2 Statistical properties of random variables 
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3.4.3. Component and system failure definition 

It is assumed that a section fails when its crack length reaches the thickness of the section. Upon 

the occurrence of the section failure, the corresponding member is removed from the structural 

analysis model, which causes stress re-distribution. As for the system failure definition, most of 

the existing research employed some heuristic system failure criteria such as “the target structure 

collapses if any pair of members fail” or “the system fails if one leg member fails” 

(Karamchandani et al. 1992). As an attempt to accurately identify system failure cases via 

structural analyses instead of heuristic criteria, in this example, the following system failure 

criteria are checked after each structural analysis during a B3-based search. The occurrence of 

any of these criteria constitutes system failure. 

 

(1) Global statistical determinacy or instability condition: 3 × (number of nodes) – 

(number of members) – (number of reaction DOFs) > 0. 

(2) Local instability condition: less than three members are connected to a non-supporting 

node. 

(3) Condition of global stiffness matrix: the condition number of global stiffness matrix is 

exceedingly large compared to that of the intact structure. 

(4) Unreasonably large displacement occurs. 

 

It should be noted that this is an example of system failure criteria that can be used during a B3 

search. One can define a set of system failure criteria based on the objectives and safety concerns 

of a target structure of interest. For example, for many offshore structures, extreme loading is 

another important factor which may cause structural failures such as yielding (Karamchandani et 
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al. 1991). As stated above, the overloading failure can be introduced as a system failure 

definition in the B3 method, which represents an apprehensible failure scenario that initial local 

failures occur from fatigue and the subsequent load re-distribution causes extreme loading and 

system failure. In order to introduce overloading failure as a criterion of local failure and 

consider the interaction between fatigue and overload failures, the B3 formulations in Section 3.1 

needs to be further developed to describe failures under extreme loading also as disjoint events, 

which will be an important future research topic. 

3.4.4. Computational framework 

Figure 3.11 illustrates the computational framework of the B3 analysis for the three-dimensional 

tripod jacket structure.  As shown in the figure, the B3 framework consists of three elements: 

branch-and-bound algorithm, structural analysis, and (component and system) reliability analysis. 

For the target truss structure, a structural analysis code for linear elastic behavior was made in 

MATLAB®. Computer codes for the branch-and-bound process and reliability analysis were 

also developed in MATLAB®. The methods employed for component and system reliability 

analysis (i.e., FORM, SORM, and a method by Genz) were discussed in Section 3.4.2. 
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Figure 3.11 Computational framework of B3 analysis for tripod jacket structure 

 

During the B3 analysis, the main part in charge of branching and bounding repeatedly 

requires structural analysis and reliability analysis. If a damage condition is identified as a 

system failure case through structural analysis, the lower bound increases. If it is identified as a 

non-failure case, branching is made from the node representing the damage condition, and the 

member stresses obtained from the structural analysis are provided to the reliability analysis so 

that the probabilities of the new failure sequences can be calculated. 

3.4.5. Analysis results 

This section presents the results of B3 analyses for Cases I and II. The results are compared to 

those by conventional branch-and-bound approach (i.e. based on non-disjoint failure sequences) 
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in both cases. First of all, Figure 3.12 shows the updates of the upper and lower bounds by the B3 

method and those of the lower bound by the conventional branch-and-bound-based approach (i.e. 

Eq. (3.20)) with the number of structural analyses.  

 

 

Figure 3.12 Bounds by B3 method and conventional approach (Case I) 

 

The lower and upper bound by the B3 method at 5% gap termination point are 1.656×10−3 

and 1.739×10−3 respectively with only 26 FE analyses. The system failure probability estimated 

by crude Monte Carlo simulation with one million samples is 1.734×10−3, with a c.o.v. of 

2.40×10−2, which belongs to the interval by the B3 method and is close to the upper bound as 

observed in the multi-layer Daniels system example. 
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At the same termination point, the lower bound by the conventional method is 

1.676×10−3, which is a seemingly good result. However, as the trend in the figure shows, the 

approach has a couple of drawbacks in terms of search termination. First, it is not guaranteed that 

the updates in the lower bound diminish monotonically even though the system failure sequences 

are identified in the decreasing order of their likelihoods. This is because of the impact of the 

statistical dependence between the failure sequences on the system failure probability in Eq. 

(3.20). For example, the curve of the lower bound becomes almost flat after 10 structural 

analyses. Since the upper bound is usually not available for the conventional approach, the 

search procedure is often terminated when the lower bound converges. Therefore the flat trend 

may result in underestimation of system failure probability. Second, the lower bound of the 

conventional approach requires more structural analyses for the convergence than the bounds by 

the B3 method. For example, even after 50 structural analyses, the lower bound does not increase 

much from an earlier flat trend. By contrast, the lower bound by the B3 method increases 

monotonically and converges to the upper bound at around the exact solution after 50 structural 

analyses. Sometimes, the incremental amount of lower bound is even negative due to the 

numerical error from simulation which is introduced to solve the general cut-set system in Eq. 

(3.21).  These two issues are more clearly shown in Case II. 

Figure 3.13 shows the probabilities of critical system failure sequences identified until 

the 5% termination point of the B3 analysis. This once again confirms that the failure modes are 

identified in the decreasing order of their probabilities. Furthermore, Figure 3.14 displays the 

first four system failure sequences that satisfy the system failure criteria described in Section 

3.4.3. In the figure, each thick bar indicates a failed member. The probability of each sequence is 
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also verified by a comparison with crude Monte Carlo simulations (one million samples). Only 9 

structural analyses were required to identify these failure sequences. 

 

Figure 3.13 Critical system failure sequences identified until 5% termination point (Case I) 
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Figure 3.14 Four major system failure sequences (Case I) 

 

1st failure sequence 

Probability by B3 method: 6.85×10−4 
Probability by simulation:  6.60×10−4 
System failure modes*: (3) and (4) 

2nd failure sequence 

Probability by B3 method: 6.85×10−4 
Probability by simulation:  6.75×10−4 
System failure modes*: (4) 

3rd failure sequence 

Probability by B3 method: 9.00×10−5 
Probability by simulation:  9.70×10−5 
System failure modes*: (4) 

4th failure sequence 

Probability by B3 method: 8.50×10−5 
Probability by simulation:  8.70×10−5 
System failure modes*: (3) and (4) 

 * See Section 3.4.3. 
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Figure 3.15 Bounds by B3 method and conventional approach (Case II) 

 

Figures 3.15-3.17 show the bounds and critical failure sequences for Case II. As shown in 

Figure 3.15, the lower and upper bounds by the B3 method at 5% gap termination point are 

estimated as 2.302×10−3 and 2.416×10−3 respectively with only 27 structural analyses of the truss. 

The system failure probability is estimated as 2.392×10−3 by Monte Carlo simulation (one 

million samples, c.o.v. 2.04×10−2), which belongs to the interval by the B3 analysis, and is fairly 

close to the upper bound as observed in the previous examples. The aforementioned limitations 

of the conventional approach are more clearly seen in this example. There is a long flat trend of 

the lower bound (between 10 and 43 structural analyses), which may lead to early termination of 

the search. By contrast, in the B3 approach, the existence of the upper bound and the continuous 
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increase in the lower bound help avoid the risk of inaccurate estimation of the system failure 

probability. 

 

 

Figure 3.16 Critical system failure sequences identified until 5% termination point (Case II) 
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Figure 3.17 Four major system failure sequences (Case II) 

 

Figure 3.16 shows the probabilities of the critical failure sequences identified until the 5% 

termination point of the B3 analysis, and Figure 3.17 displays the four major system failure 

sequences along with their probabilities. It is also noted that the different assumptions on the 

1st collapse mode 

Probability from B3 method: 9.08×10−4 
Probability from simulation:  9.34×10−4 
System failure criterion: (3) and (4) 

2nd collapse mode 

Probability from B3 method: 9.08×10−4 
Probability from simulation:  8.57×10−4 
System failure criterion: (4) 

3rd collapse mode 

Probability from B3 method: 1.24×10−4 
Probability from simulation:  1.16×10−4 
System failure criterion: (4) 

4th collapse mode 

Probability from B3 method: 1.51×10−4 
Probability from simulation:  1.65×10−4 
System failure criterion: (3) and (4) 



83 
 

uncertainties by Cases I and II lead to different orderings in the identified system failure 

sequences. 

3.5. Summary 

A new Branch-and-Bound method employing system reliability Bounds (termed the B3 method) 

was developed in order to estimate the probability of system failure caused by fatigue-induced 

sequential failures by identifying critical system failure sequences efficiently and accurately. Due 

to the proposed disjoint cut-set formulation employing a recursive formulation of limit-states and 

systematic search procedure, the B3 method can identify critical sequences of fatigue-induced 

failures causing a system failure in the decreasing order of their likelihood. Unlike existing 

branch-and-bound approaches, the proposed method provides both lower and upper bounds on 

the system failure probability while the size of the updates on each bound is diminishing 

monotonically. Every structural analysis performed during the search contributes to updating 

either lower or upper bound, i.e. narrowing the bounds. This significantly reduces the 

computational time required for accurate results especially when computational cost for 

structural analyses is dominant. The updated bounds provide reasonable criteria for terminating a 

branch-and-bound search without missing critical sequences. After a demonstration by a multi-

layer Daniels system, the method was tested by a three-dimensional offshore structure with 66 

members. The results by the B3 method are verified by crude Monte Carlo simulations. The 

merits of the proposed approach are successfully demonstrated through comparison with the 

results by a conventional branch-and-bound approach. 
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4. FE-BASED SYSTEM RELIABILITY ANALYSIS OF FATIGUE-INDUCED 

SEQUENTIAL FAILURES OF CONTINUUM STRUCTURES 

 

In Chapter 3, the B3 method was developed for system reliability analysis of fatigue-induced 

sequential failure. The method quantifies the risk of fatigue-induced sequential failure at the 

system level and identifies critical failure sequences in the decreasing order of likelihood. The B3 

method was originally developed for reliability analysis of discrete structures such as truss. 

Therefore, the method is not readily applicable to continuum structures, which are often 

represented by finite element (FE) models. In particular, the method has limitations in describing 

general stress distributions in limit-state formulations, evaluating stress intensity range based on 

crack length, and dealing with slow convergence of the upper and lower bounds for structures 

with high redundancy. In this chapter, the B3 method (in Chapter 3) is integrated with the FE-

SRA framework (in Chapter 2) and further developed to perform FE-based system reliability 

analysis of fatigue-induced sequential failures of continuum structures. 

4.1. Literature Review 

As discussed in Chapter 3, fatigue is one of the main causes of failures in various structural 

systems. Therefore, an adequate level of structural redundancy should be provided to prevent 

fatigue-induced structural failure, and some studies have been undertaken to quantify the 

likelihood of system-level failure caused by fatigue-induced sequential failures, especially for 

offshore structures, which are often modeled as discrete (truss) structures (Almar-Naess 1985, 

Moan 2005, Karamchandani 1992, Moan and Song 2000, Shabakhty et al. 2003). However, it is 

noted that fatigue-induced sequential failure is an important failure mechanism not only to 
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discrete structures, but also to continuum structures such as subsystems in aircraft structures. For 

example, according to the “Damage Tolerance” design philosophy adopted by the U.S. Air Force 

in early 1970s, an aircraft structure with some cracks is still considered safe as long as the 

structure can resist further damage and system failure, and can accomplish the mission for a 

given period of time (Tiffany 1978, Millwater and Wieland 2010). Therefore, for risk-based 

design, maintenance, and retrofit of robust structural systems from truss to continuum, it is 

essential to quantify the likelihood of fatigue-induced sequential failures and identify the critical 

sequences of local failures. 

However, it is noted that most of the existing studies about the reliability analysis of 

fatigue-induced sequential failure (reviewed in Section 3.1) focus on relatively simple discrete 

structures such as truss. There have been few studies on such reliability analysis of more 

complex structures (such as continuum), and the applications using sophisticated FE simulations 

are limited (Alford et al. 1992, Shi and Mahadevan 2001). Even though the aforementioned 

merits of the B3 method have been successfully demonstrated through numerical examples in 

Chapter 3, the method was originally developed for system reliability analysis of truss-type 

structures, and thus not readily applicable to continuum structures due to the following 

limitations as discussed in Lee and Song (2011b): (1) the far-field stress, which is a main 

parameter in the fatigue crack-growth formulation of the B3 method, is not generally conspicuous 

for a continuum structure; (2) it is not always feasible to derive an analytical relationship 

between the stress intensity range and the crack length using the so-called geometry function for 

a continuum which has a complex stress distribution; and (3) the structural complexity of a 

continuum often results in many dominant failure sequences having a similar level of likelihood, 

which prevents fast convergence of the lower and upper bounds during a B3 analysis. 
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In order to take advantage of the merits of the B3 method for FE-based system reliability 

analysis of continuum structures, the method is further developed as follows (Lee and Song 

2011b): (1) the limit-state function formulation is modified to incorporate the general stress 

distribution instead of using a far-field stress assumption; (2) an external computer program is 

integrated with the B3 computational framework to estimate the stress intensity range with the 

general stress distribution without relying on analytical geometry function Y(a); and (3) an 

additional search termination criterion is introduced to facilitate efficient system reliability 

analysis of a continuum that has many failure sequences with similar probabilities. Hereafter, the 

B3 method further developed in this chapter for continuum structures is referred to as the B3 

method for continuum, while the method described in Chapter 3 is called the B3 method for truss. 

4.2. Branch-and-Bound Method Employing System Reliability Bounds for Continuum  

(B3 Method for Continuum) 

4.2.1. Development I: limit-state function formulations for general stress distribution 

The limit-state function formulation of the B3 method for continuum also starts with Paris 

equation in Eq. (3.1), to characterize the speed of the crack growth. In the B3 method for truss, 

the stress intensity range (∆K) was evaluated by use of Newman’s approximation, i.e. by using 

an analytical function of far-field stress and crack length, as shown in Eq. (3.2). In order to 

incorporate general stress distribution rather than analytical functions based on Newman’s 

approximation, the limit-state function formulations have been modified as follows. Integrating 

Eq. (3.1) from the initial condition to the current time point, the relation between the time 

duration T and the corresponding crack length a is derived as 
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At the i-th member, a crack failure is assumed to occur when the crack exceeds a critical length 

ai
c. Then, the limit-state function for the member’s failure within an inspection cycle [0, Ts] is 

described as 
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The difference between this and the limit-state function in Eq. (3.6) is that the stress intensity 

factor 　K is not evaluated by Newman’s approximation. Similarly to Eq. (3.11), an auxiliary 

“damage” function is then determined as 
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  (4.3)

Consider the failure sequence {12} for example, using the damage function, one can derive the 

followings: 

1 0 0

2 2 0 1( ) ( )a a C T      (4.4a)

1 1

2 2 0 2( ) ( )ca a C T     (4.4b)

Summing up Eqs. (4.4a) and (4.4b), one obtains 

0 1 0

2 2 0 2 0 1( ) ( )ca a C T C T        (4.5)

Solving Eq. (4.5) for T2
1, one can derive 
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where ΔK2
0 and ΔK2

1 respectively denote the range of the stress intensity factors at member 2 in 

the intact structure and in the damaged structure with the first failure at member 1. The time until 

the failure, i.e. Ti
0 in Eq. (4.2) can be described in terms of the crack length at a different member. 

For example, the time until the failure in member 1 is 

1
1 2

0 0
1 2
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  (4.7)

Substituting Eq. (4.7) into Eq. (4.6), one can derive 
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Considering Eq. (4.4a), Eq. (4.8) is further derived as follows to describe T2
1 in terms of the 

previous time term in the sequence, T1
0: 
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  (4.9)

In the case of a truss structure, ΔK can be estimated by use of Newman’s approximation in Eq. 

(3.2), and the ratio of two integrals in Eq. (4.9) is simply (S2
0/S2

1)m where S2
0 and S2

1 are the far-

field stresses at member 2 in the intact structure and in the structure with member 1 damaged, 

respectively. It is important to note that in such a case, T2
1 can be calculated without estimating 

a2
1. However, Newman’s approximation employing far-field stress is not generally available. In 

such a general case, a2
1 is needed to use Eq. (4.9). One could try to solve Eq. (4.7) for a2

1 each 

time, but it would seriously harm the efficiency of the analysis which requires solving the 

equation a large number of times. 

For this reason, in the B3 method for continuum, Eq. (4.9) is approximated by performing 

both integrals in the ratio up to a2
c instead of a2

1, i.e. 
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Through mathematical induction, the following recursive formulation is derived for a general 

failure sequence {12…(i–1)}: 
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  (4.11)

The impact of the approximation in computing the ratio is examined by a numerical example in 

Chapter 3. The B3 method for truss (i.e. the B3 method that does not employ this approximation) 

is also applicable to the example, which enables us to assess the impact of the approximation 

accurately. 

4.2.2. Development II: evaluating stress intensity range using an external computer program 

The generalized formulation of time terms in Eq. (4.11) makes it essential to compute the range 

of the stress intensity factor (ΔK) along the crack length (a) for a complex stress distribution 

which cannot be generally described by a far-field stress. Among a variety of existing computer 

programs and methods for crack-growth analysis, AFGROW® (Harter 2006) is chosen for 

finding the a-ΔK relation without relying on Newman’s approximation.  

AFGROW® provides a variety of crack-growth models which allow users to predict 

crack growth for various geometries, materials, and stress distributions. AFGROW® provides 

not only closed-form stress intensity solutions for simple cases, but also non-closed-form 

solutions for general cases based on the results of the FE analysis. Another advantage of 

AFGROW® is that the software provides Component Object Model (COM) Automation 

interface, which allows other Windows applications such as MS Excel® to communicate with 

AFGROW®. This feature is particularly useful because the proposed system reliability analysis 
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method of fatigue-induced sequential failures requires a large number of deterministic crack-

growth analyses.  

 

 

Figure 4.1 Computational framework of the B3 method for continuum 

 

Figure 4.1 illustrates the computational framework of the B3 method for FE system 

reliability analysis of a continuum. The main B3 analysis code in MATLAB® repeatedly calls 

ABAQUS® to obtain the stress distribution from the finite element (FE) analysis for given 

Random Variables (RVs) and damage conditions during the search procedure, and the stress 

distribution is transferred to AFGROW® for estimating the corresponding stress intensity range 

along the crack length, which is the basic information needed for estimating the time term in Eq. 

(4.11). The computational framework in Figure 4.1 performs successfully in the numerical 
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examples in this chapter. However, AFGROW® and ABAQUS® can be replaced by other 

computer programs for crack-growth and FE analysis if necessary. 

4.2.3. Development III: additional termination criterion for systematic search scheme 

The flow chart in Figure 4.2 illustrates the search procedure of the B3 method for continuum. 

After performing the first FE analysis and crack-growth analysis respectively using ABAQUS ® 

and AFGROW®, the first set of child nodes are branched out from the initial node and their 

probabilities are calculated through component and system reliability analyses. For the numerical 

examples in this thesis, the First-Order Reliability Method (FORM) and the Second-order 

Reliability Method (SORM) are used for component reliability analysis (Der Kiureghian 2005). 

A multivariate normal integral method by Genz (1992) is used for system reliability analysis. 

Based on the probability calculations, the first bounding is made and Pupp is decreased by the 

probability of the newly-identified non-failure case. The next step is to compare all the nodes 

except for system-failure, non-failure, and “parent” nodes to select the one with the highest 

probability. Then, a new FE analysis is performed using an FE model representing the damage 

scenario of the selected node. If the FE analysis reveals that the selected node represents a 

system failure case, Plow is increased by the probability of the node. On the other hand, if the FE 

analysis reveals that a system-level failure does not occur, another crack-growth analysis and 

branching process are performed to find the probabilities of child nodes originating from the 

selected node. 
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Figure 4.2 Flow chart of the B3 method for continuum 

 

This search process repeating “branching” and “bounding” is continued until the 

termination criteria are satisfied. If finding the most critical paths is the main interest, one can 

terminate the search process when the most recently identified system failure sequence has a 

probability lower than a given threshold or a desirable number of critical failure sequences is 

identified. On the other hand, if estimating the system failure probability is of interest, one could 

terminate the process when the updates on the bounds made by the newly-identified failure 

FE simulation of intact structure 
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Yes 
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* : Check the termination criteria 
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sequence become negligible compared to the overall risk level identified by the bounds. When 

the system failure probability of a three-dimensional truss structure was calculated in Chapter 3, 

the search was terminated when the ratio of the gap of the bounds to the upper bound becomes 

smaller than a given threshold value. However, more complex structures with a higher level of 

structural redundancy including continuum structures tend to have many competing failure 

sequences with similar likelihood. In this case, the termination rule based on the gap of the 

bounds may result in spending large computational time in identifying many competing failure 

sequences with negligible probabilities and making very small updates on the lower bound. In 

order to avoid making unnecessary computational efforts on negligible updates on the lower 

bound, in the B3 method for continuum, it is suggested to terminate if the updates on the lower 

bound become negligible. In summary, the search process is terminated if any of the following 

conditions is satisfied: 

1) (the gap of two bounds ) / (the upper bound)  < ε1 

2) (the lower bound increment) / (the upper bound)  < ε2 

where ε1 and ε2 are predetermined values that are fairly small compared to 1.0, which define the 

convergence level of a particular analysis. For the numerical examples in this chapter, ε1=0.05 

and ε2=0.001 are used. The performance of the newly-suggested termination criteria will be 

tested and compared to that of the criteria proposed in the B3 method for truss (in Chapter 3). 

4.3. Numerical Example I: FE Multi-layer Daniels System 

In this section, the multi-layer Daniels system which was introduced in Chapter 3 is considered 

again as a numerical verification example of the B3 method for continuum. This is because 1) the 

structure is simple and widely used as a numerical example to test a new system reliability 
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analysis method (as discussed in Section 3.3); and 2) since the system consists of discrete 

members (bars) and far-field stress is available, the B3 method for truss is also applicable to this 

example, which enables us to investigate the impact of the approximation of the limit-state 

function formulation in Eq. (4.11). 

4.3.1. Problem description 

The structural behavior is the same as the one in Chapter 3, and the component and system 

failure definitions are also identical with Chapter 3. As shown in Figure 4.3 (left), the multi-layer 

Daniels system consists of six bars that are assumed to be perfectly brittle and to have identical 

and deterministic elastic moduli. The cross sectional areas of the bars are given as A1=100mm2, 

A2=A3=50mm2, and A4=A5=A6=33.33mm2, and their widths are W1=38.1mm, W2=W3=19.05mm, 

and W4=W5=W6=12.7mm. In this example, the uncertainties of initial crack length 0
ia , external 

load I, and C and m in Paris equation are considered as random variables with the mean values 

0.11 (mm), 17.2 (kN), 1.36×10−13 (mm/cycle/(MPa·mm)m), and 3.0, respectively. It is assumed 

that the initial crack length follows exponential distribution and the other random variables 

follow lognormal distribution. The coefficients of variation (c.o.v.) of ai
0, I, C, and m are 1.0, 0.1, 

0.533, and 0.02, respectively. For the sake of simplicity, all random variables are assumed to be 

statistically independent of each other. In addition, the following deterministic parameters are 

used: the loading frequency (ν0): 100 (cycle/hour), the inspection cycle (Ts): 2,000 hours, and the 

critical crack lengths: a1
c=30.48mm, a2

c= a3
c=15.24mm, and a4

c= a5
c= a6

c=10.16mm.  
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Figure 4.3 Multi-layer Daniels system (left); and its FE model in ABAQUS® (right) 

 

Compared to the example in Chapter 3, some deterministic and random parameters are 

changed. Although most of the changes are not significant for the system reliability analysis of 

the structure, it is noticeable that the constant geometric function (i.e. Y(a)=3 in Section 3.3.1) is 

not employed to make the example more realistic. The specific geometric function will be 

provided in the following section. 

Based on the above conditions, a finite element (FE) model is constructed for 

ABAQUS® as shown in Figure 4.3 (right). Figure 4.4 shows the FE responses of the intact 

structure and the damaged structure with member 2’s failure (circle) for example. As stated in 

Section 3.2, the stress distribution estimated by the FE analysis is transferred to AFGROW®, 

and the corresponding a-ΔK relation is returned for calculating the time terms in Eq. (4.11). 
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Figure 4.4 The stress distribution of the intact structure (left); and the damaged structure after 

the failure of the member 2 (right) 

 

4.3.2. Analysis results 

Figure 4.5 shows the updates of the upper and lower bounds of system failure probability with 

the number of “FE simulations” during the analysis employing the B3 method for continuum. It 

is noteworthy from Figure 4.2 that each of FE simulations leads to either a branching or a system 

failure case identification, which decreases the upper bound or increases the lower bound, 

respectively. When the analysis is terminated, the upper and lower bounds are estimated as 

1.010×10−2 and 9.608×10−3 for 30 FE simulations. 
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Figure 4.5 Bounds on the system failure probability by the B3 method for continuum 

 

Since the load is assumed to be equally distributed to the remaining bars on each story, 

the far-field stress in each bar is easily calculated by dividing the external load by the sum of the 

cross sectional areas of the remaining bars in this example. Therefore, this problem can be also 

solved by the B3 method for truss (i.e. the B3 method in Chapter 3 before further developments 

described in this chapter) as well. Based on the far-field stress, we are able to estimate ΔK by use 

of Newman’s approximation in Eq. (3.2) and the following geometry function (Harter 2006, 

Tada et al. 1985): 
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  (4.12)

where Y(a) is the geometry function, a is the crack length, and W is the width of a plate. 

By the B3 method for truss, the bounds are estimated as 9.767×10−3 and 9.299×10−3 after 

32 structural analyses. From Monte Carlo simulations (MCS) with 3×105 sets of generated 

random variables, the system failure probability is estimated as 9.807×10−3 (c.o.v.=1.83%), 

which requires 3.163×105 structural analyses. In addition, the B3-based methods and MCS can 

also identify the critical failure sequences in the decreasing order of their probabilities. For the 

nine most critical failure sequences, which can be categorized into three failure patterns, all three 

methods provide the exact same order of patterns as shown in Table 1. Due to the symmetry, the 

second and third failure patterns respectively have two and six failure sequences with the same 

likelihoods. It is noted that MCS does not provide us with such symmetric results due to its 

random-sampling nature. All the results from three different approaches match well, and the 

slight difference between the results from the B3 method for truss and the B3 method for 

continuum is mainly due to the approximation introduced in Eq. (4.11). 
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Identified 
failure sequence

Probability by  
the B3 method for 

truss (×10−3) 

Probability by  
the B3 method for 
continuum (×10−3) 

Probability by  
Monte Carlo 

simulation (×10−3) 
1 4.871 4.869 4.660 

2 → 3 1.332 1.408 1.263 
3 → 2 1.332 1.408 1.353 

4 → 5 → 6 0.294 0.321 0.320 
4 → 6 → 5 0.294 0.321 0.307 
5 → 4 → 6 0.294 0.321 0.335 
5 → 6 → 4 0.294 0.321 0.363 
6 → 4 → 5 0.294 0.321 0.341 
6 → 5 → 4 0.294 0.321 0.322 

 
Table 4.1 Identified critical failure sequences in the continuum Daniels system 

 

Lastly, in Figure 4.5, it is noted that the upper bound curve becomes almost flat relatively 

early in the search, at a level fairly close to the actual system risk confirmed by MCS. This is 

because, as the search proceeds, FE analyses are performed for systems with more damage and 

less redundancy. Most of the updates are thus made on the lower bound. Therefore, in most cases, 

it is not necessary to wait until the bounds converge to each other too closely, which is the 

motivation for introducing an additional termination criterion on the lower bound in Section 

4.2.3. 

4.4. Numerical Example II: Longeron in Aircraft Structure 

In order to test the applicability of the proposed method to continuum structures, an aircraft 

longeron system is considered, which is a non-discrete structural system with a higher level of 

structural complexity compared to truss-type structures. A longeron is a thin strip of metal, wood, 

or carbon fiber, to which the skin of the aircraft is fastened, and has been widely used as a target 

structure of verification examples (Heida and Grooteman 1998, Gooteman 2008, Taylor 1998) 
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due to the following advantages: (1) Despite their structural complexity, it is easy to identify “hot 

spots” which have relatively high stresses and are generally located around fasteners; (2) Local 

failure of a fastener can be described as the event that its crack length exceeds a critical level; 

and (3) It is relatively simple to reflect the damage or failure of the identified member in the FE 

model. 

4.4.1. Structural configuration and loading 

Figure 4.6 shows an FE model of longeron system developed in ABAQUS® and the numbering 

choices of 40 fastener holes, which are considered as possible locations of crack failures. A big 

plate on the bottom is a part of the aircraft skin, and the assembled structure on the skin 

represents the longeron. Figure 4.7 displays how parts in the longeron are assembled. Two long 

T-shaped parts are overlapped in the middle, and then fastened with two small plates. It is 

assumed that the main material of the skin and longeron is aluminum. All the parts are attached 

together by 6.35mm (0.25-inch) diameter fasteners made of steel, i.e. D=6.35mm. The fasteners 

are simulated by spring elements. Around the fasteners, the edge of each part has 3×D distance 

from the center of the first fastener, and the pitch between fasteners has a 6×D distance. 

Assuming the longeron system is located in an upper fuselage under bending caused by vertical 

acceleration, the system is subjected to pure tension/compression loads, which cause an initial 

crack of around each fastener hole to grow from hole to the nearest edge. Figure 4.8 shows the 

load re-distribution caused by a local crack failure (circle). 
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Figure 4.6 Longeron FE model and fastener hole numbers 

 

 

Figure 4.7 Assembly of longeron FE model 
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Figure 4.8 Load re-distribution after a local failure by an FE simulation 

 

The loading intensity, the loading frequency (ν0), the inspection cycle (Ts), and the 

critical crack lengths are given as 206.8 Mpa, 15/hour, 2,000 hours, and 12.7mm, respectively. 

These parameters are assumed to be deterministic. The uncertainty in the loading amplitude is 

described by a random load-scale factor I as explained in the following section. 

4.4.2. Statistical parameters 

The statistical properties of the random variables are summarized in Table 4.2. The values of the 

statistical parameters in the table were determined based on a comprehensive literature survey 

performed in Chapter 3. In this example, one random variable I is used to describe the 

uncertainty in the loading intensity (i.e. the loading intensity 206.8 Mpa is scaled by this random 

variable), and each of 40 fastener holes has one random variable of a0. In addition, based on 

findings from preliminary deterministic FE analysis, hot spots are identified around all fastener 

holes on the two T-shaped parts. For that reason, two random variables are assigned to represent 
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C and m of each of the two parts. Therefore, a total of 45 random variables are used. All random 

variables are assumed to be statistically independent of each other except the following cases for 

which non-zero correlation coefficients are assigned: (1) between Paris equation parameters (C) 

of two different parts (correlation coefficient: 0.6); (2) between Paris equation parameters (m) of 

two different parts (correlation: 0.6); (3) between initial crack lengths (a0) of two different 

fastener holes (correlation: 0.6); (4) between C and m of the same parts (correlation: −0.97); and 

(5) between C and m of two different parts (correlation: −0.6). 

 

Random variables Mean c.o.v. 
Distribution 

type 
Number of 

random variables 
C  1.202×10−13 0.533 Lognormal 2 
m 3.0 0.02 Lognormal 2 

a0 (mm) 0.11 1.0 Exponential 40 
I 1.0 0.1 Lognormal 1 

 
Table 4.2 Statistical properties of random variables 

 

The correlation coefficients in cases (1), (2), (3), and (5) can be changed depending on 

how closely the manufacture processes of two different parts are related to each other. However, 

it is noted the strong negative correlation between C and m in case (4) has been presented in 

several studies reported in the literature (Yarema 1980, Borrego et al. 2001). 

4.4.3. Component and system failure definitions 

In this example, it is assumed that the section around a fastener hole fails when its crack length 

reaches the 80% of the distance between the fastener hole and the edge; however, one can use 

another component failure definition of interest. Upon the occurrence of such a section failure, 
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the corresponding crack is embodied in the FE model, which causes stress re-distribution as 

shown in Figure 4.8 (right).  

As an attempt to accurately identify system failure cases via FE analyses instead of 

introducing heuristic system failure criteria, in this example, it is assumed that the structural 

system fails if net-section yielding occurs around any hole in the system (i.e. the average stress 

of the area excluding a hole and a crack reaches the yielding stress limit). The yield strengths of 

aluminum and steel are given as 496.4 and 517.1 MPa, respectively. It should be noted that this 

is an example of system failure criteria that can be used during a B3 search. Like the component 

failure criteria, one can introduce a set of his/her own system failure criteria (e.g., the occurrence 

of a local yielding and the observation of a large displacement) based on the objectives and 

safety concerns of a target structure. 

4.4.4. Analysis results 

Figure 4.9 shows the updates of the upper and lower bounds made by the B3 method for 

continuum. With the new termination criteria described in Section 3.3, the lower and upper 

bounds are respectively 1.192×10-3 and 1.321×10-3 after only 156 FE simulations. With the old 

criteria (i.e. the first one only), however, both bounds are respectively 1.209×10-3 and 1.273×10-3 

for 406 FE simulations. In the previous multi-layer Daniels system and the numerical examples 

in Lee and Song (2011a), it was noted that the actual system risk was closer to the upper bound 

rather than the lower bound. Without no significant update in the upper bound, the old 

termination criteria requires 7 more days to perform 250 more FE simulations using a general 

personal computer (2.61 GHz CPU and 3.25 GB RAM). These additional costs are consumed 

mostly for identifying many negligible failure sequences and making slight updates on the lower 
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bound. This is because the longeron system has many failure sequences which have a similar 

level of likelihood. 

 

 

Figure 4.9 Bounds by the B3 method with old and new termination criteria 

 

In addition, the critical failure sequences are identified in the decreasing order of their 

likelihood. The eight most critical failure sequences, which can be grouped into four major 

patterns, are listed in Table 4.3. As shown in the table, we can observe various system failure 

sequences on different locations and materials. It is noteworthy that the results of the B3 analysis 

reflect the symmetry of the longeron, which can be easily confirmed from Figure 4.6. 
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Identified 
failure sequence

Probability by  
the B3 method (×10−3)

Yielding material Yielding location 

11 4.448 aluminum around #11 hole 
28 4.448 aluminum around #28 hole 

22 → 5 0.480 steel #35 fastener 
5 → 22 0.480 steel #35 fastener 

23 → 11 0.282 aluminum around #11 hole 
6 → 28 0.282 aluminum around #28 hole 

6 → 22 → 4 0.109 steel #35 fastener 
23 → 5 → 21 0.109 steel #35 fastener 

 
Table 4.3 Identified critical system failure sequences in the aircraft longeron structure 

 

Lastly, it should be also noted that the B3 method for truss is not applicable to this 

continuum problem, and MCS would not be a feasible option due to the computational cost. The 

minimum number of samples (Nδ) to achieve a target level of c.o.v.(δ) can be calculated by Nδ = 

(1-Pf)/(δ
2Pf) where Pf is the probability of the event of interest (Haldar and Mahadevan 2000). 

For 5% c.o.v., therefore, it would be required to explore 3×105 samples with a similar number of 

FE simulations. However, it is impossible to perform such a huge number of FE analyses even 

though each analysis takes only a few minutes. Furthermore, the computational cost will 

significantly increase if a lower level of probability is expected or one aims to achieve a high-

level of convergence (i.e. low c.o.v. value). On the other hand, the proposed method allows us to 

perform system reliability analysis for only 156 FE simulations. 

4.5. Summary 

In this chapter, the Branch-and-Bound (B&B) method employing system reliability Bounds 

(proposed in Chapter 3) is further developed for FE-based system reliability analysis of fatigue-

induced sequential failures of continuum structures. Despite merits over existing branch-and-
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bound approaches, the B3 method which was originally developed for truss is not readily 

applicable to continuum structures because of its limitations in (1) describing general stress 

distributions in limit-state formulations; (2) evaluating stress intensity range based on the crack 

length; and (3) dealing with slow convergence of the bounds for continuum. In order to 

overcome these limitations, (1) the limit-state function was modified to incorporate general stress 

distribution instead of using far-field stress assumption; (2) an external computer program such 

as AFGROW® was incorporated into the B3 computational framework to estimate the stress 

intensity range for the given stress distribution; and (3) the termination criteria of B3 analysis 

was modified to avoid performing unnecessary simulations that would make insignificant 

updates on the lower bound. The B3 method for continuum was demonstrated by a numerical 

example of multi-layer Daniels system, and the results were verified by the B3 method for truss 

and Monte Carlo simulation. Furthermore, the proposed method was applied to a numerical 

example of aircraft longeron system. It was successfully shown that the proposed method enable 

us to perform system reliability analysis of fatigue-induced sequential failures using a large-scale 

FE models. 
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5. INSPECTION-BASED SYSTEM RELIABILITY UPDATING FOR FATIGUE-

INDUCED SEQUENTIAL FAILURE 

 

As discussed in Chapters 3 and 4, fatigue-induced sequential failure is one of the major failure 

modes of a structural system, and an adequate level of structural redundancy should be provided 

to avoid the disastrous collapse of the structural system. Such structural safety can be guaranteed 

through not only proper structural design, but also structural maintenance such as inspection. For 

efficient risk-based maintenance, it is thus essential to estimate the reliability of a structure 

against fatigue-induced sequential failures and update the original reliability based on the 

observations from inspections. The development of the B3 method enables us to perform system 

reliability analysis of fatigue-induced sequential failures of discrete structures (Chapter 3) and 

continuum structures (Chapter 4). This chapter introduces a new system reliability updating 

method employing the B3 method. The new method allows us to update the original system-level 

reliability of a structure based on inspection results in an accurate and efficient way. 

5.1. Literature Review 

Much research effort has been dedicated to the inspection-based reliability updating of structures, 

and several approaches have been developed as a result. These approaches are categorized as 

“parameter updating” (or “model updating”) and “reliability updating” (Moan and Song 2000). 

In parameter updating, the distribution parameters of random variables (such as mean and 

standard deviation) are updated using the inspection results to reduce statistical uncertainties in 

the random variables by the additional information from the inspection. Updating statistical 

parameters naturally leads to updated reliability estimates of the structure. There has been 
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increasing interest in solving this challenging problem, especially by the use of a Bayesian 

approach (Box and Tiao 1992, Sivia 1996), and a comprehensive review of parameter updating 

(model updating) can be found in Beck and Au (2002). By contrast, in reliability updating, the 

new information obtained from inspections is used directly to update the original reliability 

which was calculated during the design process to the conditional probability given inspection 

results. In either approach, if the updated reliability reveals that the structure does not have an 

adequate level of safety, additional structural members or repair efforts can be introduced. 

The choice of an updating approach depends mainly on the nature of additional 

information available from inspections and the structural details. If the original statistical data of 

the random variables are not reliable and need to be more robust, they can be updated through 

inspection and the reliability can be further updated using the updated statistical parameters. The 

original reliability can be updated directly if the statistical parameters are reliable. In this thesis, 

the focus will be on reliability updating. 

There have been many studies about inspection-based reliability updating. Many of the 

previous studies focused on updating the original reliability of the structural members (Madsen 

1985, Jiao and Moan 1990, Zhao et al. 1994). In these studies, the sources of uncertainty in 

structural inspections were defined and the types of inspection event were classified. However, 

both initial reliability analysis and updating were limited to component events. In a variety of 

structures, however, the system aspects need to be considered for accurate risk estimation and 

inspection-based reliability updating (Moan and Song 2000). In particular, the structural 

reliability against fatigue-induced sequential failures needs to be analyzed at the system level as 

discussed in Chapters 3 and 4, and it is the same with inspection-based reliability updating. 

However, system reliability updating is a challenging task because the common or correlated 
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random variables involved with fatigue crack growth may result in significant statistical 

dependence among the failures of different structural members or among inspected and 

uninspected members. Furthermore, due to the nature of fatigue-induced sequential failure, each 

structural member generally contributes to multiple important failure sequences. 

It is noted that simulation techniques have been employed in some previous studies. 

Because there is a challenge in treating “reliability updating” using simulation techniques, most 

of the studies employing simulation techniques dealt with “parameter updating.” In order to 

overcome the challenge, Straub (2011) developed a method to make various reliability analysis 

methods including simulation techniques applicable to reliability updating. (The challenge and 

the method proposed by Straub (2011) will be discussed in more details, in Section 4.1.2.) In 

addition, Beck and Au (2002) also employed a simulation approach to obtain updated reliability 

estimates of a structure. These simulation-based-approaches are straightforward and help account 

for system effects in structural behavior and inspections. However, due to the nature of 

simulation-based techniques, they may require exceedingly large cost for converged results, 

especially when the level of the updated probability is low. 

The existing simulation- and non-simulation-based studies on reliability updating have a 

couple of important points in common. First, the original probability can be updated whether an 

inspection detects a crack or not, which allows for the full usage of the inspection results during 

the update. Second, reliability updating is affected by uncertainty in detection, which is often 

characterized by the probability of detection (POD). In reality, a crack may not be detected due 

to an error by the detection device. Of course, POD increases if a crack-detection device with a 

high resolution is used. Much effort has been devoted in various industries to evaluate the quality 

of non-destructive techniques (NDT) for inspection for cracks in metals, and the likelihood that a 
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crack is detected is expressed by a POD curve for the NDT used for inspection. A detailed 

literature review of POD can be found in Moan and Ayala-Uraga (2008). 

Since these studies on reliability updating methodologies, several further studies have 

been conducted on optimal inspection strategies. In general, strategies are categorized as risk 

based inspection (RBI) or cost based inspection (Soares 2000). According to Straub (2004), the 

research about RBI began in the early 1970’s, and quantitative inspection models were first 

investigated to update deterioration models using Bayes’ rule (Tang 1973). Yang and Trapp 

(1974) presented a sophisticated procedure that allowed for the computation of the probability of 

fatigue failure for aircraft under periodic inspections, taking into account the uncertainty in the 

inspection performance. Based on this procedure, Yang and Trapp (1975) introduced a method 

for optimizing inspection frequencies. A more detailed literature review can be found in Straub 

(2004). 

On the other hand, Toyoda-Makino and Tanaka (1998) proposed a cost-based optimal 

inspection strategy for random fatigue crack growth. Their results showed that using reliability as 

the only criterion was contrary to engineering reality, since structural system availability is being 

degraded while inspection cost is increasing. It is also considered that periodical inspections are 

not always effective for fatigue failure because the fatigue crack growth rate gradually 

accelerates as the fatigue damage grows. For these reasons, the authors proposed an optimal 

inspection schedule minimizing cost for fatigue failure. There have been several other studies 

about cost-based inspection planning, and a detailed review is presented in Soares (2000). 

Another noticeable point of previous studies about inspection-based reliability updating is 

the types of structure that have been considered. The most common are offshore structures 

because, in reality, the offshore industry often requires that the structural integrity of fixed 
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offshore platforms be ensured by periodic inspection. For this reason, several authors have dealt 

with offshore structures in their research, e.g., Wirching et al. (1990), Baker and Descamps 

(1999), and Jiao and Moan (1990). The authors first derived formulations describing fatigue-

induced failure to perform an initial fatigue reliability analysis and then discussed optimal 

inspection planning and maintenance strategies. In their formulations, however, the stress of 

structural members was mostly assumed to have uniform distribution because offshore platforms 

can be considered as truss. The approaches based on this assumption cannot deal with continuum 

structures that usually show non-uniform stress distribution. Although there have been several 

studies for other types of structures, such as aircraft structures by Yang and Trapp (1974), Itagaki 

and Ito (1998), and Deodatis et al. (1992), and bridges by Zhao et al. (1994), the formulations 

were all based on uniformly-distributed stress. 

In spite of the aforementioned research efforts about reliability updating and further 

applications, there have been few studies about fatigue-induced sequential failure. In addition, 

most of the existing studies focus on marine structures (Moan and Song 2000, Moan and Ayala-

Uraga 2008) and bridges (Zhao et al. 1994, Zhu and Wu 2011) modeled by discrete structural 

models, and there is a lack of research for other structural types such as continuum. These 

motivated the development of a new system reliability updating method for fatigue-induced 

sequential failure over truss and continuum. This chapter proposes a new system reliability 

updating method employing the B3 method.  
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5.2. Reliability Updating through Inspection Events 

In many previous studies about inspection-based reliability updating, researchers have 

constructed the basic formulations starting from conditional probability. First, let us describe the 

probability of an event as 

 i iP P E   (5.1)

where Ei stands for a general event of interest at the i-th structural member. Although a 

component event is introduced in Eq. (5.1) and used in the following derivation, it can be 

replaced by a system event if one aims to update the system reliability. The probability Pi in Eq. 

(5.1) is updated to the following conditional probability based on an inspection result at the j-th 

member: 

 , |i up i jP P E IE   (5.2)

where IEj stands for an inspection event at the j-th member. Reliability updating can be made 

whether the member of interest was actually inspected (i.e. i = j) or not (i.e. i ≠ j). 

Eq. (5.2) can be extended to utilize multiple available inspection results for reliability 

updating. The updated probability at the i-th member is 

, |i up i j k lP P E IE IE IE         (5.3)

where IEj, IEk, …, IEl denote the inspection events observed at multiple structural members. The 

impact of using several inspection events to reliability updating will be discussed in the 

following numerical examples. 
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Inspection results are normally categorized into two types of events: “equality” and 

“inequality” types, depending on whether a crack is detected or not. Since inspections are 

generally made at multiple locations, there are three possible combinations of the inspection 

results, inequality, equality, and mixed cases (Jiao and Moan 1990), as explained in detail below. 

5.2.1. Inequality case 

Suppose no crack is detected from inspection at single or multiple members. There are two 

possible explanations for the inspection result. First, a crack is too small to be detected. Second, 

although a relatively large crack actually exists at the inspected location, it may be missed due to 

human error or the limitations of the detecting device. In either case, this event can be described 

as an “inequality” event, i.e. 

   ,: 0d

j j no I jIE g T T  X X   (5.4)

where X denotes the vector of random variables including detectable crack size, Tj
d denotes the 

required time for the crack growth to a detectable crack size at the j-th member, and TI denotes 

the time that the member is inspected. The detectable crack size is related to a specific inspection 

method and modeled as a random variable reflecting the actual probability of detection (POD) 

curve. Among several stochastic formulations of POD available, numerical examples in this 

study use the exponential distribution, which is commonly used in the literature (Moan and Song 

2000). 

The conditional probability given the event in Eq. (5.4), i.e. single inequality event, may 

be calculated as  
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   
 

  
  
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,

0
|

0

i j noi j
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j j no
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P IE P g
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

X

X


  (5.5)

Likewise, the conditional probability given multiple inequality events is calculated as 

   
 

     
     
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P g g

  
    

 

     
     

X X

X X

  
 

 

  

 

  (5.6)

5.2.2. Equality case 

If a crack is detected and measured, this inspection event is described as an “equality” event and 

formulated as 

   ,: 0m

j j yes I jIE g T T  X X  (5.7)

where Tj
m denotes the required time for the crack growth to the measured crack size at the j-th 

member. In the equation, it should be noted that Tj
m is equal to the inspection time TI, which 

makes the formulation different from the limit-state formulations in Eq. (5.4). 

The conditional probability given the equality event in Eq. (5.7) is calculated as 

   
 

  
 

,

,

,

0
|

0

i j yesi j

i up i j

j j yes

P E gP E IE
P P E IE

P IE P g

    
  

X

X


 (5.8)

The updated probability Pi,up in Eq. (5.8) cannot be easily calculated using existing structural 

reliability methods because both numerator and denominator are close to zero. In order to 
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facilitate the calculation, the following alternative formulation is used. First, Eq. (5.8) can be 

alternatively described as 

  
  

,

, 0
,

0
lim

0

i j yes

i up

j yes

P E g
P

P g

    
  

X

X


 (5.9)

In the equation, infinitesimal is θ introduced to eliminate the equal signs in Eq. (5.8). Eq. (5.9) is 

equal to 

     
     

, ,

, 0
, ,

0
lim

0

i j yes i j yes

i up

j yes j yes

P E g P E g
P

P g P g

         
   

X X

X X

 
 (5.10)

Finally, Eq. (5.10) can be transformed to the ratio of the sensitivities with respect to the 

parameter θ, i.e. 

  
  

,

,

,
0

0

0

i j yes

i up

j yes

P E g
P

P g


               

X

X


 (5.11)

This formulation is the same as shown in Moan and Song (2000), and the updated probability 

can be calculated via numerical differentiation of the results of reliability analysis performed by 

use of an existing reliability analysis method. 

Likewise, the conditional probability given multiple equality events is formulated as 

follows. 
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  (5.12)

The equation is transformed to the ratio of sensitivities with respect to the parameters θ1, …, θn, 

that is,  

     

     
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, 1 ,

1
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            
            

X X

X X

  

 
 (5.13)

where n is the number of the observed “equality” events. The updated probability Pi,up in Eq. 

(5.13) can also be calculated using the n-th order numerical differentiation. However, this 

equation needs to be used with a caution, because such a high-order numerical differentiation can 

create significant error unless the probability calculations in numerator and denominator are 

extremely accurate. This may give rise to the research needs for new methods to evaluate 

component and system reliability estimate more precisely than the existing methods. However, 

this is out of the scope of this thesis, and multiple equality events will not be handled in the 

numerical examples. 

5.2.3. Mixed case 

In most practical situations, inspections are made at multiple locations at a given time, which 

often results in a mixed set of inequality and equality events. To derive the formulation for such 



119 
 

“mixed cases,” the simplest case involved with single inequality event and single equality event 

is first considered. From Eq. (5.3), the updated failure probability is formulated as 

, |i up i j kP P E IE IE      (5.14)

where IEj and IEk denote the inequality event and equality event, respectively. Using Eqs. (5.5) 

and (5.8), Eq. (5.14) is further derived as follows. 

 
 
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X X

  
 

  (5.15)

Based on the same derivation as Eqs. (5.8) - (5.11), Eq. (5.15) can be transformed to 
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 (5.16)

Finally, this formulation can be generalized for a mixed case involved with multiple inequality 

and equality inspection events as 
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 (5.17)
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where n is the number of equality events. Furthermore, it can be easily seen that Eq. (5.17) is the 

combination of Eqs. (5.6) and (5.13). For the aforementioned difficulty in high order numerical 

differentiation, the mixed case with multiple equality events will not be discussed in this thesis. 

5.3. System Reliability Updating Method Employing B3 Method 

To update the probability of a system failure caused by fatigue-induced sequential failures based 

on inspection results, a system reliability updating method is developed using the B3 method. As 

explained in Chapters 3 and 4, the B3 method identifies system failure and non-failure cases (i.e. 

black and white nodes in the event tree, see Figure 3.1) as disjoint events and obtains the upper 

and lower bounds of system failure probability. From Eq. (3.17), the conditional probability of 

the system failure is derived as the sum of conditional probabilities of the failure sequences 

given inspection events, i.e. 

 
1 1

1

( )
( | ) = ( | )

( ) ( )

fs
fs

fs

N N

i Ni
i i

sys i
i

P C IE P C IE
P E IE P C IE

P IE P IE

 



 
  
  




 
 

(5.18)

where IE denotes an equality or inequality event observed during the inspection or the 

intersection of multiple observed events. Therefore, one can obtain bounds on the updated 

system failure probability by replacing the probabilities of the failure and non-failure cases 

identified by the B3 analysis by the updated ones.  

 Therefore, the system reliability updating is a two-step procedure. First, B3 analysis is 

performed to identify system failure and non-failure cases as well as to calculate upper and lower 

bounds on system failure probability. Second, the probabilities of the identified system failure 

cases (black nodes in the event tree) and non-failure cases (white nodes) are updated using Eqs. 
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(5.6), (5.13), and (5.17), and the updated upper and lower bounds on the updated system 

reliability are obtained. For example, Figure 5.1 shows the event tree in Figure 3.1 after updated 

by a given inspection event IEi. 

 

 

Figure 5.1 Probability updates for failure and non-failure cases 

 

The mixed nodes (i.e. grey nodes) do not need to be updated because those are not used 

to compute the bounds, which helps achieve the updated bounds efficiently. Another advantage 

of this method is that the second step does not require additional structural analyses (or FE 

simulations). However, it is also important to note that the system failure sequences identified as 

critical ones for the original system failure probability may not be critical for the updated 
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(conditional) failure probability. Therefore, the bounds may get wider during the updating 

process. 

For inequality cases, using Eqs. (3.4) and (4.1), the required time for the crack growth to 

a detectable crack size at the j-th member (Tj
d) in Eq. (5.4) can be derived as 

 
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 (5.19)

where ad is the detectable crack size during the inspection process. 

For truss and continuum structures, therefore, the limit-state function for an inequality 

event in Eq. (5.4) is described as 
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Likewise, for equality cases, the limit-state function in Eq. (5.7) is described as 
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where am is the measured crack size and εm is the measuring error. Lastly, for mixed case, Eq. 

(5.17) can be used with the Eqs. (5.20) and (5.21). The proposed method of system reliability 

updating for fatigue-induced sequential failures is tested and verified by the multi-layer Daniels 

system and aircraft longeron structure, both of which were already introduced in Chapters 3 and 

4. 

5.4. Numerical Example I: Multi-layer Daniels System 

5.4.1. Problem description 

In order to test the proposed method, a multi-layer Daniels system is considered as the first 

numerical example. Most of the details are exactly same as for the one in Section 4.3. Table 5.1 

lists the hypothetical inspection scenarios investigated in the numerical example. 

 

Case 
Scenario 
number 

Scenario description 

Inequality 

1 
No crack is detected at member 1  
(TI = 2,000 hours & mean of ad = 1.0 mm). 

2 
No crack is detected at member 1  
(TI = 2,000 hours & mean of ad = 0.5 mm). 

3 
No crack is detected at member 1  
(TI = 4,000 hours & mean of ad = 1.0 mm). 

4 
No crack is detected anywhere  
(TI = 2,000 hours & mean of ad = 1.0 mm). 

Equality 

5 0.1mm crack is found at member 1 (TI = 2,000 hours). 
6 0.3mm crack is found at member 1 (TI = 2,000 hours). 
7 0.5mm crack is found at member 1 (TI = 2,000 hours). 
8 0.5mm crack is found at member 1 (TI = 4,000 hours). 

Mixed 9 
0.5mm crack is found at member 1, but nowhere else  
(TI = 2,000 hours & mean of ad = 1.0 mm). 

 
Table 5.1 Inspection scenarios for generalized Daniels system 
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5.4.2. Statistical properties 

As in Section 4.3, for the sake of simplicity, it is assumed that all the random variables are 

statistically independent. Their statistical properties including detectable crack size (ad) and 

measuring error (εm) are shown in Table 5.2. The statistical information of the new random 

variables is determined based on a literature review (Moan and Song 2000). 

 

Random variables Mean c.o.v. 
Distribution 

type 
Number of 

random variables 
C 1.202×10−13 0.533 Lognormal 6 
m 3.0 0.02 Lognormal 6 

a0 (mm) 0.11 1.0 Exponential 6 

ad (mm) 
(inequality cases) 

1.0 
(0.5 for Scenario 2) 

1.0 Exponential
Number of 
inspected 
members 

εm (mm) 
crack sizing error 
(equality cases) 

0 
0.1 

(standard 
deviation)

Normal 
Number of 
inspections 

I 1.0 0.1 Lognormal 1 
 

Table 5.2 Statistical properties of random variables 

 

It should be noted that the detectable crack size (ad) and the crack sizing error (εm) in 

Table 5.2 are used only for inequality and equality cases, respectively, which means each 

instance of crack detection or non-detection brings an additional random variable. In mixed cases, 

both of the random variables are introduced, and the number of them is the same as the number 

of inspections regardless of crack-detection. 

5.4.3. Analysis results 

For a verification purpose, the updated reliability by the proposed method is compared to that by 

Monte Carlo simulation (MCS). For inequality case, it is straightforward to compute the updated 
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reliability using existing simulation techniques. However, if one or more observations are of the 

equality type, both numerator and denominator in Eq. (5.7) are very close to zero and the 

updated reliability cannot be evaluated directly using MCS. In order to overcome this challenge, 

a new method using a likelihood function has been developed (Straub 2011). In the method, 

equality information is transformed into inequality information, which enables reliability 

updating by use of a general MCS technique. 

As explained in Section 5.2.2, for equality events, the reliability updating based on the 

proposed method has to be done carefully because it requires numerical differentiation using 

infinitesimal θ and the corresponding result is often sensitive to θ. In the numerical examples of 

this thesis, it was decided through numerical tests to use one percent of the limit-state function 

(i.e. gj,yes(X) in Eq. (5.17)) evaluated with the mean values of random variables as θ. Figure 5.2 

shows the probabilities at multiple time points from the B3 method and MCS. As shown in the 

figure, the failure probability increases with the increasing service time of the structure, and the 

results from the B3 method and MCS match well. 

 

 

Figure 5.2 Original system failure probabilities by B3 method and MCS 
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Figure 5.3 Updating results by the proposed method and MCS for inequality cases (Scenarios 

1-4 in Table 5.1) 
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Figure 5.4 Updating results by the proposed method and MCS for equality cases (Scenarios 5-

8 in Table 5.1) 
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Figure 5.5 Updating results by the proposed method and MCS for mixed case (Scenario 9 in 

Table 5.1) 

 

Figures 5.3-5 compare the results by the proposed method to those by MCS. As shown in 

the figures, the updated failure probabilities estimated by the proposed method and MCS show 

good agreement. 

Next, the updated probabilities of different scenarios are compared with each other to 

investigate the impact of various inspection conditions on the reliability updating, such as the 

number of inspections, crack detecting resolution, an inspection interval, and measured crack 

length. As observed in Chapters 3 and 4, the actual system failure probability is fairly close to 

the upper bound from B3 analysis. Therefore, only the upper bounds are provided in the plots to 

facilitate clear comparison. 

 



129 
 

 

Figure 5.6 Comparison of updated probabilities for inequality cases (Scenarios 1-4 in Table 

5.1) 

 

Figure 5.6 compares the original system failure probability and the probabilities updated 

by inequality cases (Scenarios 1-4). In Scenario 1, the reliability updating decreases the failure 

probability because no crack has been detected even after 2,000 hours. The updated failure 

probability decreases further in Scenario 2 because no crack is detected even when a better 

crack-detecting device is used (with a smaller mean of detectable crack size ad). In Scenario 3, 

no crack is detected even though an inspection is made at a later time (4,000 hours) than in 
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Scenario 1, which further reduces the system failure probability. In Scenario 4, it is assumed that 

crack is not observed at any of the members. Since the structure consists of six members, the 

inspection event described as the intersection of six inequality events, as shown in Eq. (5.6). 

Compared to Scenario 1, we have five additional signs indicating the better safety of the 

structure, which further reduces the system failure probability as shown in Figure 5.6. 

To further investigate the performance of the proposed method, the update of the 

probability of each system failure sequence in Scenario 1 is shown in Table 5.3. The original 

probabilities are the same as those in Table 4.1. 

 

Failure 
sequence 

Original probability 
(×10−3) 

Updated probability (×10−3) 
Proposed method MCS 

1 4.871 0.196 0.188 
2 → 3 1.332 1.299 1.281 
3 → 2 1.332 1.299 1.320 

4 → 5 → 6 0.294 0.285 0.305 
4 → 6 → 5 0.294 0.285 0.311 
5 → 4 → 6 0.294 0.285 0.263 
5 → 6 → 4 0.294 0.285 0.283 
6 → 4 → 5 0.294 0.285 0.279 
6 → 5 → 4 0.294 0.285 0.293 

 
Table 5.3 Updated probabilities of critical system failure sequences in Scenario 1 (in Table 

5.1) 

 

Since the inspection was made at member 1 only and no crack was found, the probability 

of the failure sequence including member 1 decrease significantly while the others experience 

small updates. It is noted that the reliability of uninspected members also can be updated, 

because they are correlated with the inspected ones (i.e. member 1 in this case) by sharing 

common random variables in their limit-state functions. 
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Figure 5.7 Comparison of updated probabilities for equality cases (Scenarios 5-8 in Table 5.1) 

 

For equality cases, Figure 5.7 shows the updated failure probabilities of Scenarios 5-8. 

From Scenario 5 to Scenario 7, the measured crack size increases from 0.1mm to 0.5mm. It is 

clearly seen that the longer crack size is measured, the more likely the system is to fail. In 

Scenarios 8, the same size of crack as Scenario 7 is measured later time, which reduces the 

updated system failure probability. 
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Failure 
sequence 

Original probability 
(×10−3) 

Updated probability (×10−3) 
Proposed method MCS 

1 4.871 0.062 0.000 
2 → 3 1.332 1.220 1.285 
3 → 2 1.332 1.220 1.266 

4 → 5 → 6 0.294 0.265 0.288 
4 → 6 → 5 0.294 0.265 0.280 
5 → 4 → 6 0.294 0.265 0.244 
5 → 6 → 4 0.294 0.265 0.231 
6 → 4 → 5 0.294 0.265 0.248 
6 → 5 → 4 0.294 0.265 0.243 

 
Table 5.4 Updated probabilities of critical system failure sequences in Scenario 5 (in Table 

5.1) 

 

Table 5.4 shows the updated probabilities of the critical failure sequences in Scenario 5. 

As observed in the inequality scenarios, the probabilities of the failure sequences involving 

member 1 significantly decrease in Scenario 5, and the other probabilities also decrease slightly. 

This is because the observed crack length (0.1mm) is small considering the inspection time 

(2,000 hours), and the failures of the inspected and uninspected members are correlated through 

common random variables in the limit-state functions. It is also noteworthy that the proposed 

reliability updating method show relative errors around 5-10%. This is because of the numerical 

differentiation that is introduced to calculate the derivative terms in Eq. (5.11).  

As previously stated, traditional reliability updating methods employing numerical 

differentiation can cause errors, even in a simple reliability problem whose limit-state function is 

expressed analytically with a few random and deterministic variables (Straub 2011). In this thesis, 

the First-Order Reliability Method (FORM) and Second-order Reliability Method (SORM) are 

employed for component reliability analysis. Both of them are widely-used reliability analysis 

methods that can describe the statistical dependence between component events effectively. 
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However, they are based on the first- and second-order approximations of a limit-state surface. 

This concept may cause some errors in component reliability analysis, and the error may be 

propagated to the system reliability analysis. The errors are due to the complexity of the 

reliability problem, which is characterized as follows: (1) system failure is defined by a large 

number of failure sequences; (2) many random variables are non-normal; and (3) limit-state 

functions are nonlinear. As shown in the results of the updated probabilities, the error is not 

critical for inequality cases. On the contrary, the error may increase to a noticeable level in the 

equality cases, whose updated probabilities can be sensitive numerically. It is necessary to 

develop new component and system reliability analysis methods that can overcome this 

challenge and provide more precise component and system reliability estimates than the existing 

methods. However, it is out of the scope of this research. 
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Figure 5.8 Comparison of updated probabilities for mixed case (Scenario 9 in Table 5.1) 

 

Lastly, Figure 5.8 compares the updated probabilities for Scenarios 7 and 9. It is seen that 

the updated failure probability becomes much smaller in Scenario 9 than in Scenario 7 even 

though the same size of crack was observed at the same inspection time point. This is due to the 

additional inequality events, “no more cracks are detected at other locations (i.e. members 2-6)” 

observed in the mixed case for Scenario 9.  
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5.5. Numerical Example II: Longeron in Aircraft Structure 

5.5.1. Problem description 

As another numerical example to test the proposed system reliability updating method, the 

aircraft longeron system in Chapter 4 is considered. Most of the details are the same as those in 

Section 4.4. Table 5.5 lists the inspection scenarios considered for reliability updating. 

 

Case 
Scenario 
number 

Scenario description 

Inequality 

1 
No crack is detected at member 5  
(TI = 2,000 hours & mean of ad = 1.0 mm). 

2 
No crack is detected at member 5  
(TI = 2,000 hours & mean of ad = 0.5 mm). 

3 
No crack is detected at member 5 
(TI = 4,000 hours & mean of ad = 1.0 mm). 

4 
No crack is detected anywhere 
(TI = 2,000 hours & mean of ad = 1.0 mm). 

Equality 

5 0.1mm crack is found at member 5 (TI = 2,000 hours). 
6 0.3mm crack is found at member 5 (TI = 2,000 hours). 
7 0.5mm crack is found at member 5 (TI = 2,000 hours). 
8 0.5mm crack is found at member 5 (TI = 4,000 hours). 

Mixed 9 
0.5mm crack is found at member 5, but nowhere else  
(TI = 2,000 hours & mean of ad = 1.0 mm). 

 
Table 5.5 Inspection scenarios for longeron system 

 

5.5.2. Statistical properties 

The statistical properties of the random variables given in Table 5.2 are used for this example. 

Unlike the Daniels system example, non-zero correlation coefficients are assigned for the 

following cases to make the example realistic: (1) between Paris equation parameters (C) of two 

different parts (correlation coefficient: 0.6); (2) between Paris equation parameters (m) of two 
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different parts (correlation: 0.6); (3) between initial crack lengths (a0) of two different fastener 

holes (correlation: 0.6); (4) between C and m of the same parts (correlation: −0.97); (5) between 

C and m of two different parts (correlation: −0.6); and (6) between the same kind of inspections 

(correlation: 0.6). In the other cases, it is assumed that the random variables are independent. 

The correlation coefficients in cases (1) through (5) are the same as for Section 4.4, and 

(6) represents the correlation between inspections at multiple locations with the same device. The 

correlation coefficients in cases (1), (2), (3), (5), and (6) can change depending on how closely 

the manufacturing and inspection processes of two different parts are related to each other. 

Lastly, the strong negative correlation between C and m in case (4) is based on a literature review 

(Yarema 1980, Borrego et al. 2001), as discussed in Section 4.4.2. 

5.5.3. Analysis results 

Let us compare the updated probabilities from the scenarios given in Table 5.5. The overall trend 

in the updated probabilities is similar to that of the Daniels system example in Section 5.4. First, 

as shown in Figure 5.9, the updated probability in Scenario 1 is smaller than the original 

probability because no crack is detected. In addition, the updated probability decreases further in 

Scenarios 2 and 3, in which a better crack-detection device and a later inspection are respectively 

assumed. In Scenario 4, it is assumed that no cracks are detected at any locations. Since the 

longeron structure has a total of 40 possible cracking locations, the inspection event includes 40 

inequality cases. Obviously, the inspection result indicates that the structure is much more 

reliable than Scenario 1, as shown in the figure. 
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Figure 5.9 Comparison of updated probabilities for inequality cases (Scenarios 1-4 in Table 

5.5) 
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Figure 5.10 Comparison of updated probabilities for equality cases (Scenarios 5-8 in Table 5.5) 

 

For equality cases, Figure 5.10 shows the updated failure probabilities for Scenarios 5-8. 

The updated probabilities in Scenarios 5-7 show how they increase with the increasing measured 

size of a crack. When comparing the results from Scenarios 7 and 8, it is observed that the 

updated probability for Scenario 8 is much smaller, which is because the same size crack is 

detected from an inspection at a later time. 
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Figure 5.11 Comparison of updated probabilities for mixed case (Scenario 9 in Table 5.5) 

 

Lastly, Figure 5.11 shows the updated probabilities for Scenarios 7 and 9. It turns out that 

the updated failure probability is much smaller compared for Scenario 9. The reason is, although 

a large crack is detected at member 1, no more cracks are detected at other locations (i.e. 

members 1-40 except for 5). 

In these reliability update analyses, it is noteworthy that it took only a few minutes to 

perform the reliability updating in each scenario (using a general personal computer with 2.61 

GHz CPU and 3.25 GB RAM), which is one of the powerful benefits from the proposed method 
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in efficiency. This is possible because, as previously stated, the reliability updating step is based 

on the results of the prior B3 analysis and requires updating the probabilities of system failure 

and non-failure cases only without new FE simulations or B3 analysis. This allows for significant 

saving in computational time because each FE analysis in this example takes several minutes. 

5.6. Summary 

This chapter introduces a new reliability updating method for fatigue-induced sequential failures, 

by integrating the B3 method with existing formulations of reliability updating. For effective 

risk-based maintenance, it is essential to estimate the reliability of a structure against fatigue-

induced sequential failures and update the original reliability based on the observations from 

inspections. The proposed reliability updating is a two-step procedure: 1) B3 analysis is 

performed to identify system failure and non-failure cases as well as calculate upper and lower 

bounds on system failure probability; and 2) the probabilities of the identified system failure and 

non-failure cases are updated to obtain the updated upper and lower bounds. Since the B3 

analysis identifies most critical failure and non-failure cases, the updated probabilities 

conditioned on inspection events also provide accurately-updated upper and lower bounds on 

system failure probability with a reasonable gap. In addition, the new method allows us to update 

the original probability efficiently because it reuses the results of the B3 analysis. The proposed 

method was demonstrated by two numerical examples, multi-layer Daniels system and aircraft 

longeron structure. In the first example, the results from the proposed method were compared 

with the ones from Monte Carlo simulation, which showed that the proposed method enabled us 

to obtain accurately-updated reliability estimates of truss and continuum subject to the risk of 

fatigue-induced sequential failures. In addition, the impact of various inspection conditions on 



141 
 

the reliability updating was investigated in both of the numerical examples, such as the number 

of inspections, crack detecting resolution, inspection interval, and measured crack length. The 

investigation confirmed that the method allows for reliability updating under various inspection 

scenarios. Lastly, especially in the aircraft longeron example, it is noteworthy that it took only a 

few minutes to obtain the updated reliability bounds in each scenario because the reliability 

updating method does not require new system reliability analysis or FE simulations. 
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6. CONCLUSIONS 

6.1. Summary of Major Findings 

This thesis developed novel methods for finite-element-based system reliability analysis and 

updating of structures subject to fatigue-induced sequential failures. As the first step, a 

framework for finite element system reliability analysis (FE-SRA) was proposed by integrating 

FE simulation with the matrix-based system reliability (MSR) method. In addition, a new 

Branch-and-Bound method employing system reliability Bounds (termed the B3 method) was 

developed to perform system reliability analysis of fatigue-induced sequential failures of truss 

structures while accounting for load re-distribution. The method was further developed for 

applications to continuum structures. Lastly, a new inspection-based system reliability updating 

method was developed based on the use of the B3 method. The proposed methods were applied 

to several numerical examples of discrete and continuum structures and successfully 

demonstrated. This study provided the following major findings: 

 As a computational platform of the proposed FE-SRA framework, an interface code, 

FERUM-ABAQUS, was developed. In the framework, the reliability analysis package 

FERUM repeatedly calls ABAQUS® to obtain structural responses during a component 

reliability analysis, and a system reliability analysis using the matrix-based system 

reliability (MSR) method is performed by use of the results of the individual reliability 

analyses in the component level. The proposed framework allows us to compute the 

probabilities of general system events and their sensitivities with respect to design 

parameters based on the results of the component-level FE reliability analyses. Also, 

FERUM-ABAQUS is a more versatile computing platform than other existing FE-RA 
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software because it employs FERUM and ABAQUS®, both of which are respectively 

specialized in reliability and FE analyses. Finally, the proposed framework and FERUM-

ABAQUS were successfully demonstrated through numerical examples of an aircraft 

wing torque box and a bridge pylon. 

 The B3 method can estimate the probability of system failure caused by fatigue-induced 

sequential failures by identifying critical system failure sequences efficiently and 

accurately. Due to the proposed disjoint cut-set formulation employing a recursive 

formulation of limit-states and systematic search procedure, the B3 method can identify 

critical sequences of fatigue-induced failures causing a system failure in the decreasing 

order of their likelihood. Since the conventional branch-and-bound approaches 

employing non-disjoint cut-set provide only upper bound, there is a risk of 

underestimating the actual system failure probability. However, the proposed method 

provides both lower and upper bounds on the system failure probability while the size of 

the updates on each bound is diminishing monotonically. Every structural analysis or 

finite element simulation performed during the search contributes to narrowing the 

bounds. This significantly reduces the computational time required for accurate results 

especially when computational cost for structural analyses is dominant. The updated 

bounds provide reasonable criteria for terminating a branch-and-bound search without 

missing critical sequences. After a demonstration by a multi-layer Daniels system, the 

method was tested by a three-dimensional offshore structure with 66 members. The 

results by the B3 method were verified by crude Monte Carlo simulations. The merits of 

the proposed approach were successfully demonstrated through comparison with the 

results by a conventional branch-and-bound approach. 
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 The B3 method was further developed for FE-based system reliability analysis of fatigue-

induced sequential failures of continuum structures. Despite merits over existing branch-

and-bound approaches, the B3 method which was originally developed for truss is not 

readily applicable to continuum structures because of its limitations in (1) describing 

general stress distributions in limit-state formulations; (2) evaluating stress intensity 

range based on the crack length; and (3) dealing with slow convergence of the bounds for 

continuum. In order to overcome these limitations, (1) the limit-state function was 

modified to incorporate general stress distribution instead of using far-field stress 

assumption; (2) an external computer program such as AFGROW® was incorporated 

into the B3 computational framework to estimate the stress intensity range for the given 

stress distribution; and (3) the termination criteria of B3 analysis was modified to avoid 

performing unnecessary simulations that would make insignificant updates on the lower 

bound. The B3 method for continuum was demonstrated by a numerical example of 

multi-layer Daniels system, and the results were verified by the B3 method for truss and 

Monte Carlo simulation. Furthermore, the proposed method was applied to a numerical 

example of aircraft longeron system. In the example, first of all, it was proved that the 

termination criteria newly introduced for the B3 method for continuum enabled us to 

reduce computational and time costs significantly, by avoiding identifying many 

negligible failure sequences. In addition, it was shown that the proposed method enable 

us to calculate the system-level risk of fatigue-induced sequential failures using a large-

scale FE models, efficiently and accurately. Lastly, the method can identify the most 

critical failure sequences in the decreasing order of their probabilities.  
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 The new method for system reliability updating enables us to update the original 

structural reliability based on inspection results in an accurate and efficient way. The 

reliability updating procedure is two folds: 1) B3 analysis is performed to identify system 

failure and non-failure cases as well as calculate upper and lower bounds on system 

failure probability; and 2) the probabilities of the identified system failure and non-failure 

cases are updated to obtain the updated upper and lower bounds. Since the B3 analysis 

identifies most critical failure and non-failure cases, their updated probabilities 

conditioned on inspection events also provide accurately-updated upper and lower 

bounds on system failure probability with a reasonable gap. In addition, the new method 

allows us to update the original probability efficiently because it reuses the results of the 

B3 analysis. The proposed method was first applied to a numerical example of multi-layer 

Daniels system, and the results were verified by Monte Carlo simulation (MCS). The 

verification using MCS was not an easy task if any observations were of the equality type. 

In order to overcome this challenge, a new method (Straub 2011) using a likelihood 

function has been employed. In this example, first of all, it was successfully shown that 

the proposed method updated the original probabilities accurately for various inspection 

scenarios. In addition, it was observed that the probabilities of the failure sequences 

involved with the structural member where no crack or a small crack was detected 

decreased significantly. On the other hand, the probabilities of the failure sequences 

involved with the structural member having a large crack increased. However, it could 

not provide perfectly accurate results, with relative errors around 5-10%, when the 

inspection results included equality information. The proposed method was also applied 

to an example of aircraft longeron, and it was successfully shown that the method could 
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perform system reliability updating of fatigue-induced sequential failures for various 

inspection scenarios, efficiently and accurately. 
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6.2. Future Research Topics 

The proposed methods can be further developed to further improve accuracy and efficiency of 

reliability analysis and updating as well as applicability to complex structural systems in practice. 

The following future research topics are suggested: 

 Apply the proposed FE-SRA framework and computational platform FERUM-ABAQUS 

to structural reliability problems in consideration of the nonlinear behavior of structures. 

In reality, the reliability of structural systems should be estimated by considering their 

nonlinear properties in both material and geometry. However, the current framework and 

computational platform were tested by linear elastic problems only. The developed 

framework and platform have potentials of dealing with system-level risk assessment of 

nonlinear problems. 

 Perform system reliability analysis of sequential failures induced by extreme loading. 

Yielding failure caused by extreme environmental loading is another important failure 

mode of structures, and sequential failures resulting in an entire system collapse may 

occur due to both fatigue and yielding. However, the current B3 method is able to deal 

with fatigue-induced sequential failures only. Therefore, the method needs to be further 

developed such that it can perform system reliability analysis of sequential failures 

caused by yielding. 

 Perform a parametric study about the approximation introduced to the B3 method for 

continuum. Although it was shown in Section 4.3 that the approximation introduced in 

the B3 method for continuum did not have a significant impact on the reliability analysis 

results in the numerical example, it is still necessary to investigate more cases in various 
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conditions: for example, different geometric functions from the one in Eq. (4.12) can be 

employed. 

 Further develop the B3 method so that it can re-define possible cracking 

locations/members. Currently, the B3 method requires defining possible cracking 

locations before the analysis. In many nonlinear structural systems, however, it is hard to 

pre-define the cracking locations because the locations may vary with the prior local 

failures during a sequential failure. If the B3 method can automatically re-define possible 

failure locations in each damage status (e.g., from the stress distribution), it will allow us 

to solve nonlinear structural systems more accurately. 

 In reality, if inspection results indicate that the target structure is damaged to have 

insufficient level of safety, the damaged structural members may be repaired or replaced. 

For reliability-based inspection planning and structural maintenance, the reliability of the 

structure should be updated again after such maintenance efforts. However, the current B3 

method cannot update the structural reliability based on such changes. There have been 

some studies about such post-repairing reliability updating methods which are applicable 

to simple structures (Moan and Song 2000). Inspired by the existing research, the B3 

method can be expanded to estimate how the reliability of a damaged structure is updated 

by repairing. Based on the research, optimized inspection planning or risk based 

inspection (RBI) can also be suggested. 
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