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Abstract

Fear of increasing prices and concern about climate change are motivating residential power con-

servation efforts. We investigate the effectiveness of several unsupervised disaggregation methods

on low frequency power measurements collected in real homes. Specifically, we consider variants of

the factorial hidden Markov model. Our results indicate that a conditional factorial hidden semi-

Markov model, which integrates additional features related to when and how appliances are used

in the home and more accurately represents the power use of individual appliances, outperforms

the other unsupervised disaggregation methods. Our results show that unsupervised techniques

can provide per-appliance power usage information in a non-invasive manner, which is ideal for

enabling power conservation efforts.
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Chapter 1

Introduction

Concern over global climate change has motivated efforts to reduce the emissions of CO2 and

other GHGs (greenhouse gases). Energy use in the residential sector is a significant contributor of

GHGs [48]. For example, the residential sector is responsible for over one third of all electricity

use in the United States [2]. While information is available on the typical use of electricity in

homes (e.g., space heating, space cooling, water heating and lighting account for about 50% of

all residential electricity use [3]), it has not enabled most home owners to reduce their electricity

consumption.

Two typical approaches to conserving energy are efficiency and curtailment [1]. The former

involves one-time actions (e.g., upgrading to more energy-efficient appliances) that have a higher

cost. The latter requires continuous participation (e.g., using less heating/cooling on a daily basis),

with a smaller incremental cost. There are two general issues that inhibit consumers from applying

these techniques. First, energy use is a very abstract concept to most consumers [23, 8]. Second,

consumers are often mistaken about how energy is used in the home, and thus which actions would

be most beneficial for conserving energy [14, 4, 37]. Numerous studies have identified the attributes

of a solution to these issues: personalized, frequent, continuous, credible, clear and concise feedback

that provides an appliance-specific breakdown of how energy is used in the home [5, 18, 7, 1, 10, 12,

14, 37]. Field studies showed that with proper feedback, residential electricity and/or gas use could

be reduced by up to 50% [13], although typical savings were in the 9%-20% range [41, 19, 44, 1, 46].

Improved feedback can also help curtail peak use by up to 50% [26, 43].

Much of this research occurred decades ago, in response to the oil crisis in the 1970s [38]. At

that time, computer hardware technology was not as advanced, so providing frequent feedback to

home owners cost effectively seemed infeasible [18]. As the crisis subsided (and prices dropped),

the financial incentive to conserve diminished [44]. The growing concern over climate change has
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revived the importance of conservation. Today, computer hardware technology is more advanced,

so frequent feedback is now feasible. In particular, as old power meters are replaced with smart

meters, more information will be available to consumers [37].

An open issue is how to provide an appliance-specific breakdown of energy use in a cost-effective

manner. Without this, residential energy conservation efforts are unlikely to achieve widespread

success. This thesis investigates how to obtain this information via power load disaggregation.

While this topic has received attention since the early 1990s [17], our work has three distinguishing

characteristics. First, we assume only low frequency measurements are available. This makes our

techniques more widely applicable since smart meters typically provide samples no more than once

per second. Second, we use an unsupervised disaggregation approach, as this does not require the

data to be labeled, which can be laborious and intrusive. Third, we use empirical data collected

from seven homes over a six month period.

The specific problem we address is as follows. Given the aggregate power consumption for T

time periods, Y = 〈y1, y2, . . . , yT 〉, and the number of appliances, M , we want to infer the power

load of each of the M appliances, that is,

Q(1) = 〈q
(1)
1 , q

(1)
2 , . . . , q

(1)
T 〉

Q(2) = 〈q
(2)
1 , q

(2)
2 , . . . , q

(2)
T 〉

...

Q(M) = 〈q
(M)
1 , q

(M)
2 , . . . , q

(M)
T 〉

such that yt =
∑M

i=1 q
(i)
t , where q

(i)
t is the power load of appliance i at time t.

We achieve this using energy disaggregation methods based on extensions of a hidden Markov

model (HMM). We use four HMM variants to model the data. Factorial HMM (FHMM) models the

hidden states of all the appliances. Conditional FHMM (CFHMM) extends FHMM to incorporate

additional features, such as time of day, other sensor measurements, and dependency between

appliances. A third variant, factorial hidden semi-Markov model (FHSMM) extends FHMM to

better fit the probability distributions of the state occupancy durations of the appliances. The

fourth variant composes FHSMM and CFHMM, to consider the additional features together with

the more accurate probability distributions of the state occupancy durations of the appliances. We
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refer to this variant as conditional factorial hidden semi-Markov model (CFHSMM).

This thesis makes two key contributions. First, we explore four unsupervised techniques for

disaggregating low frequency power load data. Second, we provide a performance evaluation of the

techniques using power load data from real homes. We find that CFHSMM outperforms the other

variants, and demonstrate that unsupervised disaggregation techniques are feasible.

The remainder of the thesis is organized as follows. Chapter 2 provides background information

and related work. Chapter 3 discusses features that can be used for disaggregation of low frequency

power measurements. Chapter 3.4 describes the four models we use to identify the stable-state

signatures of household appliances. Chapter 4 presents our results, using power load data from

actual homes. Chapter 5 summarizes our work.
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Chapter 2

Background and Related Work

2.1 Background

Hidden Markov Models (HMM) are used for probabilistically modeling sequential data. HMMs

are known to perform well at tasks such as speech recognition [36], problems in computational

biology [27], etc.

A discrete-time hidden Markov model can be viewed as a Markov model whose states are

not directly observed: instead, each state is characterized by a probability distribution function,

modeling the observations corresponding to that state. More formally, an HMM is defined by the

following:

– S = {S1, S2, · · · , SN} the finite set of hidden states.

– the transition matrix A = {aij , 1 ≤ i, j ≤ N} representing the probability of moving from

state Si to state Sj ,

aij = P (qt+1 = Sj |qt = Si), 1 ≤ i, j ≤ N,

with aij ≥ 0,
∑N

j=1 aij = 1, and where qt denotes the state occupied by the system at time t.

– the emission matrix B = {b(o|Sj)}, indicating the probability of emission of symbol o ∈ V

when system state is Sj ; V can be a discrete or a continuous set, in which case b(o|Sj) is a

probability density function.

– π = {πi}, the initial state probability distribution,

πi = P (q1 = Si), 1 ≤ i ≤ N

with πi ≥ 0 and
∑N

i=1 πi = 1.
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Figure 2.1: Graphical representation of factorial HMM.

Suppose we have sequential data y = {y1, y2, . . . , yt, . . . , yT }. Every yt is generated by a hidden

state, qt. The underlying states q = {q1, q2, · · · , qt, . . . , qT } form a Markov chain. Given the current

state, the next state is independent of the past (Markov property).

P (qt+1|qt, qt−1, . . . , q1) = P (qt+1|qt)

As an extension of HMMs, Ghahramani and Jordan [16] introduced factorial HMMs to model

multiple independent hidden state sequences, as shown in Figure 2.1. In a FHMM, if we consider

Y = 〈y1, y2, . . . , yT 〉 to be the observed sequence then q = {q(1), q(2), . . . , q(M)} represents the set

of underlying state sequences, where q(i) = (q
(i)
1 , q

(i)
2 , . . . , q

(i)
T ) is the hidden state sequence of the

chain i. In general, factorial learning algorithms are used to discover multiple independent causes

or factors underlying the data. FHMMs are preferred to HMMs for modeling time series generated

by the interaction of several independent processes because using HMMs to model such processes

requires exponentially many parameters to represent all the states.
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2.2 Related Work

The initial solution for disaggregating residential power load information was proposed by Hart [17].

Hart demonstrated how different electrical appliances generated distinct power consumption signa-

tures, which often could be seen in the aggregated power load. He showed how on-off events were

sufficient to characterize the use of some appliances. For other appliances, Hart considered using

Finite State Machines to develop signatures. Hart called this approach “Nonintrusive Appliance

Load Monitoring”(NALM).

Other research efforts have attempted to improve NALM, often by proposing alternative signa-

ture identification techniques. Farinaccio and Zmeureanu [11] use a pattern recognition approach to

disaggregate whole-house electricity consumption into its major end-uses. Prudenzi [35] proposes a

neural net approach for identifying the electrical signatures of residential appliances. Laughman et

al. suggest collecting data at higher frequencies (e.g., 8,000 Hz) to use higher harmonics in the

aggregate current signal to generate appliance signatures [28]. Ito et al. [21] extract features from

the current (e.g., amplitude, form, timing) to develop appliance signatures. Suzuki et al. [45] use

an integer programming approach to disaggregate residential power use. Saitoh et al. [40] extract

nine features from the measured current signal, and use them to classify the state of an appliance.

Kato et al. [22] describe an “electric appliance recognition method”. It uses Principal Compo-

nent Analysis (PCA) to extract features from electric signals. These features are classified using a

Support Vector Machine. For “unregistered” appliances, a one-class SVM is used. Lin et al. [30]

use a dynamic Bayesian network to take user behavior into account, and a Bayes filter to disag-

gregate the data online. However, these methods have practical limitations which motivate the

development of alternative techniques. Matthews et al. reflect on some of these works and describe

the characteristics of a workable solution [31]. Our work focuses specifically on disaggregating low

frequency power load data without the need for extra sensors, as these are important attributes of

a cost-effective solution.

Several research efforts have prototyped tools for in-home use. Serra et al. built a prototype

power meter, which included software to disaggregate the power consumption and automatically

identify different appliances (as well as to detect malfunctioning appliances) [42]. However, they

considered only a small number of appliances and used very simple signatures; thus the approach
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seems unsuitable for actual home environments. Kim et al. augment electricity usage data from a

single power meter with ambient signals from inexpensive sensors placed near appliances [24]. They

use three types of indirect sensors: magnetic, acoustic and light, to distinguish between multiple

appliances that are simultaneously on and monitor variable power consumption. Unfortunately,

the need for additional sensors is undesirable from a practical perspective.

An interesting variation on the NALM approach was proposed by Patel et al. [34]. They use

a plug-in sensor to detect electrical events within a home. They leverage the fact that mechanical

switches produce electrical noise [20], and that the noise characteristics can vary dramatically by

appliance [47]. They apply machine learning techniques to recognize specific devices being turned

on or off. More specifically, they perform a Fast Fourier Transform on the incoming signal to

separate the component frequencies. They then use a Support Vector Machine to classify which

appliance was turned on. In several trials, they found accuracies of 85–90% in classifying the events.

However, they cannot determine the power consumed during each event from the noise. To address

this, they developed a sensor that can be installed by the end user [33].

Disaggregating power data in commercial settings has additional challenges. For example,

Norford and Leeb [32] present results for space-conditioning equipment in an commercial setting.

Some of the challenges include more identical appliances, and more complex appliance signatures.

Lastly, hidden Markov models have been applied to a wide range of topics. One relevant

study is from Yadwadkar et al. [49]. They use profile hidden Markov models to recognize distinct

applications within a network file trace. The success of their approach motivates us to explore

HMMs for developing appliance signatures for residential power use.
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Chapter 3

Disaggregation with Low Sampling

Rates

There are two kinds of features for power disaggregation – transient signatures and stable-state

signatures [17]. Transient signatures capture electrical events, such as high frequency noise in

electrical current or voltage, generated as a result of an appliance turning on or off [34]. Although

these features are good candidates for use in disaggregation, sampling data fast enough to capture

them requires special instrumentation. For example, Patel et al. use a custom built device to

measure at rates up to 100KHz [34]. However, most smart meters deployed in the U.S. have low

sampling rates, typically 1Hz or less.

Stable-state signatures relate to more sustained changes in power characteristics when an appli-

ance is turned on/off. These persist until the state of the appliance changes, which can be captured

with low frequency sampling. But even for stable-state features, the frequency of sampling is im-

portant since at low sampling rates the probability of multiple on/off events occurring between

two measurements increases, making the disaggregation task more difficult. In addition to the real

power measurement, AC power meters typically provide several other metrics, such as, reactive

power, frequency, power factor, etc., each of which could potentially be used as additional features

depending on the set of appliances to be disaggregated.

In this work, we focus on stable-state features since these features can be more readily obtained,

e.g., from smart meters, in which case no additional instrumentation is required in the homes. The

most effective feature for disaggregation is the real power measurement. However, other power

features may help distinguish appliances, so our approach is designed to allow multiple other

features to be integrated into the model. Other useful features, unrelated to power metrics, are:

duration on/off, date/time, dependency between appliances, daily schedule of the occupants, etc.

Further, unlike past work, we develop unsupervised learning algorithms for disaggregating the

appliances.
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Label Location Appliance Power

fam tv Family Room Television 73 W
fam ps3 Family Room Playstation 3 67 W
fam stereo Family Room Home Theater 41 W
kit ref Kitchen Refrigerator 82 W
liv tv Living Room Television 177 W
liv xbox Living Room Xbox 360 111 W
off laptop Office Laptop 61 W
off monitor Office Monitor 38 W

Table 3.1: Summary of the household appliances.

We collected detailed power measurements from 7 homes in California, for a period of six

months. To enable us to know the ground truth, we installed extensive instrumentation in the

home, collecting data at the individual appliance level. We then aggregate the data from multiple

individual appliances to test the ability of the methods to disaggregate this data. We use the original

traces of power use for each instrumented appliance to assess the performance of the disaggregation

methods. It is important to clarify that if we can successfully disaggregate the aggregate power data,

thorough (and expensive) instrumentation of homes will not be necessary to obtain per-appliance

measurements. Further, laborious ”labelling” of the collected data is not required. This is an

important practical consideration, and the motivation for our focus on unsupervised techniques.

In the following sections, we focus on one home, and investigate the possible stable-state fea-

tures. Table 3.1 lists a subset of the monitored appliances in the home. Each “Label” is an abbre-

viation formed from the appliance type and its location. For example, “fam tv” is the television

located in the Family Room, while “liv tv” is the television located in the Living Room.

3.1 Power Consumption

The real power consumption is the most significant feature. Table 3.1 shows the average values for

each of the appliances. We assume that each appliance has two states (on and off) and its power

consumption follows the Gaussian distribution when the appliance is on. As seen in Figure 3.1, this

assumption is valid for most of the home appliances, except for the family room TV (fam tv) and

office laptop (off laptop). fam tv has a standby-mode in which it consumes less power. The power

consumption of off laptop varies depending on whether its battery is being charged, and its power

9
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Figure 3.1: Histograms of appliance power consumption.

state. Even though some appliances have multiple states, they can be considered to be composed

of two or more two-state appliances.

3.1.1 ON-Duration Distribution

Since we use HMMs to model the appliances, we want to determine what probability distribu-

tion function accurately captures the ON-durations. The geometric distribution is used for state

occupancy in regular HMMs. However, the histograms of ON-durations shown in Figure 3.2 do

not appear to be geometric. In geometric distributions, Pr(d = x) ≥ Pr(d = y) ⇐⇒ x ≤ y.

Thus, if we model the ON-state occupancy durations with a geometric distribution, it would mean

that using an appliance for only one second occurs more frequently than using it for one minute.

Obviously, this property does not hold for many household appliances. As Figure 3.2 shows, most

of the peaks are not located in the first bin of the histograms. Thus, the ON-state occupancy

durations need to be modeled with a different distribution.

We found that the gamma distribution is closer to most ON-duration distributions. Since the

gamma distribution has two parameters, it has more freedom in terms of the distribution’s shape.

Figure 3.4 shows a set of exponential distributions, the equivalent of geometric distributions in the

continuous domain, and a set of gamma distributions. We perform a quantitative comparison of
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Figure 3.2: Histograms of appliance ON-durations.

the fitness of the gamma distribution with that of the exponential distribution.

For each appliance, we use maximum likelihood estimation (MLE) on the ON-durations to

estimate the parameters for the exponential distribution and gamma distribution. The fitness of

these distributions on the data is compared using log-likelihood ratio (LLR):

LLR = log

(

maxk,θ P (durations|Gamma(k, θ))

maxλ P (durations|Exp(λ))

)

Table 3.2 shows that all LLR values are positive, and most are large. This indicates that the

gamma distribution is a better fit than the exponential distribution for all appliances.

3.1.2 OFF-Duration Shape

As shown in Figure 3.3, there are generally two peaks in the OFF-duration distributions. The reason

for the second peak is that most appliances are not used at night. This indicates the dependency

between time of day and appliance use. If the second peaks are removed, the OFF-durations are

approximated well by geometric distributions.
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Figure 3.3: Histograms of appliance OFF-durations.
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Figure 3.4: Exponential and Gamma distributions.

3.2 Dependency Between Appliances

Usage patterns of some appliances show strong correlation with those of others. For example, an

Xbox 360 cannot be used without a television, and a monitor cannot be used alone without a

desktop or a laptop. We tested these dependencies in our dataset by measuring the correlations

between every pair of appliances.

Figure 3.5 shows the Pearson’s coefficients of all pairs of appliances as a heatmap. The fig-

ure shows four groups of strongly correlated appliances: {fam tv, fam stereo, fam ps3}, {kit ref},

{liv tv, liv xbox}, and {off laptop, off monitor}. Further, liv tv and fam tv are correlated, which

implies that the family members in the house usually watch televisions at similar times. We

also compute the conditional probabilities for every pair of appliances. The pairs with condi-
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Label λ k θ LLR

fam tv 0.00991 1.804 38.307 17.29
fam ps3 0.01447 1.135 88.821 5.077
fam stereo 0.00395 0.975 259.38 0.029
kit ref 0.07783 5.895 2.1793 4151
liv tv 0.01576 2.175 29.184 98.50
liv xbox 0.01669 2.763 21.676 70.63
off laptop 0.01840 1.371 39.633 26.73
off monitor 0.00076 0.676 1945.2 7.143

Table 3.2: Estimated parameters for the exponential (λ) and gamma (k, θ) distributions, and LLR.
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Figure 3.5: Correlations between the appliances.

tional probability greater than 0.9 are: P(fam tv|fam ps3) = 0.963, P(fam stereo|fam tv) = 0.944,

P(fam stereo|fam ps3) = 0.998, P(liv tv|liv xbox) = 0.990, and P(off monitor|off laptop) = 1.000.

Our results show that strong dependencies exist between appliances, which can be used as features

for disaggregation.

3.3 Additional Features

The performance of power load disaggregation can be improved if additional inputs that indirectly

relate to the state of an appliance are available. We focus on inputs that do not require additional

instrumentation. For example, people tend to have daily and weekly patterns in their activities.

Thus, we expect usage of appliances to also have temporal patterns. Figure 3.6 shows the usage of
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Figure 3.6: Daily and weekly usage patterns of appliances.

fam tv and off laptop for each day of a week, aggregated over 6 months. The figure shows that the

TV is watched more at night and on weekends; the laptop is used every weekday morning. Other

appliances also exhibit temporal usage patterns (not shown). Thus, time of day and day of the

week are useful features. In this work, we consider only time of day and day of week as additional

features, as this information does not require additional instrumentation to be used. However,

the models developed in the next section could integrate other features, if the information were

available. For example, the outside temperature would strongly correlate with the use of heating

or air conditioning. Similarly, sound, light or vibration sensors can help identify a variety of

appliances [24].

3.4 Appliance Models

In this section, we develop probabilistic models of appliance behavior. These models integrate

the stable-state features described earlier. Further, learning the parameters of these models is

unsupervised. This is highly desirable for residential power disaggregation, as labeled data is not
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Algorithm 1 The Generative Approach with Hidden Variables.

1: λ← Initial parameters
2: repeat

3: λ′ ← λ
4: λ← argmaxλE [logP (Y , q|λ)|Y , λ′]
5: until λ converges
6: q∗ ← argmaxq P (q|λ,Y )

required, simplifying deployment.

Being variants of HMM, our models are generative, that is, we define a probabilistic model that

explains the generating process of the observed data. These models can contain hidden variables

that are not observed. In our case, the states of appliances are the hidden variables, and the

aggregate power load is the observation.

The models have several parameters that can be learned from data. The learning process

consists of estimating the parameters from the observations such that the model can best describe

the observations. Then, using the model with these parameters, we estimate the hidden variables,

which are the states of the appliances. Specifically, this algorithm is described in Algorithm 1. We

first initialize the parameters. For a given observation Y , we estimate the parameters in a model

by an Expectation-Maximization algorithm (EM: Line 2-5). Then, we estimate the hidden states

by using Maximum Likelihood Estimation (MLE: Line 6).

As our base model we chose a factorial hidden Markov model (FHMM), which is described in

Section 2. Based on the observations from Section 3, we create three variants, which we describe

next.

3.4.1 FHSMM

An inherent problem in FHMMs is that a state occupancy duration is constrained to be geometri-

cally distributed. However, as shown in Section 3.1.1, the ON-durations are modeled better with

a gamma distribution. Modeling state occupancy durations in HMMs has been studied in [39, 29].

The models are called Hidden Semi-Markov Model (HSMM) or Non-Stationary Hidden Markov

Model (NSHMM). We define a Factorial Hidden Semi-Markov Model (FHSMM) as the model

obtained by combining the method of modeling state occupancy durations in HSMM with FHMM.
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Figure 3.7: Relationships between the various models.

3.4.2 CFHMM

FHMMs do not consider additional features such as time of day, day of week, or input from other

sensors. To use these, we propose a Conditional Factorial Hidden Markov Model (CFHMM), where

the transition probabilities are not constant but are conditioned on the extra features. This model

is similar to a coupled hidden Markov model (CHMM) [6]. However, CFHMMs have a more general

form, as they consider the dependencies between hidden state sequences and the additional input

sequences.

Figure 3.7 shows the relationship of these two models with FHMM. Next, we combine FHSMM

and CFHMM to create the Conditional Factorial Hidden Semi-Markov Model (CFHSMM).

3.4.3 CFHSMM

We extend the FHMM model to create the Conditional Factorial Hidden Semi-Markov Model

(CFHSMM). This new model has the advantages of both FHSMM and CFHMM. Figure 3.8 shows

the graphical representation of CFHSMM. c1, c2, . . . , cK represent the additional features. Further,

the model uses a gamma distribution for ON-durations. Lastly, the state of an appliance at time

t also depends on the states of other appliances, and the additional features at time (t− 1). This

extension allows the model to consider the dependencies between appliances and the dependencies

16



P(d3=3)

P(d1=2)

P(d2=3)

P(d1=5)

ON ON OFF ON

ON ON ON OFF

ON ON OFF OFF

y
t-1

y
t

y
t+1

y
t+2

OFF

OFF

ON

y
t-2y

q3

q2

q1

1 2 2 11c2

3 0 0 23c1

Figure 3.8: The graphical representation of CFHSMM.

on additional features.

Parameter Estimations

There are several parameters in the model.

• π
(i)
j , the initial probabilities, P (q

(i)
1 = j)

• f
(i)
jkl, the conditional probability for feature k of value l, P (c

(k)
t−1 = l|q

(i)
t = j)

• m
(i)
jkl, the conditional probability for appliance k of state l, P (q

(k)
t−1 = l|q

(i)
t = j)

• µ(i), the mean of the power consumption for the appliance i

• κ(i) and θ(i), the parameters for the gamma distribution of ON-state duration

For a given set of parameter λ, the joint probability of the observation sequence Y and the set

of the state sequences q is the product of the initial probability, the emission probability, and the

transition probability.

P (Y , q|λ) = ψin(Y , q|λ) · ψe(Y , q|λ) · ψt(Y , q|λ) (3.1)

17



The initial probability is

ψin(Y , q|λ) =
M
∏

i=1

π
(i)

q
(i)
1

The emission probability is

ψe(Y , q|λ) =
T
∏

t=1

bqt(yt)

The transition probability is

ψt(Y , q|λ)

=

M
∏

i=1

∏

t:q
(i)
t =0









M
∏

j=1

m
(i)

q
(i)
t+1jq

(j)
t









K
∏

j=1

f
(i)

q
(i)
t+1jc

(j)
t









∏

t:q
(i)
t =1









M
∏

j=1:i 6=j

m
(i)

q
(i)
t+1jq

(j)
t









K
∏

j=1

f
(i)

q
(i)
t+1jc

(j)
t









∏

t:q
(i)
t =1,q

(i)
t−1=0

P (d = ℓ
(i)
t |κ

(i), θ(i))

where ℓ
(i)
t is the length of the ON-state subsequence of the appliance i starting at time t. All

these parameters can be estimated using the Expectation Maximization (EM) algorithm. EM

iteratively re-estimates the parameter values using an “auxiliary function” until convergence to a

local maximum occurs.

The auxiliary function to be maximized is

φ(λ, λ′) =
∑

q

P (Y , q|λ′) logP (Y , q|λ)

where λ′ is the set of the parameters in the previous iteration.

In each iteration, the EM algorithm performs the E-step and M-step. In the E-step, the

conditional distribution P (Y , q|λ′) is determined. Then, in the M-step, the parameters are updated

to be argmaxλ φ(λ, λ
′).

We first look at the M-step, and then explain the E-step.
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By Equation 3.1, the auxiliary function becomes:

φ(λ, λ′) =
∑

q P (Y , q|λ
′) logψin(Y , q|λ)

+
∑

q P (Y , q|λ
′) logψe(Y , q|λ)

+
∑

q P (Y , q|λ
′) logψt(Y , q|λ)

Since all the three terms do not have parameters in common, they can be maximized separately.

For the first term,
∑

q

P (Y , q|λ′) logψin(Y , q|λ)

=
∑

q

P (Y , q|λ′)
M
∑

i=1

log π
(i)

q
(i)
1

=
M
∑

i=1

∑

q

log π
(i)

q
(i)
1

P (Y , q|λ′)

Now, we can maximize the term of each appliance separately. For i ∈ {1, 2, . . . ,M},

∑

q

log π
(i)

q
(i)
1

P (Y , q|λ′) =
∑

j∈{0,1}

log π
(i)
j P (Y , q

(i)
1 = j|λ′)

by using marginal expression for time t = 1 in the right hand side. Adding the Lagrange multiplier,

using the constraint that π
(i)
0 + π

(i)
1 = 1, and setting the derivative equal to zero, we get:

π
(i)
j =

P (Y , q
(i)
1 = j|λ′)

P (Y |λ′)
, ∀j

Similarly, for i ∈ {1, 2, . . . ,M}, we get:

m
(i)
jkl =

∑T−1
t=1 P (Y , q

(k)
t = l, q

(i)
t+1 = j|λ′)

∑T−1
t=1 P (Y , q

(i)
t+1 = j|λ′)

, ∀j, k, l

f
(i)
jkl =

∑T−1
t=1 P (Y , c

(k)
t = l, q

(i)
t+1 = j|λ′)

∑T−1
t=1 P (Y , q

(i)
t+1 = j|λ′)

, ∀j, k, l

For the emission probability, as mentioned earlier, we use the gaussian distribution. However,

we assume that the variance of the power consumption for appliances are the same. When we left

the variances as free variables, we found overfitting problems. One possible explanation is that
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most of the errors or noise are caused by a sensor, not by appliances. This assumption also make

it much simpler to estimate the emission parameters. We use σ to denote the fixed variation. The

updating equation for µ shown here is equivalent to the one found in [16].

φe(λ, λ
′) ≡

∑

q

P (Y , q|λ′) logψe(Y , q|λ)

=
∑

q

P (Y , q|λ′)
T
∑

t=1

log bqt(yt)

=
∑

q

P (Y , q|λ′)
T
∑

t=1

(

log 2πσ2

2
−

(yt −
∑M

i=1 q
(i)
t µ(i))2

2σ2

)

Then,

∂φe(λ, λ
′)

∂µ(i)
=

T
∑

t=1

ytq
(i)
t P (Y , q|λ′)

−

T
∑

t=1

M
∑

j=1

µ(j)q
(i)
t q

(j)
t P (Y , q|λ′) = 0

(3.2)

Let 〈q
(i)
t 〉 =

∑

q q
(i)
t P (Y , q|λ′), and 〈q

(i)
t q

(j)
t 〉 =

∑

q q
(i)
t q

(j)
t P (Y , q|λ′). Then, Equation 3.2

becomes:

∂φe(λ, λ
′)

∂µ(i)
=

T
∑

t=1

yt〈q
(i)
t 〉 −

T
∑

t=1

M
∑

j=1

µ(j)〈q
(i)
t q

(j)
t 〉 = 0

These can be solved by the normal equations

µ =

[

T
∑

t=1

〈qtqt
T 〉〈qtqt

T 〉

]−1 [ T
∑

t=1

〈qtqt
T 〉〈qt〉yt

]

where qt = [q
(1)
t q

(2)
t . . . q

(M)
t ], 〈qtqt

T 〉 =
∑

q qtqt
TP (Y , q|λ′) and 〈qt〉 =

∑

q qtP (Y , q|λ
′).

Lastly, we have κ(i) and θ(i) parameters to be optimized. Since there are no closed-form equa-

tions for estimating κ(i) and θ(i), we need to estimate them numerically by the Newton-Raphson

method [9].
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Let

s(i) = logE[d(i)|Y , λ′]− E[log d(i)|Y , λ′]

= log
∑

q

∑

t:q
(i)
t−1=0,q

(i)
t =1

ℓ
(i)
t P (Y , q|λ′)/P (Y |λ′)

−
∑

q

∑

t:q
(i)
t−1=0,q

(i)
t =1

log ℓ
(i)
t P (Y , q|λ′)/P (Y |λ′)

where d(i) is the random variable for the ON-state occupancy duration and ℓ
(i)
t is the length of the

ON-state subsequence of the appliance i starting at time t.

Then, we initialize κ(i) = s(i), and iteratively update κ(i) by the following equation:

κ(i) = κ(i) −
log κ(i) − ψ(κ(i))− s(i)

1/ log κ(i) − ψ′(κ(i))

where ψ is the digamma function and ψ′ is the trigamma function.

After iteratively estimating κ(i), we set

θ(i) = E[d(i)|Y , λ′](κ(i))−1

=







∑

q

∑

t:q
(i)
t−1=0,q

(i)
t =1

ℓ
(i)
t

P (Y , q|λ′)

P (Y |λ′)






(κ(i))−1

These updating equations complete the M-step in our EM algorithm. In contrast to the M-

step, the exact inference of the conditional distribution P (Y , q|λ′) in the E-step is computationally

intractable as mentioned in [16]. There are alternative ways to approximate the inference, including

Gibbs sampling and the mean field approximation [16]. Here, we use Gibbs sampling [15], one of

the Monte Carlo methods, because of its simplicity. Since Gibbs sampling is a well-known tool and

easy to adapt to any model, we omit its details.

Hidden State Estimation

The goal of the energy load disaggregation is to discover the states of appliances. We are more

interested in the sequences of the hidden variables in the CFHSMM than the parameters in the

model. After learning the parameters, we need to use Maximum Likelihood Estimation (MLE) to

estimate the sequences of the hidden variables.
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In other words, we want to find q∗ such that

q∗ = argmax
q

P (Y , q|λ)

The Viterbi algorithm can efficiently estimate the hidden states for HMMs. It uses dynamic

programming to solve the optimization problem. However, dynamic programming for CFHSMMs

is computationally intractable [16]. Thus, we use simulated annealing (SA) [25] to find q∗. For the

same reason as with Gibbs sampling, we omit the explanation of SA.
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Chapter 4

Experimental Results

4.1 Experiment Setup

Our experimental setup monitors power consumption from seven residential homes. At each resi-

dence we have installed a mix of sensing nodes, each containing a Zigbee (www.zigbee.org) radio

transceiver, collectively forming an in-home wireless sensor network using Digi (www.digi.com)

components. Figure 4.1 shows our residential deployment topology. It includes a whole-home

meter to determine overall electrical energy use (a smart meter proxy), several individual energy

monitoring nodes (typically attached to larger appliances), and several clustered energy monitor-

ing nodes to capture the aggregate consumption from grouped devices, such as an entertainment

center. Power data is collected every 3 seconds. A residential gateway connected to a DSL line

enables remote management of the devices and collection of the power measurements. We combine

data from individual device monitors to create our datasets. This approach provides us with the

ground truth to evaluate the performance of our models.

4.2 Evaluation Metrics

Accuracy is a commonly used evaluation metric. However, with power disaggregation the state

distribution is very skewed because using an appliance is a relatively rare event. Therefore, accuracy

is not an appropriate metric for evaluating power load disaggregation because a model that always

says all the appliances are off will achieve high accuracy.

Instead, we adapt a metric from the information retrieval domain, F -measure. In the infor-

mation retrieval domain, the common task is to classify relevance of documents for a given query.

Because relevant documents are relatively rare, evaluation metrics in the information retrieval
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Figure 4.1: The in-home sensing topology.

consider skewed classes.

F -measure is widely used in this type of evaluation. In binary classification tasks, there are

four possible outcomes from a binary classifier: true positive (TP ), true negative (TN), false

positive (FP ), and false negative (FN). F -measure is the harmonic mean of Precision and

Recall. Precision is defined as TP
TP+FP

and Recall is defined as TP
TP+FN

. Thus,

F -measure =
2 · Precision ·Recall

Precision+Recall

We use the following process to apply F -measure to our work. We convert our method to a

binary classifier such that if the power consumption of an appliance is greater than 0, the output

label is positive, and otherwise it is negative. However, our task is not only classifying the states

of an appliance, but predicting how much power it consumes. Therefore, among true positives,

we consider predictions that differ significantly from ground truth as incorrect. More specifically,

we split the true positives into two categories, accurate true positive (ATP), and inaccurate true

positive (ITP). We distinguish the predictions as follows. Let x be the predicted value, and x0 be

the ground truth value.

• When x = 0 and x0 = 0, the prediction is true negative (TN).
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• When x = 0 and x0 > 0, the prediction is false negative (FN).

• When x > 0 and x0 = 0, the prediction is false positive (FP).

• When x > 0, x0 > 0, and |x−x0|
x0
≤ ρ, the prediction is an accurate true positive (ATP).

• When x > 0, x0 > 0, and |x−x0|
x0

> ρ, the prediction is an inaccurate true positive (ITP).

where ρ is a threshold.

We redefine Precision = ATP
ATP+ITP+FP

and Recall = ATP
ATP+ITP+FN

. F -measure remains the

harmonic mean of the new Precision and Recall. We use the new F -measure as our metric with

ρ = 0.2 in the evaluation. Most appliances in our evaluation have standard variations of around

20% of their means. For example, the power consumption of kit ref has standard deviation of 15W,

where its mean is 82W.

Since the output of the unsupervised models do not have labels on each appliance, we compute

F -measure for all possible mappings, and take the maximum values as their performance.

4.3 ON-Duration Distribution

In this section, we test the effectiveness of ON-duration shape as a feature. For this test only,

we create two synthetic datasets. We generate two independent time-series data with the same

power consumption, ON-duration mean, OFF-duration mean, OFF-duration shape, but different

ON-duration shape.

Each synthetic data set has a power consumption of 100 W, mean ON-duration of 30 time

units, mean OFF-duration of 60 time units, and OFF-duration shape parameter of 1. The first

data set has ON-duration shape parameter of 1, while the second has various ON-duration shape

parameters from 1 to 10. The shape of a gamma distribution changes from that of an exponential

distribution to that of a Gaussian distribution as its shape parameter increases. Thus, as the

value of the shape parameter gets larger, the difference between the two shapes of ON-durations

increases. Figure 4.2 shows that FHSMM performs better as the shape parameter increases, but

FHMM shows no change.
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Figure 4.2: The effect of ON-duration shape.

4.4 Dependencies

Next, we evaluate the gains resulting from modeling the appliance dependencies and additional

features. We chose two groups of appliances that have strong correlations to other appliances –

{fam tv, fam ps3, fam stereo}, and {liv tv, liv xbox}. We scaled the appliances to have the same

power consumption, and generated all the possible combinations of these five appliances for the

testdata. We scaled the power so that power level becomes ineffective as a feature for disaggregation.

There are 26 testdata with at least two appliances. For each testdata, we evaluate the F -measure

of FHMM and CFHMM. The averages are 0.734 for FHMM and 0.838 for CFHMM. Table 4.1 lists

the top 10 test cases where maximum improvement was seen through use of CFHMM.

These evaluations show the effectiveness of modeling the dependencies between appliances and

the additional features. For {liv tv, liv xbox} testdata, CFHMM disaggregated the load perfectly

because the model inferred the appliance dependency of liv xbox to liv tv (i.e., an Xbox needs to

be used with a TV).
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Testdata FHMM CFHMM

fam tv, fam ps3, fam stereo 0.717 0.985
fam tv, liv tv, liv xbox 0.621 0.862
fam tv, fam ps3, liv tv, liv xbox 0.524 0.718
fam tv, fam stereo, liv tv, liv xbox 0.680 0.867
fam tv, fam ps3, liv tv 0.562 0.744
fam tv, fam ps3, fam stereo, liv tv 0.621 0.803
fam tv, fam stereo, liv xbox 0.724 0.881
All 5 appliances 0.594 0.751
liv tv, liv xbox 0.854 0.999
fam tv, fam ps3, fam stereo, liv xbox 0.590 0.731

Table 4.1: The top 10 most improved testdata.

Home ID Num. of Appliances FHMM CFHSMM

Home 1 4 0.983 0.998
Home 2 6 0.899 0.930
Home 3 6 0.859 0.881
Home 4 7 0.625 0.693
Home 5 8 0.713 0.781
Home 6 8 0.641 0.722
Home 7 10 0.796 0.874

Table 4.2: The evaluations on several homes.

4.5 Overall Performance

We tested the performance of our models on all the seven homes from where we collected data.

Table 4.2 shows the results. The results in Sections 3 and 5.4 use Home 6’s data.

Even though we are monitoring more than 20 appliances in each house, we have much fewer

appliances in the data sets because the other appliances were not active, that is, either they

were never turned on, or were always on. The always-on loads form part of the base load (also

called vampire load). Most of the power load disaggregation algorithms (including ours) cannot

disaggregate base load since disaggregation is based on the characteristics of the appliance power

state changes.

Figure 4.3 shows the F -measure of the four models versus the number of appliances. There are

several important observations. First, disaggregation using low frequency data becomes more chal-

lenging as the number of appliances increase. Further, the plot shows the effectiveness of additional

features. CFHSMM performs better in all cases although the difference is more pronounced for

27



The Number of Appliances

F
−

M
e

a
s
u

re

0.5

0.6

0.7

0.8

0.9

1.0

2 3 4 5 6 7 8

Model

CFHSMM

CFHMM

FHSMM

FHMM

Figure 4.3: Comparison of model performance.

larger number of appliances (7 and 8). The difference between the performance of CFHSMM and

CFHMM is minimal indicating that for this data set most of the gain in performance of CFHSMM

comes from additional features considered rather than use of the gamma distribution for ON-

durations. Thus, for dealing with more appliances, it is desireable to integrate other additional

features into our models.
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Chapter 5

Conclusions

In this thesis, we investigated how effective unsupervised disaggregation of low frequency power

measurements is. This is an important topic, as an effective method of this type could facilitate

residential electricity conservation efforts. We considered a existing model FHMM and three new

models (FHSMM, CFHMM and CFHSMM). Using low frequency measurements from real homes,

we showed that CFHSMM outperformed the other unsupervised methods, and was capable of

accurately disaggregating power data into per-appliance usage information.

We plan to extend this work in multiple ways. First, our results revealed that the tested

methods work well for appliances with simple or modestly complex power signatures, but less well

for more complex signatures. Handling this subset of signatures is an important topic. Second, we

need to develop more extra features like vibrations from sensors to enhance our method to deal

with more number of appliances. Third, we need a method to estimate the number of appliances

in the whole-home power measurements. Fourth, we intend to monitor residential gas and water

usage, to facilitate conservation of those resources too.
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[27] A. Krogh, M. Brown, S. Mian, K. Sjölander, and D. Haussler. Hidden Markov models in
computational biology. Molecular Biology, 235:1501–1531, 1994.

[28] C. Laughman, K. Lee, R. Cox, S. Shaw, S. Leeb, L. Norford, and P. Armstrong. Power
signature analysis. IEEE Power and Energy, 1(2):56–63, 2003.

[29] S.E. Levinson. Continuously variable duration hidden markov models for automatic speech
recognition. Computer Speech and Language, 1(1):29 – 45, 1986.

[30] G. Lin, S. Lee, J. Hsu, and W. Jih. Applying power meters for appliance recognition on the
electric panel. In IEEE Industrial Electronics and Applications, Taichung, Taiwan, 2010.

[31] H. Matthews, L. Soibelman, M. Berges, and E. Goldman. Automatically disaggregating the
total electrical load in residential buildings: a profile of the required solution. In Intelligent
Computing in Engineering, Plymouth, UK, 2008.

31



[32] L. Norford and S. Leeb. Non-intrusive electrical load monitoring in commercial buildings based
on steady-state and transient load-detection algoritms. Energy and Buildings, 24:51–64, 1996.

[33] S. Patel, S. Gupta, and M. Reynolds. The design and evaluation of an end-user-deployable,
whole house, contactless power consumption sensor. In Human Factors in Computing Systems,
Atlanta, GA, 2010.

[34] S. Patel, T. Robertson, J. Kientz, M. Reynolds, and G. Abowd. At the flick of a switch:
detecting and classifying unique electrical events on the residential power line. In UbiComp,
Innsbruck, Austria, 2007.

[35] A. Prudenzi. A neuron nets based procedure for identifying domestic appliances pattern-of-
use from energy recordings at meter panel. IEEE Power Engineering Society Winter Meeting,
2:491–496, 2002.

[36] L. Rabiner. A tutorial on hidden Markov models and selected applications in speech recogni-
tion. In Proceedings of the IEEE, volume 77, pages 257–286, 1989.

[37] Y. Riche, J. Dodge, and R. Metoyer. Studying always-on electricity feedback in the home. In
Human Factors in Computing Systems, Atlanta, GA, 2010.

[38] B. Ritchie, G. McDougall, and J. Claxton. Complexities of household energy consumption
and conservation. Consumer Research, 8(3):233–242, 1981.

[39] M. Russell and R. Moore. Explicit modelling of state occupancy in hidden markov models for
automatic speech recognition. Acoustics, Speech, and Signal Processing, IEEE Int. Conference
on ICASSP, 10:5–8, 1985.

[40] T. Saitoh, Y. Aota, T. Osaki, R. Konishi, and K. Sugahara. Current sensor based non-intrusive
appliance recognition for intelligent outlet. In Int. Technical Conference on Circuits/Systems,
Computers and Communications, Shimonoseki City, Japan, 2008.

[41] C. Seligman and J. Darley. Feedback as a means of decreasing residential energy consumption.
Applied Psychology, 62(4):363–368, 1977.

[42] H. Serra, J. Correia, A. Gano, A. de Campos, and I. Teixeira. Domestic power consumption
measurement and automatic home appliance detection. In IEEE Intelligent Signal Processing
Workshop, Algarve, Portugal, 2005.

[43] R. Sexton, N.Johnson, and A. Konakayama. Consumer response to continuous-display
electricity-use monitors in a time-of-use pricing experiment. Consumer Research, 14(1):55–62,
1987.

[44] P. Stern. What psychology knows about energy conservation. American Physchologist,
47(10):1224–1232, 1992.

[45] K. Suzuki, S. Inagaki, T. Suzuki, H. Nakamura, and K. Ito. Nonintrusive appliance load
monitoring based on integer programming. In Int. Conference on Instrumentation, Control
and Information Technology, Tokyo, Japan, 2008.

[46] T. Ueno, F. Sano, O. Saeki, and K. Tsuji. Effectiveness of an energy-consumption information
system on energy savings in residential houses based on monitored data. Applied Energy,
83:166–183, 2006.

32



[47] R. Vines. Noise on residential power distribution circuits. IEEE transactions on electromag-
netic compatibility, EMC-26(4):161–168, 1984.

[48] R. Watson, M. Zinyousera, and R. Moss (editors). Technologies, policies and measures for
mitigating climate change. Technical report, Intergovernmental Panel on Climate Change,
1996.

[49] N. Yadwadkar, C. Bhattacharyya, and K. Gopinath. Discovery of application workloads from
network file traces. In Proceedings of USENIX conference on File and storage technologies,
pages 14–14, San Jose, CA, 2010.

33


