
c© 2012 Austin Pierce

USING INFORMATION THEORETIC MEASURES TO EVALUATE
SUPPORT VECTOR MACHINE KERNELS

BY

AUSTIN PIERCE

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2012

Urbana, Illinois

Adviser:

Professor Richard Blahut

ABSTRACT

A new method is proposed that exploits the underlying information theoretic

structure in the input data to evaluate the ability of a kernel to successfully

separate a class in some feature space. This method is built on the funda-

mental idea that kernel density estimation in some input space is equivalent

to an inner product on some Hilbert space. Estimators of Rényi’s general-

ized form of information theoretic measurements reduce to a form that gives

an elegant characterization of the geometric properties of the kernel in the

feature space. It is shown how these estimators can be used to evaluate the

kernel of a support vector machine.

ii

But I have promises to keep,

And miles to go before I sleep,

And miles to go before I sleep.

- Robert Frost

iii

ACKNOWLEDGMENTS

I think this is as close as I will ever get to a Grammy speech. First, I want

to thank my parents for their never ending support, love, and guidance.

Without them I would not be half the person I am today. This paper is

dedicated to them. To my sister for constantly reminding me that hard work

also requires hard play. You only live once, YOLO.“I don’t care how poor a

man is; if he has family, he’s rich.”

I would like to thank Science Applications International Corporation (SAIC)

for giving me the opportunity to work four summers alongside some of the

smartest people I have ever met. The experience I have gained working there

is invaluable and completely transformed how I approach engineering. This

thesis would not have been possible without the conversations I had with

Mike Tinston.

I am thankful to Prof. Richard Blahut for accepting me into his research

group and for providing insightful weekly meetings.

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Machine Learning . 1
1.2 Learning Model . 4
1.3 Motivation . 6

CHAPTER 2 INFORMATION THEORY 8
2.1 Shannon Entropy . 8
2.2 Rényi Entropy . 11
2.3 Rényi Entropy vs. Shannon Entropy 13
2.4 Quadratic Rényi Entropy . 14
2.5 Cauchy-Schwarz Divergence 17

CHAPTER 3 REPRODUCING KERNEL HILBERT SPACES 19
3.1 RKHS Definitions . 19
3.2 Density Estimation and RKHS 21

CHAPTER 4 SUPPORT VECTOR MACHINES 24
4.1 Vapnik-Chervonenkis Theory 24
4.2 Support Vector Machine . 25
4.3 Kernel Trick . 28
4.4 Evaluating Kernels Using Information Theory 29

CHAPTER 5 CONCLUSION . 32

REFERENCES . 33

v

CHAPTER 1

INTRODUCTION

The decision-making process behind identifying or classifying objects is often

associated with the recognition of patterns. For example, determining the

context and language of handwritten characters, using facial structure to

detect individuals in photos, and deciding whether or not to buy or sell a stock

based on current and past market trends. Recognizing patterns, collecting

raw data, or making an action based on specific features of the input is a

complex process that the human mind manages on a daily basis. For this

reason, the creation of machines capable of learning patterns has been a

popular research topic both from a technical and philosophical perspective.

Technological advances in computer processing have allowed machines to

demonstrate a significant ability to learn and recognize patterns. However,

in order to demonstrate these tasks using classical programming techniques,

there must be some foundation for the mathematical model of the problem.

The methodology and theory behind the mathematical approach has formed

the foundation for machine learning.

1.1 Machine Learning

Artificial intelligence is the term coined to describe the capability of ma-

chines to mimic and simulate intelligent human behavior. Machine learning

has evolved as a branch of artificial intelligence that is concerned with under-

standing how to give machines the ability to learn and analyze data to make

intelligent decisions. When computers are applied to solve a problem, they

all follow the same practical architecture. The input data is fed through some

system and mapped to an output. It is up to the system designer to develop

a method for implementing the relationship between the input/output pairs.

However, in some cases the relationship is not explicit, constantly chang-

1

ing, or the relationship is so complex that the computation is too expensive.

When the problem or relationship is too complicated, the system designer

cannot always implement a method for computing the output from the input

data using classical programming techniques. The alternative method is to

develop a system capable of learning or recognizing the pattern between the

input and output based on examples, or given some specific criterion.

Learning in this context is achieved using mathematical principles. The

framework is built on inductive inference; that is, observing samples that

may or may not completely represent the input and predicting the output [1].

Generally, the input and output are related through some kind of dependency.

When the dependency exists, it is referred to as the environment operator.

The goal of the machine is to learn, and according to some cost, estimate

the environment operator. The estimate is often referred to as the decision

operator or classifier. Because the environment is not always completely

understood, the decision operator is often chosen from a particular set or

class of hypothesis operators. The learning process is simply choosing the

appropriate operator, or classifier, from the class of hypothesis operators that

best represents the environment operator.

Any method that attempts to describe the environment operator according

to some prior knowledge employs learning. While learning follows a general

model, it is the specific method used that determines the unknown parame-

ters of the model and the structure of the classifier. Ideally, the classifier will

generalize well to new patterns and data. How well the classifier performs

on new data is referred to as generalization, and is the property that we

seek to optimize. This framework results in two general forms of learning:

supervised learning and unsupervised learning.

1.1.1 Supervised Learning

Supervised learning is primarily concerned with the identification of func-

tional dependencies between the input xi and output zi. The environment

operator is assumed to be some kind of functional mapping that is estimated

from pairs of samples (xi, zi) called the training data. Figure 1.1 shows the

basic framework for a supervised learning system. The data xi is fed through

the estimated environment operator to produce an output yi. The output yi

2

Figure 1.1: A basic supervised learning system.

is then compared to zi to produce an error signal. The error signal is used

to systematically update the environment according to some cost criterion.

Over time the system will adapt the estimated environment operator so that

the data x will produce a y that will approximate z.

A classifier that accurately fits the training data is said to be consistent.

Generating consistent classifiers raises important issues. In cases where the

output is noisy, there is no guarantee that a functional mapping exists. So,

the classifier has to be implemented optimizing some best-fit criteria. If the

classifier is designed to be too complex, it is possible to overfit the data.

When this occurs, the classifier may correctly separate the training samples

but will fail to generalize well to new data. In supervised learning, the design

is concerned with optimizing the tradeoff between accuracy and reliability.

1.1.2 Unsupervised Learning

The goal of unsupervised learning is to capture regularities and statistical

dependencies between the input xi and output yi. An unsupervised system

follows the same framework as the supervised system in Figure 1.1 only x

is available but z is not. The environment operator is assumed to function

according to a set of specifications. The function is typically controlled by a

cost. The classifier is designed to use the cost to form clusters or groupings of

3

the input. The output yi from the classifier is entirely dependent on the cost

that is implemented to replicate the environment operator. In unsupervised

learning the design is primarily concerned with optimizing the cost to create

a classifier that appropriately represents the regularities of the input data.

1.2 Learning Model

Now that we have introduced the foundation for machine learning, we can

start to develop the systematic model for implementation on a computer [2].

Figure 1.2 shows the typical layout and components of a machine learning

system. Understanding the importance of each component will clarify the

problems with designing such a system and establish the motivation behind

this research.

Figure 1.2: The block diagram for a typical machine learning system.

4

1.2.1 Data Collection

Data is typically collected using some kind of transducer, such as a micro-

phone or sensor. The limitations and characteristics of the transducers, such

as the signal-to-noise ratio or distortion, are often part of the problem. These

limitations feed through the system and can affect each component if they

are not considered in the design process. The amount of data that is collected

and processed can significantly constrain other components, especially if the

system is expected to work in real-time.

1.2.2 Pre-Processing

The data that is collected by the transducer is typically referred to as raw

data. The raw data is often noisy, disorganized, or not in a format capable of

being processed by the rest of the system. The purpose of the pre-processor

is to prepare the raw data for feature extraction. Often this requires some

kind of filtering or grouping operation. Ideally the pre-processor will isolate

specific idiosyncrasies in the data.

1.2.3 Feature Extraction

The purpose of the feature extractor is to find distinguishing properties in the

data that can be used to characterize an object or class. These distinguishing

features are what the classifier will use to isolate the input and predict the

output. When choosing these features, it is important that they are invariant

to irrelevant transformations. For example, the data could get scaled or

rotated in the pre-processing stage. If the distinguishable feature is affected

by one of those transformations, then the feature will make it difficult for

the classifier to reliably separate the input. The feature extractor is entirely

domain-dependent. An extractor that successfully characterizes one problem

will not necessarily work well for another.

1.2.4 Classification

The classifier is the most important component of the system and the most

complicated. Because perfect classification is often impossible, the classi-

5

fier is built on a probabilistic framework. The general task is to use the

distinguishing features to assign the input to a group or category with the

smallest probability of error. The design is application dependent and fol-

lows one of the two general forms of learning: supervised or unsupervised. In

the supervised case the classifier is fed training data to estimate a functional

relationship between the input and output. In the unsupervised case the

classifier is given a cost or criterion to group the output based on statistical

dependencies of the input. The difficulty behind designing the classifier of-

ten depends on the size of the feature space and the difference between the

distinguishing features in different categories. If the distinguishing features

are drastically different, then the classifier dramatically simplifies. However,

if the features are similar or if they are very noisy, the classifier can become

much more complex.

1.2.5 Post-Processing

While the classifier analyzes the distinguishing features and classifies the

data, it is up to the post-processor to decide the final action. Typically

the post-processor is used to tweak the output of the classifier and improve

system performance. This modification can be as simple as filtering the data

to reduce output noise, or as complicated as regularizing the output to meet

some specification.

1.3 Motivation

While it is not necessarily obvious, it should be relatively straightforward to

notice that the problems and difficulties in designing each component can

be manipulated in the classifier. For example, the amount of data collected

during the collection stage is irrelevant if the classifier is capable of handling

large amounts of data. Likewise, the variation in the distinguishable features

can be changed if the classifier takes advantage of some kind of transfor-

mation. For this reason, this thesis will focus entirely on the design of the

classification component of the learning model. Recall that the classifier is

designed according to one of the two general forms of learning: supervised

or unsupervised. Supervised learning requires the estimation of some func-

6

tion to mimic the environment operator, and unsupervised learning attempts

to find the statistical dependency in the input data. So the classifier is in-

herently built on a probabilistic framework. While a Bayesian or maximum

likelihood approach is reasonable and well understood, a new question is

proposed: Are there other well-established probabilistic theories that can be

used to take advantage of the statistical properties of the input? If so, what

advantages does it provide? As it turns out, the answer lies in the field of

information theory. Specifically, in Rényi’s generalization of information the-

ory. We will show that it is possible to evaluate how well a kernel function

separates data in some feature space using information theoretic estimations

on the input data. This method is built on the fundamental idea that kernel

density estimation in some input space is equivalent to an inner product on

some Hilbert space. Estimators of Rényi’s generalized form of information

theoretic measurements reduce to a form that gives an elegant characteriza-

tion of the geometric properties of the kernel in the feature space. We apply

this kernel evaluation to the design of a Support Vector Machine.

This thesis is organized as follows. In Chapter 2 we introduce the idea of

αth-order information theoretic measures and their estimators. We develop

the foundation for reproducing kernel Hilbert spaces in Chapter 3 to help

form an important geometric understanding of these measures. In Chap-

ter 4 we introduce the Support Vector Machine and propose a method for

evaluating the feature spaces of kernels using information theory. We make

concluding remarks and offer further research ideas in Chapter 5.

7

CHAPTER 2

INFORMATION THEORY

Information theory was originally conceptualized by Shannon to help estab-

lish the fundamentals behind data compression and transmission rates in

communication systems [3]. For this reason, information theory is often con-

sidered to be a branch of communication theory. However, the probabilistic

framework has laid the foundation for contributions in other areas of math

and the sciences [4]. We introduce information theoretic measurements here

as a probabilistic reasoning method for analyzing the statistical properties of

data. Keep in mind that the motivation behind doing this is to exploit these

statistical descriptors as tools when designing a classifier. We will start by

introducing the original ideas developed by Shannon and explain the purpose

of entropy, divergence, and mutual information. This will lead to a general-

ized form of information theory developed by Rényi. We will show that the

estimator for Rényi entropy reduces to a form that is easier to compute than

Shannon entropy.

2.1 Shannon Entropy

In 1928 Hartley introduced the first quantitative measure of information. He

defined this information as the number of choices in a finite set of possible

symbols S [5]. According to Hartley, the amount of information in a sequence

of N symbols could be quantified as I = logb S
N . If the logarithm is base

ten, then we refer to the unit as a Hartley. In the digital age we prefer to

think in terms of binary symbols [0,1], so the logarithm is taken to the base

two and is referred to as the bit.

It was Shannon who went a step further and introduced the idea that

the information content was dependent on the probabilities of the symbols.

Let us define a random variable X with a finite set of possible outcomes

8

X = {x1, . . . , xN} having a probability mass function p(x) = Pr{X = x},
x ∈ X . Shannon first showed that Hartley’s information was only accurate if

nothing was known about the distribution of the symbols; that is, we assume

that the symbols occur with equal probability p(x) = 1
|X | . Thus, in order to

fully characterize the amount of information for each element xk in X , the

information should be

I(xk) = log
1

p(xk)
= − log2 p(xk). (2.1)

.

The amount of information in a specific event is due to the inverse depen-

dence on probability. If N = 1, then p(x1) = 1 and the information content

I(x1) is zero. This means we have perfect knowledge of the event since we

know there is only one possible event outcome. Likewise, if N is large and

p(x) is small, then the information content is high because the event is unex-

pected. To describe the information or uncertainty over the set of outcomes

X , Shannon defined entropy as the average of the information measure over

each event, or

H(X) =
∑
x∈X

p(x)I(x) = −
∑
x∈X

p(x) log2 p(x) = −E[log2 p(x)]. (2.2)

Shannon’s entropy provides a single scalar quantity that describes the un-

certainty underlying the probability mass function (PMF). In other words,

H(X) depends on the shape of the distribution. It is not the only scalar

quantity that describes the PMF; for example, the mean and variance are

also widely used. However, entropy provides a deeper insight into probabilis-

tic reasoning because of its elegant properties. Shannon proved and built his

definition of entropy on a set of simple axioms [3]:

1. H(p(x)) ≥ 0 ∀ x ∈ X .

2. H(p(x1), p(x2), . . . , p(xN)) is a continuous and symmetric function of

its arguments.

3. H(1
N
, 1
N
, . . . , 1

N
) is a monotonically increasing function of N .

4. H(p(x1), p(x2)) = H(p(x1)) + H(p(x2)) for independent events x1 and

x2.

9

5. H(p(x1), p(x2), . . . , p(xN)) = H(p(x1)+p(x2), p(x3), . . . , p(xN))+(p(x1)+

p(x2))H(p(x1)
(p(x1)+p(x2))

, p(x2)
(p(x1)+p(x2))

), entropy is recursive.

Shannon proved that Equation (2.2) was the only solution for H(X) that

satisfied the above axioms. It is important to note that H(X) is upper

bounded by the Hartley information, H(X) ≤ log |X |. As it turns out,

entropy is a concave function [4] which makes it susceptible to a large area

of mathematics.

2.1.1 Other Information Measurements

Entropy is only concerned with describing the uncertainty of a single source of

information. However, communication systems have inputs and outputs, just

like a learning machine. To characterize the relationship between two differ-

ent information sources, Shannon’s theory led to two well-known descriptors

called the Kullback-Leibler (KL) divergence and mutual information. Con-

sider the discrete random variable X with a finite set of possible outcomes

X = {xk}Nk=1. Let p(x) and q(x) be two probability mass functions defined

on X . Then the KL divergence is defined as

DKL(p||q) =
∑
x∈X

p(x) log
p(x)

q(x)
= Ep

[
log

p(X)

q(Y)

]
. (2.3)

The KL divergence is a way to measure how close the distribution q is to p.

When p = q the KL divergence is zero. However, DKL(p||q) 6= DKL(q||p), so

it is not a true measure of distance.

Now let Y be a random variable with a finite set of possible outcomes

Y = {yk}Nk=1. Let the joint probability mass function between X and Y be

p(x, y) and the marginal probability mass functions be p(x) and p(y). Then

the mutual information between X and Y is

I(X;Y) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
= Ep(x,y)

[
log

p(X, Y)

p(X)p(Y)

]
. (2.4)

The mutual information measures the amount of information that one ran-

dom variable contains about another. Mutual information can also be written

10

in terms of the KL divergence as

I(X;Y) = DKL(p(x, y)||p(x)p(y)). (2.5)

Thus, it is also possible to think of mutual information as measuring how

close X and Y are to being independent.

2.2 Rényi Entropy

In 1960 Alfréd Rényi was searching for a general definition of information the-

oretic measures that would preserve the additivity property for independent

events. He started with the probabilistic view of Hartley’s information in

Equation (2.1) since it was already shown by Shannon that this was required

to preserve the additivity property. He recognized that the total amount of

information developed by Shannon,

H(X) =
∑
x∈X

p(x)I(x), (2.6)

assumed that the average was linear. Instead of assuming a linear relation-

ship, he decided to apply the general theory of means. For any monotonic and

continuous function g(x), the general form of the mean applied to Equation

(2.6) is

H(X) = g−1

[∑
x∈X

p(x)g (I(x))

]
. (2.7)

Rényi showed that only two possible functions satisfied Equation (2.7) with

the additive property [6]. One possible function was g(x) = cx, which is just

a linear function and reduces Equation (2.7) to Shannon entropy. The other

function was g(x) = c−2(1−α)x, which when applied to Equation (2.7) implies

Hα(X) =
1

1− α
log
∑
x∈X

pα(x) (2.8)

where α 6= 1 and α ≥ 0. Equation (2.8) is a parametric family of functions

that is referred to as the αth-order Rényi entropy.

Of special interest is the case when α = 1. By taking the limit and applying

11

L’Hôspital’s rule, we see that

lim
α→1

Hα(X) = lim
α→1

1

1− α
log
∑
x∈X

pα(x) (2.9)

=
limα→1

∑
x∈X p

α(x) log p(x)∑
x∈X p

α−1(x)

limα→1−1
(2.10)

= −
∑
x∈X

p(x) log p(x). (2.11)

Shannon entropy can be determined by Rényi entropy when α is near 1.

Thus, Shannon entropy is just a member of the class of Rényi entropies.

For this reason, Rényi entropy is often referred to as a generalized form of

Shannon entropy.

2.2.1 Information Measurements of Degree α

Following Shannon’s theory, Rényi also developed measurements to describe

the relationship between two information sources. Consider the discrete ran-

dom variable X with a finite set of possible outcomes X = {xk}Nk=1. Let p(x)

and q(x) be two probability mass functions defined on X . Then the Rényi

α-divergence is defined as [6]

Dα(p||q) =
1

α− 1
log
∑
x∈X

p(x)

(
p(x)

q(x)

)α−1
. (2.12)

By taking the limit as α approaches one and applying L’Hôspital’s rule, it is

easy to see that Equation (2.12) approaches the KL divergence in Equation

(2.3):

lim
α→1

Dα(p||q) = lim
α→1

1

α− 1
log
∑
x∈X

p(x)

(
p(x)

q(x)

)α−1
(2.13)

=
− limα→1

∑
x∈X p(x)

(
p(x)
q(x)

)α−1
log q(x)

p(x)

limα→1

∑
x∈X

p(x)
q(x)

α−1 (2.14)

= −
∑
x∈X

p(x) log
q(x)

p(x)
(2.15)

12

=
∑
x∈X

p(x) log
p(x)

q(x)
= DKL(p||q). (2.16)

Now let Y be a random variable with a finite set of possible outcomes

Y = {yk}Nk=1. Let the joint probability mass function between X and Y be

p(x, y) and the marginal probability mass functions be p(x) and p(y). Then

the α mutual information between X and Y is

Iα(X;Y) =
1

1− α
log
∑
x∈X

∑
y∈Y

pα(x, y)

(p(x)p(y))α−1
(2.17)

= Dα(p(x, y)||p(x)p(y)). (2.18)

As α approaches 1, Equation (2.18) reduces to Shannon’s mutual information

since

lim
α→1

Dα(p(x, y)||p(x)p(y)) = DKL(p(x, y)||p(x, y)). (2.19)

2.3 Rényi Entropy vs. Shannon Entropy

The noticeable difference between Shannon entropy and Rényi entropy is the

addition of the α parameter. The parametric style of Rényi entropy allows

for different measurements of the uncertainty for a given distribution. When

α = 0, Equation (2.8) reduces to

H0(X) = logN = log |X |, (2.20)

which is the Hartley information of X. As α is increased, the entropy measure

places more emphasis on the events with higher probabilities. For example,

when α approaches infinity, Equation (2.8) reduces to

H∞(X) = − log sup
x∈X

p(x). (2.21)

The special case when α = 1 raises important questions about the prop-

erties of Rényi entropy. Several versions of axiomatic explanations exist [7].

However, for our purpose, the most convenient set of axioms follows the same

form as Shannon entropy [8]:

1. Hα(p(x)) ≥ 0 ∀ x ∈ X .

13

2. Hα(p(x1), p(x2), . . . , p(xN)) is a continuous and symmetric function of

its arguments.

3. Hα(1
N
, 1
N
, . . . , 1

N
) is a monotonically increasing function of N .

4. Hα(p(x1), p(x2)) = Hα(p(x1)) + Hα(p(x2)) for independent events x1

and x2.

5. Hα(p(x1), p(x2), . . . , p(xN)) = Hα(p(x1)+p(x2), p(x3), . . . , p(xN))+(p(x1)+

p(x2))
αHα(p(x1)

(p(x1)+p(x2))
, p(x2)
(p(x1)+p(x2))

), entropy is recursive.

The main axiomatic difference between Rényi and Shannon entropy is the

recursivity property. Rényi is a general form of Shannon, so the recursivity

property is unique to Shannon and is one of the properties that separates it

from other entropy measurements, such as Tsallis [9]. The similarity in the

axiomatic framework for Rényi and Shannon implies that it may be possible

to exploit the α parameter to estimate Shannon entropy. In fact, we will

show that this is true when α = 2.

2.4 Quadratic Rényi Entropy

Rényi information theoretic measures of the αth-order will be the primary in-

terest of the rest of this thesis, specifically when α = 2. Under this condition,

Equation (2.8) reduces to

H2(x) = − log
∑
x∈X

p2(x), (2.22)

which we will refer to as the quadratic Rényi entropy. The first step in

understanding the importance of Equation (2.22) is to compare it to Shan-

non’s entropy. As it turns out, quadratic Rényi entropy is a lower bound of

Shannon’s entropy, since

H1(X) = −
∑
x∈X

p(x) log p(x) (2.23)

≥ − log
∑
x∈X

p2(x) (2.24)

= H2(X), (2.25)

14

where Equation (2.24) follows by Jensen’s inequality. So the quadratic en-

tropy is an uncertainty measurement that also provides some insight about

the Shannon entropy of the data.

While the relationship between Rényi’s quadratic entropy and Shannon’s

entropy is beneficial, the true beauty of H2(X) lies in its estimator. Since

the log function in Equation (2.22) is monotonically increasing, the quadratic

entropy is primarily determined by the argument
∑

x∈X p
2(x). We can think

of the argument as the moment of the probability mass function E[p(x)].

Generally, when estimating entropy, a parametric or nonparametric model

is applied to the samples to calculate the PMF. However, here we are only

concerned with estimating E[p(x)], which is a scalar.

2.4.1 Estimating Quadratic Rényi Entropy

Since we are interested in computing the scalar value E[p(x)], we have to

start with the estimate for p(x). Assume that a data set X = {xk}Nk=1 is

generated from the probability distribution p(x). Then p(x) can be estimated

by placing some window function W (x) over every sample and summing with

proper normalization. This is called the Parzen-window approach and the

estimator is given by [10]

p̂(x) =
1

Nσ

N∑
k=1

W (
x− xk
σ

) (2.26)

where σ is the normalization factor. The window function can be of any

form, as long as it satisfies the following properties [10]:

1. supx∈X |W (x)| <∞

2.
∑

x∈X |W (x)| <∞

3. limx→∞ |xW (x)| = 0

4. W (x) ≥ 0

5.
∑

x∈X W (x) = 1

While there are numerous window functions that satisfy these properties, the

Gaussian function is the best for reasons that will become apparent when we

15

derive the estimator. The window function will be defined as

Wσ(x) =
1√

2πσ2
e
−x2
2σ2 . (2.27)

Now that we have a method for estimating p(x), we can substitute this

into the argument of Equation (2.22) to produce

Ĥ2(X) = − log
∑
x∈X

(
1

N

N∑
i=1

Wσ(x− xi)

)2

(2.28)

= − log
∑
x∈X

(
1

N

N∑
i=1

1√
2πσ2

e
−(x−xi)

2

2σ2

)2

(2.29)

= − log
1

N2

∑
x∈X

(
N∑
i=1

N∑
j=1

1√
2πσ2

e
−(x−xi)

2

2σ2
1√

2πσ2
e
−(x−xj)

2

2σ2

)
(2.30)

= − log
1

N2

N∑
i=1

N∑
j=1

(∑
x∈X

1√
2πσ2

e
−(x−xi)

2

2σ2
1√

2πσ2
e
−(x−xj)

2

2σ2

)
(2.31)

= − log

(
1

N2

N∑
i=1

N∑
j=1

1√
4πσ2

e
−(xj−xi)

2

4σ2

)
(2.32)

= − log

(
1

N2

N∑
i=1

N∑
j=1

Wσ
√
2(xj − xi)

)
(2.33)

The importance of using a Gaussian becomes apparent from step (2.30) to

(2.31). It was never necessary to compute the sum over the entire range X
because the sum of the product of Gaussians is simply the difference of their

arguments and the sum of their variances. Because the log is a monotonically

increasing function, we are only concerned with the argument. From now on

we will refer to the argument as the Quadratic Rényi entropy estimator [11]

and define it as

IR(X) =
1

N2

N∑
i=1

N∑
j=1

Wσ
√
2(xj − xi). (2.34)

The estimator depends on a double summation so the algorithm is O(N2).

The user also has control over the spread of the estimator with the σ param-

eter.

16

2.4.2 Quadratic Rényi Estimator vs. Shannon Entropy
Estimator

As we will show now, the Quadratic Rényi estimator provides a more effi-

cient estimator for the uncertainty of our data. For Shannon entropy we are

interested in computing the scalar value E[log p(x)]. We have to start with

the estimate for p(x). Assume that a data set X = {xk}Nk=1 is generated from

the probability distribution p(x). Then p(x) can be estimated by Equation

(2.26). Using a Gaussian window and applying p̂(x) to Equation (2.2) results

in

HS(X) = −
∑
x∈X

1

N

N∑
k=1

Wσ(x− xk) log

(
1

N

N∑
i=1

Wσ(x− xi)

)
(2.35)

The log function prevents the estimator from simplifying, so the algorithm

is O(N2|X |).

2.5 Cauchy-Schwarz Divergence

Rényi entropy is not the only measure that reduces nicely when α is two.

In fact, Rényi divergence simplifies to a well-known measurement called

the Cauchy-Schwarz (CS) divergence. Lutwak [12] proved that Rényi α-

divergence can be redefined as

Dα(p||q) = log
(
∑
X q

α−1(x)p(x))
1

1−α
(∑

x∈X q(x)α
) 1
α(∑

x∈X p
α(x)

) 1
α(1−α)

. (2.36)

Just like before, as α → 1 Equation (2.36) reduces to DKL(p||q) [12]. How-

ever, now when α = 2, Equation (2.36) will reduce to

DCS(p||q) = − log

∑
x∈X p(x)q(x)√∑

x∈X p
2(x)

∑
x∈X q

2(x)
. (2.37)

This expression is referred to as the CS divergence because of its close rela-

tionship to the CS inequality√∑
x∈X

p2(x)
∑
x∈X

q2(x) ≥
∑
x∈X

p(x)q(x). (2.38)

17

Using CS divergence we can also define CS mutual information. Let X and Y

be random variables with joint probability distribution p(x, y) and marginal

distributions p(x) and p(y). The CS mutual information is simply

ICS(X, Y) = DCS(p(x, y)||p(x)p(y)). (2.39)

2.5.1 Cauchy-Schwarz Divergence Estimator

Assume {xi}N1
i=1 are samples generated from p(x) and {xi}N2

i=1 are generated

from q(x). By applying the same Parzen-window technique as we did before,

and ignoring the log because it is a monotonically increasing function, the

estimator reduces to

ICS(p, q) = − log
1

N1N2

∑N1,N2

i,j=1 Wσ(xi, xj)√
1
N2

1

∑N1N2

i,i′=1Wσ(xi, xi′)
1
N2

1

∑N1N2

j,j′=1Wσ(xj, xj′)
. (2.40)

Just like the Rényi estimator, the complexity of the algorithm is O(N2).

18

CHAPTER 3

REPRODUCING KERNEL HILBERT
SPACES

Before continuing further with the αth-order information theoretic measures

discussed in Chapter 2, we introduce a branch of mathematics that will

provide a deeper geometric understanding of these measures and create a

framework for a useful tool in machine learning. This branch of mathematics

is called a reproducing kernel Hilbert space (RKHS) and was introduced in

1943 by Aronszajn [13]. The fundamental result of the theory is that there

exists a function, called a kernel, that maps an input space to some inner

product space. The advantage of this result is that a linear system that

operates in the inner product space, depending on the kernel, may become

a non-linear system in the input space. Also, if the RKHS dimension is

high it may be easier or more efficient to compute the calculation in the

input space with the kernel function. In this chapter we provide some basic

definitions and theorems underlying an RKHS, and show the relationship

between RKHS and estimators from Chapter 2.

3.1 RKHS Definitions

Recall that a Hilbert space is a complete vector space that is equipped with

an inner product. Let H be a Hilbert space defined on a domain X with

inner product 〈·, ·〉H. A reproducing kernel Hilbert space is a Hilbert space

H associated with some kernel κ that will reproduce all functions f in H
by an inner product [14]. This means that for every x ∈ X there exists a

κ(x, ·) ∈ H such that

f(x) = 〈f, κ(x, ·)〉H ∀f ∈ H. (3.1)

From Equation (3.1) we see that every x ∈ X is mapped onto a function f in

the RKHS by the kernel. So, the basis for the RKHS is defined by the kernel.

19

The function κ is called a reproducing kernel because it has the property that

κ(x, y) = 〈κ(x, ·), κ(y, ·)〉H, which is evident from Equation (3.1). Not all

functions are reproducing kernels, as is stated in the fundamental Theorem

3.1.1 [13].

Theorem 3.1.1 (Moore-Aronszajn theorem) Given any positive-definite

function κ, there exists a unique Hilbert space H of functions for which κ is

a reproducing kernel.

A function κ is positive definite if for {xk}Nk=1 ∈ X and {ck}Nk=1 ∈ R

N∑
i=1

N∑
j=1

cicjκ(xi, xj) ≥ 0. (3.2)

It is important to note that nothing has been said about the domain X. In

fact, Theorem 3.1.1 will hold on any domain where it is possible to define a

positive-definite function [15].

So far we have developed the idea that there is a relationship between some

input space X and some Hilbert space H when we have a positive definite

function, but we have not specified what that relationship is or proved that

it exists. Let X be in some n-dimensional space and let H be a much higher

dimensional space. Let us assume φ to be some kind of mapping such that

φ : X → H. Then, by Mercer’s theorem, we are guaranteed that such a φ

exists [16].

Theorem 3.1.1 (Mercer’s theorem) Given any positive definite function

κ, we can expand this function into its eigenfunctions

κ(x, y) =
∑∞

j=1 λjφj(x)φj(y).

Any kernel function that satisfies Theorem 3.1.1 is called a Mercer kernel.

The most common Mercer kernel is the radial basis function, or the Gaussian

function

κ(x, y) =
1√

2πσ2
e−
||x−y||2

2σ2 . (3.3)

Mercer’s theorem essentially provides a coordinate basis for the RKHS.

Working backwards with Theorem 3.1.1, we can first construct the RKHS as a

linear combination of eigenfunctions. That is, we defineH = {
∑∞

j=1 αnφ(x)}.
Using these eigenfunctions we can construct a kernel. Now we can redefine

20

the kernel function in terms of the basis functions and provide a functional

relationship between the input space X and some Hilbert space H.

Definition 3.1.1 A kernel is a function κ such that ∀x1, x2 ∈ X

κ(x1, x2) = 〈φ(x1), φ(x2)〉H,

where φ is a mapping such that φ : X → H.

This definition of a kernel provides a new insight into the geometry of an

RKHS. We can think of the kernel function as a mapping of observations

from X onto an inner product space H by some φ without ever having to

compute the mapping explicitly. If we are interested in calculating the dot

product of a high-dimensional vector in H, we can work backwards from

Mercer’s theorem to compute a kernel that operates in a lower dimension

while avoiding φ [17]. For example, the Gaussian kernel in Equation (3.3)

will map the x and y vectors into an infinite-dimensional inner product space

because the Gaussian has an infinite number of eigenfunctions. Definition

3.1.1 becomes especially important in cases when φ is nonlinear because it

can be used to make nonlinear generalizations about operations in X by inner

products in H [18]. This is often referred to as the “kernel trick” and, as we

will soon see, has a wide variety of applications in pattern analysis [19].

3.2 Density Estimation and RKHS

Recall the requirements for a valid Parzen-window when estimating a prob-

ability distribution from Chapter 2. If we also force the function W to be

positive definite then the window becomes a valid kernel function. Thus,

there is a close connection between density estimation and RKHS [11, 20].

Now recall the estimator for Quadratic Rényi entropy from Chapter 2

Ip(X) =
1

N2

N∑
i=1

N∑
j=1

Wσ
√
2(xj − xi), (3.4)

where Wσ
√
2 is the Gaussian function. Since Wσ

√
2 is a Gaussian function, it

is a valid kernel function that maps xj and xi to some inner product space.

21

So we can simplify Equation (3.4) to

Ip(X) =
1

N2

N∑
i=1

N∑
j=1

κ(xj, xi), (3.5)

By Mercer’s theorem we can assume that some map φ exists between X and

H to express this in terms of an inner product

Ip(X) =
1

N2

N∑
i=1

N∑
j=1

κ(xi, xj) (3.6)

=
1

N2

N∑
i=1

N∑
j=1

〈φ(xi), φ(xj)〉H (3.7)

=

〈
1

N

N∑
j=1

φ(xi),
1

N

N∑
j=1

φ(xj)

〉
H

(3.8)

= || 1
N

N∑
j=1

φ(xi)||2H. (3.9)

In the inner product space produced by the kernel function, the estimator

for Rényi entropy is just the squared norm of the mean of the transformed

data.

We can apply these same techniques to the CS divergence estimator derived

in Chapter 2. Recall that the estimator is defined as

ICS(p, q) = − log
1

N1N2

∑N1,N2

i,j=1 Wσ(xi, xj)√
1
N2

1

∑N1N2

i,i′=1Wσ(xi, xi′)
1
N2

1

∑N1N2

j,j′=1Wσ(xj, xj′)
. (3.10)

Substituting the kernel’s inner product representation and defining the mean

vectors

m =
1

N1

N1∑
i=1

φ(xi) (3.11)

n =
1

N2

N2∑
j=1

φ(xj), (3.12)

22

it is easy to see that Equation (3.10) reduces to

ICS(p, q) =
〈m,n〉√
〈m,m〉〈n,n〉

= cos∠(m,n). (3.13)

In the inner product space produced by the kernel function, the estimator

for CS divergence is the angle between the mean vectors of the transformed

data.

23

CHAPTER 4

SUPPORT VECTOR MACHINES

Up to now we have introduced this idea of αth-order information theoretic

measures and shown that when α = 2 these measurements reduce to useful

estimators that can be used to give us statistical properties about the under-

lying data. Using this idea of reproducing kernel Hilbert spaces, we were able

to show that these estimators have simple corresponding representations in

some inner product space. Our goal now is to tie these measurements back

into machine learning and show how they can be useful in designing a clas-

sifier. In this section we introduce the Support Vector Machine (SVM). An

SVM is a supervised learning method that attempts to separate its input into

a set of classes by a hyperplane. The hyperplane is chosen so that the distance

from the hyperplane to the nearest class points is maximized. The SVM was

built on the fundamental idea of generalization performance [21]. General-

ization refers to how well a learning machine performs on test data. In this

chapter we introduce some fundamental concepts in statistical learning the-

ory that help understand and control generalization performance, describe

the SVM, and propose a method that takes advantage of the discoveries in

Chapter 2 and Chapter 3 to aid in designing a SVM.

4.1 Vapnik-Chervonenkis Theory

The Vapnik-Chervonenkis (VC) theory is a form of statistical learning theory

that is concerned with characterizing generalization performance in learning

machines. The goal is to find the best balance between the accuracy of the

learning machine on a training set and its capacity. Here we define capacity

as the cardinality of the largest set of points that the machine can linearly

separate. To measure this capacity, Vapnik and Chervonenkis created the

concept of VC dimension [22]. First we will start with the definition of

24

shattering. Let f be a function, or learning machine, that takes in an input

and transforms it into a binary class {−1, 1} using some kind of weights

α. Assume those weights are calculated according to some training points

(xi, yi).

Definition 4.1.1 A function fα is said to shatter a set of points {x1, x2, . . . , xn}
if for every possible training set {xk, yk}nk=1, there exists some value of α that

achieves no error on the training data.

With this formulation for shattering, we can define the VC dimension.

Definition 4.1.1 The VC dimension is the maximum size of a set that can

be shattered by the function fα.

The importance of VC dimension becomes important in estimating the gen-

eralization error. We can define the probability of misclassification as

R(α) = E[
1

2
|y − fα(x)|]. (4.1)

Assuming we are training over a data set of size N , we can calculate the error

for the training set as

RT (α) =
1

N

R∑
k=1

|1
2
|y − fα(x)]|. (4.2)

Vapnik [23] showed that with probability 1− ε

R(α) ≤ RT (α) +

√
d log (2N

d
+ 1)− log ε

4

N
. (4.3)

It was this framework that led Vapnik to develop the support vector method

for calculating optimal separable hyperplanes [24].

4.2 Support Vector Machine

The maximal margin classifier was the first SVM proposed. It only works on

data that is linearly separable, so the uses are rather impractical. However, it

is the basis for more complex SVMs, so we introduce it here. For simplicity we

will stick to a two-dimensional data set and assume binary classification, but

25

Figure 4.1: An example of a maximum-margin function H separating a
training set.

the theory can be extended to n-dimensions and m-classifications. Assume

we are given a set of training points {xk, yk}nk=1 where x ∈ Rp and y ∈
{−1, 1}. Our goal is to find a linear function H that divides the points in

such a way that the line is as far away as possible from the closest sample in

each set. We call these sample points support vectors. Since H is a linear

function we can write it as

H(x) = 〈w,x〉+ b (4.4)

where w is a vector of weights and b is some offset. In order to maximize

the margin between the function H and the closest sample points in each set

we must find w and b. Figure 4.1 shows an example of the function H that

we seek. Since we are trying to maximize the margin between H and the

support vectors we can define the support functions S1 and S2 as

S1 = 〈w,x〉+ b = 1 (4.5)

S2 = 〈w,x〉+ b = −1. (4.6)

Now we want to maximize the distance between S1 and S2. Applying simple

geometry we can see that the distance between these two functions, or hyper-

26

planes, is also the distance where the hyperplane intersects the line through

the origin and parallel to w. Let x+ correspond to the point on Equation

(4.5) and x− correspond to the point on Equation (4.6). Then

x+ =
1

||w||2
w (4.7)

x− =
−1

||w||2
w, (4.8)

and the distance is

d(x+,x−) = ||x+ − x−|| = 2

||w||
. (4.9)

To maximize the distance in Equation (4.9) we need to minimize ||w||. How-

ever, we need to minimize ||w|| while ensuring our training data is appropri-

ately classified. This results in the following optimization problem [25]

min ||w|| subject to yi(〈w,xi〉+ b) ≥ 1 ∀i, (4.10)

which can be rewritten in terms of Lagrange multipliers as

L(w, b, α) =
1

2
〈w,w〉 −

n∑
i=1

αi (yi(〈w,xi〉+ b)− 1) . (4.11)

This optimization problem is well known and can be solved using standard

quadratic programming techniques [25].

The maximal margin classifier is a good foundation for SVM theory, but

since it requires the data to be linearly separable, it is not practical in real-

world applications. A slack variable η was introduced into the optimization

problem to calculate the hyperplane that would separate the data as cleanly

as possible. As a result, the optimization problem in Equation (4.10) be-

comes [25]

min ||w + C

n∑
i=1

ηi|| subject to yi(〈w,xi〉+ b) ≥ 1− ηi ∀i. (4.12)

27

4.3 Kernel Trick

Recall that the goal of the SVM is to find a linear function H that satisfies

Equation (4.4) and separates the data as best as possible. The function is

obtained by minimizing ||w|| with some constraint. Because H is a linear

function, the weight vector will always be a linear combination of the training

samples [25]

w =
N∑
i=1

αiyixi. (4.13)

Plugging this back into Equation (4.4) we get

H(x) =
N∑
i=1

αiyi〈xi,x〉+ b. (4.14)

Note the SVM operates in an inner product space. Recall from Chapter 2

that we can represent inner product spaces using a kernel function. With

this in mind, we can reformulate the problem.

Let φ : X → H be some kind of mapping from the input space X to some

feature space H. Let us assume the mapping takes the data in X which is

not linearly separable, and makes it linearly separable in H. Let us apply the

SVM method to this feature space H. Then we are looking for some function

H such that

H(x) = 〈w, φ(x)〉+ b. (4.15)

But by Equation (4.13) we know w is a linear combination of the training

samples so

H(x) =
N∑
i=1

αiyi〈φ(xi), φ(x)〉+ b. (4.16)

Applying the kernel trick we see that

H(x) =
N∑
i=1

αiyiκ(xi,x) + b. (4.17)

Let us examine what just happened. The feature space X contains data that

is not linearly separable (Figure 4.2). However, using a kernel function, we

are able to use some mapping φ to simultaneously represent our data in a

linearly separable feature space. Applying the SVM in this feature space is

28

Figure 4.2: Example of the input space mapped to some feature space via a
kernel function.

identical to applying some non-linear fitting model to our input space.

4.4 Evaluating Kernels Using Information Theory

The kernel method allows us to create non-linear classifiers. Of course, this is

assuming the kernel is able to map the input space to a feature space where

our data is linearly separable. Determining how well the data is linearized in

the feature space requires us either to calculate the mapping φ, or to compute

and test the classifier. Both of these options have significant drawbacks. In

some cases it is not possible to calculate the mapping. For example, consider

the Gaussian kernel case. If we apply Mercer’s theorem we see that the inner

product space is infinite-dimensional. In other cases, computing or testing the

classifier is too time consuming. We propose a method for evaluating how

well a kernel linearizes a feature space by exploiting information theoretic

measurements of the training data.

Recall what happens in the feature space when we estimate the Rényi

entropy and the Cauchy-Schwarz divergence from Chapter 3. In the inner

product space produced by the kernel function, the estimator for Rényi en-

29

tropy is just the squared norm of the mean of the transformed data

Ip(X) =
1

N2

N∑
i=1

N∑
j=1

κ(xi, xj) (4.18)

=
1

N2

N∑
i=1

N∑
j=1

〈φ(xi), φ(xj)〉H (4.19)

=

〈
1

N

N∑
j=1

φ(xi),
1

N

N∑
j=1

φ(xJ)

〉
H

(4.20)

= || 1
N

N∑
j=1

φ(xi)||2H (4.21)

= ||m||2H. (4.22)

The estimator for CS divergence is the angle between the mean vectors of

the two transformed data classes

ICS(p, q) =
〈m,n〉√
〈m,m〉〈n,n〉

= cos∠(m,n). (4.23)

If we use these estimates on the training data, we can characterize how well

the classes are separated in the feature space.

Let us assume {xk, yk}nk=1 where x ∈ R2 and yk ∈ {−1, 1}. If we calculate

the Quadratic Rényi entropy for each class by applying the estimator from

Equation (2.34) then we will get the magnitude of the mean vector in the

feature space. Let r1 = ||φ1(x)|| and r2 = ||φ−1(x)|| represent the magnitudes

for each class. Since x ∈ R2 we know the mean of each class must lie on a

circle of radius r1 and r2. If the mean values are close, or if r1 = r2, then all

we know is that the mean of both our feature vectors lies on the radius of

the same circle. But, if we use the CS divergence measure to calculate the

angle between the two classes, we can figure out if the mean feature vectors

have any separation on that circle. If the mean feature vectors vary enough,

i.e. if r1 >> r2, then it is possible to assume the classes are separated well

enough in the feature space without having to calculate the angle between

them. Estimating these information theoretic measures using the input data

allows us to evaluate how well the kernel function separates the data without

having to explicitly compute the mapping or build the classifier.

30

Figure 4.3: Using the Rényi entropy and CS divergence measures it is
possible to classify how separated the classes are in the feature space.

31

CHAPTER 5

CONCLUSION

In most cases, the only way of evaluating how well a kernel operates in a

support vector machine on a given set of input data is to build the classifier

and test it on real data. This can take a long time depending on the size of the

training set and the amount of available computational power. This thesis

proposed a method for evaluating how well a kernel will separate classification

classes in some feature space using information theoretic measure estimates

on the input data. Even though the proposed method uses estimators that

operate on the order of O(N2), this operation can be much quicker than

the standard quadratic optimization technique used in the SVM classifier.

Furthermore, the proposed method implies that it may be possible to build

an adaptive SVM that can evaluate how well the kernel is performing and

make adjustments if necessary.

This thesis focused on information theoretic measures and how they could

explain the kernel operations. Future research could be dedicated to finding

new estimators that provide other important metrics in the feature space, for

example, an estimator for the distance between two vectors. The proposed

estimators are also primarily concerned with the mean values of the data in

the feature space. This raises the question of whether or not it is possible

to create estimators that can classify the variance of the data in the feature

space.

32

REFERENCES

[1] K. Fukunaga, Introduction to Statistical Pattern Recognition, 2nd ed.
San Diego, CA: Academic Press, Oct. 1990.

[2] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed.
New York, NY: Wiley-Interscience, Nov. 2001.

[3] C. E. Shannon and W. Weaver, The Mathematical Theory of Commu-
nication. University of Illinois Press, Urbana, 1949.

[4] T. M. Cover and J. A. Thomas, Elements of Information Theory. Hobo-
ken, NJ: Wiley-Interscience, 2006.

[5] R. V. L. Hartley, “Transmission of information,” Bell Syst. Tech. Jour-
nal, vol. 7, pp. 535–563, 1928.

[6] A. Rényi, “On measures of entropy and information,” in Proceedings of
the 4th Berkeley Symposium on Mathematics, Statistics and Probability,
1960, pp. 547–561.

[7] J. Aczl and Z. Darczy, On Measures of Information and Their Char-
acterizations. New York: Academic Press [Harcourt Brace Jovanovich
Publishers], 1975.

[8] A. Renyi and P. Turan, Selected papers of Alfred Renyi. Budapest:
Akademiai Kiado, 1976.

[9] C. Tsallis, “Possible generalization of Boltzmann-Gibbs statistics,” J.
Statist. Phys., vol. 52, no. 1-2, pp. 479–487, 1988.

[10] E. Parzen, “On estimation of a probability density function and mode,”
The Annals of Mathematical Statistics, vol. 33, no. 3, pp. 1065–1076,
1962.

[11] J. Principe and D. Xu, “Information-theoretic learning using Renyi’s
quadratic entropy,” in Proc. 1st International Workshop on Independent
Component Analysis and Signal Separation, Jan. 1999, pp. 407–412.

33

[12] E. Lutwak, D. Yang, and G. Zhang, “Cramerrao and moment-entropy in-
equalities for Renyi entropy and generalized Fisher information,” IEEE
Transactions on Information Theory, vol. 51, no. 2, pp. 473–478, 2005.

[13] N. Aronszajn, “Theory of reproducing kernels,” Transactions of the
American Mathematical Society, vol. 68, pp. 337–404, 1950.

[14] L. Máté, Hilbert Space Methods in Science and Engineering. Budapest,
Akademiai Kiado: A. Hilger, 1989.

[15] A. Berlinet and C. Thomas-Agnan, Reproducing Kernel Hilbert Spaces
in Probability and Statistics. Norwell, MA: Kluwer Academic, 2004.

[16] J. Mercer, “Functions of positive and negative type and their connection
with the theory of integral equations,” Philos. Trans. Royal Soc. (A),
vol. 83, no. 559, pp. 69–70, Nov. 1909.

[17] A. Aizerman, E. M. Braverman, and L. I. Rozoner, “Theoretical founda-
tions of the potential function method in pattern recognition learning,”
Automation and Remote Control, vol. 25, pp. 821–837, 1964.

[18] B. Schölkopf, A. Smola, and K.-R. Müller, “Nonlinear component anal-
ysis as a kernel eigenvalue problem,” Neural Comput., vol. 10, no. 5, pp.
1299–1319, July 1998.

[19] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analy-
sis. New York, NY: Cambridge University Press, 2004.

[20] M. Girolami, “Orthogonal series density estimation and the kernel eigen-
value problem,” Neural Comput., vol. 14, no. 3, pp. 669–688, Mar. 2002.

[21] C. Cortes and V. Vapnik, “Support-vector networks,” Machine
Learning, vol. 20, no. 3, pp. 273–297, Sep. 1995. [Online]. Available:
http://dx.doi.org/10.1007/BF00994018

[22] V. N. Vapnik and Ya, “On the uniform convergence of relative
frequencies of events to their probabilities,” Theory of Probability and
its Applications, vol. 16, no. 2, pp. 264–280, 1971. [Online]. Available:
http://link.aip.org/link/?TPR/16/264/1

[23] V. N. Vapnik, The Nature of Statistical Learning Theory. New York,
NY: Springer-Verlag, New York, Inc., 1995.

[24] V. N. Vapnik, Statistical Learning Theory. New York, NY: Wiley, Sep.
1998.

[25] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector
Machines. New York, NY: Cambridge University Press, 2000.

34

