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ABSTRACT 

Seismic velocity models obtained from the joint inversion of ambient seismic noise 

correlation and receiver function analysis show a representation of the crustal and uppermost 

mantle velocity structure in north central Alaska.  Due to the lack of station coverage and 

inhospitable terrain, the structure beneath northern Alaska remains largely unexplored.  The 

stations used in this study consist mainly of the temporarily deplored ARTIC seismic array from 

mid 2005 to mid 2007.  This linear array runs north from Fairbanks, AK to Prudhoe Bay, AK.  

The source for the surface wave tomography is ambient seismic noise correlation, which 

correlates the background noise from a seismic station‟s continuous record with the noise from 

another station's record. This returns an empirical surface wave Green function between the 

station pair, which is used to extract Rayleigh wave group and phase velocity dispersions. The 

dispersion measurements between station pairs are then used to invert for surface dispersions at 

the discreet grids along the linear array.  The receiver function analysis uses the P to S 

conversions at velocity boundaries. Because of their different sensitivities to the subsurface 

structure, the two data sets are combined to invert for a 1-D, S velocity profile under each 

station.  Preliminary results show shallow crustal structures including the sedimentary basins in 

the Central Uplands and Lowlands, the Colville Basin on the North Slope, and a high velocity 

zone under the southern part of the Brooks Range.  The Moho is well mapped, and is deepest 

under the Brooks Range and is average crustal depth under the North Slope and Central Uplands 

and Lowlands. A significant low velocity zone is observed in the uppermost mantle under the 

southern slope of the Brooks Range.  These results set the stage for the upcoming USArray 

deployment in Alaska for the understanding of the tectonic structure and evolution in the North 

America frontier.  
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1. INTRODUCTION 

While the tectonic setting of northern Alaska is complex, it can be summarized by 

looking at the histories of two areas:  the Central Uplands and Lowlands, and the Brooks Range.  

The Central Uplands and Lowlands exist in the southern half of the study area (See Figure 1).  

This region represents several accreted terranes, including an ophiolitic island arc terrane that 

collided with the Arctic Alaska terrane in the Jurassic period.  Nunn et al. (1987) show that these 

island arcs became the overriding plates in these collisions with the Arctic Alaska terrane, based 

on mechanical models of the lithosphere and Bouger gravity analysis.  There are also numerous, 

small mountain ranges in the Central Uplands and Lowlands, like the Ray Mountains and the 

White Mountains.  In the Cretaceous there was substantial North-South extension throughout 

much of central Alaska, which allowed several sedimentary basins to form in the Central 

Uplands and Lowlands, for example, the Yukon Flats Basin 160 km north of Fairbanks at this 

time (Fuis et al 1997, Fuis et al 2008).  Gravity analysis by Phillips and Saltus (2005) show this 

basin to have a depth of 4 – 7 km.  This region also has several significant, left lateral strike slip 

faults that may be responsible for the large displacement of certain terranes (Fuis et al 1997, Fuis 

et al 2008).    

The Brooks Range is the dominant East-West trending mountain range in the northern 

half of the study area, and was formed from many accreted terranes over several compressional 

events during the early Cretaceous.  Nunn et al. (1987) show that this region has experience 300-

800 km of crustal shortening, most of which was accommodated along major thrust faults.  This 

resulted in significant crustal thickening, forming a crustal root under the Brooks Range.  The 

North Slope of the Brooks Range is part of the passive margin that rotated away from the North 

American Plate in the late Cretaceous, opening the Canada Basin.  Also around that time, a 
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foreland basin developed, known as the Colville Basin.  Flexural models show that this basin had 

to form at this time due to the underthrusting of the Arctic Alaska terrane.  The Colville Basin is 

estimated to have a thickness of 7 km at its deepest near the northern edge of the Brooks Range.  

This sedimentary basin has also produced and trapped large amounts of hydrocarbons, and thus 

is part of the National Petroleum Reservoir in Alaska (Nunn et al. 1987).  Cenozoic compression 

may have caused some under-thrusting near the root of the Brooks Range (Fuis et al 1997, Fuis 

et al 2008). 

Due to the inhospitable terrain in northern Alaska, the crustal and mantle structures and 

processes forming the crust in this region remain poorly understood. Few geophysical 

experiments have occurred targeting the lower crust and uppermost mantle structures and 

processes.  Before the 1970‟s, most of the scientific investigations relied on surface geology.  By 

the present time, the sedimentary basins in this area had been well explored by petroleum 

companies. However, most of this work focuses on shallow crustal structures.  Detailed 

information on the tectonic history of the Colville and Yukon Flats Basins, as well as major faults 

and terranes can be seen in Phillips and Saltus (2005) and Mcwhae (1986).  One of the first 

major seismic experiments in northern Alaska was the Trans Alaska Crustal Transect (TACT) 

project in the 1980‟s and early 1990‟s.  The TACT project included a pseudo-linear seismic array 

that stretched from the Pacific Coast in the south, through Fairbanks, and up to Arctic Coast in 

the north.  Methods used in the TACT project included seismic reflection/refraction, potential 

field, and magnetotellurics (Fuis et al. 2008).   The TACT experiment was primarily utilized for 

determination of upper to mid crustal structures, and overall crustal thickness.   Other 

experiments in northern Alaska include aerial magnetic and Bouger gravity analysis along 

specific North-South transects.  These were not limited to following the Dalton Highway, and 
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thus give us a rough estimate for the 3 dimensionality of these structures.  In 2005, the Alaska 

Receiving Cross Transects for the Inner Core (ARCTIC) Passcal experiment was conducted.  

The main aim of ARCTIC was to set up a passive array of seismometers to measure inner core 

rotation (Lindner et al., 2010).  It consisted of 15 seismic stations in an array from Fairbanks, AK 

to Prudhoe Bay, AK, with two of the stations to the west of Fairbanks, AK.  Through these 

developments and experiments, the scientific community has learned much about this region.  

However, there are still many fundamental questions that have not yet been answered.  What is 

the structure of the uppermost mantle in this region?  Can a new method and data set reveal 

previously undiscovered anomalies?  What new methods need to be applied to this region to gain 

even further insight? 
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2. DATA  

The ambient seismic noise correlation measurements from the 13 long period PASSCAL 

seismic stations from the ARCTIC array, as well as stations COLD and COLA from Alaska and 

GSN seismic networks, respectively, use vertical component, continuous data from June 1, 2005 

to July 31, 2007 to study the seismic velocity structure of northern Alaska.  All of the sensors are 

CMG-3T, 120-50 Hz, and all the recorders are Q330 and Baler from Quanterra.  The station 

locations run north from Fairbanks, AK to Prudhoe Bay, AK along the Dalton Highway.  The 

average distance between stations was 35.7 mi.  See Table 1 for station information. 

The receiver function data from the same stations as mentioned above use teleseismic 

events from summer 2005 to summer 2007 with body wave magnitudes greater than 5.0, and 

with an angle between 30 and 95 degrees from the stations.  Under these conditions, 2075 events 

were collected.  Of those events, 426 events were manually chosen for this study based on the 

clarity of the arrivals and the signal to noise ratio.  From the 426 events, 2800 traces were chosen 

based on clarity of arrivals and signal to noise ratio.  To prepare for analysis, the data underwent 

a band pass filter (0.05 to 2 Hz), and was down-sampled to 10 samples per second.  The filtering 

is done to enhance the signal to noise ratio, and the down-sampling is done to reduce 

computation time. 
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3. METHOD   

This study applies two well tested and robust geophysical modeling methods, and 

combines the results through joint inversion to produce a 2-D S-wave velocity structure.  

Ambient seismic noise correlation is a relatively new method of seismic analysis.  The theory 

behind this was developed by Richard Weaver and Oleg Lobkis (2001) with the discovery that 

the noise in an acoustic system can inherently contain correlations that are equal to Green‟s 

functions.  One of the applications for this was seismic analysis in areas of the world where 

traditional Green‟s function analysis was not viable due to a lack of local seismicity.  These 

theories were soon confirmed by many seismic observations using cross-correlation to accurately 

model known geologic structures (e.g. Shapiro et al. Science 2005).  Utilizing programs outlined 

in Bensen et al. (2007), we take the following steps to prepare the single-station data:  First we 

remove the instrument response, apply a bandpass filter, and cut the data to a length of one day.  

We then apply time domain normalization and spectral domain whitening.  Then the single-

station data are cross-correlated and stacked to increase the signal to noise ratio.  Figure 2 gives 

proof that the cross-correlated noise data becomes coherent, empirical surface waves by showing 

a linear “distance as a function of travel time” relationship.  Green‟s functions that are above a 

specific signal to noise ratio are then processed to measure the group and phase velocity.  The 

group and phase velocity structure under each point of the grid of the linear array is then inverted 

using a tomography program developed by Zhen (James) Xu, which was designed for linear 

arrays (Xu, 2011).  The result is group and phase velocity as a function of latitude and depth.  

One advantage of using ambient noise is that ray coverage is increased since it does not depend 

on the location or magnitude of nearby seismic sources (Xu 2011).   
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Teleseismic receiver functions are adjusted seismic traces that record several arrivals 

from nearly vertical rays, including the P-S converted phases from the Moho and other seismic 

discontinuities (Burdick and Langston 1977, Zhu and Kanamori 2000).  These data are 

deconvolved to remove the source time function and leave the earth response function.  The 

source time function is obtained from stacking the vertical components of each station for the 

event.  After deconvolution, the crustal and uppermost mantle seismic velocity structures beneath 

a station can be obtained.  Analysis of multiples allows the uncertainty due to the „trade off‟ 

relationship crustal thickness and Vp/Vs ratio to be minimized (Burdick and Langston 1977, Zhu 

and Kanamori 2000).  In this experiment, the prepared data are deconvolved to produce several 

receiver function traces at varying slowness (“p”) values along varying back-azimuths for each 

station, as shown in Figure 3.  Each trace shows the initial P arrival, as well as several late 

arrivals representing P-S conversions at seismic discontinuities, for example, the Moho.  A 

residual time is computed for each trace, indicating a time shift from the expected arrival time.  

This residual typically varies from about 0.1 seconds to 10 seconds.  It is reasonable to assume 

that variations in this residual, as a function of station location, back-azimuth, and horizontal 

slowness, are due to large-scale crustal and uppermost mantle velocity structures beneath each 

station.  The timing difference between the P arrivals and the PS arrivals can be converted into 

depth to the discontinuity.  Additional arrivals can be used to constrain the S-wave velocity.  We 

use H-k stacking to analyze the interaction between crustal thickness and the Vp/Vs ratio (Zhu 

and Kanamori 2000).  Results of the H-k stacking show specific discontinuity depths under each 

station, and can be viewed in the supplementary materials.   

While both surface wave dispersion and receiver function analysis can provide 

information on crustal structure, a more complete and accurate analysis is done through the joint 
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inversion of the two.  By performing a joint, linearized inversion scheme developed by 

Herrmann et al. (2000), we combine the two previous results for the 2-D, S-wave velocity 

structure beneath the array.  This program allows a balance between fitting the observations and 

producing a smooth and realistic model of the subsurface, as well as a user-defined weight 

assignment for each of the two individual results being jointly inverted.  This is done by 

calculating the synthetic receiver function, comparing it with the model, getting the residual, 

displaying the fitting error, changing the model, and iterating (Xu 2011).  Fifteen iterations are 

used to improve the ending model, using an equal weight ratio of .5 for both the dispersion and 

the receiver function results.  The number of iterations is chosen based on the diminishing 

returns of the fitting error.  Results are obtained for each station, as well as for the whole study 

area.  Results for one of the stations can be seen in Figure 4.  The lower most boundary of the 

inversion program is 100 km.  However, other methods like the common conversion point (CCP) 

stacking go deeper.  Joint inversion is successful because ambient noise correlation is primarily 

sensitive to lateral variations and the average velocity with excellent ray coverage, and the 

receiver function is primarily sensitive to vertical velocity structure, including seismic 

discontinuities (Herrmann et. al. 2000). 
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4. RESULTS 

 The S-wave seismic velocity model shown in Figure 5 is the preliminary result of the 

joint inversion of ambient seismic noise correlation and receiver function.  The color schemes are 

split at the Moho by a black line in order to make subtler features more visible.  Starting with the 

shallow crust at a latitude of 65 to 66 degrees, we see a large low velocity zone in brown and 

dark red with an S-wave velocity of less than 3.0 km/s, with a depth of a few kilometers.  From 

66 to 68 degrees we see shallow crustal velocities of 3.2 to 3.4 km/s, which are closer to the 

average for continental rocks.  Then from 68 to the northern edge of the study area, we observe a 

larger low velocity zone, with an S-wave velocity less than 3.0 km/s.  The depth of this feature is 

approximately 8-10 km deep.  Deeper in the crust at depths of 30 to 40 km, we observe 

interesting variation in the Moho depth and gradient.  From 65 to 66 degrees we see a very 

shallow Moho gradient, whereas from 66  to 68 degrees, the Moho gradient is very steep at 

approximately 0.6 km/s over 10 km.  From 68 to 69.5 degree we see the Moho thicken to a depth 

of almost 40 km.  We observe an ambiguous sharp bend in the Moho at 69.5 degrees, where it 

thin to 32 km north of 69.5 degrees.  Below the Moho we observe an unexpected low velocity 

zone at 67 degrees.  This extends from the Moho to at least a depth of 100 km.  This is the 

deepest extent of this study.  This low velocity zone is mostly vertical, and has a velocity contrast 

of 0.3 km/s when compared with the surrounding mantle. 

 The joint inversion result shown in Figure 5 is a considerable improvement from the 

results of the ASNC S-wave model (See Figure 6) using dispersion measurements between 

station pairs (See Figure 7).  The joint inversion result is also an improvement on the CCP 

stacking part of the receiver function result (See Figure 8).  The most notable improvements 

include higher resolution of all subsurface features, added vertical sensitivity, and a greatly 
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improved image of the sub-Moho low velocity zone at 67 degrees.  Additional results of this 

study include H-k stacking plots showing the depth and Vp/Vs ratio of seismic discontinuities 

with error, as well as plots showing the positive, negative, symmetric, and full part of the 

correlation record (See Figures 9 and 10 respectively). 
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5. DISCUSSION 

 In general, the joint inversion of ambient seismic noise correlation and receiver function 

analysis produces a model of crustal and uppermost mantle velocity structures.  These velocity 

anomalies can be interpreted as geologic structures, some of which are expected, and some of 

which are previously unknown.  The main features observed in the model are sedimentary 

basins, moho depth variation, and a low velocity anomaly in the upper most mantle. 

The model clearly shows the major sedimentary basins of northern Alaska. The first low 

velocity zone at the surface at a latitude of 65-66 degrees represents the Yukon Flats Basin in the 

Central Uplands and Lowlands.  The edge of this basin lies about 50 km to the east of the array 

of stations.  Even though the array does not pass through this basin, some ray paths sample the 

sedimentary rocks because of the substantial curve in the array due to the route of the Dalton 

Highway.  The ray paths that sample this basin show a low velocity zone just below the surface.  

The depth of this low velocity zone conforms well to previous studies of the Yukon Flats Basin.  

The next important feature shown in Figure 4 is at the surface at a latitude of 68 degrees and 

extending north.  This low velocity zone clearly represents the Colville Basin on the North 

Slope.  It is easily distinguished from the surrounding continental crust, and the shape and depth 

conform to previous studies along the TACT survey in the 1980's (Fuis et al 1997, Fuis et al 

2008, Nunn et al. 1987).   Our model also shows high velocity continental rocks between the two 

basins.  In the shallow crust, our method has reproduced the expected geologic structures, 

showing the credibility and viability of this study. 

 In the lower crust, the main observed feature is the depth of the Moho and its velocity 

gradient as it transitions from crustal material to mantle material.  In the south, under the Central 
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Uplands and Lowlands, we see a normal crustal thickness of about 32 – 35 km.  We also 

observed a shallow velocity gradient from 65 - 66.5 degrees indicating a broad mineralogical 

transition from crust to mantle.  We also observe a very steep velocity gradient from 66.5 - 67 

degrees indicating a sharp contact between the mineralogy of the crust and the mantle.  Under 

the Brooks Range, we observe significant crustal thickening from 67 - 69.5 degrees.  This is 

clearly the root of the mountain range, and is the lower crustal response to continent collision.  

At 69.5 degrees the Moho turns up sharply as it transitions from a mountain root to average 

crust.  North of 69.5 degrees the crust thins to about 32 km.  At this point the crust begins to 

behave like a passive margin.   

 In the uppermost mantle, the most important observation is the existence of a significant, 

vertically oriented low velocity zone at 67 degrees.  The geologic interpretation of this feature is 

still unclear, but possible explanations could include the presence of low density mantle material 

or thermal activity.  Our result of a large low velocity anomaly beneath the Moho may conform 

to gravity anomaly observations made by Fuis et. al. (2008).  They observed a substantial 

negative gravity anomaly at the same location with roughly the same size.  This anomaly was not 

specifically interpreted by Fuis et. al., and we hold that it is possible that the low velocity 

anomaly found in our study probably has lower density then the surrounding mantle, which 

would account for the negative gravity anomaly.    

The continuation of this work will be required to obtain more definite answers to all the 

questions that remain concerning the study area, the method, and its application.  The first area of 

work that could be done in the future would focus on improving and verifying the results 

presented here.  This could include continuing to rerun the programs to ensure repeatability, and 

could also involve adjusting parameters used in the modeling programs like smoothing 
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parameters, the weighting parameter of the two different methods in the joint inversion process, 

data selection in order to reduce fitting errors in the inversion process.  The second area of future 

work to be done with the results presented here would be to apply them towards other geologic 

experiments.  Probably the most significant upcoming project in geoscience in Alaska will be the 

deployment of the US Transportable Array that is expected to begin in Alaska in 2014.  This 

project is a 2-D station network that will cover all of Alaska with relatively close station spacing.  

This will allow for 3-D geophysical modeling of the subsurface, which will drastically increase 

our knowledge and understanding of Alaska‟s crustal structure and tectonic processes.  The 

results of our study may be very useful for future researchers in the identification of geologic 

anomalies.   

Often, studies can produce more questions then they answer, and this study is no 

exception.  The most pertinent questions that apply here include:  What is an accurate geologic 

interpretation of the low velocity anomaly beneath the Moho, and what tectonic processes are 

responsible for it?  What is the nature of the Moho discontinuity in northern Alaska, and what is 

the geological/mineralogical interpretation for its varying degree of sharpness?      
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6. CONCLUSION  

Understanding the geologic nuances of the vast expanse of northern Alaska has always 

been difficult and restricted by the remoteness of the region and the lack of infrastructure.  In 

many places, it is simply unobtainable.  This study provides a preliminary model for the 2-D S 

wave velocity structure under the little understood region of North Central Alaska, but in time, it 

may be applied towards the whole of Alaska through the EarthScope Transportable Array 

program.  The model in this experiment was created using the joint inversion of ambient seismic 

noise correlation and receiver function, and it extends from the surface to a depth of 100 km.  

This method has been used for several years now, and continues to produce significant and 

accurate results in the geophysical community.  These two methods were chosen based on their 

sensitivities to geologic structures.  The joint inversion of these two methods produces a model 

that represents the overall velocity as well as finer detailed structures at depths that have not been 

reached by previous studies like seismic reflection or gravity analysis (Fuis 1997, 2008; Nunn et. 

al. 1987).  In addition, this is the first study to utilize the ARCTIC seismic data set for crustal 

velocity modeling, providing a fresh look at geologic mysteries and unexplained processes. 

The most significant conclusion of this study is the imaging of a previously unidentified 

low velocity anomaly at a latitude of 67 degrees extending from the bottom of the Moho to the 

base of this study (100 km).  Another gain is the mapping of the Moho and its varying gradient 

along the linear, North-South transect.  In general, the 2-D velocity profile along this transect 

provides important information for current and future work in Alaska. 

While this study sheds some light these geologic mysteries, there is still much more work 

to be done.  It seems that each new discovery yields even more questions.  It is our hope that this 
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study will encourage more discussion, learning, and exploration of northern Alaska, as well as 

the processes that formed it. 
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8. FIGURES 

 

 

 

 

 

 

 

  

Fig. 1 Map of Alaska and station locations 

(red).  The fifteen stations are spread out 

from Fairbanks in the Central Uplands and 

Lowlands to Prudhoe Bay on the North 

Slope. 

 

Fig. 2 Empirical Green‟s functions 

between the southern-most station 

(COLA) and all the other stations.  

This shows the empirical signal 

travelling from one end of the array 

to the other allowing dispersion 

measurements to be made.  
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Station Name Latitude (Deg North) Longitude (Deg East) Elevation (m)

BMQ 67.8516 210.176 590

PRB 70.2036 211.554 46.5

FRB 69.7162 211.302 146

TFS 68.6274 210.41 759

LVG 65.522 211.449 222

WSM 67.3812 209.89 422

YRT 65.825 210.457 645

GBN 66.7192 209.329 349

SAG 69.424 211.306 342

ICT 69.0223 211.164 418

LMW 65.5114 211.489 590

CBM 66.2066 209.737 570

CHS 68.0789 210.418 1025

COLA 64.8736 212.138 200

COLD 67.2274 209.799 377

Table 1 Gives station name, 

station location by latitude and 

longitude, and station elevation in 

meters 
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 Fig. 3 Receiver function traces for 

all stations.  Red lines indicate 

coherent signals.  Y-axis is 

“slowness”. 
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Fig. 3 (cont.) 
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Fig. 4 Joint Inversion results for station 

GBN showing the combination of receiver 

function and ambient seismic noise 

correlation.  The final S-wave velocity 

structure is shown in black on the left.  The 

red line represents the starting model. In 

the upper right, the dispersion 

measurement is shown in black.  The red 

lines show the synthetic dispersion curves. 

In the lower right, the receiver function 

traces and their “p” values are shown in 

black.     
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Fig. 5 Cross section image of the study area 

showing S-wave velocity from the surface to a depth 

of 100 km.  The Moho is measured by hK stacking 

and is shown by blue, vertical lines (two erroneous 

points were removed).  The black line that separates 

the color schemes of the crust and the mantle 

represents velocity at 4.0 km/s.  Sedimentary basins 

on the North Slope and Central Uplands and 

Lowlands can be observed as dark red layers in the 

crustal color scheme.  The low velocity zone is 

shown in yellow and orange from a depth of 60 km 

to the bottom of the figure at a latitude of 67 degrees. 
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Fig. 6    Analysis result for ambient seismic noise 

correlation.  Note resolution is greatly decreased when 

compared to the jointly inverted result. 
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Fig. 7    Dispersion plots show 

group velocity (km/s) as a function 

of period (s) between specific 

station pairs.  The Z-axis color 

scheme shows the amplitude (or 

relative strength) as a function of 

period and velocity.  
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Fig. 8      Common Collection 

Point (CCP) stacking result 

showing the relative amplitudes of 

converted arrivals due to velocity 

discontinuities.  North is oriented to 

the right. 
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Fig. 9 H-k stacking results for all 

fifteen stations.  Ellipse represents 

depth and kappa of strongest P-S 

conversion with error.  
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Fig. 9 (cont.)  
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Full Correlation Record Negative Part of Correlation Record 

Positive Part of Correlation Record 
Symmetric Part of Correlation 
Record 

Fig. 10        Correlated Green‟s 

function plots.  Each trace is a 

station pair with the southernmost 

station COLA.  This shows the full, 

positive, negative and symmetric 

parts of the record.  


