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Abstract

We describe the spacetime discontinuous Galerkin method, a new type of finite-element method which
promises dramatic improvement in solution speed for hyperbolic problems. These methods require the
generation of spacetime meshes that satisfy a special causality constraint. This work focuses on the extension
of the existing 2dxtime spacetime meshing algorithm known as TENTPITCHER to 3dxtime problems. We
review existing work based on TENTPITCHER. Then, we extend TentPitcher to 3dxtime and derive methods
for handling mesh adaptivity operations. Next, we describe the software we have developed to implement our
algorithms and give preliminary results of testing. We also identify unresolved theoretical and engineering

issues associated with our new methods and suggest directions for further research.
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Chapter 1

Introduction

1.1 Overview

This thesis is based on a multi-year effort to develop software for spacetime discontinuous Galerkin finite
element methods [30, 43], a new class of finite element methods that promise dramatically faster solutions
for hyperbolic partial differential equations. Spacetime discontinuous Galerkin methods rely on a mesh of
the spacetime analysis domain, and they require that the boundaries between elements in this mesh satisfy
a special cone constraint [30, 58]. We use an algorithm known as TENTPITCHER [58] to build a mesh of
the spacetime domain that satisfies this condition. This thesis provides an overview of the software and its
functionality. It also includes new theoretical contributions in the area of adaptive spacetime meshing. This
thesis is organized as follows. First, we provide an overview of the principles, history, and development of
spacetime discontinuous Galerkin methods prior to this work. Second, we describe the general principles
of the 3dxtime spacetime discontinuous Galerkin method and give an overview of the architecture and
functionality of our SDG software. Third, we describe new theoretical developments needed to extend
spacetime discontinuous Galerkin methods from 2dxtime problems such as those treated by Abedi et al. [2]
to 3dxtime problems. Fourth, we describe the post-processing and output features of our software and

provide examples of its output.

1.2 Terminology

A simplez is the generalization of a tetrahedron to an arbitrary number of dimensions [40]. Formally, a
d-dimensional simplex, or d-simplex, is the convex hull of a set of d + 1 affinely independent points, called
the vertex set of the simplex. A face of a simplex S is a simplex whose vertex set is a subset of the vertex
set of S. A facet of S is a face of S with dimension exactly one less than the dimension of S. A coface of S
is a simplex whose vertex set contains the vertex set of S. A cofacet of S is a coface of S with dimension
exactly one greater than the dimension of S.

A collection D of simplices is a simplicial complex [40] if all faces of a simplex in D are themselves in D
and the intersection of any two simplices in D is a face of both of the simplices in D.

The dimension of a simplicial complex is the dimension of the highest-dimensional cells in the complex.

A facet of a simplicial complex is a cell whose dimension is equal to the dimension of the complex.
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Figure 1.1. This mesh is not a simplicial complex, because the intersection of the triangles A and B is not a facet of either.

1.3 Main Principles

Finite element methods are an important class of methods used in science and engineering to simulate physical
phenomena by solving partial differential equations (PDEs). A comprehensive overview of finite element
methods and applications is given by Zienkiewicz and Taylor [63, 62, 61]. In such problems, the spatial
region under analysis is divided into a large number of simpler volumes such as triangles, quadrilaterals,
tetrahedra, or hexahedra. These simpler volumes are known as cells, and the collection of volumes is known
as a mesh. Many methods of generating a variety of mesh types for finite element methods are known
[56, 21, 27, 14]. A simplicial mesh is a mesh that is a simplicial complex. The most common types of
simplicial meshes used in finite element applications are triangular and tetrahedral meshes. Many methods
of generating triangular and tetrahedral methods are known; a survey of such methods is given by Owen
[42]. Finite element methods represent the solution to the PDE as a linear combination of basis functions,
each with support over one or a small number of cells. These methods transform the PDE into a system of
linear equations whose solution gives coefficients of the basis functions that approximate the solution to the
PDE.

In many applications, the system to be modeled changes over time. In this case, most solution methods
use a discrete time-marching scheme. In these methods, generally a specific time step At is chosen, and the
entire mesh is solved at time 0, then at time At, then at time 2At, and so on. An overview of a variety of
different time-marching schemes is given by Wood [59], and an example of a time marching scheme being used
to solve a particular problem is given by Jameson et al. [23]. However, these methods can be computationally
expensive because a potentially very large system of linear equations must be solved at each time step.

An important class of PDEs are known as hyperbolic PDEs. Hyperbolic PDEs generally model wave-
like behavior, such as the propagation of shockwaves or sound waves. These physical phenomena have a
finite mazimum wave speed, which defines the maximum speed at which disturbances can propagate. For
linear hyperbolic equations with homogeneous material properties, this maximum wave speed is the same
everywhere. Our work assumes constant maximum wave speeds.

The spacetime discontinuous Galerkin methods developed by Haber and others [4, 7, 8, 6, 35, 3, 44, 34, 43]
do not use a fixed time-marching scheme, but rather generates a mesh of the entire spacetime analysis domain
0 x [0, ], where § is the spatial domain and [0, ¢] is the time interval over which the function is to be solved.
We refer to the time value as height, so, for instance, ”above” means at a higher time value. As explained
below, we construct the spacetime mesh in such a way that the cells are divided into small patches, that are
solved in sequence. The solution in each patch depends only on initial conditions and on previously solved
patches, so each patch can be solved separately. This feature enables easier parallelism; it also enables

improved solution speed because each system of linear equations is much smaller.
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Figure 1.2. The solution in cell A cannot influence the solution in cell B.

Consider the 1dxtime mesh shown in Figure 1.2. Any given point in the spacetime domain has a cone of
influence, which indicates the set of spacetime points that depend on the solution at the given point, and a
cone of dependence, which indicates the set of spacetime points that can influence the solution at the given
point. The slopes of the sides of these cones are equal to the inverse of the maximum wave speed. If the
line segment that separates two cells has slope less than the slope of the cones, no point in the lower cell is
in the cone of influence of any point in the higher cell. Thus, cell B can be solved before cell A, and we say
that this line segment is causal.

These causality conditions generalize easily to higher dimensions. Consider a simulation over a d-
dimensional spatial domain, so the highest-dimensional spacetime cells are d + 1-dimensional. Consider
a d-dimensional facet S which separates two of these cells. If the slope of S is below the inverse wave speed,
then the facet is causal.

Given any two spacetime cells, we say that A can influence B if there is a point in A that is inside the
cone of dependence of a point in B. If two d + 1-dimensional cells A and B share a d-dimensional noncausal
facet, then they can both influence each other. If two d + 1-dimensional cells A and B share a d-dimensional
causal facet, then the one below the facet can influence the one above the facet, but not vice versa. The
“can influence” relation defines a directed graph over the cells. Each strongly connected component of this
graph is coupled [30, 58], and all the cells in such a component must be solved together.

TENTPITCHER creates a spacetime mesh divided into patches, where each patch contains some cells
marked as active and others as inactive. (The same cell may be active in one patch and inactive in another
patch.) Within each patch, all the active cells may be coupled. However, the patches are partially ordered
by causality; i.e. they can be solved in sequence such that every patch is solved after all the patches they
are influenced by. When we solve a patch A, we compute the solution data for all the active cells of A. To
solve a patch A, we need the initial conditions, which are defined over the lower boundary of the patch. By
construction, each cell in this lower boundary either is in the lower boundary of the spacetime mesh, in which
case the initial conditions are known from the initial conditions of the problem, or it was an active cell of a
previously solved patch, in which case the solution for that cell has already been computed. TENTPITCHER
creates a spacetime mesh that satisfies these conditions patch by patch.

The general TENTPITCHER algorithm, first formulated by Ungér and Sheffer [58], generates an unstruc-



Outflow facets (Active)\

Extrusion cells (Active)

Inflow facets (Inactive)

'
4 4 .
VeSe o e = Predecessor cells (Inactive)
" 33 "
L S e N »
9 L, LI )
LI 14 e *h
'0 - )

Figure 1.3. The parts of a patch.

tured mesh of the entire spacetime domain using an advancing-front scheme. The input to TENTPITCHER
is a simplicial mesh M of some d-dimensional spatial domain 2. TENTPITCHER assigns a time coordinate
to each vertex of M. We also define a time function over the mesh, such that for each cell, the restriction of
the time function to that cell is the linear interpolation of the time coordinates of that cell’s vertices. The
graph of this function is known as the front. By construction, the front is piecewise linear, with one piece
for each cell in the space mesh. We say that a cell is causal if and only if the gradient of the time function
on that cell is less than the inverse of the maximum wave speed. In our work, we choose units so that the
maximum wave speed is 1.

TENTPITCHER generates a series of patches. To generate a patch, we first select a vertex x in M with a
time value that is a local minimum. Then, we select a pitch height h. We must set h high enough so that
when the time value of x is increased by h, x is no longer a local minimum. We must also set h low enough
that when the time value of x is increased by h, all the facets of M are still causal.

To create a new patch, we generate a new verter, ¥’ at the same spatial location of z but with time value
t(z) + h, where t(z) is the time value of x. Each cell C in the spatial domain that contains x is considered
an inflow facet of the new patch. For each inflow facet, we also generate an extrusion cell of dimension one
higher than that of C, which is the convex hull of C' and z’. Each extrusion cell has an outflow facet of
dimension equal to that of C, which contains 2’ and all the vertices of C' except x. These new cells will
become part of the patch. The extrusion cells and outflow facets are considered active cells of the new patch.
By construction, the inflow and outflow facets of the new patch are causal, which ensures that the active
cells are coupled only to other active cells in the same patch.

The inflow facets and their preceding cofacets are considered part of the patch. These predecessors are
included because some solution methods only solve for solutions on the top-level spacetime cells, so the
solution data is in fact in the predecessor cells rather than the inflow facets.

After solving a patch, we update the front by increasing the time value of the vertex pitched by h, so
the graph of the time function agrees with the new front. Equivalently, to update the front, we replace the

inflow facets of the patch with the outflow facets of the patch.
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Figure 1.4. An example of how TENTPITCHER can get stuck. V7(S,t) = (—1,0) and so the triangle is causal, but any pitching of
the lowest vertex will make the triangle noncausal.

1.4 Existing Work

To generate a spacetime mesh of the entire analysis domain, TENTPITCHER must eventually pitch every
vertex arbitrarily far forward in time. Less formally, we must ensure that TENTPITCHER never “gets stuck.”
We must carefully choose h - the height of each tent - at each step. Ungor and Sheffer [58] show that with
a 2d spatial domain, if all the angles of each triangle in the space mesh are acute, it suffices to pitch every
vertex to the highest value such that all the incident triangles remain causal.

However, if the input mesh contains obtuse angles, TENTPITCHER can get stuck (see Figure 1.4) [17]. To
avoid this problem, we impose an additional set of progress constraints, which define whether a simplex in
the front is valid. The progress constraints are formulated so that any valid facet is also causal, and if all the
facets of the front are valid then the front can be advanced arbitrarily far forward in time and remain valid.
Erickson et al. [17] describe progress constraints that ensure progress for an arbitrary number of dimensions,
regardless of the angles in the space mesh.

Finite element simulations can often be improved through the use of adaptive remeshing [46]. In adaptive
refinement, the mesh changes over the course of the simulation, becoming finer in areas where the solution
changes rapidly and coarser in areas where the solution does not change rapidly. Adaptive remeshing enables
computational effort to be concentrated in the most important areas, significantly reducing computation
time needed for accuracy [1]. Abedi et al. [2] developed a method of incorporating adaptive refinement and
coarsening into the 2d version of TENTPITCHER. Whenever a patch is solved, an estimate of the numerical
error is computed along with the solution. If the error is above a given threshold, then the patch is rejected,
the front is not updated, and some of the cells are refined instead. If the error is below a given threshold,
then some of the new facets of the front are marked as coarsenable, and these elements become coarsened
when such coarsening is possible.

The key challenge of adaptive refinement is that we must refine on demand; if all the cells in the mesh
are valid, they must still be valid after refinement. Abedi et al. [2] perform adaptive 2dxtime meshing using
the newest-vertez bisection method of Sewell [47] and Mitchell [36, 37, 38]. This method has the property
that the descendants of any triangle lie in exactly eight different homothety classes, and Abedi et al. use this
fact to generate a working set of progress constraints. Abedi et al. also explain how to coarsen by undoing
previous refinements; coarsening does not require separate progress constraints because coarsening is not
required to succeed every time. If a coarsening operation would cause the new mesh to contain invalid cells,
that operation fails.

Thite [54] additionally extended the 2dxtime TentPitcher algorithm to support nonlinear problems, in
which the maximum wave speed can vary depending on the solution [55]. This variation poses particular

challenges for TENTPITCHER because the cone constraint depends on non-local information. Thite also



extended TENTPITCHER to support smoothing operations, where vertices can move in space as well as time
when they are pitched [54]. Thite used smoothing operations because smoothing has been previously shown
to improve mesh quality in a variety of settings, such as by Knupp [25] and Freitag and Ollivier-Gooch [20].

Zhou, Garland, and Haber [60] developed a method of visualizing the results of an SDG solution. Zhou
et al.’s method takes a series of time-slices of the spacetime mesh, so each time slice consists of triangles and
quadrilaterals. The SDG solution is used to compute two scalar fields: one of which is mapped to color, and
one of which is mapped to height. The height field is used to deform the surface, and Zhou et al.’s software
computes this deformation on a per-pixel basis.

The SDG solution and visualization software has been used to solve a wide variety of problems, including
linearized elastodynamics and fracture models by Abedi et al. [4, 7, 8, 6] and Miller et al. [35], evolving
discontinuities and shock capturing by Abedi et al. [3] and Palaniappan et al. [44], heat conduction by Miller

and Haber [34], and scalar conservation laws by Palaniappan et al. [43].

1.5 Owur Contributions

This thesis extends the work described above in several ways. Our main theoretical contribution is a set of
progress constraints that enable on-demand refinement in 3 dimensions. First, we describe a set of generic
progress criteria that ensure that TENTPITCHER will reach an arbitrarily high time value. Next, we describe a
3d refinement algorithm called Bénsch refinement [11, 12], which is a 3D analogue of newest-vertex bisection.
As with newest-vertex bisection, the descendants of each tetrahedron fall into a finite number of homothety
classes, and we use this fact to obtain appropriate progress constraints.

Generalizing earlier work in 2dxtime, we also implement other mesh improvement operations in 3d.
These operations include coarsening by edge contraction, which has been shown by Cignoni et al. [15] and
Ollivier-Gooch [41] to reduce the number of vertices in a mesh while maintaining mesh quality. Another such
operation is edge flipping. Edge flipping is a key operation in Delaunay refinement, a technique which has
been shown by Shewchuk to produce good-quality triangular and tetrahedral meshes [48, 49]. Edge flipping
has also been shown by Klingner and Shewchuk [24] to be able to dramatically improve the quality of an
existing mesh. A third such operation is smoothing by vertex movement, which is ideal for our purposes
because it does not change the topology of the mesh. There are several methods for determining the ideal
location to move each vertex. For instance, Laplacian smoothing moves each vertex to the centroid of its
neighbors if possible [22; 18, 19]. Other methods optimize a quality metric, such as the methods of Knupp
[25], Amenta et al. [9], and Parthasarathy and Kodiyalam [45]. We show how to integrate these operations
with refinement by remarking some of the tetrahedra that were changed, in order to make the set of markings
legal. We emphasize that although this method appears to work in practice, we do not have a proof that
this method always leaves the mesh in a state where arbitrary further refinement is possible.

The rest of this thesis is not as theoretically novel, but does involve significant software engineering chal-
lenges. First, we implemented a modular software architecture that enables the finite element solution, mesh
generation, pre-processing, and post-processing components of the software to be changed independently of
each other. The same processing pipeline can be used regardless of the dimension of the space mesh. Next,
we implemented a tool that enables visualization of the solution data. Similarly to Zhou et al.’s work [60],

our tool enables the visualization of time-slices of the solution data, and displays two scalar fields simultane-



ously: one mapped to color and the other mapped to height. The height field is used to deform the displayed
surface in a normal direction. While our visualization tool does not yet offer the same pixel-exact rendering
capabilities as those of Zhou et al., our tool does enable the selective visualization of certain components of

the solution (e.g. the solution on a boundary of the space domain, or the solution at a material interface).



Chapter 2

Software Architecture and
Functionality

2.1 Architecture

Our software pipeline is divided into three sections: Pre-processing, Simulation, and Post-processing. The
pre-processing and simulation sections has two modules: the Physics module and the Meshing module.
During pre-processing, the Meshing module sets up the initial space mesh and the Physics module sets up
the initial conditions for the PDE. During the simulation, the Meshing module generates a series of patches
and passes them to the Physics module to solve. After the Physics module solves each patch, the Meshing
module updates the space mesh and stores the patch solution data for later use. The post-processing section
has a Pre-renderer and a Renderer, as well as a physics component. During post-processing, the pre-renderer
reads in the output from the simulation, strips out all information about patches, and outputs a series of
simplices to be visualized. The pre-renderer also calls the physics component to convert the physics data
into a standard polynomial basis which can be understood by the renderer. The renderer visualizes the set
of simplices output by the pre-renderer.

Any one of the modules can be altered independently of the others. For instance, in order to change what
physics problem the simulation solves, we must only change the Physics modules. The Meshing module,
Pre-renderer, and Renderer do not need to be changed because they have no information about what physics
problem is being solved. Similarly, the post-processing module does not need to know what physics problem
is being solved in order to render the solution data; it simply asks the physics modules for any physics-related

information it needs.

2.2 Pre-Processing

The first stage of our SDG software is to generate a space mesh and set up the initial conditions. The space
mesh can be generated using any existing tetrahedral mesh generator; we used TetGen [50, 51]. We convert
the output of TetGen into our own internal mesh data format. This format consists of three files. The
“vertex file”, contains a list of the vertices, with each vertex assigned a unique ID and the coordinates listed
in the file. The “cell file” contains a list of each of the non-vertex cells in the mesh and the IDs of their
facets. The “label” file indicates for each cell whether it is on a boundary, and if so, which boundary. The
Physics module takes in the vertex, cell, and label files, as well as a physics configuration file, and generates
a “physics file” that contains information about the initial conditions.

Alternatively, a Python script is also provided that can generate one of several different types of test

meshes. such as the cube mesh shown in Figure 2.1.



Figure 2.1. A 3 X 3 X 3 cube test mesh.

2.3 Main Simulation
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Figure 2.2. Example of space and spacetime cells.

The simulation code maintains a space mesh M and generates a sequence of patches, each of which is
part of the spacetime mesh. Each cell in the space mesh corresponds to an equivalent cell on the front of
the spacetime mesh. At the beginning of the algorithm, we generate a spacetime cell corresponding to each
cell in the initial space mesh; these cells form the initial front. The TENTPITCHER algorithm repeatedly
generates patches until all of the vertices on the front are past a target time value. After each patch is solved,
the front is updated by removing the inflow facets and adding the outflow facets. We update M by changing
the time value of the pitched vertex and the pointers that identify which spacetime cells correspond to which
space cells, so that the corresponding spacetime cells of M are the new front.

We also maintain a set of predecessor and successor relationships among cells. Consider any causal inflow
or outflow facet F'. If there is a cofacet G of F' that is below F, then we say that G is a predecessor of F.
If there is a cofacet H of F that is above F', then we say that F' is a predecessor of H. If both of these
statements are true, then we additionally say that G is a predecessor of H. Also, F' is a successor of G if
and only if G is a predecessor of F'. These successor and predecessor relationships help the Physics code in
propagating physics data, and help the Meshing code determine which inactive cells to add to the patch.

For instance, consider the situation in Figure 2.2 in 1dxtime, with no previous patches having been

9



generated. Initially, cells v, w,z, A, and B in the space mesh correspond to cells v/, w’, ', A’ and B’ in the
spacetime mesh. Then vertex v is pitched to a higher time value, which generates a new vertex v* in the
spacetime mesh. The active cells of the new patch are the newly generated outflow facets A* and B*, as
well as the newly generated extrusion cells AT and BT. The new patch also contains as inactive cells the
inflow facets A’ and B’. If A’ and B’ had predecessors from previous patches, those predecessors would also
be inactive cells in the new patch. After the patch is solved, we update the time value on vertex v, and the
corresponding spacetime cells of A and B become A* and B* respectively.

The main loop of our simulation works as follows. First, the Meshing code generates a patch by pitching
a vertex with a local minimum time value. This patch is given to the Physics module to solve. After the
patch is solved, the Meshing code outputs the geometry information of the new patch, and the Physics code
outputs the physics solution. We then store these new results and update the front as necessary. The new
results are stored in a “physics patch data” class which is opaque to the Meshing module. Each active cell
in this patch contains a pointer to the physics patch data for that patch, so that when each cell is passed to
future patches (as an inactive cell) the Physics module can retrieve the solution data for the cell.

We do not actually store the entire spacetime mesh; rather, cells are deleted to free up space. We say
a cell is orphaned when it is neither on the front nor a predecessor of anything on the front. Once a cell is
orphaned, it cannot be a member of any future patch. We delete any orphaned cell when all of its cofacets
are deleted, so that the remaining cells always form a simplicial complex.) Once all the cells in a given patch

have been deleted, that patch’s solution data is also deleted.

2.4 Output and Visualization

The simulation produces two output streams: a space output stream, which shows the evolution of the
spacetime mesh, and a spacetime output stream, which gives a sequence of patches and their corresponding
solution data. The post-processing procedure consists of two components. The first is a pre-renderer, which
takes the output streams and converts them into a series of simplices, each with one or more associated
functions, which can be visualized. The second is a wisualizer, which produces a visual representation of
those simplices. The visualizer can also produce a visualization of the evolution of the space mesh by itself,

with no solution data. The capabilities of the visualizer are described in more detail in section 4.1.
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Chapter 3

Tent Pitcher Algorithm

3.1 Notation and Definitions

With each d-simplex A = (vg, vy ...vq) in M, we associate a time vector (tg,t ...tq) € R4 listing the time
coordinates of the vertices of A; each ¢; is the time coordinate of the corresponding vertex v;. We refer to
the pair (A,t) as a facet of the advancing front. For any d-simplex (A,t), we let 7(A,t) : R? — R be the
unique affine function that agrees with the time coordinates at the vertices of A. Thus, 7(A,t) agrees with
the time function of the mesh over the cell A. Thus (A, t) is causal if and only if [|[VT(A,t)|]2 < 1.

For any time vector t and any index i, let ¢;y denote the (i + 1)th smallest coordinate of t, breaking ties
arbitrarily; for example, (3,1,5,2)) = 1 and (3,1,5,4)2) = 4. For any time vector t and any real value x,
let t * = denote the vector obtained from t by replacing its smallest coordinate ¢y with max {t.,z}, and
let t * 2 denote the vector obtained from t by replacing every coordinate t; with max {¢;,z}. For example,
(3,1,5,4) 14 = (3,4,5,4) and (3,1,5,4) 14 = (4,4,5,4).

3.2 Generic Progress Constraints

Suppose that for any d-simplex A, we can define a set Valid(A) C R of time vectors that satisfies the
following conditions; to simplify notation, we say that (A, t) is valid if and only if t € Valid(A):

e Openness: The set Valid(A) is open.

e Convexity: The set Valid(A) is convex.

e Causality: If (A, t) is valid, then (A, t) is causal.

e Progressivity: If (A,t) is valid, then (A, t t¢;) is valid for all i.

We now formally define the TENTPITCHER algorithm, and show that these four abstract conditions allow
the TENTPITCHER algorithm to mesh an arbitrary spacetime volume. The input to TENTPITCHER consists
of the space mesh M and a vector S listing the starting time coordinates of every vertex of M, and an

arbitrary real parameter 0 < § < 1/2. TENTPITCHER assumes that every facet of the starting front is valid.
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TENTPITCHER(M.S.J)
T+ S

repeat forever:

v <— arbitrary local minimum vertex of M
newt < oo
for each facet (A, t) that contains v
newth < sup{x | (A, t1z) is valid}
p < arbitrary value in (4,1 — 0)
newta < p- newti + (1 —p) -t

newt < min{newt, newt }

T[v] + newt

We refer to each iteration of the outer loop of TENTPITCHER as one pitch. We emphasize that for
purposes of analysis, the local minimum vertex v and the parameter p can be chosen arbitrarily, or even by
a malicious adversary. Larger values of p increase progress in the current iteration, but leave less room for
progress in future iterations; in practice, choosing p close to 1/2 seems to strike the best balance between
these two concerns.

The four conditions on Valid(A) imply that for any valid facet (A, t), some open neighborhood of the line
segment from t to t 1 ¢(1) lies in Valid(A). Tt follows immediately that in each iteration of the inner loop of
TENTPITCHER, we have newt; > t(1), and therefore newta > t(;). Thus, every iteration of TENTPITCHER
advances some local minimum vertex v to a time value strictly larger than at least one of its neighbors in
M, and after every iteration, every facet of the front is valid. In less formal terms, our abstract version of
TENTPITCHER never gets stuck.

A set Valid(A) satisfying these conditions can be defined as follows. For any simplex A, let Causal(A)
denote the set of time vectors ¢ such that (A, t) is causal. Since the map from ¢ to V7(S,t) is linear, and
the unit ball is open and convex, Causal(A) is also open and convex. We define Valid(A) to be the set of
time vectors t such that (t f z) is causal for all . Since Valid(A) is the intersection of sets that are also

open and convex, Valid(A) is also open and convex. By construction, Valid(A) is causal and progressive.

3.3 Strong Progress Guarantee

The preceding analysis leaves open the possibility that TENTPITCHER could execute a sequence of exponen-
tially decreasing pitches, and therefore might never progress beyond some time value. In this section, we
prove that this convergent behavior is impossible; TENTPITCHER moves any connected front beyond any
desired time value in a finite number of iterations. Our proof is an unfortunately delicate inductive argument;
readers more interested in the practical aspects of our algorithm are invited to skip ahead to Section 3.4.
For any time vector t € R*! and any real ¢ > 0, we define B(t,¢) = Hfzo[ti,ti + ¢]; in other words,
B(t,e) is an axis-aligned (d + 1)-dimensional hypercube of width €, whose lowest vertex in every dimension
is t. For any pair of time vectors t and u, let B(t,u, &) denote the union of e-boxes based at every point on

the line segment tu; more formally, we have

B(t,u,e):= ) BOt+(1-Nue).
A€0,1]
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For notational convenience, let t(441) = oo. Finally, for any d-simplex A, any time vector t, and any index
0 <i < d, we define
61'(A, t) = sup{s ‘ B(t i t(i), tn t(i+1), 6) S Valzd(A)}

Our assumption that Valid(A) is open and convex immediately implies that £;(A,t) > 0 for any valid pair
(A, t) and any index 3.

During any iteration of TENTPITCHER, A is the binding simplex if newt = newta. We say that A
satisfies the binding pitch condition if A is the binding simplex infinitely often when TENTPITCHER is run

forever. The following inductive argument is the core of our proof.

Lemma 1. Let (A,s) be a valid simplex that satisfies the binding pitch condition, and let i be any integer
such that 0 < i < d. Without loss of generality, assume the vertices of A are indexed so that Sy =
s; for all j. After a finite number of iterations of TENTPITCHER, we have min{t,t1,...,t;} > s; and
max{to, t1,...,t;} > s+ -¢;(A,s)/2 for some index j > i.

Proof: We prove the lemma by induction on ¢. To simplify notation, we write &; = €;(A,s) for all i.

First suppose i = 0. Consider the first iteration of TENTPITCHER in which A is the binding simplex,
and let t € Valid(A) be the time vector of A when that iteration begins. Let k be the largest index such
that ¢, > s,. Because each pitch increases only the minimum time coordinate of A, we have t; > s;, for all

7 <k and ty = s for all £ > k. We define two axis-aligned boxes
By, := B(s,0e0) and Byt := B(s, (1 — 0)eo).

The definition of &y implies that B;, C Byt C Valid(A). There are two cases to consider.

e Suppose t & B;,,. The definition of B;,, implies that ¢; > s;+deg > so+0e¢/2 for some index 0 < j < k,

even before the iteration begins.

e Supposet € Bj,. Let j be the index such that t; = ¢(g); note that j < k+1. The vector t1(s;+(1—9)eo)
lies on the boundary of B,,; and thus in Valid(A). It follows that newt} > s;+(1—0)eo, which implies
that ¢; is changed to

newt = newta = p - newty + (1 —p) - t()
>0 - newty + (1 —6) -t
>d-newth +(1—96)-s;
>0-(sj+(1—0d)eg) + (1 —9)s;
=s;+ (1 —d)eo
> s5j + 6eo/2.
> 80 + deg/2.

The second-to-last inequality relies on our assumption that § < 1/2.

In both cases, when the iteration ends, we have min{to,¢1,...,¢;} > s; and max{to,t1,...,t;} > so+deo/2,

for some index j > 0, as required. This completes the proof when i = 0.

13



Now suppose i > 0. For purposes of analysis, we divide the execution of the algorithm into three stages.
Stage 1 ends when max{tg,...,t;—1} > s;. Stage 2 ends when min{tg,...,¢;} > s;. Finally, Stage 3 ends when
the concluding conditions of the lemma are satisfied: min{to,...,¢;} > s; and max{to,...,t;} > s; + de;/2

for some index j > i. We argue separately that each stage ends after a finite number of iterations.

Stage 1: Let t* = max{to,...,t;—1}. The value t* increases over time during the execution of TENT-
PircHER. We have t* = s;_; initially, and Stage 1 ends when t* > s;. For purposes of analysis, we further
divide Stage 1 into phases, where each phase either ends Stage 1 or increases t* by at least de;_1/2. Stage 1
ends after at most [2(s; —s;—1)/de;—1] phases; thus, it suffices to prove that each phase requires only a finite
number of pitches.

Consider an iteration of TENTPITCHER in which A is the binding simplex, and let t be the time vector of
A when that iteration begins. If t* > s;, Stage 1 is already over. Otherwise, tg,t1,...,t;_1 are still the lowest
i coordinates of t; in particular, t* = ¢;_1) > s;—1. It follows that t 2 = stz for all z > #;_1), which in turn
implies that €;_1(A,t) > g;,_1(A,s). The inductive hypothesis implies that after a finite number of pitches,
we have min{to,t1,...,t;} > s; and max{to,t1,...,t;} > s;—1+(6/2) - €i1(A,t) > si-14+(6/2) -,—1(A, s)
for some index j > i—1. If j > 4, then t* > min{¢,¢1,...,t;} > s; > s;, and Stage 1 is complete. Otherwise,
if j =14 —1, then t* = max{to,t1,...,t;} has increased by at least d¢;,_1/2, ending the phase.

Stage 2: Let u denote the time vector of A just after Stage 1 ends. At most i — 1 elements of u are
smaller than s;, which implies that wg;_1) > s;. Thus, the inductive hypothesis implies that after a finite

number of pitches, we have min{to,...,t;} > u—1) > 54, at which point Stage 2 ends.

Stage 3: The proof for Stage 3 closely follows the argument for the case ¢ = 0. Consider the first
iteration of TENTPITCHER after Stage 2 ends in which A is the binding simplex, and let t € Valid(A) be the
time vector of A when that iteration begins. Let k£ be the largest index such that ¢, > s,. Because Stage 2
has ended, we must have k > i and min{tg, t1,...,tx} > si. Because each pitch increases only the minimum
time coordinate of A, we also ty = s for all £ > k. We define two axis-aligned boxes B;,, = B(s1s;,d¢;) and
Bout = B(s 1" 54, (1 — 0)e;). The definition of &; implies that Bj, C Byt C Valid(A).

If t & Biy, then t; > s; + de; > s; + 0¢;/2 for some index 0 < j < k, and so Stage 3 has already ended.

On the other hand, suppose t € By,. Let £ be the index such that t, = £(g), and let j = max{i,{}. We
have both j < k + 1 and ¢y > s;. The vector t 1 (s; + (1 — d)e;) lies on the boundary of B,y and thus
in Valid(A). Tt follows that newth > s; + (1 — d)e;, which implies (following the same logic as ¢ = 0) that
newt = newta > sj + 0¢;/2 > s; + d¢;/2. Thus, when this iteration ends, we have min{¢g, 1, ... 7tj} > 55
and max{to,t1,...,t;} > s; + 0¢;/2, and therefore Stage 3 has ended. O

Theorem 1. Let M be an arbitrary connected mesh, and let t,.x be any real number. TENTPITCHER

pitches all time values in M above t,,., after a finite number of iterations.

Proof: For any two vertices v and w in M, let d(v,w) denote the length of the shortest path from v to w
in the 1-skeleton of M. Let D = max, , d(v,w) denote the diameter of the l-skeleton of the input mesh
M. Because every simplex in M is causal, the time values of any two vertices v and w differ by at most
d(v,w) < D. Thus, it suffices to prove that after a finite number of pitches, at least one vertex of M has
time value larger than ¢,,,, + D. The proof closely follows the argument for Stage 1 in the proof of Lemma
1.
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Let A be any d-simplex in M that satisfies the binding pitch condition; at least one such simplex exists.
Let s be the starting time vector of A, and assume without loss of generality that the vertices of A are
indexed so that s(;; = s;. Let t denote the time vector of A during the algorithms execution, and let
t* = max{to, t1,...,tq}; initially, we have t* = s4.

For purposes of analysis, we divide the execution of the algorithm into phases, where each phase increases
t* by at least dey4(A,s)/2. Because t t & = stz for all z > ¢*, we have e4(A,t) > £4(A,s). Thus, Lemma
1 (with ¢ = d) immediately implies that each phase ends after a finite number of pitches. After at most
[2(tmaz + D — 84)/04(A, s)] phases, we have t* > t,,q. + D, as required. O

3.4 Refinement

We now discuss how to modify TENTPITCHER to support refinement. We first review refinement in 2
dimensions. Next, we describe Bansch refinement, a generalization of newest-vertex bisection that applies to
3 dimensions. We derive a set of progress constraints that will enable Bansch refinement to work. Finally,
we show how to integrate Bénsch refinement into TENTPITCHER and show that the adaptive version of

TENTPITCHER advances the front arbitrarily far forward in time.

3.4.1 2D Refinement

In 2 dimensions, following Abedi et al. [2], we use the newest-vertex bisection method of Sewell [47] and
Mitchell [36, 37, 38]. Each triangle in the mesh maintains a marked edge. Triangles are bisected by a
segment from the midpoint of the marked edge to the opposite vertex; in each of the resulting triangles, the
edge furthest from the midpoint of the previous marked edge is marked. We refer to the simplices generated

by bisecting a simplex as the children of that simplex.

Figure 3.1. Newest-vertex refinement of a single triangle. Letters indicate which homothety class each child belongs to. Figure taken
from Abedi et al. [2].

Suppose that a triangle abc with marked edge bc is bisected. If be is not on the boundary, then there
exists some neighboring triangle cbe that shares that edge, so in order to maintain a conforming mesh cbe
must be bisected as well. If bc is also the marked edge of cbe, then the resulting mesh will be a simplicial
complex. However, if the marked edge of cbe is not be, and that marked edge is not on the boundary, then the
other triangle that includes that marked edge must also be bisected. In this way, the refinement propagates

recursively. Refinement continues until the mesh is a simplicial complex, which always occurs after a finite
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number of iterations and usually takes only a small number of iterations [2]. The children of each simplex

all belong to one of eight homothety classes, which can be used to derive the progress constraints [2].

ir]

b < U
=

(a)

Figure 3.2. Newest-vertex refinement propagating to neighboring tetrahedra. Once abc is bisected, cbe must be bisected as well,
and the bisection propagates recursively. Figure taken from Abedi et al. [2]

As we will see below, adaptivity requires that in addition to the constraints of openness, convexity,
causality, and progressivity, we must also satisfy the inheritance condition: if any simplex is valid then
its children are also valid. Abedi et al. [2] derive a set of progress constraints based on these homothety
classes that satisfy the conditions described in Section 3.2. We fix a real number 0 < w < 1, and define
the diminished width w(abd) of a triangle abd to equal 1 — w times the minimum of all the altitudes of the

triangle. The progress constraints are as follows:

b c d

Figure 3.3. Subdivisions of cell for 2d refinement progress constraints. Figure taken from Abedi et al. [2].

Given a triangle abd where bd is the marked edge, we let ¢ be the midpoint of bd and let e be the midpoint
of ab. Let t(a) be the time value at vertex a, let ¢(b) be the time value at vertex b, and so on. Then a simplex

is valid if and only if:
1. The simplex is causal.
2. [t(a) — t(b)| < 2w(cad)
3. |t(a) — t(c)| < w(abd)
4. |t(a) — t(d)| < 2w(cab)
5. [t(b) — t(d)| < 4w(eca)

The topology, geometry, and causality conditions are trivially true by construction. Abedi et al. [2] show
that if the lowest vertex is raised to the time value of the second-lowest vertex, the simplex will remain valid.

This condition is sufficient to ensure progressivity.
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3.4.2 Bansch Refinement

To generate adaptive meshes in 3dxtime, our new algorithm uses a three-dimensional generalization of
newest-vertex bisection first described by Bénsch [11, 12], and independently developed and/or extended by
Arnold et al. [10], Kossaczk [26], Liu and Joe [28, 29], Maubach [31, 32], Moore [39], Stephenson [52], and
Traxler [57]. We refer to this technique as Bansch refinement, although our description and notation more
closely follows later authors [10, 28, 29].

As in newest-vertex bisection, we associate a marked edge with every triangle in the mesh, with the
restriction that at least two of the facets of any tetrahedron A must mark the same edge of A. We refer to
the edge of A that is marked twice as the refinement edge of A; if there are two such edges, we choose one
arbitrarily. There are four valid marking patterns, illustrated in Figure 3.4; we adopt the notation of Arnold

et al. [10] to describe these patterns:
1. Planar (P): The marked edges are coplanar.
2. Adjacent (A): The marked edges define a path of length 3, with the refinement edge in the middle.
3. Mixed (M): The marked edges define a path of length 3, with the refinement edge at one end.
4. Opposite (O): The edge opposite the refinement edge is also marked twice.

Tetrahedra of type P also have a boolean flag associated with them which can be either unset (P,) or set

(Py), giving a total of five different marking types. We refer to tetrahedra of type Py as flagged.

Yy

Figure 3.4. The four valid marking patterns for tetrahedra. In each figure, arrows indicate the marked edge for each facet, and the
bold vertical segment is the refinement edge.

To refine a tetrahedron A, we bisect it along the plane through the midpoint of the refinement edge and
two vertices opposite the refinement edge. T'wo of the facets of A are bisected; each of the four resulting
subfacets mark the edge furthest from the midpoint of the refinement edge. The marked edge for the triangle
in the interior of A is chosen so that the marking types of the children of A depends on the marking types

of A, as follows:
o If A has type P,, both its children have type Ps.
o If A has type Py, both its children have type A.
e If A has type A, M, or O, both its children have type P,.

This marking schedule guarantees that descendants of each simplex fall into a finite number of homothety

classes [10].
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If the bisected simplex A is part of a larger mesh, any other tetrahedron that contains the refinement
edge must also be bisected. This bisection propagates through the mesh in a manner similar to newest-vertex

bisection refinement. Arnold et al. [10] prove the following theorem:

Theorem 2. Consider a mesh Sy that contains no flagged tetrahedra. Consider a sequence of meshes
Si...S; such that each S; is obtained by refining a single tetrahedron in S;_; (in addition to any further
bisections due to the propagation.) Then when we refine a single tetrahedron in S;, the refinement will

always terminate.

Although it is theoretically possible that the bisection will propagate through the entire mesh, in practice

P\ N

Figure 3.5. Béansch refinement propagating to a neighboring tetrahedron. Refinement edges are bold.

the number of bisections is usually a small constant.

There are several methods to compute a valid marking of the triangles in an arbitrary tetrahedral mesh
M that leaves all type P tets unflagged. Our implementation simply marks the longest edge in each triangle
of M; this strategy guarantees that the longest edge of any tetrahedron is the refinement edge for that

tetrahedron.

3.5 Adaptive Progress Constraints

We now derive adaptive progress constraints for the adaptive case that satisfy openness, convexity, causality,
and progressivity, and inheritance. We refer to these progress constraints as the adaptive progress constraints,
and we say that a simplex that satisfies these progress constraints is adaptively valid. We first define adaptive
progress constraints for a set of standard reference tetrahedra. Then, we show how to generalize these progress

constraints to arbitrary tetrahedra.

3.5.1 Reference Tetrahedra

First, we define a standard reference tetrahedron for each of the three mark types A, P,, and Py. (We discuss
mark types O and M in the next section.) These reference tetrahedra are based on the mapping used by
Liu and Joe [28, 29]. For each of the annotations A, P,, Py, we define standard reference tetrahedra A, Py,

and P¢ as follows.

A=(-1,-1,-1),(1,-1,-1),(1,1,-1),(1,1,1))
P,=(-1,-1,-1),(1,-1,-1),(1,1,-1),(0,0,0))
Pe=((-1,-1,-1),(1,-1,-1),(0,0,—1),(0,0,0))

These tetrahedra are marked as shown in Figure 3.6; in each facet, the longest edge is marked.
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A
z z z
X X X

Figure 3.6. Standard reference tetrahedra. A, Py, and P¢, correspond to the simple cubic, body-centered cubic, and face-centered
cubic lattice structures respectively. Triangles indicate the marked edge of each face; black triangles indicate marked edges of faces
closer to the viewer while white triangles indicate marked edges of faces farthest from the viewer.

Figure 3.7. 3d xtime progress constraints.

We say that a reference tetrahedron (R,t) is adaptively valid if and only if |V7(R,t)|l; < v/2/2 and
IVT(R,t)|lcc < V2 (Figure 3.7). These conditions define a cuboctahedron C in R? which must contain
7(S,t).

If a tetrahedron has two vertices with the same time value, V7(R, t) is normal to the edge joining those
two vertices. All of the edges of the reference tetrahedra are parallel to one of the vectors that can be
obtained from (1,0,0),(1,1,0), or (1,1,1) by a sequence of permutations or reflections about coordinate
axes. The 13 planes normal to these vectors partition space into 96 elementary cones (Figure 3.8).

Consider any reference tetrahedron (R, t). The vertex of R with the lowest time value (the lowest vertex
of R) can be determined solely from V7(R,t). Thus, we partition the space of possible values of V7(R,t)
into four regions, each of which contain the values of V7(R,t) that make one of the vertices lowest. Because
the map from t to V7(R,t) is linear, these regions are convex, and therefore connected. Figure 3.8 shows
gradient diagrams for each of the three reference tetrahedra. In each diagram, the space of possible gradients
is shown as a cube divided into elementary cones that are shaded to indicate which region they belong to.

For a reference tetrahedron (R, t) with a unique lowest vertex, we define the one-vertex pitching direction
to be the direction that V7(R,t) moves when the lowest vertex is pitched; this direction is normal to the
face opposite the lowest vertex, pointing in the direction of the lowest vertex. In Figure 3.8, the one-vertex
pitching direction is represented by a large dot of the same shade as the vertex; the one-vertex pitching
direction is the vector from the origin to that dot.

For a reference tetrahedron (R,t) with two vertices tied for lowest, we define the two-vertez pitching

direction to be the direction that V7(S,t) moves when both of the lowest vertices are pitched at the same
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Figure 3.8. Gradient diagrams for three different reference tetrahedra. Large dots indicate pitching directions. Squares with slashes
indicate two-vertex pitching directions.

time by the same amount. That is, the two-vertex pitching direction is the sum of the pitching directions
for each of the two vertices. In Figure 3.8, the two-vertex pitching direction for each pair of vertices is

represented by a box with the shade of both of those vertices.

Lemma 2. Consider any reference tetrahedron (R, t) with a unique lowest vertex. Let E be the elementary
cone that contains V7(S,t). Let p be the one-vertex pitching direction for (R,t) and let n be the outward-
pointing normal to the face of C' that intersects E. Then p -n < 0.

Proof: All values of V7(R,t) within F have the same one-vertex pitching direction p. Thus, this theorem
can be proven by an exhaustive case enumeration, with one case for each combination of elementary cone

and reference tetrahedron. ]
A similar exhaustive case analysis implies the following lemma:

Lemma 3. Consider any reference tetrahedron (R,t) with two vertices tied for lowest. Let E and E' be
two elementary cones containing V7(S,t). Let p be the two-vertex pitching direction for (R,t). Let n and
n’ be the outward-pointing normals to the faces of C that intersect E and E'. Then p-n <0 and p-n’ <0.

Lemma 4. For any adaptively valid reference tetrahedron (R,t), we have that (R,tt()) and (R,t 1 t))

are adaptively valid.

Proof: Let F' be a face of C intersected by the ray starting at the origin and going in the direction of
V7(R,t). Lemma 2 implies that we cannot move V7(R,t) out of C by pitching the lowest vertex up to Z(y).
Thus, (R,t 7 t() is adaptively valid.

Let F’ be a face of C intersected by the ray starting at the origin and going in the direction of V7 (R, t
t1)). Lemma 3 implies that we cannot move V7(R,t) out of C' by pitching the two lowest vertices of
T(R,t (1)) up to t(zy. Thus, (R,t 7 t() is adaptively valid. ]

3.5.2 Arbitrary Tetrahedra

We now extend our adaptive progress constraints to arbitrary tetrahedra. Consider an arbitrary tetrahedron
T with annotation type P,, Ps, or A, and its standard reference tetrahedron R of the same annotation type.

(Tetrahedra with annotation types M and O will be discussed later.) We order the vertices in T' and R so the
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ordering respects the edge markings. (There may be multiple valid vertex orderings; choose one arbitrarily.)
We show that there is a linear map that depends only on 7" and R that maps V7(R,t) to V7(T,t).

Without loss of generality, assume that the first vertices of R and T have coordinates (0,0,0) and time
value 0. Let M be the matrix of the linear transformation that maps 7' to R. Then any point p in (T, 7) has
the same time value as the point Mp in (R, 7). Thus, we we have (V7(T,t)) p = (V7(R,t)) " Mp, which
implies that V7(T,t) = M "V7(R, t).

Let M T(C) be the image of C under the transformation M ". The progress constraint for R, which is
V7(R,t) € O, is equivalent to V7(T,t) € M T(C). We define a scaling factor ¢ = 1/ maxyecc||M "ul|2,, so
that ¢ - M TC just fits inside the unit ball. Since C' is the convex hull of 12 points, ¢ can be calculated by
checking each of those points.

Finally, we define a tetrahedron (7',t) to be adaptively valid if and only if [|[V7(R,t)|1 < ¢v/2/2 and
IVT(R,t)|loo < qV/2. In other words, the tetrahedron is adaptively valid if and only if V7(R,t) € ¢C.

We show that these adaptive progress constraints satisfy the openness, convexity, causality, progressivity,
and inheritance conditions. Openness and convexity are trivial. If (7, t) is adaptively valid, then 7(R,t) is
in ¢C, so |MTV7(R,t)|| < 1 and thus T is causal. Since the adaptive progress constraints for T are just

the progress constraints for R scaled by a constant, the set of adaptively valid tetrahedra is progressive.
Lemma 5. If (T,t) is adaptively valid, then its children are adaptively valid.

Proof: Let R be the standard reference tetrahedron for T'. Consider a child 7" of T and the corresponding
child R’ of R. Let R* be the standard reference tetrahedron for T*, and let t* be the time vector for T*.
Then V7(R',t*) = V7(R,t). Define Myq; to equal the mapping that takes R* to R’ (ignoring translations).

Vr(R*,t*) = M, Vr(R',t*). Thus, M

adj agj 18 the product of scalings, 90-degree rotations about coordinate

axes, and flips about a coordinate axes. Scaling by a factor of  changes the gradient and ¢ both by a factor
of x, so validity is unchanged. Since C' is symmetrical with respect to flips and 90-degree rotations about
the coordinate axis, those operations also do not affect validity. We conclude that (7™,t*) is adaptively
valid. O

We now consider cells of type M or O. We define a tetrahedron (5,t) with one of these types to be
adaptively valid if each of its children are adaptively valid, each of the children of (S,t 1 ¢()) are adaptively
valid, and each of the children of (S,t f#(5)) are adaptively valid. By construction, this definition satisfies
the openness, convexity, causality, progressivity, and inheritance properties.

3.5.3 Algorithm

The pitching algorithm for adaptivity consists of a series of iterations. In each iteration, we choose to
either pitch an arbitrary local minimum vertex or refine an arbitrary tetrahedron. As before, the decision
of whether to pitch or refine, and which vertex to pitch or tetrahedron to refine, can be made arbitrarily or
even by a malicious adversary. If we choose to pitch a vertex, we pitch it using one iteration of the inner loop
of TENTPITCHER. If we choose to refine a tetrahedron, we do so using the algorithm described in section
Section 3.4.2.

Theorem 3. Suppose that TENTPITCHERADAPTIVE calls REFINE finitely many times. Then, given any
time value t,,q,, TENTPITCHERADAPTIVE pitches every vertex above t,,,, in a finite number of steps.
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Proof: Since only a finite number of refinement operations are performed, there must be a last refinement
operation. Since both refinement and pitching operations preserve progressivity, after this operation all
the simplices in M* are still valid. After that, only pitching operations are performed, so the algorithm is
equivalent to TENTPITCHER with different progress constraints that still satisfy the conditions needed for

Theorem 1: openness, convexity, causality, and progressivity. (]

The constraint that after a certain point only pitching operations are performed is essential. If we were
to alternate refinement and pitching operations indefinitely, then subsequent pitching operations would pitch

shorter and shorter distances (since the cells get finer and finer) and could converge to a finite value.

3.6 Adaptivity Operations

3.6.1 Overview

Our infrastructure also supports other standard mesh adaptivity operations, including edge contraction, edge
flipping, and smoothing. We do not currently understand how to combine these operations with refinement
while maintaining the conditions of Theorem 2, although we have a method which appears to work in
practice.

To determine when to perform adaptivity operations, we use a quality metric on each tetrahedron. The
quality of a tetrahedron T is defined as det(M ")/q>. In other words, the quality of T is equal to the ratio
of the volume of the transformed and scaled version of C' that defines the progress constraints for 7" to the
volume of the original C. Intuitively, lower quality tets allow less progress in each pitch. The best possible
quality is 1, and the worst possible quality (which can only occur with a degenerate tetrahedron that cannot
be pitched at all) is 0.

Each adaptivity operation alters the space mesh by adding some simplices and removing other simplices.
To perform an adaptivity operation, we generate a spacetime patch whose inflow facets are the simplices
removed from the front, and whose outflow facets are the simplices added to the front. The spacetime volume
in between the inflow and outflow facets is divided into tetrahedra; these are the active cells of the patch.

This coarsening method was originally described by Abedi et al. [7, 44].

Edge Contraction. Edge contraction [15] is performed by contracting an edge down to a single vertex,
thus removing one of the vertices. We refer to the vertex removed as the removal vertex r, and the other
endpoint of the edge as the contraction target s. This operation removes each cell in the front that contained
both r and s, and it replaces each cell that contained r with a cell that contains s. In order to perform this
edge contraction, we create a patch where, for each cell C' containing r, we create a corresponding extrusion
cell that has all the vertices of C' and also has vertex s, and a corresponding outflow facet that has all the
vertices of C' except with r replaced with s. Edge contraction is only performed when all the cells adjacent

to the contraction target are marked as coarsenable.

Edge Flipping. We implemented three types of edge flips as described by Klingner and Shewchuk [24]:

1. 2-3 edge flipping, which removes a triangular face that separates two tetrahedron, adds an edge between

the endpoints of each tetrahedron opposite the removed face, and for each vertex in the removed
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Figure 3.9. The three different types of edge flips. The figure on the left shows 2-3 and 3-2 edge flips, while the figure on the right
shows 2-2 edge flips.

triangle, adds a triangular face that contains that vertex and the new edge.

2. 3-2 edge flipping, which removes an edge that is not on the boundary and has exactly three cofacets,
removes the cofacets of that edge, and creates a triangular face whose vertices are the vertices opposite

the removed edge in each of the cofacets of the removed edge.

3. 2-2 edge flipping, which removes an edge that is on the boundary and has exactly three cofacets, two
of which are on the boundary. 2-2 edge flipping is similar to the standard 2d edge flip on the boundary
of the mesh. In order to ensure that 2-2 edge flipping does not change the region that the mesh covers,

it is necessary to ensure that the two cofacets on the boundary are coplanar.

Each of these edge flips can be performed by creating a patch with only one active spacetime 4-cell: the

simplex whose vertices are all 5 of the vertices involved in the edge flip.

Smoothing. Smoothing simply changes the spatial coordinates of a given vertex in the space mesh. Patch
generation for smoothing is performed in exactly the same way as patch generation for tent pitching, with the
exception that the spatial coordinates are changed rather than just the time coordinates. Smoothing does
not change the topology of the mesh. To ensure that smoothing does not change the region that the mesh
covers, if a vertex is on the boundary it is moved only in directions coplanar to the triangles on the boundary
that contain it (in the case of a 3-dimensional space mesh) or collinear to the edges on the boundary that
contain it (in the case of a 2-dimensional space mesh). To smooth a vertex, we first determine what spatial
coordinates to pitch it to, then determine the time value to move it to in the same way as determining
the time value to pitch it to during a tent pitching operation, with the exception that the determination of
whether it is okay to pitch to a given time value is done based on the new spatial coordinates instead of the
old spatial coordinates.

There are several methods of determining where to move a vertex to when smoothing. The simplest
method is known as Laplacian smoothing [22, 18, 19], where a vertex is moved to the centroid of its neighbors.
Another method, which is more computationally expensive but can produce better results, is to search for the
quality-maximizing point using a hill-climbing method [9]. (Getting to the optimal point in one smoothing

operation is not essential, because there will be opportunities for further smoothing later.)
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3.6.2 Remarking Edges for Refinement

To combine coarsening and edge flipping with refinement, we must ensure that the mesh has a legal marking
after each operation. We stress that we do not know whether our remarking strategy always enables further
refinement. Suppose we start with a mesh with no flagged tetrahedra, then refine it (generating a flagged
tetrahedron), and then perform an operation that changes the markings elsewhere. The resulting mesh does
not satisfy the conditions of Theorem 2. Experiments suggest that if we do not generate any new flagged
tetrahedra when remarking, the refinement process always terminates.

When a triangle is remarked, we must recompute the annotations of all tetrahedra that contain it. If
a tetrahedron has mark type P after remarking, we assign it annotation P,. Some adaptivity operations
require remarking facets of tetrahedra that are not in the patch, but are nearby. We require all remarked
tetrahedra to be adaptively valid.

We propose a remarking strategy called edge collection. To perform edge collection, we choose a sequence
of edges E whose union consists of disjoint paths and cycles. For each triangle that contains one or more

edges in E, we mark the edge in E that is first in the sequence.
Lemma 6. Edge collection always produces a valid set of markings.
Proof: Consider any tetrahedron ABC'D. Let x be the number of edges of ABC'D that are in E.

1. If z = 0, no remarking occurred.

2. If z = 1, then without loss of generality we have that AB is in E. By construction, ABC and ABD
both mark AB, so the tetrahedron is valid.

3. If x = 2, either the two edges in E share a vertex or they do not. If they do not share a vertex, then
without loss of generality assume one of the edges is AB. Thus, ABC and ABD both mark AB, so
the tetrahedron is valid. If the edges in E do share a vertex, assume without loss of generality that
the edges are AB and AC. Then ABD marks AB, ACD marks AC, and ABC marks either AB or
AC'. Either choice makes the tetrahedron valid.

4. If x = 3, then the three edges in F cannot share a vertex. Thus, every facet of ABCD contains an

edge in E. There are only three such edges, so one must be marked by two facets.

5. If x = 4, then the four edges must form a cycle (AB, BC,CD, DA). The edge that is first in the total

order is marked by both facets that contain it.

6. We cannot have x > 4 because then some vertex would be incident to at least three edges in F.
d

To remark after edge contraction, we perform an edge collection on the link of the removed edge. The
link of an edge F is the set of all faces of cofaces of E that are disjoint from E [33]. To remark after a 2-3 flip
or 2-2 flip, we perform edge collection on the edge that was added. To remark after a 3-2 flip, we perform

edge collection on the edges of the new triangle. No remarking is necessary after smoothing.
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3.7 Adaptivity Workflow

We now return to our description of the software architecture, and discuss how to incorporate adaptivity.
Several changes to the Physics code are necessary. The Physics code computes an estimate of the numerical
error on each facet of the spacetime mesh when a patch is solved. There are two preset thresholds, a
refinement threshold and a smaller coarsening threshold. The Physics code marks each facet of the spacetime
mesh with an adaptivity flag, which can be either “refinement required”, “coarsenable”, or “neither”. If the
error estimate is below the coarsening threshold, the cell is marked as coarsenable. If the error estimate is
above the refinement threshold, the cell is marked as “refinement required”. Otherwise, the cell is marked as
neither. Each cell in the space mesh also has an adaptivity flag, which is derived from the adaptivity flags
on the spacetime cells as described below.

During each iteration, we do the following:

1. First, the Meshing module generates a patch. To generate a patch, we select a vertex with a local
minimum time value. If any adaptivity operations are possible in the neighborhood of that vertex, we

perform such an operation; otherwise, we pitch a tent at that vertex. Either option generates a patch.

2. Next, the patch is passed to the Physics module , which computes a solution and an a posteriori error
estimate within each cell. If any error estimate is above the refinement threshold, the cell is marked
as “refinement required” and the patch is rejected. Otherwise, the patch is accepted, and if any error

estimate is below the coarsening threshold, the cell is marked as coarsenable.

3. If the patch is accepted, we store and output the new results and update the front. Also, for each
outflow facet on the new front, we set its adaptivity flag to be equal to the adaptivity flag of its

predecessor spacetime cell.

4. If the patch is rejected, we set the adaptivity flag of each inflow facet to match its successor in the
patch. At least one such facet will be marked as “refinement required”. We delete the patch, returning
the spacetime mesh to its state before the patch was generated. We then refine all facets marked as

“refinement required”.

This workflow is similar to the workflow described by Abedi et al. [2] for 2dxtime problems.

Unlike other algorithms that involve discrete remeshing operations, there is no projection error associated
with translating the solution from the old space mesh to the new space mesh. This feature is a major
advantage, because projection error can significantly decrease solution accuracy [16, 53, 13]. An adaptivity
operation can only be performed if the newly generated simplices have positive volume and the outflow facets
are adaptively valid. We attempt to perform edge flipping and smoothing only when such an operation would
improve the worst quality of all the tetrahedra altered. We attempt to coarsen when the space cells that
contain the vertex to remove are marked as coarsenable, and performing the coarsening would not create a
tetrahedron with quality below a specific acceptable threshold. There is no theoretical guarantee that these
operations are ever performed, but in practice, the conditions are not too difficult to satisfy.

After refinement and pitching, the resulting spacetime mesh is not necessarily a simplicial complex; a
single predecessor cell may abut two or more successor cells. To handle this possibility, we change our data

model slightly. We say that a simplex A is a subcell of simplex B if A is the same dimension as B and A is
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Figure 3.10. After refinement of the front (bold lines) shown in part (2), the next pitch (3) creates a spacetime mesh that is not a
simplicial complex.

a subset of B. We say that B is a supercell of A if A is a subcell of B. We define a generalized simplicial

complez to be a set of simplices satisfying four conditions:
1. Faces of simplices in the complex are also in the complex.
2. The intersection of any two simplices in the complex is a subcell of a face of each simplex.

3. Given any two distinct cells of the same dimension whose intersection is also of that dimension, one is
a subcell of the other.

4. Facets of the simplicial complex have no proper subcells.

When a cell C' on the front is refined, C is no longer on the front, but C is still a facet of its predecessors.
Thus, the descendants of C' become subcells of C' in the new spacetime mesh. Since only cells on the front are
refined, none of these cells are top-level cells in the spacetime mesh. By construction, the nesting property
is also satisfied.

By construction, whenever a new spacetime cell is created, the intersection of it with any existing space-
time cell is either empty or a face of the new cell. Also by construction, this face of the new cell is a subcell

of a face of the old cell. Thus, the intersection property is satisfied.

3.8 Adaptivity Examples

The figures below show the TentPitcher algorithm with both refinement and coarsening. This simulation
started with a 1x1x1 cube mesh (6 tetrahedra). Since the physics code does not yet support the error
calculations, we ran simulations using synthetic refinement/coarsening patterns. For the first simulation,
we simulated a spherical wavefront that starts from a corner of the cube and moves outward at speed 0.8.
Any cell whose bounding box crosses that wave is marked as refinable if the cell width is greater than 0.025.
We mark a cell as coarsenable if the bounding box is entirely behind the spherical wavefront. Each time
we pitch, we select a local minimum vertex v and attempt the following adaptivity operations. First, we
coarsen if all its neighbors are marked as coarsenable. Coarsening is performed by contracting v to one of its
neighbors. We do not coarsen if any tetrahedra would be generated with quality less than 0.001. Then, we
attempt to flip away any of the edges (3-2 or 2-2 flip) or triangles (2-3 flip) that contain v if the operation
is legal and it would improve the worst quality tetrahedron among those altered.

The first image below shows the initial space mesh; the second image shows the space mesh after 100
patches have been accepted. At the beginning, there are a large number of rejections of patches and refine-

ments of cells, and most of the refinement occurs in the corner where the wavefront begins. The third image
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shows the space mesh after 3 million patches have been generated. The mesh in front of the wavefront gets
finer closer to the wavefront, because whenever a cell intersecting the wavefront is refined the refinement
can propagate to nearby cells. The mesh behind the wavefront has been coarsened. Farther behind the
wavefront, more coarsening has occurred, because the cells in those areas have had more opportunities to
be coarsened. Because of the aggressive coarsening, there are a lot of very high degree vertices close to the

wavefront.

Figure 3.11. Cube mesh at the start, after 100 patches, and after 3 million patches.

Figure 3.12 shows multiple wavefronts crossing each other, providing situations in which regions of the
mesh are refined, coarsened, and then refined again. In this simulation, two linear waves start from adjacent
corners of the cube, and go outward on the front face at speed 0.8. The linear waves travel along the front
face of the cube. Any cell whose bounding box intersects that wave is marked as refinable if the cell width
is greater than 0.025. We mark a cell as coarsenable if either (1) its bounding box, projected onto the front
face, is entirely behind at least one of the waves and is either behind or sufficiently far in front of the other

wave, or (2) it is a distance of more than 0.1 away from the front face.

Figure 3.12. Cube mesh after 1,000 patches, after 300,000 patches, and after 1.5 million patches respectively.

These examples are not ideal, because the logic for deciding whether to refine or coarsen is not similar
to that of the real physics data. In a real physics simulation, we will not know when solving a given cell
whether it is in front of or behind the wavefront. To create these examples, we experimented with different
parameters. Our objective was to stress-test the adaptivity algorithms and to create examples that clearly
demonstrate many levels of refinement and coarsening rather than to accurately mimic the refinement and
coarsening patterns of a real physics solution. Our experiments found that if we were to mark a cell as

coarsenable whenever its bounding box does not touch the wavefront, we create situations in which a cell
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touches the wavefront, is refined, and then one of the children is in front of the wavefront and thus is
coarsened. This cycle of refinement and coarsening in front of the wavefront quickly degrades the quality of
the mesh severely. By treating the front and back of the wavefront differently, we demonstrate the ability
of our algorithm to perform very aggressive coarsening while avoiding this problem. A possible method of
producing more realistic results is to say that a cell is marked as coarsenable if its bounding box, scaled
up by a constant factor, intersects the wavefront. This method would avoid using any information about

whether a cell is in front of or behind the wavefront.
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Chapter 4

Visualization and Output

4.1 Visualization Capabilities

The visualization software has two modes: space visualization, which visualizes the state of the front at any
given point in the execution of TENTPITCHER, and spacetime visualization, which visualizes the solution
data at any given point in time. During space visualization, we visualize the state of the front after a given
number of pitches, and the time value at each vertex is mapped to color using a cyclic color map. Thus, we
can observe the colors change as the front advances. For spacetime visualization, we first run the output file
through a pre-renderer, which converts the stream of patches into a series of simplices. The Physics code
assigns each simplex a group number, which is used to determine which cells to visualize, and a set of scalar
fields, each of which is represented by a polynomial. The renderer converts the output of the pre-renderer

into a visualization. The visualizer takes in the following parameters:

1. A set of visualization records. Each visualization record gives a group to visualize, and whether to
visualize it either by itself or as a facet of another group. If group X is visualized as a facet of group
Y, then for each cell of group Y that has a facet that is in group X, that facet is visualized using
the solution data from the cell in group Y evaluated on that facet. (If two or more cofacets of the
cell in group X are of group Y, then that cell is visualized more than once.) For instance, suppose
that we have a simulation consisting of a block of two materials separated by an interface, where the
spacetime cells corresponding to the first material are marked as group 1, the cells corresponding to
the second material are marked as group 2, and the cells on the interface are marked as group 3. By
specifying that group 3 is to be visualized as a facet of group 1 and as a facet of group 2, we can
visualize the values of the solution on both sides of the interface (these values can be different due to
the discontinuity at the interface). Alternatively, a group can be visualized by itself; in that case, the

solution data for each cell in that group comes from the cell itself.

In the most common use case, the solution data is computed on the top-level spacetime cells, and
we visualize 3d spacetime cells (since we display time slices of the cells visualized, each of these 3d
spacetime cells generates a 2d time slice). Hence, for 3dxtime simulations, we usually visualize cells on
the boundary or at an interface, and we visualized 3d spacetime cells as facets of 4d cells. For 2d xtime

simulations, we usually visualize the entire solution, and cells are visualized by themselves.

2. An indication of which scalar field should be mapped to color and which scalar field should be mapped
to height. The color field is applied to color the visualized surface, and the height field is applied

to deform the surface in a specified direction, known as the offset vector. As described before, the
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Figure 4.1. Example of slice mesh in 1dxtime for clarity. Bold lines represent space mesh. Blue dots represent boundaries between 1-
dimensional cells that are equivalent to those in the space mesh. Green dots represent boundaries that are created through intersection
of the time slice with inflow and outflow facets.

2 2

Figure 4.2. Example of a visualization of a synthetic cubic function mapped to both the height field and the color field, with each
of the cube's six faces as a separate group. Shown are images of the rendering with each triangle not tessellated at all (left), and
tessellated into 16 (middle) and 256 (right) smaller triangles.

polynomials that define this scalar field are in the output file from the pre-renderer. Details of how

the offset vector is calculated are described below.

3. Which transfer functions to use to map the scalar fields to a point on the color map (for the color field)

and an amount of displacement (height field) before they are visualized.
4. What time step to use between frames.

We render a frame at a given time value ¢ as follows. First, we compute the intersection of the spacetime
mesh with the constant-time plane at time t. We refer to this intersection as the slice mesh. The boundaries
between cells in the slice mesh include the boundaries of the original cells in the space mesh, as well as other
boundaries where the inflow and outflow facets intersect the constant-time plane. For each visualization
record, we compute offset vectors for each of the vertices contained in cells in that record. To compute the
offset vectors for a vertex v in a visualization record which has group X visualized as a facet of group Y, we
take the average, over all the 2-dimensional slices in the slice mesh of 3-dimensional cells of group X that
contain v, of the normal vectors of those cells in the direction pointing away from the cofacet of group Y.

Each triangle or quadrilateral to be visualized is itself tessellated into a number of smaller triangles for
purposes of visualization. Each of these smaller triangles is rendered as a single primitive, with colors linearly
interpolated across it. By using this tessellation, we can approximately render non-linear functions as curved

surfaces or non-linear color fields.
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4.2 Non-Adaptive Tent Pitcher

Figure 4.3 depicts the progress of the non-adaptive TentPitcher algorithm. Both pictures represent one run
using a mesh of the Stanford bunny (a standard data set used to test computational geometry programs).
We show two stages of the meshing process: after 1,000 and 50,000 pitching operations. After 1,000 pitching
operations, not all the vertices have been pitched, so much of the mesh is still at the initial time value,

indicated by a red color. After 50,000 pitching operations, the bunny has advanced non-uniformly in time.

Patches: 1000 Patches: 50000

Figure 4.3. Stanford bunny after 1000 and 50000 patches.

4.3 Solution Data

As an example application, we combine our meshing code with unpublished physics simulation code being
developed by Haber and Abedi. Consider a linear, elastodynamic simulation of wave scattering by a penny-
shaped crack embedded in a solid cube that is subjected to sudden, tensile stress loading. The problem is
solved in non-dimensional form using a 3dx time extension of the spacetime discontinuous Galerkin method
described by Abedi et al. [5] and Miller et al. [35]. The edges of the cube have length L = 2; the circular
crack has radius R = 0.25, is centered in the cube, and is oriented parallel to two of the cube faces. The
cube is comprised of an isotropic material described by Young’s modulus, £ = 1, mass density, p = 1, and
Poisson ratio, v = 0.3. We apply symmetry boundary conditions to limit our simulation and visualization
to one-eighth of the cube volume and a quarter-circle of the crack surface.

The cube is initially at rest and is unstrained. At time ¢ = 0, we suddenly apply a uniform, unit surface
traction to the two faces of the cube that are parallel to the plane of the crack and maintain this load
throughout the simulation. One of the loaded faces includes the back face of the partial cube depicted in the
visualizations shown in figures 4.4. We apply traction-free boundary conditions to the exterior cube faces and
to the crack surface which appears at the lower-right corner of the front face in the figures. The visualizations

show the log of the strain energy density mapped to color. The magnitude of the velocity field is mapped
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to a height field constructed normal to the undeformed geometry on each face of the simulation model. The
distinct normal values at corners and along edges of the simulation domain explain the discontinuous height
field displays; the underlying deformation is, of course, continuous.

At early times we see the main wavefront due to the initial traction loading travel from front to back in
the simulation domain. We observe scattering as the wave interacts with the crack, and we the high strain-
energy values in the solid along the edge of the circular crack reflect the expected stress concentrations along
the crack front. A complex pattern of scattered and reflected waves emerges as the simulation continues.
Large velocities arise on the crack surface where the material motion is unconstrained.

I25 I25

-

~

Figure 4.4. Penny-shaped crack simulation at 0.75, 1.5, and 2.25 seconds.
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