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ABSTRACT

Many music signals can largely be considered an additive combination of

multiple sources, such as musical instruments or voice. If the musical sources

are pitched instruments, the spectra they produce are predominantly har-

monic, and are thus well suited to an additive sinusoidal model. However,

due to resolution limits inherent in time-frequency analyses, when the har-

monics of multiple sources occupy equivalent time-frequency regions, their

individual properties are additively combined in the time-frequency repre-

sentation of the mixed signal. Any such time-frequency point in a mixture

where multiple harmonics overlap produces a single observation from which

the contributions owed to each of the individual harmonics cannot be trivially

deduced. These overlaps are referred to as overlapping partials or harmonic

collisions. If one wishes to infer some information about individual sources in

music mixtures, the information carried in regions where collided harmonics

exist becomes unreliable due to interference from other sources. This inter-

ference has ramifications in a variety of music signal processing applications

such as multiple fundamental frequency estimation, source separation, and

instrumentation identification.

This thesis addresses harmonic collisions in music signal processing appli-

cations. As a solution to the harmonic collision problem, a class of signal

subspace-based high-resolution sinusoidal parameter estimators is explored.

Specifically, the direct matrix pencil method, or equivalently, the Estima-

tion of Signal Parameters via Rotational Invariance Techniques (ESPRIT)

method, is used with the goal of producing estimates of the salient parameters

of individual harmonics that occupy equivalent time-frequency regions. This

estimation method is adapted here to be applicable to time-varying signals

such as musical audio. While high-resolution methods have been previously

explored in the context of music signal processing, previous work has not

addressed whether or not such methods truly produce high-resolution sinu-
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soidal parameter estimates in real-world music audio signals. Therefore, this

thesis answers the question of whether high-resolution sinusoidal parameter

estimators are really high-resolution for real music signals.

This work directly explores the capabilities of this form of sinusoidal pa-

rameter estimation to resolve collided harmonics. The capabilities of this

analysis method are also explored in the context of music signal process-

ing applications. Potential benefits of high-resolution sinusoidal analysis are

examined in experiments involving multiple fundamental frequency estima-

tion and audio source separation. This work shows that there are indeed

benefits to high-resolution sinusoidal analysis in music signal processing ap-

plications, especially when compared to methods that produce sinusoidal

parameter estimates based on more traditional time-frequency representa-

tions. The benefits of this form of sinusoidal analysis are made most evident

in multiple fundamental frequency estimation applications, where substan-

tial performance gains are seen. High-resolution analysis in the context of

computational auditory scene analysis-based source separation shows similar

performance to existing comparable methods.
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CHAPTER 1

INTRODUCTION

The content-based analysis of digital multimedia objects is an area that has

warranted an ever-increasing amount of attention in recent years. As the

number of available digital multimedia objects continues to increase, so does

the desire to be able to summarize, categorize, search, and analyze these

objects. While humans are very adept at such tasks, the growth in available

content has made these tasks intractable if performed manually. Therefore,

there is an increasing emphasis on creating techniques that can perform such

tasks automatically, by first extracting and inferring salient aspects of the

multimedia objects.

One of the most expansive forms of multimedia objects is digital music

audio. While the nature of music allows for large variation among pieces,

many pieces also share commonality along a number of facets. First, a large

proportion of music can be viewed as a mixture of individual sources. These

sources usually correspond to individual musical instruments (e.g., the two

violins, viola, and cello of a string quartet). Second, many musics are built

upon well-established fundamental principles and rules that govern the com-

bination of these individual sources. These principles influence such aspects

as the temporal nature of the music (tempo, meter, rhythm), how pitches or

notes are distributed (melody, harmony, etc.), and the overall organization

of the piece (form or structure), among others. Therefore, a goal in content-

based analysis is the automatic extraction of these properties. While some

of these aspects can be determined by analyzing a piece as a whole, some

properties can potentially be better deduced if reliable information about the

individual sources can be inferred (e.g., transcription, instrumentation, etc.).

Music audio signals are often analyzed by producing a time-frequency rep-

resentation of the signal. Such representations are used because both tempo-

ral aspects of music such as rhythm and frequency-dependent aspects such as

harmony can be simultaneously captured (at some very basic level). A key
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challenge in music audio signal processing is that the very principles by which

music sources are combined in a piece make inferring information about the

constituent sources difficult. Most notably, the rhythm and harmony rules

that govern the use of simultaneous pitches from different sources produce a

large overlap among the sources’ individual time-frequency representations.

It is, in fact, these overlaps that cause some musical pitches to sound more

“pleasant” than others when played simultaneously. For nontrivial time-

frequency points that are common to multiple sources, the corresponding

time-frequency points in a music mixture will represent the additive com-

binations of each of the sources. Due to resolution limits inherent in time-

frequency analyses, the contributions owed to each source in the mixture at

these overlapped points cannot be trivially deduced from the mixture. If the

information found in such points is critical in inferring information about

a source, difficulties can arise because the properties at these points have

become unreliable due to interference from other sources.

1.1 Thesis Goals

Because the nontrivial points in a time-frequency representation of a sin-

gle, pitched, musical instrument tone can largely be attributed to sinusoidal

partials or harmonics of the fundamental frequency of the tone, overlapped

time-frequency points in mixtures of sources are often referred to as overlap-

ping partials or harmonic collisions. This thesis aims to recover the salient

properties of each of the overlapping, or collided, harmonics directly from

music mixtures. To achieve this end, this thesis evaluates whether signal

subspace techniques are capable of resolving the parameters of sinusoids (i.e.,

harmonics) that are closely spaced in frequency. Many sinusoidal parameter

estimators based on signal subspaces are said to have the property of super

resolution. This sort of high-resolution analysis allows for the estimation of

sinusoidal parameters that would otherwise be very difficult from the direct

analysis of more traditional frequency representations such as the Fourier

transform. Such signal subspace techniques are parametric in that it is re-

quired that the signal conform to some underlying model. In this case, the

underlying model is a sinusoidal model, which aligns well with the harmonic

nature of pitched musical sources. Therefore, if a signal has a strong fit to
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this underlying model, there is the potential that the parameters of closely

spaced sinusoids can be resolved.

Whether or not real-world musical signals closely enough satisfy the un-

derlying model of signal subspace sinusoidal parameter estimation techniques

to allow for accurate, high-resolution analysis first requires the design of a

signal subspace-based sinusoidal parameter estimator well suited for musical

signals. Drawing inspiration from previously established methods, this thesis

presents a signal subspace-based sinusoidal estimator suited for time-varying

signals. While similar techniques are already established, there has, to date,

been no thorough evaluation of the high-resolution properties of such tech-

niques for musical mixtures. Although the accuracy of these high-resolution

properties can be assessed directly, this thesis also evaluates the potential

benefits of high-resolution sinusoidal analysis in specific music signal pro-

cessing application areas. A music signal processing application that can

yield benefits if closely spaced sinusoids can be correctly resolved is multi-

ple fundamental frequency estimation. This thesis presents and evaluates a

multiple fundamental frequency estimator that operates on the parameter

estimates of the signal subspace-based sinusoidal analysis system. In addi-

tion, a musical source separation method based on the presented sinusoidal

analysis system is also designed and evaluated. If inference about the prop-

erties of individual sources is a step in content-based music analysis, then

the evaluation of source separation performance provides an indication of

the potential of the high-resolution sinusoidal analysis technique.

1.2 Thesis Organization

This thesis is organized as follows. Chapter 2 covers background informa-

tion. The background serves to better define the problem this thesis aims to

address, namely harmonic collisions. The prevalence of harmonic collisions

in music mixtures is explored by analyzing symbolic music information. The

background covers some of the existing approaches that have been proposed

to handle these collisions in different application areas. Most importantly,

the background chapter lays a theoretical and practical foundation for the

variety of techniques and principles that are used throughout this thesis.

Chapter 3 presents the proposed sinusoidal analysis system. The sinusoidal
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parameter estimation technique used is the direct matrix pencil method. The

direct matrix pencil method for sinusoidal parameter estimation is largely

synonymous with the Estimation of Signal Parameters via Rotational In-

variance Techniques (ESPRIT) method. This method is adapted to time-

varying signals by producing the estimates on short frames of the signal,

as done with most techniques that generate time-frequency representations.

The sinusoidal analysis method is evaluated on a number of different types

of signals.

Chapter 4 introduces a multiple fundamental frequency estimator designed

to operate on the proposed high-resolution sinusoidal analysis method. The

strategy adopted is a cancel-and-iterate approach where an estimate of a

predominant fundamental frequency is made. The contributions of this pre-

dominant fundamental frequency estimate are then canceled, or removed,

from the observed spectrum to produce a residual. The process is subse-

quently repeated on the residual spectrum and iterated until all fundamental

frequency estimates are made. The system is evaluated and compared against

other baseline systems including a current state-of-the-art technique.

Chapter 5 covers a computational auditory scene analysis (CASA) inspired

method for producing source separations from the sinusoidal analysis. The

system aims to group sinusoidal partials together based on similarities in

their properties to form source estimates. These groups of partials can then

be used to drive a synthesis method to produce separated source signals. The

evaluation of the separated source signals provides some indication of how

accurate the parameter estimates of the sinusoidal analysis system are.

Finally, Chapter 6 summarizes and discusses the findings of the previous

chapters. Conclusions based on these findings are drawn. Potential future

directions for the work presented in this thesis are presented based on the

implications of the findings.
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CHAPTER 2

BACKGROUND

The work presented in this thesis concerns itself primarily with the analysis

and processing of musical audio signals. In order to gain a firm foundation

for the work in the remaining chapters, this chapter discusses the nature of

musical sounds, the nature of music itself, existing methods for analyzing

musical audio, and some applications of these analysis methods. Section

2.1 introduces the sinusoidal model of pitched musical sounds which is used

throughout this thesis. Section 2.2 covers time-frequency analysis and the

most common methods for estimating the parameters of the sinusoidal model.

Special attention should be paid to this section as it introduces a key problem

inherent in signal analysis, notably the uncertainty principle which limits the

simultaneous time and frequency resolution one can achieve in time-frequency

representations. This section also introduces the direct matrix pencil method

for estimating sinusoidal parameters, which is the analysis method explored

and examined throughout this work. Section 2.3 discusses aspects of the

nature of (Western) music and how rhythm and harmony rules interact to

produce a large amount of overlap in time and frequency among musical

sources. These overlaps, called harmonic collisions, create many difficulties

in music signal processing applications and are the main challenge this thesis

aims to address. Finally, Sections 2.4 and 2.5 cover two example application

areas: multiple fundamental frequency estimation and musical audio source

separation. Existing approaches to dealing with harmonic collisions in these

two application areas are covered in their respective sections.
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2.1 The Sinusoidal Model for Pitched Instrument

Sounds

Musical instruments that create pitched sounds (i.e., musical notes) produce

periodic or quasi-periodic waveforms. It has long been known from the advent

of the Fourier series that such signals can be decomposed into a sum of

sinusoidal partials. In the general case, a signal x(t) composed of K partials

can be expressed as

x(t) =
K∑
k=1

Ak(t) cos

( ∫ t

τ=0

2πfk(τ) dτ + ϕk

)
+ n(t) (2.1)

where Ak(t), fk(τ), and ϕk represent the time-varying amplitude, instanta-

neous frequency, and initial phase of the kth partial, respectively. Because

real sounds generally contain some manner of noise component (e.g., the

breath noise in a flute), a residual n(t) is often also included. In perfectly

periodic sounds, the partials obey a harmonic relationship. Each partial is

an integer multiple of a fundamental frequency f0. Therefore, Equation 2.1

can be rewritten as

x(t) =
K∑
k=1

Ak(t) cos

( ∫ t

τ=0

2πkf0(τ) dτ + ϕk

)
+ n(t) (2.2)

When partials obey a harmonic relationship, they are refered to as harmonics.

Two simplifications are often made to the sinusoidal model. First, the

noise component, n(t), is often ignored. While noise components can be im-

portant to timbre, especially during attack portions of sounds, most musical

information is carried in the harmonics. Second, the time-varying parameters

of the sinusoidal model, namely the frequencies and amplitudes of harmonics,

are assumed to be constant over short spans of time (e.g., less than 50 ms).

Such an assumption lends itself well to short-time analysis methods where a

signal is segmented into short (overlapping) frames. Although the sinusoidal

parameters are assumed constant within each frame, these parameters are

allowed to vary between frames. Therefore the time-varying nature of har-

monic amplitudes and frequencies can be represented. For a time-frame m,

the simplified sinusoidal model of a discrete-time signal sampled at a rate of
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fs can be expressed as

x(m)[n] =
K∑
k=1

A
(m)
k cos(2πf

(m)
k n/fs + ϕ

(m)
k ) (2.3)

where A
(m)
k , f

(m)
k , and ϕ

(m)
k are the constant amplitude, frequency, and initial

phase of the kth harmonic in frame m. Equation 2.3 is the model for pitched

musical instrument tones used throughout this thesis.

2.2 Time-Frequency Analysis and Methods for

Estimating Sinusoidal Parameters

A key goal in musical signal analysis is to estimate the salient parameters in

Equation 2.3 for one or more musical sources in a music mixture. Estimation

of sinusoidal parameters is referred to as sinusoidal analysis or harmonic

retrieval. Sinusoidal analyses are most commonly derived directly from the

time-varying spectrum of the sound or sound mixture. However, classes of

harmonic retrieval techniques based on signal subspace techniques also exist.

These techniques assume or determine an underlying model of the signal, onto

which the signal is subsequently projected. Some signal subspace sinusoidal

estimation techniques have the property of super-resolution, which refers to

the ability to estimate the parameters of very closely spaced sinusoids (in

frequency) within a small region of time support. Normally, the uncertainty

principle of time-frequency analyses provides an inescapable bound on the

simultaneous time and frequency resolution. However, it is important to note

that the Fourier transform is in itself a completely nonparametric technique.

That is, it assumes no underlying model of the signal. If a valid sinusoidal

model is chosen or determined, and the signal very closely fits this model,

super-resolution becomes possible.

This section covers the short-time Fourier transform, the uncertainty prin-

ciple, and traditional methods for sinusoidal analysis. In addition, signal

subspace harmonic retrieval techniques are also covered. Special focus is

placed upon the direct matrix pencil method for estimating sinusoidal pa-

rameters. This technique is also commonly known as the Estimation of Signal

Parameters via Rotational Invariance Techniques (ESPRIT) algorithm.
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2.2.1 The short-time Fourier transform

The analysis of the behavior of a signal in both time and frequency simul-

taneously is referred to as time-frequency analysis. While time-frequency

analyses comprise a variety of techniques including wavelet transforms [1],

constant-Q transforms [2], etc., the most fundamental time-frequency repre-

sentation is the short-time Fourier transform (STFT). A detailed coverage

of analysis and synthesis using the STFT can be found in [3]. The STFT

entails segmenting a sequence x[n] into short, usually overlapping frames

through the use of a compactly supported, sliding window function. A dis-

crete Fourier transform (DFT) is performed on each frame. The end result

of the STFT is a time-frequency representation of the signal that describes

its time-varying spectrum. The time-frequency units of the STFT are spaced

linearly in both time and frequency. For a signal, x[n], the STFT produces

a time-frequency representation for time-frame index t and frequency index

l (a DFT bin) calculated as

X[t, l] =
N−1∑
n=0

x[n− tH]w[n]e−j 2πl
N

n (2.4)

The length of each time-frame is N . The window function w[n] has a region

of support of n ∈ [0, N − 1]. The shape of the window function plays an

important role, and is usually chosen to have good spectral characteristics

such that side-lobes are suppressed, and crosstalk between neighboring DFT

bins is low. A hop factor, H, controls how many samples each frame skips

forward, and thus the amount of overlap between adjacent frames.

2.2.2 The uncertainty principle

The uncertainty principle, which holds for all time-frequency decompositions,

states that perfect frequency resolution cannot be achieved in a limited span

of time support, and vice versa. Denoting the standard deviation of a signal

over time, ∆t (a measure of the duration of the signal), and the standard

deviation of the signal’s spectrum, ∆ω (a measure of the signal’s bandwidth),

the uncertainty principle can be expressed as [4]
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∆t∆ω ≥
1

2
(2.5)

The result of Equation 2.5 is that as duration shortens, bandwidth increases,

and vice versa.

In the practical case of a STFT of a discrete-time signal calculated via

Equation 2.4, the uncertainty principle manifests itself through the band-

width of the main lobe of the window function, w[n], used in analysis. For

example, assume a signal, x[n], composed of a mixture of two sinusoids, is

sampled at fs = 44100 Hz. The frequency of the first sinusoid is f1 and the

second, f2, resulting in angular frequencies ω1 = 2πf1/fs and ω1 = 2πf2/fs

Therefore, the signal x[n] can be expressed as

x[n] = cos(ω1n) + cos(ω2n) (2.6)

X(ejω), the spectrum of x[n], can be expressed as

X(ejω) =
1

2
[δ(ω − ω1) + δ(ω + ω1) + δ(ω − ω2) + δ(ω + ω2)] (2.7)

Assume in this example a frame length of N = 2048 samples (46 ms frame

size) is used to truncate the signal and represent a single STFT frame. Fur-

thermore, assume a Hamming window, w[n], serves as the analysis window

resulting in a windowed version of the signal x̂[n] = w[n]x[n]. Because the

window function is multiplied with the signal, and because the spectra of

sinusoids are delta functions, the spectrum of the window function is modu-

lated to be centered on each sinusoid of the signal x[n]. Denoting the Fourier

transform of the Hamming window function W (ejω), the resulting spectrum

of the windowed signal, X̂(ejω), can be expressed as

X̂(ejω) =
1

2
[W (ej(ω−ω1)) +W (ej(ω+ω1)) +W (ej(ω−ω2)) +W (ej(ω+ω2))] (2.8)

The main lobe width of a length-2048 Hamming window is 4fs/N (or

four bins of a 2048-point DFT) with a 6.0-dB bandwidth of 1.81 bins [5].

While zero-padding can be used to produce a more finely sampled DFT, the

frequency spread caused by the window length remains constant. Therefore,

if the two sinusoids are close in frequency, the additive combination of the

overlapping spectra of the modulated window functions produces only a single

9
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Figure 2.1: DFT of two sinusoids at spacings of (a) 5 Hz, (b) 10 Hz, (c) 15
Hz, and (d) 20 Hz.

prominent peak in the DFT. Equivalently, the STFT can be interpreted as

a bank of bandpass filters, with each filter having the frequency response of

the window function centered at each bin location of the DFT. Therefore,

two closely spaced sinusoids will most strongly excite the same filter. Only

at larger separations in frequency will the sinusoids be clearly resolvable.

Figure 2.1 shows the resulting spectra of two sinusoids at varying levels of

separation in frequency. In this figure, the length-2048 Hamming-windowed

signal is zero-padded to a length of 8192 samples. The sample rate is 44100

Hz. The first sinusoid is at f1 = 1000 Hz. The frequency of f2 is adjusted at 5

Hz increments above 1000 Hz. In this particular example, two peaks become

clearly visible at a separation of 20 Hz (f1 = 1000 Hz and f2 = 1020 Hz).

However, inspection of the DFT in this case shows that the peaks occur at 990

Hz and 1028 Hz. Extreme beating due to a separation of 20 Hz causes a phase

cancellation in the DFT bins between the two sinusoids. Although there is

strong evidence of multiple sinusoidal peaks in this case, their properties

cannot be immediately deduced by a simple inspection of the magnitude
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spectrum. Moreover, the original signal x[n] represents a possible best case

scenario in that the two sinusoidal components are of equal amplitude. If one

sinusoid is significantly weaker than the other in amplitude, the bandwidth

of the window function plays a more significant role in obfuscating the other

sinusoid. Naturally, increasing the frame/window size narrows the bandwidth

of the window. However, such an increase comes at the expense of time

resolution in a short-time analysis as the time-varying spectral magnitude

characteristics are averaged over the length of the window.

2.2.3 STFT-based sinusoidal analysis

As stated previously, one key goal of musical signal analysis is to recover the

salient parameters of the sinusoidal model of Equation 2.3 for one or more

sources. This is often carried out by analysis of the short-time Fourier trans-

form of the signal as described in Section 2.2.1. Two prevalent methods for

obtaining sinusoidal parameters are phase-vocoder analysis [6] and sinusoidal

tracking methods [7, 8].

A phase vocoder models a signal as a sum of sine waves with time-varying

amplitude and frequency [9]. Using a filterbank interpretation of the STFT,

if only a single sinusoid is present in each channel, its sinusoidal parameters

can be measured. The measurement of the sinusoidal parameters is most

easily achieved when the length of the window function is a multiple of the

fundamental period of the periodic signal. In this case, the channels (i.e.,

DFT bin frequencies) are perfectly centered on the harmonic frequencies of

the signal. In this case, the phase-vocoder is said to be pitch-synchronous

[10]. While pitch-synchronous phase vocoders are effective for isolated single

tones, constant retuning of the window length to follow a musical passage

with changing pitches becomes cumbersome.

Alternatives to phase vocoder techniques are those techniques that rely on

sinusoidal tracking. Procedures introduced by McAulay and Quatieri (MQ)

[7] and simultaneously by Smith and Serra [8] also rely on STFT analy-

sis. Peak picking of the magnitude spectrum above a magnitude threshold is

used to estimate the frequencies and amplitudes of sinusoidal components for

each frame. Smith and Serra perform quadratic interpolation of the three fre-

quency points surrounding a peak to refine the estimates. Peaks are tracked
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Figure 2.2: Sinusoidal tracking procedure. Time-frequency points
corresponding to estimated sinusoids are tracked frame to frame if they are
in close proximity in frequency. Tracks with no matches can be born or die.

and linked from frame to frame based on frequency proximity to produce

frequency tracks. If no matches are found in a previous or subsequent frame,

tracks are allowed to be born or die, respectively. The sound can be resyn-

thesized from the frequency tracks using additive synthesis. A residual can

be calculated by subtracting the sinusoidal synthesis from the original, pro-

vided a phase matching step is performed. A graphical representation of the

sinusoidal tracking procedure can be seen in Figure 2.2. More sophisticated

sinusoidal trackers include the use of hidden Markov models (HMMs) [11],

[12] to track sinusoidal partials, or linear prediction techniques [13].

Revisiting the closely spaced sinusoids example in Figure 2.1(b), only a

single visible peak is evident in a DFT frame. The sinusoidal tracking pro-

cedure of the MQ technique, where peak-picking is employed on each frame,

will merge two sinusoids into a single track. Phase-vocoder analyses are also

largely reliant on single harmonics being present in each filter channel to pro-

12



duce reliable estimates of the underlying sinusoidal parameters of the signal.

Therefore, time-frequency resolution limits make resolving the sinusoidal pa-

rameters of collided harmonics due to multiple sources difficult and tend to

merge closely-spaced sinusoids into single sinusoidal tracks.

2.2.4 Signal subspace-based harmonic retrieval and ESPRIT

A newer class of harmonic retrieval methods are based upon the principle

of signal subspaces. They are also sometimes referred to as super-resolution

techniques. Signal subspace methods concern themselves with decomposing a

signal into a signal subspace (in this particular case, the sinusoidal harmon-

ics) and a noise subspace. These techniques include Prony’s method [14],

Pisarenko [15], Tufts-Kumaresan [16] [17], ESPRIT [18], MUSIC [19], etc.

Their use in music analysis was first explored in the context of analyzing iso-

lated, percussively excited musical tones (e.g., piano, guitar, etc.) [20]. This

thesis focuses on one of these signal subspace techniques, the direct matrix

pencil method, also commonly known as ESPRIT.

Short-time subspace-based sinusoidal estimators that track harmonics have

previously been developed. In [21] and [22], sinusoidal parameter estimates

derived from ESPRIT are tracked using MQ-like methods. These approaches

are practically equivalent to the sinusoidal analysis methodology used in this

thesis, with differences only in implementation details. In [23], Badeau em-

ploys direct tracking of the signal subspaces as opposed to the tracking of

parameter estimates at every frame. In fact, Badeau’s thesis [24] can largely

be considered a seminal work in regards to the application of ESPRIT to mu-

sic signals. Badeau’s work covers a broad range of topics, including model

order estimation, spectral whitening and its performance benefits in ESPRIT

estimation, resolution bounds, subspace-based tracking, and the effects of

non-stationarity of sinusoidal frequencies. While the analysis method pre-

sented in this thesis follows directly from previous work, and is very largely

inspired and influenced by the work of Badeau, these works leave what is

perhaps the most important question unanswered. The motivation for us-

ing ESPRIT-based parameter estimation is its high-resolution potential. To

date, no thorough evaluation of this potential has been performed. Most pre-

vious experiments focus on the analysis and synthesis of monophonic music
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signals. However, because traditional methods of sinusoidal analysis such as

MQ are well established and known to work reasonably well for these signals,

the use of high-resolution sinusoidal analysis is somewhat poorly motivated.

Additionally, examples of the one or two polyphonic mixtures previously

examined provide no indication of whether or not super-resolution is actu-

ally taking place. Thus, this work strives to answer the question: Is high-

resolution sinusoidal analysis really high-resolution when applied to music

signals? While the conceptual underpinnings of the analysis method pre-

sented in this thesis are not novel, it is hoped that the combination of the

work of Badeau and this thesis, in concert, serve to establish the theoretical

and practical implications of short-time high resolution sinusoidal analysis.

As a brief digression before the workings of the ESPRIT method are ex-

plained in detail, it should be noted that signal subspace-based techniques

generate an additional subspace that is referred to as a noise subspace. It

was previously stated that this thesis ignores the noise component of signals.

Furthermore, many types of musical sounds are not restricted to be pitched,

and thus harmonic, in nature. While this thesis focuses on signal subspaces,

there has been some work in using these types of methods to extract the

noise subspaces of signals. An interesting use of such subspace-based tech-

niques can be found in [25], where the audio signal is projected onto the noise

subspace to extract drum sounds.

In Section 2.1 the sinusoidal model for pitched sounds was presented. The

direct matrix pencil method for estimating sinusoidal parameters uses a sim-

ilar underlying sinusoidal model with one slight difference: The amplitudes

of harmonics are not constant, but rather exponentially damped. Naturally,

constant amplitudes are supported by such a model as a damping factor of

zero produces constant amplitude. To simplify the notation in the following

discussion, and to add the exponentially damped behavior of the sinusoidal

amplitudes, the formulation of Equation 2.3 is slightly adapted. First con-

sider that the signal is composed of complex exponentials. Therefore, a model

composed of K complex sinusoids will support K/2 real sinusoids (one com-

plex sinusoid at positive frequency and one at negative frequency). A signal,

x[n], of length N , and consisting of K exponentially-damped complex sinu-
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soids, can be expressed as

x[n] =
K∑
k=1

Rkz
n
k for n = 0, ..., N − 1 (2.9)

where
Rk = Ake

jϕk

zk = e−αk+jωk .

Ak = Amplitude of kth harmonic

ϕk = Initial phase of kth harmonic

αk = Exponential damping factor of kth harmonic

ωk = Frequency of kth harmonic.

As before, the goal of this harmonic retrieval technique is to estimate

the sinusoidal parameters for all harmonics. The matrix pencil method for

estimating sinusoidal parameters is now presented. The following derivations

follow directly from [26], and are included here for completeness. First define

two matrices, X0 and X1, containing the samples of x[n] as

[X0] =


x[0] x[1] · · · x[L− 1]

x[1] x[2] · · · x[L]
...

...
. . .

...

x[N − L− 1] x[N − L] · · · x[N − 2]


(N−L)×L

(2.10)

and

[X1] =


x[1] x[2] · · · x[L]

x[2] x[3] · · · x[L+ 1]
...

...
. . .

...

x[N − L] x[N − L+ 1] · · · x[N − 1]


(N−L)×L

(2.11)

where L is an analysis parameter called the pencil parameter. If x[n] conforms

to the model of Equation 2.9, X0 and X1 can be expressed as

[X0] = [ZL][R][ZR] (2.12)
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and

[X1] = [ZL][R][Z][ZR] (2.13)

where

[ZL] =


1 1 · · · 1

z1 z2 · · · zK
...

...
. . .

...

zN−L−1
1 zN−L−1

2 · · · zN−L−1
K


(N−L)×K

(2.14)

[ZR] =


1 z1 · · · zL−1

1

1 z2 · · · zL−1
2

...
...

. . .
...

1 zM · · · zL−1
K


K×L

(2.15)

[R] =


R1 0 · · · 0

0 R2 · · · 0
...

...
. . .

...

0 0 · · · RK


K×K

(2.16)

[Z] =


z1 0 · · · 0

0 z2 · · · 0
...

...
. . .

...

0 0 · · · zK


K×K

(2.17)

The factorization of Equations 2.12 and 2.13 can be easily verified by

substitution. The damped sinusoids zk ∈ {z1, z2, ..., zK} are referred to as

poles. The matrix pencil is formed as

X1 − λX0 (2.18)

Substituting Equations 2.12 and 2.13 into 2.18, the matrix pencil can be

written as

X1 − λX0 = ZLR[Z − λI]ZR (2.19)

where I is the K ×K identity matrix. In general, the rank of the pencil will

beK. However, if λ = z1, z2, ..., zK , a row/column of the pencil becomes zero,
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and the rank of the pencil is reduced to K − 1. These rank reducing values

of λ represent the poles present in the signal. In order to solve for all rank

reducing values of λ, the problem is formulated as a generalized eigenvalue

problem as follows:

(X1 − λX0)q = 0 (2.20)

pH(X1 − λX0) = 0 (2.21)

with q ∈ R{XH
0 } and p ∈ R{X0}. Equations 2.20 and 2.21 hold when

λ = zk ∈ {z1, z2, ..., zK}, q = qk = the kth column of Z+
R = ZH

R (ZRZ
H
R )−1,

and p = pk = the kth row of Z+
L = (ZH

L ZL)
−1ZH

L . The following method

can then be used to solve for the generalized eigenvalues. Left-multiplying

Equation 2.20 with X+
0 gives

X+
0 X1q− λX+

0 X0q = 0⇒

X+
0 X1q− λq = 0⇒

(X+
0 X1 − λI)q = 0

(2.22)

Therefore, the system poles can be solved for by simply calculating the eigen-

values of the square matrix X+
0 X1. Since X

+
0 X1 is rank K, it will contain K

nonzero eigenvalues (the poles) and L−K zero eigenvalues.

Heretofore, the discussion of the matrix pencil method for estimating the

parameters of damped sinusoids has focused on the noiseless case. In the

presence of noise, the signal matrices X0 and X1 are formed as before. How-

ever, the full pseudoinverse X+
0 is instead replaced with a rank-K truncated

pseudoinverse. Expressing the SVD of X0 as U0ΣV
H
0 , the rank-K truncated

pseudoinverse is X+
0K = V0KΣ

−1
K UH

0K , where ΣK contains only the largest K

singular values, and U0K and V0K contain the K corresponding rows and

columns, respectively. Once again, performing the eigenvalue decomposition

of X+
0KX1 will yield the K signal poles and L − K zero eigenvalues. Since

only K eigenvalues are nontrivial, the computation can be simplified to that

of an eigenvalue decomposition of an K ×K matrix as opposed to an L× L

matrix. Substituting the decomposition of X+
0K into Equation 2.22 for X+

0 ,

we get

V0KΣ
−1
K UH

0KX1q = λq (2.23)

Because V H
0KV0K = I and V0KV

H
0Kq = q, left-multiplying Eq 2.23 with V H

0K
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yields

Σ−1
K UH

0KX1V0K(V
H
0Kq) = λ(V H

0Kq) (2.24)

Therefore, the system poles can be solved for by performing an eigenvalue

decomposition on the K ×K square matrix Λ = Σ−1
K UH

0KX1V0K .

Solving for the eigenvalue of matrix Λ gives the poles {z1, z2, ..., zK}. From
these values, the frequencies and damping factors can be calculated directly

as
ωk = ̸ zk

αk = −log|zk|
(2.25)

The harmonic amplitudes and initial phases are solved for as a least squares

problem. The signal x[n] can be expressed in matrix form in terms of the

poles and complex amplitudes as

x = Zpr =
x[0]

x[1]
...

x[N − 1]

 =


1 1 · · · 1

z1 z2 · · · zK
...

...
. . .

...

zN−1
1 zN−1

2 · · · zN−1
K



R1

R2

...

RK


(2.26)

We now wish to recover r = [R1, R2, ..., RK ]
T . This inverse problem can be

solved for in the least squares sense as

r = (ZH
p Zp)

−1ZH
p x (2.27)

The amplitude, Ak, and initial phase, ϕk, can be recovered from each complex

amplitudes Rk by taking the magnitude and phase, respectively, as

Ak = |Rk|

ϕk = ̸ Rk

(2.28)

Until now, there has been little discussion as to how the key parameters,

namely the pencil parameter L and the number of sinusoids K, are chosen.

Good values of L have been found empirically to be N/3 to N/2 [27, 28].

While the number of sinusoids is not known a priori, over-estimating does

not lead to adverse effects. Therefore, K should be chosen sufficiently large.

If a signal fits the model described in Equation 2.9, the direct matrix
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Figure 2.3: Matrix pencil estimation of two sinusoids at spacings of (a) 5
Hz, (b) 10 Hz, (c) 15 Hz, and (d) 20 Hz. The estimates are represented as
the stems. The DFT of the mixture is also shown.

pencil method has the ability to resolve and calculate the parameters of

closely spaced sinusoids. Revisiting once again the closely spaced sinusoids

examples in Section 2.2.2, Figure 2.1, if the direct matrix pencil is employed

on the length-2,048 frame, the sinusoidal parameters are perfectly recovered

for all spacings in frequency. In this example, a rectangular window is used

to truncate the signal for matrix pencil analysis. Figure 2.3 demonstrates

the matrix pencil estimates of the same sinusoids in Figure 2.1 superimposed

on the DFT. With perfect model fit, sinusoids at arbitrarily close proximity

in frequency can be resolved (up to numerical precision limits). In reality,

musical signals do not completely match the piece-wise constant frequency

and amplitude sinusoidal model of Equation 2.3. Although in a short span

of time frequencies of the sinusoid will not vary greatly, they are indeed not

stationary. Deviation from a constant-frequency model can be considered as

a form of model noise. Discussion of the effects of both signal and model

noise will be reserved for later in Chapter 3.
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2.3 Musical Mixtures

The discussion in Section 2.2 demonstrated that if two musical sources have

energy at the same point in a time-frequency representation, the individual

contributions of each source become difficult to resolve. Because musical

sources are sparse in the frequency domain (i.e., most of their energy is lo-

cated only at harmonic positions of the fundamental), one could expect that

these harmonic collisions may be a rare and insignificant problem. However,

the very nature of Western music composition leads to a high degree of over-

lap among sources’ time-frequency representations. In this section, a brief

overview of the nature of musical mixtures and musical scales is introduced

to explain why harmonic collisions are so prevalent. In addition, an analysis

of symbolic music data is performed in order to roughly quantify the rate of

occurrence of these harmonic collisions in Western music.

2.3.1 Rhythm, harmony, and musical scales

Music theory describes music through a variety of elements such as rhythm,

harmony, melody, texture, form, etc. Two of these aspects, rhythm and har-

mony, play a significant role in the placement of musical sources’ harmonics

in time and frequency.

Rhythm refers to the temporal arrangement of musical sounds and silences.

In general, music is subdivided along the time axis by some fundamental

unit of time, usually referred to as a beat. Beats themselves can be further

subdivided. Rhythm refers to an underlying, and usually repeating, pattern

of the temporal arrangement of musical notes. When music contains multiple

sources, musical notes are often arranged to begin and end very closely in time

so as to maintain some form of structured composite rhythm. In other words,

most musical sources tend to show a high degree of temporal alignment in

musical mixtures.

Just as rhythmic rules govern the temporal arrangement of music pieces,

harmony rules govern the use of simultaneous pitches. The notion of har-

mony as it relates to musical notes played simultaneously is largely based

on consonance and dissonance. Perceptually, consonance refers to a combi-

nation of two musical pitches that sound “pleasant” when played together.

Dissonant pitches do not share this property, and are functionally used in
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Table 2.1: The 12 simple intervals relative to C.

Note Number of Interval Frequency
Name Semitones Name Ratio†

C 0 Unison (P1) 1:1
C♯ / D♭ 1 Minor Second (m2) 16:15

D 2 Major Second (M2) 9:8
D♯ / E♭ 3 Minor Third (m3) 6:5

E 4 Major Third (M3) 5:4
F 5 Perfect Fourth (P4) 4:3

F♯ / G♭ 6 Augmented Fourth (A4) 45:32
Diminished Fifth (d5)

G 7 Perfect Fifth (P5) 3:2
G♯ / A♭ 8 Minor Sixth (m6) 8:5

A 9 Major Sixth (M6) 5:3
A♯ / B♭ 10 Minor Seventh (m7) 9:5

B 11 Major Seventh (M7) 15:8
C 12 Perfect Octave (P8) 2:1

†Frequency ratios are approximate for equal temperament tuning

music to introduce tension. In general, sounds that are consonant have a

large number of coinciding harmonics.

To better understand how consonance arises, the notion of musical pitches,

scales, and intervals must be explained. Western music is built on twelve

pitches per octave. In equal temperament, these twelve pitches equally sub-

divide the octave on a logarithmic scale. An interval is the relationship

between two pitches. In simplest terms, a key refers to which pitch serves as

the harmonic center of piece (tonic), as well as the mode (the group of music

intervals) used to define the key (e.g., major or minor). In general, the names

of the pitches are unimportant. The intervals, and their relation to the tonic

of the musical piece, carry the significant musical information of the piece.

Because there are 12 musical tones, there exist 12 possible base intervals.

When pitches are described in terms of frequency, many of the intervals can

be expressed as simple integer ratios of the fundamental frequencies of the

two notes. The most basic interval is the unison, where both pitches are

identical, and have fundamental frequency ratios of 1:1 (e.g., both notes are

C at identical pitch heights). A perfect octave occurs at ratios of 2:1 (e.g.,

C and C one octave above). A perfect fifth occurs at ratios of 3:2, and per-

fect fourths at ratios of 4:3. Table 2.1 contains a list of intervals with their
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separations in semitones relative to the root, the corresponding note names

for a root of C, their common interval names, and the ratios of fundamental

frequencies relative to the root. Recall from Section 2.2 that pitched, musical

tones produce harmonics of their fundamental frequency. When two pitches

are played at simple integer ratios of one another, many of their harmon-

ics coincide. For example, with the perfect fifth and a ratio of fundamental

frequencies of 3:2, every second harmonic of one source will coincide with

every third harmonic of the other source. The coincidence of partials gives

rise to consonance and explains how harmony can make harmonic collisions

prevalent in music.

2.3.2 Analysis of symbolic music data

An analysis of symbolic music data was performed in order to better under-

stand how prevalent harmonic collisions are in music. A dataset of 1,252

music pieces in MIDI format, derived from the “Symbolic Key Finding”

task of the 2005 Music Information Retrieval Evaluation eXchange (MIREX)

[29], was used in this analysis. The corpus of MIDI files comprises pieces of

Baroque, Classical, and Romantic music. Two separate analyses were per-

formed. First, histograms of the occurrence of pitch intervals for major and

minor modes were constructed. This analysis provides insight into how often

pitches that can be considered consonant or dissonant with respect to the

tonic of the musical key occur. Second, an analysis of the MIDI files was

performed to estimate how often harmonics of one musical source would be

corrupted by other sources.

Frequency of occurrence of note intervals

Histograms of the occurrence of note intervals were constructed in order

to estimate the distribution of interval occurrences in Western music. The

dataset of 1,252 MIDI pieces was marked up with the tonic and mode of the

piece. Half of the pieces are major, the other half, minor. First, all pieces

in the same mode (major or minor) were normalized to be the same key (C)

by a simple transposition operation. Separate histograms were constructed

for each of the two modes. Only simple, and not compound, intervals were

considered. In other words, the octave of each note was not considered,
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Figure 2.4: (a) Histogram of interval occurrences and duration-weighted
occurrences for major scales. (b) Histogram of interval occurrences and
duration-weighted occurrences for minor scales.

resulting in a histogram containing 12 bins, one for each simple interval.

Each note of each MIDI file for one of the two modes was counted and

placed in its corresponding histogram bin. Therefore, each occurrence of the

note G was placed in the bin corresponding to the fifth (G being the fifth of

C). In addition to a simple counting of the occurrence of each note, a second

histogram was constructed where each note was weighted by its duration.

The resultant histograms (one for simple note occurrence, the other weighted

by duration) can be seen in Figure 2.4 for each of the two modes.

As seen in Figure 2.4 the tonic and fifth are (as expected) the two most

frequently occurring notes. The third (which defines the major or minor

triad) also plays a prominent roll for each mode. The histograms also show

that major seconds and fourths occur frequently across modes. Many of

these frequently occurring intervals produce the potential for a large number

of coinciding and thus, colliding, harmonics.
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Frequency of occurrence of harmonic collisions

The previous analysis focused on simply estimating the note/interval dis-

tribution of musical keys. This analysis did not take into account whether

these pitch-intervals were occurring simultaneously or not. Klapuri for in-

stance demonstrated that in the case of a simultaneous major triad 47%,

33%, and 60% of the harmonic partials of the root, major third, perfect fifth,

respectively, are overlapped by the other notes in the chord [30]. Therefore,

an analysis was performed to measure the simultaneous occurrence of inter-

vals and harmonic collisions in Western music. First, the dataset of MIDI

files had to be filtered to produce a valid subset of multisource pieces. All

pieces that were solo piano, harpsichord, or organ were removed. Moreover,

the General MIDI standard contains a patch for string ensembles. All string

ensemble MIDI channels were removed. The resulting set of MIDI files con-

tained 382 pieces with more than one source.

For each MIDI file, a simple time-frequency representation of each indi-

vidual source, based solely on the symbolic information, was constructed. A

hop size of 10 ms and a frequency bin spacing of 21.5 Hz (equivalent to a

2,048 point DFT of a 44.1 kHz sampled signal) was used. For each note of

the source, the corresponding time-frequency points were marked based on

the note’s onset time, offset time, and the expected harmonic locations of

the pitch (up to 10 kHz). Overlaps in the time-frequency representations,

and therefore harmonic collisions, were counted when contributions of two

or more sources existed at the same time-frequency points. Figure 2.5 shows

the time-frequency representation of an excerpt of the first 5 seconds of a

piece containing violin, viola, and French horn. The time-frequency points

shared by multiple sources are also shown.

In the analysis of the 382 MIDI files, it was found that 29.6% of all non-

trivial fime-frequency points (i.e., time frequency points with a contribution

due to at least one source harmonic) were occupied by more than one source.

However, when sources were considered individually, it was found that, on av-

erage, 50.1% of an individual source’s nontrivial time-frequency points were

interfered with by other sources.

24



0 1 2 3 4 5
0

500

1000

1500

2000

Time (sec)

F
re

qu
en

cy
 (

H
z)

(a) Violin

0 1 2 3 4 5
0

500

1000

1500

2000

Time (sec)

F
re

qu
en

cy
 (

H
z)

(b) Viola

0 1 2 3 4 5
0

500

1000

1500

2000

Time (sec)

F
re

qu
en

cy
 (

H
z)

(c ) French Horn

0 1 2 3 4 5
0

500

1000

1500

2000

Time (sec)

F
re

qu
en

cy
 (

H
z)

(d) Harmonic Collisions

Figure 2.5: MIDI-derived time-frequency representations for a piece
containing (a) violin, (b) viola, and (c) French horn. The time-frequency
points shared by two or more sources can be seen in (d).

2.4 Multiple Fundamental Frequency Estimation

Multiple fundamental frequency (multi-f0) estimation concerns itself with

estimating the fundamental frequency, f0, of sources in polyphonic music

mixtures. Multi-f0 estimation produces a low-level musical transcription of

a piece. It is a simplified version of multipitch analysis (though f0 is very

strongly related to pitch, the complexities of pitch perception do not produce

a true one-to-one mapping between the two). In its own right, however, multi-

f0 analysis can be thought of as an important first step to true multipitch

estimation, and later, music transcription. Aside from music transcription,

multi-f0 estimation has additional applications in general music information

retrieval (MIR), as well as source separation.

This section forms a foundation for multi-f0 estimation by first introduc-

ing the f0-estimation of audio containing only a single source. Methods of

multiple-f0 estimation are subsequently presented. Finally, methods for eval-

uating f0 estimation techniques are discussed.
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2.4.1 Single, monophonic, fundamental frequency estimation

Early work in f0 estimators focused on signals containing only one f0 at

any given time. Signals with a single f0, or pitch, at any given time are

called monophonic signals. In general, single-f0 estimators comprise time-

domain methods, and frequency-domain (or, more accurately, time-frequency

domain) methods. Time-domain techniques for single-f0 estimation include,

among others, autocorrelation function (ACF) methods [31], average mag-

nitude difference functions (ADMF) methods [32], and variants of squared

distance function (SDF) based methods such as YIN [33]. Frequency-domain

approaches include spectral autocorrelation [34], cepstral methods [35], the

harmonic product spectrum [36], and techniques that attempt to match ob-

served spectra with some form of harmonic model.

While many of the techniques may seem to differ on the surface, there is a

strong underlying equivalence among many of the approaches. For example

Tolonen and Karjalainen observed that autocorrelation functions greatly re-

semble cepstral analysis. The autocorrelation can be calculated as the inverse

Fourier transform of the squared-magnitude spectrum. Cepstral analysis, on

the other hand, is simply the Fourier transform of the log magnitude spec-

trum. Therefore, the main underlying difference is the extent to which the

magnitude spectrum is compressed or expanded. Moreover, Klapuri showed

that both these methods are implicit realizations of a model that emphasizes

frequency partials at harmonic locations of the magnitude spectrum [37].

Therefore, these approaches share a strong similarity with harmonic pattern

matching techniques. For example, some harmonic pattern matching tech-

niques introduce a concept of a harmonic comb or seive [38]. Combs are

constructed by placing weighting functions at harmonic locations of an f0

hypothesis. The spectrum is subsequently weighted by the comb and inte-

grated over frequency (i.e., correlated) to produce a salience score for a given

f0 hypothesis.

Figure 2.6 shows an example of a generic harmonic comb pattern matching

technique for a single frame of a French horn tone. The comb is constructed

by placing Gaussians with a 10 Hz standard deviation at harmonic locations

of the fundamental frequency. When extracted harmonic amplitudes are

weighted by the comb and then integrated, combs that match the true f0

will produce a high salience score. The harmonic comb corresponding to the
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Figure 2.6: Harmonic combs of two f0 hypotheses. Harmonic partials of a
French horn tone at an f0 of 261 Hz are shown as stems. The harmonic
comb of an f0 hypothesis of 261 Hz is shown in (a). The harmonic comb of
an f0 hypothesis of 370 Hz is shown in (b).

true f0 is seen in Figure 2.6(a). The harmonic comb of an f0 hypothesis with

little overlap of the observed spectrum is seen in Figure 2.6(b).

2.4.2 Multiple, polyphonic, fundamental frequency estimation

When signals contain multiple sources at a given time, they are referred to

as polyphonic signals. For polyphonic signals, sometimes the main f0 con-

tour of interest is that of the predominant melody. Poliner et al. provide

a good overview of melody estimation techniques [39]. The estimation of

multiple, simultaneous, fundamental frequencies is a significantly more chal-

lenging problem than single-f0 estimation and melody estimation. According

to Yeh, multi-f0 estimation methods can largely be classified into two cate-

gories: Iterative-cancellation techniques and joint estimation techniques [40].

Iterative-cancellation methods involve estimating the f0 of a predominant

source, and then canceling the contributions of the that source. For exam-
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Figure 2.7: Example of iterative cancellation multiple-f0 estimation
techniques for a perfect-fifth and octave mixture. The harmonic partials of
the perfect-fifth mixture, along with the comb pertaining to the highest
salience f0 estimate, can be seen in (a). The residual after the harmonics
corresponding to the f0 estimate in (a) are canceled, and the comb of the
second dominant f0 estimate are shown in (b). The harmonic partials of
the octave mixture, along with the comb pertaining to the highest salience
f0 estimate can be seen in (c). Cancellation of the harmonics of this
candidate f0 produces virtually no residual, and a subsequent f0 cannot be
estimated as shown in (d).

ple, all harmonics corresponding to an estimated f0 might be fully removed

from the observed spectra. This procedure is iterated until all sources are

accounted for. The main advantage of this technique is its low computational

burden. However, due to harmonic collisions, the cancellation of individual

sources has a propensity to also remove valuable information that may be

necessary to estimate the f0 of other sources. Figure 2.7 demonstrates the

cancellation effects that can occur with mixtures containing harmonic colli-

sions. In this example, spectra are represented as harmonic partials using

peak-picking of the DFT magnitude spectra. As stated earlier, colliding par-
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tials generate a single peak, and thus a single visible harmonic. In the case

of this perfect-fifth mixture, the first predominant f0 found is that of the

lower (in pitch) tone. Once the harmonics corresponding to this f0 are fully

canceled, every other harmonic of the higher tone (a perfect fifth above) is

also canceled. In this case however, there is enough of a residual to correctly

support a second, and correct, f0 hypothesis. The case gets more complicated

for octave mixtures. Cancellation of the predominant f0 estimate results in

full cancellation of all significant harmonics. The residual comprises only

weak, spurious partials, and no subsequent f0 estimate can be made.

Parsons introduced an early attempt to detect collisions based on symme-

try of DFT bins surrounding a harmonic peak in the spectrum, as well as well

behaved phase of those bins [41]. Klapuri proposed partial cancellation meth-

ods where the contribution of an estimated source is not fully removed. Two

methods explored by Klapuri include partial cancellation based on various

spectral smoothness principles, and the cancellation of only lower frequency

harmonics [42, 43].

Joint estimation techniques aim to estimate all combinations of f0 candi-

dates. As the number of sources increases, so do the number of possible f0

combinations. Therefore, such approaches come at the expense of a higher

computational cost. An example of a joint estimation technique for two-tone

mixtures is the two-way mismatch method [44]. Proximity of partials (in fre-

quency) are evaluated against the locations of the hypothesis of joint f0s and

vice versa. Another example of joint estimation techniques by de Cheveigné

cancels all contributions due to a joint hypothesis of multiple f0s [45] to pro-

duce a residual. The joint-f0 hypothesis with minimum residual is chosen as

the estimate. Yeh proposes a hybrid approach between joint and iterative

estimation to reduce the required search space of joint-f0 hypotheses [40].

Yeh also points out that the main underlying advantage of joint estimation

techniques is that they are better adapted to handling harmonic collisions.

With a joint-f0 hypothesis, the locations of expected harmonic collisions are

easily determined, and the contributions of those harmonics can be shared

among the individual f0 estimates in a joint hypothesis. Approaches based on

non-parametric techniques such as non-negative matrix factorization (NMF)

[46] and statistical modeling techniques such as harmonic temporal clustering

[47] can also be considered joint-estimation techniques.
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2.4.3 Evaluation measures for multiple fundamental
frequency estimation performance

In musical contexts, the estimated f0s are usually deemed correct if they are

within a semitone tolerance window centered on the ground-truth f0. This

allowed error tolerance is roughly a ±3% error in frequency. Because the

most common errors in f0 are octave and suboctave errors, additional evalu-

ations sometimes map all f0s to a single octave. In this case, the evaluation

can be said to be an evaluation of the chroma accuracy. Chroma accuracy

makes sense from a musical perspective in that the note that pertains to a

given frequency carries similar musical meaning regardless of its octave. In

multiple-f0 estimation, additional factors must be taken into account because

usually the number of simultaneous f0s is not known beforehand. Therefore,

aspects such as false alarm and false negative rates must be measured as

well. Poliner and Ellis propose a series of evaluation measures that take into

account both accuracy and detection rates [48]. Multiple-f0 estimation has

been an evaluation task of the annual MIREX campaign since 2007 [49]. Bay

et al. provides an overview of the performance metrics and current state-of-

the-art performance in musical multi-f0 estimation [50].

2.5 Musical Audio Source Separation

Audio source separation aims to separate individual sources from audio mix-

tures. In a musical context, consider an example of a string quartet that

usually contains two violins, a viola, and a cello. A goal of musical audio

source separation is to separate the signals corresponding to the individ-

ual musical instruments. For the simplest monaural (one channel) mixture,

given a signal x[n] composed of J sources, x[n] can be expressed as the linear

superposition of sources

x[n] =
J∑

j=1

xj[n] (2.29)

where xj[n] represents the jth source. The goal of source separation is to

extract each source, xj[n] (e.g., the cello), from the composite mixture, x[n].

A more relaxed constraint on source separation is to recover a source signal

that sounds identical to each true source. This section presents an overview
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of audio source separation approaches. Focus is placed upon computational

auditory scene analysis because it interacts nicely with the sinusoidal model

of instrument tones, and is intuitive to conceptualize. Finally, discussions on

how source separation techniques are typically evaluated are presented.

2.5.1 Overview of source-separation methods

In general, source separation techniques can be classified into four classes:

Unsupervised methods, model-based methods, multichannel methods, and

perceptually-inspired auditory scene analysis methods. These four classes

are by no means disjoint, as some techniques can be considered to belong to

more than one of these generalized classes.

Unsupervised methods for audio source separation attempt to learn char-

acteristics of source instruments directly from the data. Examples of such au-

dio source separation techniques are ones related to independent component

analysis (ICA) [51], nonnegative matrix factorization (NMF) [52, 53, 54, 55],

and independent subspace analysis (ISA) [56, 57, 58, 59]. While ICA is gen-

erally a multichannel method, related methods such as NMF and ISA can

work on monaural mixtures. For instance, ISA uses ICA on spectrograms to

factorize the observed spectrogram and then cluster the factors into sources.

The NMF method aims to decompose observed spectra into a small num-

ber of basis spectra, that when additively combined represent the observed

spectra. The non-negativity constraint comes into play in that magnitude

spectra are strictly positive, and they are additively combined during mixing.

As an added constraint, it is generally desired for these decompositions to

be as sparse as possible. Additional constraints can include the harmonicity

of basis spectra or temporal smoothness constraints [60].

Model based methods use models of sources to aid source separation. With

large dictionaries of instrument models spanning both pitch and dynamics,

matching pursuit [61] can be used to decompose a music signal in terms of

the dictionary elements [62]. Bay and Beauchamp [63] use pre-stored spectra

to deal with harmonic collisions by replacing the harmonic amplitudes of col-

lided/corrupted harmonics with ones taken from the best matching spectra in

their library. Bayesian schemes relying on prior parametric models have also

been explored in various contexts [64, 65, 66, 67, 68]. Various assumptions
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regarding the smoothness of spectral envelopes and the sinusoidal model have

also been attempted to aid in the harmonic collision problem [69, 70, 71, 72].

Methods dependent on multi-pitch estimation and subsequent least-squares

estimation of collided harmonic amplitudes are presented in [73] and [74].

When more than one channel of recording is available, a variety of tech-

niques can be used in source separation. Beamforming [75] and other micro-

phone array techniques perform well when there are an adequate number of

sensors. In general however, music is distributed in stereo, and thus, only

two channels are available. Techniques have been developed to discover the

key mixing parameters of each source (interchannel intensity and time dif-

ferences) from two-channel recordings [76, 77, 78, 79, 80]. Time-frequency

points exhibiting the same interchannel differences can then be grouped to-

gether and separated. Harmonic collisions however affect the estimation of

the mixing parameters and subsequently the unmixing. Perfect unmixing

can only be achieved under the condition of W-disjoint orthogonality [81],

that is, in cases where no harmonic collisions take place. Viste and Evange-

lista pay specific attention to resolving harmonic collisions in stereo source

separation by noting the shapes of harmonic envelopes and beating patterns

[82].

Following Bregman’s [83] seminal work on auditory scene analysis, various

approaches that attempt to model, by computer, what humans are believed

to use as the primary cues for grouping and segregating sounds have been

researched. Objects are formed from elementary time-frequency points or

harmonic tracks using grouping cues that include common fate (common

onset/offset [84], AM and FM modulation of harmonic components [85]),

harmonic concordance, frequency proximity, and spatial localization. These

objects are then grouped again to form streams. For example, an individual

note can be considered an object, and a stream of these notes a musical pas-

sage. Computer based auditory scene analysis (CASA) has been attempted

by a variety of researchers [86, 87]. Treatments specific to music can be found

in [88, 89]. A key criticism of many CASA based approaches is that they

approach the problem in a bottom-up manner. A signal is first analyzed to

form a low-level time-frequency representation. Time-frequency points are

then subsequently grouped together into objects and the objects fused into

sources. Any error along the way leads to error propagation as higher level

representations are built. Ellis proposed a top-down approach to CASA to
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alleviate some of these problems [90].

2.5.2 CASA and elementary grouping cues

CASA-based source separation from harmonic tracks involves assigning the

harmonics into groups that represent their respective sources. In the case

of music, a natural first step is to group harmonics into note objects, and

then subsequently fuse notes into streams that potentially represent musical

passages. The means by which this happens has been studied extensively in

the field of auditory scene analysis. The following discussion will focus ex-

clusively on the grouping of harmonic partials into note-objects. Therefore,

only harmonic partials that are occurring simultaneously are considered. The

general principle of grouping is that the harmonics of a source share many

similarities in their properties and behavior over time. Usually these similar-

ities are measured across various facets. Summary measures then combine

individual facets (cues) by, for example, linear combination. Examples by

which some of these similarities can be quantified are now presented.

Common frequency modulation

To quantify the similarity of frequency contours for harmonic grouping,

Brown and Cooke [91] proposed a similarity measure. Denote two sinu-

soidal partials St
i and St

j where t serves as the time (frame) index. Because

a sinusoidal partial has multiple salient parameters, denote the functions f

and A as ones that recover the frequency and amplitude of the argument, re-

spectively. Therefore, the frequency of partial Si at time-step t is expressed

as f(St
i ) and its amplitude A(St

i). The similarity between the frequency

trajectories of these two tracks, sf (f(Si), f(Sj)) can be calculated as

sf (f(Si), f(Sj)) =
1

t2 − t1 + 1

t2∑
t=t1

exp

−
[
f(St

i )

f̄(Si)
− f(St

j)

f̄(Sj)

]2
2δ2f

 (2.30)

where t1 and t2 are the first and last frames that Si and Sj overlap, f̄(Si) and

f̄(Sj) are the mean frequencies of the partials over the time interval [t1, t2],

and δf is a tolerance factor. Note that sf (f(Si), f(Sj)) is bounded between
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zero (dissimilar contours) and unity (identical contours).

Common amplitude modulation

To quantify amplitude modulation similarity, a measure identical to that

used for frequency in Equation 2.30 can be used. Denoting the amplitudes

of the trajectories St
i and St

j as A(S
t
i) and A(St

j), their average over the time

span [t1, t2] as Ā(Si) and Ā(Sj), and a tolerance factor as δa, the measure for

amplitude similarity is expressed as

sa (A(Si), A(Sj)) =
1

t2 − t1 + 1

t2∑
t=t1

exp

−
[
A(St

i )

Ā(Si)
− A(St

j)
¯A(Sj)

]2
2δ2a

 (2.31)

Not all musical instruments have the property that the amplitude envelopes

of the harmonics share a common shape. Nevertheless, there are many instru-

ments which indeed do have similar amplitude envelopes for all of their har-

monics. Moreover, in the presence of amplitude modulation such as tremolo,

the common amplitude modulation measure is useful.

Harmonic concordance

The frequencies of the partials of pitched instruments obey a harmonic re-

lationship. The frequency fi of the ith harmonic of a pitched instrument is

therefore mf0, where m is (nearly) a positive integer and f0 is the fundamen-

tal frequency of the source. If two partials from a single source are compared,

fi at m times the fundamental, and fj at n times the fundamental, the ratio

of fi/fj is expected to approach a rational fraction m/n, and m and n are

expected to to be small. A measure of harmonicity, or harmonic concordance,

should favor harmonics whose frequency ratios can be expressed as simple

integer ratios. Another desired property of such measures is to avoid the need

for explicitly calculating the fundamental frequencies of sources. One such

measure has been proposed by Virtanen and Klapuri [71]. First, a minimum

frequency, fmin is calculated as the frequency of the lowest harmonic that is
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found in sinusoidal tracking. Bounds are then calculated for m and n as

m = 1, 2, ...,

⌊
fi

fmin

⌋
, n = 1, 2, ...,

⌊
fj
fmin

⌋
(2.32)

Finally all possible ratios of m/n are calculated and the one that most closely

matches the observed frequency ratio is chosen. The harmonicity error, dh,

is

dh(fi, fj) = min

∣∣∣∣log(fi/fj
m/n

)∣∣∣∣ (2.33)

The absolute value of the log is used to equally account for ratios above

and below unity. An alternative measure of harmonicity was proposed by

Every and Litwic [92]. A heuristic function is created that weights common

frequency ratios (e.g., 2:1, 3:1) higher than less common ones (e.g., 9:4).

2.5.3 Synthesis of separated sources and binary masks

Source separation requires the synthesis of sounds separated from mixtures.

The techniques used for synthesis depend greatly on the signal representation

used in separation. If, for instance, each source is represented as a group of

sinusoidal tracks, additive synthesis [93] can be employed to synthesize the

separations. However, lower level time-frequency representations such as

the STFT or cochleagrams are perhaps even more prevalent. A common

engine for separation and synthesis that is prevalent in CASA-based and

multichannel-based source separation techniques is the binary mask.

The definition of a binary mask perhaps most simply begins with the

definition of the ideal binary mask (IBM). Ideal binary masks are constructed

with full knowledge of the individual source signals. The ideal binary mask

aims to assign time-frequency points where a source is dominant to that

source. Assuming a signal is composed of two sources, x1[n] and x2[n], with

time-frequency representations for time-frame t and frequency bin k, X1[t, k]

and X2[t, k], the ideal binary mask for each respective source, M1[t, k] and

M2[t, k], can be expressed as
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Figure 2.8: Example of ideal binary masks applied to a mixture of two
tones. The spectrogram of the mixture is shown in (a). The binary masks
of the two sources are shown in (b) and (c). Black points denote “1” and
white points denote “0.” The spectrograms of the separated sources are
shown in (d) and (e).

M1[t, k] =

{
1 if 20 log10(X1[t, k])− 20 log10(X2[t, k]) > Θ

0 else

M2[t, k] =

{
1 if 20 log10(X2[t, k])− 20 log10(X1[t, k]) > Θ

0 else

(2.34)

In most definitions, the threshold parameter, Θ, is zero. At this threshold,

each time-frequency point is assigned to only one source. However, softer

thresholds such as Θ = −6 have been shown to produce better results [94]. In

this case, a time-frequency point can potentially be assigned to both sources

if the corresponding time-frequency points of the individual sources are close

in amplitude. Synthesis of a source can be achieved by applying the mask to

the mixture (an element-by-element product of the mask and mixture) and

using STFT-synthesis.

Figure 2.8 demonstrates the application of an ideal binary mask to a mix-

ture of two tones at a perfect-fifth interval. The separations show that one of
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the sources is apparently missing harmonics. This is due to the fact that the

other source is dominant in the mixture. Therefore, all energy at those corre-

sponding time-frequency points is assigned to the other source. As a result,

the dominant source has significant contributions of the other source present

after separation. This phenomenon demonstrates the most common types

of distortions in source separations when time-frequency overlaps (harmonic

collisions) are present: distortions due to missing harmonics, and distortions

due to interference of other sources.

Naturally, source separation with prior and perfect knowledge of the sources

to be separated seems to be an endeavor with little point. However, IBMs

have value in the fact that they provide good baselines of comparison in the

evaluation of source separation results. Moreover, while the aim of source

separation is to recover individual sources perfectly, a main goal of CASA

can be reformulated so as to rather recover the ideal mask for each source

[95]. Non-ideal binary masks can be constructed based on time-frequency

trajectories (e.g., sinusoidal tracks) that have been grouped according to

CASA principles. Many of the previously presented multichannel methods

exploit interchannel characteristics of time-frequency points to generate time-

frequency masks directly. Note that with ideal masks, time-frequency points

are assigned fully to individual sources. Therefore, even in the case of ideal

binary masking, time-frequency points containing the contributions of two

or more sources will cause distortions. Source separation techniques that use

templates or basis vectors such as the previously discussed non-parametric

and parametric-model based methods to drive synthesis do not suffer from

this problem.

2.5.4 Evaluation measures of source separation performance

The evaluation of audio source separation algorithms presents a key chal-

lenge: quantifying a subjective sound quality. The most common measure of

separation performance is the signal-to-distortion ratio (SDR), which can be

expressed as

SDRdB = 10 log10

∑
n x[n]

2∑
n (x[n]− x̂[n])2

(2.35)

where x[n] and x̂[n] are the original source and separated signals, respectively.

A phase-sensitive measure of SDR for audio operates on the magnitude
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spectrum. Denoting the lth bin of the tth frame of x[n] and x̂[n] as X[t, l]

and X̂[t, l], the spectral error ratio (SER) can be expressed as

SERdB = 10 log10

∑
t,l |X[t, l]|2∑

t,k (|X[t, l]| − |X̂[t, l]|)2
(2.36)

The spectrum based approach is less sensitive to relative phase offsets that

are usually perceptually irrelevant.

Overviews of evaluation techniques can be found in [96] where concerns of

matching separated sources to the ground truth originals are also addressed.

Perceptual measures such as those found in [97] and [98] process the sig-

nals with an auditory model and carry out the measures in the auditory

domain. When separation is used as a front-end for transcription, accuracy

can be used as a measure of performance [99]. Vincent et al. [100] add more

low-level measures to the standard SDR by also measuring the interference

and effects of other sources in the separated signals (signal to interference

ratio, SER), separation artifacts (signal to artifact ratio, SAR), and spatial

filtering distortion for multi-channel separation. An implementation to eval-

uate source separations using these measures is freely available [101]. Both

SDR and SER have been used as the evaluation measures in recent source

separation evaluation campaigns [102, 103].

2.6 Summary and Discussion

This chapter presented an overview of some of the goals, techniques, and chal-

lenges faced in musical audio signal processing. The concept of overlapping

partials, or harmonic collisions, was explored from both a signal processing

and musicological perspective. The treatment of harmonic collisions showed

that, in short spans of time, the parameters of closely spaced sinusoids can-

not be trivially extracted by simple inspection of the magnitude spectrum.

Moreover, it was demonstrated that these harmonic collisions exist on the

order of 50% of the time for a given musical source in a musical mixture.

A high-resolution signal-subspace method, called the direct matrix pencil

method, that has the ability to resolve the parameters of closely-spaced sinu-

soids, was introduced. However, this technique requires that the frequency

of the sinusoids are stationary over the span of time it operates over. The
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reason harmonic collisions are a challenge in many domains of music signal

processing is that they hinder the ability to infer information about individ-

ual sources in mixtures. Two example applications where these difficulties

are evident, multi-f0 estimation and musical audio source separation, were

presented. Simple examples that show how harmonic collisions play a role

in these application domains were demonstrated. The focus of this thesis

now turns to this question: Do signal subspace-based sinusoidal parameter

estimators have the potential to resolve harmonic collisions in music audio

signals?
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CHAPTER 3

SHORT-TIME HIGH-RESOLUTION
SINUSOIDAL ANALYSIS

This chapter presents an implementation of a short-time high-resolution

(STHR) sinusoidal analysis system. The system is built around the di-

rect matrix pencil method for extracting sinusoidal parameters. Chapter

2 demonstrated that the direct matrix pencil method has the potential to re-

solve closely spaced sinusoids. By itself, however, the matrix pencil method

does not support sinusoids with time-varying parameters. Therefore, the ma-

trix pencil method is adapted here to operate on small time windows of the

signal within which sinusoidal parameters are assumed stationary. Extracted

sinusoidal estimates for each frame are linked across frames to generate sinu-

soidal tracks. The ultimate goal of this sinusoidal analysis system is for the

system to be able to produce individual tracks of sinusoidal partials that are

potentially very closely spaced. In traditional implementations of sinusoidal

tracking based on the short-time Fourier transform, closely spaced sinusoids

are merged into a single track. The usefulness of this form of super-resolution

sinusoidal tracking is explored in later chapters.

Section 3.1 presents the proposed sinusoidal analysis system. Design con-

siderations involving the individual components of the system are covered.

Section 3.2 evaluates the sinusoidal analysis system for a range of input sig-

nals. The system is evaluated with synthetic signals that perfectly fit the

model used by the direct matrix pencil method. The evaluations using syn-

thetic signals serve to demonstrate the effects of the processes surrounding

the matrix pencil estimation of sinusoidal parameters. The system is also

evaluated on real musical instrument tones and tone mixtures. The ability

of the system to produce a valid sinusoidal representation and its ability to

detect collided harmonics are evaluated.
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Figure 3.1: Block diagram of short-time high-resolution sinusoidal analysis.
The signal is filtered into sub-bands. Each sub-band is decimated and
windowed into overlapping frames with a rectangular window. The
sinusoidal parameters within each band are extracted using ESPRIT and
then sinusoidal tracking is performed to build partial tracks.

3.1 Sinusoidal Analysis System Overview

An overview of the short-time high-resolution sinusoidal analysis system is

shown in Figure 3.1. The system consists of a filter bank that decomposes the

signal into sub-bands. Each sub-band is downsampled and windowed with

overlapping rectangular windows. For each window of each sub-band, direct

matrix pencil, or ESPRIT, sinusoidal estimation is performed. The result

of this analysis is a time-frequency representation comprising estimates of

the parameters of prominent sinusoidal partials present in the signal through

time. These individual estimates are then grouped with a tracker to form

individual sinusoidal tracks.

This section covers each aspect of the sinusoidal analysis system in detail.

Section 3.1.1 covers the preprocessing portion (filter bank, downsampling,

and windowing). Section 3.1.2 explains details regarding the ESPRIT esti-

mation and challenging issues that frequently arise. Finally, Section 3.1.3

introduces a method for tracking sinusoidal partials through time from the

pole estimates generated by ESPRIT for each window.

41



3.1.1 Filter bank, downsampling, and windowing

The primary motivation for performing direct matrix pencil sinusoidal analy-

sis on subsampled sub-bands is to greatly reduce computational load. Recall

from Chapter 2 that ESPRIT is largely dependent on computationally expen-

sive matrix operations such as singular value and eigenvalue decompositions.

These matrices are dependent on the length of the signal and the order of

the sinusoidal model (i.e., how many sinusoids are being estimated). De-

composing the signal into subsampled sub-bands breaks down the problem

of extracting all sinusoids in a signal into a series of smaller subproblems.

Operating on sub-bands allows the system to search for a smaller number of

sinusoids in each band than would be necessary for the entire broadband sig-

nal. Downsampling produces a representation of the signal for a given span

of time with a smaller number of samples. The filtering and downsampling

operations make the problem more tractable.

In addition to reduced computational load, Tkacenko showed that there

are two additional benefits to performing ESPRIT sinusoidal analysis on

downsampled sub-bands of the signal [104]. First, when the sinusoids are

in the presence of colored noise, the noise appears flattened within each

narrow sub-band. Algorithms such as ESPRIT are largely dependent on the

noise subspace being white (uncorrelated), and therefore, a form of whitening

is carried out by sub-band filtering. In addition, the subsampling of each

band effectively widens the separation of sinusoidal components, aiding in

the resolution of closely spaced sinusoids.

The design of the filter bank raises important design considerations in re-

gards to interactions with subsequent ESPRIT sinusoidal analysis. Noteably,

the nature of the filters and the subsequent downsampling raise some signif-

icant concerns. Assume that the bank of B filters in Figure 3.1 are of equal

bandwidth and linearly spaced, and critical downsampling is performed on

each band (the downsample factor, M , is equal to B). With non-ideal band-

pass filters, the band edges at the lower and upper cutoffs represent only a

-6 dB attenuation point. Therefore, if a sinusoid exists just outside the band

edge for a filter, the attenuation might not be significant enough to fully

suppress it. After downsampling, this sinusoid will alias and its sinusoidal

parameters will be extracted. The result is a spurious sinusoidal partial at

the wrong frequency.
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To counteract aliasing effects, first observe that the underlying signal model

used by the direct matrix pencil method is composed of complex sinusoids.

Real sinusoids always generate a pair of complex conjugate poles. Therefore,

to extract sinusoidal parameters using the matrix pencil method, only half

of the spectrum (positive or negative frequency) needs to be analyzed. Thus,

there is no restriction that the filter bank must be real. A complex filter

bank can be designed by modulating a prototype lowpass filter with com-

plex sinusoids to center each filter at its desired location and have coverage

over only positive frequencies. With no negative frequency component for

each bandpass filter, in-band aliasing after decimation is greatly suppressed.

The lesser degree of in-band aliasing also relaxes the necessity for high-order

sharp-cutoff filters. In addition, the number of sinusoids to be searched for

in each band is effectively halved as the order of the model does not need

to account for both the negative and positive frequency components of real

sinusoids.

Figure 3.2 demonstrates aliasing effects for both real and complex filters.

In this particular example, the filter bank is composed of four bands. The first

subplot shows the ideal (real) filter bank. Subsequent subplots demonstrate

downsampling of the non-ideal third band (index 2) for real and complex

bandpass filters. Whereas the real filter displays a great deal of aliasing, as

seen in Figure 3.2(c), the corresponding complex filter shows virtually no

in-band aliasing, as shown in Figure 3.2(e). While spurious partials will still

be analyzed and extracted with the direct matrix pencil method, these can

be trivially pruned out. In the case of this particular band (the index of the

filter is even), all extracted sinusoids that have negative frequency can be

rejected prior to sinusoidal tracking. When the index of a filter is odd, the

band of interest occupies the negative frequency portion after downsampling.

This effect is shown in Figure 3.2(f). Therefore, extracted poles with positive

frequency can be pruned for odd-indexed filters. The filter bank is imple-

mented using a 512 order finite-impulse response linear-phase lowpass filter

as the prototype. For a B-band, linearly-spaced filter bank, the prototype

lowpass filter has bandwidth π/(2B). The prototype filter, h[n], is designed

using the window design method with a Hamming window. The resultant

group delay is 256 samples. The complex bandpass filter for band b, hb[n], is
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Figure 3.2: An example filter bank and the effects of downsampling. An
ideal filter bank is shown in (a). A non-ideal filter corresponding to the
third band (index 2) is shown in (b). The resultant downsampling and
aliasing effects of the band in (b) are shown in (c). A complex bandpass
filter for the third band is shown in (d). The resultant downsampling effects
of the filter in (d) are shown in plot (e). Plot (f) shows the effects of
downsampling on complex bands that have odd indices.

produced by modulating the prototype as follows:

hb[n] = ejπ(
1
2B

+ b
B )nh[n] (3.1)

A linear phase prototype is used to impart an equal delay on all sinusoidal

partials.

Figure 3.3 shows the individual magnitude responses and the net magni-

tude and phase response of a 16-band complex filter bank used to analyze

signals sampled at a rate of 22.05 kHz. Extracted sinusoidal frequencies must

be translated from those estimated in each subsampled sub-band signal to

their true locations. For a bank of B linearly spaced complex filters down-

sampled by a factor of B, denote the lower cutoff frequency (in Hz) of filter

b, f
(b)
L , and the upper cutoff frequency f

(b)
H . The original sample rate of the

signal is fs. An extracted pole frequency, ω (in radians), from band b can be
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Figure 3.3: A 16-band complex filter bank. The magnitude responses of the
individual filters are shown in (a). The net magnitude and phase responses
are shown in (b) and (c) respectively.

translated to its true frequency, f (in Hz), as

f =

{
ωfs
2πB

+ f
(b)
L for b even

ωfs
2πB

+ f
(b)
H for b odd

(3.2)

In addition to translating the frequencies, the effect of the magnitude re-

sponse of the filter must be accounted for. This is especially true for harmon-

ics that reside near the cutoff frequencies of the filters and are potentially

attenuated by as much as 6 dB. The magnitude response of the prototype

filter is stored in a lookup table with 0.1 Hz resolution. Each extracted har-

monic amplitude is then divided by the stored magnitude response of the

filter closest to that particular frequency. Because each filter is designed to

have unit magnitude response, all extracted sinusoidal amplitudes must also

be doubled (as only the positive frequency portion of a real sinusoid has been

estimated).

Following filtering and downsampling, each band is windowed with over-

lapping rectangular windows. Depending on application, typical window

lengths used are 46 ms or 93 ms. Assuming a 16-band downsampled filter
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bank, operating on a 22050 Hz sampled signal, the window lengths corre-

sponding to 46 ms and 93 ms are 64 and 128 samples, respectively. A hop

size equivalent to 1/8 the window length is used (87.5% overlap). Such a

large overlap between adjacent frames may seem unnecessary as it greatly

increases the amount of computation required. However, the ultimate goal of

the sinusoidal analysis system is to track closely spaced sinusoidal partials. A

relatively small hop size ensures that the parameters of each sinusoid do not

vary greatly between successive frames. Relatively small changes in the sinu-

soidal parameters greatly aid in linking the pole estimates of each frame to

the pole estimates of the next. Note that such a high overlap is only required

when the signal is expected to have harmonic collisions. For the analysis of

isolated tones or monophonic passages, the amount of frame overlap can be

reduced thus reducing computational load.

3.1.2 ESPRIT, model order, and regularization

Direct matrix pencil/ESPRIT estimation is performed on each windowed

frame of each sub-band of the preprocessing stage of Section 3.1.1. The de-

tails of the direct matrix pencil method sinusoidal estimation were covered

extensively in Section 2.2.4. The main free parameters of matrix pencil esti-

mation are the pencil parameter, and the model order. Model order refers to

the number of sinusoids whose parameters are to be estimated. As previously

stated, good values of the pencil parameter are N/3 to N/2 with N being

the length of the signal (window). The sinusoidal analysis system presented

here uses a pencil parameter of N/2.

In general, the model order is not known a priori. To understand the effects

of model order on a system, assume a signal is composed of K sinusoids, and

a model order of K̂ is chosen. If K̂ > K, the true K sinusoids and their

parameters are guaranteed to be a subset of the K̂ estimates. However, if

the model order is underestimated, i.e. K̂ < K, there is no guarantee that the

estimated K̂ sinusoids match any of the true K sinusoids. Thus, it is obvious

that overestimation of model order is far superior to underestimation. The

overestimation of model order does not come without some cost, however.

While the true poles will be a subset of the K̂ estimated poles, recall that

the poles are defined only by the frequencies and damping factors of the
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sinusoids. The amplitudes and phases of the sinusoids are solved for as a

least-squares projection of the signal onto the subspace spanned by the K̂

poles. Over a finite time-support, sinusoids are only orthogonal if they are

harmonics of the inverse period of the window length (e.g., the DFT basis).

Since the K̂ pole estimates are likely not orthogonal, some of the energy of

the true K sinusoids will be projected onto the remaining K̂ −K erroneous

sinusoids. If these erroneous sinusoids lie in close proximity to true sinusoids,

the amount of energy they capture from the projection will be non-trivial,

and they will resultantly have significant amplitude. The hope is that such

spurious estimates, even if they have significant amplitude, will not display

the sort of temporal continuity required to form sinusoidal tracks with slowly

time-varying parameters.

Estimation of model order has been extensively researched. Both [105] and

[106] provide good overviews of model order selection techniques. Notwith-

standing the fact that overestimation of model order can skew amplitude es-

timates slightly, the proposed sinusoidal analysis system uses the maximum

model order supported in each sub-band. As previously stated, overestima-

tion is far less catastrophic than underestimation. Therefore, the system is

not at the mercy of potentially underestimating model order with one of the

existing order selection techniques. For a 16-band filter bank, operating on

22.05 kHz sampled signals and a 46 ms window size, 15 sinusoids are searched

for in each band.

Recall once again that sinusoidal amplitudes and phases are determined

from the estimated poles using a least-squares projection. As is frequently

the case with inverse problems, there is the potential that the calculation of

the amplitudes and phases is numerically sensitive. When estimated poles

are close together, the condition number of the matrix Zp in Equation 2.27

can become large. Because real world signals do not fit the underlying sig-

nal model exactly (e.g. their harmonic frequencies do indeed slightly vary

within a window, the harmonic amplitudes are not perfectly exponentially

decaying, or the signal is in the presence of colored noise), there is a slight

perturbation of the signal from the estimated model. The chief character-

istic of ill-conditioned systems is that small perturbations or errors in the

model can lead to very large perturbations of the resulting estimates, in this

case, the harmonic amplitudes. These problems manifest themselves in the

analysis or real musical mixtures as the occurrence of large “explosions” of
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amplitudes, sometimes by orders of magnitude. Such “explosions” can inter-

fere with sinusoidal tracking, and if present in the output resynthesis of the

signal, can cause disturbing audio artifacts.

The regularization of inverse problems, specifically Tikhonov regularization

[107], provides a means for counteracting “exploding” amplitudes. Repeating

once again Equation 2.27 for posterity, recall that the complex harmonic

amplitudes contained in vector r can be recovered from the signal x (in

vector form) and the matrix Zp (containing the K estimated poles) as

r = (ZH
p Zp)

−1ZH
p x (3.3)

This least-squares solution is the one that minimizes the residual ∥Zpr− x∥22.
The most basic form of Tikhonov regularization adds an additional term to

instead minimize

∥Zpr− x∥22 + ∥Lr∥
2
2 (3.4)

If L = αI, with I being the identity matrix, Tikhonov regularization favors

solutions with smaller norms. The weight factor α, known as the regular-

ization parameter, balances the costs between minimizing the least-squares

residual and the l2 norm of the solution r. The closed-form regularized least-

squares solution to estimate the complex sinusoidal amplitudes becomes

r = (ZH
p Zp + LHL)−1ZH

p x (3.5)

Because estimating extremely large harmonic amplitudes is penalized through

regularization, the amplitude explosion problem is largely mitigated.

The choice of the factor α that balances the residual cost and solution

norm cost now becomes a free parameter. A host of methods such as the

L-curve method exist for choosing an appropriate regularization parameter.

However, such methods look to choose an ideal parameter for each specific

least-squares problem. In the case of the short-time sinusoidal analysis sys-

tem, there are hundreds and potentially thousands of least-squares problems

being solved for every audio file. The tuning of the regularization parameter

for each least-squares problem becomes intractable. Therefore, some form

of a global estimate for the regularization parameter is desired. An opti-

mization experiment for choosing a regularization parameter is presented in

Section 3.2.
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3.1.3 Sinusoidal tracking based off ESPRIT pole estimates

Estimates of sinusoidal parameters are produced for each frame of each sub-

band using the direct matrix pencil method. After the frequency estimates

are translated to their true locations via Equation 3.2 and the effects of the

the magnitude response of each bandpass filter compensated for, sinusoidal

estimates are linked frame to frame through the use of a sinusoidal tracker. At

the frame level, the representation produced by ESPRIT is largely equivalent

to the representations used by STFT-based trackers such as the MQ method

presented in Section 2.2.3 (which operate off harmonic estimates derived from

peak picking the DFT of each frame).

Because a large model order is used in the matrix pencil estimation of si-

nusoidal parameters, many extracted poles will be erroneous. In essence, the

signal subspace will capture portions of the noise subspace, and some poles

will serve to capture aspects of the noise. Examination of the estimated

damping factor for the poles can be used to prune some of the erroneous pole

estimates. It is expected that moderately stable sinusoids undergo relatively

little amplitude change within a frame, and thus have damping factors close

to zero. For a 16-band filter bank with an effective frame size of 46 ms cor-

responding to 64 samples, a pole with a damping factor with absolute value

0.05 would undergo a 27.8 dB change in amplitude during the frame’s dura-

tions. Therefore, all poles with damping factors |α| > 0.05 are immediately

removed from consideration.

Traditional MQ tracking links sinusoidal estimates based solely on prox-

imity in frequency. In essence, smooth frequency trajectories are enforced

by only allowing linkages of sinusoidal estimates that are closely spaced in

frequency between frames. In the case of high-resolution analysis where

there is the potential that sinusoidal estimates exist closely spaced in a given

frame (i.e., harmonic collisions are resolved), producing track linkages based

solely on frequency can be error prone. If two source harmonics are close in

frequency and perhaps cross at some point, there is the potential that the ex-

isting tracks corresponding to each source harmonic could switch and begin

tracking the harmonic of the other source. Therefore, frequency proximity

between an existing track and the subsequent pole estimates is a necessary

but insufficient condition. Disambiguation of closely spaced tracks can be

carried out by also enforcing smoothness of the harmonic amplitudes of each
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track. Recall that the primary justification for a high overlap factor between

successive frames in the STHR analysis is to ensure that the key sinusoidal

parameters, namely frequency and amplitude, do not very greatly frame to

frame. The sinusoidal tracker used in the STHR sinusoidal analysis system

operates on both harmonic frequencies and amplitudes to produce partial

tracks.

The STHR sinusoidal tracker works as follows. Denote the sinusoidal tracks

that are currently active at frame t: St
1, S

t
2, ..., S

t
M . The goal is to produce

linkages of theM active tracks to theK extracted poles of frame t+1. Denote

the K poles at frame t + 1: zt+1
1 , zt+1

2 , ..., zt+1
K . Let the functions f and A

denote the frequency and amplitude of the argument, respectively. Therefore

the frequency of track St
m is f(St

m) and the amplitude corresponding to pole

zt+1
k is A(zt+1

k ). There are a total of T analysis frames and thus t ∈ [0, T −1].

Tracks are built in the following step-by-step manner.

Step 1. For each track, St
m, currently active at time t, find all pole candi-

dates, zt+1
k , in frame t + 1 that are in close proximity in frequency to

track St
m. That is, find all zt+1

k such that
∣∣f(St

m)− f(zt+1
k )

∣∣ < ∆fmax.

All zt+1
k that fit this criterion (proximity in frequency) form a set of

potential matches for track St
m. Denote the set of potential match can-

didates for track St
m, C

t+1
m . All St

m that have no candidate matches are

allowed to die.

Step 2. For track St
m and candidate set Ct+1

m , find the zt+1
k ∈ Ct+1

m that

minimizes amplitude difference. That is, find the zt+1
k that minimizes

∆AdB =
∣∣20 log10 A(St

m)− 20 log10 A(z
t+1
k )

∣∣. If ∆AdB < ∆Amax, pro-

duce a temporary linkage between track St
m and pole zt+1

k . If there

exists no zt+1
k ∈ Ct+1

m that provides smooth amplitude continuity (i.e.

there is too large a jump in amplitude to all candidate poles), allow St
m

to die.

Step 3. Repeat the first two steps for all m ∈ [1,M ] to account for all

existing tracks.

Step 4. For all poles at time step t + 1 that are uniquely assigned to one

track at time t, make the temporary linkage permanent. All poles that

have temporary linkages to more than one track must now be uniquely

assigned. For a pole zt+1
k assigned to more than one track, a cost
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function, J(zt+1
k , St

m), that equally weights frequency and amplitude

deviation between it and track St
m is calculated as

J(zt+1
k , St

m) =
∣∣log (f(zt+1

k )/f(St
m)

)∣∣+∣∣log (A(zt+1
k )/A(St

m)
)∣∣. The track

St
m̂ that minimizes J is chosen as the proper linkage since it provides

the closest match in terms of both frequency and amplitude. For all

other tracks St
m that had zt+1

k as a temporary linkage, remove zt+1
k from

their respective candidate pools Ct+1
m , and go to Step 2. This process

will determine if there are other potential viable candidates for tracks

that had temporary linkages broken.

Step 5. All remaining poles that have not been accounted for and linked to

a track must now be handled. Direct matrix pencil estimation has the

potential to occasionally not report a pole in a given frame. In addi-

tion, even though the least-squares estimation of harmonic amplitudes

is regularized, the potential for a gross error should also be considered.

Therefore, all tracks that had deaths at time step t − 1 are now con-

sidered as potential matches for unmatched poles in time step t + 1.

Remember that the hop size between frames is relatively small, and

therefore, linkages between frames two time steps apart are still rele-

vant. Steps 1-4 are repeated for all tracks that died at step t−1 and for

all unaccounted for poles at step t + 1. In the case where a gross am-

plitude error occurred due to numerical instability in the least-squares

estimation of amplitudes, this additional tracking procedure also serves

as a form of regularization. If a match is produced, estimates of the

frequency and amplitude at time t are produced by linearly interpolat-

ing between the track parameters at step t− 1 and the matching pole

estimates at time step t + 1. All poles that have linkages to tracks at

frame t or tracks that died at track t− 1 produce births of new tracks.

Step 6. t = t+ 1. If t < T go to Step 1.

Step 7. All tracks that are of duration less than Tmin are pruned. Short-

lived tracks are likely due to spurious pole estimates that are fit to

noise.

Figure 3.4 shows the pole estimates and resulting sinusoidal tracks of a

mixture of two oboe tones an octave apart. It is evident that many spurious

poles have been rejected due to tracking. Only poles that can be attributed to
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Figure 3.4: Derived pole estimates (a) and sinusoidal tracks (b) of a
mixture of two oboe tones an octave apart.

actual harmonics of the signal maintain the necessary continuity and smooth-

ness of parameters to produce viable sinusoidal tracks. This behavior is cru-

cial due to the fact that the model order is generally overestimated in each

sub-band for the ESPRIT analysis.

It is important to note that potential difficulties can arise in the track-

ing procedure if two closely spaced harmonics are also very close in am-

plitude. This ambiguity is largely unresolvable and represents the types of

challenges faced in any bottom-up approach where objects are formed from

very low level representations. Nevertheless this tracking procedure does

serve to better track closely spaced sinusoids than traditional MQ tracking.

The key free parameters are the maximum allowable frequency deviation,

∆fmax, the maximum allowable amplitude deviation, ∆Amax, and the mini-

52



mum track length, Tmin. The maximum allowable frequency deviation is set

to ∆fmax = 0.01f(St
m) (i.e., one percent of the track frequency). Although

this represents a relatively small deviation, recall that the effective hop size

used in most analyses is 5.8 ms. The maximum allowable amplitude devia-

tion is ∆Amax = 6 dB. All tracks of duration less than 10 frames are pruned

(Tmin = 10).

3.2 Experiments and Evaluation

This section presents the evaluation of the short-time high-resolution sinu-

soidal analysis system across a range of input signals. The ability of the

method to correctly determine the sinusoidal parameters of synthetic sig-

nals is tested in Section 3.2.1. The synthetic signals are ones that perfectly

match the underlying model used by the direct matrix pencil method. Sec-

tion 3.2.2 covers a second experiment meant to aid in choosing a potential

regularization parameter. Evaluations of whether STHR analysis provides

valid sinusoidal representations for real-world musical tones and mixtures is

explored in Section 3.2.3. Finally, a preliminary test of the system’s ability

to resolve collided harmonics is tested in Section 3.2.4.

3.2.1 Synthetic signals

The first test of the sinusoidal analysis system involves evaluating its perfor-

mance on synthetic signals that perfectly fit the underlying model used by

the direct matrix pencil method. The purpose of the test is to evaluate what

effects the various preprocessing stages, namely the filter bank and down-

sampling, have on estimating the sinusoidal parameters. The signal used in

this test is a bandlimited pulse train additively synthesized as

x[n] =
K∑
k=1

cos(2πkf0n/fs) (3.6)

where f0 is the fundamental frequency, fs is the sample rate, and K is chosen

to be the maximum value such that Kf0 < fs/2. The fundamental frequency

is varied at 1 Hz increments from 65 Hz (C2) to 2093 Hz (C7).
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Figure 3.5: SER performance of STHR and MQ analysis synthesis on
bandlimited pulse trains with varying fundamental frequency.

The bandlimited pulse trains are analyzed using STHR sinusoidal analysis.

A 16-band filter bank and 46 ms frame size are used. The signals are resyn-

thesized from the sinusoidal parameters and evaluated against the original

signal using the spectral error ratio (SER) measure found in Equation 2.36.

In addition, the signals are analyzed and resynthesized from STFT-based

MQ analysis. Once gain, a frame size of 46 ms is used for direct comparison.

Figure 3.5 shows the SER of both STHR and MQ analysis as a function

of fundamental frequency. It is evident that while the pulse train signal of

Equation 3.6 perfectly matches the underlying model used by ESPRIT, and

therefore should be perfectly analyzed and resynthesized, the various process-

ing surrounding ESPRIT in STHR analysis prevents perfect reconstruction.

The causes that prevent perfect reconstruction are easily explainable. Recall

that the filters used in the analysis are non-ideal. Although the use of com-

plex filters greatly reduces in-band aliasing, there is nevertheless a presence

of aliased components in each subband signal. In effect, the signal-to-noise

in each subband is no longer infinite. With this manner of noise present in
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the signal, estimates of the sinusoidal parameters are prone to some man-

ner of error. Because low tones generate dense line spectra, synthetic tones

with lower fundamental frequencies have a lower effective signal-to-noise ra-

tio. As a result, there is, on average, increasing reconstruction performance

with increasing fundamental frequency. The increased performance at higher

fundamental frequencies is also due to the fact that these spectra are more

sparse, and therefore the accumulated error is lessened. In addition, the zeros

of the filters are evenly spaced around the unit circle. Some of the harmonics

of the synthesized signals may or may not have harmonics that align them-

selves with zeros of the filters producing varying signal-to-noise ratios. This

explains the spiked performance response seen in Figure 3.5. In some cases,

well aligned zeros have the potential to increase effective signal-to-noise ra-

tio. Moreover, the compensation of the magnitude response of each subband

filter is not perfect. Recall that response effects are compensated for through

the use of a lookup table.

Despite the fact that STHR sinusoidal analysis does not produce a perfect

reconstruction of the signal, it manages to produce a very accurate repre-

sentation. Surprisingly, STFT-based sinusoidal analysis does not provide as

accurate a representation. Figure 3.6 shows the true line-spectrum of a pulse

train signal (f0 = 220 Hz), along with the estimates for a single frame of

the signal for both STHR and MQ analysis. In these examples, quadratic

interpolation of the log-magnitude spectra are used to refine frequency and

amplitude estimates of the sinusoidal partials. However, this manner of inter-

polation does not produce as accurate a result as the estimates produced by

STHR analysis. Moreover, cross talk due to the DFT of the analysis window

used also influences the sinusoidal estimates in STFT-based analysis.

The analysis of synthetic signals provides insight into how the various

components of the STHR sinusoidal analysis interact. However, these signals

are largely overly simplistic, and it is expected that the analysis system will

perform well on them. Therefore, the ability of the system to accurately

represent real-world signals becomes the focus of subsequent experiments.
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Figure 3.6: Line spectrum of a bandlimited pulse train (f0 = 220 Hz)(a) and
its estimate for a single frame of (b) MQ and (c) STHR sinusoidal analysis.

3.2.2 Regularization parameter optimization

Prior to performing a large scale evaluation of how well the STHR sinusoidal

analysis system can represent real-world signals, recall that the choice of a

regularization parameter remains an open problem. Because optimization of

the regularization parameter for each least-squares subproblem is intractable,

the value of the regularization parameter is chosen such that it maximizes

the global SER on a small dataset. A selection of 100 real-world musical

tones and 100 two-tone mixtures is used to evaluate a set of 20 possible reg-

ularization parameters between α = 0 (no regularization) and α = 1 (equal

weighting between least-squares residual and solution norm). Although this

is a relatively small dataset, the aim of this experiment is to provide insights

on the interaction between regularization parameter and representation ac-

curacy.
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Figure 3.7: SER performance as a function of regularization parameter.

Figure 3.7 shows SER performance as a function of regularization param-

eter. Peak performance is attained at a value of α = 0.4. This represents

a relatively strong weighting of the solution norm minimization. It is ob-

served, however, that there is not a great deal of variance of SER due to the

regularization parameter. First, the harmonic “explosion” problem is some-

what of a rare occurrence. In terms of global SER, such misrepresentations

contribute large errors only at single frames. Moreover, the workings of the

tracker serve to largely ignore such gross errors. In the case where these

“explosions” do occur over longer time spans, and are thusly not handled

by the tracker, regularization can contribute to some performance gain. The

good representation performance with large regularization parameters also

provides hints that in general, the solution that minimizes the least-squares

residual is also one with small norm. With no large performance degrada-

tion due to a large regularization parameter, a conservative system can use a

relatively large parameter such as α = 0.4 to aid in handling the occasional

numerical instability in the estimation of harmonic amplitudes. A regulariza-

tion parameter of α = 0.4 is chosen for the STHR sinusoidal analysis system

and used throughout the remaining experiments in this work.
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3.2.3 Real-world musical tones and tone mixtures

A dataset of 2000 real world musical tones and two tone mixtures is used to

evaluate the STHR sinusoidal analysis system’s ability to accurately repre-

sent pitched musical sources. The tones are derived from the RWC Musical

Instrument Database [108]. Examples are drawn from brass (trumpet, trom-

bone, tuba, and French horn), woodwind (oboe, flute, bassoon, clarinet, alto

sax, tenor sax, baritone sax), and string (violin, viola, and cello) families

for a total of 15 unique instrument types. The dataset for each instrument

comprises recordings of three unique instruments with varying articulation

methods, pitches, and dynamics. Half the dataset used in this evaluation

consists of single instrument tones, and half of two-tone mixtures. Each tone

or tone mixture is analyzed using both STFT-based MQ analysis and STHR

sinusoidal analysis. Sounds are resynthesized from the extracted sinusoidal

tracks and evaluated against the originals in terms of SER performance.

Table 3.1 shows performance results of MQ and STHR analysis against

the aforementioned dataset of musical tones and tone mixtures. It is evident

that the STHR sinusoidal analysis method generates a valid sinusoidal model

for real-world sounds, largely equivalent to traditional sinusoidal analysis.

Average performances are similar between the two competing techniques,

although STHR does show a larger standard deviation in its performance

(it occasionally produces representations that can be either far superior or

significantly worse that STFT-based methods). Example harmonic tracks of

a trombone tone for both an MQ and STHR sinusoidal analysis are shown

in Figure 3.8, reiterating that STHR analysis is capable of producing a valid

sinusoidal model.

It is important to emphasize that the simple analysis and resynthesis of

musical tones gives little additional insight into the functionality of STHR

Table 3.1: SER performance (average, standard deviation, minimum, and
maximum) of MQ and STHR sinusoidal analysis on real-world sounds.

SER MQ STHR
Avg. 20.68 23.97
Std. 0.768 4.25
Min 18.26 14.04
Max 22.58 33.58
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Figure 3.8: Harmonic tracks for a monophonic C4-trombone tone derived
from (a) MQ and (b) STHR sinusoidal analyses.

analysis other than that it is capable of producing valid sinusoidal models.

An ultimate goal of the analysis system is to resolve and track closely spaced

harmonics. A resynthesis of a sound mixture does little to capture whether

two closely spaced individual tracks are actually resolved (or are merged

into a single track as is often the case with STFT-based methods). It is

also unclear whether harmonics are tracked properly in the case that closely

spaced sinusoids are resolved at the frame level by matrix pencil estimation.

Because the tracker is tied to continuity in amplitude, there exists the possi-

bility that, if two closely spaced harmonics are also close in amplitude, tracks

can incorrectly switch from tracking the partial of one source to another. In

an additive resynthesis of such a mixture, these behaviors will not be clearly

evident in the overall spectrogram from which the SER measure is derived.

Therefore, to truly evaluate tracking performance, experiments can be car-

ried out in the context of source separation. In such an application, errors

due to mistracking or track fusion will become more apparent. Such exper-
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iments are reserved for Chapter 5. It is generally true, however, that the

resynthesis of mixed signals produces poorer performance than the analysis

and synthesis of monophonic tones.

3.2.4 Harmonic collision detection

As an intermediate evaluation of the potential for STHR sinusoidal analysis

to resolve closely spaced partials, a harmonic collision detection experiment

is performed at the frame level. In this experiment, 1500 two-tone mixtures

are produced, drawn from the same set of instruments as those presented in

Section 3.2.3. The mixtures are produced from one-second segments of the

individual source tones. The segments are extracted from the one second

of audio immediately following the peak amplitude value of the tone (i.e.,

the segments are meant to represent the steady-state portion following the

attack).

Prior to mixing, an STFT is performed on each source segment. Peak

picking is performed on each frame of the resulting spectrograms to estimate

the locations of harmonics for each source at each frame. In addition, an

equivalent analysis is performed on the mixture. The produced line spectrum

of the mixture is compared to the individual source spectra. Cases where a

single peak is observed in the mixture and where prominent peaks exist at the

same locations in both individual sources are marked as harmonic collisions.

Observed harmonic peaks in the mixture that can only be attributed to

a single source are marked as uncollided harmonics. This markup of each

frame serves as ground-truth for the harmonic collision detection experiment.

The mixtures are only produced for three musical intervals, namely perfect

octaves, fourths, and fifths (500 of each interval). These intervals produce

relatively even balances among uncollided and collided harmonics.

STHR sinusoidal analysis is performed on the one-second two-tone mix-

tures. For every frame, the ground truth is compared to the active harmonic

tracks of the STHR analysis. There exist two distinct outcomes for each of

the harmonic types (collided and uncollided). For uncollided harmonics, if

only a single prominent track exists at that location in the STHR analysis, a

true negative (TN) is counted. If the STHR analysis reports multiple tracks

at the location of an uncollided harmonic, a false positive (FP) is counted.
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Figure 3.9: Example harmonic detection collision experiment for a perfect
fifth mixture. Individual source harmonics are shown in (a). The marked
up ground-truth derived from the mixture spectrum is shown in (b). The
STHR analysis with different outcome types for each type of harmonic is
shown in (c).

For collided harmonics, if two prominent tracks in the STHR analysis exist,

a true positive (TP) is counted. If only a single track exists at a collision,

a false negative (FN) is counted. Figure 3.9 shows an example of a mixture

of a tuba and French horn at a perfect fifth interval for a single frame. The

bottom plot shows the STHR analysis with the four possible outcomes (TP,

FN, FP, TN) highlighted.

Table 3.2 shows the true positive, false negative, false positive, and true

negative rates over the 1500 example dataset. STHR sinusoidal analysis

correctly detects collided harmonics 75.5% of the time, and misreports un-

collided harmonics as collided 16.3% of the time. Overall, these detection

rates show promise as collisions are correctly identified for roughly 3/4 of all
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Table 3.2: True postive rate (TPR), false negative rate (FNR), false
positive rate (FPR), and true negative rate (TNR) for a harmonic collision
detection experiment.

Collision Present Collision not Present
Collision Detected TPR = 75.5% FPR = 24.5%
Collision not Detected FNR = 16.3% TNR = 83.7%

occurrences.

Some reasons for the failure cases (false negatives and false positives) can

be explained by a deeper understanding of the analysis system and the na-

ture of real-world tones. While the direct matrix pencil method can resolve

arbitrarily closely spaced harmonics when no noise is present and when the

signal fits the model perfectly, these two criteria are not met with real-world

sounds. There is always either some form of noise or noise residual accom-

panying a real source’s harmonics, and there are deviations from the model

within each frame.

In the presence of noise, resolution of arbitrarily closely spaced harmonics

is not possible. If two harmonics are indeed very closely spaced in a noisy

signal, it is common for only a single pole to be extracted. In general, these

false negatives occur for lower harmonics. Consider a unison in which the

fundamental frequencies differ by 0.1 Hz. As harmonic number increases,

there is a larger separation between overlapping harmonics. By the tenth

harmonic, there is a 1 Hz separation, and by the twentieth harmonic there

is a 2 Hz separation. An observation of the STHR analyses of the mixtures

shows that false negatives do indeed occur most often for the first one or two

collisions.

Many of the false positives (reporting a collision when none exists) are

attributed to a deviation from the model that has, heretofore, been largely

unaddressed. Because the dataset contains tones with varying articulation

styles, instruments such as violin and oboe produce sounds containing vi-

brato (periodic frequency modulation). Therefore, within a single frame, the

frequencies of sinusoidal partials are not stationary. As shown by Badeau, a

stationary sinusoidal model does indeed support tones with frequency mod-

ulation [24]. However, the means by which non-stationary frequencies are

supported produce a somewhat unfortunate consequence in terms of colli-
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sion detection. Non-stationarity of frequency can be considered a form of

frequency modulation. It has long been known that the frequency modula-

tion of audio tones produces line spectra where additional partials appear

above and below the carrier frequency at multiples of the modulation fre-

quency [109]. The strength of these generated partials is governed by Bessel

functions that depend on the strength of the modulation (modulation index).

Therefore, a partial undergoing frequency modulation may produce a group

of poles. Within a single short time-frame, frequency modulation more re-

sembles a frequency chirp. Nevertheless, multiple poles are often extracted.

The propensity to extract multiple poles occurs most often for higher par-

tials, as the effective modulation index is increased. A peak modulation of

5 Hz at the fundamental will correspond to a 50 Hz peak modulation at the

tenth harmonic. Therefore for vibrato tones, multiple poles are often ex-

tracted for each harmonic, with higher harmonics having a greater tendency

to produces multiple pole estimates.

3.3 Summary and Discussion

This chapter presented a short-time high-resolution sinusoidal analysis sys-

tem. The analysis entails filtering a signal into sub-bands through the use of

a complex filter bank. Each sub-band is downsampled, and segmented into

overlapping frames. Direct matrix pencil sinusoidal analysis is performed

on each frame of each sub-band to extract local estimates of sinusoidal par-

tials. Regularization is performed on the least-squares estimation of sinu-

soidal amplitudes in each frame to reduce effects of numerical instability. A

regularization parameter was determined empirically using a small dataset.

A sinusoidal tracker that ensures continuity in both frequency and amplitude

is used to link sinusoidal estimates between frames to generate sinusoidal

tracks.

The STHR analysis system was evaluated against a range of input sounds

to test its ability to provide an accurate sinusoidal representation of musical

sounds. In the analysis and resynthesis of synthetic sounds, it was made

evident that the STHR system does not provide a perfect reconstruction of

tones that perfectly fit the underlying model used in matrix pencil estimation.

Nonetheless, the resulting representations were still very accurate. For real-
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world musical tones and mixtures, the analysis system showed it is capable

of producing valid sinusoidal representations largely equivalent to existing

Fourier transform based techniques.

A final experiment tested the STHR analysis system’s ability to resolve

and detect harmonic collisions. The harmonic collision detection experiment

highlighted some of the shortcomings of the STHR sinusoidal analysis sys-

tem. Those deficiencies that are largely attributed to background noise and

deviation from a fixed-frequency model are not easily addressed and persist

as the major weaknesses of the system. Nevertheless, the analysis method

still maintains a moderately good performance at detecting and resolving

overlapping partials. The focus for the remaining chapters in this work be-

comes: Can the STHR sinusoidal analysis system provide benefits for a range

of musical signal processing applications?
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CHAPTER 4

MULTIPLE FUNDAMENTAL
FREQUENCY ESTIMATION

This chapter presents a method for estimating the fundamental frequencies

of multiple sources in music mixtures based on high-resolution sinusoidal

analysis. An overview of multiple fundamental frequency estimation (multi-

f0) techniques was provided in Chapter 2. The overview highlighted that

harmonic collisions play an important role in multi-f0 estimation. Existing

methods for handling harmonic collisions in this context usually rely on al-

lowing multiple fundamental frequency hypotheses to share the energy of an

observed harmonic if the multiple hypotheses indicate that the harmonic is

collided. In iterative-cancellation estimation techniques, harmonic contribu-

tions are not fully canceled when a single f0 estimate is made. This allows

for the possibility that an observed partial can also be attributed to another

source whose f0 will be estimated in subsequent steps.

The ultimate goal of this chapter is to test whether high-resolution sinu-

soidal analysis can provide any benefit in frame-level estimation of the fun-

damental frequencies of mixed musical sources. Specifically, if collided har-

monics can be correctly resolved by STHR analysis, there is strong additional

evidence to support that a specific harmonic location should be attributed to

more than one source. The method proposed for estimating multiple funda-

mental frequencies in this chapter is rather näıve. The primary justification

for choosing a simplistic estimation method is to test the merits of the STHR

sinusoidal analysis system in its own right. If a rather complex system is used

to produce estimates from the STHR analysis, it is difficult to attribute which

aspect of the overall system (harmonic retrieval vs. fundamental frequency

estimation) is responsible for any performance gains. In other words, does

the system perform well because of the underlying high-resolution sinusoidal

representation, or does the system perform well due to robustness of the

f0-estimation method? By restricting the fundamental frequency estimation

portion of the overall system to work only on basic principles, the potential
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of STHR sinusoidal analysis is better evaluated.

This chapter is organized as follows. Section 4.1 introduces a cancel and

iterate approach to multi-f0 estimation. The presented method operates on

estimates of harmonic frequencies and amplitude present in a signal in short

time-frames. It is therefore applicable to harmonics retrieved using either

STHR sinusoidal analysis or by peak picking of the spectrogram. Section 4.2

presents two experiments. In the first experiment, only two-tone mixtures are

considered. The mixtures are produced for 13 intervals from perfect unison to

perfect octave (0 to 12 semitones). The second experiment considers higher

orders of polyphony and tests performance on two-, three-, and four-source

mixtures. The proposed multi-f0 method is tested using both STHR and

STFT derived harmonics. In addition, the performances are compared to a

current state-of-the-art system.

4.1 An Iterative-Cancellation Method for Multiple

Fundamental Frequency Estimation

The short-time high-resolution sinusoidal analysis system presented in Chap-

ter 3 generates estimates of the parameters of sinusoidal partials present in

a signal. It was shown in Section 3.2.4 that in approximately 75% of cases

where two harmonics effectively overlap, the STHR analysis system correctly

identified that multiple sinusoids were present. A multiple fundamental fre-

quency estimation system can potentially leverage this information to better

estimate the fundamental frequencies of multiple sources present in a sig-

nal. The iterative-cancellation techniques for multi-f0 analysis presented in

Section 2.4.2 are appealing in terms of both their efficiency and conceptual

simplicity. Assume that an analysis system has the ability to perfectly re-

solve harmonic collisions, and an iterative-cancellation technique is used to

estimate what fundamental frequencies are present at a given time based on

this hypothetical analysis system. In such a case, full cancellation of the

harmonics that can be attributed to a predominant f0 estimate is a valid ap-

proach. Because only a single harmonic at a given location can be attributed

to a single source, in the case of multiple closely spaced harmonics, only one

will be canceled. The residual will therefore maintain the other harmonics at

that general collided location, to be used in later iterations. This behavior is
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Figure 4.1: Block diagram of a cancel and iterate multiple fundamental
frequency estimation procedure.

the principle by which the multi-f0 system presented in this section operates.

Figure 4.1 shows a block diagram of an iterative-cancellation multi-f0 esti-

mation technique. The input spectrum is surveyed to see whether harmonics

of significant amplitude are present in the signal to produce a viable fun-

damental frequency estimate. This serves as the stopping criterion for the

iterative algorithm. If there are enough significant partials present in the

spectrum, the predominant f0 is estimated and harmonics of that f0 are can-

celed from the spectrum. The procedure is then repeated on the residual

spectrum. After enough iterations, there will not be enough evidence left in

the residual to support a f0 hypothesis, and the stopping criterion is met.

4.1.1 A fundamental frequency salience function

To evaluate a set of f0 hypotheses, some manner of scoring or weighting them

must be devised. The term salience is often used as a generic description of

such scoring methods to encompass the broad range of approaches that can

achieve such ends, ranging from probabilities (in probabilistic frameworks)

to simple scoring functions, measures, and metrics. An f0 estimate is made

when a hypothesis produces a (relatively) high salience. Therefore, the first
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step in the design of a multiple fundamental frequency estimator is the choice

of an appropriate salience function.

The chief characteristic of f0 salience functions is that they measure the

periodic, and thus harmonic, nature of pitched sources. As mentioned in

Section 2.4, regardless of the details of how periodicity or harmonicity is

measured, the measurement can often be conceptualized as some manner of

harmonic sieve or comb that operates in the frequency domain. In other

words, harmonics that reside at the expected harmonic locations of a f0

hypothesis are either selected or accentuated through the calculation of the

salience function. Therefore, a simple salience function can be calculated by

directly implementing such a comb or sieve in the frequency domain.

The proposed salience function operates directly on a frequency domain

representation in the following manner. First note that the type of fre-

quency domain representation used is that of a line spectrum (i.e. a group

of harmonic frequencies and amplitudes) as derived from harmonic retrieval

techniques such as the STHR sinusoidal analysis or peak picking of the spec-

trogram (as done in MQ analysis). In the case of STHR analysis, it is critical

that the sinusoidal tracking procedure is used prior to multi-f0 estimation,

as opposed to the pole estimates directly generated by the matrix pencil

method in each sub-band. Recall that the model order in each sub-band of

STHR analysis is usually overestimated, resulting in spurious signal poles.

Sinusoidal tracking serves to separate and prune spurious poles from those

that correspond to actual partials. Denote each of M currently active sinu-

soids in a given analysis frame Sm, m = 1, ..., M , and the functions f and

A the frequency and amplitude of the argument, respectively. All observed

harmonics form a set denoted Hall with M members. For each expected har-

monic location of a f0 hypothesis, the observed sinusoid that is closest to it

in frequency, and within a quarter tone (3% of frequency), is selected. The

selected harmonics form a subset of Hall, containing only partials that are

selected due to a f0 hypothesis. Denote this subset Hf0 and each member

Sk (the partial selected to serve as the kth harmonic of the f0 hypothesis).

Therefore, for all harmonic locations kf0 (the kth harmonic of the hypothe-
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sis), the set of selected partials Hf0 with elements Sk is defined as

Sk = argmin
Sm

|f(Sm)− kf0| for k = 1, ...,K

Hf0 = {Sk : |f(Sk)− kf0| < 0.03kf0}
(4.1)

The total number of harmonics, K, is chosen such that Kf0 is less than the

half sample rate. The subset Hf0 ⊆ Hall has K members.

The rudimentary selection procedure of Equation 4.1 has a relatively large

tolerance window of a quarter tone. To ensure that the selected sinusoidal

partial is indeed a viable harmonic, its amplitude is weighted by a (unnormal-

ized) Gaussian function centered on the hypothetical harmonic location. This

weighting of partial amplitude enforces a strong harmonicity on potential f0

estimates. If the sinusoidal partial is relatively close to the hypothetical har-

monic location, its amplitude is largely unaffected. However, if the selected

partial does not align well with the hypothetical harmonic location, it is

greatly penalized by the weighting function. The weighted, selected harmon-

ics are then summed to produce a salience score for the f0 hypothesis. The

salience function of a fundamental frequency hypothesis, denoted SAL(f0),

is calculated as

SAL(f0) =
∑

Sk∈Hf0

√
A(Sk)e

− (f(Sk)−kf0)
2

2σ2
k (4.2)

where the harmonic, Sk ∈ Hf0 , selected as the best match to a hypothetical

harmonic location, kf0, is defined as before in Equation 4.1. The square root

of the harmonic amplitudes prior to summation serves to compress the spec-

trum. The choice to compress the spectrum stems from the fact that many

instruments produce tones whose harmonics decay with harmonic number.

Compressing the spectrum accentuates higher harmonics so that they play

a role in the salience score. Summation of linear-scale and log-scale ampli-

tudes were also tested, but found to perform worse. The direct summing of

harmonic amplitudes follows closely from a technique proposed by Klapuri

[110].

The choice of a Gaussian weighting function to enforce strong harmonicity

is somewhat arbitrary. Any function that monotonically decreases from its

center and effectively vanishes at distances deemed too far from its center
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(b) Selected Harmonics and Comb (264 Hz)
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(c) Selected Harmonics and Comb (395 Hz)

Figure 4.2: Example salience calculation of a perfect fifth mixture. The
mixture spectrum is shown in (a). The selected harmonics and weighting
comb of the two true fundamental frequencies are shown in (b) and (c).
The salience function is shown in (d).

is suitable. The choice of the variance parameter, σ2
k, controls the effective

width of each “tooth” of the harmonic comb. Because frequency deviations

from a fundamental become more extreme with increasing harmonic num-

ber (due to the multiplicative effect of harmonic number and fundamental

frequency), σ2
k could be made to increase with increasing harmonic number,

k. In addition, inharmonicities in source spectra could be better accounted

for if σ2
k is made a function of k in such a manner. However, for the sake

of simplicity, the width of each component Gaussian is made to be fixed-

width. The standard deviation is set to σk = 15 Hz. Therefore, this salience

scoring method is best suited to spectra that do not show a large degree of

inharmonicity.

An example of salience calculation is presented in Figure 4.2. The source

mixture contains two tones a perfect fifth apart at fundamental frequencies of

264 Hz and 394 Hz. The harmonic selection procedure and weighting combs

are displayed for each of these two fundamentals. The resultant salience
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function, calculated on a 1 Hz search grid, is also displayed. In this particular

example, the top two saliences match the true fundamental frequencies.

4.1.2 Cancel and iterate procedure

The salience function described in the previous section details a method of

scoring and estimating the dominant fundamental frequency present in an

observed line spectrum. In order to estimate the fundamental frequencies

of other sources, the contributions of the dominant source’s harmonics must

be eliminated. The need for elimination stems from the fact that a domi-

nant f0 will also produce high saliences for its octaves and sub-octaves that

can dominate the saliences of other sources. The proposed system relies on

full cancellation of harmonics that are attributed to the highest salience f0

estimated in the current step. Full cancellation is an aggressive strategy.

However, the primary intent for this system is to operate off of harmonic es-

timates derived from short-time high-resolution sinusoidal analysis. If closely

spaced harmonics are resolved, full cancellation of one harmonic will leave

its close-by neighbors intact.

The first consideration in a fundamental frequency estimation procedure is

the granularity at which f0 hypotheses are tested. For instance, f0 hypotheses

could be tested on a 1 Hz resolution grid. However, doing so requires the

evaluation of thousands of salience functions to evaluate the entire pitch

range musical instruments are capable of. To greatly reduce the search space

in evaluating f0 hypotheses, candidates are drawn directly from the observed

spectrum. Each observed harmonic serves as a potential candidate and f0

hypothesis. Naturally, such a process does not account for the full scope of

human pitch perception where a missing fundamental in a harmonic spectrum

will still yield a percept of a tone at that fundamental. However, acoustic

instruments rarely produce spectra with altogether missing fundamentals

(greatly suppressed fundamentals in comparison with other harmonics are

common, however). The cancel and iterate approach is carried out as follows.

Step 1. Find the predominant fundamental frequency in the current input

spectrum. Denote the set of the M currently active, observed harmon-

ics Hall. Once again, denote the frequency of the sinusoid Sm ∈ Hall

as f(Sm) and its amplitude A(Sm). For m = 1, ..., M compute
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SAL(f(Sm)) as in Equation 4.2. The dominant f0 is chosen as the

Sm that maximizes SAL(f(Sm)). Denoting this predominant f0 as

fmax
0 , it is calculated as fmax

0 = argmax
f(Sm)

[SAL(f(Sm))]

Step 2. Calculate the stopping criterion. Calculate the root mean square

(RMS) of the harmonic amplitudes selected and assigned to fmax
0 .

These harmonics are the subset Hfmax
0
⊆ Hall defined in Equation

4.1. Calculate the RMS amplitude of predominant estimate A
fmax
0

RMS as

A
fmax
0

RMS =
√

1
K

∑
Sk∈Hfmax

0

A(Sk)2. If this is the first iteration of the al-

gorithm, set A1
RMS = A

fmax
0

RMS. If A
fmax
0

RMS > 0.01A1
RMS, return fmax

0 as

an estimated f0 and continue to Step 3. If the extracted fmax
0 does

not meet this criterion (40 dB less in RMS amplitude than the first,

predominant f0 estimate), stop.

Step 3. Cancel the selected harmonics attributed to fmax
0 . The set of all

M harmonics is Hall. The subset of K harmonics attributed to fmax
0

is Hfmax
0

. Remove this subset from the set of all harmonics as Hall ←
Hall −Hfmax

0
. There are M ←M −K residual harmonics. Go to Step

1.

Figure 4.3 provides an example of the cancel and iterate approach on

the same perfect fifth mixture used to demonstrate salience scoring. Each

source’s set of harmonics, Hf0 , is extracted and canceled to produce a residual

spectrum at each iteration of the algorithm. After two iterations of the

algorithm, any extracted f0 candidate does not meet the stopping criterion,

and the procedure is stopped.

An important behavior to note about the harmonic selection procedure

(used for salience scoring and cancellation) is that it selects harmonics based

solely on frequency proximity. In cases where two partials are closely spaced

(i.e., overlapped), it is possible for the selection procedure to select the wrong

partial (i.e., the harmonic of another source). Therefore, the true harmonic of

another source may be eliminated. However, because only a single partial is

eliminated, there still exists an observed partial at that harmonic location. In

other words, there exists the distinct possibility that the harmonic extraction

procedure can cause sources to “swap” harmonics.

As stated earlier, the presented multi-f0 estimation system operates under

the assumption that all partials in a musical mixture are perfectly resolved.
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Figure 4.3: Cancel and iterate approach in a perfect fifth mixture (262 and
392 Hz). The mixture spectrum is shown in (a). The extracted spectrum of
the first predominant f0 is shown in (b). The residual after the spectrum of
(b) is canceled is shown in (c). The spectrum of the second predominant f0
is shown in (d). The residual after the spectrum of (d) is canceled is shown
in (e).

The full cancellation of partials attributed to a predominant f0 estimate as-

sumes that if a collision exists at a harmonic location, there will be close-by

harmonics left in the residual. If collisions are not resolved, the cancellation

will remove evidence to support subsequent f0 hypotheses. Furthermore,

because the f0 hypotheses are drawn from the set of currently available par-

tials, there is the distinct possibility that a potential hypothesis is removed

altogether in a previous cancellation. The removal of a hypothesis due to

unresolved collisions represents a worst possible failure case. While the pro-

posed technique can easily be adapted to be more robust to such failures,

it provides a good opportunity to evaluate the ability of short-time high-

resolution sinusoidal analysis to resolve overlapping partials.

4.2 Experiments and Evaluation

The proposed multiple fundamental frequency estimation system is evaluated

against a set of musical tone mixtures with varying degrees of polyphony. The
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first set of experiments involves testing the system’s ability to correctly esti-

mate the fundamental frequencies present in two-tone mixtures. These two-

tone mixtures are constructed by mixing instrument tones at predetermined

musical intervals. To compare the representations produced by short-time

high-resolution sinusoidal analysis to the ones that would be similarly gener-

ated from the STFT, the fundamental frequency estimation system is tested

with these two different harmonic retrieval front-ends. Moreover, the multi-

f0 estimation system of Yeh [40] is used as a state-of-the-art benchmark for

comparison. The system of Yeh is the top performing system in the 2008

and 2009 iterations of the Music Information Retrieval Evaluation eXchange

(MIREX). In these evaluations, the 2009 version of Yeh’s frame-level estima-

tion algorithm is tested. The three methods (proposed system with STHR

front-end, proposed system with STFT front-end, and Yeh) are also evalu-

ated against a dataset of arbitrary two-, three-, and four-tone mixtures. For

the remainder of this chapter and presentation of the results, these multi-f0

systems will be referred to as STHR, STFT, and Yeh. Section 4.2.1 presents

the results of the known-interval two-tone evaluation. The test of broader

ranges of polyphony is found in Section 4.2.2.

4.2.1 Evaluation of two-tone mixtures at known intervals

A dataset of one-second mixtures is used to evaluate the multi-f0 estimation

systems. As in Section 3.2.3, the individual tones are drawn from 15 instru-

ment types derived from the RWC music instrument database. One-second

segments are extracted from the one second of audio immediately following

the peak amplitude value in each tone. Mixtures are produced by mixing one-

second segments such that the two fundamental frequencies of the individual

tones correspond to 13 base intervals (zero to twelve semitone separations).

The fundamental frequencies of each individual tone are verified (to ensure

that the supplied RWC metadata is correct) by using a monophonic pitch de-

tection algorithm [111]. Each interval has 1000 examples for a total of 13000

mixtures. Note that no compensation for differing amplitudes is performed

on the individual tone segments prior to mixing. This simulates real world

cases where mixtures are not guaranteed to be mixed at 0 dB ratios. Pitches

are estimated for every frame of the one-second mixture. All algorithms are
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Table 4.1: Multiple fundamental frequency estimation accuracies of
algorithms for two-tone mixtures at known musical intervals.

Interval STFT STHR Yeh
P1 0.491 0.629 0.618
m2 0.492 0.905 0.847
M2 0.617 0.937 0.813
m3 0.841 0.944 0.891
M3 0.885 0.943 0.923
P4 0.887 0.942 0.883
d5 0.882 0.938 0.921
P5 0.883 0.941 0.845
m6 0.883 0.948 0.905
M6 0.891 0.945 0.913
m7 0.891 0.941 0.910
M7 0.811 0.942 0.903
P8 0.549 0.800 0.856
Avg. 0.770 0.904 0.864
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Figure 4.4: Multiple fundamental frequency estimation accuracies of
algorithms for two-tone mixtures at known musical intervals.

set to use a 93 ms frame size with 87.5% overlap. The 93 ms frame size is

chosen to equate with settings commonly used by Yeh. All algorithms are

set to detect a maximum polyphony of two. However, as all algorithms have

stopping criteria, they can report a single f0.

Table 4.1 and Figure 4.4 show the frame-level fundamental frequency es-

timation accuracies for the three algorithms and each of the 13 tested inter-

vals. The ground-truth fundamental frequencies are quantized to the nearest

semitone in the equal-tempered scale. Likewise, algorithm outputs are also

quantized to the nearest note. Accuracy measures the proportion of funda-

mental frequency estimates that perfectly match the ground-truth. It is true
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that there can potentially be some pitch deviation within a note. However,

because the segments are drawn from steady-state portions of the source sig-

nals, and the average fundamental frequencies of each source segment are

verified using a monophonic pitch detector, the number of mis-annotated

frames is assumed to be small.

The proposed multi-f0 estimation algorithm using the short-time high-

resolution sinusoidal analysis front-end produces the best average perfor-

mance (0.904 accuracy). The algorithm of Yeh has an average accuracy of

0.864. It is important to note that this is a significantly higher error rate

than reported by Yeh in [40]. The degraded performance can be attributed

to a slightly different experimental setup. The underlying difference is that

the error rates reported by Yeh correspond to frame-level estimations where

each source is mixed at a 0 dB ratio to the other for every single frame. In

this experimental procedure, it is not uncommon for one source to be sig-

nificantly stronger than the other as within a one-second span. Some of the

source tones decay in amplitude at a faster rate than others. These measured

accuracy rates are not inconsistent with Yeh’s performance in MIREX 2009

for musical passages with two instruments. Furthermore, it is possible that

the algorithm submitted to MIREX 2009 by Yeh (and used in this evaluation)

is tuned to work on the types of musical mixtures used in the MIREX evalu-

ations. Finally, the proposed system with a STFT-based front-end achieves

an average accuracy of 0.770. This poor performance is expected, as the

aggressive cancellation strategy of the multi-f0 system does not interact well

when overlapping partials exist.

Significance testing is performed on the three systems to measure whether

or not the system performances differ in a statistically significant way. The

average performance of each system is measured for each audio mixture.

Each mixture is treated as a separate sample, for a total of 13000 samples.

The three different algorithms form three separate groups. To test statistical

significance, a one-way analysis of variance (ANOVA) test is run against the

13000 samples. The one-way ANOVA test indicates that there is a statisti-

cally significant difference in the performance of the algorithms (p < 0.001).

A subsequent Tukey-Kramer Honestly Significant Difference test (TK-HSD)

[112] (α = 0.05) shows that all algorithms perform significantly different from

one another. The TK-HSD comparison plot for the one-way ANOVA test is

shown in Figure 4.5. The comparison intervals shown in the figure do not
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Figure 4.5: TK-HSD comparison using one-way ANOVA of algorithms over
13000 two-tone mixtures.

overlap (disjoint), indicating that the algorithms are significantly different.

An additional statistical test is also performed directly on Table 4.1. For

this test, Friedman’s ANOVA test is chosen [113]. Friedman’s test is a non-

parametric test meaning that the samples do not need to be drawn from

some known distribution. With a sample size of only 13, a nonparametric

test is preferred because the normality requirement of standard ANOVA is

likely not met. The test operates based on performance rankings for each

sample. In this case, there are 13 samples, one for each interval. Once again,

Friedman’s test indicates that there exists a statistically significant difference

among the algorithms (p < 0.001). The subsequent TK-HSD test (α = 0.05),

however, indicates that only the STHR-based method is significantly differ-

ent from the STFT-based method and Yeh’s method. The TK-HSD result

for the Friedman’s test is shown in Figure 4.6.

Examination of the average performances of the algorithms for each musi-

cal interval provides some interesting insights. As expected, perfect unisons

(P1) and octaves (P8) present the most difficult mixtures. The STHR-based

algorithm and Yeh’s algorithm perform similarly for unison mixtures. Yeh’s

algorithm produces the best estimates for octave mixtures highlighting the

robustness of the algorithm to difficult mixtures. The failures of the STHR-

based system in these cases are largely attributed to false negatives of re-
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Figure 4.6: TK-HSD comparison using Friedman’s test of algorithms over
average performance on 13 musical intervals.

ported harmonic collisions in the first few harmonics. In other words, har-

monic collisions are not always resolved. When the collisions are not resolved,

potential f0 candidates are removed due to the full-cancellation strategy. For

unison and octave mixtures, the STFT-based method produces accuracies on

the order of 0.5. This is due to the fact that the cancellation of the predom-

inant f0 leaves no substantial residual for subsequent steps. Therefore, a

comparison of the STFT and STHR methods indicates that there are perfor-

mance gains attributed to STHR analysis. The minor second (m2) interval

(one semitone) also presents an interesting case in terms of the performance

of the STFT-based approach. For low pitches, a one semitone difference is a

relatively small separation in frequency. Therefore, low harmonics effectively

overlap in this case producing a high error rate in the STFT-based estima-

tions. However, for STHR analysis, these separations are large enough that

false negatives rarely occur in resolving these overlaps. Yeh’s algorithm shows

slight degradations in performance for perfect fourth (P4) and perfect fifth

(P5) intervals. These two intervals, aside from unisons and octaves, have the

highest proportion of overlapping partials.
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Table 4.2: Multiple fundamental frequency estimation accuracies of
algorithms for two-, three-, and four-tone mixtures.

Polyphony STFT STHR Yeh
2 0.848 0.869 0.868
3 0.761 0.830 0.871
4 0.662 0.780 0.840
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Figure 4.7: Multiple fundamental frequency estimation accuracies of
algorithms for two-, three-, and four-tone mixtures.

4.2.2 Evaluation of two-, three-, and four-tone mixtures

The multiple fundamental frequency estimation systems are further evaluated

to test their performances against varying degrees of polyphony. Mixtures

containing two, three, and four sources are constructed. Unlike the mixtures

produced in Section 4.2.1, the mixtures for this evaluation are produced by

randomly drawing tones from the dataset of 15 musical instruments. There-

fore, the mixtures are not constrained to contain any predetermined musical

intervals. The two-tone mixtures in this case are not restricted to be in the

same general pitch register allowing, for example, a mixture of a low tuba

tone with a high flute tone. A total of 3000 mixtures are produced with 1000

examples for each level of polyphony. The source segments are extracted

from the one second following the peak amplitude point of each component

tone, as before. The maximum polyphony present (two, three, or four) is

supplied to each of the systems. The same parameter settings (e.g. 93 ms

frame size) as Section 4.2.1 are used.

Table 4.2 and Figure 4.7 show the frame-level fundamental frequency es-

timation accuracies for the three algorithms and each of the three tested

degrees of polyphony. For random two-tone mixtures, all algorithms show
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Figure 4.8: TK-HSD comparison using one-way ANOVA of algorithms over
1000 two-tone (a), three-tone (b), and four-tone (c) mixtures. Each
individual plot is sorted by average performance.

similar performances. When the mixtures are produced randomly, and the

component tones are possibly at vastly different pitch registers, the STFT-

based system does not show as poor a performance as before for two-tone

mixtures (its previous poor average performance can largely be attributed

to unison and octave cases). With increasing polyphony, the system of Yeh

degrades in performance more gracefully than the other systems. The STFT-

based system is most strongly affected with increased polyphony. This degra-

dation demonstrates that the proposed multi-f0 estimation method is too ag-

gressive with its source cancellation policy, especially for harmonics retrieved

from STFT analysis. The STHR-based method does not show as strong a

performance decline as compared to the STFT-based method with increas-

ing polyphony. The better performance the STHR front-end suggests that

it produces a better representation than STFT-based harmonic retrieval in

this application.

Significance testing is performed to measure whether statistically signifi-

cant differences exist between the algorithms for each degree of polyphony.

A one-way ANOVA test is performed using the average performance on each

of the 1000 mixtures (for a given degree of polyphony) as a sample. Figure

4.8 shows the subsequent TK-HSD comparisons for each of the three poly-

phonies. For the random two-tone mixtures, the STHR-based system and

Yeh’s system do not differ significantly (overlapping comparison intervals).

For three and four-tone mixtures, all systems perform significantly differently,

with Yeh’s system consistently performing best, followed by the STHR-based

method and finally the STFT-based method.
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4.3 Summary and Discussion

This chapter presented a multiple fundamental frequency estimation system.

The system produces estimates of predominant fundamental frequencies at

the analysis-frame level. The estimates are based on the observed harmonic

frequencies and amplitudes produced by a harmonic retrieval or sinusoidal

analysis system within a given analysis frame. Therefore, the system is suit-

able for use with any analysis system that produces this form of line spectrum.

The system is designed to function under the assumption that the analysis

front-end is able to produce a perfect line spectrum, with all closely spaced

partials perfectly resolved. Under this assumption, a full-cancellation itera-

tive procedure is adopted. The fundamental frequency hypotheses are drawn

directly from the observed spectrum, with each observed partial serving as

a potential f0 hypothesis. When a predominant fundamental frequency es-

timate is made, all harmonics that can be attributed to it are completely

removed from the spectrum. The procedure is repeated on the residual spec-

trum until any f0 estimate that is made does not produce a harmonic spec-

trum that has sufficient energy. In other words, the procedure is stopped

when the residual contains no partials of significance.

The underlying assumption that an analysis front-end produces a perfectly

resolved line spectrum is intentional. This näıvety is included to test the abil-

ity of the short-time high-resolution sinusoidal analysis system of Chapter 3

to resolve harmonic collisions. The evaluation of this system can be con-

sidered an extension of the experiment conducted in Section 3.2.4 where a

collision detection is performed. In this case, the analysis system’s capability

to resolve harmonic collisions is tested in the context of a useful music signal

processing application.

Two experiments were conducted and presented in this chapter to evalu-

ate the STHR-based multiple fundamental frequency estimator. To provide

baselines, the proposed system was also tested with a STFT-based front-end

that produces the same type of line spectra that STHR sinusoidal analy-

sis produces. In addition, the evaluation of a state-of-the-art system was

included for comparison. In the first experiment, systems were evaluated

against two-tone mixtures created at known musical intervals. The STHR

analysis-based system produced the best overall performance, far outper-

forming the equivalent system using a STFT-based front-end. In the sec-
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ond experiment, higher degrees of polyphony were tested. For polyphonies

greater than two, the state-of-the-art system outperformed those presented

here. This is an expected result, as the fundamental frequency estimator

presented here operates under flawed assumptions. As the level of difficulty

increases, the weaknesses of this multi-f0 estimator become more apparent.

However, all things being equal in terms of f0 estimation, the STHR-based

front-end shows a less severe performance degradation than the same sys-

tem with a STFT-based front-end. This fact provides a strong indication

that there is merit and potential to STHR sinusoidal analysis and its abil-

ity to produce better and more accurate signal representations. Also, the

fact that the STHR-based method performs the best of all algorithms in the

case of difficult two-tone mixtures (drawn from the same octave) implies that

high-resolution analysis is a powerful technique.
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CHAPTER 5

SOURCE SEPARATION USING
COMPUTATIONAL AUDITORY SCENE

ANALYSIS

This chapter presents approaches to audio source separation based on short-

time high-resolution sinusoidal analyses. In previous chapters, STHR sinu-

soidal analysis was demonstrated to have the ability to extract the param-

eters of closely spaced sinusoids. This behavior is most strongly evident in

the harmonic collision detection experiment of Section 3.2.4 and the multi-

ple fundamental frequency estimation experiments of Chapter 4. However,

the astute observer would notice that in these previous experiments, what

is truly being evaluated is the ability of the STHR analysis to determine

the existence of multiple sinusoids at a given harmonic location, and not the

accuracy of the estimates of the sinusoidal parameters. In the case of the

multiple fundamental frequency estimation system, for example, it is largely

unimportant if the parameter estimates of a resolved partial are a few hertz

off in frequency or a few decibels off in amplitude. The harmonic detec-

tion collision experiment is also indifferent to the quality of the parameter

estimates. While the analysis/synthesis of single and mixed tones found in

Section 3.2.3 showed that STHR analysis produces good reproductions of

mixed signals, it is once again unclear what proportion of the overlapped

partials are truly resolved. While the accuracy of parameter estimates can

be deduced by direct comparison of the representation of a mixed signal to

those of the source signals, such an evaluation can also be performed in the

context of a potentially useful application, namely, source separation. Source

separation encompasses a broad range of techniques. The technique adopted

here is computational auditory scene analysis (CASA).

The basic principles of CASA were introduced in Section 2.5.2. With

a sinusoidal representation (as produced by sinusoidal tracking methods),

CASA aims to group sinusoidal partial tracks into the constituent sources of

a musical sound mixture. The grouping is achieved through a variety of cues

including, but not limited to, harmonicity and common fate of partial onsets,
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amplitudes, and frequencies. The harmonics constituting a group can then

be additively synthesized to produce a source estimate. This is the basic

principle of the CASA system presented here. Assuming that harmonics are

grouped correctly, the accuracy of extracted sinusoidal parameters can be

evaluated by comparing an estimated source to its corresponding unmixed

original. Note that the correctness of the partial grouping is also largely

dependent on the accuracy of the parameter estimates. This is due to the

fact that for closely spaced partials, amplitude and frequency trajectories of

the sinusoidal tracks serve as the main cues for grouping. Closely spaced

partials naturally have a high harmonic concordance to both sources that

share that harmonic location. Therefore, errors in both frequency and am-

plitude can cause trajectories that do not match well with others, leading

to grouping errors. Because the CASA based separations are dependent on

the accuracies for parameters of for grouping, and the signal-to-error ratio

of the resulting separation to the original is also directly dependent on pa-

rameter accuracy, source separation serves to evaluate the accuracy of STHR

sinusoidal analysis.

This chapter is organized as follows. Section 5.1 introduces the previously

outlined CASA system. In addition, an alternative interpretation of CASA

based on the sinusoidal tracks is also presented. The alternative system

operates under the premise that the end-goal for CASA is the extraction of

the ideal binary mask (IBM) for a source. This alternative system therefore

uses the partial groupings to build STFT separation masks for a source. Some

baseline masks are also covered to serve as a basis for comparison. Section

5.2 presents experimental results for these systems on audio mixtures.

5.1 CASA-Based Separations from Sinusoidal Tracks

and Baseline Systems

This section introduces two CASA source separation systems derived from

short-time high-resolution sinusoidal analyses. A method that groups sinu-

soidal tracks and produces source estimates is presented in Section 5.1.1. The

synthesis of groups of harmonic tracks using additive synthesis is discussed

in Section 5.1.2. An alternative system that builds binary time-frequency

masks derived from these groupings is presented in Section 5.1.2. Finally,
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Section 5.1.3 introduces baseline systems for comparison including ideal bi-

nary masks, harmonic masks, and their variants.

5.1.1 Grouping of sinusoidal tracks

The grouping of sinusoidal tracks first involves measuring their similarity to

one another. Tracks that have high similarity are grouped together. Simi-

larity scores among sinusoidal tracks can be generated in a variety of ways.

A common approach is to combine the scores produced by measuring sim-

ilarities across a variety of facets (e.g., harmonicity, common fate, etc.) to

produce a summary similarity score. Such an approach requires that proper

weights for each of the individual measures be determined to produce the best

performing summary similarity measure. Because such weighting schemes

can only be determined empirically and are not guaranteed to generalize

well, a multi-step approach is adopted here instead. Tracks are first grouped

based on a single cue, where groups are allowed to share tracks that are

mutually similar to them. Tie-breaking procedures are then performed on

shared tracks to uniquely assign them.

For pitched musical instrument tones, perhaps the most powerful of group-

ing cues is harmonicity or harmonic concordance. A measure of harmonic

concordance is found in Equation 2.33. In the case of musical mixtures,

most musical intervals produce spectra where some harmonic locations are

not interfered with by other sources and some are. For partials that are not

overlapped, the harmonic concordance measure is effective for uniquely as-

signing these tracks to groups. This unique assignment stems from the fact

that these unshared harmonics have a harmonic relationship only with the

partials belonging to their parent source. Partials that are overlapped will

have a high harmonic concordance with the harmonics of multiple sources.

These overlapping partials are initially assigned to all groups that have a high

harmonic concordance with them. The uniquely assigned (not overlapped)

harmonics of each group can then be used as a reference to assign the closely

spaced partials to individual groups. A tie-breaking procedure is performed

by measuring common frequency and amplitude modulation of an overlapped

partial to the (strongest) uniquely assigned partials of each group.

The step-by-step harmonic grouping procedure proceeds as follows. De-
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note the set of all observed time-varying sinusoids (tracks) Hall, with a total

of M individual sinusoids each denoted St
m for m = 1, ..., M , where t is

the time (frame) index. The frequency of track Sm at time t is f(St
m) and

its amplitude is A(St
m). The goal is to form disjoint subsets of Hall whose

members constitute the sinusoidal tracks for an estimated source. For the

sake of notational simplicity, assume that only two sources are present. De-

note the target groups (subsets) G1 and G2 with G1 ⊆ Hall, G2 ⊆ Hall, and

G1 ∩G2 = ⊘.

Step 1. Form the groups G1 and G2 from the set of all observed harmonics

Hall based on harmonic concordance. Form an M×M distance matrix,

Dh, of each track Sm ∈ Hall to all others using the harmonic concor-

dance distance of Equation 2.33. Denote this harmonic distance be-

tween two frequencies fi and fj as dh(fi, fj). The frequency of a given

sinusoidal track, Sm is expressed as f(Sm). Therefore the harmonic

distance between two sinusoidal tracks, Si and Sj is dh(f(Si), f(Sj))

Because the frequencies of each track are time varying, harmonic con-

cordance is measured on a frame-by-frame basis and integrated over the

time region that tracks simultaneously exist to produce the harmonic

distance between time-varying sinusoidal tracks. The frequency of a

track Sm at time-step t is expressed as St
m. The first and last frames

that two partials overlap are t1 and t2, respectively. Thus, each element

of the distance matrix Dh(i, j) is

Dh(i, j) =
1

t2 − t1 + 1

t2∑
t=t1

dh
(
f(St

i), f(S
t
j)
)

for i,j = 1, ...,M (5.1)

The assignment of tracks to groups involves thresholding the above dis-

tance matrix. However, reference tracks from which to form the target

groupings must be established. To do so, tracks that have no significant

close neighbors in frequency are identified. Such tracks are deemed to

be uncollided harmonics. The uncollided harmonics that have signif-

icant duration (due to proper and stable tracking) serve as reference

candidates. The candidates form a set of tracks, C. The mean am-

plitudes of the reference candidates are then measured. Candidates

with relatively high amplitude are selected to serve as references be-

cause it is expected that the extracted sinusoidal parameters are most
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accurate for significant partials. The candidate with highest mean am-

plitude is considered first. Assume that this highest mean amplitude

track has index k. An initial grouping G1 is formed by thresholding

the row of the distance matrix corresponding to track Sk. That is, all

track indices j are extracted such that D(k, j) < 0.03 (quarter-tone

tolerance). This operation forms the group G1. The elements of G1

that are also members of the candidate set C are removed from C.

That is, C ← C − C ∩ G1. The highest mean amplitude track of the

residual candidates C is then used to form the subsequent group G2.

Such a procedure can be iterated while groups with sufficient cardinal-

ity (number of elements) are formed to produce groups in mixtures of

more than two sources.

Step 2. For sinusoidal tracks that are initially assigned to more than one

group, disambiguate and uniquely assign them to individual groups.

The initial groupings G1 and G2 are bound to share partials if the

sound mixtures contain sources played at consonant musical intervals.

These overlapping partials, G1 ∩ G2, must be uniquely assigned to a

group. The disambiguation is performed by measuring the common fre-

quency modulation of Equation 2.30 of collided harmonics to uncollided

ones. While common amplitude modulation can be a powerful cue, it

is not used in this system for the following reasons: First, the estima-

tion of amplitudes during STHR sinusoidal analysis is a numerically

sensitive procedure. Therefore, the most egregious errors for param-

eter estimates are expected to be in the partial amplitudes. Second,

because harmonics are tied to a fundamental frequency, their frequency

trajectories are more likely to match well. Some instrument families

produce harmonics whose amplitude envelopes closely match. However,

common fate of harmonic amplitude envelopes is not universally true.

For example, the harmonics of brass instruments often have similarly

shaped amplitude envelopes, while instruments such as flute often have

harmonic amplitude envelopes that behave more chaotically, even dur-

ing steady-state portions of the tone. Thus, denote the set of shared

(overlapping) partials, O, where O = G1∩G2. Non-overlapped partials

for group G1 can be expressed as G1−O, and for group G2 as G2−O.

The frequency modulation similarity between two tracks Si and Sj is
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expressed as sf (f(Si), f(Sj)) as in Equation 2.30. Therefore, the group

assigned to some shared partial, Si ∈ O, is chosen to be the one that

maximizes a total frequency modulation similarity score. If there are L

potential groups, Gl, the track Si is assigned to the group that satisfies

argmax
Gl

∑
Sj∈Gl−O

Ā(Sj)∑
Sj∈Gl−O Ā(Sj)

sf (f(Si), f(Sj)) for l = 1, ...,L

(5.2)

where Ā(Sj) denotes the mean amplitude of track Sj. Weighting each

individual similarity score, sf
(
f(St

i), f(S
t
j)
)
, by the mean amplitude of

the track ensures that more weight is placed on stronger partials.

The preceding procedure serves to uniquely assign tracks into groups of

harmonics that are estimated to be attributed to individual sources. This

information can be used to subsequently synthesize the source estimates.

5.1.2 STHR-CASA with an sinusoidal additive synthesis
engine

The sinusoidal tracks of a group of harmonics can be synthesized by per-

forming sinusoidal additive synthesis. For mixed signals, the previous section

outlined a procedure to form harmonic groups that pertain to estimates of

individual sources. Therefore, sinusoidal additive synthesis is used on each

extracted group to synthesize a separated source. A sinusoidal oscillator is

used for each harmonic track of a group. The time-varying amplitudes and

frequencies of each harmonic track are used to drive each oscillator. The

outputs of the oscillators are then summed to produce the final synthesized

signal.

5.1.3 STHR-CASA with a binary mask synthesis engine

An alternative interpretation of the goal of auditory scene analysis is the

extraction of an ideal binary mask. With this end-goal in mind, a binary

time-frequency mask for a source estimate can be constructed based on the

sinusoidal tracks that constitute the source estimate. Binary masks operate

on time-frequency representations of the signal. For the sake of simplicity,
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and without loss of generality, assume that the time-frequency representation

used to operate on a mixed signal is a short-time Fourier transform. For a

group of harmonic tracks that constitute a source estimate, the time-varying

frequencies of the partials are easily translated to DFT bins. Therefore, the

time frequency points that correspond to the active tracks of an estimated

source in a given frame are assigned a value of “one” in a binary mask. Be-

cause a single DFT bin is rather narrow, the direct neighbors of the bin that

most closely matches the track frequency at a given time are also assigned a

value of “one.” In the case of overlapped partials, a “one” is assigned to the

mask corresponding to the group with the stronger partial at the shared lo-

cation. This effect mimics ideal binary masks which assign a time-frequency

point to a source that has local dominance. These masks (one for each set

of grouped harmonics) are then applied to the STFT of the mixed signal.

The masked time-frequency representation can then be synthesized using

overlap-add STFT synthesis to produce a synthesis of a source.

5.1.4 Baseline masks

As stated previously, if the end-goal of CASA is the extraction of ideal bi-

nary masks, then a source synthesis derived from an IBM serves as a perfor-

mance goal. However, the extraction of an IBM requires perfect knowledge

of the source signals. A mask that requires less (but still some) prior knowl-

edge of the source signals is a harmonic mask (HM). A harmonic mask is

generated from the known fundamental frequency trajectories of a source.

Time-frequency points that correspond to harmonic locations of the known

fundamental are allowed to pass in a harmonic mask. Note that for harmonic

masks, time-frequency points at harmonic collisions are shared among the in-

dividual source masks. The harmonic masks used here have a mask width of

five bins for each harmonic. That is, the bin that most closely matches the

expected harmonic location, and its two neighbors on either side, are given

a value of “one.” As a final baseline system, an ideal harmonic binary mask

is also used for a basis of comparison. Because the sinusoidal model that

STHR sinusoidal analysis operates under ignores the noise components of

signals, the IHBM is a restriction of the IBM to harmonic locations. Recall

that the IBM allocates all time-frequency points based on local dominance,
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including time-frequency regions that do not correspond to harmonic loca-

tions. It therefore also effectively separates the noise components of each

source signal. Thus the IHBM can be viewed as a performance goal of the

underlying sinusoidal model used to produce separations. The IHBM can be

constructed by simply taking the Hadamard (element-wise) product of the

ideal binary mask and harmonic mask of a source. Denoting an ideal binary

mask, MIBM , and a harmonic mask, MHM , the ideal harmonic binary mask

is therefore MIHBM = MIBM ◦MHM .

5.2 Experiments and Evaluation

A dataset of two-tone mixtures is used to evaluate the CASA-based source

separation systems. As in previous experiments, the individual tones are

drawn from 15 instrument types derived from the RWC music instrument

database. The mixtures are restricted to perfect fifths. Perfect fifths pro-

vide a good balance between collided and uncollided harmonics. While the

separation of octaves and unisons would be a desirable goal, such mixtures

are too difficult in this context. All partials of such mixtures are harmon-

ically concordant. Furthermore, although the mixtures of two tones may

seem like trivial examples by which to evaluate the systems, these mixtures

actually represent a very challenging case from a CASA perspective. Most

of the articulations of the different instrument types do not have a signifi-

cant amount of modulation. Furthermore, the simple mixing of individual

tones represents a case where two tones have a common onset (and usually a

common offset as well). Therefore, for octave or especially unison mixtures

there is not sufficient information to produce accurate separations. As a con-

cession, the next most difficult case, the perfect fifth, is used for evaluation.

In total, 2000 perfect fifth mixtures are produced. The basic parameters of

the STHR sinusoidal system are 46 ms frame size and 87.5% frame over-

lap. Both variants of STHR-based CASA are evaluated, namely the system

that uses additive synthesis as its separation engine and the system that

uses binary masks as its separation system. These systems are referred to as

STHR-AS and STHR-BM, respectively. Moreover, the separations produced

by the ideal binary mask (IBM), the ideal harmonic binary mask (IHBM),

and the harmonic mask (HM) are also evaluated for comparison purposes.
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Table 5.1: Average spectral to signal error ratios (SER) for five
CASA-based source separation systems and masks.

IBM IHBM HM STHR-AS STHR-BM
SER (dB) 17.34 17.34 12.44 13.01 14.63
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Figure 5.1: Average spectral to signal error ratios (SER) for five
CASA-based source separation systems and masks.

The performances are measured using the spectral signal-to-error ratio (SER)

measure of Equation 2.36

Table 5.1 and Figure 5.1 show the performances of each of the systems

on the set of 2000 mixtures. Restricting an ideal binary mask to pass only

harmonics has no net effect on performance. This is not unsurprising because

the individual tones are recorded in a relatively noise-free environment and

because many instruments do not produce a significant noise component.

The purely harmonic mask (which allows all harmonic collisions to pass to

all sources) is the worst performer. Both STHR-based systems fall between

these baselines in terms of performance.

As with the multiple fundamental frequency estimation experiments, a

significance test is performed to measure whether the systems differ in a sta-

tistically significant way. A one-way ANOVA test indicates that the systems

do indeed differ (p < 0.001). The follow-up Tukey-Kramer Honestly Signifi-

cantly Different test is performed. The TK-HSD plot is shown in Figure 5.2.

The post hoc test indicates that IBM and IHBM separation masks do not

differ significantly. All other systems have significant differences from one to

another. However, STHR-AS has a minimal performance gain over a simple

harmonic mask. While statistically significant, this performance gain is not
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Figure 5.2: TK-HSD comparison using one-way ANOVA of separation
systems.

of practical significance. The binary masks derived via the STHR sinusoidal

analyses do seem to produce some benefit to separation performance.

The failures (or rather, lack of benefit) of the additive synthesis based

separation system are a discouraging but not wholly unexpected result. Put

simply, the shortcomings of STHR sinusoidal analysis can be attributed to

three main factors. First, the amplitude and frequency estimates derived

from ESPRIT’s parameter estimation are not perfect for closely spaced par-

tials. In the resulting separations, errors in the estimated harmonic am-

plitudes for tracks contribute to the total overall error. Perhaps the most

significant of the shortcomings is that the tracking of closely spaced partials

is prone to failure. This largely stems from poor parameter estimates in

some frames of an analysis. These poor estimates can misguide sinusoidal

tracks and eventually cause them to break. The end result is that instead

of a well behaved track with long duration, a series of shorter-lived tracks

are often produced in its place. With the additive resynthesis, this track-

breaking behavior can cause severe artifacts. While there exist methods to
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Figure 5.3: An example of good performance in resolving collided
harmonics. The amplitude envelopes of the first two collided harmonics of a
mixture are shown for two sources. One source’s harmonics are drawn with
solid lines and the other’s with dotted lines. The original harmonic
amplitude envelopes are shown in (a). The resolved and grouped harmonic
amplitude envelopes are shown in (b).

address such behaviors in the synthesis step, such concessions were not made

in order to evaluate the performance of STHR-separation as is. Finally, as

with all bottom-up systems, the rather rudimentary grouping procedures

used here are prone to error propagation. Poor parameter estimates can lead

to wrongly assigned tracks and incorrect groupings. This is especially true

of broken tracks because they have short durations. Overlapped tracks are

compared to reference tracks only over the span of time they both occupy.

Short tracks produce less evidence upon which to base grouping decisions,

and can be susceptible to grouping errors.

Figure 5.3 provides an example of where the resolution and tracking of

overlapping partials produces reasonably accurate estimates. In this perfect

fifth mixture, the amplitude envelopes of the first two collided harmonics of

each source are shown. One source’s harmonic amplitude envelopes are drawn

with solid lines, and the other source’s harmonic amplitudes with dotted lines.

The left plot shows the amplitude envelopes extracted from the monophonic

source tones. The right subplot shows the grouped source estimates from the

mixture. In this case, the STHR sinusoidal analysis accurately resolved the

harmonics.

Figure 5.4 provides an example of where the STHR sinusoidal analysis

system produces estimates that are not quite as accurate as the previous

example case. Occasional (inaccurate) dips and peaks in the amplitude en-

velopes are evident. This case also shows an example of a broken track in the

decay portion of one of the harmonics. The attack and steady state portion
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Figure 5.4: An example of satisfactory performance in resolving collided
harmonics. The amplitude envelopes of the first two collided harmonics of a
mixture are shown for two sources. One source’s harmonics are drawn with
solid lines and the other’s with dotted lines. The original harmonic
amplitude envelopes are shown in (a). The resolved and grouped harmonic
amplitude envelopes are shown in (b).
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Figure 5.5: An example of poor performance in resolving collided
harmonics. The amplitude envelopes of the first two collided harmonics of a
mixture are shown for two sources. One source’s harmonics are drawn with
solid lines and the other’s with dotted lines. The original harmonic
amplitude envelopes are shown in (a). The resolved and grouped harmonic
amplitude envelopes are shown in (b).

of this harmonic are captured in one track. However, near the beginning of

the decay portion of the harmonic, a separate track forms that encompasses

the decay. In this case, the system was fortunate enough to correctly group

this short track.

Figure 5.5 provides an example of a near catastrophic failure in terms of

parameter estimate accuracy and the successful tracking of partials. A series

of shorter-lived tracks with wildly behaving amplitude envelopes are formed.

Cases such as these drive average performance down, and negate any net

benefit drawn from the previous two cases. The sinusoidal additive synthesis

of the sinusoidal tracks shown in this figure produces more artifacts than
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benefits.

Despite the potential for occasional failure, if short-time high-resolution

sinusoidal analysis is viewed as a means to identify harmonic collisions, and

approximate their parameters, performance gains can be made. Although the

actual amplitude estimates of partials of closely-spaced partials may be prone

to some error, it is often the case that the dominant partial will still produce a

dominant amplitude estimate. In this sense, STHR-based sinusoidal analysis

can be used to derive a binary mask that more closely resembles the ideal

binary mask. It is this effect that allows a binary mask derived from STHR

analysis to produce a performance gain.

5.3 Summary and Discussion

This chapter presented methods for CASA-based source separations derived

from short-time high-resolution sinusoidal analyses. The partial tracks gen-

erated by the analysis system undergo a grouping procedure to form repre-

sentations of source estimates. The groupings are formed based on shared

harmonic relationships and the frequency trajectories of the tracks. Two

methods of generating separated source signals from these groups were pre-

sented. One method relies on simple additive synthesis of the partials be-

longing to a group. The other method aims to derive binary masks for each

source from the groupings based on local dominance of its tracks over the

tracks of other groups.

To evaluate the performances of the systems, 2000 perfect fifth mixtures

were produced. Separated source estimates were then synthesized and com-

pared to the original component tones. In addition, a series of baseline

systems including ideal binary masks and harmonic masks were evaluated.

The additive synthesis-driven separation system showed no real performance

gain over a simple harmonic mask. Errors in parameter estimates, difficul-

ties in tracking closely spaced partials, and potential misgroupings of partials

all contribute to errors in this form of separation. When all of these errors

are accumulated, there is a zero net gain in (average) performance. How-

ever, the separation system that forms binary masks from STHR analyses

does increase separation performance. In this case, errors in the estimated

amplitudes of partial tracks do not contribute directly to the synthesis of a
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separated source. Therefore, STHR sinusoidal analysis can be used to some

benefit in the context of CASA-based source separation.
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CHAPTER 6

CONCLUSIONS

6.1 Summary and Conclusions

This thesis has explored the potential of signal subspace-based sinusoidal

parameter estimation techniques to resolve the parameters of sinusoids that

are closely spaced in frequency (i.e., harmonic collisions) in music signals.

Before directly examining and establishing the techniques needed to evalu-

ate this potential (if any), this work first aimed to quantify how prevalent

harmonic collisions are, or can be, in music. Such a quantification establishes

whether or not these harmonic collisions are frequent enough to warrant such

attention in the first place. The prevalence of these collided harmonics was

explored by analyzing symbolic music information of classical music pieces.

In this small dataset, it was found that, on average, approximately 50% of

a single source’s nontrivial time-frequency points were interfered with by

other sources. Such a proportion serves as a strong indicator that harmonic

collisions do indeed play a large role in music mixtures.

Chapter 3 established a sinusoidal analysis system built upon signal subspace-

based sinusoidal parameter estimators, namely the direct matrix pencil, or

ESPRIT, method. To analyze time-varying signals, estimates are performed

on short time-frames of the signal. Because of the computational complexity

of the sinusoidal estimator, the signal is also divided into sub-bands in order

to reduce computational cost. Therefore, for each frame of each sub-band of

a signal, ESPRIT estimation is performed to extract the sinusoidal parame-

ters therein. A sinusoidal tracker was presented that produces linkages of the

sinusoidal estimates at each time step (frame) to produce sinusoidal tracks.

The performance of the analysis system was evaluated to see whether or not

it is capable of producing a valid sinusoidal representation. To do so, signals

were synthesized from their representations and compared to the originals.
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It was found that the presented analysis system does indeed produce a sinu-

soidal representation that performs well in comparison to existing techniques,

namely those that derive sinusoidal tracks from short-time Fourier transforms

(STFT). Finally, the analysis system was evaluated on a set of two-tone mix-

tures to test its ability to identify if multiple collided sinusoids are present

in music mixtures that are otherwise ambiguous through direct inspection

of the spectrum. It was found that in cases where harmonic collisions ex-

isted, approximately 75% of the time the parameters of two nontrivial and

non-spurious sinusoids were estimated. However, due to limitations of the

underlying sinusoidal model used by ESPRIT, the system also produced false

estimates of multiple sinusoids being present in cases where there were not

roughly 16% of the time. These collision false positives are largely attributed

to the time-varying frequencies of real-world musical source harmonics.

Chapter 4 presented a multiple fundamental frequency estimation tech-

nique suited to the sinusoidal representation that the short-time high-resolution

(STHR) sinusoidal analysis system produces. The fundamental frequency

estimation system adopts a cancel-and-iterate strategy to estimate the fun-

damental frequencies of multiple sources. A method of scoring a funda-

mental frequency hypothesis was presented. The predominant fundamental

frequency is chosen such that it is the one with a maximum score, or salience.

This system uses an aggressive strategy of fully canceling the harmonics of

an estimated predominant fundamental frequency in the observed sinusoidal

spectrum. Furthermore, to reduce the search space of fundamental frequency

hypotheses, the hypotheses are drawn directly from the observed spectrum.

These design decisions were made based on the principle that if the STHR

sinusoidal analysis perfectly resolves harmonic collisions, no significant effect

would be made on the performance of the system even with such aggressive

policies. Although these decisions can be considered somewhat näıve, or at

the very least, overly optimistic, they serve to provide an analysis of the

potential of STHR sinusoidal analysis in this application context.

The experimental evaluations of the multiple fundamental frequency esti-

mation system validated the potential benefits of STHR sinusoidal analysis

in this application domain. To form a basis of comparison, the proposed

multiple fundamental frequency estimation technique was also used with a

sinusoidal analysis front-end that derives its sinusoidal parameter estimates

from the STFT spectrum. In addition, a current state-of-the-art system was
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used for comparison. The proposed multi-f0 system with a STHR sinusoidal

analysis front-end outperformed all others for two-tone musical mixtures at

known musical intervals. The proposed system did, however, show a more

rapid performance for increasing degrees of polyphony than the state-of-the-

art system. Nevertheless, the system that used STHR-derived sinusoidal

estimates far outperformed the same system using STFT-derived sinusoidal

estimates.

Chapter 5 presented a music source separation method inspired by compu-

tational auditory scene analysis (CASA). The system uses grouping cues to

group observed sinusoidal tracks into estimates of sources. Two subsequent

synthesis methods were then presented. In one method, a simple additive

synthesis of the harmonic groups is performed. If harmonics are correctly

resolved and correctly grouped, such a system should produce a source syn-

thesis with very little interference from other sources. The other synthesis

method instead uses the sinusoidal representation to derive a time-frequency

binary mask. This derived mask is then applied to the corresponding time-

frequency representation of the mixture signal. In this case, there will still

be interference from other sources in the separated signal. Time-frequency

points are allocated based on local dominance of a given source. Therefore,

this approach has the potential to more closely resemble an ideal binary mask

if no information of the individual sources is known a priori.

The sinusoidal additive synthesis-based separation scheme showed no prac-

tical average performance gain over a simple harmonic mask applied to the

mixed signal. The harmonic mask is one that simply allows all harmonics of

a known fundamental to pass, and therefore makes no concessions for har-

monic collisions. The lack of average performance gain can be attributed to

a propagation of failures in the building and grouping of sinusoidal tracks. If

poor estimates of sinusoidal parameters are made, even within a short span

of time, sinusoidal tracks are prone to breaking. Instead of a well-behaved

long-duration sinusoidal track, such harmonics are represented as a series of

shorter tracks. In the resynthesis, this effect causes noticeable artifacts that

largely cause any benefit of resolving closely-spaced partials to be negated.

Moreover, the least-squares estimation of closely spaced harmonic ampli-

tudes was established to be a sensitive procedure. Therefore the amplitude

estimates of partials are prone to some error even if correctly tracked, also

contributing to overall errors. The binary mask derived from the STHR sinu-
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soidal analysis did produce some performance gains over a harmonic mask,

however.

The series of experiments that were explored throughout this thesis, and

discussed here, allow for some of the following conclusions to be drawn. The

short-time high-resolution sinusoidal analysis system presented in this work

does have the potential to increase performance in music signal processing

applications. The most important attribute of the analysis system is that

in many cases where collided harmonics exist in music mixtures, the system

correctly identifies the fact that multiple sinusoids are present. With this

knowledge, strong additional evidence can be used by music processing ap-

plications to deal with the fact that a given time-frequency region carries the

contribution of more than one source. If the end goal of a STHR sinusoidal

analysis is perfectly resolved and tracked sinusoids with near-perfect parame-

ter estimates, the current system has a series of short comings. Many of these

short comings simply stem from the fact that subspace-based parameter es-

timators are not perfect, especially in the sense that any real-world signal is

corrupted with some amount of noise, and deviations from a fixed-frequency

model constitute a form of model noise. Because sinusoidal tracks are built

from frame-based estimates, this bottom-up procedure is error prone if the

estimates themselves have errors. However, even though parameter estimates

are not wholly accurate for partials that are closely spaced in frequency, the

evidence they provide can indeed be of some benefit.

6.2 Future Research Directions

The work presented in this thesis allows for ongoing research in this field.

One of two obvious research directions is to improve the currently proposed

analysis system. Another direction is to improve the example applications

presented in this work, and to develop more applications that can potentially

leverage the additional information STHR sinusoidal analysis can currently

provide.

It has already been discussed that the current STHR sinusoidal analysis

system suffers from low-level parameter estimates that are sometimes error-

prone. The propagation of these errors has a strong influence on the system

as a whole. Therefore, a more robust tracking procedure could be of great
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benefit. The tracking method in this thesis works on relatively simple prin-

ciples, and increasing its performance could be of great benefit. In terms of

frame-level parameter estimates, there is little that can be done if the pole

estimation portion of ESPRIT produces poor estimates of the frequencies

and damping factors of the poles. However, there is the potential to make

gains if estimation of amplitudes is one of the main culprits in less-than-ideal

performance. In Chapter 3, the numerically sensitive least-squares procedure

was addressed by using the most basic form of regularization (minimizing the

l2-norm of the solution). Because parameters are estimated over overlapping

analysis frames, the extracted parameters of any given frame should be sim-

ilar to the parameters of the frame preceding it. Therefore the extracted

parameters of a preceding frame can serve as an estimate of the parameters

in the current frame. Regularization can be used in this case to minimize

not only the solution norm, but also the norm of the difference between a

solution and its estimate. Such a system would enforce a sort of temporal

smoothness on sinusoidal amplitude envelopes, and perhaps make tracks less

prone to breakages. Furthermore, the Tikhonov matrix used in regularization

need not be restricted to the identity matrix. If, for instance, a first-order

difference operator is used, the favored solution will be smooth. A smooth

solution in this case corresponds to one with a smooth spectral envelope.

Placing these additional constraints on the regularization are just an exam-

ple of a possible direction to further improve the system. In fact, examining

regularization methods for least-squares estimation of harmonic amplitudes

has ramifications in any case where the amplitudes of partials that are closely

spaced in frequency need to be resolved, and good estimates of the partial

frequencies exist. The frequency estimates of partials could, for example, be

deduced if source fundamental frequencies are known.

The exploration of benefits of STHR sinusoidal analysis were made most

evident in the case of multiple fundamental frequency estimation. This ap-

plication area seems to be one that could be fruitful. The multi-f0 system

used in this work has on many occasions been said to work in a very basic

way. Most current state-of-the-art methods operate on a more solid foun-

dation to produce far more robust estimators. The STHR analysis system

presented in this work, used as a front-end in combination with the funda-

mental frequency estimation procedure back-ends of more robust systems,

seems natural. While the CASA-inspired separations introduced in this the-
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sis were only moderately fruitful, once again, STHR sinusoidal analysis could

potentially aid as a front-end in other source separation methodologies. The

fact that STHR sinusoidal analysis can identify corrupted time-frequency

regions has potential applications in polyphonic musical instrument identifi-

cation as well. If instrument classifiers operate on harmonic amplitudes, as

they often do, STHR analysis at the very least can help guide a classifier by

indicating which harmonic locations should be treated as missing data. It is

not unlikely that the parameters estimated by the system in its current state

(even if they have occasional errors) can be used directly by such classifiers

for some benefit. In summary, this thesis has shown there is some merit to

subspace-based sinusoidal analysis of music signals. As such, a large number

of music signal processing applications can be rethought to include the ad-

ditional information such analysis systems can provide. As is the nature of

all research, the line of thought presented in this thesis need not end here.
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