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ABSTRACT

The world is going wireless, and the availability of high-speed ubiquitous wireless

connectivity is being taken for granted. Along with high bandwidth consuming

applications such as high-definition video, mobile devices such as smartphones

and tablets are becoming omnipresent. The legacy wireless systems are not

designed to meet such an exponential growth in the demand for wireless con-

nectivity. To meet both short- and long-term demands, we need to develop

methods to maximize the spectral efficiency of existing wireless systems, and

also understand the fundamental limits of various architectures to guide the

design of future wireless networks.

Breaking the interference barrier is an important step in achieving higher

throughput in both cellular and ad-hoc wireless networks. Towards this end,

there has been a renewed interest in information-theoretic studies of Gaussian

interference channels in recent years. The technique used by almost all legacy

systems to handle interference in wireless networks is to separate the users

signals as much as possible using the available time, frequency and spatial di-

mensions, and then to treat the residual interference as noise. We refer to

this technique as simply treating interference as noise. In the first part of the

dissertation, we consider the following two problems: (1) Suppose we restrict

the strategy to treating interference as noise, then what is the best achievable

sum-rate? (2) How sub-optimal is this strategy compared to the best possi-

ble strategy? Both of these problems have been widely studied for over three

decades, and yet they remain open. We solve both of these problems under

certain conditions on the channel parameters which are satisfied when the in-

terference levels are low compared to the signal levels. In such a low interference

regime, we show that the best sum-rate achievable with treating interference as

noise is a solution to a convex maxmin optimization problem, and therefore

the optimal transmit strategies and the corresponding best sum-rate can be

efficiently computed using standard convex optimization algorithms. We also

show that the corresponding best sum-rate is indeed equal to the sum capacity,

thus proving that treating interference as noise is the best strategy in the low

interference regime.

In the second part of the dissertation, we obtain insights into the problem

of interference channel with coordinated multi-point (CoMP) transmission and
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reception, where the transmitters cooperate to jointly transmit the messages,

and the receivers cooperate to jointly receive the messages. The advanced cellu-

lar systems such as LTE-Advanced are likely to use CoMP as the physical layer

interference management technique to enhance the capacity. Since determining

the exact capacity of wireless systems is a difficult problem, often the coarser

metric of degrees of freedom (DoF) is used to obtain first-order insights at high

SNRs. We provide some insights into the benefits of CoMP by studying the DoF

of interference channel with CoMP transmission and reception as a function of

the transmit and receive cooperation orders.
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CHAPTER 1

INTRODUCTION

The demand for wireless broadband services is set to explode in the next few

years. Along with high bandwidth consuming applications such as high-definition

video, mobile devices such as smartphones and tablets are becoming omnipresent.

In fact, according to the Cisco Visual Networking Index (VNI) forecast [1], the

global mobile traffic grew 2.6-fold in 2010, nearly tripling for the third time in

a row starting from 2008, and is expected to increase by 26-fold by 2015. These

numbers pose a great challenge to the communication engineer who is respon-

sible for designing the wireless systems. Since the radio frequency spectrum is

a scarce and expensive resource, the emphasis is on building efficient wireless

networks that can extract as much throughput as the physical wireless channel

can offer. Interference is identified as one of the major bottlenecks limiting the

throughput in a wireless system. Unlike the wired medium, the broadcast and

multiple-access nature of the wireless medium ensures that every transmitter

is heard by every neighboring receiver. The signal transmitted by a user is

interference to all the neighboring users who operate on the same frequency

spectrum. Since our objective is to support large numbers of users while pro-

viding the highest possible data rates using limited spectrum, it is imperative

that we understand the best ways to handle interference in wireless networks.

1.1 Interference Management Techniques

1.1.1 Treating Interference as Noise

Historically speaking, communication engineers first studied the problem of

communication through a wired medium where the capacity is limited by the

thermal noise. Shannon, in his celebrated paper [2], established the fundamental

limits of communication in the presence of noise. In the subsequent years, re-

searchers have understood how to design good practical codes that achieve data

rates close to the the capacity promised by Shannon for the point-to-point ad-

ditive white Gaussian noise (AWGN) channel. With appropriate modifications

these point-to-point codes can also be used to communicate in the presence of

interference if the interference signal is treated as just noise. Thus emerged a

natural and most popular interference management technique – treat interfer-
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ence as noise while taking care to ensure that the level of interference is small

compared to the signal level, by orthogonalizing the adjacent users. Typically,

orthogonalization is achieved by scheduling the adjacent users in different re-

source units, where a resource unit denotes a square block in the two-dimensional

grid with time and frequency as its axes. The advent of multiple-antenna, known

as multiple-input multiple-output (MIMO), technology added an additional di-

mension to the notion of resource unit – the adjacent users can now be separated

in space by appropriately choosing the transmit and receive beams along which

the antenna arrays transmit and receive signals.

1.1.2 Partial Interference Cancellation

Unlike thermal noise generated by nature, interference has a definite structure

since it is generated by other users. In general, the receivers can exploit this

structure to decrease the uncertainty and thus achieve higher data rates. A

canonical example that demonstrates the scenario where treating interference

as noise is not a good strategy is pointed out by Carleial in [3]. Consider a

scenario where two users share a wireless channel such that the transmitter of

each user is close to the receiver of the other user resulting in a very strong

interference setting. If the interference level is sufficiently strong compared to

the signal level, then interference can be completely decoded while treating

the desired signal as noise. Once the interference is perfectly decoded, the

receivers can subtract the interference and achieve the same performance as if

there was no interference. Even if the interference is not very strong, the idea of

decoding a part of the interference and subtracting it from the received signal

to partially cancel interference can still be applied. The Han-Kobayashi scheme

[4] for the two-user interference channel is one such example, which is known to

outperform treating interference as noise in the settings where interference level

is comparable to the signal level.

1.1.3 Structured Codes

Shannon introduced the technique of random coding to prove that any rate less

than capacity is achievable for the AWGN channel. It is not clear if the random

coding technique is sufficient to determine the fundamental limits of commu-

nication in the presence of interference. Several researchers have considered

using structured codes, in particular lattice codes, for the interference channels

[5, 6, 7, 8, 9].
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1.2 Sum-Rate with Treating Interference as Noise

Among all the interference management techniques discussed so far, treating in-

terference as noise is the most popular and widely used technique for two reasons.

Firstly, treating interference as noise is a low complexity strategy, and we have

a good understanding of how to design practical point-to-point codes to achieve

rates close to those promised by information-theoretic analyses. Secondly, it

is not clear if the advanced techniques can outperform treating interference as

noise in large systems such as cellular networks. For these reasons, determining

the best achievable sum-rate with treating interference as noise is an important

problem.

1.2.1 Nonconvex Optimization Problem

We consider the problem of determining the best achievable sum-rate with the

transmitters using Gaussian inputs, and the receivers treating interference as

noise. For any fixed transmit strategy, i.e., fixed transmit covariance matrices,

the optimization problem becomes decoupled and each receiver can focus on

maximizing its own rate since its action does not affect the performance at

other receivers. We can exactly determine the receiver strategies for any fixed

transmit strategy. Therefore, the problem boils down to determining the best

transmit strategy that maximizes the achievable sum-rate. This problem has

been widely studied, and yet it remains a challenging open problem to date,

mainly due to interference. Interference not only limits performance of wireless

networks, but it also makes the mathematical analysis difficult in a fundamental

fashion. The achievable sum-rate is a concave function if there is no interference,

leading to nice closed-form algorithms such as the water-filling algorithm for

point-to-point channels. With interference, however, this nice property may not

hold true, which makes the nonconvex optimization problem of determining the

best sum-rate extremely difficult to solve. Several iterative algorithms, including

the water-filling algorithm [10, 11], the gradient projection algorithm [12], and

the interference pricing algorithm [13], have been proposed to find good lower

bounds to the best achievable sum-rate. Not much can be said about the global

optimality of the solutions provided by these algorithms due to the nonconvex

nature of the optimization problem.

1.2.2 Interference Alignment and Degrees of Freedom

Recently, there has been renewed excitement about determining the best sum-

rate, resulting in many new algorithms [14, 15], including the Min-Leakage

algorithm and the Max-SINR algorithm. Since determining the best sum-rate

exactly is a difficult optimization problem, these algorithms aim at maximizing

a coarser metric called degrees of freedom (DoF). The DoF, also known as the
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multiplexing gain, is an asymptotic quantity that captures the behavior of the

sum-rate at high SNRs. Roughly speaking, an algorithm is said to achieve dΣ

number of DoF if the achievable sum-rate is of the order Ω(dΣ log SNR) at high

SNRs. The high SNR analysis makes sense for the interference channels because

in the other extreme of low SNRs, the effect of interference can be ignored since

the interference level is negligible compared to the noise level, and we already

have a good understanding of communication in the presence of noise.

The primary driving force behind all these algorithms is the new idea called

interference alignment introduced in [16, 17]. Interference alignment refers to

the concept of aligning interference from multiple interferers in order to ensure

that the total interference occupies fewer dimensions, leaving more dimensions

for the signal. Since the DoF metric counts only the number of dimensions, and

does not depend on how well the signal space is separated from the interference

space, the algorithms inspired by interference alignment are observed to achieve

the best DoF. The algorithms such as Max-SINR that approximate the standard

water-filling algorithm at low SNRs and the interference alignment algorithm

at high SNRs, are observed to perform well even at moderate SNRs.

1.2.3 Convex Relaxation

In this dissertation, we consider the problem of determining the best achiev-

able sum-rate exactly. Since the main difficulty is the nonconvex nature of the

optimization problem, we upper-bound the achievable sum-rate by a concave

function, and solve the resulting convex optimization problem to obtain an up-

per bound to the best achievable sum-rate. We also obtain a lower bound by

evaluating the sum-rate function at the transmit strategy given by the global

optimal solution to the relaxed convex optimization problem. Since the sum-

rate function is concave if the interference levels are exactly equal to zero, there

should exist a concave function that is very close to the sum-rate function when

the interference levels are nonzero but very close to zero. Thus, intuitively

speaking, the convex relaxation approach should yield good upper and lower

bounds if the interference levels are small compared to the signal levels. Amaz-

ingly, the upper bound exactly matches the lower bound if the interference levels

are low enough, thus leading to an exact characterization of the best achievable

sum-rate in a low interference regime. Since the upper bound and lower bounds

are obtained by solving a convex optimization problem, we can even derive the

corresponding necessary and sufficient conditions for the bounds to coincide.

1.2.4 Sum Capacity in Low Interference Regime

Among the known interference management techniques, treating interference

as noise is attractive for many reasons, and hence we studied the problem of

determining the best achievable sum-rate with treating interference as noise.

4



We now ask how sub-optimal the technique of treating interference as noise

is compared to the best technique. Intuitively speaking, treating interference

as noise should be close to optimal when the interference levels are low. The

reason is that for any advanced technique to perform better than the treating

interference as noise, the receivers should be able to exploit the structure in

interference, and it should be difficult for the receivers to explore the structure

in interference when the interference levels are low compared to the signal levels.

Interestingly, we show that in the low interference regime, not only is treating

interference as noise close to optimal, but it is indeed the optimal strategy. We

prove this by showing that the convex relaxation upper bound is fundamental

in the sense that the upper bound obtained by the convex relaxation technique

is actually an upper bound to the sum capacity. Therefore, we have that, in the

low interference regime when the bounds meet, the sum capacity is achievable

by treating interference as noise; i.e., there exists no other scheme that can

achieve a sum-rate better than that achieved by treating interference as noise.

1.3 CoMP Transmission and Reception

Even if we can determine and implement the best possible achievable schemes

for the interference channel, the demand for wireless connectivity is likely to

exceed what the physical channel can offer. For this and other reasons, there

has been much interest in understanding the benifits of cooperation in interfer-

ence networks. Typically cooperation requires additional infrastructure, but it

could be cost-effective depending on the overall objective. In this dissertation,

we study the particular cooperation technique called coordinated multi-point

(CoMP) transmission and reception, also known as joint processing, network-

MIMO, virtual-MIMO, multi-cell-MIMO. CoMP is best explained in the con-

text of cellular networks, where the base stations are connected to each other

through a high-speed backhaul network. Suppose the backhaul network is very

strong; then the base stations can exchange and jointly transmit the messages

in the case of downlink, and can exchange the quantized received signals and

jointly receive the messages in the case of uplink. In fact CoMP transmission

(for downlink) and CoMP reception (for uplink) are being considered as the

physical layer interference management techniques to be included in the fourth

generation cellular systems such as LTE-Advanced.

Observe that interference is completely eliminated in the extreme case where

each message is transmitted jointly by all the transmitters and received jointly

by all the receivers. Such perfect cooperation at the transmitters and receivers

may not be feasible, and hence we consider the interference channel with partial

cooperation at both transmitters and receivers. We capture the cost of cooper-

ation through transmit cooperation order and receive cooperation order, which

refer to the number of transmitters that jointly transmit a message, and the
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number of receivers that jointly receive a message, respectively. As the trans-

mit and receive cooperation orders vary from 1 to the number of users, we cover

all the cases from no cooperation to perfect cooperation. Since determining

the exact sum capacity is a hard problem, we resort to studying the degrees of

freedom (DoF) to obtain insights into the benefits of cooperation.

1.4 Dissertation Outline

The rest of the dissertation is organized as follows. In Chapter 2, we introduce

the model for the Gaussian interference channel that we study. In Chapter 3,

we study the problem of determining the best achievable sum-rate, obtained

by using Gaussian inputs and treating interference as noise, in the two-user

MIMO Gaussian interference channel. We propose a convex maxmin optimiza-

tion problem the solution to which provides lower and upper bounds to the

best achievable sum-rate. We show that if the bounds coincide, then the best

achievable sum-rate is indeed equal to the sum capacity. We determine neces-

sary and sufficient conditions for the bounds to coincide, leading to an exact

characterization of the sum capacity. We then consider the special cases of

symmetric MISO and SIMO interference channels and simplify the conditions.

In Chapter 4, we extend the sum capacity characterization in the low inter-

ference regime to Gaussian interference channels with more than two users.

In Chapter 5, we consider the Gaussian interference channel with coordinated

multi-point (CoMP) transmission and reception, and derive lower and upper

bounds to the DoF as a function of the number of users and the transmit and

receive cooperation orders. In Chapter 6, we provide some concluding remarks.

1.5 Notation

We use the following notation. For deterministic objects, we use lowercase let-

ters for scalars, lowercase letters in bold font for vectors, and uppercase letters

in bold font for matrices. For example, we use h to denote a deterministic scalar

and h to denote a deterministic vector, and H to denote a deterministic matrix.

For random objects, we use uppercase letters for scalars, and underlined up-

percase letters for vectors. Random objects with superscripts denote sequences

of the random objects in time. For example, we use X to denote a random

scalar, X to denote a random vector, and Xn and Xn to denote the sequences

of length n of the random scalars and vectors, respectively. We use ΣX and

Cov (X) to denote the covariance matrix of a random vector X. We use ΣY |X
and Cov (Y |X) to denote the covariance matrix of the minimum mean square

estimation error in estimating the random vector Y from the random vector

X, with similar notation for random scalars. We use CN (0,Σ) to denote the
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circularly symmetric complex Gaussian vector distribution with zero mean and

covariance matrix Σ, with similar notation for random scalars. We use H (.) to

denote the entropy of a discrete random variable, h (.) to denote the differen-

tial entropy of a continuous random variable or vector and I (.; .) to denote the

mutual information.

We use K to denote the set K = {1, 2, · · · ,K}, where the number K will be

obvious from the context. For any m ≤ K, we use k ↑ m and k ↓ m to denote

the sets

k ↑ m = {k, k + 1, k + 2, · · · , k +m− 1}

k ↓ m = {k, k − 1, k − 2, · · · , k −m+ 1}.

The indices are taken modulo K such that k ↑ m, k ↓ m ⊆ K. Observe that for

any two indices i, j and m ≤ K, i ∈ j ↑ m is true if and only if j ∈ i ↓ m.
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CHAPTER 2

CHANNEL MODEL

The K-user Gaussian interference channel, as described in Figure 2.1, consists of

K transmitter-receiver pairs communicating over a wireless medium. In contrast

to the wired medium, the broadcast and multiple-access nature of the wireless

medium implies that every transmitter is heard by every receiver. The signal

Y i ∈ CNr received by receiver i, is given by

Y i =

K∑
j=1

HijXj + Zi, ∀i ∈ K (2.1)

where Xj ∈ CNt×1 denotes the signal transmitted by transmitter j, Zi ∈
CN (0, INr ) denotes the additive white Gaussian noise at receiver i, and Hij ∈
CNr×Nt denotes the channel transfer matrix from transmitter j to receiver i.

Each transmitter is assumed to have Nt transmit antennas, and each receiver is

assumed to have Nr receive antennas. The general case with Nt and Nr taking

arbitrary values is referred to as the multiple-input multiple-output (MIMO) in-

terference channel. The special cases with Nt = 1 or Nr = 1 or Nt = Nr = 1 are

referred to as the single-input multiple-output (SIMO), multiple-input single-

output (MISO) and single-input single-output (SISO) interference channels, re-

spectively. The transmitters are assumed to operate under average power con-

straints; i.e., for each j ∈ K, the power spent by transmitter j must not exceed

Pj on an average.

2.1 Achievable Scheme

Consider the problem of communicating K messages over the interference chan-

nel (2.1). For each k ∈ K, the message Wk is available at the transmitter

k, and is desired by the receiver k. A communication scheme consists of an

encoder-decoder pair per each message. The encoder at transmitter k performs

the operation of mapping the message Wk onto the physical signal Xk to be

transmitted. The decoder at receiver k performs the operation of reconstructing

the message Wk from the received signal Y k. We say that the communication

scheme is reliable if the messages can be reconstructed at the receivers with high

probability. The genius of Shannon showed us that reliable communication is
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X1

Z1

+ Y 1

X2

Z2

+ Y 2

X3

Z3

+ Y 3

Figure 2.1: The 3-user Gaussian interference channel. The green solid lines
indicate the links carrying signal, and the red dashed lines indicate the links
carrying interference.

feasible in noisy channels by coding over multiple symbols. We consider the same

block coding framework where the communication scheme operates over n sym-

bols at a time. For a fixed rate tuple (R1, R2, · · · , RK) ∈ RK+ and a block length

n ≥ 1, the message Wk takes values from the setWk =
{

1, 2, · · · ,
⌈
2nRk

⌉}
. The

block code consists of the encoders

Xn
k :Wk → CNt×n, ∀k ∈ K

and the decoders

Ŵk : CNr×n →Wk, ∀k ∈ K.

Assuming that the message Wk is a uniform random variable taking values in

the set Wk, the probability of decoding error is defined as

en = max
k∈K

Pr
(
Ŵk (Y nk ) 6= Wk

)
.

We say that the rate tuple (R1, R2, · · · , RK) is achievable if and only if there

exists a sequence of block codes satisfying the average power constraints

E

[
1

n

n∑
t=1

||Xk(t)||2
]
≤ Pk, ∀k ∈ K

such that the probability of error en → 0 as n→∞.
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2.2 Capacity and Degrees of Freedom

The capacity region C is defined as the closure of the set of achievable rate tuples.

Except in some special cases, the capacity region of the Gaussian interference

channel remains an elusive holy grail in the information theory literature. For

this reason, we define the degrees of freedom (DoF) region which is relatively

easy to characterize. The DoF region provides insights about the behavior of

the capacity region at high SNRs. Roughly speaking, the DoF region is equal

to the capacity region scaled by log SNR at high SNRs. For the purpose of DoF

analysis, we assume a symmetric power constraint, i.e., Pk = P for all k ∈ K.

We say that the DoF tuple (d1, d2, · · · , dK) is achievable if for every P > 0 there

exists an achievable rate-tuple (R1(P ), R2(P ), · · · , RK(P )) such that

dk = lim sup
P→∞

Rk(P )

logP
, ∀k ∈ K.

The DoF region D is defined as the closure of the set of achievable DoF tuples.

The sum capacity and the sum DoF are defined as

Csum = max
(R1,R2,··· ,Rk)∈C

R1 +R2 + · · ·+RK

Dsum = max
(d1,d2,··· ,dk)∈D

d1 + d2 + · · ·+ dK .

2.3 Channel Knowledge

Throughout the thesis, we assume global channel knowledge, i.e., all the channel

coefficients are assumed to be fixed and known at all the transmitters and at

all the receivers. In practice, the channel knowledge is obtained by transmit-

ting known signals, called pilots, at regular intervals and estimating the channel

through some kind of filtering. This process is called channel estimation which

enables local knowledge of the channel coefficients at the receivers. The es-

timated (local) channel coefficients are then distributed to other transmitters

and receivers. Although the processes of channel estimation and distribution

incur significant overhead, it is difficult to accommodate this overhead into the

capacity analysis. The common practice is to perform capacity analysis assum-

ing global channel knowledge, which is difficult as it is, and accounts for the

overhead when designing practical achievable schemes. Since the information-

theoretic capacity analysis only provides high level insights regarding the actual

design of the achievable schemes, this kind of layered approach is generally

acceptable.
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2.4 CoMP Transmission and Reception

In Chapter 5, the transmitters and receivers are allowed to cooperate so that

the messages are transmitted and received jointly by multiple transmitters and

receivers, respectively. For each k ∈ K, the message Wk is associated with a

transmit set Tk ⊆ K and a receive set Rk ⊆ K. The transmit set Tk denotes

the set of transmitters that have access to the message Wk. The receive set Rk
denotes the set of receivers whose received signals are available at the decoder k.

The classical interference channel is recovered by setting Tk = Rk = {k}, k ∈ K.

With CoMP transmission and reception, the definitions of the encoders and

the decoders must be changed appropriately. Each transmitter is associated

with an encoder, and each message is associated with a decoder. For each

j ∈ K, the encoder at transmitter j takes the available messages {Wk : j ∈ Tk}
as input and outputs the physical signal Xn

j to be transmitted. For each k ∈ K,

the decoder of message Wk takes the available received signals {Y ni : i ∈ Rk}
as input and outputs the reconstructed message Ŵk. All the other definitions

in Sections 2.1 and 2.2 remain unchanged.
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CHAPTER 3

TWO-USER INTERFERENCE CHANNEL

In this chapter, we consider the Gaussian interference channel (2.1) in the two-

user case. The two-user MIMO Gaussian interference channel is given by

Y 1 = H11X1 + H12X2 + Z1

Y 2 = H21X1 + H22X2 + Z2

(3.1)

where Zi ∈ CN (0, I), and the average power constraints at transmitters 1 and

2 are denoted by P1 and P2, respectively. Let N1t, N2t denote the number of

transmit antennas at the transmitters 1 and 2, respectively, and N1r, N2r denote

the number of receive antennas at the receivers 1 and 2, respectively. The

dimensions of the channel matrices, the signal vectors, and the noise vectors

are defined appropriately. We are interested in determining the best sum-rate

achievable by using Gaussian inputs and treating interference as noise, and also

the sum capacity of the two-user MIMO Gaussian interference channel.

We start by studying the problem of determining the best achievable sum-

rate. The multiple-antennas at the transmitters and at the receivers present

an opportunity to design the transmit and receive beams to suppress the inter-

ference and improve the achievable sum-rate. While it is easy to express the

achievable sum-rate as a function of the beams, the design of the optimal beams

that maximize the achievable sum-rate is known to be a difficult problem. The

main difficulty stems from the fact that the sum-rate optimization problem can-

not be posed as a convex optimization problem, which makes the optimization

problem difficult to solve analytically or even numerically. In this chapter, we

study the technique of convex approximation and optimization to solve this

nonconvex optimization problem. Specifically, we upper-bound the achievable

sum-rate with a concave function, and solve the corresponding convex opti-

mization problem to obtain lower and upper bounds to the original sum-rate

optimization problem. We show that if the channel parameters satisfy certain

conditions, then the bounds coincide, leading to an exact characterization of the

best achievable sum-rate by using Gaussian inputs and treating interference as

noise.

The problem of determining the best achievable sum-rate by treating interfer-

ence as noise is important from a practical perspective because communication

engineers have a good understanding of designing the codes to achieve the rates

12



promised by the information-theoretic analysis. However, it is also important

to understand how far the achievable sum-rate by treating interference as noise

is from the sum capacity. We show that if the lower and upper bounds on the

achievable sum-rate coincide, then the best achievable sum-rate is indeed equal

to the sum capacity. Using the theory of Karush-Kuhn-Tucker (KKT) condi-

tions, we obtain necessary and sufficient conditions for the bounds to coincide

leading to an exact characterization of the sum capacity. We observe that the

conditions are satisfied in a low interference regime where the interfering sig-

nal levels are low compared to the desired signal levels. We end the chapter

by providing some nontrivial examples of the two-user Gaussian interference

channel in the low interference regime. In particular, we consider the special

cases of symmetric MISO and SIMO interference channels, and derive a simple

closed-form condition on the channel parameters for the channels to be in the

low interference regime.

3.1 Related Work

The study of the two-user interference channel was initiated by Shannon in 1961

[18]. Carleial made an interesting and counter-intuitive observation that inter-

ference does not reduce the capacity of the two-user SISO Gaussian interference

channel in the very strong interference regime [3]. If the interference level is very

high compared to the signal level, the receivers can first decode the interfering

message to subtract its contribution from the received signal, thus achieving

the same rate as if there was no interference. Subsequently, the capacity region

was determined in the strong interference regime [4, 19], where interference re-

duces the capacity but, like in the very strong interference regime, the optimal

strategy requires the receivers to again decode the interfering message. Charac-

terizing the capacity region of the two-user SISO Gaussian interference channel

in the general setting still remains an open problem. The best known achievable

region is based on the Han-Kobayashi (HK) scheme [4, 20]. The HK region was

shown to be the capacity region for a class of discrete-memoryless deterministic

interference channels in 1982 [21]. Little was known about the optimality of the

HK region in the Gaussian case until recently. The concept of a genie giving

side-information to the receivers was used in [22, 23] to derive outer bounds

on the capacity region of two-user SISO Gaussian interference channel. The

outer bound region in [23] is within one bit of the HK region, thus leading to

an approximate characterization of the capacity region of the two-user SISO

Gaussian interference channel. The genie-based outer bound technique was fur-

ther extended in [24, 25, 26] to prove that treating interference as noise achieves

the sum capacity in a low interference regime (referred to as noisy-interference

regime in [24]).

The two-user MIMO Gaussian interference channel was studied in [10, 11, 12,
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13, 14, 27, 28, 29] from the point of view of determining the best achievable rate

region obtained by using Gaussian inputs and treating interference as noise.

Several iterative algorithms including the water-filling algorithm [10, 11], the

gradient projection algorithm [12], the interference pricing algorithm [13] and

the Max-SINR algorithm [14], were proposed to find good lower bounds to the

best achievable sum-rate. For the MISO Gaussian interference channel, it was

proved in [27, 28, 29] that rank one covariance matrices are optimal. However,

the problem of determining the best achievable sum-rate remains open and

is known to be a difficult problem even in the SISO case [30, 31] due to the

nonconvex nature of the sum-rate.

The two-user MIMO Gaussian interference channel was studied in [32, 33, 34]

from the point of view of determining the capacity region. In [33], the authors

showed that sum DoF of the MIMO Gaussian interference channel is equal to

min (N1t +N2t, N1r +N2r,max(N1t, N2r),max(N2t, N1r))

and that the optimal sum DoF is achieved by treating interference as noise.

In [34], the authors extended the approximate capacity characterization of the

two-user SISO Gaussian interference channel in [23] to the MIMO case. The

contents of this chapter are a result of our attempt to extend the low interference

regime characterization of the two-user SISO Gaussian interference channel in

[24, 25, 26] to the MIMO case. Some of the results in this chapter are published

in [35], [36], and also in [37], [38] which are due to an independent and parallel

work by Shang, Chen, Kramer and Poor.

3.2 Standard Form

In this section, we show that the following assumptions can be made about

the two-user MIMO Gaussian interference channel (3.1) with out any loss of

generality:

1. The direct channel matrices H11 and H22 have unit (Frobenius) norm.

2. The cross channel matrices H12 and H21 are diagonal with real and non-

negative entires.

3. The numbers of transmit and receive antennas (N1t, N2t, N1r, N2r) satisfy

N1t ≤ rank

[
H11

H21

]
, N2t ≤ rank

[
H12

H22

]

and

N1r ≤ rank[H11 H12], N2r ≤ rank[H21 H22].
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The second assumption implies that the cross channel matrices can be expressed

as

H12 =

[
H̃12

0

]
, H21 =

[
H̃21

0

]

where H̃12 and H̃21 are diagonal matrices with full row rank. This is the only

assumption we use in the development of the outer bound techniques presented

in this chapter. The other two assumptions are used in Section 3.10 to simplify

the presentation.

The first assumption can easily be justified by scaling the transmit power

constraints P1 and P2 appropriately. We now justify the other two assumptions.

First, consider the singular value decomposition of H12 and H21:

H12 = U1Λ12V
†
2

H21 = U2Λ21V
†
1

where Λ12,Λ21 are diagonal matrices with real and nonnegative entries, and

V1,V2,U1,U2 are unitary matrices. We obtain an equivalent Gaussian inter-

ference channel, satisfying the second assumption, by projecting the received

signals along U1,U2, and the transmitted signals along V1,V2, i.e., by making

the following substitutions:

Xj ← V†jXj

Y i ← U†iY i

Zi ← U†iZi

Hij ← U†iHijVj .

Observe that the average transmit power constraint and the distribution of

the receive noise terms remain unchanged because U1,U2,V1,V2 are unitary

matrices.

The third assumption can be justified by appropriately choosing the unitary

matrices. For example, suppose N1r > rank[H11 H12]. Consider the SVD of

H12 = U1Λ12V
†
2. Observe that the span of the first rank H12 columns of U1

is equal to the column space of H12, and we have flexibility in choosing the

remaining N1r − rank H12 columns. We may choose those columns such that

the span of the first rank[H11 H12] columns of U1 is equal to the column space

of [H11 H12] so that the last N1r−rank[H11 H12] columns of U1 are orthogonal

to the columns of [H11 H12]. Therefore, the last N1r − rank[H11 H12] rows of

the channel matrices H11 and H12 in the new channel are equal to zero, i.e.,

receiver 1 sees nothing but Gaussian noise from the last N1r − rank[H11 H12]

antennas. Hence, we can ignore them and assume that N1r = rank[H11 H12].

We can repeat the same argument at receiver 2, and also at transmitters 1 and

2 to justify the other inequalities in the third assumption.
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3.3 Achievable Sum-Rate

For the two-user MIMO Gaussian interference channel (3.1), the sum-rate achiev-

able by using (circularly symmetric) Gaussian inputs and treating interference

as noise is given by

I (X1G;Y 1G) + I (X2G;Y 2G) (3.2)

where the subscript G indicates that Gaussian inputs are used. Let Q1 =

ΣX1G
and Q2 = ΣX2G

denote the covariance matrices of the Gaussian random

vectors X1G and X2G, respectively. To meet the average power constraints, the

covariance matrices must belong to the feasible region

Q = {(Q1,Q2) : Qi � 0, Tr (Qi) ≤ P, i = 1, 2}.

We have the opportunity to design the covariance matrices Q1 and Q2 to max-

imize the achievable sum-rate, leading us to the optimization problem

max
(Q1,Q2)∈Q

f(Q1,Q2). (3.3)

where f(Q1,Q2) denotes the sum-rate (3.2) as function of Q1 and Q2, i.e.,

f(Q1,Q2) = I (X1G;Y 1G) + I (X2G;Y 2G)

= h (Y 1G)− h (Y 1G|X1G) + h (Y 2G)− h (Y 2G|X2G)

= log
det ΣY 1G

det ΣY 1G|X1G

+ log
det ΣY 2G

det ΣY 2G|X2G

.

(3.4)

The explicit dependence on Q1 and Q2 can be seen by substituting

ΣY 1G
= I + H11Q1H

†
11 + H12Q2H

†
12

ΣY 2G
= I + H22Q1H

†
21 + H22Q2H

†
22

ΣY 1G|X1G
= I + H12Q2H

†
12

ΣY 2G|X2G
= I + H21Q1H

†
21.

The nonconvex nature of the objective function f(Q1,Q2) makes the optimiza-

tion problem (3.3) extremely difficult to solve. The following claim proves that

f(Q1,Q2) is not concave in general.

Claim 1. The function f(Q1,Q2) need not be concave in (Q1,Q2).

Proof. Consider the special case of symmetric SISO interference channel with

H11 = H22 = 1, and H21 = H12 = h. Thus, we have

f(q1, q2) = log

(
1 +

q1

1 + h2q2

)
+ log

(
1 +

q2

1 + h2q1

)
.
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Observe that

f(2q, 0) + f(0, 2q)

2
− f(q, q) = log (1 + 2q)− 2 log

(
1 +

q

1 + h2q

)
≥ 0

whenever q and h satisfy

(1 + 2q) ≥
(

1 +
q

1 + h2q

)2

⇔ 2q ≥ 2q

1 + h2q
+

(
q

1 + h2q

)2

⇔ 2h2(1 + h2q) ≥ 1.

This concludes that the function f(Q1,Q2) is not concave in general.

3.4 Local Optimal Solution

Since a global optimal solution has to be locally optimal, we can obtain insights

into the structural properties of the optimal transmit covariance matrices by

analyzing the necessary KKT conditions. Let λ1, λ2 ≥ 0 and M1,M2 � 0 denote

the dual variables associated with the constraints Tr (Q1) ≤ P1,Tr (Q2) ≤ P2

and Q1,Q2 � 0, respectively. The Lagrangian associated with (3.3) is given by

L(Q1,Q2,M1,M2, λ1, λ2, )

= f(Q1,Q2,Ψ) +

2∑
i=1

Tr (MiQi)− λi (Tr (Qi)− Pi) .

The KKT conditions are given by

∇Q1f(Q1,Q2) = λ1I−M1

∇Q2
f(Q1,Q2) = λ2I−M2

λ1(Tr (Q1)− P1) = 0

λ2(Tr (Q2)− P2) = 0

Tr (M1Q1) = 0

Tr (M2Q2) = 0.

(3.5)

The following fact from matrix differential calculus is useful in deriving the

expressions for gradients [12, 39]. Given matrices Σ = Σ† and H, we have

∇Q log det
(
Σ + HQH†

)
= H†

(
Σ + HQH†

)−1
H.
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Using the expression (3.4) for sum-rate, we obtain that

∇Q1
f(Q1,Q2) = H†11Σ

−1
Y 1G

H11 + H†21

(
Σ−1
Y 2G
−Σ−1

Y 2G|X2G

)
H21

∇Q2
f(Q1,Q2) = H†22Σ

−1
Y 2G

H22 + H†12

(
Σ−1
Y 1G
−Σ−1

Y 1G|X1G

)
H12.

(3.6)

3.5 Convex Approximation and Optimization

In this section, we outline the outer bound technique. We introduce a convex

optimization problem, the solution to which provides lower and upper bounds

on the best achievable sum-rate (3.3). Suppose we upper bound f(Q1,Q2) with

f̄(Q1,Q2), i.e., f(Q1,Q2) ≤ f̄(Q1,Q2), such that f̄(Q1,Q2) is concave in Q1

and Q2. Then, we can solve the convex optimization problem

f̄(Q∗1,Q
∗
2) = max

(Q1,Q2)∈Q
f̄(Q1,Q2)

to obtain lower and upper bounds to the sum-rate optimization problem (3.3):

f(Q∗1,Q
∗
2) ≤ Best achievable sum-rate ≤ f̄(Q∗1,Q

∗
2).

The tightness of the lower and upper bounds depends on the choice of the upper

bound function f̄(Q1,Q2). The upper bound function we use in this chapter

is based on a genie giving side-information to the receivers. By treating the

side-information as a part of the received signal, we obtain a genie-aided MIMO

Gaussian interference channel. Let Ψ denote the genie parameters, which will

be defined in Section 3.6. The achievable sum-rate f̄(Q1,Q2,Ψ) in the genie-

aided channel is an obvious upper bound to the achievable sum-rate f(Q1,Q2)

in the original channel, i.e.,

f(Q1,Q2) ≤ f̄(Q1,Q2,Ψ).

We say that the genie Ψ is useful if the upper bound function f̄(Q1,Q2,Ψ)

is concave. Let Ψu denote the usefulness set; i.e., f̄(Q1,Q2,Ψ) is concave in

(Q1,Q2) for all Ψ ∈ Ψu. We obtain the best upper bound to f(Q1,Q2) by

optimizing over Ψ ∈ Ψu; i.e,

f(Q1,Q2) ≤ f̄(Q1,Q2) = min
Ψ∈Ψu

f̄(Q1,Q2,Ψ).

Therefore, the upper and lower bounds to the best sum-rate can be obtained by

solving the maxmin optimization problem

max
(Q1,Q2)∈Q

min
Ψ∈Ψu

f̄(Q1,Q2,Ψ).
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We will also show that the upper bound function f̄(Q1,Q2,Ψ) is convex in Ψ

for every (Q1,Q2). Therefore, we have a convex maxmin optimization problem

which can be solved efficiently using standard convex optimization algorithms.

3.6 Genie-Aided Channel

Suppose the genie provides the receivers 1 and 2 with side-information S1 and

S2, respectively. The signals S1 and S2 are defined as

S1 = H̃21X1 +W 1

S2 = H̃12X2 +W 2

(3.7)

where H̃12, H̃21, defined in Section 3.2, represent the matrices containing the

nonzero rows of H12,H21, respectively, and W 1,W 2 are random vectors denot-

ing Gaussian noise. The genie chooses how the noise terms W 1 and W 2 are

correlated to Z1 and Z2, respectively. We use Ψ as a shorthand notation to

denote the genie parameters Ψ = {ΣW 1
,ΣW 1Z1

,ΣW 2
,ΣW 2Z2

} satisfying the

positive semidefinite constraints

Cov

([
Zi

W i

])
=

[
I ΣZiW i

ΣW iZi
ΣW i

]
� 0, i = 1, 2.

We use the achievable sum-rate of the genie-aided interference channel as the

upper bound function

f̄(Q1,Q2,Ψ) = I (X1G;Y 1G, S1G) + I (X2G;Y 2G, S2G) . (3.8)

Since the mutual information is nonnegative, we obtain that

I (X1G;Y 1G) ≤ I (X1G;Y 1G) + I (X1G;S1G|Y 1G) = I (X1G;Y 1G, S1G)

I (X2G;Y 2G) ≤ I (X2G;Y 2G) + I (X2G;S2G|Y 2G) = I (X2G;Y 2G, S2G)

and hence

f(Q1,Q2) ≤ f̄(Q1,Q2,Ψ) for any Ψ.

To utilize the idea in Section 3.5, we now define the usefulness set Ψu, and show

the following properties:

1. The set Ψu is convex.

2. The function f̄(Q1,Q2,Ψ) is concave in (Q1,Q2) for any Ψ ∈ Ψu.

3. The function f̄(Q1,Q2,Ψ) is convex in Ψ for any Q1 and Q2.
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3.6.1 Useful Genie: Concavity Property

Let Ψu be the set of genie parameters Ψ =
(
ΣW 1

,ΣW 1Z1
,ΣW 2

,ΣW 2Z2

)
satis-

fying the usefulness conditions[
I ΣZ1W 1

ΣW 1Z1
ΣW 1

]
�

[
ΣW 2

0

0 0

]
[

I ΣZ2W 2

ΣW 2Z2
ΣW 2

]
�

[
ΣW 1

0

0 0

]
.

(3.9)

It immediately follows that Ψu is a convex set because the convex combination

of any two positive semidefinite matrices is also positive semidefinite.

Lemma 1. The function f̄(Q1,Q2,Ψ) is concave and nondecreasing in (Q1,Q2)

for any Ψ ∈ Ψu.

Proof. First, we expand the terms in f̄(Q1,Q2,Ψ):

f̄(Q1,Q2,Ψ) = I (X1G;Y 1G, S1G) + I (X2G;Y 2G, S2G)

= h (Y 1G, S1G)− h (Y 1G, S1G|X1G)

+ h (Y 2G, S2G)− h (Y 2G, S2G|X2G)

= h (S1G) + h (Y 1G|S1G)− h (S1G|X1G)− h (Y 1G|S1G, X1G)

+ h (S2G) + h (Y 2G|S2G)− h (S2G|X2G)− h (Y 2G|S2G, X2G) .

The terms h (S1G|X1G) and h (S2G|X2G) do not depend on Q1 and Q2. From

Lemma 12 in Appendix A, it immediately follows that the terms h (Y 1G|S1G)

and h (Y 2G|S2G) are concave and nondecreasing in (Q1,Q2). The remaining

terms contribute

h (S1G)− h (Y 1G|S1G, X1G) + h (S2G)− h (Y 2G|S2G, X2G) .

We show that h (S1G)−h (Y 2G|S2G, X2G) is a concave and nondecreasing func-

tion in (Q1,Q2).

h (S1G)− h (Y 2G|S2G, X2G) = h
(
H̃21X1G +W 1

)
− h (H21X1G + Z2|W 2)

Recall from Section 3.2 that H̃21 is related to H21 as

H21 =

[
H̃21

0

]
.

Hence, by appropriately dividing the vector Z2 into Z21 and Z22, we see that

H21X1G + Z2 =

[
H̃21X1G + Z21

Z22

]
.
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Therefore, we obtain that

h (S1G)− h (Y 2G|S2G, X2G)

= h
(
H̃21X1G +W 1

)
− h (H21X1G + Z2|W 2)

= h
(
H̃21X1G +W 1

)
− h

(
H̃21X1G + Z21, Z22|W 2

)
= h

(
H̃21X1G +W 1

)
− h

(
H̃21X1G + Z21|Z22,W 2

)
− h (Z22) .

Obviously, the term h (Z22) is independent of Q1. From Lemma 14 in Ap-

pendix A, it follows that the remaining expression

h
(
H̃21X1G +W 1

)
− h

(
H̃21X1G + Z21|Z22,W 2

)
is concave in Q1 if

Cov (W 1) � Cov (Z21|Z22,W 2) .

From Lemma 9 in Appendix A, it follows that the above condition is equivalent

to [
ΣW 1

0

0 0

]
� Cov


 Z21

Z22

W 2


 = Cov

([
Z2

W 2

])
.

From the definition (3.9) of the usefulness set, we observe that the above con-

dition is satisfied for every Ψ ∈ Ψu. Similarly, we can show that h (S2G) −
h (Y 1G|S1G, X1G) is also concave and nondecreasing in (Q1,Q2).

3.6.2 Convexity Property

Lemma 2. For any fixed (Q1,Q2), the function f̄(Q1,Q2,Ψ) is convex in

Ψ =
(
ΣW 1

,ΣW 1Z1
,ΣW 2

,ΣW 2Z2

)
.

Proof. First, observe that

f̄(Q1,Q2,Ψ) = I (X1G;Y 1G, S1G) + I (X2G;Y 2G, S2G) .

We prove that I (X1G;Y 1G, S1G) is convex in Ψ. The convexity of I (X2G;Y 2G, S2G)

follows in a similar manner. Observe that

I (X1G;Y 1G, S1G) = h (X1G)− h (X1G|Y 1G, S1G) .

The first term h (X1G) is independent of Ψ. From Lemma 13 in Appendix A,

it follows that the second term h (X1G|Y 1G, S1G) is concave in

Cov


 X1G

Y 1G

S1G


 =

 × × ×
× × ΣZ1W 1

× ×+ ΣW 1Z1
×+ ΣW 1


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where × denotes the terms that are independent of the genie parameters. From

this, we conclude that I (X1G;Y 1G, S1G) is convex in
(
ΣW 1

,ΣW 1Z1
,ΣW 2

,ΣW 2Z2

)
.

In the above proof, the expansion

I (X1G;Y 1G, S1G) = h (X1G)− h (X1G|Y 1G, S1G)

is not valid when Q1 is rank deficient because h (X1G) = log det (πeQ1) = −∞.

The problem can be circumvented using the following trick. Let r < Nt be

the rank of Q1. Using the eigenvalue decomposition of Q1, we can compute

C ∈ CNt×r such that CC† = Q1. We can now define a new random vector

X̃1G ∼ CN (0, Ir) and have X1G = CX̃1G so that the distribution of X1G

remains unchanged. Clearly, the rank of C is equal to r and hence X̃1G can be

exactly reconstructed for any given X1G. Since the covariance matrix of x̃1G

has full rank, we can expand I (X1G;Y 1G, S1G) as

I (X1G;Y 1G, S1G) = I
(
X̃1G;Y 1G, S1G

)
= h

(
X̃1G

)
− h

(
X̃1G|Y 1G, S1G

)
.

The rest of the proof remains unchanged.

3.6.3 Sum-Rate Upper Bound

Following the argument in Section 3.5, and using Lemmas 1 and 2, we obtain

the following theorem.

Theorem 1. The best sum-rate achievable by treating interference as noise is

bounded above and below by

f(Q∗1,Q
∗
2) ≤ max

(Q1,Q2)∈Q
f(Q1,Q2) ≤ f̄(Q∗1,Q

∗
2,Ψ

∗)

where (Q∗1,Q
∗
2,Ψ

∗) is a solution to the following convex maxmin optimization

problem

max
(Q1,Q2)∈Q

min
Ψ∈Ψu

f̄(Q1,Q2,Ψ).

The utility of the above theorem is that we can use the standard convex

optimization algorithms to efficiently solve for (Q∗1,Q
∗
2,Ψ

∗), and thus obtain

computable lower and upper bounds to the best achievable sum-rate.

3.7 Sum Capacity Upper Bound

In the previous section, we saw a technique to obtain computable lower and up-

per bounds on the best achievable sum-rate with treating interference as noise.

Suppose the bounds meet and we have exactly determined the best achievable

sum-rate and the corresponding optimal covariance matrices. Even then, we

only have an achievable sum-rate and we cannot eliminate the possibility that
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there may exist other simple achievable schemes that could potentially outper-

form the best achievable sum-rate with treating interference as noise. Interest-

ingly, this question can be resolved because the upper bound in Theorem 1 can

be shown to be an upper bound to the sum capacity as well.

Theorem 2. The sum capacity (Csum) of the two-user MIMO Gaussian inter-

ference channel satisfies

f(Q∗1,Q
∗
2) ≤ Csum ≤ f̄(Q∗1,Q

∗
2,Ψ

∗)

where (Q∗1,Q
∗
2,Ψ

∗) is the solution to the convex maxmin optimization problem

max
(Q1,Q2)∈Q

min
Ψ∈Ψu

f̄(Q1,Q2,Ψ).

Proof. The lower bound is obvious since f(Q∗1,Q
∗
2) is defined as the achievable

sum-rate when the transmitters use Gaussian inputs with covariance matrices

Q∗1 and Q∗2 and the receivers treat interference as noise. Note that the covariance

matrices (Q∗1,Q
∗
2) satisfy the transmit power constraints. We now prove upper

bound. Using the standard converse arguments involving Fano’s inequality, we

obtain that any achievable rate tuple (R1, R2) must satisfy

R1 ≤
1

n
I (Xn

1 ;Y n1 ) + εn

R2 ≤
1

n
I (Xn

2 ;Y n2 ) + εn

for some εn → 0 as n → ∞. For any genie Ψ ∈ Ψu, we can upper-bound

the mutual information terms with the corresponding terms in the genie-aided

channel to obtain

R1 ≤
1

n
I (Xn

1 ;Y n1 , S
n
1 ) + εn

R2 ≤
1

n
I (Xn

2 ;Y n2 , S
n
2 ) + εn.

Let Q1 and Q2 denote the average covariance matrices at the transmitters 1

and 2, respectively:

Q1 = E

[
1

n

n∑
i=1

X1iX
†
1i

]

Q2 = E

[
1

n

n∑
i=1

X2iX
†
2i

]
.

(3.10)

Consider the problem of maximizing I (Xn
1 ;Y n1 , S

n
1 ) + I (Xn

2 ;Y n2 , S
n
1 ) over all

product input distributions p(Xn
1 )p(Xn

2 ) satisfying the covariance constraints

(3.10). We show that if the genie is useful, i.e., Ψ ∈ Ψu, then i.i.d. Gaussian
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inputs are optimal; i.e.,

I (Xn
1 ;Y n1 , S

n
1 ) + I (Xn

2 ;Y n2 , S
n
1 ) ≤ nf̄(Q1,Q2,Ψ).

The proof is similar to the proof of concavity of f̄(Q1,Q2,Ψ) in Lemma 1. Let

X1G and X2G denote independent Gaussian random vectors with covariance

matrices Q1 and Q2, respectively, and Y 1G, Y 2G, S1G, S2G denote the corre-

sponding Gaussian random vectors. We have

I (Xn
1 ;Y n1 ) + I (Xn

2 ;Y n2 )

≤ I (Xn
1 ;Y n1 , S

n
1 ) + I (Xn

2 ;Y n2 , S
n
2 )

= h (Y n1 , S
n
1 )− h (Y n1 , S

n
1 |X

n
1 ) + h (Y n2 , S

n
2 )− h (Y n2 , S

n
2 |X

n
2 )

= h (Sn1 ) + h (Y n1 |S
n
1 )− h (Sn1 |X

n
1 )− h (Y n1 |S

n
1 , X

n
1 )

+ h (Sn2 ) + h (Y n2 |S
n
2 )− h (Sn2 |X

n
2 )− h (Y n2 |S

n
2 , X

n
2 ) .

From Lemma 16 in Appendix A, it follows that the terms h (Y n1 |S
n
1 ) and h (Y n2 |S

n
2 )

are maximized by i.i.d. Gaussian inputs. The remaining terms contribute

h (Sn1 )− h (Y n2 |S
n
2 , X

n
2 ) + h (Sn2 )− h (Y n1 |S

n
1 , X

n
1 ) .

We now prove that h (Sn1 ) − h (Y n2 |S
n
2 , X

n
2 ) is maximized by i.i.d. Gaussian

inputs. As explained in the proof of Lemma 1, we obtain that

h (Sn1 )− h (Y n2 |S
n
2 , X

n
2 )

= h
(
H̃21X

n
1 +Wn

1

)
− h

(
H̃21X

n
1 + Zn21|Z

n
22,W

n
2

)
− h (Zn22) .

Obviously, the term h (Zn22) is independent of p(Xn
1 )p(Xn

2 ). From Lemma 17 in

Appendix A, it follows that the remaining expression

h
(
H̃21X

n
1 +Wn

1

)
− h

(
H̃21X

n
1 + Zn21|Z

n
22,W

n
2

)
is maximized by i.i.d. Gaussian inputs if

ΣW 1
� Cov (Z21|Z22,W 2)

From Lemma 9 in Appendix A, it follows that the above condition is equivalent

to [
ΣW 1

0

]
� Cov


 Z21

Z22

W 2


 = Cov

([
Z2

W 2

])

which is satisfied for every Ψ ∈ Ψu. Similarly, we can show that h (Sn2 ) −
h (Y n1 |S

n
1 , X

n
1 ) is also maximized by i.i.d. Gaussian inputs. Thus, we proved
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that for any Ψ ∈ Ψu,

I (Xn
1 ;Y n1 ) + I (Xn

2 ;Y n2 ) ≤ I (Xn
1 ;Y n1 , S

n
1 ) + I (Xn

2 ;Y n2 , S
n
1 )

≤ nf̄(Q1,Q2,Ψ).

Therefore, we obtain that

1

n
I (Xn

1 ;Y n1 ) +
1

n
I (Xn

2 ;Y n2 ) ≤ min
Ψ∈Ψu

f̄(Q1,Q2,Ψ)

≤ min
Ψ∈Ψu

max
(Q1,Q2∈Q

f̄(Q1,Q2,Ψ)

= nf̄(Q∗1,Q
∗
2,Ψ

∗).

Thus we proved that any achievable rate tuple (R1, R2) must satisfy

R1 +R2 ≤ f̄(Q∗1,Q
∗
2,Ψ

∗) + εn.

The proof is complete by letting n→∞.

3.8 Smart Genie: Zero Gap

In the previous section, we derived computable lower and upper bounds to the

sum capacity. A natural follow-up step is to check if the bounds ever meet. We

start by obtaining a necessary and sufficient condition on (Q∗1,Q
∗
2,Ψ

∗) for the

gap to be zero. We say that a genie Ψ is (Q1,Q2)-smart if

f̄(Q1,Q2,Ψ) = f(Q1,Q2).

The genie just gives side-information to the receivers, but it is smart enough

not to any leak any additional information about the respective transmitted

signals that the original received signals could not provide. The total amount

of additional information that a genie leaks is equal to

f̄(Q1,Q2,Ψ)− f(Q1,Q2)

= I (X1G;Y 1G, S1G) + I (X2G;Y 2G, S2G)− I (X1G;Y 1G)− I (X2G;Y 2G)

= I (X1G;S1G|Y 1G) + I (X2G;S2G|Y 2G) .

Since the conditional mutual information is always nonnegative, the genie is

smart if and only if I (X1G;S1G|Y 1G) = I (X2G;S2G|Y 2G) = 0. The conditional

mutual information I (X1G;S1G|Y 1G) is equal to zero if and only if X1G−Y 1G−
S1G forms a Markov chain. Since all the random variables are jointly Gaussian,

X1G − Y 1G − S1G forms a Markov chain if and only if the MMSE estimate of

S1G given (X1G, Y 1G) is the same as the MMSE estimate of S1G given Y 1G,

i.e.,

E [S1G|Y 1G, X1G] = E [S1G|Y 1G] . (3.11)
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Let T1Y 1G be the MMSE estimate of S1G given Y 1G. Using the orthogonality

principle, summarized in Section A.1, we know that the MMSE estimation error

E1 = S1G−T1Y 1G is independent of the observation Y 1G. Since (3.11) implies

that T1Y 1G is also the MMSE estimate of S1G given Y 1G and X1G, we obtan

that E1 is independent of X1G also. Therefore, we have that (3.11) is true if

and only if there exists a matrix T1 such that

S1G = T1Y 1G + E1

⇔ H̃21X1G +W 1 = T1 (H11X1G + H12X2G + Z1) + E1

⇔
(
H̃21 −T1H11

)
X1G +W 1 = T1 (H12X2G + Z1) + E1

with E1 being independent of Y 1G and X1G. Since X1G is independent of

all the other random vectors involved, the random vector
(
H̃21 −T1H11

)
X1G

must be equal to zero almost surely, which is equivalent to saying(
H̃21 −T1H11

)
Q1 = 0.

The remaining expression is equivalent to saying that T1 (H12X2G + Z1) is

the MMSE estimate of W 1 given H12X2G + Z1 since E1 is independent of

Y 1G−H11X1G = H12X2G +Z1. Therefore, we obtain the following expression

for T1:

T1 = ΣW 1Z1

(
I + H12Q2H

†
21

)−1

.

Thus, we can conclude that X1G−Y 1G−S1G forms a Markov chain if and only

if the following condition is satisfied:(
H̃21 −ΣW 1Z1

(
H12Q2H

†
12 + I

)−1

H11

)
Q1 = 0.

We can derive a similar necessary and sufficient condition for I (X2G;S2G|Y 2G)

to be equal to zero, and hence we obtain the following lemma.

Lemma 3. The genie Ψ is (Q1,Q2)-smart, i.e., f̄(Q1,Q2,Ψ) = f(Q1,Q2), if

and only if the following conditions are satisfied:(
H̃21 −ΣW 1Z1

(
H12Q2H

†
12 + I

)−1

H11

)
Q1 = 0(

H̃12 −ΣW 2Z2

(
H21Q1H

†
21 + I

)−1

H22

)
Q2 = 0.

(3.12)

3.9 Low Interference Regime

We say that a two-user MIMO Gaussian interference channel is in the low in-

terference regime if the sum capacity is achieved by using Gaussian inputs and

treating interference as noise. Suppose the upper and lower bounds defined
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in Theorem 2 meet; then the channel (3.1) is in the low interference regime.

In this section, we derive necessary and sufficient conditions for the bounds in

Theorem 2 to meet. Recall that the bounds meet if and only if

f(Q∗1,Q
∗
2) = f̄(Q∗1,Q

∗
2,Ψ

∗) (3.13)

where (Q∗1,Q
∗
2,Ψ

∗) is an optimal solution to the following convex maxmin op-

timization problem:

max
(Q1,Q2)∈Q

min
Ψ∈Ψu

f̄(Q1,Q2,Ψ). (3.14)

We start with the following claim which exploits the concave-convex property

of f̄(Q1,Q2,Ψ) to simplify the above two conditions.

Claim 2. The following two statements are equivalent:

1. A maxmin solution (Q∗1,Q
∗
2,Ψ

∗) to (3.14) satisfies (3.13).

2. There exist (Q∗1,Q
∗
2) and Ψ∗ ∈ Ψu satisfying

f(Q∗1,Q
∗
2) = f̄(Q∗1,Q

∗
2,Ψ

∗) = max
(Q1,Q2)∈Q

f̄(Q1,Q2,Ψ
∗).

Before proving the claim, we state its relevance. The claim says that it is

sufficient to consider only one instance of the genie (Ψ∗) to obtain the best

upper bound instead of minimizing the upper bound function over all useful

genies. It is easy to check that the second statement implies the first statement

without invoking any special structural properties of f̄(Q1 Q2,Ψ). Proving

that the second statement is necessary requires the concave-convex property of

f̄(Q1 Q2,Ψ).

Proof. First, we prove that the second statement implies the first statement.

Let (Q∗1,Q
∗
2,Ψ

∗) satisfy the conditions in the second statement. Then, we see

that the conditions in the first statement are also satisfied:

f(Q∗1,Q
∗
2) ≤ max

(Q1,Q2)∈Q
min

Ψ∈Ψu

f̄(Q1,Q2,Ψ)

(a)

≤ min
Ψ∈Ψu

max
(Q1,Q2)∈Q

f̄(Q1,Q2,Ψ)

≤ max
(Q1,Q2)∈Q

f̄(Q1,Q2,Ψ
∗)

(b)
= f̄(Q∗1,Q

∗
2,Ψ

∗)

(c)
= f(Q∗1,Q

∗
2)

(3.15)

where step (a) follows from the standard minmax inequality, and steps (b) and

(c) follow from the assumptions in second statement. Now, we prove that the

first statement implies the second statement. Let (Q∗1,Q
∗
2,Ψ

∗) be a maxmin

solution to (3.14) satisfying (3.13). Since the objective function f̄(Q1,Q2,Ψ)
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is concave in (Q1,Q2) and convex in Ψ, and the sets Ψu and Q are convex,

we can apply Fan’s minmax theorem [40] to conclude that step (a) in (3.15)

holds true with equality. By appropriately modifying Ψ∗, we can assume that

(Q∗1,Q
∗
2,Ψ

∗) is also a minmax and hence a saddle point solution; i.e.,

min
Ψ∈Ψu

f̄(Q∗1,Q
∗
2,Ψ) = f̄(Q∗1,Q

∗
2,Ψ

∗) = max
(Q1,Q2)∈Q

f̄(Q1,Q2,Ψ
∗).

However, the condition (3.13) and the fact that f̄(Q∗1,Q
∗
2,Ψ) is an upper bound

to f(Q∗1,Q
∗
2) immediately implies that

min
Ψ∈Ψu

f̄(Q∗1,Q
∗
2,Ψ) = f̄(Q∗1,Q

∗
2,Ψ

∗).

Hence the first equality in the saddle point equation can be replaced with (3.13)

as stated in the claim.

We have already derived the necessary and sufficient conditions for (3.13)

to be true in Lemma 3. We now derive the KKT conditions which are both

necessary and sufficient conditions for (Q∗1,Q
∗
2) to be a global optimal solution

to

max
(Q1,Q2)∈Q

f̄(Q1,Q2,Ψ
∗). (3.16)

Let λ1 ≥ 0 and λ2 ≥ 0 be the dual variables associated with the constraints

Tr (Q1) ≤ P1 and Tr (Q2) ≤ P2. Let M1 � 0 and M2 � 0 be the dual variables

associated with the constraints Q1 � 0 and Q2 � 0. The Lagrangian associated

with the optimization problem (3.16) is given by

f̄(Q1,Q2,Ψ
∗) +

2∑
i=1

Tr (MiQi)− λi (Tr (Qi)− Pi) .

The corresponding KKT conditions are as given in (3.19). Thus, we obtain the

following Theorem.

Theorem 3. Suppose there exist transmit covariance matrices Q∗1 � 0,Q∗2 � 0,

genie parameters Ψ∗ =
(
ΣW 1

,ΣW 1Z1
,ΣW 2

,ΣW 2Z2

)
, and dual variables λ1 ≥

0, λ ≥ 0,M1 � 0,M2 � 0 satisfying the following conditions:

1. Transmit power constraints: Tr (Q1) ≤ P1 and Tr (Q2) ≤ P2

2. Useful genie conditions:[
I ΣZ1W 1

ΣW 1Z1
ΣW 1

]
�

[
ΣW 2

0

0 0

]
[

I ΣZ2W 2

ΣW 2Z2
ΣW 2

]
�

[
ΣW 1

0

0 0

] (3.17)
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3. Smart genie conditions:(
H̃21 −ΣW 1Z1

(
H12Q

∗
2H†12 + I

)−1

H11

)
Q∗1 = 0(

H̃12 −ΣW 2Z2

(
H21Q

∗
1H†21 + I

)−1

H22

)
Q∗2 = 0

(3.18)

4. KKT conditions:

∇Q1
f̄(Q∗1,Q

∗
2,Ψ

∗) = λ1I−M1

∇Q2
f̄(Q∗1,Q

∗
2,Ψ

∗) = λ2I−M2

λ1(Tr (Q∗1)− P1) = 0

λ2(Tr (Q∗2)− P2) = 0

Tr (M1Q
∗
1) = 0

Tr (M2Q
∗
2) = 0.

(3.19)

Then, the sum capacity of the two-user MIMO Gaussian interference channel

(3.1) is achieved by using Gaussian inputs and treating interference as noise,

and is given by

Csum = f(Q∗1,Q
∗
2).

Conversely, if there exist no such parameters satisfying the stated constraints,

then the lower and upper bounds in Theorem 2 do not coincide.

The above theorem provides sufficient conditions for the two-user Gaussian

interference channel (3.1). The problem now is to determine if there exists

an algorithm to verify the feasibility of these conditions. Observe that the

conditions in Theorem 3 are nothing but the necessary and sufficient conditions

for the bounds in Theorem 2 to coincide. Therefore, we can use the standard

convex optimization algorithms to solve the maxmin optimization problem in

Theorem 2 efficiently, and thus verify the feasibility of conditions in Theorem 3.

In the sections to follow, we explore the possibility of verifying the feasibility

of the conditions of Theorem 3 analytically. We provide two corollaries with

simpler conditions that are sufficient but may not be neccesary. In some special

cases, such as symmetric MISO and SIMO interference channels, we actually

simplify the conditions of Theorem 3 into a closed-form equation that depends

only on the channel matrices and the power constraints. To achieve all these

objectives, we first need to simplify the KKT conditions (3.19).

3.9.1 Simplified KKT Conditions

When the smart genie conditions (3.18) are satisfied, the gradient expressions in

(3.19) can be greatly simplified. We first explain the intuition before proceeding

to present the simplified expressions. Recall that f̄(Q1,Q2,Ψ) is an upper
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bound to f(Q1,Q2). Let g(Q1,Q2,Ψ) denote the gap

g(Q1,Q2,Ψ) = f̄(Q1,Q2,Ψ)− f(Q1,Q2) ≥ 0.

Suppose the genie Ψ∗ is (Q∗1,Q
∗
2)-smart, i.e., g(Q∗1,Q

∗
2,Ψ

∗) = 0. Then, we see

that (Q∗1,Q
∗
2) is an optimal solution to

min
Qi:Qi�0

g(Q1,Q2,Ψ
∗).

Therefore, (Q∗1,Q
∗
2) must satisfy the corresponding neccesary KKT conditions.

Let N1 � 0 and N2 � 0 denote the dual variables corresponding to the con-

straints Q1 � 0 and Q2 � 0, respectively. The Lagrangian associated with the

above minimization problem is given by

g(Q1,Q2,Ψ
∗)−

2∑
i=1

Tr (NiQi) .

Therefore, there must exist some dual variables N1 � 0 and N2 � 0 satisfying

the KKT conditions

∇Q1
g(Q∗1,Q

∗
2,Ψ

∗) = N1

∇Q2
g(Q∗1,Q

∗
2,Ψ

∗) = N2

Tr (N1Q
∗
1) = 0

Tr (N2Q
∗
2) = 0.

Thus, we see that the gradients in (3.19) can be simplified as

∇Q1
f̄(Q∗1,Q

∗
2,Ψ

∗) = ∇Q1
f(Q∗1,Q

∗
2) + N1

∇Q2
f̄(Q∗1,Q

∗
2,Ψ

∗) = ∇Q2
f(Q∗1,Q

∗
2) + N2

for some N1 � 0 and N2 � 0 satisfying Tr (N1Q
∗
1) = Tr (N2Q

∗
2) = 0. In the

following Lemma, we obtain the exact expressions for N1 and N2 in terms of

the channel matrices, genie parameters, and the transmit covariance matrices.

Lemma 4. Suppose the smart genie conditions (3.18) are satisfied; i.e.,(
H̃21 −T1H11

)
Q∗1 = 0(

H̃12 −T2H22

)
Q∗2 = 0

where the matrices T1 and T2 are defined as

T1 = ΣW 1Z1

(
H12Q

∗
2H†12 + I

)−1

T2 = ΣW 2Z2

(
H21Q

∗
1H†21 + I

)−1

.
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Then, we have

∇Q1
f̄(Q∗1,Q

∗
2,Ψ

∗) = ∇Q1
f(Q∗1,Q

∗
2) + N1

∇Q2 f̄(Q∗1,Q
∗
2,Ψ

∗) = ∇Q2
f(Q∗1,Q

∗
2) + N2

where the matrices N1 and N2 are given by

N1 =
(
H̃21 −T1H11

)†
Σ−1
W 1|Y 1G,X1G

(
H̃21 −T1H11

)
N2 =

(
H̃21 −T2H22

)†
Σ−1
W 2|Y 2G,X2G

(
H̃21 −T2H22

)
.

Furthermore, N1 and N2 satisfy Tr (N1Q
∗
1) = Tr (N2Q

∗
2) = 0.

Proof. Note that the genie-aided channel is also a MIMO interference channel

with received signals Ȳ 1 and Ȳ 2 given by

Ȳ 1 =

[
Y 1

S1

]
and Ȳ 2 =

[
Y 2

S2

]

and the corresponding channel matrices given by

H̄11 =

[
H11

H̃21

]
, H̄21 =

[
H21

0

]

H̄22 =

[
H22

H̃12

]
, H̄12 =

[
H12

0

]
.

Therefore,

f̄(Q1,Q2,Ψ
∗) = I

(
X1G; Ȳ 1G

)
+ I
(
X2G; Ȳ 2G

)
= log

det ΣȲ 1G

det ΣȲ 1G|X1G

+ log
det ΣȲ 2G

det ΣȲ 2G|X2G

.

Therefore, we obtain that

∇Q1
f̄(Q∗1,Q

∗
2,Ψ

∗) = H̄†11Σ
−1
Ȳ 1G

H̄11 + H̄†21

(
Σ−1
Ȳ 2G
−Σ−1

Ȳ 2G|X2G

)
H̄21.

Also, recall that

∇Q1
f(Q∗1,Q

∗
2) = H†11Σ

−1
Y 1G

H11 + H†21

(
Σ−1
Y 2G
−Σ−1

Y 2G|X2G

)
H21.

Since we are evaluating the gradients at (Q∗1,Q
∗
2), the covariance matrices in the

above expressions should also be evaluated at (Q∗1,Q
∗
2). We implicitly assume

this throughout the rest of the proof.

First, we explore the implications of the genie Ψ∗ being (Q∗1,Q
∗
2)-smart. Let

T1 and T2 be the matrices such that T1Y 1G is the MMSE estimate of S1G
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given Y 1G, and T2Y 2G is the MMSE estimate of S2G given Y 2G. We have

T1 = ΣS1GY 1G
Σ−1
Y 1G

T2 = ΣS2GY 2G
Σ−1
Y 2G

ΣS1G|Y 1G
= ΣS1G

−ΣS1GY 1G
Σ−1
Y 1G

ΣY 1GS1G

ΣS2G|Y 2G
= ΣS2G

−ΣS2GY 2G
Σ−1
Y 2G

ΣY 2GS2G
.

Similarly, define

T̂1 = ΣS1GY 1G|X1G
Σ−1
Y 1G|X1G

T̂2 = ΣS2GY 2G|X2G
Σ−1
Y 2G|X2G

ΣS1G|Y 1G,X1G
= ΣS1G|X1G

−ΣS1GY 1G|X1G
Σ−1
Y 1G|X1G

ΣY 1GS1G|X1G

ΣS2G|Y 2G,X2G
= ΣS2G|X2G

−ΣS2GY 2G|X2G
Σ−1
Y 2G|X2G

ΣY 2GS2G|X2G
.

From the discussion in Section 3.8, we see that if the genie is (Q∗1,Q
∗
2)-smart,

then we have

T1 = T̂1

T2 = T̂2

ΣS1G|Y 1G
= ΣS1G|Y 1G,X1G

ΣS2G|Y 2G
= ΣS2G|Y 2G,X2G

.

(3.20)

We now use the above expressions to simplify the gradient expressions. First,

observe that

ΣȲ 1G
= Cov

([
Y 1G

S1G

])
=

[
ΣY 1G

ΣY 1G,S1G

ΣS1G,Y 1G
ΣS1G

]
.

Using the blockwise matrix inversion formula, we have

Σ−1
Ȳ 1G

=

[
Σ−1
Y 1G

0

0 0

]
+

[
−T†1

I

]
Σ−1
S1G|Y 1G

[
−T1 I

]
. (3.21)

Similarly, we obtain

Σ−1
Ȳ 1G|X1G

=

[
Σ−1
Y 1G|X1G

0

0 0

]
+

[
−T̂†1

I

]
Σ−1
S1G|Y 1G,X1G

[
−T̂1 I

]
.

Using (3.20), we see that the difference is equal to

Σ−1
Ȳ 1G
−Σ−1

Ȳ 1G|X1G
=

[
Σ−1
Y 1G
−Σ−1

Y 1G|X1G
0

0 0

]
.
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Similarly, we also have

Σ−1
Ȳ 2G

=

[
Σ−1
Y 2G

0

0 0

]
+

[
−T†2

I

]
Σ−1
S2G|Y 2G

[
−T2 I

]
.

and

Σ−1
Ȳ 2G
−Σ−1

Ȳ 2G|X2G
=

[
Σ−1
Y 2G
−Σ−1

Y 2G|X1G
0

0 0

]
. (3.22)

Now, consider the difference

N1 = ∇Q1
f̄(Q∗1,Q

∗
2,Ψ

∗)−∇Q1
f(Q∗1,Q

∗
2)

= H̄†11Σ
−1
Ȳ 1G

H̄11 −H†11Σ
−1
Y 1G

H11

+ H̄†21

(
Σ−1
Ȳ 2G
−Σ−1

Ȳ 2G|X2G

)
H̄21 −H†21

(
Σ−1
Y 2G
−Σ−1

Y 2G|X2G

)
H21︸ ︷︷ ︸

= 0

.

Observe that the second term is equal to zero. This follows from (3.22) and the

definition of H̄21. Therefore, we obtain that

N1 = H̄†11Σ
−1
Ȳ 1G

H̄11 −H†11Σ
−1
Y 1G

H11

(b)
=
(
H̃21 −T1H11

)†
Σ−1
S1|Y 1G

(
H̃21 −T1H11

)
where the last step follows from (3.21) and the definition of H̄11. A similar

expression can be obtained for N2. We complete the proof by noting that

ΣS1|Y 1G
= ΣS1|Y 1G,X1G

= ΣW 1|H12X2G+Z1

and

T1 = T̂1 = ΣS1Y 1G|X1G
Σ−1
Y 1G|X1G

= ΣW 1Z1

(
H12Q

∗
2H†12 + I

)−1

.

Remark 1. Suppose the conditions of Theorem 3 are satisfied; then the sum ca-

pacity is given by f(Q∗1,Q
∗
2). As an obvious corollary, we also get that (Q∗1,Q

∗
2)

are the optimal covariances matrices maximizing the achievable sum-rate (3.3).

This means that (Q∗1,Q
∗
2) must satisfy the corresponding necessary KKT con-

ditions (3.5). Therefore, it must be that the conditions in Theorem 3 imply the

conditions (3.5). Lemma 4 makes it easier to see this connection. Observe that

the KKT conditions (3.19), along with the smart genie conditions (3.18), imply

that

∇Q1
f(Q∗1,Q

∗
2) = λ1I−M1 −N1

∇Q2
f(Q∗1,Q

∗
2) = λ2I−M2 −N2
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where N1 � 0, N2 � 0 and Tr (N1Q
∗
1) = Tr (N2Q

∗
2) = 0. Therefore, by

replacing M1 by M1 +N1 and M2 by M2 +N2, we see that the KKT conditions

(3.5) are satisfied.

3.9.2 Full Rank Optimal Covariance Matrices

We use the insights from the previous section to simplify the conditions in The-

orem 3 when the optimal covariance matrices (Q∗1,Q
∗
2) have full rank. Suppose

the conditions of Theorem 3 are satisfied and (Q∗1,Q
∗
2) have full rank. Then,

it must be that the matrices N1 and N2 defined in Lemma 4 must be equal to

zero. This is because N1 and N2 are positive semidefinite matrices satisfying

Tr (N1Q
∗
1) = Tr (N2Q

∗
2) = 0. Therefore, we have that

∇Q1
f̄(Q∗1,Q

∗
2,Ψ

∗) = ∇Q1
f(Q∗1,Q

∗
2)

∇Q2 f̄(Q∗1,Q
∗
2,Ψ

∗) = ∇Q2f(Q∗1,Q
∗
2).

Hence, the KKT conditions (3.19) are identical to (3.5) which are satisfied if

(Q∗1,Q
∗
2) is a local optimal solution to the optimization problem (3.3). Thus,

we obtain the following corollary to Theorem 3.

Corollary 1. Suppose there exist a local optimal solution Q∗1 � 0,Q∗2 � 0 to

max
(Q1,Q2)∈Q

f(Q1,Q2)

and a genie Ψ∗ that is both useful and (Q∗1,Q
∗
2)-smart; i.e., the conditions

(3.17) and (3.18) are satisfied. Then, the sum capacity of the two-user MIMO

Gaussian interference channel (3.1) is achieved by using Gaussian inputs and

treating interference as noise, and is given by

Csum = f(Q∗1,Q
∗
2).

3.9.3 Concave Sum-Rate Function

As summarized in Section 3.5, the basic idea leading to the techniques devel-

oped in this chapter is that the achievable sum-rate function f(Q1,Q2) is not

necessarily concave in (Q1,Q2) and so we used the genie-aided channel to de-

velop a concave upper bound f̄(Q1,Q2,Ψ) to handle the optimization problem.

The best concave upper bound to f(Q1,Q2) is given by

f̄(Q1,Q2) = min
Ψ∈Ψu

f̄(Q1,Q2,Ψ).

Suppose f̄(Q1,Q2) = f(Q1,Q2) for every feasible (Q1,Q2). Then, we see that

f(Q1,Q2) is a concave function within the region of interest, and hence we can

just use the standard convex optimization algorithms to determine the global

34



optimal solution to

max
(Q1,Q2)∈Q

f(Q1,Q2).

Clearly, this also implies the sum capacity is equal to f(Q∗1,Q
∗
2). Observe that

Csum ≤ max
(Q1,Q2)∈Q

min
Ψ∈Ψu

f̄(Q1,Q2,Ψ)

= max
(Q1,Q2)∈Q

f̄(Q1,Q2)

(a)
= max

(Q1,Q2)∈Q
f(Q1,Q2)

= f(Q∗1,Q
∗
2)

where the step (a) follows because we assumed that f̄(Q1,Q2) = f(Q1,Q2) for

every feasible (Q1,Q2). Since the condition f̄(Q1,Q2) = f(Q1,Q2) is equiv-

alent to the existence of a genie Ψ that is both useful and (Q1,Q2)-smart, we

obtain the following corollary to Theorem 2.

Corollary 2. Suppose for every feasible transmit covariance matrices (Q1,Q2),

there exists a genie Ψ that is both useful and (Q1,Q2)-smart; i.e., the condi-

tions (3.17) and (3.12) are satisfied. Then, the achievable sum-rate function

f(Q1,Q2) is concave in (Q1,Q2) in the feasible region Q, and the sum capacity

is achievable by using Gaussian inputs and treating interference as noise, and

is given by f(Q∗1,Q
∗
2), the optimal solution to the convex optimization problem

max
(Q1,Q2)∈Q

f(Q1,Q2).

3.9.4 SISO Interference Channel

In this section, we consider the SISO interference channel in the standard form

Y1 = X1 + h12X2 + Z1

Y2 = h21X1 +X2 + Z2

(3.23)

with the transmit power constraints P1 and P2. We now simplify the low inter-

ference regime conditions of Theorem 3 to obtain a simple closed-form condition.

In the SISO case, the KKT conditions of Theorem 3 are automatically satisfied.

Recall that the role of the KKT conditions is to make sure (q∗1 , q
∗
2) is the global

optimal solution to

max
(q1,q2)∈Q

f̄(q1, q2,Ψ
∗).

However, we have already proved in Lemma 1 that f̄(q1, q2,Ψ
∗) is a nondecreas-

ing function in (q1, q2). Therefore, (q∗1 , q
∗
2) = (P1, P2) must be a global optimal

solution to the above optimization problem, and hence there must exist dual

variables satisfying the KKT conditions (3.19). Therefore, it only remains to

verify the existence of a genie Ψ∗ = (ΣW1 ,ΣW1Z1 ,ΣW2 ,ΣW2Z2) that is useful
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and (P1, P2)-smart, i.e., satisfying the conditions (3.17) and (3.18).

Theorem 4. The sum capacity of the two-user SISO Gaussian interference

channel (3.23) is achieved by using Gaussian inputs and treating interference

as noise, and is given by

Csum = log

(
1 +

P1

1 + |h12|2P2

)
+ log

(
1 +

P2

1 + |h21|2P1

)
if the channel parameters satisfy the condition

|h21|
(
1 + |h12|2P2

)
+ |h12|

(
1 + |h21|2P1

)
≤ 1. (3.24)

Proof. The smart genie conditions (3.18) are given by(
h21 − ΣW1Z1

(
h12P2h

†
12 + 1

)−1
)
P1 = 0(

h12 − ΣW2Z2

(
h21P1h

†
21 + 1

)−1
)
P2 = 0

which are equivalent to

ΣW1Z1
= h21

(
1 + |h12|2P2

)
ΣW2Z2

= h12

(
1 + |h21|2P1

)
.

The useful genie conditions (3.17) are given by[
1 ΣZ1W1

ΣW1Z1
ΣW1

]
�

[
ΣW2

0

0 0

]
[

1 ΣZ2W2

ΣW2Z2
ΣW2

]
�

[
ΣW1

0

0 0

]

which are equivalent to

0 ≤ ΣW1
,ΣW2

≤ 1

ΣW1
(1− ΣW2

) ≤ |ΣW1Z1
|2

ΣW2(1− ΣW1) ≤ |ΣW2Z2 |2.

Substituting ΣW1 = cos2 φ1 and ΣW2 = sin2 φ2, where φ1, φ2 ∈ [0, π/2], the

above equations can be simplified as

cosφ1 cosφ2 ≤ |ΣW1Z1
|

sinφ1 sinφ2 ≤ |ΣW2Z2 |.

It is easy to check that a solution φ1, φ2 ∈ [0, π/2] exists if and only if

|ΣW1Z1 |+ |ΣW2Z2 | ≤ 1.
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3.10 Symmetric MISO and SIMO Interference
Channels

In this section, we consider the symmetric MISO and SIMO interference chan-

nels, and simplify the conditions in Theorem 3 to derive a simple closed-form

equation for the low interference regime.

Symmetric MISO interference channel:

Y1 = d†X1 + hc†X2 + Z1

Y2 = d†X2 + hc†X1 + Z2.

Symmetric SIMO interference channel:

Y 1 = dX1 + hcX2 + Z1

Y 2 = dX2 + hcX1 + Z2.

In both the above cases, we assume that the transmitters satisfy an average

transmit power constraint of P . We assume that h ≥ 0 is a real number, and

the vectors d and c have unit norm, and are defined as

d =

[
cos θ

sin θ

]
, c =

[
1

0

]
(3.25)

for some θ ∈ [0, π/2]. See Section 3.2 for a justification for these assumptions.

In particular, observe that the third assumption in Section 3.2 states that we

can restrict the study of the MISO (resp. SIMO) Gaussian interference channels

to the case with only two transmit (resp. receive) antennas.

Observe that both the MISO and SIMO channels with θ = 0 are equivalent

to the classical two-user SISO Gaussian interference channel. In Section 3.9.4,

we showed that the channel is in low interference regime, and hence treating

interference as noise achieves the sum capacity equal to

2 log

(
1 +

P

1 + h2P

)
if the parameters h and P satisfy h(1+h2P ) ≤ 0.5. On the other extreme, with

θ = π/2, we obtain the scenario where the users do not interfere with each other,

and hence the sum capacity is given by 2 log (1 + P ) for any h. We vary θ from

0 to π/2, and analyze the behavior of sum capacity and the low interference

regime as a function of θ.
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3.10.1 Achievable Sum-Rate

First, consider the SIMO interference channel. The achievable sum-rate (3.4)

obtained by using Gaussian inputs and treating interference as noise is given by

f(q1, q2) = log
|I + q1dd† + h2q2cc†|
|I + h2q2cc†|

+ log
|I + q2dd† + h2q1cc†|
|I + h2q1cc†|

where q1 and q2 denote the transmit powers. Recall that q1 and q2 must satisfy

the average power constraints of q1, q2 ≤ P . The achievable sum-rate by using

the maximum power, i.e., by setting q1 = q2 = P , is given by

f(P, P ) = 2 log
|I + Pdd† + h2Pcc†|
|I + h2Pcc†|

= 2 log
∣∣I + J−1Pdd†

∣∣
= 2 log

(
1 + Pd†J−1d

)
(3.26a)

= 2 log

(
1 +

P cos2 θ

1 + h2P
+ P sin2 θ

)
(3.26b)

where the matrix J denotes

J = I + h2Pcc† =

[
1 + h2P 0

0 1

]
.

Step (a) follows from the identity |I + AB| = |I + BA|, and step (b) follows

from the definitions (3.25) of d and c. The above sum-rate can be shown to be

achievable with the receivers projecting the received vector along a beamforming

direction, denoted by a unit norm vector b, i.e.,

Ỹ1 = b†Y 1 = b†dX1 + hb†cX2 + b†Z1

Ỹ2 = b†Y 2 = b†dX2 + hb†cX1 + b†Z2.

We choose the beamforming direction b as

b =
J−1d

||J−1d||
(3.27)

in order to achieve the best SINR:

SINR =
P |b†d|2

1 + h2P |b†c|2
=
P |b†d|2

b†Jb
= Pd†J−1d.

This interpretation of receive beamforming helps in understanding the best

achievable sum-rate of the dual MISO interference channel. Observe that the

achievable sum-rate of the MISO interference channel is given by

f(Q1,Q2) = log

(
1 +

Pd†Q1d

1 + h2Pc†Q2c

)
+ log

(
1 +

Pd†Q2d

1 + h2Pc†Q1c

)
.
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Using the insight from the SIMO interference channel, we let the transmitters

to transmit along the beamforming direction b; i.e., we set

Q∗1 = Q∗2 = Q∗ = Pbb†.

The corresponding achievable sum-rate is given by

f(Q∗,Q∗) = 2 log

(
1 +

Pd†Q∗d
1 + h2Pc†Q∗c

)
= 2 log

(
1 +

P cos2 θ

1 + h2P
+ P sin2 θ

)
.

3.10.2 Low Interference Regime

Theorem 5. The sum capacity of the symmetric MISO and SIMO Gaussian

interference channels described in Section 3.10 is achieved by using Gaussian

inputs and treating interference as noise at the receivers, and is given by

Csum = 2 log

(
1 +

P cos2 θ

1 + h2P
+ P sin2 θ

)
if the channel parameters satisfy the threshold condition h ≤ h0(θ, P ), where

h0(θ, P ) is defined as the unique positive solution to the implicit equation

h2 − sin2 θ =

(
cos θ

1 + h2P
− h
)2

+

. (3.28)

(The notation x2
+ is used to denote (max(0, x))2.)

The above theorem is obtained by specializing conditions in Theorem 3 for

the special case of symmetric MISO and SIMO channels. Before we go into the

proof details, we first prove some properties of the threshold function h0(θ, P ).

The threshold h0(θ, P ) is plotted as a function of θ for different values of P in

Figure 3.1. It can be observed that the threshold curve is always above the sin θ

curve and approaches the sin θ curve as P becomes larger.

We summarize the observations from Figure 3.1 in the following claim.

Claim 3. The threshold h0(θ, P ) satisfies

1. h0(θ, P ) > sin θ for all P < P0(θ)

2. h0(θ, P ) = sin θ for all P ≥ P0(θ)

where P0(θ) is defined as

P0(θ) =


cos θ − sin θ

sin3 θ
when 0 ≤ θ < π/4

0 when π/4 ≤ θ < π/2

.

Proof. Observe that the L.H.S. of (3.28) is strictly increasing in h, whereas the

R.H.S. is decreasing in h. This verifies that (3.28) has a unique positive solution.
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Figure 3.1: Threshold on h characterizing the low interference regime of the
symmetric MISO and SIMO interference channels

Note that the L.H.S. is strictly negative when h < sin θ, whereas the R.H.S. is

always nonnegative. This immediately implies that h0(θ, P ) ≥ sin θ. It can be

easily checked that the R.H.S. is equal to zero at h = sin θ when P ≥ P0(θ).

Hence we obtain the second statement. Similarly, it can be easily checked that

the R.H.S. is greater than zero at h = sin θ when P < P0(θ). Hence, we obtain

the first statement.

3.10.3 SIMO Interference Channel

Recall from Section 3.2 that H̃12 and H̃21 denote the nonzero rows of the respec-

tive matrices H12 and H21. Therefore, for the special case of SIMO interference

channel, we have H̃12 = H̃21 = h, and the genie signals (3.7) are given by

S1 = hX1 +W1

S2 = hX2 +W2.

We now simplify the conditions in Theorem 3 and show that they are equivalent

to the threshold condition in Theorem 5. As explained in Section 3.9.4 for the

SISO interference channel, we do not have to explicitly check for the KKT

conditions (3.19) because they are automatically satisfied at (q∗1 , q
∗
2) = (P, P ).

This is true because f̄(q1, q2,Ψ
∗) is nondecreasing in (q1, q2). Therefore it only

remains to verify the existence of a genie Ψ∗ =
(
ΣW1 ,ΣW1Z1

,ΣW2 ,ΣW2Z2

)
that

is useful and (P, P )-smart, i.e., satisfying the conditions (3.17) and (3.18). Since
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we are working with the symmetric interference channel, we restrict ourselves

to a symmetric genie; i.e., we assume ΣW1Z1
= ΣW2Z2

= ΣWZ = [a1 a2] and

ΣW1 = ΣW2 = ΣW .

The usefulness condition (3.17) when specialized to the SIMO channel is given

by  1 0 a†1
0 1 a†2
a1 a2 ΣW

 �
 ΣW 0 0

0 0 0

0 0 0

⇔
 1− ΣW 0 a†1

0 1 a†2
a1 a2 ΣW

 � 0.

Using the fact that a hermitian matrix is positive semidefinite if and only if all

the principal minors are nonnegative, the above condition is equivalent to the

conditions

0 ≤ ΣW ≤ 1

ΣW − |a2|2 ≥ 0

(1− ΣW )(ΣW − |a2|2)− |a1|2 ≥ 0.

(3.29)

The smartness condition (3.18) when specialized to the SIMO channel is given

by (
h−Σwz

(
h2Pcc† + I

)−1
d
)
P = 0

⇔ h−Σwz

[
1 + h2P 0

0 1

]−1

d = 0

⇔ h− a1 cos θ

1 + h2P
− a2 sin θ = 0.

(3.30)

Therefore, we obtain that the SIMO interference channel is in the low interfer-

ence regime if there exist parameters a1, a2,ΣW satisfying the conditions (3.29)

and (3.30). The following claim completes the proof of SIMO part of Theorem 5.

Claim 4. There exist parameters a1, a2,ΣW satisfying the conditions (3.29)

and (3.30) if and and only if the following condition is true

h2 − sin2 θ ≤
(

cos θ

1 + h2P
− h
)2

+

. (3.31)

Proof. First, observe that the channel parameters h, θ, P are real, and hence

we can restrict the genie parameters a1, a2 also to be real. We simplify the

usefulness conditions (3.29) by eliminating the parameter ΣW . We show that

there exists ΣW satisfying (3.29) if and only if 2|a1|+ a2
2 ≤ 1. Observe that the

last condition in (3.29) can be expressed as

(1− ΣW )(−ΣW + a2
2) + a2

1 ≤ 0

⇔ (1− ΣW )a2
2 + a2

1 ≤ (1− ΣW )ΣW .
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This automatically implies the second condition in (3.29). We can eliminate

ΣW by checking when the quadratic inequality

Σ2
W − ΣW (1 + a2

2) + 1 + a2
1 ≤ 0

has a solution between 0 and 1. We see that the above expression achieves a

minimum of

1 + a2
1 − (1 + a2

2)2/4 = a2
1 − (1− a2

2)2/4

at ΣW =
1+a22

2 . Since |a2| ≤ 1 must be satisfied, we see that
1+a22

2 is in between 0

and 1. Therefore, the above quadratic inequality has a solution between 0 and 1

if and only if a1 and a2 satisfy a2
1−(1−a2

2)2/4 is nonnegative; i.e, 2|a1|+a2
2 ≤ 1.

Therefore, we are now left with the problem of determining conditions on

h, θ, P such that there exist a1 and a2 exist satisfying 2|a1|+ a2
2 ≤ 1 and

h =
a1 cos θ

1 + h2P
+ a2 sin θ. (3.32)

It can be easily checked that 2|a1|+ a2
2 ≤ 1 implies |a1|+ |a2| ≤ 1. Therefore, a

necessary condition is that h, θ, P must satisfy

h ≤ max

(
cos θ

1 + h2P
, sin θ

)
.

We now divide the proof into two cases.

Case 1: Channel parameters satisfy h ≤ sin θ. By setting a1 = 0 and a2 =

h/ sin θ, we see that a1 and a2 exist for any h ≤ sin θ.

Case 2: Channel parameters satisfy

sin θ < h ≤ cos θ

1 + h2P
. (3.33)

Observe that if a1 is negative, then h ≤ a2 sin θ ≤ sin θ. Therefore, we can

restrict a1 to be nonnegative. We now obtain a neccesary condition for a1 and

a2 to exist. We can rewrite the condition (3.32) as

h(1− a1) = a1

(
cos θ

1 + h2P
− h
)

+ a2 sin θ.

Applying Cauchy-Schwarz inequality, we obtain that h, θ, P must satisfy

h2(1− a1)2 ≤

((
cos θ

1 + h2P
− h
)2

+ sin2 θ

)
(a2

1 + a2
2)

and hence

h2 − sin2 θ ≤
(

cos θ

1 + h2P
− h
)2

because the inequality 2a1 + a2
2 ≤ 1 is equivalent to the inequality a2

1 + a2
2 ≤

(1 − a1)2. Conversely, we note that a1 and a2 exist for any h, θ, P satisfying
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(3.33) and the above condition. The corresponding expressions for a1 and a2

are obtained by solving the system of linear equations comprised of (3.32) and

the following equality which makes the Cauchy-Schwarz inequality tight

a1 sin θ = a2

(
cos θ

1 + h2P
− h
)
.

Therefore, combining both the cases, we see that a1, a2 exist if and only if the

channel parameters satisfy condition (3.31).

3.10.4 MISO Interference Channel

Observe that Theorem 5 is obtained by specializing Theorem 3 for the special

case of symmetric MISO interference channel. The genie signals (3.7) are given

by

S1 = hc†X1 +W1

S2 = hc†X2 +W2.

Theorem 5 follows if we show that there exist genie parameters and dual vari-

ables satisfying the conditions of Theorem 3 at

Q∗1 = Q∗2 = Q∗ = Pbb†.

Since the channel is symmetric across the users, we restrict the genie parameters

Ψ∗ = (ΣW1 ,ΣW1Z1 ,ΣW2 ,ΣW2Z2) and the dual variables λ1, λ2,M1,M2 to be

symmetric, i.e.,

ΣW1Z1
= ΣW2Z2

= ΣWZ

ΣW1 = ΣW2 = ΣW

λ1 = λ2 = λ

M1 = M2 = M.

Therefore, we need to prove the existence of the parameters ΣW ,ΣWZ , λ ≥
0,M � 0 satisfying the following conditions:

1. Useful genie condition:[
1 ΣZW

ΣWZ ΣW

]
�

[
ΣW 0

0 0

]

2. Smart genie condition:(
hc† − ΣWZ

1 + h2P |b†c|2
d†
)

b = 0
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3. KKT conditions:

∇Q1
f̄(Q∗,Q∗,Ψ∗) = λI−M

Tr (MQ∗) = 0

Note that the useful genie condition is equivalent to

ΣW (1− ΣW ) ≥ |ΣWZ |2

and that the smart genie condition is equivalent to

hc†b =
ΣWZ

b†Jb
d†b

⇔ ΣWZ = h
c†b
d†b

b†Jb.

Recall that the matrix J is defined as

J = I + h2Pcc† =

[
1 + h2P 0

0 1

]

and the beamforming vector b is defined as the unit norm vector in the direction

of

b =
J−1d

||J−1d||
=

1

||J−1d||

[
cos2 θ

1+h2P

sin θ

]
.

Thus, we see that the smart genie condition is equivalent to

ΣWZ = h
c†b
d†b

b†Jb

= h
c†J−1d

d†J−1d

d†J−1d

||J−1d||2

= h
c†J−1d

||J−1d||2

i.e.,

ΣWZ =
h

cos θ

1 + h2P
cos2 θ

(1 + h2P )2
+ sin2 θ

. (3.34)

We now simplify the KKT conditions. Observe that Tr (MQ∗) = 0 is equivalent

to saying that Mb = 0. Therefore, we see that b is an eigenvector of the

gradient matrix ∇Q1
f̄(Q∗,Q∗,Ψ∗) with λ ≥ 0 as the eigenvalue value. The

condition M � 0 implies that the other eigenvalue is smaller than λ. Thus, we

see that the KKT conditions are equivalent to saying that

b is the dominant eigenvector of ∇Q1 f̄(Q∗,Q∗,Ψ∗) with eigenvalue λ ≥ 0.
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We can use the Lemma 4 to simplify the derivation of the gradient matrix.

Observe that

∇Q1
f̄(Q∗,Q∗,Ψ∗) = ∇Q1

f(Q∗,Q∗) + N

where the matrix N is given by

N =
(hc− td)

†
(hc− td)

ΣW1|Y1G,X1G

and the parameter t is given by

t =
ΣWZ

h2P |b†c|2 + 1
=

ΣWZ

b†Jb
= h

c†b
d†b

. (3.35)

Observe that the matrix N satisfies Nb = 0. Therefore, we need to show that

b is an eigenvector of ∇Q1
f(Q∗,Q∗). Note that

∇Q1
f(Q∗,Q∗) =

dd†

ΣY1G

+
h2cc†

ΣY2G

− h2cc†

ΣY2G|X2G

=
1

ΣY1G

(
dd† − h2

(
ΣY2G

ΣY2G|X2G

− 1

)
cc†
)

=
1

ΣY1G

(
dd† − h2 SINR cc†

)
.

(3.36)

Recall that the expression for SINR is given by

SINR =
P cos2 θ

1 + h2P
+ P sin2 θ.

Using the expansion

dd† − h2 SINR cc† =

[
cos2 θ − h2SINR cos θ sin θ

cos θ sin θ sin2 θ

]

=

[
cos2 θ

1+h2P − h
2P sin2 θ cos θ sin θ

cos θ sin θ sin2 θ

]

we can easily check that b is an eigenvector of the matrix ∇Q1f(Q∗,Q∗) with

the corresponding eigenvalue given by

λ =
1

ΣY1G

(
cos2 θ

1 + h2P
+ sin2 θ

)
. (3.37)

Since Nb = 0, we also obtain that the b is an eigenvector of the matrix

∇Q1
f̄(Q∗,Q∗,Ψ∗) with the same eigenvalue λ. Since the sum of eigenvalues

is equal to the trace of the matrix, the other eigenvalue is equal to

Tr
(
∇Q1 f̄(Q∗,Q∗,Ψ∗)

)
− λ.
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Therefore, we have that the b is the dominant eigenvector if and only if

2λ ≥ Tr
(
∇Q1

f̄(Q∗,Q∗,Ψ∗)
)

= Tr (∇Q1f(Q∗,Q∗)) + Tr (N) .

Note that

Tr (N) =
||hc− td||2

ΣW1|Y1G,X1G

=
||hc− td||2

ΣW −
Σ2
WZ

1 + h2|b†c|2

.

Therefore, b is the dominant eigenvector if and only if

ΣW ≥
Σ2
WZ

1 + h2|b†c|2
+

||hc− td||2

2λ− Tr (∇Q1
f(Q∗,Q∗))

. (3.38)

Observe that all the variables other than ΣW are known and can be expressed

as a function of h, θ and P . By substituting the corresponding expressions, we

can simplify the R.H.S. of (3.38).

Claim 5. The condition (3.38) is equivalent to

ΣW ≥

h2(1 + P sin2 θ)

1 + h2P
cos2 θ

(1 + h2P )2
+ sin2 θ

. (3.39)

Therefore, it remains to verify the existence of the parameter ΣW satisfying

the usefulness condition

ΣW (1− ΣW ) ≥ Σ2
WZ

Σ2
W − ΣW + Σ2

WZ ≤ 0

and (3.39), where ΣWZ is given by the smartness condition (3.34). Observe that

the above quadratic inequality has a solution if and only if ΣWZ ≤ 0.5, and that

the largest possible value for ΣW satisfying the quadratic inequality is given by

0.5(1+
√

1− 4Σ2
WZ). Since the condition (3.39) requires ΣW to be larger than a

threshold, without any loss of generality, we can set ΣW = 0.5(1+
√

1− 4Σ2
WZ).

Therefore, it remains to verify if h, θ and P satisfy the following two conditions:

ΣWZ =
h

cos θ

1 + h2P
cos2 θ

(1 + h2P )2
+ sin2 θ

≤ 0.5

ΣW =
−1 +

√
1− 4Σ2

WZ

2
≥

h2(1 + P sin2 θ)

1 + h2P
cos2 θ

(1 + h2P )2
+ sin2 θ

.
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We now show that the above two conditions are satisfied when h ≤ h0(θ, P ) by

dividing the proof into two cases.

Case 1: Channel parameters satisfy h ≤ sin θ. Recall that ΣWZ is given by

ΣWZ =
h

cos θ

1 + h2P
cos2 θ

(1 + h2P )2
+ sin2 θ

≤
sin θ

cos θ

1 + h2P
cos2 θ

(1 + h2P )2
+ sin2 θ

=
ab

a2 + b2

where we used a and b to denote cos θ/(1 + h2P ) and sin θ, respectively. Using

the fact that 2ab ≤ a2 + b2, we obtain that ΣWZ ≤ 0.5. Using the fact that

(a2 + b2)2 − 4a2b2 = (a2 − b2)2, we see that the corresponding ΣW satisfies

ΣW =
1 +

√
1− 4Σ2

WZ

2

≥ max(a2, b2)

a2 + b2

≥ b2

a2 + b2
.

Now, observe that

b2 = sin2 θ ≥ sin2 θ − sin2 θ − h2

1 + h2P
=
h2(1 + P sin2 θ)

1 + h2P
.

Thus, we see that the KKT condition (3.39) is satisfied.

Case 2: The channel parameters satisfy

sin θ < h ≤ cos θ

1 + h2P
. (3.40)

Observe that the condition

ΣW =
2h

cos θ

1 + h2P
cos2 θ

(1 + h2P )2
+ sin2 θ

≤ 1

is equivalent to

h2 − sin2 θ ≤
(

cos θ

1 + h2P
− h
)2

and hence is satisfied because h ≤ h0(θ, P ). Observe that the condition (3.39)

is satisfied because

ΣW = 0.5(1 +
√

1− 4Σ2
WZ) ≥ 0.5 ≥ ΣWZ

and

h cos θ ≥ h2(1 + h2P ) ≥ h2(1 + P sin2 θ).
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3.11 Summary and Future Directions

We studied the nonconvex optimization problem of determining the best achiev-

able sum-rate, using Gaussian inputs and treating interference as noise, in the

two-user MIMO Gaussian interference channel. We used the idea of genie-aided

channel to relax the nonconvex optimization problem and proposed a related

convex maxmin optimization problem. The corresponding saddle point solution

provides lower and upper bounds to the best achievable sum-rate. We then

showed that the resulting upper bound is indeed an upper bound to the sum

capacity as well. We also derived necessary and sufficient conditions for the

bounds to coincide, leading to an exact characterization of the the best achiev-

able sum-rate with treating interference as noise, and the sum capacity. We

then simplified the conditions in the special cases of symmetric MISO and SIMO

Gaussian interference channels, and showed that the conditions are equivalent

to a threshold condition on the cross-channel gain. Interestingly, the threshold

is identical for the symmetric MISO and the dual SIMO interference channels.

3.11.1 Beyond Low Interference Regime

We have derived lower and upper bounds to the sum capacity and the best

achievable sum-rate with treating interference as noise, and showed that the

bounds coincide in the low interference regime. The upper bound in Theorem 2

is good when the interference levels are low, and can be very loose when the in-

terference levels are high. It is of interest to obtain good lower and upper bounds

beyond the low interference regime. Recall that the basic idea in this chapter is

to upper-bound the achievable sum-rate f(Q1,Q2) by a concave function. We

now argue that the genie-aided upper bound function f̄(Q1,Q2) presented in

this chapter may not be the best concave upper bound to the sum-rate function

f(Q1,Q2), and present a trick used in [23, 34] to obtain a better upper bound.

The basic idea is to apply Theorem 2 to the interference channels obtained

by removing some of the interfering links. Since removing the contribution of

an interfering message at a receiver can only improve the sum capacity and

the achievable sum-rate, the resulting upper bounds also serve as upper bounds

to the original interference channel. There are a total of two interfering links,

and hence we have four scenarios corresponding to whether each interfering link

is present or not. Therefore, we obtain the following outer bound to the sum

capacity:

Csum ≤ max
(Q1,Q2)∈Q

min
0≤i≤3

min
Ψi∈Ψiu

f̄i(Q1,Q2,Ψi)

where

• f̄0(Q1,Q2,Ψ0) and Ψ0u denote the sum-rate of the genie-aided channel

and the usefulness set, respectively.
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• f̄1(Q1,Q2,Ψ1) and Ψ1u denote the sum-rate of the genie-aided channel

and the usefulness set, respectively, obtained by setting H21 = 0.

• f̄2(Q1,Q2,Ψ2) and Ψ2u denote the sum-rate of the genie-aided channel

and the usefulness set, respectively, obtained by setting H12 = 0.

• f̄3(Q1,Q2,Ψ3) and Ψ3u denote the sum-rate of the genie-aided channel

and the usefulness set, respectively, obtained by setting both H12 = H21 =

0. In this case, since both the interfering links are removed, the minimiza-

tion over the genie parameters is not required since the corresponding

sum-rate function itself is concave.

For each 0 ≤ i ≤ 3, let fi(Q1,Q2) denote the sum-rate of the interference

channels obtained by removing some of the interfering links as explained above,

and let f̄i(Q1,Q2) denote the corresponding concave upper bound obtained by

minimizing over all useful genies. Observe that

f0(Q1,Q2) ≤ fi(Q1,Q2), ∀i = 1, 2, 3.

However, the corresponding upper bounds may not satisfy the same relations.

This implies that the min0≤i≤3 f̄i(Q1,Q2) could be smaller than f̄0(Q1,Q2),

which proves that the genie-aided upper bound presented in this chapter is

in general not the best concave upper bound to the sum-rate function. An

interesting line of research is to explore other ways of obtaining concave upper

bounds to the sum-rate function f(Q1,Q2).

3.11.2 Symbol Extensions

The concept of symbol extensions is exploited in [41] as a means to improve

the achievable rates. But the same idea can be used to obtain better upper

bounds as well. For example, by considering two symbols as one super-symbol,

we obtain the multi-letter interference channel:

Ȳ 1 = H̄11X̄1 + H̄12X̄2 + Z̄1

Ȳ 2 = H̄21X̄1 + H̄22X̄2 + Z̄2

where the channel matrices H̄11, H̄12, H̄21, H̄22 are defined as

H̄ij =

[
Hij

Hij

]
, i, j = 1, 2,

and the power constraints are given by 2P1 and 2P2. Observe that the sum

capacity of the single-letter interference channel is equal to half of the multi-

letter interference channel. However, the upper bound obtained by applying

Theorem 2 to the multi-letter interference channel can only be better than that

by considering the single-letter interference channel. The reason is as follows.
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The genie for the single-letter interference channel has i.i.d. Gaussian noise.

By considering the multi-letter interference channel, we essentially are allowing

for the Gaussian noise in genie signals to be correlated in time. Since we are

considering a larger class of genie parameters, the outer bound can only improve.

3.12 Proof of Claim 5

In this section, we prove that the R.H.S. of (3.38) is equal to

Σ2
WZ

1 + h2|b†c|2
+

||hc− td||2

2λ− Tr (∇Q1
f(Q∗,Q∗))

=
h2(1 + h2P )(1 + P sin2 θ)

cos2 θ + (1 + h2P )2 sin2 θ
.

Recall that c = [1 0]>, d = [cos θ sin θ]>,

J = I + h2Pcc† =

[
1 + h2P 0

0 1

]

and that b is the unit norm vector in the direction of J−1d; i.e.,

b =
J−1d

||J−1d||
.

From (3.35), we obtain that

t = h
c†b
d†b

=

h cos θ

1 + h2P
cos2 θ

1 + h2P
+ sin2 θ

=
h cos θ

1 + h2P sin2 θ
.

Therefore,

||hc− td||2 = t2 + h2 − 2ht cos θ

= (t− h cos θ)2 + h2 sin2 θ

=
h2 cos2 θ(h2P sin2 θ)2

(1 + h2P sin2 θ)2
+ h2 sin2 θ

= h2 sin2 θ

(
h4P sin2 θ cos2 θ

(1 + h2P sin2 θ)2
+ 1

)
= h2 sin2 θ

1 + 2h2P sin2 θ + h4P 2 sin2 θ

(1 + h2P sin2 θ)2

= h2 sin2 θ
cos2 θ + (1 + h2P )2 sin2 θ

(1 + h2P sin2 θ)2
.
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From (3.36), we obtain that

Tr (∇Q1
f(Q∗,Q∗)) =

1

ΣY1G

(
1− h2 SINR

)
=

1

ΣY1G

(
1− h2P cos2 θ

1 + h2P
− h2P sin2 θ

)
.

Substituting the expression (3.37) for λ, we obtain

2λ− Tr (∇Q1
f(Q∗,Q∗)) =

1

ΣY1G

(
cos2 θ

1 + h2P
+ sin2 θ(1 + h2P )

)
=

cos2 θ + (1 + h2P )2 sin2 θ

(1 + h2P )ΣY1G

.

Therefore,

||hc− td||2

2λ− Tr (∇Q1
f(Q∗,Q∗))

=
h2 sin2 θ(1 + h2P ) ΣY1G

(1 + h2P sin2 θ)2
.

From (3.35), we obtain that

Σ2
WZ

1 + h2P |c†b|2
=

Σ2
WZ

b†Jb
= t2 b†Jb =

h2 cos2 θ b†Jb

(1 + h2P sin2 θ)2
.

Using the fact that

ΣY1G
= (b†Jb)(1 + SINR)

= (b†Jb)

(
1 +

P cos2 θ

1 + h2P
+ P sin2 θ

)
= (b†Jb)

1 + P + h2P + h2P 2 sin2 θ

1 + h2P

we obtain that the R.H.S. of (3.38) is equal to

b†Jb

(
h2 cos2 θ

(1 + h2P sin2 θ)2
+
h2 sin2 θ(1 + P + h2P + h2P 2 sin2 θ)

(1 + h2P sin2 θ)2

)
= b†Jb

(
h2(1 + P sin2 θ + h2P sin2 θ + h2P 2 sin4 θ)

(1 + h2P sin2 θ)2

)
= b†Jb

(
h2(1 + P sin2 θ)(1 + h2P sin2 θ)

(1 + h2P sin2 θ)2

)
= b†Jb

(
h2(1 + P sin2 θ)

1 + h2P sin2 θ

)
.

We complete the proof by noting that

b†Jb =
d†J−1d

||J−1d||2
=

cos2 θ

1 + h2P
+ sin2 θ

cos2 θ

(1 + h2P )2
+ sin2 θ

=
(1 + h2P )(1 + h2P sin2 θ)

cos2 θ + (1 + h2P )2 sin2 θ
.
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Hence the R.H.S. of (3.38) is equal to

h2(1 + h2P )(1 + P sin2 θ)

cos2 θ + (1 + h2P )2 sin2 θ
.

This completes the proof of the claim.
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CHAPTER 4

K-USER INTERFERENCE CHANNELS

In the previous chapter, we established the sum capacity of the two-user MIMO

Gaussian interference channel in a low interference regime. The intuition is

that if the interference is low enough, the receiver will not be able to exploit the

structure in the interference, and hence treating interference as noise achieves

the sum capacity. In this chapter, we extend the low interference regime results

from the two-user case to the K-user case. We focus on the SISO case, where

each transmitter and receiver is equipped with single antenna. The K-user SISO

Gaussian interference channel is given by

Yi =

K∑
j=1

hijXj + Zi, i ∈ K (4.1)

with Pj denoting the average transmit power constraint on transmitters j. With-

out any loss of generality, by appropriately scaling the power constraints, we

assume that the direct channel gains are equal to unity; i.e.,

hii = 1, ∀i ∈ K.

Since we assumed single transmit antenna, it is easy to determine the lower

bound on the sum capacity obtained by using Gaussian inputs (with maximum

power) and treating interference as noise:

Csum ≥
K∑
i=1

I (XiG;YiG) =

K∑
i=1

log

(
1 +

Pi
1 +

∑
j 6=k |hij |2Pj

)

where the subscript G indicates that the inputs are Gaussian distributed (with

maximum power). We say that the K-user Gaussian interference channel (4.1)

is in low interference regime if the above lower bound is equal to the sum capac-

ity. The objective of this chapter is to derive conditions such that the K-user

interference channel belongs to the low interference regime.

We first consider two special cases of the K-user interference channel, intro-

duced in [42, 5]: the many-to-one interference channel, where only one user

experiences interference, and the one-to-many interference channel, where the

interference is generated by only one user. For these two special cases, we de-

rive conditions under which the channels belong to the low interference regime.
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The genie-aided channel concept, used in the previous chapter, is not required

in the upper bound proofs of these two special cases. For the general K-user

interference channel, however, the upper bounds are based on the genie-aided

channel concept. The basic idea behind the proof is the same as in the previous

chapter, and can be summarized as follows:

Csum ≤ sum capacity of the genie-aided channel

(a)
=

K∑
i=1

I (XiG;YiG, SiG)

(b)
=

K∑
i=1

I (XiG;YiG)

(4.2)

where Si denotes the side-information given to the receiver i. The subscript G

indicates that Gaussian inputs (with maximum power) are used. We use the

same terminology as in the previous chapter. We say that a genie is useful if step

(a) is satisfied; i.e., treating interference as noise with Gaussian inputs achieves

the sum capacity of the genie-aided channel. We say that a genie is smart if step

(b) is satisfied; i.e., the genie does not improve the achievable sum-rate when

Gaussian inputs are used. Therefore, the objective is to determine conditions

under which there exists a genie that is both useful and smart.

The structure of the side-information signals provided by the genie is crucial

in determining if the genie is useful and smart. When specialized to the SISO

case, the two-user genie used in the previous chapter is given by

S1 = h21X1 +W1

S2 = h12X2 +W2.

An interpretation of the two-user genie is that it provides each receiver with a

noisy and interference-free observation of the desired signal. In [43], Shang et

al. generalized the two-user genie to the K-user case along this observation,

and derived sufficient conditions for low interference regime. We refer to their

genie as scalar genie because it provides each receiver with a scalar signal.

The two-user genie can also be interpreted in a different way. Observe that

the side-information S1 given to the receiver 1 has the same structure as the

interference observed by the receiver 2, and the side-information S2 given to the

receiver 2 has the same structure as the interference observed by the receiver

1. By generalizing the two-user genie along this observation, we obtain a vec-

tor genie that provides each receiver with multiple signals. We show that the

vector genie also results in a nontrivial low interference regime. We compare

the low interference regimes obtained by the scalar genie and the vector genie

in the special case of symmetric interference channels, and observe that neither

construction is uniformly better than the other.
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4.1 Many-to-One Interference Channel

Consider the many-to-one Gaussian interference channel, where only one user

experiences the interference:

Y1 = X1 +

K∑
j=2

h1jXj + Z1

Yi = Xi + Zi, i = 2, 3, · · · ,K.

Theorem 6. The sum capacity of the many-to-one interference channel is

achieved by using Gaussian inputs and treating interference as noise, and is

given by

Csum = log

(
1 +

P1∑K
i=2 |h1i|2Pi

)
+

K∑
i=2

log (1 + Pi)

if the channel parameters satisfy the low interference regime condition:

K∑
i=2

|h1i|2 ≤ 1.

Proof. The achievability is based on the transmitters using Gaussian inputs and

the receivers treating interference as noise. We now prove the converse. Using

Fano’s inequality, we have

n(Csum −Kεn) ≤
K∑
i=1

I(Xn
i ;Y ni ).

Therefore, it is sufficient to prove that the R.H.S. of the above equation is

maximized by i.i.d. Gaussian inputs (with maximum power). Observe that

K∑
i=1

I(Xn
i ;Y ni ) = I(Xn

1 ;Y n1 ) +

K∑
i=2

I(Xn
i ;Y ni )

= h (Y n1 )− h (Y n1 |Xn
1 ) +

K∑
i=2

h (Y ni )−
K∑
i=2

h (Zni ) .

The terms h (Zni ) are independent of the input distributions. From Lemma 16,

it follows that the term h (Y n1 ) is maximized by i.i.d. Gaussian inputs with

maximum power. The remaining terms contribute

K∑
i=2

h (Y ni )− h (Y n1 |Xn
1 ) =

K∑
i=2

h (Xn
i + Zni )− h

(
K∑
i=2

h1iX
n
i + Zn1

)
.

From Lemma 19, it follows that the above expression is maximized by i.i.d.

Gaussian inputs with maximum power when the condition
∑K
i=2 |h1i|2 ≤ 1 is
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satisfied.

4.2 One-to-Many Interference Channel

Consider the one-to-many Gaussian interference channel, where only one user

causes the interference:

Y1 = X1 + Z1

Yi = Xi + hi1X1 + Zi, i = 2, 3, · · · ,K.
(4.3)

Theorem 7. The sum capacity of the one-to-many interference channel (4.3)

is achieved by using Gaussian inputs and treating interference as noise, and is

given by

Csum = log (1 + P1) +

K∑
i=2

log

(
1 +

Pi
1 + |hi1|2P1

)

if the channel parameters satisfy the low interference regime condition:

K∑
i=2

h2
i1P1 + h2

i1

h2
i1P1 + 1

≤ 1. (4.4)

Proof. The achievability is based on the transmitters using Gaussian inputs and

the receivers treating interference as noise. We now prove the converse. Using

Fano’s inequality, we have

n(Csum −Kεn) ≤
K∑
i=1

I(Xn
i ;Y ni ).

Therefore, it is sufficient to prove that the R.H.S. of the above equation is

maximized by i.i.d. Gaussian inputs (with maximum power). Observe that

K∑
i=1

I(Xn
i ;Y ni ) = I(Xn

1 ;Y n1 ) +

M∑
i=2

I(Xn
i ;Y ni )

= h (Y n1 )− h (Zn1 ) +

K∑
i=2

h (Y ni )−
K∑
i=2

h (Y ni |Xn
i ) .

The term h (Zn1 ) is independent of the input distributions. From Lemma 16,

it follows that the terms h (Y ni ) are maximized by i.i.d. Gaussian inputs with
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maximum power. The remaining terms contribute

h (Y n1 )−
K∑
i=2

h (Y ni |Xn
i ) = h (Xn

1 + Zn1 )−
K∑
i=2

h (hi1X
n
1 + Zni )

=

K∑
i=2

(λih(Xn
1 + Zn1 )− h(hi1X

n
1 + Zni ))

where λi’s are nonnegative real numbers satisfying
∑K
i=2 λi = 1. If the condition

(4.4) is satisfied, then we can choose λi’s satisfying

λi ≥
h2
i1P1 + h2

i1

h2
i1P1 + 1

.

Observe that the condition (4.4) immediately implies that |hi1| ≤ 1 for each

i ∈ K. Therefore, from Lemma 19, it follows that the expression

λih(Xn
1 + Zn1 )− h(hi1X

n
1 + Zni )

is maximized by Gaussian inputs with maximum power. This completes the

proof.

4.3 Scalar Genie

As mentioned in the introduction, the two-user genie provides each receiver with

a noisy and interference-free observation of the desired signal. Generalizing this

observation to the K-user case, we obtain the genie

Sk = Xk +Wk, ∀k ∈ K

where the genie controls how the Gaussian noise random variable Wi is corre-

lated to Zi. We call this genie a scalar genie because it provides each receiver a

scalar signal. Shang et al. [43] derived the conditions under which there exists

a scalar genie that is both useful and smart.

Theorem 8 (Shang, Kramer and Chen [43]). The sum capacity of the K-user

SISO Gaussian interference channel (4.1) is achieved by using Gaussian inputs

and treating interference as noise, and is given by

Csum =

K∑
i=1

log

(
1 +

Pi
1 + INRi

)
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if the channel parameters satisfy the conditions

∑
j 6=i
|hij |2

(1 + INRj)
2

ρ2
j

+ ρ2
i ≤ 1, ∀i ∈ K

∑
i 6=j

|hij |2

INRi + 1− ρ2
i

(Pj +
(1 + INRj)

2

ρ2
j

)
≤ 1, ∀j ∈ K

(4.5)

for some {ρi ∈ [0 1]}Ki=1. Here we used INRi to denote the total interference-

to-noise ratio at receiver i:

INRi =
∑
j 6=i
|hij |2Pj .

We can verify that Theorem 8, when specialized to the many-to-one and

the one-to-many interference channels, simplifies to Theorem 6 and Theorem 7,

respectively. For the K-user symmetric interference channel obtained by setting

hij = h, ∀i 6= j and Pj = P,∀j, Theorem 8 simplifies to the following corollary.

Corollary 3. The sum capacity of the K-user symmetric Gaussian interference

channel is achieved by using Gaussian inputs and treating interference as noise,

and is given by

Csum =K log

(
1 +

P

1 + |ĥ|2P

)

if the channel parameters satisfy the low interference regime condition:

|ĥ|(1 + |ĥ|2P ) ≤ 0.5

where ĥ =
√
K − 1h.

4.4 Vector Genie

In this section, we explore an alternative way of generalizing the two-user ge-

nie to the K-user Gaussian interference channels. For simplicity, we restrict

the presentation to the SISO case, but the genie construction can be extended

to the MIMO case in a straightforward fashion. First, we provide the intuition

behind the choice of our genie. Mathematically speaking, the reason for employ-

ing a genie is to combat interference. As explained in Appendix A, the positive

differential entropy and conditional differential entropy terms are always max-

imized by i.i.d. Gaussian inputs (with maximum power), and are concave in

the covariance matrices. On the other hand, the negative terms, which arise

whenever there is interference, are minimized by i.i.d. Gaussian inputs, and are

convex in the covariance matrices. Therefore, it is not clear in general if the
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sum of the positive and negative terms is maximized by i.i.d. Gaussian inputs

or not. However, using the worst-case noise lemma (Lemma 17), the negative

terms can be shown to be maximized by i.i.d. Gaussian inputs, and concave

in the covariance matrices, if they are coupled with appropriate positive terms.

However, the worst-case noise lemma requires the positive terms to have the

same signal structure in both the positive and negative terms. For this reason,

the two-user genie in Chapter 3 was chosen as

S1 = H21X1 +W 1

S2 = H12X2 +W 2

so that the genie signal S1 provides the positive term to combat the interference

seen at receiver 2, and the genie signal S2 provides the positive term to combat

the interference seen at receiver 1. Generalizing this idea, we can provide a

signal similar to the interference seen at receiver i − 1, as side-information to

the receiver i:

Si =
∑

j 6=(i−1)

hi−1,jXj +Wi−1 (∼ Yi−1|Xi−1).

For the three-user case, the corresponding genie signals are given by

S1 = h31X1 + h32X2 +W1 (∼ Y3|X3)

S2 = h12X2 + h13X3 +W2 (∼ Y1|X1)

S3 = h23X3 + h21X1 +W3 (∼ Y2|X2).

Unlike in the two-user case, the above construction does not suffice in the K-

user case because the genie signals are not interference-free. The genie signal

Si+1 helps in combating the interference seen at receiver i, but in the process

it also creates a new (negative) interference term at receiver i + 1. We can fix

this problem by repeating the above process K − 1 times, which results in the

following vector genie. For each receiver i, the genie signal Si is a vector of

length K − 1:

Si,` =
∑

j 6∈{i−1,i−2,··· ,i−`}
hi−`,jXj +Wi,`, 1` ≤ K − 1.
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Observe that the Si,` has the same structure as Yi−`|Xi−`, Xi−`+1, · · · , Xi−1.

For the three-user Gaussian interference channel, the vector genie is given by

S11 = h31X1 + h32X2 +W11 (∼ Y3|X3)

S12 = h21X1 +W12 (∼ S31|X3 ∼ Y2|X2X3)

S21 = h12X2 + h13X3 +W21 (∼ Y1|X1)

S22 = h32X2 +W22 (∼ S11|X1 ∼ Y3|X3X1)

S31 = h23X3 + h21X1 +W31 (∼ Y2|X2)

S32 = h13X3 +W32 (∼ S21|X2 ∼ Y1|X1X2).

The genie controls how the Gaussian noise random vector W i is correlated to

Zi. As in Chapter 3, we use Ψ to denote the genie parameters collectively:

Ψ =
(
ΣW 1

,ΣW 1Z1
,ΣW 2

,ΣW 2Z2
, · · · ,ΣWK

,ΣWKZK

)
.

4.4.1 Useful Genie

As in Chapter 3, we say that a genie is useful if the sum capacity of the genie-

aided channel is achieved by using Gaussian inputs and treating interference as

noise. The following lemma provides conditions on the genie parameters such

that the genie is useful.

Lemma 5. If the genie parameters Ψ satisfy the usefulness conditions[
1 ΣZiW i

ΣW iZi
ΣW i

]
�

[
ΣW i−1

0K−1×1

01×K−1 0

]
, ∀i ∈ K (4.6)

then the genie is useful; i.e., the sum capacity of the genie-aided interference

channel is achieved by using Gaussian inputs with maximum power and treating

interference as noise; i.e.,

Csum ≤ Cga−ic
sum =

K∑
i=1

I (XiG;YiG, SiG)

where XiG ∼ CN (0, Pi), and YiG and SiG are the corresponding received signal

and genie signal, respectively.

Proof. The proof is similar to the proof of Theorem 2 in Chapter 3. Using

Fano’s inequality, we have

n(Cga−ic
sum −Kεn) ≤

K∑
i=1

I (Xn
i ;Y ni , S

n
i ) .

Therefore, it is sufficient to show that the R.H.S. of the above equation is maxi-

mized by i.i.d. Gaussian inputs with maximum power. Let Ỹ i denote the vector
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consisting of all the signals received by receiver i in the genie-aided channel ex-

cept for Si,K−1, and Z̃ denote the corresponding noise vector

Ỹ i =



Yi

Si,1

Si,2
...

Si,K−2


, Z̃i =



Zi

Wi,1

Wi,2

...

Wi,K−2


.

Observe that

K∑
i=1

I (Xn
i ;Y ni , S

n
i )

=

K∑
i=1

h (Y ni , S
n
i )− h (Y ni , S

n
i |Xn

i )

=

K∑
i=1

h (Y ni , S
n
i )− h

(
Ỹ
n

i , S
n
i,K−1|Xn

i

)
=

K∑
i=1

h (Sni ) + h (Y ni |S
n
i )− h

(
Sni,K−1|Xn

i

)
− h

(
Ỹ
n

i |Sni,K−1, X
n
i

)
.

By construction, the signal Si,K−1 = hi+1,iXi + Wi,K−1 is interference-free

and hence the term h
(
Sni,K−1|Xn

i

)
does not depend on the input distribution.

From Lemmas 16 and 13 in Appendix A, it follows that the term h (Y ni |S
n
i )

is maximized by i.i.d. Gaussian inputs with maximum power. The remaining

terms contribute
K∑
i=1

h (Sni )− h
(
Ỹ
n

i |Sni,K−1, X
n
i

)
.

We complete the proof by showing that the following expression is maximized

by i.i.d. Gaussian inputs for each i ∈ K:

h
(
Sni+1

)
− h

(
Ỹ
n

i |Sni,K−1, X
n
i

)
.

From construction of the genie signal, we have that

Si+1,1 ∼ Yi|Xi−1

Si+1,` ∼ Si,`−1|Xi for ` = 2, 3, · · · ,K.

Hence the two entropy terms above differ only in the noise terms. Let G be the

matrix such that

Si+1 = GX +W i+1

where X denotes the vector consisting of the transmit signals X1, X2, · · · , XK .
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We obtain that

h
(
Sni+1

)
− h

(
Ỹ
n

i |Sni,K−1, X
n
i

)
= h

(
GXn +Wn

i+1

)
− h

(
GXn + Z̃

n

i |Wn
i,K−2

)
.

Using Lemmas 17 and 14, it follows that the above expression is maximized by

i.i.d. Gaussian inputs with maximum power if

Cov
(
W i+1

)
� Cov

(
Z̃i|Wi,K−2

)
.

From Lemma 9, the above condition is equivalent to[
ΣW i+1

0K−1×1

01×K−1 0

]
� Cov

([
Z̃i

Wi,K−2

])
= Cov

([
Zi

W i

])

where the last equality follows from the definition of Z̃i.

4.4.2 Smart Genie

As in Chapter 3, we say that a genie is smart if the achievable sum-rate in the

genie-aided channel is equal to the achievable sum-rate in the original inter-

ference channel. In this section, we derive conditions on the genie parameters

such that the genie is smart. Before we present the smartness conditions, we

summarize the discussion in Section 3.8 in the following lemma.

Lemma 6. Suppose XG ∼ CN (0,ΣXG
) and Y G and SG are noisy-observations

of XG:

Y G = H1XG +N1

SG = H2XG +N2

where N1 and N2 are jointly circularly symmetric, and jointly Gaussian complex

random vectors. Then,

I (XG;Y G, SG) = I (XG;Y G)

if and only if the following condition is satisfied:(
H2 −ΣN2N1

Σ−1
N1

H1

)
ΣXG

= 0.

Proof. The lemma follows immediately by replacing X1G, Y 1G, S1G,H12X2G +

Z1,W 1 in the discussion of Section 3.8 by XG, Y G, SG, N1, N2 respectively.

We now use the above lemma to derive the smartness conditions.
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Lemma 7. The genie is smart, i.e.,

K∑
i=1

I (XiG;YiG, SiG) =

K∑
i=1

I (XiG;YiG)

if the genie parameters Ψ satisfy the smartness conditions

ΣWi`Zi
= hi−`,i (1 + INRi)−

∑
j 6∈{i,i−1,··· ,i−`}

hi−`,jh
†
ijPj (4.7)

for all 1 ≤ i ≤ K and 1 ≤ ` ≤ K − 1. Recall that INRi to denote the total

interference-to-noise ratio at receiver i:

INRi =
∑
j 6=i
|hij |2Pj .

Proof. First, observe that the genie is smart if and only if

I (XiG;YiG, SiG) = I (XiG;YiG) , ∀i ∈ K.

Recall that

YiG = XiG +
∑
j 6=i

hijXjG + Zi︸ ︷︷ ︸
N1

and that

Si,`G = hi−`,iXiG +
∑

j 6∈{i,i−1,··· ,i−`}
hi−`,jXjG +Wi`︸ ︷︷ ︸
N2`

.

Using Lemma 6, we see that I (XiG;YiG, SiG) = I (XiG;YiG) if and only if

hi−`,i =

ΣWi`Zi +
∑

j 6∈{i,i−1,··· ,i−`}
hi−`,jh

†
ijPj

1 + INRi

is satisfied for each 1 ≤ ` ≤ K − 1.

4.4.3 Low Interference Regime

Combining Lemmas 5 and 7, we obtain the following theorem.

Theorem 9. The sum capacity of the K-user SISO Gaussian interference chan-

nel is achieved by using Gaussian inputs and treating interference as noise, and

is given by

Csum =

K∑
i=1

log

(
1 +

Pi
1 +

∑
j 6=i |hij |2Pj

)
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if there exist genie parameters

Ψ =
(
ΣW 1

,ΣW 1Z1
,ΣW 2

,ΣW 2Z2
, · · · ,ΣWK

,ΣWKZK

)
satisfying the usefulness conditions (4.6) and the smartness conditions (4.7).

4.4.4 Symmetric Interference Channel

In this section, we consider the K-user symmetric interference channel

Yi = Xi + h
∑
j 6=i

Xj + Zi

with symmetric power constraint, i.e., Pj = P, ∀j ∈ K, and simplify the condi-

tions in Theorem 9. We restrict our attention to only symmetric genie param-

eters; i.e., we assume

ΣW i
= ΣW

ΣW iZi = ΣWZ .

We now proceed to simplify the conditions in Theorem 9. The smartness con-

ditions (4.7) determine the parameter ΣWZ = a, where

a` = h(1 + (K − 1)|h|2P )− (K − `− 1)|h|2P, 1 ≤ ` ≤ K − 1. (4.8)

Therefore, it remains to verify the existence of ΣW � 0 satisfying the usefulness

conditions [
1 a†

a ΣW

]
�

[
ΣW 0

0 0

]
.

Thus, we obtain the following theorem.

Theorem 10. The sum capacity of the three-user symmetric Gaussian inter-

ference channel is achieved by using Gaussian inputs and treating interference

as noise, and is given by

Csum = K log

(
1 +

P

1 + (K − 1)|h|2P

)
if there exists a (K − 1)× (K − 1) positive semidefinite matrix Σ satisfying the

condition [
1 a†

a Σ

]
�

[
Σ 0

0 0

]
(4.9)

where the vector a ∈ is as defined in (4.8).

We now assume that K = 3 and h is a real number, and determine the range

of h such that the three-user symmetric Gaussian interference channel is in the
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low interference regime. Let A denote the set of (a1, a2) such that there exists

Σ � 0 satisfying (4.9). Clearly, the set A must be convex. We would like to

determine the implicit equations in a1 and a2 characterizing the boundary of

the the set A so that the conditions in Theorem 10 can further be simplified. It

is not clear if it is possible to do so. Since we assumed h is a real number, we

have that a1 and a2 are also real numbers. In Figure 4.1, we plot the boundary

of the feasible set A.
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Figure 4.1: The boundary of the feasible set A, defined as the set of parameters
(a1, a2) for which there exists Σ � 0 satisfying condition (4.9) in Theorem 10.

Using this region, we numerically determine the range of real h such that the

three-user symmetric Gaussian interference channel is in the low interference

regime. We observe that for every fixed P ≥ 0, the channel is in low interference

regime if h satisfies the threshold criterion

−h−0 (P ) ≤ h ≤ h+
0 (P ).

Interestingly, the positive and negative thresholds h+
0 (P ) and h−0 (P ) are not

equal. The positive threshold h+
0 (P ) is in general greater than the negative

threshold h−0 (P ). This is in contrast to the threshold criterion obtained by the

scalar genie. Recall from Section 4.3 that the scalar genie provides a threshold

criterion of the form

|h| ≤ h0(P )

where h0(P ) is the (unique) positive solution to the equation

2
√

2h(1 + 2h2P ) = 1.
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The results are summarized in Figure 4.2, where we plot the three curves cor-

responding to INR+ = 2
(
h+

0

)2
P , INR− = 2

(
h−0
)2
P and INR = 2h2

0P as a

function of SNR = P . It can be observed that neither the vector genie nor the

scalar genie is strictly better compared to the other.
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Figure 4.2: The INR threshold as a function of the SNR, below which treating
interference as noise achieves the sum capacity of the three-user symmetric
Gaussian interference channel.

4.5 Summary and Future Directions

We extended the sufficient conditions for the low interference regime, presented

in the previous chapter for the two-user case, for the K-user case. We proposed

the vector genie construction in order to obtain tight upper bounds on the sum

capacity of the K-user SISO Gaussian interference channels. The advantage of

the vector genie construction is that it is intuitive, and can be easily generalized

to the MIMO case. Following the steps in the previous chapter, such a gener-

alization can be used to obtain a convex maxmin optimization problem which

facilitates the numerical computation of the optimal covariance matrices in the

low interference regime. The disadvantage of the vector genie construction is

that, in the symmetric case, the low interference regime condition depends on

the phase of the cross-channel coefficient, which is counter-intuitive. Also, the

low interference regime condition obtained by the vector genie is not uniformly

better than that obtained by the scalar genie. A hybrid genie construction

combining the good features of the scalar and vector genies may lead to fur-
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ther insights on the optimality of treating interference as noise in the K-user

interference channels. An interesting question that remains to be answered is:

How does the optimal interference threshold scale as a function of the number

of users in the symmetric K-user Gaussian interference channel?
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CHAPTER 5

COMP CHANNEL

In the previous chapters, we studied the problem of determining the sum capac-

ity of Gaussian interference channels. Even if we can determine and implement

the best possible achievable schemes, the demand for wireless connectivity is

likely to exceed what the physical channel can offer. For this and other rea-

sons, there has been much interest in understanding the fundamental limits of

cooperative interference networks. Typically cooperation requires additional in-

frastructure, but it could be cost-effective depending on the overall objective. It

should be noted that implementing advanced beamforming algorithms, obtained

by studying the interference channels, would anyway require coordination be-

tween the base stations in order to exchange the required channel knowledge

and compute the beams in a distributed or centralized fashion. Typically, this

coordination is achieved through low latency and high speed fiber optic or mi-

crowave backhaul networks. In the context of cellular downlink, we could go

one step further and assume that the backhaul is strong enough for the base

stations to exchange and jointly transmit the individual messages to efficiently

mitigate the interference at unintended receivers. This procedure is referred to

as Coordinated Multi-Point (CoMP) transmission, which has been considered

as the physical layer interference management technique in the fourth gener-

ation cellular standards such as LTE-Advanced. Similarly, in the context of

cellular uplink, we can assume that the receivers cooperate over the backhaul to

jointly receive and decode the messages. This procedure is referred to as CoMP

reception. In this chapter, we combine both the techniques and consider the

CoMP channel where the messages are jointly transmitted and jointly received

by multiple transmitters and receivers, respectively.

We capture the cost of cooperation through numbers Mt and Mr which are

referred to as the transmit cooperation order and the receive cooperation order,

respectively. The transmit cooperation order Mt denotes the number of trans-

mitters that jointly transmit each message, and the receive cooperation order

Mr denotes the number of receivers that jointly decode each message. Observe

that CoMP channel is a generalization of the interference channel, which can

be recovered by setting Mt = Mr = 1. Our objective in this chapter is to un-

derstand the benefits from cooperation. As we have observed in the previous

chapters, determining the sum capacity is a difficult problem, even in the case of
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the interference channels. Therefore we study the DoF, which provides insights

about the high SNR behavior of sum capacity, as a function of the transmit and

receive cooperation orders. Before we state the main results, we need to explain

the channel model in more detail.

CoMP transmission (also known as network-MIMO, virtual-MIMO and multi-

cell-MIMO) has been identified as one of the study items for fourth generation

cellular systems such as LTE-Advanced. There has been considerable interest in

devising practical cooperative schemes that improve on uncoordinated schemes,

and in estimating the tradeoff between the performance benefits and the ad-

ditional overhead due to cooperation [44, 45, 46]. Also, we note that CoMP

transmission and reception is just one of the many possible ways for partial

transmitter and receiver cooperation in the interference channel. In [47, 48],

it is assumed that the nodes can both transmit and receive in full-duplex. In

[49, 50], the presence of noise-free finite-capacity links between the transmit-

ter nodes or the receiver nodes is assumed. In [51], the receivers are allowed

to exchange the decoded messages over a backhaul link to enable interference

cancelation.

5.1 Channel Model

We consider transmitting K independent messages over the SISO Gaussian in-

terference channel with K transmitters and K receivers

Yi =

K∑
j=1

hijXj + Zi, ∀i ∈ K. (5.1)

In fact, we consider L such parallel Gaussian interference channels, providing the

encoders and decoders an opportunity to jointly encode and jointly decode the

messages over the L parallel channels. We can combine the L parallel channels

and express them together as one MIMO Gaussian interference channel

Y i =

K∑
j=1

HijXj + Zi, ∀i ∈ K (5.2)

such that the channel transfer matrices are square and diagonal. The channel

transfer matrix Hij is given by

Hij =


hij(1)

hij(2)

. . .

hij(L)


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where hij(`) denotes the channel coefficient from transmitter j to receiver i in

the `th parallel channel. The reason for considering the parallel channels will

be clear at a later stage.

In the CoMP setup, the messages are jointly transmitted and jointly received

by multiple transmitters and multiple receivers, respectively. For each k ∈ K,

the message Wk is transmitted jointly by the transmitters from the transmit set

Tk given by

Tk = k ↑Mt = {k, k + 1, · · · , k +Mt − 1} (5.3)

and is received jointly by the receivers from the receive set Rk given by

Rk = k ↑Mr = {k, k + 1, · · · , k +Mr − 1}. (5.4)

Thus the CoMP channel is specified by the parameters K,Mt,Mr and L, de-

noting the number of users, transmit cooperation order, receive cooperation or-

der, and the number of parallel channels, respectively. Recall from Section 2.4

that the DoF is defined as the supremum number dΣ such that a sum-rate of

dΣ log (P/∆) is achievable where ∆ is a constant that is independent of the

power constraint P . In general, this number can depend on the specific realiza-

tions of channel coefficients

hij(`) : i, j ∈ K, 1 ≤ ` ≤ L.

However, we ignore this dependency because the DoF, in all the known cases, is

the same for all generic channel coefficients. We refer the reader to Appendix B

for a precise definition of the generic property. Let DoF(K,Mt,Mr, L) denote

the sum DoF of the CoMP channel normalized over the number of parallel

channels, and let DoF(K,Mt,Mr) denote the asymptotic normalized sum DoF,

i.e.,

DoF(K,Mt,Mr) = lim sup
L→∞

DoF(K,Mt,Mr, L).

We say that the DoF is independent of the number of parallel channels L and is

equal to some number dΣ if and only if DoF(K,Mt,Mr, L) = dΣ for all L ≥ 1.

5.2 Related Work

Observe that the K-user Gaussian interference channel is a special case of the

CoMP channel, and can be recovered by setting Mt = Mr = 1 so that no

cooperation is allowed either at the transmitters or at the receivers. In [41],

Cadambe and Jafar exploited the channel diversity obtained by considering the

parallel channels and proposed a scheme that achieves K/2 DoF in an asymp-

totic fashion. It was already known that the DoF is upper-bounded by K/2 [52].

The Cadambe-Jafar achievable scheme is a linear beamforming scheme that op-

erates on L-parallel Gaussian interference channels simultaneously to create d
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interference-free channels per user such that d→ L/2 as L→∞, thus proving

that

DoF(K, 1, 1) = lim
L→∞

Kd/L = K/2.

Other special cases of the the CoMP channel have been studied in the past

under different names such as cognitive interference channel [53, 54, 55, 56, 57],

interference channel with local or partial side-information [58, 59], interference

channel with clustered decoding [60], or a combination thereof [61]. However,

the DoF of the CoMP channel has not been determined except in the following

special cases:

1. (Mt,Mr) = (K, 1): With perfect cooperation at the transmitters, we see

that each parallel channel is equivalent to the K-user MISO broadcast

channel with K transmit antennas. Therefore, we obtain that the DoF is

independent of L and is equal to K.

2. (Mt,Mr) = (1,K): With perfect cooperation at the receivers, we see that

each parallel channel is equivalent to the K-user SIMO multiple access

channel with K receive antennas. Therefore, we obtain that the DoF is

independent of L and is equal to K.

3. (Mt,Mr) = (K,K): With perfect cooperation at the transmitters and

at the receivers, we see that each parallel channel is equivalent to the

point-to-point MIMO channel with K transmit antennas and K receive

antennas. Therefore, we obtain that the DoF is independent of L and is

equal to K.

4. (Mt,Mr) = (K − 1, 1): It is shown in [53] that the DoF is independent

of L and is equal to K − 1. The achievable scheme is again based on

linear transmit beamforming. Since each message is transmitted jointly

using K− 1 transmit antennas, a zero-forcing beam vector can be used to

perfectly null out the interference at K − 1 receivers. By only scheduling

K − 1 users, it is clear that a sum DoF of K − 1 can be achieved per each

parallel channel. It is easy to see that a similar argument holds true when

Mt = 1 and Mr = K − 1.

To summarize, we know the following results:

DoF(K,Mt,Mr) =


K/2 (Mt,Mr) = 1

K − 1 (Mt,Mr) = (K − 1, 1) or (1,K − 1)

K max(Mt,Mr) = K.

5.3 Outer Bounds

In this section, we derive an outer bound on the DoF as function of K,Mt

and Mr. First, we present an outer bound on the DoF region of the CoMP

71



channel with arbitrary transmit and receive sets, i.e., without explicitly using

the structure of the transmit sets (5.3) and the receiver sets (5.4).

5.3.1 Outer Bound on DoF Region

Theorem 11. Any point (d1, d2, · · · , dK) in the normalized (by the number

of parallel channels) DoF region of the CoMP channel with generic channel

coefficients satisfies the inequalities:∑
k:Tk⊆A or Rk⊆B

dk ≤ max(|A|, |B|),∀A,B ⊆ K. (5.5)

Proof. Without any loss of generality, we can assume |A| = |B|. Otherwise, the

smaller set can be blown up to add more terms on the L.H.S. of (5.5) without

affecting the R.H.S., resulting in an inequality that is stricter than what we

need to prove. Now, the objective is to show that∑
k:Tk⊆A or Rk⊆B

dk ≤ |B|. (5.6)

Define the subsets

Wt = {Wk : Tk ⊆ A}

Wr = {Wk : Rk ⊆ B, Tk 6⊆ A}

and Wf as the set of free messages that do not appear in either of the sets Wr

and Wt. The proof idea is to start with the signals received by the receivers B,

and show that the messagesWt andWr can be decoded using these |B| received

signals with Wf as side-information. For any given subset S ⊆ K, we use the

notation XS to denote the vector made up of the signals transmitted by the

transmitters in the set S, with a similar notation used for Y S and ZS .

For each k, using Fano’s inequality and the definition of the receive set Rk,

we have that any reliable communication scheme must satisfy

H
(
Wk|Y nRk

)
≤ nεn (5.7)

where εn → 0, as n→∞. Therefore, we immediately have

H (Wr|Y nB) ≤
∑

k:Rk∈B
H (Wk|Y nB) ≤ |Wr|nεn (5.8)

i.e., the messagesWr can be decoded by the receivers B. Similarly, the messages

Wt can be decoded using all the received signals:

H (Wt|Y nK,Wr,Wf ) ≤ H (Wt|Y nK) ≤ |Wt|nεn. (5.9)

But, we need to show that the messagesWt can also be decoded by the receivers
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B withWf as side-information. We do so by arguing that the signal contribution

in Y nK can be reconstructed using Wf ,Wr and Y nB:

H (Wt|Y nB,Wr,Wf )

≤ H (Wt|Y nB,Wr,Wf )− H (Wt|Y nK,Wr,Wf ) + |Wt|nεn
= I (Wt;Y

n
Bc |Y nB,Wf ,Wr) + |Wt|nεn

= h (Y nBc |Y nB,Wf ,Wr)− h (Y nBc |Wf ,Wr,Wt) + |Wt|nεn
= h (Y nBc |Y nB,Wf ,Wr)− h (ZnBc) + |Wt|nεn
≤ h (Y nBc |Y nB, X

n
Ac)− h (ZnBc) + |Wt|nεn.

Observe that, over each symbol, we have

Y Bc = H(Bc,A)XA + H(Bc,Ac)XAc + ZBc

Y B = H(B,A)XA + H(B,Ac)XAc + ZB

where we used H to denote the KL×KL channel transfer matrix from all the

K transmitters to the K receivers, i.e.,

H =


H11 · · · H1K

...
. . .

...

HK1 · · · HKK


and H(B,A) to denote the |B|L× |A|L channel transfer matrix from transmit-

ters A to the receivers B, and H(Bc,Ac), H(B,Ac) and H(Bc,A) to denote

appropriate submatrices. For generic channel coefficients, since we assumed

that |A| = |B|, the matrix H(B,A) is invertible, and hence we have

Z̃ = Y Bc −H(Bc,A)XAc

−H(Bc,A)H(B,A)−1 (Y B −H(B,A)XAc)

= ZBc −H(Bc,A)H(B,A)−1ZB.

Thus, we get

H (Wt|Y nB,Wr,Wf ) ≤ h
(
Z̃
n
)
− h (ZnBc) + |Wt|nεn.

Therefore, we have

H (Wr,Wt) ≤ H (Wr,Wt|Wf )

= I (Wr,Wt;Y
n
B|Wf ) + H (Wr,Wt|Y nB,Wf )

= h (Y nB|Wf )− h (ZnB) +H(Wr|Y nB,Wf ) +H(Wt|Wr, Y
n
B,Wf )

≤ h (Y nB)− h (ZnB) + h
(
Z̃
n
)
− h (ZnBc) + (|Wt|+ |Wr|)nεn.

Observe that all the terms, except for h (Y nB), are independent of the power
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constraint P . Furthermore, the sequence Y nB denotes a vector of length n|B|L.

Therefore, there must exist a constant c that may depend on the channel coef-

ficients, but is independent of the power constraint P and the block length n

such that

H (Wr,Wt) ≤ n|B|L logP + nc+ (|Wt|+ |Wr|)nεn.

Therefore, any achievable rate tuple (R1, R2, · · · , RK) must satisfy∑
k:Tk⊆A or Rk⊆B

Rk ≤ |B|L logP + c

which immediately implies that any achievable DoF vector (normalized by the

number of parallel channels L) must satisfy (5.6).

5.3.2 Outer Bound on Sum DoF

We use Theorem 11 to obtain an outer bound on DoF(K,Mt,Mr, L). Observe

that an obvious outer bound given by

DoF(K,Mt,Mr, L) ≤ K

can be obtained by setting A = B = K. The following theorem provides a

nontrivial outer bound when Mt +Mr ≤ K.

Theorem 12. The (normalized sum) DoF of the CoMP channel with generic

channel coefficients satisfies

DoF(K,Mt,Mr, L) ≤
⌈
K +Mt +Mr − 2

2

⌉
.

When K +Mt +Mr is odd, the above outer bound can be improved to obtain

DoF(K,Mt,Mr, L) ≤ K

K − 1

K +Mt +Mr − 3

2
.

Proof. First, observe that the stated outer bounds are weak compared to the

obvious outer bound DoF(K,Mt,Mr, L) ≤ K if Mt +Mr ≥ K + 1. Therefore,

we assume that Mt + Mr ≤ K in proving the theorem. The best outer bound

on DoF(K,Mt,Mr) that we can obtain using Theorem 11 is obtained by solving

the linear program

max
(d1,··· ,dK)

d1 + d2 · · ·+ dK (5.10)

subject to the constraints (5.5), given by∑
k∈K:Tk⊆A or Rk⊆B

dk ≤ r

for every A,B ⊆ K such that |A| = |B| = r. Since the the transmit sets (5.3)
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and receive sets (5.4) are symmetric across the transmitter and receiver indices,

by appropriately averaging the above upper bound by fixing r, and rotating the

sets A and B, we obtain the following upper bound on the normalized sum DoF:

DoF(K,Mt,Mr, L) ≤ Kr

|k ∈ K : Tk ⊆ A or Rk ⊆ B|
.

Therefore, the objective is to choose the sets A and B so that the ratio on the

R.H.S. of the above inequality is minimized. Since Tk = k ↑ Mt, and |A| = r,

we have that

|k ∈ K : Tk ⊆ A| = (r −Mt + 1)+.

Similarly, we have that

|k ∈ K : Rk ⊆ B| = (r −Mr + 1)+.

Clearly, r must satisfy r ≤ K. It can be easily argued that, without any loss of

generality, we can also restrict r so that r−Mt + 1 ≥ 1 and r−Mr + 1 ≥ 1 and

2r −Mt −Mr + 2 ≤ K. For any such value of r, we can choose the sets A and

B to be

A = {1, 2, · · · , r}

B = {r −Mt + 2, r −Mt + 3, · · · , 2r −Mt + 1}.

so that the sets {k ∈ K : Tk ⊆ A} and {k ∈ K : Rk ⊆ B} do not intersect. This

results in the outer bound

DoF(K,Mt,Mr, L) ≤ Kr

2r −Mt −Mr + 2
.

To obtain the best possible outer bound, it is clear that we should choose r to

be as high as possible while satisfying the conditions 2r −Mt −Mr + 2 ≤ K

and r ≤ K. When K +Mt +Mr is even, the best is to set

r =
K +Mt +Mr − 2

2

resulting in the required outer bound DoF(K,Mt,Mr, L) ≤ r. When K +Mt +

Mr is odd, the best is to set

r =
K +Mt +Mr − 3

2

resulting in the required outer bound DoF(K,Mt,Mr, L) ≤ Kr/(K − 1).
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5.4 Full DoF with Partial Cooperation

Recall from Section 5.2 that the DoF of the CoMP channel is equal to K if

perfect cooperation is allowed at either the transmitter side or the receiver side,

i.e.,

DoF(K,Mt,Mr) = K if max(Mt,Mr) = K.

In this section, we obtain a necessary and sufficient condition on Mt and Mr

such that the DoF is equal to K. First, we can obtain some intuition on the

condition from outer bound in Section 5.3. Observe that Theorem 12 says that

the DoF is strictly less than K whenever Mt+Mr ≤ K. We show that the DoF

is equal to the maximum value K whenever Mt +Mr ≥ K + 1.

Theorem 13. The DoF of the CoMP channel with generic channel coefficients

is independent of L, and is equal to K, if and only if Mt and Mr satisfy Mt +

Mr ≥ K + 1; i.e.,

DoF(K,Mt,Mr) = K ⇔Mt +Mr ≥ K + 1. (5.11)

The achievable scheme is based on the linear transmit and receive beamform-

ing strategy over each parallel channel. We prove the theorem assuming L = 1,

and the general case follows by treating each parallel channel separately. Let

V and U be the K ×K matrices representing the transmit and receive beams

respectively. The kth column of V (resp. U) represents the beam along which

the message Wk is transmitted (resp. received). To comply with the physical

constraints imposed by the transmit sets (5.3) and the receive sets (5.4), the

matrices V and U must satisfy

vik 6= 0⇒ i ∈ Tk = k ↑Mt

uik 6= 0⇒ i ∈ Rk = k ↑Mr.
(5.12)

Let H denote the K ×K channel transfer matrix. If Mt and Mr satisfy Mt +

Mr ≥ K + 1, then we prove the existence of V and U satisfying (5.12), and

U>HV = I (5.13)

for a generic matrix H. Observe that the above choice for beamfroming matrices

V and U achieves K DoF since they create K interference-free AWGN channels,

one per each message, with each channel having a nonzero SNR. Since U and

V are square matrices, it is easy to see that (5.13) is equivalent to

H−1 = VU>. (5.14)

Thus, it remains to show that the H−1 admits the matrix decomposition in

(5.14) for a generic H. We now prove a more general result.
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5.4.1 Structural Matrix Decomposition

Observe that the above matrix decomposition problem(5.14) is similar to the

LU decomposition in the sense that we are interested in expressing a matrix

A = H−1 as a product of two matrices V and U> with structural constraints

on V and U. In the case of LU decomposition, we require that both V and U

are lower triangular matrices, whereas in (5.14) we require V and U to satisfy

the structural conditions (5.12). In this section, we consider the general problem

of structural matrix decomposition (SMD) that generalizes both (5.12) and LU

decomposition. We need the following definition to formulate the SMD problem.

Definition 1 (S-matrix). Given a matrix V and a (0, 1)-matrix V̄ of the same

size, we say that V̄ is a structural matrix (or S-matrix) of V if v̄ij = 1 for all

i, j such that vij 6= 0.

Example 1. Suppose V and U be transmit and receive beamforming matri-

ces satisfying the conditions (5.12) corresponding to the setting K = 3 and

(Mt,Mr) = (2, 2). Then, the S-matrices of V and U are given by

Ū = V̄ =

 1 0 1

1 1 0

0 1 1

 (5.15)

where the ones in the kth column of V̄ correspond to the transmit set Tk, and

the ones in the kth column of Ū correspond to the receive set Rk.

Definition 2 (SMD). Let A be a square matrix, and V̄, Ū be (0, 1)-matrices of

same size. We say that the matrix A admits a structural matrix decomposition

(SMD) with respect to V̄ and Ū if A can be factorized as

A = VU>

with V̄ and Ū being S-matrices of V and U respectively.

To prove that DoF(3, 2, 2) = 3, we need to show that a generic 3×3 matrix A

admits SMD with respect to V̄ and Ū defined in (5.15). The LU decomposition

can be seen as a special case of the SMD with V̄ and Ū given by

Ū = V̄ =

 1 0 0

1 1 0

1 1 1

 . (5.16)

We know that a generic matrix A admits an LU decomposition, i.e., a generic

matrix A admits an SMD if Ū and V̄ are given by (5.16). We shall show that

the same holds true even if (5.16) is replaced with (5.15). The following theorem

provides a sufficient condition on V̄ and Ū such that a generic matrix admits

SMD.
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Theorem 14. Suppose the K×K (0, 1)-matrices V̄ and Ū satisfy the conditions

1. The diagonal entries of V̄ and Ū are nonzero.

2. The matrix V̄ + Ū> is a full matrix, i.e., all of its entries are nonzero.

Then, a generic K ×K matrix A admits SMD A = VU> with respect to the

S-matrices V̄ and Ū.

Proof. Suppose a matrix A admits SMD A = VU>; then the decomposition is

not unique since for any full rank diagonal matrix Λ, we have

A = VU> = (VΛ)
(
UΛ−1

)>
. (5.17)

To avoid such degeneracy, we set ukk = 1 for all k ∈ K. We now interpret

A = VU> as a system of polynomial equations

aij = fij(t),∀i, j ∈ K (5.18)

where t represents those elements of V and U that can take arbitrary values,

i.e., t contains the variables

{vij : v̄ij = 1} ∪ {uij : i 6= j and ūij = 1}. (5.19)

Let Nv denote the number of variables so that t ∈ CNv . Our objective is show

that the system of equations (5.18) has a solution t ∈ CNv for a generic matrix

A. From Lemma 21 in Section B, it follows that (5.18) admits a solution for

generic A if and only if the Jacobian matrix Jf of the polynomial map

f : CNv → CK×K (5.20)

has full row rank at some point t∗.

We now prove that Jf has full row rank, equal to K2, by explicitly computing

the Jacobian matrix Jf at the point t∗ corresponding to U∗ = V∗ = I. Observe

that the two conditions in the theorem statement ensure that for every i, j ∈ K,

either vij or uji is a variable. Thus, Nv ≥ K2, which is a necessary condition for

the Jacobian matrix to be a fat matrix, and to have full row rank. Observe that

Jf has full row rank if any K2 ×K2 submatrix has full rank. We consider the

submatrix corresponding to the K2 variables {tij : i, j ∈ K} defined such that

tij is equal to either vij or uji for each i, j ∈ K. Consider the partial derivative

∂apq
∂tij

=
∂fpq(t)

∂tij

=
∂
∑K
`=1 vp`uq`
∂tij

=

K∑
`=1

∂(vp`uq`)

∂tij
.

(5.21)
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Suppose tij = vij ; then we see that

∂apq
∂tij

=

K∑
`=1

∂(vp`uq`)

∂tij

= δpiu
∗
qj

= δpiδqj

(5.22)

where δij is the Kronecker delta function, and in the last step we used the fact

that the derivative is taken at the point t∗ corresponding to U∗ = V∗ = I. We

obtain the same even if tij = uji. Therefore, we get

∂apq
∂tij

=

{
1 if (p, q) = (i, j)

0 otherwise.
(5.23)

Thus, we see that the submatrix of Jf corresponding to the variables {tij} is

equal to the identity matrix. Hence from Lemma 21 in Section B, we conclude

that a solution to (5.18) exists for a generic A.

5.4.2 Proof of Theorem 13

To complete the proof of Theorem 13, we need to show that the conditions of

Theorem 14 are satisfied when Mt + Mr ≥ K + 1. Recall from (5.12) that the

S-matrices V̄ and Ū of the beamforming matrices V and U are given by

v̄ij = 1⇔ i ∈ j ↑Mt

ūij = 1⇔ i ∈ j ↑Mr.

Clearly, the diagonal entries of V̄ and Ū are equal to one satisfying the first

condition of Theorem 14. Since Mt +Mr ≥ K + 1, for any (i, j) either

i ∈ j ↑Mt ⇒ v̄ij = 1

or

i ∈ j ↓Mr ⇒ j ∈ i ↑Mr ⇒ ūji = 1.

This verifies that the second condition of Theorem 14 is also satisfied. Therefore,

we see that the matrix H−1 admits SMD (5.14) for a generic H. This completes

the proof of Theorem 13.

5.4.3 Relation to MIMO Interference Channel and Alignment

The condition Mt +Mr ≥ K + 1 is similar to the condition obtained in [62] for

the MIMO interference channel. The MIMO interference channel with Nt = Mt

antennas per transmitter and Nr = Mr antennas per receiver is similar to the
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CoMP channel, in the sense that each message is transmitted and received using

Mt and Mr antennas, respectively. The difference is that the messages in the

MIMO interference channel have dedicated antennas, whereas the messages in

the CoMP channel share antennas to mimic the MIMO interference channel. In

[62], Yetis et al. studied the feasibility of transforming the MIMO interference

channel into K interference-free channels using transmit and receive beamform-

ing strategies. They used Bernstein’s theorem from algebraic geometry to prove

that the beams exist if and only if Mt +Mr ≥ K + 1.

The common theme that leads to these results in both the cases, i.e., MIMO

interference channel and CoMP channel, is interference alignment. It is easy

to see interference alignment in action in the special case Mt = K − 1 and

Mr = 2 where each decoder has access to two received signals. Out of these

two dimensions, one must be reserved for the desired signal, meaning that the

remaining K−1 interfering signals must align and appear in the direction. This

process of packing the interfering signals into a smaller number of dimensions

is the essence of interference alignment.

The role of interference alignment can be better understood by considering

the two extreme cases: (Mt,Mr) = (K, 1) and (Mt,Mr) = (1,K). Recall that

the objective is to construct beamforming matrices satisfying the structural

constraints and

U>HV = I.

When Mt = K, then V can be full matrix. Therefore, we can choose the beam-

forming matrices as V = H−1 and U = I corresponding to transmit zero-forcing.

Similarly, if Mr = K, then we can choose the beamforming matrices as V = I

and U = H−1 corresponding to receive zero-forcing. The concepts of transmit

zero-forcing and receive zero-forcing are well understood in the communication

theory literature. The reason why Mt = K or Mr = K works is the following.

In both the cases, there are K − 1 additional antennas at each transmitter or

at each receiver to avoid interference. Essentially either the transmitters or the

receivers take the burden to avoid interference. The condition Mt+Mr ≥ K+1

says that this burden to avoid interference does not have to be taken solely

either by the transmitters or the receivers, but can be shared by both. In other

words, interference alignment can be thought of as a generalized zero-forcing

strategy that allows the burden of interference avoidance to be shared by the

transmitters and receivers by carefully designing the beams. The disadvantage

of doing so is that, while the design of transmit or receive zero-forcing beams re-

quires only local channel knowledge, the design of interference alignment beams

requires global channel knowledge and even the computational aspects become

more complicated. Since the existence proofs are nonconstructive, it is not clear

if there is any closed-form algorithm or even iterative algorithm to numerically

compute the interference alignment beams.
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5.4.4 Closed-Form Algorithm

We showed that a linear beamforming strategy based on interference alignment

achieves K DoF whenever Mt and Mr satisfy Mt + Mr ≥ K + 1. The proof

of Theorem 13 is not constructive. In this section, we consider the problem

of numerical computation of interference alignment beams, i.e., computation of

matrices V and U that satisfy the structural constraints imposed by transmit

sets and receive sets, and diagonalize the channel matrix H

U>HV = I. (5.24)

In the previous section, we have seen that the problem is easy if either Mt = K

or Mr = K, where the beamforming matrices correspond to either transmit

zero-forcing or receive zero-forcing. In this section, we show that there exists a

closed form solution when Mt = K − 1 or Mr = K − 1. Without any loss of

generality, we consider the case Mt = K − 1 and Mr = 2, and show that the

closed-form solution described in Algorithm 1 satisfies the structural constraints

and (5.24). The rest of this section focuses on justifying the steps in Algorithm 1.

The usual approach to solve for U and V is by first eliminating U by obtaining

the necessary and sufficient conditions on V for an appropriate U to exist, and

then solving for V. Let M denote the matrix HV. We now obtain the necessary

and sufficient conditions on the matrix M so that its inverse M−1 = U> satisfies

the structural constraints imposed by the receive sets. For example, if Mr = 2,

then the receive beamforming matrix should have the following structure:

U =



× ×
× ×
× ×

. . .
. . .

× ×


. (5.25)

The nullity theorem [63, 64] from linear algebra is useful in obtaining the necce-

sary and sufficient conditions on M.

Lemma 8 (Nullity Theorem). Complementary submatrices of a matrix and its

inverse have the same nullity.

Two submatrices are complementary when the row numbers not used in one

are the column numbers used in the other. For any subsets A,B ⊆ K, applying

the Nullity Theorem to M and U> = M−1, we have that

nullity M(A,B) = nullity U>(Bc,Ac)

⇔ |B| − rank M(A,B) = |Ac| − rank U(Ac,Bc)

⇔ rank M(A,B) = rank U(Ac,Bc) + |A|+ |B| −K.
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Observe that the structural constraints on the matrix U can be described as

rank U(Rck, k) = 0, ∀k ∈ K. (5.26)

By choosing A = Rk and B = {k}c, we observe that structural constraints on

U are equivalent to the following constraints on M:

rank M(Rk, {k}c) = Mr − 1, ∀k ∈ K. (5.27)

Note that the above conditions are nothing but the interference alignment con-

ditions. The matrix M = HV should be interpreted as the matrix containing

the receive directions as the columns

M =
[

H(K, T1)v1 H(K, T2)v2 · · · H(K, TK)vK

]
(5.28)

where vk ∈ CMt×1 denotes the beamforming vector corresponding to the mes-

sage Wk, i.e., vk = V(Tk, k). Consider the decoder of message Wk which has

access to the signals received by the receivers Rk. The submatrix

M(Rk,K) =
[

H(Rk, T1)v1 H(Rk, T2)v2 · · · H(Rk, TK)vK

]
represents the matrix with the column denoting the directions along which the

signals appear at the decoder k. Thus, we see that the condition (5.27) is equiv-

alent to saying that the interfering signals should occupy only Mr−1 dimensions

out of the available Mr dimensions at decoder k, leaving one dimension for the

signal. With this intuition, we could have arrived at the alignment conditions

(5.27) directly without invoking the nullity theorem. However, the constraints

(5.27) do not directly lead to a closed-form solution.

We now demonstrate the usefulness of the nullity theorem by deriving another

set of equivalent conditions on M that immediately lead to the closed-form

solution described in Algorithm 1. The crucial observation is the following. In

the description (5.26), we noticed that each column of U has K −Mr zeros.

Alternatively, we can use the fact that each row of U has K−Mr zeros to arrive

at an alternate description of the structural constraints on U:

rank U(k − 1, k ↑ (K −Mr)) = 0, ∀k ∈ K.

By choosing A = {k − 1}c and B = {k ↑ K −Mr}c = (k − 1) ↓Mr, we observe

that the structural constraints on U are equivalent to following constraints on

M:

rank M({k − 1}c , (k − 1) ↓Mr) = Mr − 1, ∀k ∈ K.

For the special case of Mt = K − 1 and Mr = 2, we have that Tk = {k − 1}c

and (k − 1) ↓ Mr = {k − 1, k − 2}. Using the expression (5.28) for M, we see
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that the above conditions can be written as

rank
[

H(Tk, Tk−1)vk−1 H(Tk, Tk−1)vk−2

]
= 1, ∀k ∈ K.

For a generic H, the submatrix H(Tk, Tk−1) is invertible, and hence the above

conditions can equivalently be expressed as

vk−1 ∝ Bk−2vk−2

where Bk−2 = H(Tk, Tk−1)−1H(Tk, Tk−2). Therefore, the transmit beams must

be designed to satisfy

v2 ∝ B1v1

v3 ∝ B2v2

...

vK ∝ BK−1vK−1

v1 ∝ BKvK .

The above conditions are satisfied if and only if v1 is an eigenvector of the

matrix BKBK−1 · · ·B1, and vk+1 ∈ Bkvk for k = 2, 3, · · · ,K. We can then

compute the receive beamforming vectors by computing M = HV and setting

U = M−>. The choice of transmit beams and the nullity theorem ensures that

the resulting receive beamforming matrix U has the required structure (5.25).

Algorithm 1 Closed Form Solution: Mt = K − 1 and Mr = 2

1: For each k ∈ K, define the alignment matrix

Bk = H(Tk+2, Tk+1)−1H(Tk+2, Tk)

2: Choose v1 as an eigenvector of the matrix

BKBK−1 · · ·B1

3: For k = 1, 2, · · · ,K − 1, compute

vk+1 = Bkvk

5: Compute the transmit beamforming matrix V such that

vk = V(Tk, k), ∀k ∈ K.

6: Compute the receive beamfoming matrix U = (HV)−>.

5.4.5 Numerical Results

In this section, we consider the three-antenna system, i.e., K = 3. From

Theorem 13, we have that the maximum 3 DOF is achievable if and only
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if Mt + Mr ≥ 4. We numerically verify the achievability part of the theo-

rem by showing that 3 DoF is achievable when Mt + Mr ≥ 4. Without any

loss of generality, we only consider the two settings (Mt,Mr) = (3, 1) and

(Mt,Mr) = (2, 2) because the other settings can be shown to follow from these

two settings. In Figure 5.1, we plot the average achievable sum-rate, where the

averaging is performed over the multiple realizations of the channel coefficients

which are generated independently according to complex normal distribution.

When (Mt,Mr) = (3, 1), the system is equivalent to a broadcast channel, and

so we use the zero forcing transmit beams described in Section 5.4.3. When

(Mt,Mr) = (2, 2), we have that Mr = K − 1, and so we use the alignment

scheme described in Algorithm 1 to compute the transmit and receive beams.

In step 2 of Algorithm 1, the computation of the transmit beam v1 involves

computing an eigenvector of the 2 × 2 matrix. In Figure 5.1, we plot the two

curves for the setting (Mt,Mr) = (2, 2): one corresponds to arbitrary eigenvec-

tor and the other corresponds to best eigenvector over each channel realization.
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Figure 5.1: Achievable sum-rates in a three-antenna system with alignment
schemes.

The plots numerically verifiy that the achievable scheme described in Algo-

rithm 1 indeed achieves 3 DoF with (Mt,Mr) = (2, 2). Indeed, a linear growth

of 10 bits/symbol in sum-rate for every 10 dB improvement in SNR corresponds

to
10

log2 10
≈ 3 DoF.
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It is also interesting to see that (Mt,Mr) = (3, 1) achieves better sum-rate

when compared to (Mt,Mr) = (2, 2). The performance gap is roughly 3 dB at

high SNRs when arbitrary eigenvector is used, and is roughly 2 dB when best

eigenvector is used.

5.5 DoF with CoMP Transmission

In the previous sections, we derived an outer bound on the DoF and showed

that the DoF is equal to the maximum value K if and only if Mt+Mr ≥ K+ 1.

In this section, we set Mr = 1, and consider the problem of characterizing

DoF(K,Mt, 1), the DoF of interference channel with CoMP transmission, as a

function of K and Mt. From the outer bound in Section 5.3.2, we obtain that

DoF(K,Mt, 1) is upper bounded as

DoF(K,Mt, 1) ≤


K +Mt − 1

2
, K +Mt is odd

K

K − 1

K +Mt − 2

2
≤
⌈
K +Mt − 1

2

⌉
, K +Mt is even.

For the achievability part, we prove the following two theorems. For any K and

Mt, we propose a scheme that aims at achieving a DoF of (K + Mt − 1)/2. A

crucial part of the proof involves checking that a certain Jacobian matrix has

full row rank. We could provide an analytical proof when Mt = 2. For Mt > 2,

we could verify in MATLAB that the Jacobian matrix has full row rank for

all the values of K we checked. Specifically, we checked till K ≤ 9, but we

conjecture that the result holds true for any K and Mt. For more discussion on

the problematic issue, we refer the reader to Section 5.7.4.

Theorem 15. The DoF of interference channel with CoMP transmission sat-

isfies

DoF(K,Mt, 1) ≥ K +Mt − 1

2

for all K if Mt = 2 and for all Mt ≤ K < 10.

Combining the above theorem with the outer bound, we have determined the

DoF exactly when K+Mt is odd, and approximately when K+Mt is even (for

all K if Mt = 2 and for all Mt ≤ K < 10). For the special case of Mt = K − 2,

we propose an achievable scheme that exactly meets the outer bound.

Theorem 16. The DoF of interference channel with CoMP transmission with

Mt = K − 2 satisfies

DoF(K,K − 2, 1) =
KMt

Mt + 1
=
K(K − 2)

K − 1
.

Before proving the above theorems, we first explain the connection to the

DoF of the MISO interference channel.
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5.5.1 Relation to MISO Interference Channel

The MISO interference channel with Nt = Mt antennas per transmitter and

the cellular uplink channel with Mt number of users per cell are similar to the

interference channel with CoMP transmission in the sense that, in all the three

channels, each message is transmitted using Mt antennas and received using

only one antenna. The difference is that the messages share the antennas in the

CoMP channel, whereas the messages have dedicated antennas in the other two

channels. Both the MISO interference channel and the cellular uplink channel

have the same DoF, equal to KMt/(Mt + 1) for all Mt < K. In comparison, we

see that the interference channel with CoMP transmission has a smaller DoF

except in the special cases where Mt ∈ {1,K − 1,K − 2,K}.

Claim 6. For all Mt 6∈ {1,K − 2,K − 1,K},

DoF(K,Mt, 1) <
KMt

Mt + 1
.

Proof. Suppose Mt +K is odd. Then we see that

DoF(K,Mt, 1) =
K +Mt − 1

2
<

KMt

Mt + 1

⇔ K(Mt + 1) + (Mt − 1)(Mt + 1) < 2KMt

⇔ (Mt − 1)(Mt + 1) < K(Mt − 1)

⇔Mt + 1 < K

which is true since we assumed that Mt < K−2. Suppose Mt+K is even; then

DoF(K,Mt, 1) ≤ K

K − 1

K +Mt − 2

2
<

KMt

Mt + 1

⇔ K(Mt + 1) + (Mt − 2)(Mt + 1) < 2KMt − 2Mt

⇔ (Mt − 1)(Mt + 2) < K(Mt − 1)

⇔Mt + 2 < K

which is true since we assumed that Mt < K − 2.

5.6 CoMP Transmission: Proof of Theorem 16

In this section, we show that the DoF of the interference channel with CoMP

transmission and a transmit cooperation order of Mt = K − 2 and a receive

cooperation order Mr = 1 is equal to

DoF(K,K − 2, 1) =
KMt

Mt + 1
.

The achievable scheme is based on transmit and receive beamforming. As sum-

marized in Figure 5.2, the beam design process is broken into two steps. First,
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we transform each parallel CoMP channel into a derived channel. Then, we

design an asymptotic interference alignment scheme over the derived channel

achieving the requied DoF in an asymptotic fashion with the number of parallel

channels L→∞.

Original
Channel

ZF
Encoder

Asymptotic
IA

Encoder

Asymptotic
IA

Decoder

Derived Channel

Figure 5.2: Summary of the achievable scheme.

5.6.1 Derived Channel

Recall from Section 5.5.1, that the cellular uplink channel with Mt transmitters

per cell has KMt/(Mt+1) DoF. Therefore, we first transform the CoMP channel

into a derived channel that mimics the cellular uplink channel. For each k,

the transmit set Tk = k ↑ Mt of user k consists of Mt transmitters. We use

the Mt transmitters in Tk to create Mt virtual transmit nodes with inputs

X
(1)
k , X

(2)
k , · · · , X(Mt)

k . The channel inputs of the CoMP channel are related

to the channel inputs of the derived channel through a linear transformation.

The contribution of the derived channel inputs X
(1)
k , X

(2)
k , · · · , X(Mt)

k in the real

transmit signals Xk, Xk+1, · · · , Xk+Mt−1 is defined by a Mt×Mt beamforming

matrix; i.e., 
Xk

Xk+1

...

Xk+Mt−1

 = (∗) + Vk


X

(1)
k

X
(2)
k
...

X
(Mt)
k


where ∗ represents the contribution from the derived channel inputs of other

users. Thus, we see that the beamforming matrices V1,V2, · · · ,VK , which will

be specified later, define the transformation from the original channel to the

derived channel. The message Wk of user k is divided into Mt parts

Wk =
(
W

(1)
k ,W

(2)
k , · · · ,W (Mt)

k

)
such that the mth part controls the derived channel input X

(m)
k . Thus we can

treat the virtual transmit nodes as non-cooperative transmitters communicating

to the same receiver and so this system is similar to a cellular uplink system

with Mt trasmitters per cell:

Yi =

K∑
k=1

Mt∑
m=1

g
(m)
ik X

(m)
k + Zi, i ∈ K (5.29)
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where g
(m)
ik represents the derived channel coefficient from transmitter m in cell

k to the receiver in cell i. It is easy to see that the derived channel coefficients

are related to the original channel coefficients as[
g

(1)
ik g

(2)
ik · · · g

(Mt)
ik

]
= H(i, Tk)Vk

for all i, k ∈ K, where H denotes K ×K channel transfer matrix of the CoMP

channel.

5.6.2 Generic Channel Coefficients

The derived channel (5.29) is similar to the cellular uplink channel with K cells

and Mt transmitters in each cell, which has KMt/(Mt + 1) DoF with generic

channel coefficients [65]. A naive argument is to conclude from here that the

derived channel, and hence the CoMP channel with generic channel coefficients,

also has the same DoF. However, from Claim 6 in Section 5.5.1, we know that

the DoF of the CoMP channel is strictly smaller than KMt/(Mt + 1), which

means that the above naive argument has to be incorrect.

The reason for the failure of the above naive argument is related to the sub-

tle concept of generic channel coefficients. Indeed, the derived channel has

KMt/(Mt + 1) DoF with generic channel coefficients, which means that there

exists a nonzero polynomial fg(g) in the derived channel coefficients

g = {g(m)
ij (m) : 1 ≤ i, j ≤ K, 1 ≤ m ≤Mt, 1 ≤ ` ≤ L}

such that the achievable scheme works for all g such that fg(g) 6= 0. In the case

of the cellular uplink channel, this statement makes sense since the coefficients

g are generated by nature and hence can be assumed to be generic. However,

in the case of the CoMP channel, nature generates the original channel coef-

ficients {hij(m)}, denoted by h. The coefficients g are derived from h using

rational transformations. Suppose we expand the polynomial fg in terms of the

coefficients h to obtain the rational function fh(h) = fg(g(h)). There are two

possibilities: the function fh is either identically equal to zero or it is nonzero. If

fh = 0, then the achievable scheme designed for the derived channel with generic

g may fail for all realizations of h, in which case the DoF result of the derived

channel with generic channel coefficients cannot be directly applied to CoMP

channel with generic channel coefficients. On the other hand, if fh is a nonzero

function, then we see that the achievable scheme works for generic h, in which

case the DoF result of the derived channel with generic channel coefficients can

be directly applied to CoMP channel with generic channel coefficients.

In summary, we need to be careful in applying the DoF result of the cellular

uplink channel to the CoMP channel, and the applicability of the result de-

pends on how the derived channel coefficients are related to the original channel
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coefficients.

5.6.3 Zero-Forcing Step

We now specify our choice of the beamforming matrices V1,V2, · · · ,VK , that

define the relation of the derived channel coefficients to the original channel coef-

ficients. As we shall notice later during the design of the asymptotic interference

alignment scheme, the beamforming matrices should be chosen to minimize the

number of nontrivial derived channel coefficients, where we say that a derived

channel coefficient is trivial if it is equal to either zero or one. Therefore, the

objective is to set as many derived channel coefficients as possible to zeros or

ones. Consider the derived channel coefficients
g

(1)
k+1,k g

(2)
k+1,k · · · g

(Mt)
k+1,k

g
(1)
k+2,k g

(2)
k+2,k · · · g

(Mt)
k+2,k

...
...

. . .
...

g
(1)
k+Mt,k

g
(2)
k+Mt,k

· · · g
(Mt)
k+Mt,k

 = H(Tk+1, Tk)Vk.

By choosing Vk = H(Tk+1, Tk)−1, we can set all the above mentioned derived

channel coefficients to either zero or one. In particular, we see that for each

i ∈ Tk+1

g
(m)
ik =

{
1 i = k +m

0 Otherwise.

Since we assumed that Mt = K−2, the set Tk+1 contains all the receiver indices

except for k − 1 and k. Therefore, we see that each transmitter X
(m)
k in the

derived channel causes interference to only two receivers, i.e., receivers k + m

and k − 1. Thus, the derived channel (5.29) can be simplified as

Yi =

Mt∑
m=1

g
(m)
ii X

(m)
i +

Mt∑
m=1

g
(m)
i,i+1X

(m)
i+1 +

Mt∑
m=1

X
(m)
i−m + Zi (5.30)

where the coefficients g
(m)
ii and g

(m)
i,i+1 are given by[

g
(1)
i,i+1 · · · g

(Mt)
i,i+1

]
= H(i, Ti+1)Vi+1 = H(i, Ti+1)H(Ti+2, Ti+1)−1[

g
(1)
ii · · · g

(Mt)
ii

]
= H(i, Ti+1)Vi = H(i, Ti)H(Ti+1, Ti)−1.

(5.31)

Figure 5.3 provides a description of the derived channel for the special case of

K = 4 and Mt = 2.

5.6.4 Asymptotic Interference Alignment

In this section, we consider L parallel derived channels and propose a scheme

achieving a DoF that is arbitrary close to KMt/(Mt + 1) in the limit L → ∞.
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Figure 5.3: The derived channel in Section 5.6.3 when K = 4 and Mt = 2. The
thick green lines indicate the links carrying signal. The dashed and dotted red
lines indicate the links carrying interference. Dotted lines indicate that the
corresponding coefficients are equal to 1.

We can combine the L parallel channels of (5.30) and express them together as

Y i =

Mt∑
m=1

G
(m)
ii X

(m)
i +

Mt∑
m=1

G
(m)
i,i+1X

(m)
i+1 +

Mt∑
m=1

X
(m)
i−m + Zi (5.32)

where X
(m)
j , Y i and Zi are L × 1 column vectors and G

(m)
ij is L × L diagonal

channel transfer matrix given by

G
(m)
ij =


g

(m)
ij (1)

g
(m)
ij (2)

. . .

g
(m)
ij (L)

 .

The achievable scheme that we propose is based on the asymptotic alignment

scheme introduced by Cadambe and Jafar in [41].

Definition 3 (Cadambe-Jafar (CJ) subspace). The order-n CJ subspace gen-

erated by the diagonal matrices

G1,G2, · · · ,GN

is defined as the linear subspace spanned by the vectors

{Ga1
1 Ga2

2 · · ·G
aN
N 1 : a ∈ ZN+ and

∑
i

ai ≤ n}. (5.33)
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The matrix containing these
(
N+n
n

)
vectors as columns is said to be the order-n

CJ matrix.

Let V denote the order-n CJ supspace (and the corresponding matrix) gen-

erated by the nontrivial channel matrices carrying interference:

{G(m)
i,i+1 : i ∈ K, 1 ≤ m ≤Mt}.

We use V as the transmit beamforming matrix at every transmitter. The nice

property about the CJ subspace is that the interference seen at any receiver is

limited to the order-(n + 1) CJ subspace, denoted by INT. At receiver k, the

desired signal streams appear along the directions[
G

(1)
kkV G

(2)
kkV · · · G

(Mt)
kk V

]
. (5.34)

The proposed scheme works if the receivers are able to extract out the desired

signal streams free of interference, which is true if the matrix

Mk =
[

G
(1)
kkV G

(2)
kkV · · · G

(Mt)
kk V INT

]
(5.35)

has full column rank for every k ∈ K. For the matrix Mk to have full column

rank, the number of rows, equal to the number of parallel channels (L), must

be greater than or equal to the number of columns. The number of columns in

V and INT, respectively, is given by

|V| =
(
KMt + n

KMt

)
|INT| =

(
KMt + n+ 1

KMt

)
.

(5.36)

Hence the number of columns in Mk is equal to Mt|V| + |INT| . We set

L = Mt|V| + |INT| so that Mk is a square matrix for each k ∈ K. Note that

the matrix Mk depends on the derived channel coefficients

g
(m)
ii (`), g

(m)
i,i+1(`) : 1 ≤ m ≤Mt, 1 ≤ i ≤ K, 1 ≤ ` ≤ L.

We need to prove that the matrices M1, · · · ,Mk have full rank for generic

(original) channel coefficients

hij(`) : 1 ≤ i, j ≤ K, 1 ≤ ` ≤ L.

The proof uses techniques from algebraic geometry summarized in Section B.

Using Corollary 4, we see that the matrices M1,M2, · · · ,Mk have full column

rank if the rational transformation (5.31) from the original channel coefficients

to the derived channel coefficients is such that the rational functions denoted
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by the variables

g
(m)
kk , g

(m)
i,i+1 : 1 ≤ m ≤Mt, 1 ≤ i ≤ K (5.37)

are algebraically independent. Before we prove the algebraic independence, we

show that the proposed scheme achieves the required DoF. Since the derived

channel has a total of KMt number of transmitters, and the proposed interfer-

ence alignment scheme creates |V| number of interference-free AWGN channels

per each transmitter, we obtain the following lower bound on the (normalized)

DoF:

DoF(K,K − 2, 1, L) ≥ KMt|V|
L

=
KMt|V|

Mt|V|+ |INT|
=

KMt

Mt + 1 + KMt

n+1

.

Therefore, we obtain that

DoF(K,K − 2, 1) = lim sup
L→∞

DoF(K,K − 2, 1, L)

≥ lim
n→∞

KMt

Mt + 1 + KMt

n+1

=
KMt

Mt + 1
.

5.6.5 Proof of Algebraic Independence

Since the achievable scheme is symmetric across the user indices, it is sufficient to

prove the claim for k = 1. The (K+1)Mt variables (5.37) are rational functions

of the K2 variables {hij : 1 ≤ i, j ≤ K}. Let J denote the corresponding

(K + 1)Mt × K2 Jacobian matrix. From Lemma 20, the variables (5.37) are

algebraically independent if and only if the Jacobian matrix J has full row rank

equal to (K + 1)Mt. Let

J[g0,g1, · · · ,gK ; h0,h1, · · · ,hK ] (5.38)

denote the (K + 1)Mt × (K + 1)Mt submatrix of J with rows correspond-

ing to the variables g0,g1, · · · ,gK and columns corresponding to the variables

h0,h1, · · · ,hK , where

g0 =
(
g

(1)
11 , g

(2)
11 , · · · , g

(Mt)
11

)
gi =

(
g

(1)
i,i+1, g

(2)
i,i+1, · · · , g

(Mt)
i,i+1

)
h0 = (h11, h22, · · · , hMtMt)

hi = (hi,i+1, hi,i+2, · · · , hi,K , hi,1, · · · , hi,i−2) .

We complete the claim by showing that square matrix (5.38) has full rank.

This is easy to verify using the symbolic toolbox of MATLAB for any fixed

K. An analytical proof involves computing the submatrix (5.38) at a specific
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point H = A, and showing that it has full rank. Although this is true at any

randomly generated A, certain choices can simplify the proof. We choose A to

be the circulant matrix given by

aij =

{
1 if j = i or j = i− 1

0 otherwise
. (5.39)

For the special case of K = 4 and Mt = 2, the matrix A is given by

A =


1 0 0 1

1 1 0 0

0 1 1 0

0 0 1 1

 . (5.40)

The following claim, whose proof is relegated to Section 5.9, completes the proof

of Theorem 16.

Claim 7. The determinant of the submatrix (5.38) evaluated at the point H =

A is equal to ±1.

5.6.6 Discussion

We end the section by explaining why the proposed scheme does not extend for

arbitrary Mt < K − 2. Observe that a straightforward extension of the achiev-

able scheme involves the same choice of ZF transmit beams in Section 5.6.3.

However, since Mt < K−2, each transmitter in the derived channel now causes

interference at K −Mt receivers, i.e., the transmitter X
(m)
k causes interference

at the receivers k+m, k+Mt+1, k+Mt+2, · · · , k+K−1. Since the asymptotic

interference alignment scheme requires that we use all the nontrivial channel ma-

trices in generating the CJ subspace, we can verify that the achievable scheme

works if the rational functions defined by the variables

g
(m)
kk , g

(m)
i,i+1, g

(m)
i,i+2, · · · , g

(m)
i,i+K−Mt−1 : 1 ≤ m ≤Mt, 1 ≤ i ≤ K

are algebraically independent for each k ∈ K. The total number of rational

functions is given by

(1 + (K −Mt − 1)K)Mt.

If the above number were to be greater than K2, then we can end this dis-

cussion since m > n rational functions in n variables cannot be algebraically

independent. But that is not the case. For example, when Mt = 2 and K = 5,

we have 22 rational functions in 25 variables. If these rational functions were to

be algebraically independent, then the achievable scheme generalizes achieving

a DoF of KMt/(Mt + 1), but we know from the discussion in Section 5.5.1 that

the DoF is strictly less than KMt/(Mt + 1) for all 1 < Mt < K − 2. Therefore,
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it must be that these rational functions are algebraically dependent.

5.7 CoMP Transmission: Proof of Theorem 15

In this section, we show that the DoF of the interference channel with CoMP

transmission and with transmit cooperation order of Mt and a receive cooper-

ation order of Mr = 1 is lower-bounded by

DoF(K,Mt, 1) ≥ K +Mt − 1

2
. (5.41)

We prove this by arguing that the DoF vector

di =

{
1 1 ≤ i ≤Mt − 1

0.5 Mt ≤ i ≤ K
(5.42)

is achievable; i.e., the first Mt − 1 users benefit from cooperation and achieve 1

degree of freedom, whereas the remaining K−Mt+1 users achieve 1/2 degree of

freedom just like in the interference channel without cooperation. Conceptually,

the achievable scheme in this section is identical to the achievable scheme in

Section 5.6 for the special case when Mt = K − 2; i.e., the achievable scheme is

again based on converting the CoMP channel into a derived channel and then

employing the asymptotic interference alignment scheme on the derived channel,

as summarized in Figure 5.2.

5.7.1 Derived Channel

As in Section 5.6, we convert the CoMP channel into a derived channel that

mimics the cellular uplink channel. Since our objective is to achieve a DoF

vector that is asymmetric, the derived channel is also chosen to be asymmetric.

The derived channel we consider in this section has two transmitters in each of

the first Mt − 1 cells, and one transmitter in the remaining K −Mt + 1 cells.

Yi =

K∑
j=1

g
(1)
ij X

(1)
j +

Mt−1∑
j=1

g
(2)
ij X

(2)
j + Zi. (5.43)

As in Section 5.6, we assume that the channel inputs of the CoMP channel are

related to the channel inputs of the derived channel through a linear transfor-

mation. The contribution of the derived channel input X
(m)
j in the real transmit
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signals Xj , Xj+1, · · · , Xj+Mt−1 is defined by a Mt× 1 beamforming vector, i.e.,


Xj

Xj+1

...

Xj+Mt−1

 = (∗) + v
(m)
j X

(m)
j

where ∗ represents the contribution from other derived channel inputs. It is easy

to see that the derived channel coefficients are related to the original channel

coefficients as

g
(m)
ij = H(i, Tj)v(m)

j

for all i, j ∈ K and appropriate m. Since we are designing the achievable scheme

to achieve 1 degree of freedom for the first Mt − 1 users, it must be that the

first Mt − 1 receivers in the derived channel should not see any interference.

5.7.2 Zero-Forcing Step

We now explain our choice of the beamforming vectors that ensures that the

first Mt − 1 receivers do not see any interference.

ZF beam design:

We first describe the general idea of constructing a zero-forcing beam. Consider

the problem of designing a zero-forcing beam v to be transmitted by n transmit

antennas indexed by the set T ⊆ K such that it does not cause interference at

n− 1 receive antennas indexed by the set I ⊆ K, i.e.,

H(I, T )v = 0.

Since H(I, T ) is a n− 1× n matrix, the choice for v is unique up to a scaling

factor. For any arbitrary row vector a of length n, we can use the Laplace

expansion to expand the determinant

det

[
H(I, T )

a

]
=

n∑
j=1

ajcj

where cj is the cofactor of aj , that depends only on the channel coefficients

in H(I, T ), and is independent of a. By setting the beamforming vector v

as v = [cn1 cn2 · · · cnn], we see that an arbitrary receiver i sees the signal

transmitted along the beam v with a strength equal to

g = H(i, T )v = det

[
H(I, T )

H(i, T )

]
= det H(I ∪ i, T ).
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Clearly, this satisfies the zero-forcing condition H(i, T )v = 0 for all i ∈ I.

Design of transmit beam v
(1)
j for j ≥Mt:

The signal X
(1)
j is transmitted by the Mt transmitters from the transmit set

Tj = j ↑Mt. The corresponding beam v
(1)
j is designed to avoid the interference

at the first Mt − 1 receivers I = 1 ↑ (Mt − 1). Therefore, we see that the

contribution of X
(1)
j at receiver i is given by

g
(1)
ij = det H(A,B) (5.44)

where

A = {1, 2, · · · ,Mt − 1, i}

B = {j, j + 1, · · · , j +Mt − 1}.

Design of transmit beams v
(1)
j and v

(2)
j for j < Mt:

The signals X
(1)
j and X

(2)
j are transmitted by the Mt transmitters from the

transmit set Tj = 1 ↑Mt. They must avoid interference at the Mt − 2 receivers

I = {1, 2, · · · , j − 1, j + 1, · · · ,Mt − 1}. (5.45)

Since we only need to avoid interference at Mt − 2 receivers, it is sufficient to

transmit each signal from Mt−1 number of transmitters. We use the first Mt−1

antennas of the transmit set Tj to transmit X
(1)
j , and the last Mt − 1 antennas

of the transmit set Tj to transmit X
(2)
j . Thus, we obtain

g
(1)
ij = det H(A,B1)

g
(2)
ij = det H(A,B2)

(5.46)

where

A = {1, 2, · · · , j − 1, j + 1,Mt − 1, i}

B1 = {j, j + 1, · · · , j +Mt − 2}

B2 = {j + 1, j + 1, · · · , j +Mt − 1}.

Thus, the derived channel (5.43) can be simplified as

Yi = g
(1)
ii X

(1)
j + g

(2)
ii X

(2)
j + Zi, 1 ≤ i < Mt

Yi =

K∑
j=1

g
(1)
ij X

(1)
j +

Mt−1∑
j=1

g
(2)
ij X

(2)
j + Zi, Mt ≤ i ≤ K

(5.47)
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where the derived channel coefficients are as described in (5.44) and (5.46).

Figure 5.4 provides a description of the derived channel for the special case of

K = 4 and Mt = 2. We note that the derived channel in this section is a not

a generalization, and does not specialize to the derived channel in Section 5.6

when Mt = K − 2. In fact, the achievable scheme in this section achieves fewer

DoF compared to the optimal KMt

Mt+1 DoF achieved in Section 5.6.

X
(1)
1

X
(2)
1

Y1

X
(1)
2

Y2

X
(1)
3

Y3

X
(1)
4

Y4

Figure 5.4: The derived channel in Section 5.7 when K = 4 and Mt = 2. The
thick green lines indicate the links carrying signal. The dashed red lines
indicate the links carrying interference.

5.7.3 Asymptotic Interference Alignment

In this section, we consider L parallel derived channels, and propose a scheme

achieving a DoF arbitrary close to (K + Mt − 1)/2 in the limit L → ∞. As

in Section 5.6.4, we can combine L parallel derived channels (5.47) and express

them together as

Y i = G
(1)
ii X

(1)
j + G

(2)
ii X

(2)
j + Zi, 1 ≤ i < Mt

Y i =

K∑
j=1

G
(1)
ij X

(1)
j +

Mt−1∑
j=1

G
(2)
ij X

(2)
j + Zi, Mt ≤ i ≤ K

where X
(m)
j , Y i and Zi are L × 1 column vectors and G

(m)
ij is L × L diagonal

channel transfer matrix given by

G
(m)
ij =


g

(m)
ij (1)

g
(m)
ij (2)

. . .

g
(m)
ij (L)

 .
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As in Section 5.6.4, we use V, defined as the order−n CJ subspace generated

by the channel matrices carrying interference

{Ḡ(1)
ij , Ḡ

(2)
ij : i ≥Mt, j < Mt} ∪ {Ḡ(1)

ij : i 6= j ≥Mt} (5.48)

as the transmit beamforming matrix at every transmitter of the derived channel.

The firstMt−1 receivers do not see any interference. Therefore, for each k < Mt,

the receiver k can decode all the desired streams free of interference if the matrix

Mk =
[

G
(1)
kkV G

(2)
kkV

]
(5.49)

has full column rank. Assuming that the number of rows in Mk, equal to the

number of parallel channels L, is greater than or equal to the number of columns,

i.e., L ≥ 2|V|, the matrix Mk has full column rank for generic (original) channel

coefficients {hij(`)} if the following claim is true. See Corollary 4 in Section B

for an explanation.

Claim 8. For each k < Mt, the polynomials denoted by the variables

{g(1)
kk , g

(2)
kk } ∪ {g

(1)
ij , g

(2)
ij : i ≥Mt, j < Mt} ∪ {g(1)

ij : i 6= j ≥Mt} (5.50)

are algebraically independent.

For each k ≥Mt, the interference seen at receiver k is limited to the order−(n+

1) CJ subspace, denoted by INT. Therefore, the receiver k can decode all the

desired streams free of interference if the matrix

Mk =
[

G
(1)
kkV INT

]
(5.51)

has full column rank. Assuming that the number of rows is greater than or

equal to the number of columns, i.e., L ≥ |V|+ |INT|, the matrix Mk has full

column rank for generic (original) channel coefficients {hij(t)} if the following

claim is true.

Claim 9. For each k ≥Mt, the polynomials denoted by the variables

{g(1)
kk } ∪ {g

(1)
ij , g

(2)
ij : i ≥Mt, j < Mt} ∪ {g(1)

ij : i ≥Mt, j ≥Mt} (5.52)

are algebraically independent.

To satisfy the requirements on L, we choose L as

L = max(2|V|, |V|+ |INT|) = |V|+ |INT|. (5.53)
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Observe that

|V| =
(
N + n

n

)
and |INT| =

(
N + n+ 1

n+ 1

)
(5.54)

where N is the number of matrices (5.48) used to generate the CJ subspace,

and is given by

N = 2(K −Mt + 1)(Mt − 1) + (K −Mt + 1)(K −Mt)

= (K −Mt + 1)(K +Mt − 2).
(5.55)

Therefore, the achievable DoF is given by

DoF(K,Mt, 1, L) ≥ 2(Mt − 1)|V|+ (K −Mt + 1)|V|
L

=
(K +Mt − 1)|V|
|V|+ |INT|

=
K +Mt − 1

2 + N
n+1

.

(5.56)

Therefore, we obtain that

DoF(K,K − 2, 1) = lim sup
L→∞

DoF(K,K − 2, 1, L)

≥ lim
n→∞

K +Mt − 1

2 + N
n+1

=
K +Mt − 2

2
.

5.7.4 Proof of Algebraic Independence

As in Section 5.6.5, we use the Jacobian criterion to prove Claims 8 and 9. Recall

that each derived channel coefficient is a polynomial in K2 variables {hij : 1 ≤
i, j,≤ K}. Let g denote the vector consisting of the polynomials specified by

the derived channel coefficients in the respective claims. The exact description

of the polynomials can be obtained from (5.44) and (5.44) in Section 5.7.2.

The number of polynomials in Claims 8 and 9 is equal to N + 2 and N + 1,

respectively, where N is given by (5.55). From Lemma 20 in Appendix B, we see

that a collection of polynomials is algebraically independent if and only if the

corresponding Jacobian matrix has full row rank. It can be easily verified that

N + 2 ≤ K2, and hence N + 1 ≤ K2, for any K and Mt, which is a necessary

condition for the corresponding Jacobian matrices to have full row rank. It is

easy to verify that the Jacobian matrices corresponding to the polynomials in

Claims 8 and 9 have full row rank using symbolic toolbox of MATLAB for any

fixed K and Mt. In particular, we verified that the Jacobian matrices have full

row rank for all values of Mt < K ≤ 9.
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5.8 Summary and Future Directions

We considered the problem of determining the DoF of K-user CoMP channel

with a transmit cooperation order of Mt and a receive cooperation order of

Mr. We showed that the DoF is equal to the maximum value of K if and

only if Mt + Mr ≥ K + 1. We related the problem to the problem of matrix

decomposition with structural constraints. We proved a new theorem, that

provides sufficient conditions for a generic matrix to admit SMD, generalizing

the LU decomposition. We then set the receive cooperation order Mr = 1, and

considered the problem of determining the DoF of interference channel with

CoMP transmission. We determined DoF(K,Mt, 1) exactly in some cases, and

approximately in other cases.

5.8.1 Transmit Set Selection

Recall that interference channel with CoMP transmission, i.e., with Mr = 1, is a

good model for cellular downlink. One of the problems in the design of practical

downlink CoMP schemes is the problem of transmit set selection. The transmit

set of a user is the set of base stations that jointly transmit its message. In this

chapter, we assumed a specific spiral structure for the transmit sets so that the

mathematical analysis is simple. Instead, if we allow for arbitrary transmit sets

satisfying the cooperation order constraints given by

|Tk| ≤Mt, k ∈ K

and study the problem of maximizing the DoF, the resulting insights can pro-

vide rough guidelines for the transmit set selection problem. Since we did not

make any assumptions on the structure of transmit sets and receive sets in The-

orem 11, we can obtain an upper bound on the sum DoF for any given choice of

transmit sets. Solving the combinatorial optimization problem of maximizing

the resulting upper bound on DoF subject to cooperation order constraint could

also lead to insights on the problem of transmit set selection. However, solving

this combinatorial optimization problem seems to be difficult.

An immediate insight from the outer bound in Theorem 11 is that clustering

does not improve DoF. To illustrate the point, suppose K = 2Mtr for some

integer r, and suppose the transmit sets are chosen such that the K transmitters

are divided into 2r clusters with each cluster containing Mt transmitters. The

sets A and B in Theorem 11 can be appropriately chosen to conclude that

the DoF is outer-bounded by K/2. Since K/2 DoF is achievable even without

cooperation, we see that clustering is not a good transmit set selection algorithm

from the DoF perspective.
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5.8.2 Achievable DoF using Beamforming Strategies

In the case of CoMP transmission, the proposed asymptotic achievable schemes

in Sections 5.6 and 5.7 are based on the CJ subspace, which is more of a proof

technique than a practical achievable scheme. The nice feature of this approach

is that asymptotic DoF in the limit L → ∞ matches with the information-

theoretic upper bound. For finite L such as L = 1, the achievable DoF with

beamforming strategies does not, in general, match with the information-theoretic

outer bound. Since the beamforming strategies are practical, it is of interest to

determine the best achievable DoF using beamforming strategies for finite val-

ues of L. Recently, algebraic geometry techniques have been used in [66, 67] to

determine the best achievable DoF in the K-user MIMO Gaussian interference

channels without cooperation. Extending such analysis to the CoMP channel

would provide good insights into the usefulness of CoMP within the class of

beamforming strategies.

5.9 Proof of Claim 7

In this section, we complete the proof of Theorem 16 by show that the deter-

minant of the submatrix (5.38) evaluated at the point H = A is equal to ±1.

Recall that

g0 =
(
g

(1)
11 , g

(2)
11 , · · · , g

(Mt)
11

)
= H(1, T1)H(T2, T1)−1

gi =
(
g

(1)
i,i+1, g

(2)
i,i+1, · · · , g

(Mt)
i,i+1

)
= H(i, Ti+1)H(Ti+2, Ti+1)−1

h0 = (h11, h22, · · · , hMtMt
)

hi = (hi,i+1, hi,i+2, · · · , hi,K , hi,1, · · · , hi,i−2) = H(i, Ti+1)

where the transmit set Ti is given by

Ti = i ↑ (K − 2) = {i, i+ 1, · · · , i+K − 2}.

Let J[gi; hj ] denote the submatrix of the Jacobian matrix with rows correspond-

ing to the variables gi and columns corresponding to the variables hj . Then,

the submatrix (5.38) can be expressed as
J[g0; h0] · · · J[g0; hK ]

...
. . .

...

J[gK ; h0] · · · J[gK ; hK ]

 . (5.57)

Differentiating gi = H(i, Ti+1)H(Ti+2, Ti+1)−1 at H = A, we get

dgi = dH(i, Ti+1)A(Ti+2, Ti+1)−1

−A(i, Ti+1)A(Ti+2, Ti+1)−1dH(Ti+2, Ti+1)A(Ti+2, Ti+1)−1.
(5.58)
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The matrix A is chosen to satisfy

A(i, Ti+1) = 0

A(Ti+2, Ti+1) = B,

where B is the Mt ×Mt matrix with all the diagonal and the superdiagonal

entries being equal to 1. Note that det B = 1. For the special case of K = 4

and Mt = 2, the matrix B is given by

B =

[
1 1

0 1

]
. (5.59)

Therefore, (5.58) can be simplified as

dgi = dH(i, Ti+1)B−1 = dhiB
−1.

Equivalently, for each i ≥ 1, we have

J[gi; hi] = B−>

J[gi; hj ] = 0,∀j 6= i.

Hence, the determinant of the submatrix (5.57) is equal to

det J[g0; h0]/(det B)K = det J[g0; h0].

We now show that det J[g0; h0] = ±1. Recall from Section 5.6.3 that g0 is

related to H as

g0 =
(
g

(1)
11 , g

(2)
11 , · · · , g

(Mt)
11

)
= H(1, T1)H(T2, T1)−1.

Differentiating g0 = H(1, T1)H(T2, T1)−1 at H = A, we get

dg0 = dH(1, T1)A(T2, T1)−1

−A(1, T1)A(T2, T1)−1dH(T2, T1)A(T2, T1)−1

= dH(1, T1)B−1 −A(1, T1)B−1dH(T2, T1)B−1.

Now, observe that

A(1, T1)B−1 =
[

1 0 · · · 0
]

B−1

=
[

1 −1 1 −1 · · ·
]
.

(5.60)
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Therefore, we get

dg0B = dH(1, T1)−A(1, T1)B−1dH(T2, T1)

=
[
dh11 dh12 · · · dh1,K−2

]
−
[
dh21 dh22 · · · dh2,K−2

]
+
[
dh31 dh32 · · · dh3,K−2

]
...

(−1)K−1
[
dhK−2,1 dhK−2,2 · · · dhK−2,K−2

]
(−1)K

[
dhK−1,1 dhK−1,2 · · · dhK−1,K−2

]
.

To determine J[g0; h0], we are only interested in the partial derivatives with

respect to the variables h11, h22, · · · , hK−2,K−2. The contribution of dh0 in dg0

is given by [
dh11 −dh22 dh33 −dh44 · · ·

]
B−1

= dh0


1

−1

1

. . .

B−1
(5.61)

which implies that

J[g0; h0] = B−>


1

−1

1

. . .

 . (5.62)

Hence, det J[g0; h0] = ±det B = ±1.
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CHAPTER 6

CONCLUSIONS

In Chapters 3 and 4, we solved the following two problems exactly in a low

interference regime:

1. Find the best sum-rate of Gaussian interference channels with transmitters

using Gaussian inputs and receivers treating interference as noise.

2. Find the sum capacity of Gaussian interference channels.

We used the concept of a genie-aided channel to solve both of these problems

in one shot. We chose the side-information signals carefully, so that the re-

sulting sum-rate function of the genie-aided channel is concave in the transmit

covariance matrices, and i.i.d. Gaussian inputs achieve the sum capacity of the

genie-aided channel. Interestingly, both the concavity of the sum-rate function

and the optimality of Gaussian inputs hold under the same conditions on the

genie parameters, which we refer to as the usefulness conditions. It is worth

exploring if this is coincidental or if the concavity of the achievable sum-rate

function and the optimality of i.i.d. Gaussian inputs are fundamentally related

to each other.

We solved both of the above problems in a low interference regime by min-

imizing the upper bound over all useful genies. We showed that the notion of

smart genie is crucial in arriving at succinct expressions for low interference

regime. It appears that the proposed genie-aided channel approach, or in gen-

eral the convex relaxation and approximation approach, has untapped potential

in both proving low interference regime theorems, and also in obtaining effi-

cient algorithms to obtain good lower and upper bounds to the sum capacity,

and best achievable sum-rate with treating interference as noise. We refer the

reader to Sections 3.11 and 4.5, where we outlined a few interesting ideas that

are not explored in this dissertation but could further our understanding of the

sum capacity of Gaussian interference channels even in the classical two-user

symmetric SISO case.

In Chapter 5, we studied the problem of determining the DoF of the K-user

interference channel with CoMP transmission and reception as a function of

the transmit and receive cooperation orders. We determined the exact DoF

in some special cases, and derived lower and upper bounds in the other cases.

We showed that the DoF is exactly equal to K if and only if the cooperation
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orders satisfy Mt + Mr ≥ K + 1, and the achievability proof is based on the

decomposition of a matrix as a product to two matrices with structural con-

straints. So far we have not found any other applications for the structural

matrix decomposition, but we are hopeful that Theorem 14 can be useful in

some signal processing applications. We then considered the problem of de-

termining the DoF of interference channel with CoMP transmission, i.e., with

Mr = 1. While the achievable schemes of Theorems 15 and 16 are based on the

Cadambe-Jafar scheme and are easy to construct, proving that the achievable

schemes work for generic channel coefficients is highly nontrivial. The notion

of algebraic independence of rational functions, and the Jacobian criterion to

test algebraic independence, turned out to be extremely crucial. We believe

that these connections to algebraic geometry are useful in understanding the

achievable DoF with linear beamforming strategies of any wireless channel. We

refer the reader to Section 5.8 for more details on the usefulness of the algebraic

geometry techniques.
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APPENDIX A

INFORMATION THEORY

In this appendix, we state some results in information theory that are useful

in Chapters 3 and 4. We refer the reader to the standard textbook [68] for

basic definitions of information-theoritic quantities such as entropy, differential

entropy, conditional entropy and mutual information, and to Section 1.5 for an

explanation about the notation that we follow.

A.1 Minimum Mean Squared Error Estimation

Suppose XG and Y G are jointly circularly symmetric, and jointly Gaussian

complex random vectors with zero mean. See [69] and [70] for the definitions

and properties of circularly symmetric complex Gaussian random vectors. Since

the random vectors are jointly circularly symmetric and Gaussian, the minimum

mean squared error (MMSE) estimate of XG given Y G

X̂G = E [XG|Y G]

is linear in Y G. The orthogonality principle says that X̂G = TY G is the MMSE

estimate if and only if the MMSE estimation error (XG − X̂G) is orthogonal

(and independent in this case since the random variables are jointly Gaussian)

to the observation Y G; i.e.,

E
[
(XG −TY G)Y †G

]
= 0 ⇔ ΣXGY G

= TΣY G
.

Suppose ΣY G
is nonsingular; then T is uniquely determined and hence is given

by

T = ΣXGY G
Σ−1
Y G

and the conditional covariance matrix of XG given Y G, defined as the covariance

matrix of MMSE estimation error, is given by

ΣXG|Y G
= ΣXG

−ΣXGY G
Σ−1
Y G

ΣY GXG
.
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Note that ΣXG|Y G
is the Schur complement of ΣXG

in the matrix

Cov

([
XG

Y G

])
=

[
ΣXG

ΣXG,Y G

ΣY G,XG
ΣY G

]
.

The following lemma is useful.

Lemma 9. Suppose XG and Y G are jointly circularly symmetric, and jointly

Gaussian complex random vectors, and Σ is a positive semidefinite matrix.

Then,

ΣXG|Y G
� Σ⇔ Cov

([
XG

Y G

])
�

[
Σ 0

0 0

]
.

Proof. Let a and b be column vectors of the same length as XG and Y G,

respectively, and TY G be the MMSE estimate of XG given Y G. Observe that

the first condition is equivalent to

a†ΣXG|Y G
a = E

[∣∣a† (XG −TyG)
∣∣2] ≥ a†Σa, ∀a (A.1)

and the second condition is equivalent to

E
[∣∣a†XG + b†Y G

∣∣2] ≥ a†Σa, ∀a,b. (A.2)

We complete the proof by showing that the equations (A.1) and (A.1) imply

each other. First, observe that

E
[∣∣a†XG + b†Y G

∣∣2] = E
[∣∣a† (XG −TY G + TY G) + b†Y G

∣∣2]
= E

[∣∣a† (XG −TY G) +
(
a†T + b†

)
Y G
∣∣2] .

Since the MMSE estimation error XG−TY G is independent of the observation

Y G, we have that

E
[∣∣a†XG + b†Y G

∣∣2] = E
[∣∣a† (XG −TY G)

∣∣2]+ E
[∣∣(a†T + b†

)
Y G
∣∣2] .

Substituting the above expression in (A.2) it is clear that (A.1) implies (A.2).

It is also clear that (A.2) implies (A.1) by setting b = −T†a.

A.2 Basic Extremal Inequalities

In this section, we review two basic extremal inequalities regarding the opti-

mality of circularly symmetric complex Gaussian distributions. The following

lemma says that among all continuous distributions with a fixed covariance

matrix, the circularly symmetric complex Gaussian distribution maximizes the

differential entropy.
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Lemma 10 (Theorem 2 in [69]). Let X be a complex and continuous random

vector. Then,

h (X) ≤ h (XG) = log det
(
πeΣXG

)
where XG is a circularly symmetric complex Gaussian random vector with zero

mean and covariance matrix equal to the covariance matrix of X.

We now extend the lemma to conditional differential entropy.

Lemma 11. Let X and Y be complex and continuous random vectors. Then,

h (X|Y ) ≤ h (XG|Y G) = log det
(
πeΣXG|Y G

)
where XG and Y G are jointly circularly symmetric and jointly Gaussian complex

random vectors with zero mean and joint covariance matrix equal to the joint

covariance matrix of X and Y .

Proof. Let TY G be the MMSE estimate of XG given Y G. Since the estimation

error XG −TY G is independent of the observation Y G, we have

h (XG|Y G) = h (XG −TY G|Y G) = h (XG −TY G) = log det
(
πeΣXG|Y G

)
.

Also, observe that

h (X|Y ) = h (X −TY |Y ) ≤ h (X −TY ) ≤ h (XG −TY G)

where the first inequality follows because conditioning can only reduce entropy,

and the second inequality follows from Lemma 10 because the covariance matrix

of Y −TX is the same as the covariance matrix of Y G −TXG.

A.3 Concave Functions

In this section, we show that the differential entropy and the conditional dif-

ferential entropy of circularly symmetric complex Gaussian random vectors are

concave functions in the corresponding covariance matrices.

Lemma 12. Suppose XG is a circularly symmetric complex Gaussian random

vector. The differential entropy h (XG) = log
(
|πeΣXG

|
)

is concave and nonde-

creasing in ΣXG
.

We now extend the lemma to conditional differential entropy.

Lemma 13. Suppose XG and Y G are jointly circularly symmetric, and jointly

Gaussian complex random vectors. Then, the conditional differential entropy

h (XG|Y G) is concave and nondecreasing in

Cov

([
XG

Y G

])
.
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Proof. Let (X1G, Y 1G), (X2G, Y 2G) and (X2G, Y 2G) be jointly circularly sym-

metric, and jointly Gaussian complex random vectors such that

Cov

([
XG

Y G

])
= λCov

([
X1G

Y 1G

])
+ (1− λ)Cov

([
X2G

Y 2G

])
.

From Lemma 9, we know that the conditional covariance matrices ΣX1G|Y 1G

and ΣX2G|Y 2G
satisfy

Cov

([
XiG

Y iG

])
�

[
ΣXiG|Y iG

0

0 0

]
, for i = 1, 2.

Therefore, we obtain that

Cov

([
XG

Y G

])
�

[
λΣX1G|Y 1G

+ (1− λ)ΣX2G|Y 2G
0

0 0

]
.

Applying Lemma 9 again, we obtain that

ΣXG|Y G
� λΣX1G|Y 1G

+ (1− λ)ΣX2G|Y 2G
.

Now, applying Lemma 12, we obtain that

h (XG|Y G) = log
(
|πeΣXG|Y G

|
)

≥ log
(∣∣πe (λΣX1G|Y 1G

+ (1− λ)ΣX2G|Y 2G

)∣∣)
≥ λ log

(
|πeΣX1G|Y 1G

|
)

+ (1− λ) log
(
|πeΣX2G|Y 2G

|
)

= λh (X1G|Y 1G) + (1− λ)h (X2G|Y 2G) .

This completes the proof of concavity of h (XG|Y G) in the joint covariance

matrix. The proof that h (XG|Y G) is nondecreasing in the joint covariance

matrix follows directly from Lemma 9.

Lemma 14. Suppose XG, Z,W are circularly symmetric, and indepenent com-

plex Gaussian random vectors such that ΣZ � ΣW . Then,

h (XG + Z)− h (XG +W )

is concave in ΣXG
.

Proof. Let V ∼ CN (0,ΣW − ΣZ) be independent of X and Z. Then, Z + V

has the same distribution as W . Therefore, it is sufficient to prove that

h (XG + Z)− h (XG + Z + V ) = −I (V ;XG + Z + V )

is concave in ΣXG
. Observe that

−I (V ;XG + Z + V ) = −h (V ) + h (V |XG + V +W ) .

109



The first term is independent of ΣXG
, and from Lemma 13, it follows that the

second term is concave in ΣXG
.

A.4 More Extremal Inequalities

In this section, we show that among all the sequences of random vectors with

a fixed average covariance matrix, the circularly symmetric i.i.d. Gaussian ran-

dom vectors maximize certain objective functions involving multi-letter differ-

ential entropy and conditional differential entropy terms.

Lemma 15. Suppose Xn is a sequence of complex and continuous random

vectors. Then,

h (Xn) ≤ nh (XG) = n log det
(
πeΣXG

)
where XG is a circularly symmetric Gaussian random vector with the covariance

matrix equal to the average covariance matrix of the random sequence Xn; i.e.,

ΣXG
=

1

n

n∑
i=1

ΣXi
.

Proof. Observe that

h (Xn) =

n∑
i=1

h
(
Xi|X

i−1
)

(a)

≤
n∑
i=1

h (Xi)

(b)

≤
n∑
i=1

h (XiG)

(c)

≤ nh (XG)

where step (a) follows because conditioning can only reduce entropy, step (b)

follows from Lemma 10, and step (b) follows from Lemma 12 that says that

h (XG) is concave in ΣXG
.

We now extended the above lemma to conditional differential entropy.

Lemma 16. Suppose Xn and Y n are sequences of complex and continuous

random vectors. Then,

h (Xn|Y n) ≤ nh (XG|Y G) = n log det
(
πeΣXG|Y G

)
where (XG, Y G) are jointly circularly symmetric and Gaussian complex random
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vectors with the same joint covariance matrix equal to

Cov

([
XG

Y G

])
=

1

n

n∑
i=1

Cov

([
Xi

Y i

])
.

Proof. Let (XiG, Y iG) be jointly circularly symmetric, and jointly Gaussian

random vectors with the jointly covariance matrix equal to the joint covariance

matrix of (Xi, Y i). Then, we have

h (Xn|Y n) =

n∑
i=1

h
(
Xi|Y

i−1, Y n
)

(a)

≤
n∑
i=1

h (Xi|Y i)

(b)

≤
n∑
i=1

h (XiG|Y iG)

(c)

≤ nh (XG|Y G)

where step (a) follows because conditioning can only reduce entropy, step (b)

follows from Lemma 11, and step (b) follows from Lemma 13 that says that

h (XG|Y G) is concave in the joint covariance matrix of XG and Y G.

Lemma 17. Suppose Xn is a sequence of complex and continuous random

vectors, and Zn ∼ i.i.d. ∼ CN (0,ΣZ), and Wn ∼ i.i.d. ∼ CN (0,ΣW ) such that

Σz � Σw. Then,

h (Xn + Zn)− h (Xn +Wn) ≤ nh (XG + Z)− nh (XG +W )

where Z ∼ CN (0,ΣZ), W ∼ CN (0,ΣW ), and XG is a circularly symmetric

Gaussian random vector with the covariance matrix equal to the average covari-

ance matrix of the random sequence Xn; i.e.,

ΣXG
=

1

n

n∑
i=1

ΣXi
.

Proof. Let V n ∼ i.i.d. ∼ CN (0,ΣW − ΣZ) be independent of Zn. Then, the

sequence Zn + V n has the same distribution as Wn. Therefore, it is sufficient

to prove that

h (Xn + Zn)− h (Xn + Zn + V n) ≤ nh (XG + Z)− nh (XG + Z + V )

⇔ −I (V n;Xn + Zn + V n) ≤ −nI (V ;XG + Z + V ) .
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Observe that

−I (V n;Xn + Zn + V n) = −h (V n) + h (V n|Xn + Zn + V n)

(a)

≤ −nh (V ) + nh (V |XG + Z + V )

= −nI (V ;XG + Z + V ) .

where step (a) follows from Lemma 16.

The above lemma is referred to as the worst-case noise lemma. Indeed, ob-

serve that I (V n;Xn + Zn + V n) can be interpreted as the multi-letter mutual

information of an additive noise channel with V as input and X + Z as noise.

The above result argues that i.i.d. Gaussian noise is the worst-case noise min-

imizing I (V n;Xn + Zn + V n). In the scalar case, as explained in the mutual

information game problem (see Exercise 9.21 in [68]), an alternative proof can

be given using the entropy power inequality (EPI).

Lemma 18 (EPI). Suppose Xn and Zn are independent sequences of complex

random variables. Then,

e
1
n h(Xn+Zn) ≥ e 1

n h(Xn) + e
1
n h(Zn).

We use EPI to prove a generalized version of worst-case noise lemma in the

scalar case.

Lemma 19. Suppose {Xn
i : 1 ≤ i ≤M} are independent sequences of complex

random vectors satisfying an average power constraint Pi; i.e.,

1

n

n∑
j=1

ΣXij
≤ Pi, 1 ≤ i ≤M

and Zn ∼ i.i.d. ∼ CN (0,ΣZ). Let µ1, µ2, · · · , µM be real numbers satisfying

the conditions

µi ≥
Pi∑M

j=1 Pj + ΣZ
, 1 ≤ i ≤M.

Then, we have

M∑
i=1

µih (Xn
i )− h

(
M∑
i=1

Xn
i + Zn

)
≤ n

M∑
i=1

µih (XiG)− nh

(
M∑
i=1

XiG + Z

)

where XiG ∼ CN (0, Pi).

Proof. We will prove the lemma for

µi =
Pi∑M

j=1 Pj + ΣZ
.
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The result with

µi >
Pi∑M

j=1 Pj + ΣZ

follows because the additional positive entropy quantities are easily seen to

be maximized by i.i.d. Gaussian random vectors. Let ti denote the average

differential entropy

ti =
h (Xn

i )

n
.

Applying the EPI (Lemma 18) repeatedly, we obtain that

h

(
M∑
i=1

Xn
i + Zn

)
≥ n log

(
M∑
i=1

eti + πeΣZ

)
.

Therefore, we have

M∑
i=1

µih (Xn
i )− h

(
M∑
i=1

Xn
i + Zn

)
≤ n

M∑
i=1

µiti − n log

(
M∑
i=1

eti + πeΣZ

)
.

Let f(t) =
∑M
i=1 µiti −

1
2 log

(∑M
i=1 e

ti + ΣZ

)
. The second term is called the

log-sum-exp function [71], which is convex in t. Therefore, it follows that f is

concave in t. Now, using

∂f

∂ti
= µi −

eti∑M
j=1 e

tj + πeΣZ

it can be easily checked that {tj = log (πePj)}Mj=1 satisfy ∂f
∂ti

= 0 for all i.

Since f(t) is concave in t, we obtain that f(t) achieves its maximum at {tj =

log (πePj)}Mj=1, and hence

f(t) ≤
M∑
i=1

µi log (πePi)− log

(
πe

M∑
i=1

Pi + πeΣZ

)

=

M∑
i=1

µih (XiG)− nh

(
M∑
i=1

XiG + Z

)
.
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APPENDIX B

ALGEBRAIC GEOMETRY

In this appendix, we present some results in algebraic geometry that are essential

in proving the main results in Chapter 5. We start by recalling some basic

terminology in algebraic geometry. We refer the reader to the book [72] for an

excellent introduction.

B.1 Varities and Ideals

Let C[t1, t2, · · · , tn] and C(t1, t2, · · · , tn) denote the set of multivariate polyno-

mials and rational functions, respectively, in the variables t1, t2, · · · , tn. For any

polynomials f1, f2, · · · , fm ∈ C[t1, t2, · · · , tn], the affine variety generated by

f1, f2, · · · , fm is defined as set of points at which the polynomials vanish:

V (f) = {t ∈ Cn : f(t) = 0}. (B.1)

Any subset I ⊆ C[t1, t2, · · · , tn] is called an ideal if it satisfies the three proper-

ties

• 0 ∈ I.

• If f1, f2 ∈ I, then f1 + f2 ∈ I.

• If f1 ∈ I and f2 ∈ C[t1, t2, · · · , tn], then f1f2 ∈ I.

For any set A ⊆ Cn, the ideal generated by A is defined as

I(A) = {f ∈ C[t1, t2, · · · , tn] : f(t) = 0 ∀t ∈ A}. (B.2)

For any ideal I, the affine variety generated by I is defined as

V (I) = {t ∈ Cn : f(t) = 0 ∀f ∈ I}. (B.3)

The Zariski topology on the affine space Cn is obtained by taking the affine

varieties as closed sets. For any set A ∈ Cn, the Zariski closure Ā is defined as

Ā = V (I(A)). (B.4)
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A set A ⊆ Cn is said to be constructible if it is a finite union of locally closed

sets of the form U ∩ Z with U closed and Z open. If A ⊆ Cn is constructible

and Ā = Cn, then A must be dense in Cn, i.e., Ac ⊆ W for some non-trivial

variety W ( Cn.

B.2 Algebraic Independence and Jacobian Criterion

The rational functions f1, f2 · · · , fm ∈ C(t1, t2, · · · , tn) are called algebraically

dependent (over C) if there exists a nonzero polynomial F ∈ C[s1, s2 · · · , sm]

such that F (f1, f2, · · · , fm) = 0. If there exists no such annihilating polynomial

F , then f1, f2, · · · , fm are algebraically independent.

Lemma 20 (Theorem 3 on page 135 of [73]). The rational functions f1, f2 · · · , fm ∈
C(t1, t2, · · · , tn) are algebraically independent if and only if the Jacobian matrix

Jf =

(
∂fi
∂tj

)
1≤i≤m,1≤j≤n

(B.5)

has full row rank equal to m.

The Jacobian matrix is a function of the variables t1, t2, · · · , tn, and hence the

Jacobian matrix can have different ranks at different points t ∈ Cn. The above

lemma refers to the structural rank of the Jacobian matrix which is equal to m

if and only if there exists at least one realization t ∈ Cn where the Jacobian

matrix has full row rank.

B.3 Dominant Maps and Generic Properties

A polynomial map f : Cn → Cm is said to be dominant if the Zariski closure

of the image f(Cn) is equal to Cm. The image of a polynomial map is con-

structible. Therefore, the image of a dominant polynomial map is dense, i.e.,

the complement of f(Cn) is contained in a non-trivial variety W ( Cm. The

implication of this is that the system of polynomial equations

s1 = f1(t1, t2, · · · , tn)

s2 = f2(t1, t2, · · · , tn)

...

sm = fm(t1, t2, · · · , tn)

(B.6)

has a solution t ∈ Cn for generic s, where the notion of a generic property is

defined below.

Definition 4. A property is said to true for generic s ∈ Cm if the property

holds true for all s ∈ Cm except on a non-trivial affine variety W ( Cm. Such
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a property is said be a generic property.

For example, a generic square matrix A has full rank because A is rank

deficient only when it lies on the affine variety generated by the polynomial

f(A) = det A. If the variables are generated randomly according to a continuous

joint distribution, then any generic property holds true with probability 1.

Observe that the Zariski closure of the image f(Cn) is equal to Cm if and only

if the ideal I generated by the image set is equal to {0}. Since I is equal to the

set of annihilating polynomials

I = {F ∈ C[s1, s2, · · · , sm] : F (s) = 0 ∀s ∈ f(Cn)}

= {F ∈ C[s1, s2, · · · , sm] : F (f1, f2, · · · , fm) = 0},
(B.7)

the map f is dominant if and only if the polynomials f1, f2, · · · , fm are alge-

braically independent. Thus we obtain the following lemma.

Lemma 21. The system of polynomial equations (B.6) admits a solution for

a generic s ∈ Cm if and only if the polynomials f1, f2, · · · , fm are algebraically

independent, i.e., if and only if the Jacobian matrix (B.5) has full row rank.

B.4 A Lemma on Full-Rankness of Certain Random
Matrix

Let t ∈ Cn be a set of original variables, and let s ∈ Cm be a set of derived

variables obtained through polynomial transformation s = f(t) for some rational

map f . Suppose we generate q instances of t

t(1), t(2), · · · , t(q) (B.8)

and the corresponding q instances of s

s(1), s(2), · · · , s(q)

and generate the q × p matrix

M =


s(1)a1 s(1)a2 · · · s(1)ap

s(2)a1 s(2)a2 · · · s(2)ap

...
...

. . .
...

s(q)a1 s(q)a2 · · · s(q)ap

 (B.9)

for some exponent vectors a1,a2, · · · ,ap ∈ Zm+ and q ≥ p. We are interested in

determining the set of variables (B.8) such that the matrix M has full column

rank. If there exists an annihilating polynomial F ∈ C[s1, s2, · · · , sm] of the
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form

F (s) =

p∑
i=1

cis
ai (B.10)

such that F (f1, f2, · · · , fm) = 0, then the matrix M satisfies Mc = 0, and

hence the matrix M does not have full column rank for any realizations of the

variables (B.8). Interestingly, even the converse holds true.

Lemma 22. The matrix M has full column rank for generic realizations of the

variables (B.8) if and only if there does not exist an annihilating polynomial F

of the form (B.10) satisfying F (f1, f2, · · · , fm) = 0.

Proof. We have already proved that M does not have full column rank if there

exists an annihilating polynomial F of the form (B.10). We now prove the

converse; i.e., we assume that there does not exist an annihilating polynomial of

the form (B.10), and prove that the matrix M has full column rank for generic

realizations of the variables (B.8). Without any loss of generality, we assume

that p = q. Otherwise, we can work with the q × q submatrix obtained after

deleting the last q − p rows.

Consider expanding the determinant det M in terms of the variables (B.8).

Since the variables s(1), s(2), · · · , s(q) are rational functions of t(1), t(2), · · · , t(q)

respectively, the determinant is also a rational function; i.e.,

det M =
d1(t(1), t(2), · · · , t(q))

d2(t(1), t(2), · · · , t(q))
. (B.11)

The determinant can either be identically equal to zero, or a nonzero function.

If the determinant is a nonzero function, then M has full column rank for

generic realizations of the variables (B.8) because M is rank deficient only when

d1(t(1), t2), · · · , t(q)) = 0 or when (t(1), t(2), · · · , t(q)) belongs to the affine

variety V (d1) ( Cnq generated by the polynomial d1.

Therefore, it remains to prove that detM is not identically equal to zero

under the assumption no annihilating polynomial F of the form (B.10) exists.

We prove this claim by induction on q. The claim is trivial to check for q = 1.

We now prove the induction step. We may assume that the determinant of the

(q− 1)× (q− 1) submatrix M̃, obtained after deleting the last row and column,

is a nonzero function in (t(1), t(2), · · · , t(q − 1)). Therefore, there must exist

specific realizations

(t(1), t(2), · · · , t(q − 1)) = (a(1),a(2), · · · ,a(q − 1)) (B.12)

such that M̃ has full rank. Consider the matrix M∗(t) obtained from M̃ by

setting t(q) = t for each t ∈ Cn. If det M is identically equal to zero, then the

matrix M∗(t) must be rank deficient for all t; i.e., there must exist c(t) 6= 0

such that M∗(t)c(t) = 0 for each t ∈ Cn. Since the first q − 1 rows are

linearly independent and do not depend on t, the vector c(t) = c∗ is unique
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(up to a scaling factor) and is determined by (B.12). Therefore, we have that

M∗(t)c∗ = 0 for each t ∈ Cn. By expanding the last row of M∗(t)c∗ = 0, we

obtain
q∑
i=1

c∗i f(t)ai = 0. (B.13)

This is a contradiction since we assumed that no annihilating polynomial of the

form (B.10) exists. Therefore, det M is not identically equal to zero and hence

M has full rank for generic realizations of the variables (B.8).

If the rational functions f1, f2, · · · , fm are algebraically independent, then

there cannot exist an annihilating polynomial F (of any form) satisfying

F (f1, f2, · · · , fm) = 0.

Thus, we immediately have the following corollary.

Corollary 4. The matrix M has full column rank for generic realizations of

the variables (B.8) if the rational functions f1, f2, · · · , fm are algebraically in-

dependent, i.e., if the Jacobian matrix (B.5) has full row rank.
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