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Abstract

In cryptographic protocols, honest parties would prefer that their security is assured even in presence of

adversarial parties who have unbounded computational power. Information theoretic secure realization of

cryptographic primitives provides such guarantees; but for most tasks such strong security guarantees cannot

be provided for any reasonable notion of security. The standard technique used in cryptography is to assume

the existence of some puzzle, whose hard instances are easy to generate but no efficient algorithm can solve

them. Such assumptions, which define intractable problems for efficient algorithms, are called computational

intractability assumptions.

In this work, we motivate a study of computational intractability assumptions which is goal driven and

lends support to the fundamental nature of some of the traditional assumptions beyond being historical

accidents. Secure multi-party computation deals with the study of constructing secure protocols for general

cryptographic tasks which conform to various notions of security. Inspired by complexity theory, we use

the notion of reduction to further our understanding of computational intractability assumptions. Our

framework explores the hardness of natural assumptions of the form: “Task F can be securely computed

given an ideally secure facility for computing G”.

Formally, we characterize the minimal computational intractability assumption which is sufficient to

securely realize a functionality using trusted copies of some other functionality.A functionality F reduces to

G, similar to the complexity-theoretic notion of reduction, if F can be securely realized when parties can

access trusted copies of G. Thus, if F does not reduce to G information-theoretically, we are interested in

characterizing the minimal assumption, which is sufficient, to securely realize the reduction of F to G.

In our framework, we explore the relative strengths of these minimal computational assumptions. The

fundamental problem, then, is to establish relations, like implication, equivalence and separation, among

the assumptions which correspond to various reductions. In this work, we further our understanding of the

minimal computational assumptions corresponding to such reductions by showing the following results:

1. We identify a spectrum for the set of assumptions that correspond to reduction between a pair of tasks

under different security notions. These reductions are implied by the computational intractability
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assumption: “semi-honest secure protocol for oblivious transfer exists” (sh-OT assumption). Addition-

ally, the information theoretically impossible reductions considered in this thesis imply the assumption:

“one-way functions exist” (OWF assumption). We conjecture that OWF assumption is necessary for

these reductions. In fact, the reductions considered in this thesis are either information theoretically

true, false, equivalent to OWF assumption or equivalent to sh-OT assumption [MPR10a].

We expand our study to encompass reductions involving randomized functionalities and study the

consequences of providing parties with a trusted source of common unbiased coins. For a strong notion

of security they turn out to be useless and unless sh-OT assumption holds these randomness sources

are not useful [MOPR11, MP11].

2. We [MPS10] seek to lend additional support to the widely believed premise that “non-trivial cryptog-

raphy entails the existence of one-way functions”. We show that (constant round) weak coin-tossing

protocols, imply OWF assumption. For the general problem, i.e. secure weak coin-tossing protocols

with polynomial round complexity, we show a slightly weaker implication NP 6⊆ BPP.

3. Finally, we indicate the possibility of a wide range of intractability assumptions in our spectrum,

intermediate to OWF assumption and sh-OT assumption. We show that a class of natural assump-

tions corresponding to reductions that are relativistically separated from OWF assumption. Similar

techniques have been used to show their separation from the assumption that “public-key encryption

exists” (PKE assumption) [MMP11]; but these assumptions are not known to imply sh-OT assumption.

We conjecture that, in fact, sh-OT assumption is relativistically separated from these assumptions.

iii



To my parents.

iv



Acknowledgments

I would like to thank my thesis advisor Manoj Prabhakaran for introducing me to the field of Cryptography

and, subsequently, helping me specialize in it. He has kept me busy with a constant supply of intriguing

problems and is also a co-author of most of my papers. Working with him has been an extremely enlightening

experience and I have learned a lot from the patience he has shown over years of guidance he has provided

me.

I have also had the pleasure of collaborating with several prominent researchers in the last few years. I had

lots of insightful discussions with Vipul Goyal, Mohammad Mahmoody, Mike Rosulek and Amit Sahai which

helped me grow as a researcher. It was an amazing experience working with Vipul during Summer-2010 and

collaborating with him over the last year.

The thesis presentation has also benefitted from the valuable inputs of my dissertation committee mem-

bers Nikita Borisov, Chandra Chekuri, P. R. Kumar and Rafail Ostrovsky. I specially want to thank Chandra

for helping me with an initial draft of this thesis and providing suggestions on improving the presentation.

I would also like to thank the faculty and students of the Theory Group of Department of Computer

Science, University of Illinois at Urbana-Champaign for a friendly and pleasant stay. Most of the duration

of my Ph.D. study was funded by NSF grants CNS 07-47027 and CNS 07-16626 grants.

Finally, I am indebted to my parents for motivating me to pursue my ambitions; and their unwavering

and unconditional support over the years. This dissertation is dedicated to them.

v



Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Reduction Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Ideal-Real Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.2 Impagliazzo’s Worlds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.1 Information Theoretic Separations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.2 Implications and Equivalences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.3 Weak Coin Tossing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.4 Intermediate Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Chapter 2 Prior Work and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.1 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.1 Quick Summary of Multi-party Computation Results . . . . . . . . . . . . . . . . . . . 22
2.1.2 Computational Intractability Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Preliminaries and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.1 Functionalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.2 Some Functionality Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.3 Frontier Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2.4 Computational Intractability Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 37

Chapter 3 Information Theoretic Irreducibility . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Handling General SFE Functionalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3 Selectable Sources are Useless for Deterministic SFE . . . . . . . . . . . . . . . . . . . . . . . 49
3.4 Coins are useless for Randomized SFE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Chapter 4 Implications and Equivalences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.1 Reductions Equivalent to the OWF Assumption . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2 Reductions Equivalent to the sh-OT Assumption . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.1 Reductions to Publicly-selectable Source . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2.2 Hardness of SSFE Functionalities with Bidirectional Influence . . . . . . . . . . . . . . 68
4.2.3 Case of Oblivious Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

vi



Chapter 5 Weak Coin Tossing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.1 Preliminaries and Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2 Complexity of Weak Coin-Tossing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2.1 Private State is Not Useful . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2.2 A Simplified Sketch of the Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2.3 A Step Closer to the Actual Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 Attack on Stateless Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3.1 Proof of Theorem 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.3.2 Estimating Quantities and Implementing Oracles ΠH and ΠT . . . . . . . . . . . . . . 92
5.3.3 Putting Everything Together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4 Constant Round Weak Coin-Flipping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.4.1 Constant Round Weak Coin-Flipping . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.4.2 Oracle World . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.4.3 Implementing Efficient Inverters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Chapter 6 Separations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.1 Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.2 Random Oracles do not Help Semi-honest Secure Computation . . . . . . . . . . . . . . . . . 108

6.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.2.2 Argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.2.3 Eve Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.2.4 Putting Everything Together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3 Black-Box Separations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.4 Generalized Oracles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.4.1 Some Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.4.2 Generalized Independence Learners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.4.3 General Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Chapter 7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.1 Randomized Function Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.2 Implication and Equivalences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.3 Separations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.4 Coin Tossing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Appendix A Implications and Equivalences . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
A.1 Details for the Proof of Theorem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

A.1.1 Reduction to Fcoin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
A.1.2 Reductions Between Exchange Functions . . . . . . . . . . . . . . . . . . . . . . . . . 130

A.2 Oblivious Transfer Amplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Appendix B Weak Coin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
B.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
B.2 Deferred Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Appendix C Separations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
C.1 Technical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

vii



List of Tables

2.1 Randomized function examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

viii



List of Figures

1.1 Weak coin-tossing: Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2 Weak coin-tossing: Blum’s Protocol [Blu82]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3 Intermediate Functions: Output alphabet size 4 and 5. . . . . . . . . . . . . . . . . . . . . . . 18

2.1 A map of various cryptographic complexity classes (of 2-party SSFE functionalities) . . . . . 36

5.1 Example 1: Motivating Hedged-Greedy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2 Intuition of Attack Adv

(1)
A for Alice to bias towards outcome 1. . . . . . . . . . . . . . . . . . 83

5.3 Attack Adv
(1)
A for Alice to bias towards outcome 1. . . . . . . . . . . . . . . . . . . . . . . . . 89
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Chapter 1

Introduction

Information theoretic cryptography, how-so-ever desirable, is extremely restrictive due to its stringent re-

quirements. In fact, most non-trivial cryptography is information theoretically impossible. For example,

even fundamental cryptographic primitives like one-way functions (OWF), public-key encryption (PKE) and

key-agreement (KA) over public channels are information theoretically impossible. So, to gain sophistication

in cryptographic primitives, we forgo information theoretic security and assume limitations on what can

be efficiently computed. If some cryptographic primitive is information theoretically impossible, then we

attempt to build secure protocols for it conditioned on some computational intractability assumption. In

other words, based on the assumption that some computational problem is hard to solve efficiently, a secure

protocol realizing the cryptographic primitive is constructed.

This might lure a cryptographer into assuming security of constructions in an ad hoc manner, i.e. one

might exhaustively assume that any construction is a secure realization of a particular cryptographic prim-

itive unless proven otherwise. In theoretical cryptography, it is preferred to base the security of protocols

on general computational intractability assumptions like existence of one-way functions (OWF assumption),

existence of public-key encryption (PKE assumption), existence of key-agreement protocols (KA assumption)

etc. instead of assuming that some particular protocol is secure. For example, instead of constructing pro-

tocols based on the assumption that a particular function, like SHA-1 [Uni95], is one-way, it is preferred to

condition the security of the construction on the existence of any one-way function1.

It is possible that some cryptographic primitive can be securely realized conditioned on several com-

putational intractability assumptions. For example, digital signature constructions can be based on the

assumption that trapdoor one-way permutations exist [BM88] as well as the existence of one-way functions

[NY89, Rom90]. While it is known that existence of trapdoor one-way permutations entails the existence

of one-way functions, i.e. if there is a trapdoor one-way permutation then there exists a one-way function

[IL89], we do not know whether existence of one-way functions entails the existence of trapdoor one-way

permutations; although, there are evidences to the contrary [IR89, GKM+00]. So, it is conceivable that

1 Levin [Lev85] showed that there is a universal one-way function, i.e. if one-way functions exist then he provided construction
of a function which is a one-way function.
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trapdoor one-way permutations do not exist but one-way functions do. In that case, the latter construction

of digital signatures, which is conditioned on OWF assumption continues to be secure while the one based on

existence of trapdoor one-way permutations might turn insecure. Thus, given two realizations of a particu-

lar cryptographic primitive based on two different computational intractability assumptions, we prefer the

construction which is based on the possibly weaker assumption. Extending this argument, we would prefer

the realization based on a minimal computational intractability assumption.

This dissertation aims to systematically measure the relative strengths of computational intractability

assumptions. Intuitively, we are interested the following general question:

Question 1. What is the nature of cryptographic complexity necessary and sufficient to implement a cryp-

tographic task.

Understanding the nature of the computational intractability assumption inherent to a cryptographic task

gives us a measure of the complexity of the task. The stronger the computational intractability assumption

associated with a task, the more complex the task is. Surprisingly, it is not the case that all different

cryptographic tasks have different associated computational intractability assumption. For example, digital

signatures and pseudorandom generators, which perform completely different cryptographic tasks, exist if

and only if OWF assumption holds [IL89, NY89, Rom90, ILL89, H̊as90, HILL99]. In this sense, these

computational assumptions are great levelers as they facilitate secure realization of several different kinds

of cryptographic tasks. This indicates that these assumption are fundamental to cryptography and by

initiating a systematic study of these assumptions, we could explore possible existence of new computational

assumptions which are fundamental to cryptography. The following questions informally summarize the

guiding problems in this field:

1. Is a computational assumption possibly weaker than another computational assumption?

2. Are two computational assumptions equivalent?

3. Is one computational assumption strictly weaker than another computational assumption? Alterna-

tively, does the former computational assumption not imply the latter assumption?

These informal notions mentioned above, respectively, correspond to the complexity theoretic relations:

implication, equivalence and separation. Interestingly, computational intractability assumptions do not

admit a total order based on their strength, i.e. there are two assumptions such that neither of them implies

the other [GKM+00].

In subsequent chapters, we shall introduce a general framework to systematically explore the hardness

associated with performing various cryptographic tasks. Abridged versions of the results presented here
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appear in [MPR10a, MPS10, MOPR11, MMP11, MP11]. Other results relevant to this framework have also

appeared in [MPR09, MPR10b] which are explained in greater detail in [Ros09].

1.1 Reduction Model

To motivate the framework used to explore computational intractability assumptions in this dissertation, we

use analogies from complexity theory. Reducing arbitrary computational problems to a representative few

is a very standard technique in complexity theory. For this purpose, a widely prevalent notion of reduction

is polynomial-time reduction, because traditionally polynomial-time computations are interpreted as the set

of all efficient computations. Let class(3-SAT) be the set of languages which are polynomial time reducible

to the problem 3-SAT, i.e. given access to an oracle which identifies 3-SAT instances, this set consists of all

languages which could be identified by performing polynomial time computation and making polynomially

many calls to this oracle. It is known that 3-SAT is NP-complete, and hence class(3-SAT) is identical to

the set of all NP problems. Thus, we can conclude that class(3-SAT) contains the sets class(HAM) and

class(2-SAT). Further, the sets class(3-SAT) and class(HAM) are identical; but it is unknown whether

class(3-SAT) and class(2-SAT) are identical or not. But there are oracle separation results which show

that relative to some oracle, these sets are different [BGS75]; while relative to some other oracle they are

identical. Since the exact characterization of what is efficiently computable, i.e. the characterization of the

complexity class P or BPP, is unknown, complexity theorists explore the consequences of collapses among

such sets of problems. For example, if class(3-SAT) is identical to class(2-SAT) then which other classes

would collapse?

In cryptography, instead of problems like 3-SAT, HAM etc. the objects of investigation are cryptographic

tasks like committing a bit, obliviously transferring a bit, tossing an unbiased coin etc. Similar to the approach

in complexity theory, where we are interested in the set class(L) for some language L, the atomic structure

of investigation in cryptographic complexity theory is the set class(G), where G is some cryptographic

task; though the notion of reduction is slightly modified. The set class(G) consists for all cryptographic

tasks which can be efficiently and securely performed given access to a trusted G-realizer. Observe that

for different notions of security, like semi-honest, standalone and universally composable security, the set

class(G) might be different; but fixing a notion of security fully determines the notion of reduction. The

collapse of two classes class(G) and class(G′), which are not unconditionally identical, represents an

implicit bound on the computational power of the adversaries and, hence, is interpreted as a computational

intractability assumption. In particular, there can be a protocol for G reducing to G′ that is secure only if an
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adversary cannot efficiently perform certain computations. In cryptographic complexity theory, consequences

of such collapses are explored. For example, with respect to universally composable security, class(Fcom)

collapses to class(Fcoin) if and only if class(Fot) collapses to class(Fcoin), where Fcom, Fcoin and Fot

are, respectively, the commitment, coin tossing and oblivious-transfer functionalities.

Traditionally, cryptographers have been interested in two main questions:

1. For a particular notion of security, which functionalities can be securely realized even against compu-

tationally unbounded adversaries? Such functionalities are called trivial. Several works have char-

acterized the trivial functionalities in various security models like semi-honest [BGW88, CCD88,

RB89, Kus89, Bea89, MPR09, KMR09], standalone [MPR09, KMR09] and universally composable

[CKL03, Lin04, PR08] security. Intuitively, trivial functionalities are the easiest class of functionalities

with respect to the notion of security being considered.

2. Suppose we assume that some cryptographic intractability assumption is true. Based on this as-

sumption, cryptographers explore the possibility of existence of some additional setup which can help

securely compute every functionality. Intuitively, the stronger cryptographic intractability assumption

we assume, the larger is the collection of such setups. These attempts are aimed to understand com-

plete setups [Yao86, GMW87, Kil88, Kil91, Kil00, CLOS02]. Similar to the analogy mentioned above,

these functionalities are hardest to realize with respect to a security notion.

As evident from the discussion, the commonly explored problems lie on the two extremes of a hypothetical

spectrum of difficulty of realizing functionalities. It is rare that the set of functionalities, with respect

to some notion of security, can be partitioned into trivial and complete functionalities [CK89, BMM99,

MPR10b, Kre11]. There are functions with intermediate hardness but the exact measure of their complexity

is unknown. A reduction based framework, as introduced by [KMO94] and motivated by analogies from

complexity theory, is ideal to explore these intermediate levels of hardness.

This dissertation is intended to understand relations like implications, equivalence and separations among

various computational intractability assumptions which arise in this reduction based framework. Beyond the

elegance of this unifying general framework, the motivation of using a reduction based approach to capture

computational intractability assumption also emanates from the fact that these computational assumptions

are natural to cryptography, i.e. necessary and sufficient to perform certain cryptographic tasks. An aesthetic

difference between the reduction framework of complexity theory and the cryptographic complexity theory is

that cryptographers believe that these collapses occur, i.e. the associated computational assumption is true,

but complexity theorists believe that the reductions among their classes are false. Moreover, for the notions
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of security studied in this work, there is an upper bound on the strength of computational assumption which

are represented by such collapse of classes [MPR10b]. Although this framework is broad, the study we

undertake is not exhaustive. There are widely prevalent general computational intractability assumptions

in cryptography which are stronger, in a relativistic sense, than the any of the assumptions corresponding

to the collapse of various classes in this framework considered in this work. All result considered in this

dissertation are restricted to 2-party functionalities, both the functionality that is being realized and the setup

functionality, and we shall not be concerned with issue like fairness etc. (unlike [FM00, FGMO05, GIM+10]).

In this section, we shall introduce the simulation based security paradigm and an introduction to the

notion of reduction (Section 1.1.1). Finally, we shall conclude with a short discussion on Impagliazzo’s worlds

[Imp95] and how our work contributes to further the understanding of these worlds (Section 1.1.2).

1.1.1 Ideal-Real Paradigm

In this dissertation we shall use a simulation based definition of security introduced in the seminal work

by Goldreich et al. [GMW87]. Intuitively, the security definition can be explained as follows. In the real

world, parties have local inputs and communicate to each other via point-to-point private channel trying to

securely accomplish some task which is a function of their local inputs. While in the ideal world, parties have

access to a trusted third party who performs the same task; so the parties could forward their local inputs

and receive their respective outputs from the trusted third party. The protocol in the real world is secure, if

any real world adversarial strategy can be simulated by an ideal world adversarial strategy. The simulator

in the ideal world mimics the behavior of the adversarial parties such that any environment interacting with

the parties, both honest and adversarial, cannot distinguish the real world execution from the ideal world

execution.

A protocol is secure if for every adversary in the real world (in which parties execute a protocol), there is

an adversary, or simulator, in the ideal world that achieves the same effect in every environment. Depending

on the nature or adversary/simulator and the environment, we consider three different kinds of security

notions.

• A semi-honest (in the real or ideal execution) is one which is not allowed to deviate from the (real or

ideal) protocol. Semi-honest security is achieved if for every semi-honest adversary in the real world

there is a semi-honest simulator in the ideal world as above.

• A standalone environment is one which does not interact with the adversary during the execution

of the protocol. Standalone security is achieved if we restrict the security requirement to standalone
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environments; in this case the simulator can rewind the adversary without the environment detecting

it.

• Universally composable (UC) security [Can01] is achieved when the security requirement is met against

all adversaries (possibly active) and all environments (possibly not standalone); the simulator is allowed

to be an active adversary. In this case there must exist a straight-line blackbox simulation (i.e., the

simulator internally runs the adversary as a blackbox and never rewinds it).

In this work, we exclusively consider static adversaries, who do not adaptively corrupt honest parties

during the execution of a protocol.

Computationally bounded vs. Computationally unbounded setting. In the computationally bounded

setting we restrict all entities of our experiments – the environment, the adversary and simulator – to prob-

abilistic polynomial time computation. In the computationally unbounded setting all these entities can be

computationally unbounded. However, for the purpose of the results in this work, one could require the sim-

ulator in the computationally unbounded setting to be efficient with blackbox access to the adversary. Then,

if a protocol is secure in the computationally unbounded setting, it will be secure in the computationally

bounded setting too.

Hybrids. The plain model is a real world in which protocols only have access to a simple communication

channel; a hybrid model is a real world in which protocols can additionally use a particular trusted func-

tionality. While hybrid worlds are usually considered only for UC security, we also use the terminology in

the setting of standalone security. We note that protocols for non-reactive functionalities (i.e., those which

receive input from all parties, then give output, and then stop responding) do securely compose even in the

standalone security setting.

Reduction. The notion of reduction was first introduced by Kushilevitz et al. [KMO94]. We say that

a functionality F reduces to a functionality G if F can be UC-securely realized in the G-hybrid. In the

real world protocol, that parties have access to a trusted implementation of G, in addition to the secure

point-to-point communication channel, to securely realize F . Suppose π is a UC-secure protocol for F in the

G-hybrid. Then, parties generate a transcript based on their local views and they can also call the trusted

G implementation. The functionality G can be any arbitrary functionality, i.e. it need not be a two party

function, parties need not play fixed roles while calling G and, in fact, both parties can provide multiple

inputs while performing a call to G.

6



Security in Hybrid worlds. As mentioned earlier, we shall only consider static corruption of parties, i.e.

at the beginning of an execution the adversary announces which party it wants to corrupt and cannot corrupt

any further party during the execution of the protocol. To show that a protocol π is a secure realization

of F in the G hybrid, we need to show that for every adversarial strategy in the G-hybrid there exists a

simulator in the ideal world such that any environment is unable to distinguish the real execution from the

ideal execution. In this work, we shall restrict ourselves to reductions where both F and G are (at most)

two party functionalities. Henceforth, we present the security definition restricted to this particular case.

Suppose Alice is corrupted by the adversary and Bob is honest. The simulator SA
π for Alice in the ideal

execution, interacts with the adversarial Alice so that no environment can distinguish the real from the ideal

execution. The simulator also forwards communication between adversarial Alice and the environment.

During this execution, the calls to the G functionality made by the adversarial Alice is answered by the

simulator SA
π . At some point during the interaction with adversarial Alice, the simulator sends an input

x to the ideal functionality F and receives and answer z. The simulator continues the execution with the

adversarial Alice and terminates after generating a complete transcript (we can assume that the adversarial

Alice strategy always completes a protocol).

If there exists an efficient SA
π which can make the ideal execution indistinguishable from the real execution

to any environment, then F is secure in the G-hybrid when Alice is corrupt. Additionally, if there exists an

efficient simulator SB
π which shows that F is secure in the G-hybrid when Bob is corrupt then π is a secure

protocol for F in the G-hybrid. Intuitively, the existence of a simulator shows that any effect achieved by

the adversarial party could be reflected in the ideal world itself. The additional power of the simulator, over

what the view of parties in G-hybrid, lies in the fact that it receives the calls to G, i.e. it gets to see the

input for each call sent by the adversarial party to G, and it decides the reply to each call. So, for example,

when G is Fcoin, the simulator can determine all the coin outcomes at the beginning of the execution and

this could provide additional power to the simulator over the parties in the G-hybrid. Another example is

when G is a function whose input is not a deterministic function of the output received from G. In this case

it is not possible to be certain of the input sent to G just from the output provided by G; on the other hand,

the simulator gets the additional information when it sees the query made to G.

1.1.2 Impagliazzo’s Worlds

The study of consequence of collapses among complexity classes is a central problem of complexity theory.

It is unknown how most complexity classes related to each other and people working in different fields of

computer science have different beliefs regarding these relations. For example, people working in combina-
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torial optimization tend to believe that we live in a world where natural problems are not hard to solve;

while cryptographers prefer to believe that we live in a world where there are hard problems which are easy

to generate. Our understanding of complexity theory has not been able to resolve what kind of world we

reside in. To summarize the current state of the art of our understanding of complexity theory, Impagli-

azzo introduced the notion of five possible worlds [Imp95]; and there are no known results which refute the

possibility of any of these worlds. Each world provides different possible resolutions of several fundamental

complexity theoretic problems and there are relativistic realizations of each of these worlds. He exemplified

this using the famous “P vs. NP” problem, which is a keystone problem of complexity theory.

In his first world, Algorithmica, P = NP or something similar in spirit like NP ⊆ BPP holds. In this

world, any theorem which is polynomial time verifiable can be proven in polynomial time. We know that

there exists an oracle relative to which P = NP, i.e. there is a relativized Algorithmica [BGS75]. In this

world, any sophisticated classical cryptography like bit commitment, pseudorandom generators, identification

schemes, public key-encryption etc. are impossible but optimization versions of NP problems will have

efficient solutions.

In the second world Heuristica, NP problems are hard in worst case; although efficiently solvable for

problem instances which can themselves be sampled efficiently. There could be instances which are hard to

solve but it might not be possible to concentrate non-negligible probability concentration on such instances

via an efficient sampling algorithm. Thus, NP problems could turn out be easy on average. In particular,

the time taken to solve an instance could also depend on the time taken by the sampler which generated

the problem instance. If NP turns out to be easy on average, it is unknown whether it will imply that hard

problems can be solved efficiently, i.e., say, NP ⊆ BPP. Recently, Impagliazzo [Imp11] has shown evidence

that resolving such a problem might not be easy. He showed that, relative to an oracle, although distNP ⊆

avgP 2 but NP 6⊆ BPP. But it is known that average case search problems reduce to average case decisional

problems [BCGL89]. The first two worlds are favorable to people working in combinatorial optimization,

because, in worst case, the hard to solve problem instances are also hard to generate.

Although one-way functions do not exist in the third world Pessiland, it is easy to sample hard NP

instances. In this world it is hard to generate a pair of hard problem instance and its corresponding witness;

but it is easy to generate just the, unsolved version of, hard problem instance. It is still an open problem

whether non-trivial cryptography can be performed in Pessiland, because most known non-trivial primitives

imply the existence of one-way functions [IL89]. Existence of hard on average problems can be used for generic

2Benign algorithms are deterministic machines which refuse to answer on a negligible fraction of inputs; otherwise they
correctly identify whether the instance belongs to the language or not. The set of all languages identified by benign algorithms
comprises the class avgP [Imp95].

8



de-randomization [NW88]. They provide a continuum of results relating the hardness of approximating

EXPTIME by a particular circuit class and the implications for generic de-randomization. For example, if

EXPTIME is hard for exponentially large circuits then it implies that P = BPP; and if EXPTIME is hard for

super-polynomially large circuits then BPP ⊆ DTIME(2no(1)
). This world is an extremely pessimistic world;

where people in both combinatorial optimization and cryptography are unsatisfied; but there are possible

consequences for de-randomization of algorithms.

In the remaining two worlds, non-trivial cryptography is possible. The fourth world, Minicrypt, does

not allow cryptography over public channel, like key-agreement over public channels in presence of an eaves-

dropping adversary; but one-way functions exist. For concreteness and the purposes of this work, let us

assume that public-key encryption, which is equivalent to two-round key-agreement protocol, is not possible

in Minicrypt. In this world pseudorandom generators [ILL89, H̊as90, HILL99], bit commitment schemes

[Nao89], digital signatures [NY89, Rom90, KK05] and zero-knowledge proofs for NP statements[GMW86]

exist. Impagliazzo and Rudich [IR89] provided a relativized Minicrypt. There are several relativized sepa-

rations within Minicrypt. Rudich [Rud91] showed that existence of (i − 1)-round key-agreement protocols

is black-box separated from existence of i-round key-agreement protocol, i.e. there is an relative to which

i-round key-agreement protocol exists but no (i−1)-round key-agreement protocol exists. Additionally, it is

also possible that there are new primitives in Minicrypt, other than the traditional key-agreement primitive,

and it might be insufficient to only rely on the existence of one-way functions to securely realize them.

Finally, Cryptomania is the most powerful world which permits extremely rich cryptographic primitives.

In this world public-key encryption is possible and it is also possible to obliviously transfer a bit from

one party to another. Although, there is no explicit bound on the strength of computational intractability

assumptions in this world it is possible that there exists an upper bound on the strength of the computational

assumption which is sufficient to ensure that all classes in cryptographic complexity theory collapse, for a

reasonable notion of reduction.

Cryptographic complexity theory provides a systematic approach to explore intermediate levels of gran-

ularity within Minicrypt and Cryptomania by using a sufficiently strong notion of security while considering

reductions and analyzing the consequences of the collapse among various classes. This dissertation focusses

on the following fundamental aspects of Impagliazzo’s Worlds:

1. Can non-trivial cryptography be performed below Minicrypt, i.e. in Pessiland? Alternatively, is exis-

tence of one-way functions necessary for secure realization of non-trivial cryptographic tasks?

2. Are there new intermediate worlds within Minicrypt? Are there new worlds which lie strictly within

Minicrypt and can their relativistic existence be shown?
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3. How high do we need to go in Cryptomania to securely perform any natural task, given some form

of setup? For a reasonable notion of security, what is the minimal assumption sufficient to securely

perform any task given any setup; unless it is impossible to perform such a task in that particular

setup.

1.2 Results

In this section we highlight some of our results which help advance the understanding of cryptographic com-

plexity of performing non-trivial tasks. In Section 1.2.1 we present the intuition of some information theoretic

separations shown in [MOPR11]. These information theoretic separations are the first step towards under-

standing the complexity of reductions, because computational intractability assumptions are of potential use

only when a reduction is information theoretically infeasible. In Section 1.2.2 we talk about the implications

and equivalences of the reductions mentioned in Section 1.2.1 and several other information theoretic separa-

tions presented in [MPR09]. This section contains work which has appeared in [MPR10a, MOPR11, MP11]

All these reductions imply existence of one-way functions and, in fact, most of them are equivalent to exis-

tence of one-way function or existence of semi-honest secure protocol for oblivious-transfer. Most non-trivial

cryptography implies existence of one-way function so it is not surprising that the reductions explored in

Section 1.2.2 also imply existence of one-way functions; but the complexity of several weak primitives, like

weak coin-tossing etc., is unknown. We present some of our results towards understanding the complexity

of weak coin-tossing in Section 1.2.3 [MPS10]. Moreover, in Section 1.2.2 there are several reductions whose

complexity seem intermediate to existence of one-way functions and existence of semi-honest secure protocol

for oblivious-transfer (sh-OT). These raise hopes of identifying several new and intermediate complexity

assumptions which occur naturally in cryptography. In Section 1.2.4 we present, yet unpublished, evidence

that these reductions are black-box separated from several familiar complexity assumptions like one-way

functions/permutations, ideal-ciphers, public-key encryption etc. [MMP11].

1.2.1 Information Theoretic Separations

The results covered in this section are based on [MOPR11]. The trusted coin functionality, represented by

Fcoin, tosses an unbiased coin and announces the outcome to all the parties. Here we shall consider UC-secure

reductions to Fcoin where adversaries have unbounded computational power and the corresponding notion

of reduction is represented by v. Similar separation results have been presented in [MPR09] and detailed

presentation of these occur in [Ros09]. In the UC framework extremely trivial functions can be securely
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realized in the plain model [CF01, CKL03, Lin04, PR08] but any non-trivial setup could be of potential

use. Consider any UC non-trivial functionality G, at least G has a UC secure protocol in the G-hybrid; and

potentially more functions could reduce to G. It was unknown how useful or useless a particular setup could

be. A source of trusted coins as setup, i.e. Fcoin, is a non-trivial functionality and, thus, could be of potential

use to securely realize non-trivial functionalities.

We provide a list of some other frequently occurring functionalities this section:

1. Maximum-evaluation or cut-and-choose function (Fcc): Alice has inputs {0, 2} and Bob has inputs

{1, 3} and Fcc announces the maximum of the parties’ local inputs. A generalization of this function-

ality is F i,j
cc where Alice’s input space is {0, 2, . . . , 2i − 2} and Bob’s input space is {1, 3, . . . , 2j − 1};

and the functionality announces the maximum of the two inputs provided by Alice and Bob.

2. XOR-evaluation or simultaneous exchange function (Fexch): Alice and Bob have inputs {0, 1} and

Fexch announces the xor of their respective input bits. A generalization of this functionality is F i,j
exch

where Alice and Bob’s input spaces are, respectively, Zi and Zj ; and the functionality announces the

sum of the inputs (∈ Zi+j) to both the parties.

Our Contributions. We shall discuss three representative results which exhibit all the major techniques

necessary to obtain these impossibility results. It was already known that Fcc is not UC-securely realizable

[CKL03, Lin04, PR08] but it was unknown whether some non-trivial setup like Fcoin could be useful to

securely realize it. If G is a UC-trivial function, then it is easy to see that Fcc will not be securely realizable

in the G-hybrid; but Fcoin is not UC-trivial and, hence, Fcc could possibly have a UC-secure protocol in the

Fcoin-hybrid. But, we [MPR09, MOPR11] show that:

Informal Result 1. There is no UC-secure protocol for Fcc in the Fcoin-hybrid against adversaries with

unbounded computational power.

Similar to the previous case, Fexch is not UC-trivial but it was unknown whether it could have a UC-

secure protocol in the Fcoin hybrid. The approach required for this varies significantly from the previous

result because the XOR function evaluation does not have a unique decomposition [Kus89] and hence the

main technical tool used in the previous result does not apply to this setting. In [MOPR11], the following

result was shown:

Informal Result 2. There is no UC-secure protocol for Fexch in the Fcoin-hybrid against adversaries with

unbounded computational power. In fact, it does not even have a standalone secure protocol in the Fcoin-

hybrid.
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A functionality has bidirectional influence if both Alice and Bob have influence on the outcome, i.e. the

functionality is not of the form F(x) or F(y). The results mentioned above can be used to show that for

any (deterministic) bidirectional F , the reduction F v Fcoin is not true. But if a deterministic F is not

bidirectional, then it already is UC-trivial. Thus, it turns out that Fcoin is useless for deterministic function

evaluation in the UC setting.

But when we extend our study to include randomized functions, there are obviously several UC non-

trivial functions which are trivial in the Fcoin-hybrid. Consider the set of functions where one of the

parties announces the distribution which will be used to sample the outcome and, subsequently, the parties

use the Fcoin functionality to generate public coins which shall be used to sample the outcome from the

distribution locally. There functions are essentially of the form: (x,Dx(r)), where Dx(r) is the distribu-

tion corresponding to Alice input x and then using the random coins r to sample from it. We shall call

these functions publicly-selectable source, i.e. the distribution from which the output is sampled is publicly

known. Most functions which are publicly-selectable source are UC non-trivial and any function which is

publicly-selectable source is trivial in the Fcoin-hybrid.

First, unsurprisingly, it can be shown that if a randomized F has bidirectional influence then F v Fcoin

is not true [MOPR11] and the details of this result will be covered in Chapter 4. Functions with no bi-

directional influence are called selectable source, because one of the parties privately samples the outcome

based on her input and announces the outcome. Observe that for any publicly-selectable source function,

the output of the function determines the input used to sample the distribution. So, any function which is

selectable source but not publicly-selectable source satisfies the following property. There exists two inputs

x and x′ such that the support of the distributions f(x) and f(x′) intersect but the two distributions f(x)

and f(x′) are not identical. We call such functions oblivious sampling, because there exists an output for

which one of the parties is not certain which input was used by the other party to sample it. Surprisingly,

oblivious sampling functions do not have UC secure protocols in the Fcoin-hybrid and hence:

Informal Result 3. Unless F is a publicly-selectable source, F has no UC-secure protocol in the Fcoin-

hybrid against adversaries with unbounded computational power.

1.2.2 Implications and Equivalences

In this section, we shall explore the complexity of reductions which could possible be true when we consider

adversaries with bounded computational power. There reductions are referred to as conditionally true

reductions, while reductions which hold even in presence of adversaries with unbounded computational

power are referred to as true reductions. Consider the task of securely realizing a functionality F in the
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G-hybrid with respect to a particular security notion. If the reduction is conditionally true, then the strength

of the reduction refers to the computational intractability assumption which is necessary and sufficient to

realize the reduction, i.e. securely realize F in the G-hybrid with respect to the particular security notion

using minimal computational intractability assumption. The strength of the reduction could increase if the

associated security requirements are strengthened. Strengthening the security notion, thus, leads to the

possibility that reductions, which were equivalent with respect to a weaker notion of reduction, become

separated when the notion of reduction is strengthened. On the other hand, if we strengthen the notion of

reduction by a significant amount, we might cause the reduction to become false as shown in [MPR10b]. So,

we need to strike a balance between what we consider an acceptably strong notion of reduction which can

exhibit sufficient diversity in computational intractability assumptions associated with reductions as well as

most reductions are either true or conditionally true. In this section, we shall consider universally composable

security (under static corruption) [Can01] which satisfies both the requirements mentioned above; and we

will restrict our scope of study to deterministic functions.

We first mention a result which upper bounds the computational intractability assumption associated

with any conditionally true reduction:

Lemma 1 (Maximal Assumption[MPR10b, Ros11]). When F and G are deterministic functionalities, all

reductions of the form F v G with respect to universally composable security is: a) true, b) implied by

existence of semi-honest secure protocol for oblivious transfer, or c) false. And the only reductions which are

false are where F is UC non-trivial and G is UC trivial.

Recall, that UC trivial deterministic functions are extremely simple functions where the output of the

functionality is a function of only one party’s input. Now, we need to explore the exact characterization of

the computational complexity associated with these reductions when G is non-trivial.

Most of these reductions are not true, i.e. against adversaries with unbounded computational power they

do not hold. But, for our results where we show that these reduction imply OWF assumption, we need to sim-

ulate these attack if OWF assumption is false. It has been shown that one-way functions and distributionally

one-way functions are equivalent [ILL89], hence if OWF assumption is false then distributionally one-way

functions also do not exist. If distributionally one-way functions do not exist then the universal generation

problem for NP statements [JVV86, BGP00] can be solved efficiently [Ost91, OW93]. And efficient solution

of this problem is sufficient to simulate our attacks with a small non-negligible error which can be driven

down to arbitrarily low precession.
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Our Contribution. It was shown in [MPR09] that when we consider UC-reduction with static corruption,

against adversaries with unbounded computational power, there is intricate structure in the landscape of

cryptographic complexity. This notion of reduction will be represented as v. These arguments involved ex-

hibiting that any protocol securely realizing a particular function needs to have the following two properties:

a) Based on the information leaked, we can identify frontiers in the protocol tree and b) These frontiers

much be encountered in some particular order on any root to leaf path in the protocol tree.

Kushilevitz and Beaver [Kus89, Bea89], independently, characterized the class of all symmetric two party

deterministic functions which can be semi-honest securely realized. There functions, called decomposable

functions, have optimal perfectly secure protocols and the number of rounds of these canonical protocols is

called the depth of decomposition tree of the corresponding function. Functions with unique canonical semi-

honest protocol are called uniquely decomposable functions. It was shown in [MPR09], that if adversaries

have unbounded computational power and both F and G are uniquely decomposable, then F 6vstat G if F

has greater depth of decomposition tree than G’s depth of decomposition tree. For example F i,i
cc vstat Fj,j

cc

if and only if j ≥ i. We show that, instead of unbounded computational power, only the assumption that

OWF assumption is false suffices. A complementary result from [MPR10b] shows that Fcc vstat G, if G has

unique decomposition and if OWF assumption is true then F vppt Fcom, for any F . Thus, we show the

following result:

Informal Result 4. Let F and G be uniquely decomposable two-party symmetric deterministic function

evaluation such that the decomposition depth of F is more than the decomposition depth of G. Then F vppt

G is equivalent to OWF assumption.

Further, we also leverage the fact that OWF assumption is false to show the following result:

Informal Result 5. Let F be passive trivial but not standalone trivial and G be standalone trivial but not

UC trivial. Then the reduction F vppt G is equivalent to OWF assumption.

Using the result of [MPR10b], we can show that OWF assumption implies that F vppt G. For the other

direction, suppose π is protocol of F in the G-hybrid and, since G is standalone-trivial, G has a standalone

secure protocol ρ. By a result of [PR08] we can show that π with every instance of G replaced by the ρ

protocol gives a protocol π′ which is also standalone secure. Now, we need to launch an attack on this

protocol which violates its standalone security. There are two cases to consider. If F is not uniquely

decomposable then Fexch can be standalone securely realized in the F-hybrid. We provide an algorithm

which correlates the output obtained by the two parties if parties have unbounded computational power.

Next, we show that this attack can also be simulated if OWF assumption is false. On the other hand, if F is
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uniquely decomposable then the attack of [MPR09] can also be simulated on F , assuming OWF assumption

is false.

For our next set of results, we need to introduce a class of function evaluations called exchange-like

functionalities. These functionalities allow parties to simultaneously exchange their inputs, like F i,j
exch. We

show that it is extremely hard to realized any F in G-hybrid, where G is exchange-like, unless F vstat

G. Due to the result by [MPR10b], we already know that any exchange-like functionality is complete if

sh-OT assumption is true. So, as a consequence, any F has secure protocols in G-hybrid if sh-OT assumption

is true when G is UC non-trivial. For the other direction, we show that if F is not exchange-like then either

Fot or Fcc reduces to F statistically. This would imply that Fot vppt G or Fcc vppt G and both of them

imply that sh-OT assumption is true. But, if F is itself exchange-like but F does not statistically reduce to

G, then we show that sh-OT assumption must hold. Consequently, we show the following result:

Informal Result 6. If F v G, where G is exchange-like, then either F vstat G or sh-OT assumption must

hold.

The same result is also true when F is a two-party randomized function evaluation and G is Fcoin.

1.2.3 Weak Coin Tossing

Although, any non-trivial cryptographic task is believed to imply existence of one-way functions, for some

weak primitives it is unclear whether one-way functions are necessary for their secure realization. One such

weak primitive is weak coin-tossing or coin tossing with preferences. This primitive was first proposed by

Blum [Blu82] who motivated it using the following real-world problem:

Alice and Bob are getting divorced and they wish to figure out who gets to keep their favorite car.

Both of them have moved on with their lives. Alice, now, has moved to the East coast and Bob has

moved to the West coast; and they are refusing to be in the same room at the same time. Thus, they

decide to toss a coin by running a protocol over telephone to toss a coin such that the probability of

the outcome being Heads or Tails is exactly 1/2. At the end of the protocols, if the outcome is Heads,

then Alice keeps the car; other Bob keeps the car.

Figure 1.1: Weak coin-tossing: Definition.

We emphasize that Alice and Bob both want the car, i.e. Alice, if she decides to be malicious, will only

try to bias the outcome towards Heads. A good protocol for weak coin-tossing will ensure that none of the

parties can force its preferred outcome with probability more than 1/2. If a two party protocol π, between

participants party 1 and party 2, satisfies either one of the following two conditions then it can be used for
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weak coin-tossing:

1. Party 1 cannot bias the outcome towards Heads and party 2 cannot bias the outcome towards Tails,

or

2. Party 1 cannot bias the outcome towards Tails and party 2 cannot bias the outcome towards Heads.

If one-way functions exist, then the following 3-round protocol is a good weak coin-tossing protocol:

1. Alice tosses a perfectly random bit x← {0, 1} and sends a commitment [H̊as90, HILL99, Nao89,

GL89] of x to Bob.

2. Bob tries to guess x and sends his guess y to Alice.

3. Alice opens the commitment to x.

Bob wins the game if he correctly guesses x; otherwise Alice wins. If any party aborts without

completing the protocol then the other party wins.

Figure 1.2: Weak coin-tossing: Blum’s Protocol [Blu82].

It is easy to see that if one-way functions exist then this is a good weak coin-tossing protocol where any

party can gain, at most, negligible advantage in biasing the outcome towards its preferred outcome. But, are

one-way functions necessary for the existence of good weak coin-tossing protocols? To analyze this question,

let us state what exactly qualifies as “powerful adversarial attacks” against purported weak coin-tossing

protocols. For a protocol π, if we are able to show existence of four adversarial strategies A1,H , A1,T , A2,T

and A2,H such that:

1. Party 1 using strategy A1,H , while interacting with honest party 2, is able to bias the outcome towards

Heads by an additional significant amount; or party 2 using strategy A2,T , while interacting with

honest party 1, is able to bias the outcome towards Tails by an additional significant amount, and

2. Party 1 using strategy A2,H , while interacting with honest party 2, is able to bias the outcome towards

Tails by an additional significant amount; or party 2 using strategy A2,T , while interacting with honest

party 1, is able to bias the outcome towards Heads by an additional significant amount.

If such attacks exist, then it is easy to see that Alice or Bob will be able to force its preferred outcome

with probability significantly more than 1/2, thus the protocol is not a secure weak coin-tossing protocol.

We will specify what “significant advantage” means in the following paragraph.

Prior State-of-the-art. Suppose Alice and Bob do not mind if the probability of their preferred outcome

remains at least 1/2− 1/1000, i.e. any party gets the car with probability at least a small constant below 1/2.
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Thus, “significant advantage” corresponds to achieving more than a small constant advantage, say 1/1000.

Surprisingly, as recently mentioned in [Imp09], nothing significant was known about the complexity of the

assumption: “There exists good weak coin-tossing protocols” for such a definition of “significant advantage”.

To understand the exact complexity of weak coin-tossing, we need to show existence of powerful adversarial

strategies conditioned on complexity theoretic assumptions. And we will prefer to use as weak an assumption

as possible to launch powerful attacks against any protocol, thus exactly characterizing the complexity of

good weak coin-tossing protocols. For concreteness, consider the following set of results which were known

prior to our work:

1. If PSPACE ⊆ BPP, then one of the parties can force its preferred outcome with certainty: Suppose

party 1 is trying to bias the outcome towards Heads and party 2 is trying to bias the outcome towards

Tails. Since the parties can efficiently solve the complete game tree, because PSPACE ⊆ BPP, party

1 can force the outcome Heads or party 2 can force the outcome Tails. Thus, we can define strategies

A1,H and A1,T . Similarly, we can also define the strategies A2,H and A2,T . Thus, Alice or Bob will

be able to force its preferred outcome with certainty.

2. If one-way functions do not exist, then one of the parties can force its preferred outcome with non-

negligible advantage: If one-way functions do not exist, then a modification of the argument in [CI93]

suffices to show that Alice or Bob will be able to force its preferred outcome with probability 1/2 +

Θ(1/√r), where the protocol has r-rounds. When r is a constant, this implies that one of the parties

can obtain a constant advantage. Our results will significantly improve the result for constant r.

3. If NP ⊆ BPP and the protocol has constant number of rounds, then one of the parties can force its

preferred outcome with certainty: If NP ⊆ BPP then PH ⊆ BPP [Zac86]; and the complete game tree

can be solved efficiently because the game tree has constant depth. Thus, similar to the first result

mentioned above, we can claim that one of the parties will be able to force its preferred outcome with

certainty. Our results will weaken the complexity assumption and still ensure similar guarantees for

the adversarial strategies.

Our Contribution. The above mentioned adversarial strategy due to [CI93] deviates from the honest

behavior only once. In a private communication [Imp10], Impagliazzo mentioned that such attack strategies

are bound to fail due to tight 1/
√

r bounds for fail-stop adversaries implied by [MNS09]. Thus, any hopes

of achieving constant advantage when r = ω(1) will rely on adversarial strategies which attack, i.e. deviate

from the honest behavior, at least ω(1) times. In a recent work [MPS10], we provide adversarial strategies
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which attack at every round when they are supposed to send the next message in the protocol and show the

following two results:

Informal Result 7. If NP ⊆ BPP, then one of the parties can force its preferred outcome with probability

at least 3/4.

Informal Result 8. If one-way functions do not exist and the protocol has constant number of rounds, then

one of the parties can force its preferred outcome with certainty.

Informal Result 8 improves the adversarial strategy by [CI93] and the brute-force search strategy when

NP ⊆ BPP. Informal Result 7 is incomparable to the result by [CI93] but improves the brute-force search

strategy implied by PSPACE ⊆ BPP.

1.2.4 Intermediate Assumptions

In this section, we restrict ourselves to two-party symmetric deterministic functions with constant output

alphabet size and, as an introductory presentation, we shall limit ourselves to passive corruption. Two-

party symmetric deterministic functions can be represented by a matrix whose (i, j)-th entry represents

the output of the function when the first party has input i and the second party has input j. Kilian’s

characterization [Kil91] states that if a function F has an embedded OR in its function matrix then it is

complete, i.e. all other functions information-theoretically semi-honest securely reduce to F . Kushilevitz

[Kus89] and Beaver [Bea89] characterized the class of two party functions which have perfectly semi-honest

secure protocols. They called such functions decomposable and recently [MPR09, KMR09] showed that even

when statistical security is considered, the characterization of triviality remains identical. Surprisingly, for

binary output alphabet triviality and completeness are complementary notions [KMO94] and, using Kreitz’s

[Kre11] characterization of ternary output functions, triviality and completeness are also complementary for

ternary output alphabet. But if the output alphabet size is at least 4, then there are functions which are

neither trivial nor complete, i.e. there are functions of intermediate complexity. The function tables for such

functions with output alphabet size 4 and 5 are provided below:


1 1 4 3

4 2 2 3

4 3 1 1




1 1 2

4 5 2

4 3 3


[Kus89, Bea89, KMO94]

Figure 1.3: Intermediate Functions: Output alphabet size 4 and 5.
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Due to a result by [MPR09] it is known that the computational intractability assumption CF = “There

exists a semi-honest secure protocol for F” implies existence of one-way functions, for any semi-honest

non-trivial function F . Moreover, it is trivial to see that existence of a semi-honest oblivious-transfer pro-

tocol implies CF for any F . But, for an intermediate function F , what is the relation of the assumption

CF with respect to other familiar computational intractability assumptions like: existence of one-way func-

tions/permutations, public-key encryption and semi-honest oblivious transfer protocols? We wish to high-

light that we assume that the input domains of both parties for the function F grows at most as a polynomial

in the security parameter. If super-polynomial inputs domains are permitted then the characterization of

two-party symmetric deterministic semi-honest trivial functions by [Kus89, Bea89, MPR09, KMR09] breaks

down.

Our Contribution. We merge and generalize the techniques introduced in [MPR09] and [BM09] to show

the following result:

Informal Result 9. For functions with intermediate complexity, the assumption CF is black-box separated

from OWF assumption. It has been recently shown [MMP11] that this assumption is also separated from

PKE assumption.

It is still an open problem to show whether semi-honest oblivious-transfer is black-box separated from

CF or not. We conjecture that this separation holds. The result presented above is a restriction of the actual

result proven in [MMP11]. In fact we show that random oracle is as useful as a commitment functionality

when semi-honest, standalone and universally composable security are consider. The details of the construc-

tion will be provided later [MMP11], in the following paragraphs we highlight some interesting facets of our

most basic construction.

The basic result in [MMP11] shows that a random oracle is not useful for semi-honest secure computations

of two-party functions. The idea is to show that if there exists a semi-honest secure protocol using random

oracle, then we can construct an alternate protocol in the plain model, i.e. parties do not have any access

to a random oracle. Simulating access to a random oracle in the plain model is a non-trivial task. Results

by [IR89, BM09, DLMM11] can be interpreted as construction of an independence learner which removes

dependencies between Alice and Bob views. The main hurdle in simulating a random oracle is that we need

to answer queries consistently; otherwise Alice and Bob could simulate the part of the random oracle in their

local view honestly given a PSPACE Oracle. Another alternative is that only one party simulates the random

oracle and the other party asks the first party to answer the oracle queries on her behalf. But the first party

learns all the queries that the second party makes and, thus, might make the original protocol insecure.
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An independence learner [BM09, DLMM11] solves this problem by capturing all intersection queries, i.e.

queries which are common to Alice and Bob’s local views, with high probability. The independence learner

is a deterministic algorithm and depends only on the public view, i.e. a subset of both Alice and Bob’s

local views. So, it can be simulated by either Alice or Bob and could be published in the transcript

because it reveals information which either party could have generated, thus revealing it will not harm the

security of the protocol. Now, any query not yet answered in the public list of query-answers produced

by the independence learner are locally answered by the parties themselves. The event that we have a

query inconsistently answered by the parties is extremely low because intersection queries are covered with

high probability. The construction of such a deterministic and efficient independence learner is provided in

[BM09, DLMM11].

Next, we look at some issues which are specific to our problem statement and were absent from the

problem considered by [BM09, DLMM11]. Let us highlight a feature of protocols in the plain model: When

Alice is supposed to send the next bit in the protocol, she sends it as a deterministic function of her view,

which is comprised of her local input x, her local random tape rA and the partial transcript τ generated so

far. In particular, the probability of her next bit being 0 is a function of x and the transcript τ only. We

shall call this property “Markov-chain property”. To convert a protocol in the random oracle model into a

protocol in the plain model, we will need to ensure that the Markov-chain property holds. Let us be slightly

more formal about the construction. Suppose Alice and Bob have generated the partial transcript τ and our

eavesdropper makes additional queries to the random oracle and the (public) set of query-answer pairs be

represented by I. Now, given τ , I and x, if we are able to predict the probability of next message being 0

then we shall be done. The first hurdle here is the fact that after the set I is generated by the eavesdropper,

Alice queries the random oracle as instructed by the protocol; and then deterministically generates the next

message as a function of her local view. Querying the random oracle after the augmented transcript τ

and I is fixed creates the risk of generating additional correlations between Alice and Bob views and the

probability of the next message being 0 might not be a function of x, τ and I only. We should clarify that the

eavesdropper is never provided the local inputs of Alice and Bob. All we need to show is that the probability

of the next message is a function of local input x and the augmented transcript τ and I, i.e. Alice querying

the random oracle after the augmented transcript is fixed has negligible effect. Now, the final hurdle is that

the eavesdropper does not know the exact inputs of Alice and Bob3, i.e. the algorithm to kill dependence

between Alice and Bob views should be oblivious of x and y and still remain efficient.

So, we need to construct an efficient eavesdropper strategy which simultaneously resolves the following
3 The eavesdropper might learn some information about x and y from the transcript itself; but beyond that it is not explicitly

provided the values of x or y.
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three issues: a) Kill dependence between Alice and Bob views so that the random oracle can be efficiently

simulated, b) Ensure the Markov-chain property so that the next message functions can be appropriately

defined, and c) Efficiently perform both these task when the local inputs of Alice and Bob, x and y, are

not provided explicitly to the independence learner algorithm. The unified solution to all these problems is

to run several eavesdropper algorithms. For every input pair (x, y) ∈ X × Y , define π(x, y) as the protocol

where Alice and Bob inputs are fixed to x and y respectively. We spawn one eavesdropper algorithms for

every π(x, y) and it queries all highly likely queries assuming Alice and Bob inputs are x and y respectively.

It is not evident whether such an eavesdropper is efficient; but we modify [BM09] to show the efficiency of

our eavesdropper algorithm. After all these three properties are satisfied, we can convert this protocol into

a secure protocol for F in the plain model. For this transformation, we shall use the fact that Alice and Bob

local views are independent given the augmented transcript. Parties can simulate a random oracle using the

following strategy: a) All eavesdropper query-answers are public knowledge and could be generated by a

particular party, say Alice, and b) Answer to any query which is outside the public query list generated by

the eavesdropper can be locally sampled by the party. The second step might create conflicts, i.e. Alice and

Bob might sample answers to the same query locally which are inconsistent, but the probability that such

an intersection query is not already covered in the public query-answer list generated by the eavesdropper

is extremely small [BM09, DLMM11].

1.3 Organization

In Chapter 2 we summarize prior results relevant to our study (Section 2.1) and introduce definitions and

notations (Section 2.2) useful in the subsequent sections. We present our information theoretic separation

results in Chapter 3. We shall characterize reductions which are false against adversaries with unbounded

computational power when parties can access a secure implementation of unbiased public coins. In Chap-

ter 4, we shall show that several reductions are equivalent to either OWF assumption or sh-OT assumption.

Chapter 5 presents the consequences of secure weak coin tossing protocols. We show that constant round

weak coin tossing protocols imply OWF assumption and if the protocols have polynomial round complexity

then they imply NP 6⊆ BPP. We discuss evidences supporting the possibility of several intermediate complex-

ity assumptions intermediate to OWF assumption and sh-OT assumption in Chapter 6. Finally, we conclude

by highlighting some important open problems and conjectures in Chapter 7.
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Chapter 2

Prior Work and Preliminaries

In this chapter we will summarize prior results relevant to our study and introduce some useful notations and

definition for subsequent chapters. In Section 2.1 we will summarize prior results in multi-party computation

and relating strengths of computational intractability assumptions. Finally, in Section 2.2 we will introduce

some terminology and definitions to make our subsequent chapters describing our results more accessible.

2.1 Prior Work

In this section we shall present some known results in multi-party computation and establishing relations

among various computational assumptions. These fields are extremely vast and it is impossible to cover

every significant result relevant to our study. We present an overview of some of the representative results

of multi-party computation in Section 2.1.1 focussing on information theoretic reductions, completeness

and some results in the computational setting. Most of these results may not be the best possible or

most efficient reductions with respect to round complexity, communication complexity etc. Covering such

aspects is beyond the scope of this work. In Section 2.1.2 we survey some results which show the relation

among various computational assumptions. The section covers prior results which show implications and

equivalences of these assumpitons and, finally, separations among them.

2.1.1 Quick Summary of Multi-party Computation Results

Yao posed the following problem, henceforth referred to as the Millionaires’ problem [Yao82a]: Two mil-

lionaires wish to find out which one of them is richer without divulging any additional information. For-

mally, suppose their respective assets are worth x and y; and we are interested in computing the function

f(x, y) = 1 if and only if (x ≤ y). Surprisingly, this deceptively simple problem cannot even be resolved

when x, y ∈ {0, 1} for any reasonable notion of security. But, if it is guaranteed that x 6= y, i.e. say, x is

always even and y is always odd, and we are willing to disclose the assets of the richer millionaire then this

function can be semi-honest securely computed [Kus89, Bea89, MPR09, KMR09]. On the other hand, if the
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millionaires reside in a highly concurrent environment, there are stronger security models which rule out

secure protocols for this function [CKL03, Lin04]. The study of secure realization of various tasks, possibly

interactive ones, is the central focus of multi-party computation. Some major representative results from the

field of multi-party computation are highlighted in this section and we shall, simultaneously, interpret these

results in our reduction based framework.

Most of these results consider a special type of functionalities called function evaluation. These extremely

fundamental functionalities are non-interactive tasks where parties provide inputs and receive their respective

outputs from the trusted third party. Moreover, the functions considered here are restricted to symmetric

functions, i.e. all parties receive the same output. The function outcomes can be either deterministic or

randomized. For deterministic functions, f(x1, x2, · · · ) represents the evaluation of the function f where the

i-th party has input xi. When considering randomized functions, f(x1, x2, · · · ) represents a distribution over

the output alphabet set and the outcome is drawn according to this distribution. The study of symmetric

function evaluation is pivotal to better understand any arbitrary function evaluation [KM11, MOPR11].

Information Theoretic Triviality. The main question here is to characterize functions which can be

computed in information theoretic secure manner for different adversarial strategies. These results can be

interpreted as characterization of functionalities which reduce to the secure-channel functionality, i.e. point-

to-point or broadcast channel. Recall that we always assume existence of such channels in our framework

and, thus, we represent it using the symbol ∅. So, we characterize functions which belong in class(∅) for

various notions of reduction.

The most basic corruption model is semi-honest corruption, i.e. adversaries follow the protocol honestly

but, after the completion of the protocol, all corrupt parties “gossip” and, depending on their own private

inputs and outputs received, try to figure out additional information about the honest parties’ inputs. A

function is t-private if there exists a semi-honest secure protocol where the adversary can corrupt any (up

to) t-parties but it cannot violate the security guarantees of the honest parties. Traditionally, symmetric

functions, i.e. the functions where all parties receive the same output, are considered and, henceforth, all

results in this section, unless otherwise specified, are for symmetric functions. The general question in this

line of research can be summarized by the following:

Question 2 (IT-triviality). Given a n-party function evaluation, determine whether it can be informa-

tion theoretically t-privately computed in various corruption models, like semi-honest, active or Byzantine,

composable etc.; alternatively, solve the membership problem for class(∅).

It was shown by [BGW88, CCD88] that if honest parties are in a majority then any function, which
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has finite output alphabet, can be semi-honest securely computed even against adversaries with unbounded

computational power. This result is tight because it can easily be seen that unless honest parties are in

a majority, there are no information theoretically secure protocols for some functions. They showed that

every n party function with finite output alphabet set is bn−1/2c-private. The assumption that the output

set is finite is necessary because [CGK90, CGK95] showed that, even when the output alphabet set is

countable but infinite, there are functions which are not even 1-private1. Note that for the special case

of n = 2, the results by [BGW88, CCD88] do not imply anything non-trivial. Kushilevitz [Kus89] and,

independently, Beaver [Bea89] characterized 2-party functions which can be passive securely computed with

perfect security. They showed that only decomposable functions, where each party alternately rule out some

of their inputs, are the only 2-party symmetric functions which have perfect semi-honest secure protocols.

Recently [MPR09, KMR09] showed that this characterization also extends to statistical semi-honest security.

When the output alphabet size is 2, [CK89] showed that any n-party function is either bn−1/2c-private

or n-private. They show that any function which is dn/2e-private has a simple n-private semi-honest secure

protocol: Every party announces a bit which is dependent on its local input and the output of the function

is (mod two) addition of every party’s bit. This result can be interpreted as a “zero-one” law, i.e. every

function can be characterized into two class. Only recently, [Kre11] extended this result to functions with

ternary output alphabets. The n-private protocol for this case is not as trivial as the binary output case, and

interested readers can refer to [Kre11] for the details. Any hope that this simple “zero-one” law extended

to arbitrary, but constant, output alphabet size was crushed by [CGK94]. They showed that for every n

and t ≥ bn−1/2c, there exists a n-party function with output alphabet size cn, a constant depending on n,

which is t-private but not (t + 1)-private2. In particular, it implies that for n = 4, there is a function with

output alphabet size 8 which is 2-private but not 3-private (recall that [BGW88, CCD88] guarantees that

every function is 1-private for n = 4). This shows that for n = 4, the “zero-one” law does not hold when the

output alphabet set size is 14; and the minimum output alphabet size for which this “zero-one” law fails is

unknown.

A stronger model of corruption considers Byzantine adversaries or active adversaries, i.e. adversaries

may behave arbitrarily. Similar to the case of semi-honest security, we can consider security against a
1 There is an interesting, and perhaps unexpected, relation between boolean output functions and circuit lower bounds. The

class of functions with linear circuit size is exactly identical to the class of functions which have 1-private protocols and use a
constant number of random bits [KOR96]. A generalization of this result [CKOR97] relates the circuit size of a function and
the amount of randomness needed to compute it t-privately, for any t < n/2.

2 A common technique used in all the negative results of [CK89, CGK94, CS95] is partition argument, i.e. partition the set
of parties into two disjoint sets and obtain a secure protocol for a 2-party function from the original protocol for the function.
It was unknown whether all such negative results can be obtained by suitably applying the partition argument. Finally, [CI01]
showed that partition arguments are not powerful enough for such negative results. They show that as the number of partitions
k is increased, the power of the partition argument increases. In particular, they show that there are functions which has a k
partition such that the resulting function is fully private; while for all k′ < k partitions the resulting functions are not fully
private.
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Byzantine adversary which gets to control t out of n parties and tries to gain additional information about

the private inputs of the honest parties which would otherwise be inaccessible to them. Protocols which are

secure even when the adversary corrupts up to t parties are called standalone t-private protocols. For active

security, [BGW88, CCD88] show that if t < n/3 then every function can be t-privately computed. These

results, like their corresponding results for passive corruption, are also tight because even secure channel

with guaranteed message delivery cannot be implemented unless t < n/3 [LSP82]. But if we assume that an

additional broadcast channel is provided to the parties then every function has a secure protocol if t < n/2

[RB89]3. Due to a lower bound by [Dol82], we know that the result of [RB89] is also tight. Both these results

were generalized by [HM97] who show that the results by [BGW88, CCD88, RB89] extend to arbitrary sets

of adversarial players. They show that if there are no two sets of adversarial players whose union is the set of

all parties then there exists a semi-honest secure protocol for any function for that collection of adversarial

sets. Similarly, if there are no three sets of adversarial players whose union is the set of all parties then there

exists a standalone secure protocol for any function for that collection of adversarial sets. They also provide

a result analogous to [RB89] when a broadcast channel is also provided to the parties, though the protocol

is not guaranteed to be polynomial time. Instead of general broadcast channels, it has been shown that

broadcast between three parties is sufficient to securely compute any functions if t < n/2 parties are corrupt

[FM00]. Similar completeness results where parties can use a functionality which involves k < n parties is

explored in [FGMO05].

Canetti proposed a significantly stronger notion of security: Universally Composable security [Can01],

which ensures security of protocols in highly concurrent environments and in presence of arbitrary computa-

tions. Although this model of security is extremely demanding and only functions where one of the parties

forwards its input to the other have secure protocols [CF01, CKL03, Lin04, PR08]. They, additionally, show

that if F 6∈ class(∅) then the reduction “F reduces to ∅” is false. Despite this strong negative result,

non-trivial hybrids seem to possess significantly higher power, for example any non-trivial functionality is

trivial in its own hybrid. More discussion on this topic will be included in the following paragraphs.

Completeness. It is useless to provided parties access to a functionality which is information theoretically

trivial, because the parties can compute the function on their own from scratch. On the other extreme there

are functionalities whose access is sufficient to securely realize any other functionality. These functionalities,

following the nomenclature in complexity theory, are called complete functionalities. In our framework, G is

a complete functionality if every functionality can be securely realized in the G-hybrid, i.e. all functionalities
3 Interestingly, the protocols by [BGW88, CCD88] are perfectly secure protocols, whereas the protocols by [RB89] incur a

negligible error. It can be shown that, it is impossible to obtain a result similar to [RB89] with perfect security even when
parties have access to broadcast channels [BGW88, CCD88, RB89].
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lie in class(G). Oblivious transfer is an extremely useful primitive to help realize other functionalities.

There are several equivalent variants of oblivious transfer. In the first version, as introduced by [Rab81], the

sender has an input bit b and it may or may not be delivered to the receiver with certain probability; but the

sender does not know whether the bit was delivered or not. Rabin OT is equivalent to an erasure channel

and [Wie83] showed how it could be implemented quantum mechanically. In the second version introduced

by [EGL85], called (1-out-of-2) OT, the sender has two bits x0 and x1 and the receiver has a choice bit b.

The receiver obtains xb as her output, while the sender gets no output. Observe that it is trivial to convert

this functionality into a symmetric functionality by allowing the receiver to send an additional masking

bit z and the output xb ⊕ z is announced to both the parties. There are two important generalizations of

(1-out-of-2) OT: a) Firstly, the sender has inputs x0, x1, . . . , xn and the receiver has an input i ∈ [n], and

b) Secondly, the inputs of the sender could be strings instead of bits. All these variants of oblivious transfer

are, in fact, equivalent [BCR86, Cré87].

It is easy to see that (1-out-of-n) OT is semi-honest complete for functions with small input domains for

both parties. Suppose a party has input x, then it inputs f(x, 0), f(x, 1), . . . , f(x, n) to (1-out-of-n) OT and

the other party uses y ∈ [n] as his inputs to obtain f(x, y). Similarly, they can reverse their roles and let

the first party learn the outcome of the function. For arbitrary computations, [GMW87, GV87] show that

oblivious transfer is semi-honest complete. When the alphabet size is binary or ternary, any n-party function

is either trivial, i.e. bn−1/2c-private, or complete [CK89, Kre11]. Such dichotomy exhibited by functions is

frequently referred to as “zero-one” law.

Kilian [Kil88] shows that for two party case, Rabin OT suffices to perform oblivious circuit evalua-

tion even against Byzantine adversaries. For two-party symmetric deterministic function evaluation, Kilian

[Kil91] shows that if there exists an embedded OR minor4 then F is complete. Kushilevitz [Kus89], and in-

dependently Beaver [Bea89], characterized two-party symmetric deterministic functions which have perfectly

secure protocols. This characterization, called decomposability, also extends to the statistical security case

[MPR09, KMR09]. Observe that the “zero-one” characterization of [CK89, Kre11] does not imply anything

non-trivial for the two party case. Kilian et al. [KMO94, KKMO00] show a similar result for the two party

case. They introduce the term reduction to capture secure realization of a function F in a G-hybrid and show

that, for binary output, two-party symmetric deterministic functions are either trivial or complete. Recently,
4 A functionality F implementing a function evaluation f has an OR minor if there exists two Alice inputs i0, i1 and two

Bob inputs j0, j1 and two output symbols k0, k1 such that f(ia, jb) = ka∨b. Alternatively, one can interpret the function f as
a two-dimensional matrix where the (i, j)-th entry corresponds to the outputs of the function when Alice has input i and Bob
has input j. If there are two columns and two rows, such that the restriction of the matrix to them has three identical output
symbols then f has an embedded OR minor.
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Kreitz’s [Kre11] result implies that this characterization also extends to ternary output alphabets5. There

are examples of function with output alphabet size 4 with are neither complete nor trivial, thus the “zero-

one” law breaks down. The “zero-one” characterization of functions being either trivial or complete also

extends to two-party functions where only one of the parties receives the output [BMM99]. Kilian [Kil00],

subsequently, provided completeness characterization for asymmetric and randomized function. Surprising,

there is a correspondence between arbitrary two-party functions and two-party symmetric functions. Any

incomplete deterministic function, it may be non-trivial, is equivalent6 to a two-party symmetric function

[KM11].

Computational Model. For the Millionaires’ problem, it can be easily shown that in the information-

theoretic model that it is impossible to have a protocol which securely computes this function even when

we restrict ourselves to semi-honest corruption.If we are willing to make computational intractability as-

sumptions, then existence of semi-honest secure oblivious-transfer protocol could be used to evaluate the

circuit of any function 1-privately via garbled circuits [Yao86]. A detailed proof of correctness for the con-

struction is provided in [Gol04, Rog91, LP09]. For the multi-party case, in a seminal work, Goldreich,

Micali and Wigderson [GMW87] show that any function can be computed n-privately, even against Byzan-

tine adversaries, if there exists a semi-honest secure protocol for oblivious transfer. The main idea is to

semi-honest securely perform an evaluation-under-the-wraps similar to the garbled circuit construction of

[Yao86]. They use the Barrington’s model [Bar86] to transform any arbitrary computation as a sequen-

tial composition of a permutations. To consider Byzantine adversaries, two additional techniques are used.

Firstly, a coin-tossing-in-the-well technique is used to generate a honest local random tape for every party

if at least one the parties is honest. Next, at every step of the execution, parties provide a zero-knowledge

proof [GMR85, GMW86] that they have followed the semi-honest strategy honestly. For more stringent

security requirement, like Universally Composable security [Can01], Canetti et al. [CLOS02] showed that

under suitable computational assumption the coin-tossing functionality is complete. Recently [MPR10b], it

was shown that every Universally-Composable non-trivial function is complete if there exists a semi-honest

protocol for oblivious-transfer. Although, in this case only static corruption is considered.
5 Note that Kreitz’s result is only meaningful for n > 2. But the main combinatorial characterization shown by him implies

this result for the special case of n = 2.
6 A functions f is extremely trivial in the g-hybrid if f can be securely computed by: Making a call to the g-oracle followed

by some local computation by both parties. Two functions f and g are equivalent if f is extremely-trivial in the g-hybrid and
vice-versa.
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2.1.2 Computational Intractability Assumptions

In this section we mention some relations among computational intractability assumptions. The results

covered in this section show implications, equivalences and separations among various computational as-

sumptions like existence of one-way functions/permutations, key-agreement protocols, public-key encryption

etc.

Implications and Equivalences. Primitives like secret-sharing [Sha79, Bla79], verifiable secret-sharing

[CGMA85, BGW88, CCD88] and one-time pads are information theoretically possible; but, as mentioned

earlier, most non-trivial cryptography is information theoretically impossible. In a seminal work, Impagliazzo

and Luby [IL89] showed that many non-trivial cryptographic primitives like private-key (symmetric-key) en-

cryption, identification/authentication, bit-commitment and coin-tossing over the telephone imply existence

of one-way functions. They show that any secure protocol for these non-trivial Cryptographic tasks implies

the existence of an identification protocol; which, in turn, implies the existence of distributionally one-way

functions. Surprisingly the notion of distributionally one-way functions is equivalent to the notion of stan-

dard notion of one-way functions [ILL89]. Existence of non-trivial zero-knowledge proofs [GMR85], which are

extremely useful in cryptography, also imply existence of one-way functions [Ost91, OW93]. Thus, existence

of one-way function is possibly weaker than the assumption that cryptographic primitives like private-key

encryption, identification schemes, bit-commitment, non-trivial zero-knowledge etc. exist. In other words,

existence of these non-trivial cryptographic primitives imply the existence of one-way functions.

Subsequently, H̊astad, Impagliazzo, Levin and Luby [ILL89, H̊as90, HILL99] showed that pseudorandom

generators can be constructed based only on the assumption that one-way functions exist7. Naor and

Yung [NY89] showed how digital signatures can be constructed from universal one-way hash functions and

presented a construction of universal one-way hash functions from one-way permutations. Finally, Rompel

[Rom90] constructed universal one-way hash functions based solely on existence of one-way functions (a

partial result in this direction appears in [SY90]); thus, providing a construction of digital signatures based

on the assumption that one-way functions exist. Interested readers can refer to [KK05] for an alternate proof

of the result by [Rom90] which fills several gaps in the original proof. It is also known that one-way functions

are sufficient for bit-commitment [Nao89] and zero-knowledge proofs for languages in NP [GMR85, GMW86,

IY87, ILL89, Nao89, H̊as90]. These results [ILL89, IL89, Nao89, NY89, H̊as90, Rom90, Ost91, OW93] show

that existence of diverse cryptographic primitives like private-key encryption, pseudorandom generators, bit

commitment, digital signatures, non-trivial zero-knowledge are all equivalent to the assumption that one-way
7 Although the construction of pseudorandom generators based on one-way Permutations was known earlier [Yao82b], the

problem of only using one-way functions was open for a long time.
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functions exist.

Recall that [CGK94, CI01] showed separations based on the partition arguments. It is noteworthy that

the assumption that any of their functions has a semi-honest secure protocol is equivalent to the complete

assumption that semi-honest secure protocol for oblivious transfer exists. There are several cryptographic

primitives, like public-key encryption, key-agreement protocols over public channels secure against eavesdrop-

pers, semi-honest secure oblivious transfer protocols etc., whose existence entails the existence of one-way

functions [IL89]. It is interesting to note that existence of public-key encryption is equivalent to the existence

of 2-round key-agreement protocols; and k-round semi-honest secure oblivious transfer protocols entails the

existence of k-round key-agreement protocols [GKM+00]. As evident from the discussion above, it appears

to be the case that one-way functions are necessary for non-trivial cryptography. In general, the following

question is of fundamental interest to cryptographers:

Question 3 (Necessity of one-way functions). Does the existence of any non-trivial cryptographic construct,

which is information theoretically impossible, entail the existence of one-way functions?

Separations. Unlike implications, it is extremely difficult to define when an assumption is strictly stronger

than another. To this end, in a seminal paper, Impagliazzo and Rudich [IR89] introduced the notion of

black-box separations. They show that the existence of key-agreement protocols is black-box separated

from existence of one-way permutations, i.e. there exists an oracle relative to which one-way permutations

exist but key-agreement protocols do not exist. This technique rules out any relativizing construction, in

particular black-box constructions, of key-agreement protocols from one-way permutations. The construction

in [IR89] uses a random oracle8 and a PSPACE oracle. Although non black-box techniques in complexity

theory [Coo71] and cryptography [Yao86, GMW87, Bar01] are highly infrequent, this technique does not rule

out the existence of such constructions. Thus, we define an assumption to be strictly stronger than another

assumption if there exists a oracle relative to which the latter assumption holds but not the implication.

There are several possible variations of defining what qualifies as a black-box construction [RTV04]. The

technique used by [IR89] rules out fully black-box reductions according to the nomenclature used in [RTV04],

i.e. not only the weaker primitive is used as an oracle, even the proof of correctness uses the adversary

against the stronger primitive in a black-box manner. Until recently [Bar01] the code of the adversary was

not used in any construction.

Subsequent to the work by Impagliazzo and Rudich [IR89], there has been several results showing sep-

aration of computational intractability assumptions using similar methodologies. Recently, [BM09] have

8 Constructions in random oracle world are closely related to constructions in the Ideal-cipher model [CPS08, HKT11]. More
details on this aspect will be discussed later.
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provided an alternate and tighter proof for the result in [IR89]. Rudich [Rud91] extended this approach to

show that existence of (k − 1)-round key-agreement is black-box separated from the existence of k-round

key-agreement, i.e. it is not possible to construct a (k−1)-round key-agreement protocol by using a k-round

key-agreement protocol in a black-box manner. Simon [Sim98] showed that existence of collision-intractable

hash functions [Dam87] are black-box separated from existence of one-way functions. Even one-way per-

mutations are black-box separated from one-way functions [Rud88, KSS00, KSS11] and recently [MM11]

show that they cannot be constructed from injective length-increasing one-way function in a black-box

manner even if the increase in length is only one bit. Gertner et al. [GKM+00] showed that existence of

key-agreement and oblivious-transfer protocols are in some sense incomparable; but existence of oblivious-

transfer protocols is black-box separated from existence of public-key encryption protocols. They show

that k-round oblivious transfer implies the existence of k-round key-agreement protocols; but even 2-round

key-agreement, i.e. public-key encryption, cannot be used in black-box manner to construct any k-round

oblivious-transfer protocols. On the other hand, they also show that (k − 1)-round key-agreement proto-

cols are black-box separated from k-round oblivious-transfer protocols. Gertner et al. [GMR01] show that

trapdoor-functions are black-box separated from the existence of trapdoor-predicates like public-key encryp-

tion using a weaker notion of separation. In an extension of the Impagliazzo-Rudich [IR89] methodology,

Gennaro et al. [GT00, GGK03, GGKT05] prove tight lower bounds for construction of pseudorandom-

generators [BM84, GL89], universal one-way hash functions [NY89], encryption and (semantically-secure)

signature schemes which match with the best known constructions; otherwise P 6= NP.

Recently, there have been additional separation results. Gertner et al. [GMM07] show that chosen-

ciphertext secure public-key encryption is black-box separated from semantically-secure public-key encryp-

tion, if the chosen-ciphertext construction’s decryption algorithm does not query the semantically-secure

public-key encryption’s encryption algorithm. Boneh et al. [BPR+08] show that identity-based encryption

[Sha84] is black-box separated from trapdoor-permutations and even chosen-ciphertext secure public-key

encryption. Vahlis [Vah10] shows that existence of trapdoor-functions under correlated inputs, introduced

in [RS09], is black-box separated from trapdoor-functions. Blind-signatures, introduced by [Cha82], cannot

be constructed from one-way permutations in a black-box manner [KSY11].

In general, one of the most fundamental problems in this field of research can be formulated as follows:

Question 4 (IT-Irreducibility vs. Separation). For any F which does not information-theoretically (say,

semi-honest) reduce to a, possibly non-trivial, functionality G, can the assumption “there exists an information-

theoretic (semi-honest) secure protocol for F” be black-box separated from the assumption “there exists an

information-theoretic (semi-honest) secure protocol for G”?
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Note that the non-triviality lies in the fact that G itself is non-trivial, so constructing an oracle which

allows only secure computation of G and not F is difficult. If an extremely powerful oracle is chosen then

it can also help securely realize F as well. Thus, it is imperative to provide the oracle with intermediate

power so that only G can be securely realized and not F . This implies that we need to have an extremely

fine-grained understanding of the complexity of securely realizing functionalities.

2.2 Preliminaries and Definitions

We say that a function ν : N→ R is negligible if for every polynomial p, ν(k) < 1/p(k) for sufficiently large

k. If D,D′ are discrete probability distributions with support S, we write SD(D,D′) to denote the statistical

distance of the distributions, defined as SD(D,D′) = 1
2

∑
s∈S |D(s)−D′(s)|.

Security. We use standard conventions and terminology for the security of protocols for multi-party com-

putation tasks. A protocol is secure if for every adversary in the real world (in which parties execute a

protocol), there is an adversary, or simulator, in the ideal world (in which the task is carried out on behalf

of the parties by a trusted third party called a functionality) that achieves the same effect. A semi-honest or

passive adversary is one which is not allowed to deviate from the protocol. Standalone security is achieved if

the simulator is allowed to rewind the adversary; Universally composable (UC) security [Can01] is achieved

if the simulation is straight-line (i.e., never rewinds the adversary). In this work, we exclusively consider

static adversaries, who do not adaptively corrupt honest parties during the execution of a protocol.

The plain model is a real world in which protocols only have access to a simple communication channel; a

hybrid model is a real world in which protocols can additionally use a particular trusted functionality. While

hybrid worlds are usually considered only for UC security, we also use the terminology in the setting of

standalone security. We note that protocols for non-reactive functionalities (i.e., those which receive input

from all parties, then give output, and then stop responding) do securely compose even in the standalone

security setting.

2.2.1 Functionalities

We focus on classifying several important subclasses of functionalities.

Secure function evaluation (SFE). A 2-party secure function evaluation (SFE) functionality is specified

by two functions f1 : X×Y → Z and f2 : X×Y → Z, where X and Y are finite sets. The functionality waits

for input x ∈ X from Alice and y ∈ Y from Bob, then delivers f1(x, y) and f2(x, y) to them, respectively.
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There is no fairness guarantee: if a party is corrupt, it can obtain its own output first and decide whether

the output should be delivered to the other party.

If f1 = f2 are identical we call it a symmetric SFE (or SSFE) functionality. SSFE functionalities

are the most fundamental, and have been studied since Yao first introduced the concept of multi-party

computation [Yao82a]. We can specify an SSFE function by simply giving its function table, where the

rows correspond to an input of Alice, and columns correspond to an input of Bob. For instance, the XOR

functionality has function table 0 1
1 0 .

Isomorphism. F and G are isomorphic9 if either functionality can be UC-securely realized using the other

functionality by a protocol that is “local” in the following sense: to realize F given G (say), each party maps

its input (possibly probabilistically) to inputs for the functionality G, calls G once with that input and, based

on their private input, the output obtained from G, and possibly private random coins, locally computes

the final output, without any other communication. It is easy to see that isomorphism is an equivalence

relation.

Output renaming. Suppose a two-party deterministic SSFE F implements a function f . We will rename

outputs of f which are not identical. For example, consider the function f : Z2 × Z2 → Z2 where f(x, y) =

x ⊕ y. the output 1 received when the input pair is (1, 0) is different from the output 1 received when the

input pair is (0, 1) because both parties can distinguish these two outputs based on their respective local

views. More formally, for distinct x, x′ ∈ X and y, y′ ∈ Y , if f(x, y) = z and f(x′, y′) = z but f(x′, y) 6= z

and f(x, y′) 6= z then these two instances of output z can be renamed to separate outputs. For every possible

function, we rename the outputs such that there no such renaming is possible. For example, the function

Fexch represented by 0 1
0 1 can be renamed to 1 2

3 4 . Note that output renaming keeps the new function

isomorphic to the original function.

Usefulness of a source. We say that a source of common randomness G is useless in realizing a 2-party

functionality F if either F could be securely realized in the plain model (i.e., without using G) or F cannot

be securely realized even in the G-hybrid model. Note that we consider only the feasibility question and not

any efficiency issues.
9The definition given here is a generalization for randomized functionalities of the definition from [MPR09].
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2.2.2 Some Functionality Classes

In this section we will look at some common and frequently occurring classes of functions in this work. Most

of these functionalities are two-party symmetric deterministic function evaluation, i.e. when parties have

inputs x and y, both parties receive output f(x, y). We will refer to symmetric secure function evaluation

as SSFE. Such functions are represented as matrices where the (i, j)-th entry of the matrix represents the

output f(i, j).

Passive Trivial or Decomposable. We emphasize that henceforth we shall always assume that no output

renaming is possible for the function being considered. The class of two-party deterministic SSFE which

can be securely realized against semi-honest adversaries was characterized independently by Kushilevitz

[Kus89] and Beaver [Bea89]. These functions were called decomposable functions due to the combinatorial

characterization of their function matrices. Suppose f is a function from X × Y to Z. If f is a constant

function, then f is decomposable. If the input set X can be partitioned into sets X1, X2, . . . , Xk such that

f restricted to Xu × Y and Xv × Y , where u 6= v and u, v ∈ [k], have no identical output, then we say that

f accepts a X-partition. The resulting functions fu which are restrictions of f to Xu × Y , where u ∈ [k],

respectively are known as sub-functions corresponding to the partition. Similarly, we can define when f

accepts a Y -partition. A function f is decomposable, if it accepts a X or Y partition and all sub-functions

corresponding to the partition are also decomposable.

We shall only consider the notion of decomposition where where the input space of f is partitioned into

maximum possible k partitions. The canonical protocol of a decomposable function is defined as follows.

If the function is a constant function, then both parties are aware of the output. Otherwise, if f accepts

a X-partition, Alice announces the partition index u such that her input x lies in Xu. If f accepts a Y -

partition then Bob announces the partition index u such that his input y ∈ Yu. After the first message

is sent, both parties recursively evaluate the function fu. Observe that Fcc has unique decomposition and

Fexch has two possible partitions. A function has unique decomposition, if there exists a unique canonical

protocol to semi-honest securely evaluate it. The depth of the decomposition refers to the number of rounds

in the canonical protocol when maximal partitioning of input spaces is considered.

Passive Complete. This class of functions was identified by [Kil91] who showed that if a function has an

embedded OR minor, then it is complete. A two-party SSFE has an embedded OR minor, if there exists

inputs x0, x1 ∈ X and y0, y1 ∈ Y and outputs z0, z1 ∈ Z such that f(xa, yb) = za∨b.
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Intermediate Functions. When we consider an output space of size at least 4 [CK89, Kre11], there are

functions which are neither decomposable nor has an OR minor, for example
1 1 3 4
3 2 2 4
3 4 1 1

. Such functions are

called intermediate functions.

Exchange-like Functionalities. We define F i×j
exch : Zi × Zj → Zi+j as the function which outputs the

sum of the two inputs provided by the two parties. Any function which can be UC securely realized in some

F i×j
exch-hybrid against adversaries with unbounded computational power is an exchange like functionality.

Exchange-free Functionalities. A function is exchange free, if it cannot be used to UC-securely realize

any form of simultaneous exchange. In particular, F is exchange free if F2×2
exch does not have a UC secure

protocol in the F-hybrid against adversaries with unbounded computational power. A useful combinatorial

property of exchange-free functionalities which are passive trivial is that they have unique decomposition.

We emphasize that it is not necessary that any uniquely decomposable function need not be exchange free,

for example
1 1 2
5 6 2
4 3 3

.

Trivial or UC-trivial functionalities. These functionalities evaluate extremely simple functions which

depend on the input of only one party. These functions are of the form f(x, y) = h(x) or h(y) and have

UC-secure protocols even against adversaries with unbounded computation power [CKL03, Lin04, PR08].

Some Example Deterministic Functions. We mention some common deterministic functions which

frequently appear in this study.

• F i,j
cc : Alice and Bob have input space 2Zi and 2Zj + 1 respectively. The functionality announces

the higher of the two inputs provided by the two parties. Each of these functionalities are uniquely

decomposable and are standalone trivial.

• F i,j
exch: Alice and Bob have input space Zi and Zj respectively. The functionality announced the sum

of inputs provided by the two parties, which is an element in Zi+j . Although, these functionalities are

decomposable, they do not have unique decomposition and are also not standalone trivial.

• Intermediate functions: The function represented by the following matrix is semi-honest non-trivial

and incomplete as well. 
1 1 2

4 5 2

4 3 3


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Randomized functionalities. A randomized SFE functionality is specified by functions f1, f2 : X ×Y ×

R → Z. The functionality takes inputs x ∈ X from Alice, y ∈ Y from Bob, uniformly samples r ∈ R

and outputs f1(x, y, r) and f2(x, y, r) to Alice and Bob, respectively. An important example is the common

randomness functionality, denoted by Fcoin (with X = Y = {0}, R = {0, 1}, and f1(x, y, r) = f2(x, y, r) = r).

Note that for a given pair of inputs, the outputs to Alice and Bob could be correlated as the same value r

is used in both. Two-party symmetric randomized SSFE F is represented similar to the deterministic ones.

The (i, j)-th matrix entry represents the distribution according to which the output is drawn when Alice and

Bob have inputs i and j respectively. The distribution is represented as a vector, where the `-th component

represents the probability of the `-th output symbol.

We identify two important subclasses of randomized SSFE functionalities:

Selectable sources: One in which one party’s input does not affect the output. That is, functions which

can be written as f(x, y, r) = h(x, r) for some function h. Note that for different values of x, the

function’s output distribution may be arbitrary.

Next, we will define the notion of redundant input. Suppose only Alice has influence in a selectable source

F implementing the function f . If there exists Alice input x such that the distribution f(x) can be

written as linear combination of other distributions, then we say that Alice’s input x is redundant. We

only consider functions where all redundant inputs have been removed.

Publicly-selectable sources: Those functions which can be written as f(x, y, r) = (g(x), h(g(x), r)), for

some functions g and h. In this case, the function’s output distribution for different values of x must

be either identical (when g(x) = g(x′)) or have disjoint supports (when g(x) 6= g(x′), which is included

in the function’s output). Intuitively, the function’s output determines the identity of the random

distribution h(g(x), ·) that was used.

In these two classes of functionalities, only one party can influence the output, so we say they have uni-

directional influence. If there exists inputs x, x′, x′′ for Alice and y, y′, y′′ for Bob so that f(x, y′) 6≡ f(x, y′′),

and f(x′, y) 6≡ f(x′′, y), then both parties can potentially influence the output, and we say that the func-

tionality has bi-directional influence.

Some Examples of Randomized Functions. In Table 2.1, we mention some of the common randomized

functions which will be useful to build intuition. The most interesting example is the function which

shows how redundancies can be deceptive. The last function in the table seems like an oblivious transfer

functionality, but it is not. Because the second input is redundant and, upon removal of that row from
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complete

(unclassified)

passive trivial

exchange-like

exchange
-free

standalone
trivial

UC trivial

Figure 2.1: A map of various cryptographic complexity classes (of 2-party SSFE functionalities)

the function, the resultant function is a publicly-selectable source implementing a secure communication

channel.

Oblivious sampling

(
〈1/2, 1/2〉
〈1, 0〉

)

Publicly-selectable source

(
〈1/2, 1/2, 0, 0〉
〈0, 0, 1/2, 1/2〉

)

Fcoin (Function with no influence) (〈1/2, 1/2〉)

Redundancies

 〈1, 0〉
〈1/2, 1/2〉
〈0, 1〉


Table 2.1: Randomized function examples.

2.2.3 Frontier Analysis

In this section, we present a formal presentation of the transcript generation process.

Protocols and transcript trees. We view a 2-party protocol as a weighted tree of possible transcripts.

The leaves of the tree correspond to completed transcripts, on which both parties give output. The tree’s

internal nodes alternate between “Alice” and “Bob” nodes, corresponding to points in the protocol (identified
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by partial transcripts) at which Alice and Bob send messages, respectively. Given a party’s private input

and the transcript so far (i.e., a node in the tree), the protocol assigns probabilities to the outgoing edges

(i.e., possible next messages). In some settings we also consider nodes corresponding to invocations of ideal

functionalities (like Fcoin), when appropriate. For these the protocol tree assigns probabilities to the outputs

of the functionality (the corresponding “messages” included in the transcripts for these steps) according to

the probabilities of parties’ inputs and the functionality’s internal randomness. An execution of the protocol

corresponds to a traversal from root to leaf in the tree.

Probabilities and frontiers. We write Pr[v|x, y] for the probability that the protocol visits node v

(equivalently, generates a transcript with v as a prefix) when executed honestly on inputs x and y. Suppose

πA(x, vb) is the probability that when Alice executes the protocol honestly with input x and the transcript

so far is v, her next message is b. Similarly, we define a probability πB for Bob. Then (assuming Alice speaks

first in the protocol):

Pr[v|x, y] = πA(x, v1)πB(y, v1v2) · · · =

[ ∏
i odd

πA(x, v1 · · · vi)

][ ∏
i even

πB(y, v1 · · · vi)

]

If we define α(v, x) and β(v, y) to be the two parenthesized quantities (equivalently, the product of weights

from Alice nodes and Bob nodes in the transcript tree, respectively), then we have Pr[v|x, y] = α(v, x)β(v, y).

Thus, in a plain protocol, the two parties make independent contributions to the probability of each tran-

script. In fact, even if the protocol is allowed to use a selectable source, this property still holds (see

Section 3.3). This property of protocols is crucially used in all frontier analysis in this work.

When S is a set of independent nodes in the transcript tree (prefix-free partial transcripts), we define

Pr[S|x, y] =
∑

v∈S Pr[v|x, y], as all the probabilities in the summation are for mutually exclusive events.

If Pr[F |x, y] = 1, then we call F a frontier. Equivalently, a frontier is a maximal independent set in the

transcript tree. In general, a frontier represents a point in the protocol where a certain event happens,

usually defined in terms of the probabilities α and β.

2.2.4 Computational Intractability Assumptions

In this section we will look at the definition of some popular computational intractability assumptions. We

will define an experiment and define what computation is tough for a computationally bounded adversary.

One-way Functions. Consider an ensemble of functions fn : {0, 1}n → {0, 1}m(n), where m(·) is a

polynomial. The experiment, draws a random x ∈ {0, 1}n and provides the adversary with n and y = fn(x).
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Next, the adversary outputs a string x′ ∈ {0, 1}n. If f(x′) = y then we say that the adversary wins

the challenge. We say that f is a one-way function, if the probability of any efficient adversary winning

the challenge is negligible in n. If the function fn is also a permutation, then f is said to be a one-way

permutation. If one-way functions exist, then we say that OWF assumption is true.

Public-key Encryption. A public-key encryption scheme is defined by three algorithms: Gen, Enc and

Dec. The key-generation algorithm Gen, takes as input a random tape r and outputs a tuple of private

and public key (sk, pk). The encryption algorithm Enc takes as input the public key pk and a message

m and outputs a cipher text c. The decryption algorithm Dec takes as input the secret key sk and the

cipher text c and outputs its corresponding message m. A correct public-key encryption scheme ensures

that Dec(sk,Enc(pk, m)) = m, where (sk, pk) = Gen(r). In the indistinguishability experiment, we first

sample a random tape r and generate a secret and public key pair (sk, pk) = Gen(r). We send pk to the

adversary and receive two challenge messages m0 and m1. We choose a random bit b and send the adversary

encryption of mb, i.e. c = Enc(pk, mb). Finally, the adversary provides a bit b′ representing the fact that

it thinks that c is an encryption of mb′ . The adversary wins the game if b = b′. A public-key encryption

scheme is secure, if the advantage of an efficient algorithm winning the game is at most negligible. If there

exists a public-key encryption protocol then we say that PKE assumption is true.

Key-agreement Protocol. In key-agreement two parties Alice and Bob are interested in agreeing on a

secret key which is not leaked to an eavesdropping adversary. Consider a two party protocol between Alice

and Bob that runs for r rounds. At the end of the protocol, Alice and Bob agree to a secret key s with

high probability. Suppose the generated transcript τ is provided to an adversary. If the adversary cannot

guess s with non-negligible probability then we say that the protocol is a secure key-agreement protocol. If

such protocol exists then (r-round) KA assumption holds. Observe that PKE is equivalent to 2-round KA

protocol.

Semi-honest Oblivious Transfer Protocol. An oblivious transfer involves two parties: Sender and

Receiver. The sender has two bits x0 and x1 and the receiver has a choice bit b. At the end of the protocol

the receiver finds out xb. The security of the sender demands that any adversary using the receiver’s view

has only negligible advantage in guessing x(1−b), And the security of the receiver requires that any adversary

using the sender’s view can guess b only with negligible advantage. If both these conditions hold for a

protocol, then that protocol is a semi-honest secure protocol for oblivious transfer. Similar to the definition

of KA experiment, we can also define sh-OT with r-rounds. In this work, we shall not need such a definition
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but such definitions have been used elsewhere while considering computational assumptions, for example

[GKM+00].
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Chapter 3

Information Theoretic Irreducibility

In this chapter, we consider a fundamental question: How cryptographically useful is a trusted source of

public coins against adversaries with unbounded computational power?

While there are several instances in cryptography where a common random string or a trusted source of

public coins is very useful (e.g. [BFM88, CLOS02]), we show severe limitations to its usefulness1 in secure

two-party computation, without — and sometimes even with — computational intractability assumptions. In

contrast, it is well known that more general correlated private random variables can be extremely powerful

[Bea95]. Given that for semi-honest security common randomness is useless (as one of the parties could

sample and broadcast it), it is not surprising that it should turn out to be not as powerful as general correlated

random variables. However, despite its fundamental nature, the exact power of common randomness has

not yet been characterized. We show:

• For two-party secure function evaluation (SFE) of deterministic functions, being given a source of

common randomness is useless, irrespective of any computational complexity assumptions, when con-

sidering security in the standalone setting.2

• Clearly a source of common randomness can be useful for realizing randomized functionalities. However,

in the case of UC security, we show that a source of common coins can be useful only in a trivial

sense (unless restricted to the computationally bounded setting, and intractability assumptions are

employed). We show that any UC-secure protocol that uses common coins for evaluating a randomized

function can be replaced by a protocol of the following simple form: one of the parties announces

a probability distribution, based deterministically on its input, and then the two parties sample an

outcome from this distribution using freshly sampled common coins. We call the resulting functionality

a publicly-selectable source.
1We say that a source of common randomness is useless in realizing some 2-party functionality F if either F could be realized

without using the given source or F cannot be realized even given the source. Note that we consider only the feasibility question
and not any efficiency issues.

2In the case of UC security, it follows from the results in [MPR10a] that a source of common randomness is useless except
in Cryptomania, where it is a complete functionality.
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These results are actually proven for a class of sources more general than coin tossing, namely selectable

sources – that let one of the parties (secretly) specify which among a set of distributions should be used by

the source. We highlight two aspects of these results:

Non-blackbox analysis of protocols. In deriving the impossibility results our analysis crucially relies

on the communication and information structure of protocols. We build on the “frontier analysis” paradigm

in [CI93, MPR09, MPR10a], but significantly extend its power, among other things, to enable analyzing

protocols for arbitrary randomized functionalities, and protocols using randomized functionalities.

These results (and hence proofs) are necessarily of a non-relativizing nature — if the protocol has access

to another trusted functionality (more sophisticated than common randomness), the impossibility results no

longer hold. Specifics about the common randomness functionality are (and must be) used in our proofs.

Such low-level analysis of protocols, we believe, is crucial to understanding the power and complexity of

multi-party computation primitives.

Understanding randomized functionalities. Secure evaluation of randomized functions has in general

been a poorly understood area. In particular, to date it remains open to characterize which randomized

functions can be securely realized even against computationally unbounded passive (honest-but-curious)

adversaries — a problem that was solved for deterministic functions twenty years ago [Bea89, Kus89]. Much

of the study of randomized functionalities has been focused on in-depth understanding of the simplest such

functionality — namely generating shared fair coins (e.g., see [Cle86, IL89, CI93, MNS09] and references

therein). Our results provide significant insight into other randomized functionalities as well, and their

connections to computational intractability assumptions. In particular, our results involve two interesting

classes of randomized functionalities, namely selectable sources and publicly-selectable sources.

3.1 Overview

Frontier analysis. The bulk of our results take the form of statements of cryptographic impossibility.

That is, we show that a protocol for a given cryptographic task is impossible (or else implies a certain

computational primitive like one-way functions). Such impossibility results have been a core challenge in

cryptography. In this chapter, we present a powerful battery of techniques that we use to analyze 2-party

protocols, which we broadly call “frontier analysis.”

The basic outline of a frontier analysis is as follows. We first interpret a protocol as a tree of possible

transcripts, with weights corresponding to the probability that the protocol assigns to each message, based
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on the parties’ inputs. Within this tree, we identify “frontiers”, which are simply a collection of nodes

(partial transcripts) that form a cut and an independent set. Intuitively, these frontiers correspond to points

in the protocol when some condition is satisfied for the first time, where the condition in question depends on

the kind of analysis needed: for example, the first place the transcript leaks “significant” information about

a party’s input, or the first place that common coins have made a “significant” influence on the protocol’s

output.

Impossibility proofs using frontier analysis proceed by showing that frontiers of certain kind exist, often

showing that multiple frontiers must be encountered in a specific order, and then showing that an adversary

can effect an attack by exploiting the properties of these frontiers.

Common coins are not useful in SFE protocols. We show that against computationally unbounded

adversaries (more precisely, against adversaries that can break one-way functions), any 2-party deterministic

SFE (in which both parties receive the same output) functionality that can be securely realized given a

trusted coin-tossing functionality can in fact be securely realized without it. This is most interesting for

the standalone setting, because if one-way functions do exist then a standalone-secure coin-tossing protocols

exist, so again access to a trusted coin-tossing functionality is redundant.3

We start off by showing that there is no secure protocol for evaluating boolean xor given a coin-

tossing functionality. In many ways these functionalities have similar “complexity” (in particular, neither is

complete, and both are trivial to realize against passive adversaries), so establishing a qualitative separation

between them is interesting in itself. In a protocol for xor, either party may be the first to reveal information

about their input, and the two parties can even gradually reveal more and more information about their

input in an interleaved fashion. We define a frontier corresponding to the first point at which some party

has revealed “significant” information about its input. Then we define an attack that can be carried out

when the protocol crosses this frontier. Since a large class of SFE functionalities can be used to securely

realize xor, the impossibility extends to these functionalities as well.

We then use the combinatorial characterizations of Symmetric Secure Function Evaluation (SSFE) func-

tionalities (obtained using frontier analysis) from [MPR09] to extend the result to arbitrary SSFE function-

alities (instead of just XOR). Further, using an extension of a result in [Kil00], we extend this to arbitrary

SFE functionalities by associating a symmetric SFE with every general SFE that has a secure protocol using

a source of common randomness.
3A recent result in [MPR10a] gives a sharp result for the case of UC security: the coin-tossing functionality is useful in

realizing further deterministic SFE functionalities if and only if there exists a semi-honest oblivious transfer protocol. However
neither the result nor the approach in [MPR10a] extends to the standalone setting. Also, our result is applicable to not just
symmetric functionalities and coin-tossing, but extends to general SFE functionalities and all selectable sources.
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For randomized SFE, common coins help only in a trivial sense. We show that common coins

are useful in constructing UC-secure protocols for randomized SFE functionalities only for the class of

publicly-selectable sources (Theorem 2). For this result, we exploit the versatility of the frontier analysis

and also employ a geometric analysis of the space of effective probability distributions.

The frontier analysis is carried out for an SSFE functionality, and then the result is extended to general

SFE functionality separately. For a randomized SSFE functionality, for each pair of inputs, the output is

specified by a distribution (over a finite output alphabet). This distribution can be represented as a vector

in d-dimensional real space where d is the size of the output alphabet. By considering all possible inputs, we

obtain a set of points in this space as legitimate output distributions. But since the parties can choose their

input according to any distribution they wish, the entire convex hull of these points is the set of legitimate

output distributions. Note that the vertices of this polytope correspond to the output distributions for

various specific input choices.

In analyzing a protocol for such a functionality, we define two very different frontiers: one intuitively

captures the last point in the protocol where the parties’ inputs have any noticeable influence over the output

distribution. The other intuitively captures the first point where the common coins have had a non-trivial

influence on the output distribution.

Defining these frontiers is a delicate task, but once they are defined, we can show that, for the protocol

to be UC-secure, the two frontiers must be encountered in the order listed above. Thus there is always

a point within the protocol where the parties’ inputs have stopped influencing the output, yet the public

coins have not yet started influencing the output in a non-trivial way. At this point, we can show that the

output distribution is uniquely determined, and that the subsequent coins are simply used to sample from

this publicly-chosen distribution.

Then, on each node in the first frontier the conditional output distribution is still within the polytope.

On the other hand, since the input influence has ceased at this point, for any fixed input, its output

distribution must be determined by this frontier: i.e., it must be a convex combination of the conditional

output distributions at the nodes on the frontier. That is, the output distribution for this input is a

convex combination of conditional output distributions which are all themselves within the polytope. Now,

(without loss of generality, as it turns out) we can consider inputs whose output distributions are vertices of

the polytope. Then, for all nodes in the frontier the conditional output distribution must coincide with the

final distribution itself. Thus on reaching this frontier in the protocol, the output distribution is revealed (as

a deterministic function of the inputs) and the rest of the protocol simply samples from this distribution.

Finally, we extend this result also to general SFE (instead of just symmetric SFE) functionalities, in the
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same way as for deterministic functionalities.

Selectable sources. Selectable sources are an interesting class of randomized functionalities with an in-

termediate level of complexity: they can be more complex than a (fixed) source of common randomness, yet

they are simple enough that we can show that they are as useless as common randomness when it comes to

securely realizing deterministic functionalities. The extension is observed by following the analysis for the

case of the source of common randomness, and identifying the properties that it relies on. We do not know at

this point whether these are exactly all the functionalities which are useless for realizing SFE functionalities,

but based on our understanding so far, we conjecture that they are.

Related Results. Frontier analysis is possibly implicit in previous works on proving impossibility or lower

bounds for protocols. For instance, the analysis in [CI93] very well fits our notion of what frontier analysis

is. The analysis of protocols in [CK89, Bea89, Kus89] also have some elements of a frontier analysis, but of

a rudimentary form which was sufficient for analysis of perfect security. In [MPR09] frontier analysis was

explicitly introduced and used to prove several protocol impossibility results and characterizations. [KMR09]

also presented similar results and used somewhat similar techniques (but relied on analyzing the protocol

by rounds, instead of frontiers, and suffered limitations on the round complexity of the protocols for which

the impossibility could be shown).

3.2 Handling General SFE Functionalities

Frontier analysis is most naturally applied to protocols realizing SSFE functionalities — that is, functional-

ities which give the same output to both parties. So we derive our results for such functionalities. However,

we can then extend our characterizations to apply to SFE functionalities with unrestricted outputs using

the following lemma:

Lemma 2. Suppose H is a functionality that has a passive-secure protocol in the plain model. If H is useful

in UC- or standalone-securely realizing a (possibly randomized) SFE functionality F , then there exists a

symmetric SFE functionality F∗ such that F∗ is isomorphic to F , and H is useful in (respectively, UC-

or standalone-) securely realizing F∗.

Here, being useful or not is in the sense of the definition given in Section 2.2.1.

Proving Lemma 2 essentially involves relating SSFE and SFE functionalities. As it turns out, relating

symmetric and unrestricted functionalities is most convenient in the setting of passive security. In that

setting, we associate with every SFE functionality F a symmetric functionality which is simply the maximal
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“common information” provided to the two parties by F . (See proof of Lemma 4 for a combinatorial

description of this function.) Following [Kil00] it is not hard to show that if an SFE functionality G is not

isomorphic to its (symmetric-output) common information functionality then G must be complete in the

passive security setting.

To apply this result, however, we must be careful in relating passive security and active security. It is

not necessarily the case that an actively secure protocol implies a passively secure protocol (since in the

passive security setting, the security reduction must map passively corrupt adversaries to passively corrupt

simulators). In Lemma 3 we show that every SFE functionality is isomorphic to a functionality that is

“deviation-revealing” [PR08]. Such functionalities have the property that active-secure protocols imply

passive-secure protocols. Using these two results, we are able to transition from active to passive security,

and then argue about generalized vs. symmetric output.

Proof. We say that two SFE functionalities F and G are isomorphic if there is a local protocol for UC-

securely realizing F in the G-hybrid model, and vice-versa. By local, we mean that the protocol (say, the

protocol for F in the G-hybrid model) makes only one call to the ideal functionality G and performs no other

communication. Local protocols allow each party to do no more than locally “translate” both the input

from the environment and the output from G. This translation may be randomized, especially in the case

that F and G are randomized.

We say that an input for Alice x is redundant in an SFE F if F is isomorphic to a variant F−x of F

that does not allow input x from Alice. In other words, the effect of x can be achieved by having Alice

locally translate her inputs and outputs to/from F , using only inputs other than x. In this definition of

redundancy, the protocol for F−x in the F-hybrid model is always the dummy protocol; the simulator for

corrupt Alice in the F protocol in the F−x-hybrid model is also the dummy simulation. The simulator for

the F−x protocol and Alice’s protocol for F coincide, and they correspond to Alice’s “translation” technique

for obviating the input x. Bob’s protocol is the dummy protocol without loss of generality.

[PR08] define a property of functionalities called deviation-revealing, which relates UC security to passive

security. UC security considers only actively corrupt adversaries — as such, it does not require that passively

corrupt adversaries (who receive inputs from the environment on which to follow the protocol) are mapped

to passively corrupt simulators (i.e., a simulator that runs the dummy protocol with the functionality).

For the purposes of this result, we define deviation-revealing slightly more restrictively than [PR08],

requiring a condition for standalone security as well. We say that a functionality F is deviation-revealing if

every UC-secure or standalone-secure protocol for F in the G-hybrid model is itself a passive-secure protocol
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for F in the G-hybrid model. But if F is deviation-revealing, then without loss of generality the simulator

for a passively corrupt adversary can be passively corrupt. The name “deviation-revealing” comes from the

fact that the functionality’s behavior would reveal to an environment whether a party is interacting with F

using the dummy protocol or deviating from it.

Lemma 3. For every SFE functionality F there is a deviation-revealing functionality G that is isomorphic

to it.

Proof. Given an SFE F , we define G by iteratively removing redundant inputs in F (for both parties). We

do not require that removing redundant inputs results in a unique G. Clearly G and F are isomorphic, and

it suffices to show that G is deviation-revealing.

Let π be any UC-secure or standalone-secure protocol for G in the H-hybrid model. We must show that

π is itself also passive-secure in the H-hybrid model. Consider a passive adversary A for π — that is, the

adversary receives inputs from the environment and executes π honestly on those inputs, but also outputs

its entire view to the environment. Let S be the simulator for this adversary, and it suffices to show that S

can be made to interact with G according to the dummy protocol without loss of generality.

Consider a class of environments that inspect only the inputs and outputs of the parties, and in particular

ignore A’s reported view of the protocol. By the correctness of π, an interaction with A is indistinguishable

from an interaction with G in which all parties run the dummy protocol, for this class of environments.

Suppose such an environment gives input x to S, and condition on the event that its simulator S sends

an input other than x to G. This S is expected to also return the output from G, since the original passive

adversary returned the output from π. By the security of π, this interaction is indistinguishable from an

interaction with ideal G in which all parties run the dummy protocol, for this class of environments. Thus S

is effecting a local protocol which demonstrates that the input x is redundant. Since G contains no redundant

inputs, we conclude that this event (environment provides x but S sends an input other than x) happens

with only negligible probability. Without loss of generality, we can add a wrapper around S that aborts if

S sends an input other than the one provided by the environment. This wrapped simulator is still a sound

simulation and is a passive simulator.

Lemma 4. For every SFE functionality G that has a passive secure protocol in the plain model, there is a

symmetric functionality G′ that is isomorphic to it.

Proof. We define the symmetric functionality G′ to be the “common information” that Alice and Bob get

from G. This is best described by representing G as a bipartite graph G: the set of nodes on the left are

(x, a) for each possible input value x for Alice x and output value a for Alice; similarly, the set of nodes on
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the right are (y, b) for all possible inputs y and outputs b for Bob. There is a weighted edge between (x, a)

and (y, b) with weight Pr[a, b|x, y], namely, the probability that Alice and Bob get outputs a and b when

they send x and y as their respective inputs to G. If this weight is 0, then we consider the edge to be absent.

G′ is defined as an SSFE functionality which takes x and y from the parties, samples the outcome (a, b)

according to G, and returns to both parties the connected component H containing the edge ((x, a), (y, b))

in G. Observe that G′ gives the same output to both parties.

It suffices to show that if G′ and G are not isomorphic, then G cannot have a passive secure protocol in

the plain model. For this we rely on a result by Kilian [Kil00] to show that in this case G will actually be

complete for passive security, and hence cannot have a passive secure protocol in the plain model (unless we

impose computational restrictions and assume that there is such a protocol for oblivious transfer).

Due to the restriction of local protocols, we see that G and G′ are isomorphic if and only if, given the

connected component H and their respective inputs, Alice and Bob can independently sample outcomes that

are jointly distributed as outcomes from G. This is possible only when there is a labeling of every vertex

q(x, a) (or q(y, b)) so that Pr[a, b|x, y] = q(x, a)q(y, b) Pr[H|x, y]. By Pr(H|x, y), we mean the probability

that G′ outputs H on inputs x and y.

Now suppose no such labeling exists. Then we claim that G must be complete for passive security.

We adapt an argument of Kilian, who proved an analogous statement for a special class of (deterministic)

“asymmetric” SFEs G (Theorem 1.3 in [Kil00]).4

We consider two cases which exhaustively characterize the condition described above:

Case 1: Suppose there exists (x0, a0), (y0, b0), (y1, b1) such that Pr[a0, b0|x0, y0] > Pr[a0, b1|x0, y1] > 0

(or vice-versa with the roles of Alice and Bob exchanged). Then there must be a value a1 such that

Pr[a1, b0|x0, y0] < Pr[a1, b1|x0, y1]

Then consider the following passive protocol using G, where Bob has input m:

1. Bob chooses a random bit t. The parties evaluate G twice, on inputs (x0, yt) and (x0, y1−t).

2. If Bob did not receive output sequence (b1, b1) or Alice did not receive a sequence of outputs in the set

{(a0, a1), (a1, a0), (a0, a0)} then the parties repeat step 1.

3. Bob sends M = m⊕ t to Alice. If Alice received (a0, a1), she guesses t̂ = 0; if Alice received (a1, a0),

she guesses t̂ = 1; otherwise, she sets t̂ randomly. Alice locally outputs M ⊕ t̂.

The analysis of this protocol closely follows that of [Kil00] (Lemma 5.2). Briefly, Bob’s choice t is uniformly

distributed conditioned on Alice receiving (a0, a0). In this case, she receives no information about Bob’s
4Kilian does not state the result in terms of isomorphism or common information. But the combinatorial condition is

identical to the above.

47



input m. Otherwise, Alice’s guess of t̂ is biased towards Bob’s choice of t and she learns partial information

about m. The protocol therefore gives a “noisy” variant of Rabin OT that can be refined using the techniques

described in [Kil00].

Case 2: Suppose Case 1 does not hold and that there exist (x0, a0), (x1, a1), (y0, b0), (y1, b1) such that

Pr[a0, b0|x0, y0] = 0, yet each of Pr[a0, b1|x0, y1],Pr[a1, b0|x1, y0],Pr[a1, b1|x1, y1] are nonzero. Since Case 1

does not hold, then these latter three probabilities must in fact be equal. Then consider the following passive

protocol using G:

1. Alice chooses random bit s. Bob chooses random bit t. Alice sends xs to G and Bob sends yt to G.

2. If Alice did not receive output as or Bob did not receive output bt, then the parties repeat step 1.

3. Alice locally outputs s. Bob locally outputs t.

This protocol allows Alice and Bob to generate correlated pairs (s, t) that are uniformly distributed in

{(0, 1), (1, 0), (1, 1)}. Using the techniques spelled out in [Kil00], such correlated pairs can be used to

implement a passively secure OT.

We can now prove Lemma 2:

Lemma 2 (restated). Suppose H is a functionality that has a passive-secure protocol in the plain model. If

H is useful in UC- or standalone-securely realizing a (possibly randomized) SFE functionality F , then there

exists a symmetric SFE functionality F∗ such that F∗ is isomorphic to F , and H is useful in (respectively,

UC- or standalone-) securely realizing F∗.

Proof. First note that if F is isomorphic to F∗, then H is useful in securely realizing F if and only if H is

useful in securely realizing F∗. (This is because, if there is a protocol for F in the H-hybrid model there is

one for F∗, and if there is no protocol for F in the plain model, there is none for F∗ either.) So it is enough

to give an SSFE functionality that is isomorphic to F .

If H is useful in UC-/standalone-securely realizing a randomized SFE functionality F , then F has a

(respectively, UC- or standalone-) secure protocol in the H-hybrid model. Let G be the deviation-revealing

functionality guaranteed by Lemma 3. Because G is isomorphic to F , we have that G has a (respectively

UC- or standalone-) secure protocol in the H-hybrid protocol. Then, since G is deviation-revealing, the same

protocol is also passively secure in the H-hybrid model. By our assumption, H has a passive-secure protocol

in the plain model; so by composing these two protocols we can obtain a passive secure protocol for G in the
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plain model. Now, by Lemma 4, there is an SSFE functionality F∗ that is isomorphic to G. Thus F∗ is our

desired SSFE that is isomorphic to F .

3.3 Selectable Sources are Useless for Deterministic SFE

In this section we will show that any selectable source is useless for securely realizing any deterministic SFE

functionality against computationally unbounded adversaries. In particular this shows that Fcoin is useless

for realizing any deterministic SFE functionality.

Theorem 1. Suppose F is a 2-party deterministic SFE and G is a selectable source. Then F has a

standalone-secure (resp. UC-secure) protocol in the G-hybrid model against computationally unbounded ad-

versaries if and only if F has a standalone-secure (resp. UC-secure) protocol in the plain model.

To give an overview of our techniques, we present the result for the special case of F = Fexch and G =

Fcoin. Then we describe the modifications necessary to consider arbitrary F and arbitrary selectable source

G, respectively.

The case of Fexch and Fcoin. This special case illustrates our new frontier-based attack. It is well-known

that there is no standalone-secure (or UC-secure) protocol for Fexch in the plain model (cf. the complete

characterization of [KMR09, MPR09]). Also note that standalone security is a special case of UC security.

Thus it suffices to show the following:

Lemma 5. There is no standalone-secure protocol for Fexch using Fcoin, against computationally unbounded

adversaries.

Proof. Before we start on this result, we note that this result also rules out UC secure protocol of Fexch in the

Fcoin-hybrid when adversaries have unbounded computational power. But that result can be directly proven

using the approach in Chapter 4 where we shall show that Fexch vppt Fcoin implies that the sh-OT assumption

is true, which cannot be the case against adversaries with unbounded computational power. Thus, we

emphasize that this result highlights that even standalone reduction of Fexch to Fcoin is not possible in the

statistical setting.

Suppose for contradiction π is a standalone-secure protocol for Fexch in the Fcoin-hybrid model. Recall

that in Fexch, Alice chooses an input x ∈ {0, 1}, Bob chooses an input y ∈ {0, 1}, and both parties learn

x⊕ y. We will show an attack against π that violates the security guarantee of Fexch— specifically, we will

show an attack whereby the honest party chooses its input at random, yet its output is significantly biased.
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This is indeed a violation of security since in the ideal world the corresponding output must be an unbiased

bit.

Without loss of generality, assume that every other round of the protocol is an access to Fcoin. We only

use the property that the probability of each transcript consists of independent probability contributions

from Alice, Bob, and Fcoin. Let ε = ε(k) denote the security error (maximum deviation between ideal world

and real world) of the protocol, thus ε is negligible in the security parameter k.

Define α and β as in Chapter 2, and let γ be the probability contribution from Fcoin. Thus, for every

partial transcript v we can express Pr[v|x, y] = α(v, x)β(v, y)γ(v). Now, for every partial transcript v, define

δA(v) =
|α(v, 0)− α(v, 1)|
α(v, 0) + α(v, 1)

and δB(v) =
|β(v, 0)− β(v, 1)|
β(v, 0) + β(v, 1)

.

δA and δB are well-defined after we exclude any nodes that have α(v, 0) = α(v, 1) = 0 or β(v, 0) = β(v, 1) = 0.

Intuitively, δA(v) and δB(v) measure how much Alice’s or Bob’s input affects the probability of reaching

v, respectively. For instance, δA(v) = 0 means that the partial transcript v contains no information about

Alice’s input (in fact, it is distributed independent of her input); δA(v) = 1 means that the partial transcript

v completely reveals Alice’s input — it is uniquely determined by v.

Let 0 < µ ≤ 1 be a fixed parameter to be defined later, and define the following sets:

FA = {v | δA(v) ≥ µ and no proper prefix of v satisfies (δA(v) ≥ µ or δB(v) ≥ µ)}

FB = {v | δB(v) ≥ µ and no proper prefix of v satisfies (δA(v) ≥ µ or δB(v) ≥ µ)}

FC = {v | v is a complete transcript and no proper prefix of v satisfies (δA(v) ≥ µ or δB(v) ≥ µ)}

It is easy to see that FA ∪ FB ∪ FC indeed constitute a complete frontier. Intuitively, FA and FB represent

the first place where Alice or Bob has revealed “significant” information about their input, respectively,

where the parameter µ measures the amount of significance. FC represents the remaining transcripts needed

to extend FA ∪ FB to a frontier.

First, we argue that FC is only reached with negligible probability during honest executions of the

protocol. Intuitively, the transcript must eventually reveal both parties inputs, since the transcript contains

at least the output x⊕ y and any two of {x, y, x⊕ y} uniquely determine the third quantity. The following

proposition is useful:

Proposition 1. If |p− q|/(p + q) < c, then p
q , q

p ∈ ( 1−c
1+c , 1+c

1−c ).

Thus, for any v ∈ FC , we have α(v, 0)/α(v, 1), β(v, 0)/β(v, 1) ∈ ( 1−µ
1+µ , 1+µ

1−µ ). Since transcripts in FC are

50



complete transcripts, each one uniquely determines the output of the parties. Partition FC into F
(0)
C and

F
(1)
C , where F

(b)
C are the transcripts on which Alice outputs b. Note that by the correctness of the protocol,

Pr[F (x⊕y⊕1)
C |x, y] ≤ ε. Then

Pr[FC | x = 0, y = 0] =
∑

v∈F
(1)
C

Pr[v|x = 0, y = 0] +
∑

v∈F
(0)
C

Pr[v|x = 0, y = 0]

≤ ε +
1 + µ

1− µ

∑
v∈F

(0)
C

Pr[v|x = 1, y = 0] ≤ 1 + µ

1− µ
ε + ε =

2ε

1− µ
= negl(k).

Here we assume that µ is a constant independent of k. Similarly, Pr[FC |x, y] ≤ negl(k) for all x, y ∈ {0, 1}.

Now partition FA and FB respectively into the following sets:

FA0 = {v ∈ FA | α(v, 0) > α(v, 1)} FB0 = {v ∈ FB | β(v, 0) > β(v, 1)}

FA1 = {v ∈ FA | α(v, 1) > α(v, 0)} FB1 = {v ∈ FB | β(v, 1) > β(v, 0)}

Then FA,x is the point in the protocol at which the transcript is significantly biased towards Alice having

input x; similarly for FB,y.

By symmetry, suppose Pr[FB0 | x = 0, y = 0] is the maximum of the four values

{
Pr[FA0 | x = 0, y = 0],Pr[FA1 | x = 0, y = 0],Pr[FB0 | x = 0, y = 0],Pr[FB1 | x = 0, y = 0]

}
.

Then, since Pr[FC | x = 0, y = 0] < negl(k), we have Pr[FB0 | x = 0, y = 0] ≥ 1
4 − negl(k).

We now construct a strategy for a corrupt Alice that will bias Bob’s output towards 1 when Bob is

executing π on a randomly chosen bit y. Alice’s strategy is to run the protocol honestly with input x = 0,

until the transcript reaches a node v on frontier F . If v 6∈ FB0, then she continues the execution honestly.

Otherwise (i.e., v ∈ FB0) she switches her input to 1 (by sampling a state consistent with the current

transcript and the input 1) and continues the execution honestly with her new state.

Let out denote the output of Bob in the protocol, and let p′ denote the probability in the interaction

described above (honest Bob choosing a random input y, and Alice running the strategy described). It

suffices to show that
∣∣p′[out = 0]− 1

2

∣∣ is bounded by a positive constant.

We split the analysis into cases. Let FB0 denote the event that the transcript intersects the frontier F
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at a point in FB0. Then

p′[out = 0] =
1
2

[
p′[out = 0 ∧ FB0 | y = 0] + p′[out = 0 ∧ FB0 | y = 0]

+ p′[out = 0 ∧ FB0 | y = 1] + p′[out = 0 ∧ FB0 | y = 1]
]

We bound each of these four quantities separately.

First, p′[out = 0 ∧ FB0 | y = 0]. Note that conditioning on event FB0, Alice changes her input from

x = 0 to x = 1. Intuitively, we should expect that the protocol will give output 0 ⊕ 1 = 1, not output 0.

Formally:

p′[out = 0 ∧ FB0 | y = 0] =
∑

v∈FB0

Pr[out = 0|v, x = 1, y = 0]Pr[v|x = 0, y = 0]

≤
∑

v∈FB0

Pr[out = 0|v, x = 1, y = 0]
1 + µ

1− µ
Pr[v|x = 1, y = 0]

≤ 1 + µ

1− µ
Pr[out = 0|x = 1, y = 0] ≤ 1 + µ

1− µ
ε = negl(k)

Note that Pr in these expressions denotes the probability over an entirely honest execution of the protocol.

Next, we consider p′[out = 0 ∧ FB0 | y = 0]. Conditioning on event FB0, we have that malicious Alice

will in fact run the protocol honestly on input x = 0 during the entire interaction. So by the properties of

FB0, we have:

p′[out = 0 ∧ FB0 | y = 0] ≤ Pr[FB0 | x = 0, y = 0] ≤ 3/4 + negl(k)

Again, Pr only describes probabilities involving completely honest execution of the protocol.

Next, we consider p′[out = 0 ∧ FB0 | y = 1]. This quantity includes the event that Bob has input y = 1

and yet the transcript intersected the frontier at FB0. Intuitively, this event should not happen very often

(and less and less, as µ is larger). By the properties of FB0, we have that β(v, 1)/β(v, 0) ≤ 1−µ
1+µ for every

v ∈ FB0. Thus:

p′[out = 0 ∧ FB0 | y = 1] ≤ Pr[FB0 | x = 0, y = 1] =
∑

v∈FB0

Pr[v|x = 0, y = 1]

≤ 1− µ

1 + µ

∑
v∈FB0

Pr[v|x = 0, y = 0] ≤ 1− µ

1 + µ
.

Finally, we consider p′[out = 0∧FB0 | y = 1]. Conditioning on event FB0, we have that malicious Alice

will in fact run the protocol honestly on input x = 0 during the entire interaction. So by the correctness of
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the protocol, we have:

p′[out = 0 ∧ FB0 | y = 1] ≤ Pr[out = 0 | x = 0, y = 1] ≤ ε = negl(k).

Combining all of these inequalities, we finally have:

p′[out = 0] ≤ 1
2

[
3
4

+
1− µ

1 + µ
+ negl(k)

]
.

When µ is a fixed constant greater than 3/5, we have that p′[out = 0] is bounded away from 1/2 by at least

a constant, as desired.

Uselessness of Fcoin for any SFE F . First we consider the case when F is a symmetric SFE functionality.

We use the characterization of SSFE functionalities with standalone-secure protocols from [MPR09] to show

that if an SSFE functionality F has no standalone-secure protocol in the plain model, then either there is

a standalone-secure protocol for Fexch in the F-hybrid model, or else there is a frontier-based attack that

violates standalone security of every purported protocol for F in the plain model.

In the first case, Lemma 5 demonstrates that F can have no standalone-secure protocol in the Fcoin-

hybrid world. In the second case, we observe that the frontier-based attacks go through unaltered even if

the protocols are allowed access to Fcoin. This is because the frontier attack merely relies on the fact that

in a protocol, given a transcript prefix v, the next message depends only on one of Alice and Bob’s inputs.

However, this is true even if the protocol has access to Fcoin— the bits from Fcoin being independent of

both parties’ inputs.

This allows us to conclude that in either case, there can be no protocol for F in the Fcoin-hybrid model,

giving us the following lemma

Lemma 6. If F is a 2-party deterministic SSFE that has no standalone-secure (resp. UC-secure) protocol

against unbounded adversaries in the plain model, then F has no standalone-secure (resp. UC-secure) protocol

in the Fcoin-hybrid model.

Proof. To extend Lemma 5 to the case of all SSFE functionalities, we rely on results from [MPR09] (some

of which are also obtained using frontier analysis).

Suppose F is an SSFE that has no standalone-secure protocol against unbounded adversaries (in the

plain model). This class of SSFE functionalities has a combinatorial characterization from [MPR09]. From

this characterization, there are three cases of F to consider:
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(1) If F is decomposable but not uniquely decomposable, then we have that Fexch has a standalone-secure

protocol in the F-hybrid model. Thus the attack of Lemma 5 shows that F cannot have a protocol in the

Fcoin-hybrid model.

(2) If F is uniquely decomposable but yet has no standalone-secure protocol, then one of the frontier

attacks of [MPR09] applies. In particular, [MPR09] shows that if the function evaluated is uniquely de-

composable and has a certain other combinatorial property it has a standalone-secure protocol, but if it is

uniquely decomposable but lacks this combinatorial property then any protocol allows either a passive (i.e.,

semi-honest) attack, or if not, an explicit active standalone attack.

(3) If F is not decomposable, then [MPR09] shows that there is in fact a passive attack on any protocol

for F . This attack is also constructed using frontier analysis of a purported protocol.

The attacks mentioned in (2) and (3) can be carried out as long as the protocol has the property that

for any transcript v, Pr[v|x, y] = α(v, x)β(v, y) for some functions α, β. Since this is the case for protocols

in the Fcoin-hybrid model, we can show that any purported protocol for F in the Fcoin-hybrid model can

be attacked in a way that violates standalone security.

In the case of UC security, the case (2) above changes, and will have a larger set of functionalities. But

again, in this case if there is no passive attack on a protocol, there is an explicit attack against UC security

(or even concurrent security with two sessions [MPR09]), which extends to protocols in the Fcoin-hybrid

model as well. Thus in the same way, the theorem holds with respect to UC security as well as standalone

security. (In fact a stronger result shall be presented in Lemma 17, that even in the computationally bounded

setting, Fcoin is useful for securely realizing deterministic SSFE functionalities in the UC setting only if there

exists a semi-honest secure OT protocol.)

Replacing G with an arbitrary selectable source. Our analysis goes through with minimal modifica-

tion when Fcoin is replaced by an arbitrary selectable source. Recall that in a selectable source functionality

G, only one party can influence the output at a time (depending on which “direction” G is used in). When

G is used such that only Alice influences the output, the influence on the transcript’s probability can be

collected into the term α(v, x). Similarly, when only Bob can influence the output of G, the influence can

be collected into the term β(v, y). Therefore, we can still write Pr[v|x, y] = α(v, x)β(v, y) for appropriate α

and β. Each invocation of G is an atomic event with respect to the frontiers and to the adversary’s changes

in behavior in our our attacks.

Extending to general SFE functionalities. Finally, we prove Theorem 1, using Lemma 2. Note that a

selectable source has a passive secure protocol (Alice samples an output and gives it to Bob). Thus if there
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exists any SFE functionality F for which some selectable source is useful in (UC- or standalone-) securely

realizing, then by Lemma 2 selectable source is useful in (UC- or standalone-) securely realizing some SSFE

functionality as well, contradicting Lemma 6.

3.4 Coins are useless for Randomized SFE

In this section, we characterize the set of randomized SFE functionalities that can be reduced to Fcoin.

Since Fcoin itself is not securely realizable (in the UC or standalone model) against computationally

unbounded adversaries, common randomness clearly allow more functionalities to be securely realized. In

particular common randomness can be used to generate a shared sample from a publicly agreed-upon distri-

bution. However, we show that this is essentially the only use of common randomness, when UC security is

required . (When standalone security is considered, we give examples of randomized SSFE for which Fcoin

is useful in a more non-trivial way in the full version.) More precisely,

Theorem 2. A randomized SFE functionality F has a UC-secure protocol in the Fcoin-hybrid model if

and only if F is isomorphic to the SSFE functionality F∗ with output function F∗ such that F∗(x, y, r) =

(h(x), r), where h is a deterministic function.

Note that a secure protocol for F∗(x, y, r) above is simple: Alice sends h(x) to Bob, and then they obtain

uniformly random coins r from Fcoin. Thus, any UC secure protocol for f which uses Fcoin can be replaced

by one of the following form: (1) one party sends a function of its input to the other party; (2) both parties

access Fcoin to obtain coins r; (3) both parties carry out local computation to produce their outputs.

Given Lemma 2, it is enough to establish our characterization for the special case of symmetric SFE

functionalities (for which we shall denote the common output by f(x, y, r)).

The first step in proving Theorem 2 for SSFE is to show that only one party’s input can have influence

on the outcome of the other party.

Lemma 7. If F is a 2-party randomized SSFE functionality with a UC-secure protocol in the Fcoin-hybrid

model, then F(x, y) is distributed as F ′(x) (or F ′(y)), where F ′ is some randomized function of one input.

If F does not have the form F ′(x) or F ′(y), we call it an SSFE functionality with bidirectional influence.

We shall show later in Lemma 17 that if a bidirectional influence SSFE F has a UC-secure protocol in

the Fcoin hybrid then there exists a semi-honest protocol for OT. However, this is not possible against

computationally unbounded adversaries and hence, F can not have bidirectional influence.
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Frontiers of influence. Henceforth, we can assume that the function F does not have bi-directional

influence and, thus, without loss of generality, is of the form f(x). Suppose we are given a protocol π for f

in the Fcoin-hybrid model, with simulation error ε. Without loss of generality, we assume that the last step

of π is to toss a random coin which is included in the output.5 First, define Ox
v to be the output distribution

of the protocol when executed honestly on (Alice) input x, starting from partial transcript v. We use this

to define our first frontier:

G =

v

∣∣∣∣∣∣ ∀x′, x′′ : SD
(
Ox′

v , Ox′′

v

)
<
√

ε

and no ancestor of v satisfies the same condition


Intuitively, G represents the point at which Alice’s input has first exhausted any “significant” influence on

the final output distribution — her input can no longer change the output distribution by more than
√

ε.

Next, note that the only way to induce an output distribution in the ideal world is to choose an input x

according to some distribution D and then send x to f , yielding the output distribution {f(x)}x←D. Let S

be the space of all possible output distributions that can be induced in this way.6 We use this to define a

collection of frontiers, one for each value of x.

Fx = {v | SD(Ox
v ,S) >

√
ε and no ancestor of v satisfies the same condition}

Intuitively Fx represents the first time that randomness has had a “significantly” non-trivial influence on the

output when Alice’s input is x. Here, the influence of randomness in the protocol is considered non-trivial

if the protocol has reached a point such that the conditional output distribution induced by the protocol

starting from that point cannot be achieved by Alice in the ideal world.

We now show that in a secure protocol, Alice’s input must completely exhaust its influence before the

randomness from Fcoin can begin to influence the output distribution.

Lemma 8. In the above setting, let Fx < G denote the event that the protocol generates a transcript that

encounters frontier Fx strictly before encountering frontier G. Then Pr[Fx < G|x] is negligible for all x.

Proof. We first observe that for complete transcripts (leaves) v, we have that Ox′

v ≡ Ox′′

v for all x′, x′′; thus

G is indeed a frontier. Also, because of our normal form (last step of π is a trusted coin toss that is included

in the output), every complete transcript (leaf) v satisfies SD(Ox
v ,S) = Θ(1) >

√
ε, and so Fx is indeed a

5To see that this is without loss of generality, define a randomized SSFE f ′ which on input x, outputs f(x) as well as a
random bit. Then define π′ to be the protocol which runs π and in the last step uses Fcoin to toss a coin which is included in
the output. It is easy to see that if π is a secure protocol for f , then π′ is a secure protocol for f ′, so proving the insecurity of
π′ establishes the insecurity of π.

6Note that S is the space of convex combinations of {f(x) | x}, where here f(x) denotes the discrete probability distribution
itself, represented by a stochastic vector.
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frontier.

Consider a particular adversary A which does the following when interacting with any environment of

the appropriate form:

• Runs the protocol π honestly on input x until reaching frontier Fx. At that point, it gives the

environment the value of the current partial transcript u, and pauses.

• After receiving x∗ from the environment, A continues running the protocol honestly with input x∗

(after back-sampling a random tape consistent with u and input x∗).

Let S denote the simulator for this adversary. If the simulator does not provide a sample u ∈ Fx that is

distributed statistically close to the real world adversary, then some environment of the required form can

distinguish the real world from the ideal world. Thus, assume that the simulator S always generates u

statistically close to the real world interaction A.

Consider the case where the simulator receives x∗ from the environment before it has sent an input to

the functionality f . Then consider the environment that sends x∗ = x in step 2. In this case, the real

world adversary A will induce the distribution Ox
u, which is an unsimulatable distribution by the definition

of Fx. No matter how the simulator subsequently chooses its input to send to f , it will induce an output

distribution for the honest party whose statistical distance from Ox
u is at least

√
ε. Some environment of the

required form can distinguish the two interactions, so we conclude that the simulator must send its input to

f before step 2, except with negligible probability
√

ε.

Thus without loss of generality assume that S sends an input to the ideal functionality f before receiving

x∗ from the environment, except with negligible probability. Then consider an environment that receives

u ∈ Fx, and aborts if u has a prefix in G (i.e., if Fx 6< G). Otherwise, the environment chooses x∗ uniformly

from {x′, x′′}, where x′ and x′′ are such that SD
(
Ox′

u , Ox′′

u

)
≥
√

ε, by the definition of G. Now condition

the entire interaction on the event that such an environment doesn’t abort (whose probability of happening

is negligibly close to Pr[Fx < G|x] in both the real and ideal interactions). Then in the ideal world, with

probability at least 1/2, the honest party’s output from f will have statistical difference at least
√

ε from

Ox∗

u . But in the real world, the adversary always correctly induces the output distribution Ox∗

u , so some

environment of this form can distinguish the real and ideal worlds with probability O(Pr[Fx < G|x] ·
√

ε).

We conclude that Pr[Fx < G|x] must be at most
√

ε, which is negligible.

Using the previous two lemmas, we can now prove the special case of Theorem 2, restricted to SSFE

functionalities:
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Lemma 9. A 2-party randomized SSFE functionality F has a UC-secure protocol in the Fcoin-hybrid model

against computationally unbounded adversaries if and only if F is isomorphic to the SSFE functionality F∗

with output function f∗ such that f∗(x, y, r) = (h(x), r), where h is a deterministic function.

Proof. For any fundamental input x, consider the probability distribution f(x), which is a corner on the

convex hull of S. By the security of the protocol, Ox
r is within statistical distance ε of f(x), where r is the

root of the transcript tree (the empty transcript). We also have that Ox
r is equal to the convex combination∑

v∈G Pr[v|x]Ox
v .

Let G+ be the subset of G consisting of nodes v that have no ancestor in Fx. By Lemma 8, we have

that Pr[G+|x] is overwhelming. Thus Ox
r (and therefore f(x)) is negligibly close to the convex combination∑

v∈G+ Pr[v|x]Ox
v .

By the definition of G+, each of the distributions Ox
v in the above convex combination are negligibly close

(within statistical distance ε2) to the convex space S. A straight-forward geometric argument shows that

since f(x) is a corner vertex in the convex space S, and each of the Ox
v terms in the convex combination is

negligibly close to the space S, then there is a negligible quantity δ such that the probability of encountering

v ∈ G on input x such that SD(Ox
v , f(x)) ≤ δ is overwhelming. That is, almost all of the weight that x

places on frontier G is placed on nodes v that induce a distribution that is negligibly close to f(x).

It then follows that for any x, x′ such that f(x) 6≡ f(x′), the two distributions f(x) and f(x′) are distinct

vertices on the convex hull of S. Thus their statistical distance is a constant, and so x and x′ induce

distributions over G that have statistical distance negligibly close to 1.

Thus consider a simple protocol ρ of the following form: Given x, Alice determines (deterministically)

a sampling circuit Mx that samples the distribution f(x), and sends Mx to Bob. Both parties then obtain

random coins r from Fcoin, and evaluate Mx(r) — a sample from f(x).

We claim that π is as secure as ρ in the UC sense (that is, for every adversary attacking π, there is an

adversary attacking ρ that achieves the same effect in all environments). The interesting case is when a

corrupt Alice is attacking π. Then the corresponding simulator does the following. It interacts with Alice in

π (playing the role of an honest Bob and honest Fcoin), and pauses the interaction once the G frontier has

been reached. Suppose that v ∈ G is the π-transcript so far. At this point, from the arguments above, the

simulator can identify Alice’s distribution f(x) with only negligible error. Then the simulator sends Mx in

its ρ interaction. The simulator and honest Bob toss coins in their ρ interaction to sample z ← Mx(r). By

the properties of G, Alice can no longer significantly bias the outcome of protocol π — the remainder of the

protocol’s output depends almost entirely on the ideal coin tosses. Also, with overwhelming probability, Ox
v

is negligibly close to f(x), so the simulator can sample a set of simulated coin tosses (for the π interaction)
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which will result in z as the π protocol’s output. It is straight-forward to see that the simulated interaction

with Alice is indistinguishable from a real interaction.

Finally, we complete the proof of Theorem 2 by observing that f is indeed isomorphic to a function of

the form g(x, y) = (g′(x), r), since in ρ, both parties’ outputs are a function of Mx (a deterministic function

of x) and independent random coins r.

On extending to selectable sources. Unlike our results in Section 3.3, Theorem 2 does not generalize to

arbitrary selectable sources (instead of just Fcoin). To see this, one can easily construct a selectable source

f which is not of the form f(x, y, r) = (h(x), r). Then trivially f has a UC-secure protocol using some

selectable source (namely, itself), but f is not of the form required by Theorem 2.

Indeed, to prove Theorem 2, we made a crucial distinction between Alice’s choice of input influencing the

output distribution and Fcoin influencing the output distribution. This distinction is lost if Fcoin is replaced

by a functionality in which Alice is allowed to influence the output.

On a common random string (CRS) vs. Fcoin. A common random string (CRS) is a source of shared

randomness in which all random bits are generated once and for all at the beginning of a protocol interaction,

rather than as-needed, as with Fcoin. Our proof of Theorem 2 states that the influence of the parties’ inputs

ends before the influence of the shared randomness begins. Since the influence of a CRS must happen at

the start of a protocol, a CRS is useless for SSFEs except those of the form f(x, y, r) = h(x) (no influence

from shared randomness) or f(x, y, r) = h(r) (no influence from parties’ inputs), for a deterministic h.
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Chapter 4

Implications and Equivalences

The notion of reduction used to compare the complexity of securely realizing a task given a particular setup

is closely related to the notion of security used to define the reduction. For a particular notion of reduction,

as explained in our discussing in Chapter 1, there are three kinds of reductions:

1. Information theoretically true: For these reductions, there exists secure protocols for F in the G-hybrid

even against adversaries with unbounded computational power. Such reductions are represented as:

F vstat G.

2. False: There reductions are false given any computational assumption.

3. Conditionally true: The remainder of the reductions fall in the category of conditionally true reductions,

which hold given some bound on the computational power of the adversaries. There reductions are

represented by: F vppt G.

In this chapter, we are interested in coming up with tight characterization of the computational in-

tractability assumption associated with conditionally true reductions. The computational intractability

assumption associated with such a reduction is the minimal computational intractability assumption for

which such a reduction will hold. But, it is important that we use a suitably strong notion of security to

define our reduction. If the notion of reduction is too weak, then it might be possible that F vstat G for

all functionalities F and G. On the other hand, if an extremely strong notion of security is used then it

might be possible that all F v G are false [MPR10b]. So, to capture sufficient diversity of computational

intractability assumptions using the notion of reduction, we need to carefully choose a definition of security.

In this chapter, we shall use UC security against static corruption and we will restrict our study to

two-party symmetric function evaluations. Results relevant to this chapter also appear in [MPR09] and

[MPR10b]. We will crucially rely on these results. Results in [MPR09] show existence of several reductions

F v G which are not true; and we will study computational intractability assumptions corresponding to

these reductions. Moreover, [MPR10b] show the following results:
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Lemma 10 ([MPR10b]). Either F vstat G, sh-OT assumption implies that F vppt G or the reduction is

false.

The above mentioned result implies that there exists a maximal assumption for the set of all computa-

tional assumptions corresponding to every reduction F vppt G. They also show that this is also the tightest

possible result, as Fot vppt Fcoin will imply that sh-OT assumption is true. The next result is important to

show equivalence of reductions to OWF assumption.

Lemma 11 ([MPR10b]). If G is uniquely decomposable (see [Kus89, Bea89] or Chapter 2 for the definition)

then existence of on-way functions implies Fcom vppt G.

Results. We show that several of the reductions are in fact equivalent to OWF assumption. For example, if

F and G has unique decompositions but the depth of decomposition tree of G is smaller than the depth of the

decomposition tree of F , then the reduction F vppt G is equivalent to OWF assumption. This result crucially

relies on the attack proposed in [MPR09] which assumes that the adversary has unbounded computational

power. In this paper, we shall show that the same attack can be simulated with the assumption that

OWF assumption is false; but the simulation incurs a small error which in non-negligible but could be made

arbitrarily small. Thus, instead of assuming access to a PSPACE oracle, we simulate the attack presented in

[MPR09] based on the assumption that OWF assumption is false.

Similarly, we can also leverage the fact that OWF assumption is false to show that F vppt G, when

F is passive trivial but not standalone trivial and G is standalone trivial but not UC-trivial, is equivalent

to OWF assumption. Both these results crucially rely on the fact that if OWF assumption is false then

distributionally one-way functions also do not exist [ILL89, Ost91, OW93]. Subsequently, this fact can be

used to solve the uniform generation problem for NP statements [JVV86, BGP00] with a small non-negligible

error, which can be made arbitrarily small.

We show that if G is exchange-like (Chapter 2) and F 6vstat G then F vppt G is equivalent to the

sh-OT assumption. It has been shown in [MPR10b] that if F is not exchange-like, then Fot vstat F or

Fcc vstat F . If it is the former case, then we can easily obtain a semi-honest secure protocol for oblivious

transfer [PR08]. For the latter case, we shall prove that the reduction Fcc vppt G, where G is exchange-like,

is equivalent to sh-OT assumption. Further, we shall also show that if F is itself exchange-like then F v G

is either unconditionally true or equivalent to sh-OT assumption. The techniques used in these results are

generalizations of techniques presented in [DG03] to show that Fcom vppt Fcoin implies sh-OT assumption

is true.

This statement also extends to the case when G is publicly-selectable source and F is a two-party ran-
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domized SSFE. It suffices to consider the argument when G is Fcoin. There are two important cases to

consider. If F is not selectable source, then the argument is similar to the previous case. Otherwise, if

F is an oblivious-sampling functionality, then we present a different argument to show that F vppt Fcoin

implies sh-OT assumption. Finally, if F is publicly-selectable source then we already know that F vstat

Fcoin Chapter 3.

4.1 Reductions Equivalent to the OWF Assumption

Our results in this section build on the technique in [MPR09] that was used to derive the following separation

in cryptographic complexity.

Lemma 12 ([MPR09]). Let F and G be SSFE functionalities. If F has unique decomposition depth n and

G also has unique decomposition depth m < n, then F 6vstat G.

In [MPR09], Theorem 12 is proven by attacking any purported protocol π for F in the G-hybrid world.

First, they show (for plain protocols, not in any hybrid world) that for every adversary A that attacks

the canonical protocol for F , there is a corresponding adversary A′ that attacks π, achieving the same

effect in all environments. (Indeed, any functionality whose decomposition depth is at least 2 has a simple

attack against its canonical protocol that violates security in the UC sense.) Intuitively, the protocol π

must reveal information in the same order as the canonical protocol. More formally, at every point during

the canonical protocol (say, a partial transcript t), there is a corresponding “frontier” in π — a maximal

set of partial transcripts of π. If two inputs both induce transcript t in the canonical protocol (recall that

it is a deterministic protocol), then they also induce statistically indistinguishable distributions on partial

transcripts at the frontier. But if the two inputs do not both induce transcript t in the canonical protocol,

then at the frontier they induce distributions on partial transcripts that have statistical distance almost 1.

Then the adversary A′ runs the protocol π honestly, except for occasionally “swapping” its effective input

at one of these frontiers. The properties of the frontiers assure that such a swap will only negligibly affect

the outcome of the interaction.

Next, to attack a protocol π in the G-hybrid world, they imagine a plain protocol π̂ which is π composed

with the canonical protocol for G. The plain protocol π̂ has frontiers for each step of the canonical protocol

(equivalently, step of the decomposition). In our setting, there are more frontiers in π̂ than there are rounds

in the canonical protocol for G, so not all the frontiers can be contained entirely within the G-subprotocols.

Thus an adversary attacking π can behave honestly in all interactions with the ideal G, and still encounter

a frontier at which to “swap” its effective input (i.e., outside of the G-subprotocols in π̂). Indeed, there is
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an attack against F in which an adversary need only encounter one such frontier, so the protocol π is not

secure.

Leveraging one-way functions. While these frontier-based attacks from [MPR09] are formulated for

computationally unbounded adversaries, we show below that they can in fact be carried out under the

assumption that one-way functions do not exist. In other words, that if a reduction exists between particular

functions, then the OWF assumption is true.

These frontier-based attacks require unbounded computation because computing the frontier involves

computing global statistical properties about the protocol — namely, the probability that the protocol

assigns to various partial transcripts on different inputs. The attacks are otherwise effecient, so given access

to an oracle that can compute these probabilities, the attack can be easily effected. In fact, these quantities

need not be computed exactly for the attacks to violate security. Thus we will describe how to compute the

appropriate quantities given that OWFs do not exist.

In [IL89], it is shown that the OWF assumption is implied by the much weaker assumption that distri-

butionally one-way functions exist. Thus if OWFs do not exist, then no function is distributionally one-way:

for every efficient function f and polynomial p, there is an efficient algorithm that on input y samples close

to uniformly (within 1/p statistical difference) from the set f−1(y). We define a function related to the given

protocol, and use the ability to sample its preimage to obtain a good estimate of the desired probabilities.

Theorem 3. If F has unique decomposition depth n and G is non-trivial with unique decomposition depth

m < n, then F vppt G is equivalent to the OWF assumption.

Proof. First, if G is uniquely decomposable, then Fcom v G under the OWF assumption, by the argument

in [MPR10b]. Then, F vstat Fcom since F is passive-trivial [MPR09]. The non-trivial direction is to show

that F vppt G implies OWF assumption.

As described above, the attack against a protocol π for F in the G-hybrid world is based on frontiers

in the protocol. For a partial transcript u and inputs x for Alice and y for Bob, the probability that the

protocol generates u as the prefix of its transcript can be expressed as α(u, x)β(u, y), where each of the two

terms depends on only one party’s input.

The frontiers used in the attack are then all defined in terms of the following quantity:

η(u, x0, x1) =
|α(u, x0)− α(u, x1)|
α(u, x0) + α(u, x1)

or the symmetric quantity with respect to the roles of Alice & Bob. Intuitively, η(u, x0, x1) measures how
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correlated the transcript u is to Alice’s input being x0 versus x1. In fact, the entire frontier-based attack

can be carried out in polynomial time given an oracle that answers questions of the form “Is η(u, x0, x1) ≥

1−ν(k)?”, where ν is a certain negligible function in the security parameter. If instead the oracle can answer

questions of this form where ν(k) = 1/kc for a chosen constant c, then the adversary’s attack may fail with

at most an extra 1/poly factor. All the attacks from [MPR09] demonstrate that the real and ideal worlds

can be distinguished with constant bias, so they can indeed tolerate this additional 1/poly slack factor. Thus

it suffices to show how to implement such an oracle.

We compute η(u, x0, x1) as follows: First, Consider the function f(x, rA, y, rB , i) = (τ, x), where τ is the

first i bits of the transcript produced by the protocol when executed honestly on inputs (x, y), where rA and

rB are the random tapes of Alice and Bob, respectively. We use the guarantee of no distributionally one-way

functions to sample from f−1(u, x0) and f−1(u, x1). If both preimages are empty, then the protocol never

generates u as a partial transcript on inputs x0 or x1. If only one is empty, then η(u, x0, x1) = 1.

Otherwise, assume u is indeed a possible partial transcript for both x0 and x1 (i.e., the protocol assigns

positive probability to u when Alice has inputs x0 or x1). Our previous sampling of f−1 has yielded an

input y∗ such that u is a possible partial transcript when executing π on inputs (x0, y
∗). Thus u is also a

possible partial transcript on inputs (x1, y
∗). Now define:

g(x, rA, y, rB , i) =


(τ, y) if x ∈ {x0, x1}

⊥ otherwise

We now sample n times from g−1(u, y∗). Let ni be the number of times the sampled preimage included xi

as the first component. Then |n0−n1|/n is an estimate of η(u, x0, x1). By setting n to be a sufficiently large

polynomial in the security parameter, we can ensure that the estimate is within an additive factor 1/kc of

the actual value, with high probability.

Theorem 4. If F is passive-trivial but not standalone-trivial and G is standalone-trivial but not UC-trivial,

then F vppt G is equivalent to the OWF assumption.

Proof. The fact that F vppt G under the OWF assumption is by the same argument as in the previous proof,

because standalone trivial two-party deterministic SSFE have unique decomposition.

For the other direction, suppose π is a secure protocol for F in the G-hybrid world. Standalone secure

protocols for SFE functionalities are closed under composition. Thus we have a standalone-secure protocol

π′ for F without any trusted party.

Being passive-trivial, F is surely decomposable, and we consider two cases. When F is uniquely decom-
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posable, then [MPR09] showed that in the unbounded setting, for every adversary A attacking the canonical

protocol, there is an adversary A′ attacking π′ such that no environment can distinguish between the two

interactions. When F is uniquely decomposable but not standalone-trivial, there is a simple attack against

the canonical protocol for F that violates standalone security with constant probability. Thus translating

this attack into an efficient (assuming that OWF assumption is false) attack on π′ using the techniques

described in the previous proof, we see that π′ is not standalone-secure; a contradiction.

On the other hand, if F is not uniquely decomposable, then Fexch vstat F via a simple protocol. As

such, by composing several protocols, we obtain a standalone-secure protocol π for Fexch. Consider an

interaction using π in which the honest party choses an input at random. We describe an attack that can

be carried out assuming that the OWF assumption is false, which biases the honest party’s output towards

0 by a noticeable amount (this is the same standalone attack presented in Chapter 3):

At each partial transcript u, consider η(u, 0, 1) (which measures the transcript’s bias towards Alice’s

input 0 or 1, defined in the previous proof) At the beginning of the protocol, the value of this function is 0,

and at the end of the protocol, it is negligibly close to 1 with overwhelming probability since the protocol

results in Bob learning Alice’s input.

Similarly, define η′(u, 0, 1) as a transcript’s bias towards Bob’s input. By symmetry, with probability at

least 1/2, the partial transcript achieves η(u, 0, 1) > 1/2 before it achieves η′(u, 0, 1) > 1/2. Thus an attack

for Bob is to discover via the sampling procedure described above the first point at which η(u, 0, 1) > 1/2

but η′(u, 0, 1) ≤ 1/2. At that point, Bob switches his input to match Alice’s, in order to bias the output

towards 0. Bob reaches such a point with probability at least 1/2, Since η′(u, 0, 1) ≤ 1/2, the correctness of

the protocol implies that Bob’s output will be 0 with overwhelming probability. Thus this attack successfully

biases the output towards 0 with bias 1/4 minus some inverse polynomial in the security parameter.

4.2 Reductions Equivalent to the sh-OT Assumption

Recall that a two-party SSFE F is exchange-like if F = F i,j
exch for some i, j.

Lemma 13 ([MPR10b]). If F is not exchange-like, then either Fot vstat F or Fcc vstat F .

The proof is a simple combinatorial characterization. If F is not exchange-like, then it contains one of

two kinds of 2 × 2 minors. One of these minors yields an unconditional Fot protocol, due to a result of

[KM11]. The other kind of minor yields an elementary protocol for Fcc.

Our main classification involving exchange-like functionalities is the following:

65



Theorem 5. If G is exchange-like and non-trivial, then either F vstat G, or F vppt G is equivalent to the

sh-OT assumption.

Proof. From [MPR10b], we have that G is vppt-complete under the sh-OT assumption, since it is non-trivial.

Thus F vppt G under the sh-OT assumption.

For the other direction, we break the proof into two parts, depending on the status of F . These are

carried out in the following two lemmas.

Lemma 14. If F is not exchange-like, and G is exchange-like and non-trivial, then F vppt G implies the

sh-OT assumption.

Proof. Given that F vppt G, we directly construct a passive secure protocol for Fot. From [MPR10b], we

have that Fot vstat F or Fcc vstat F . Thus, Fot vppt G or Fcc vppt G by the universal composition

theorem.

In the first case, Fot has the property that any UC-secure protocol for Fot (even in a hybrid world)

is also itself a semi-honest-secure protocol [PR08]. G also has a semi-honest-secure protocol (namely, its

canonical protocol since it is decomposable). Composing these two protocols yields a semi-honest (plain)

protocol for Fot.

In the other case, suppose π is the secure protocol for Fcc in the G-hybrid world. Recall that Fcc has

a function table 0 2
1 2 , which we interpret as Alice sending a bit (top row or bottom row), Bob choosing

whether or not to recieve it (left column or right column), and Alice learning Bob’s choice (whether or not

the output was 2). We directly use π to construct a semi-honest Fot protocol as follows, with Alice acting

as the OT sender (with inputs x0, x1) and Bob the receiver (with input b):

• The parties instantiate two parallel instances of π, with Alice acting as the sender. Since there is no

access to an external G, Bob will simulate Alice’s interface with instances of G— that is, Alice will send

her G inputs directly to Bob, and he will give simulated responses from instances of G. Alice sends bit

x0 in the first instance, and x1 in the second instance, running the protocol honestly.

• In protocol instance (1−b), Bob carries out the simulation of G-instances and the π protocol completely

honestly. He runs the π protocol on the input that does not reveal Alice’s input.

• In protocol instance b, Bob honestly runs the UC simulator for π, treating Alice as the adversary

(including simulating Alice’s interface with G-instances). At some point, the simulator extracts Alice’s

bit xb to send to Fcc. Bob continues running the simulator as if Fcc responded with output 2. When

the interaction completes, Bob outputs xb.
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By the UC security of π, Alice’s view is computationally independent of b (i.e., she cannot distinguish an

interaction with π’s simulator from an interaction in which the receiver and G are honest). Bob correctly

learns xb, and we must argue that he has no advantage guessing x1−b. If all G-instances were external to the

(1− b) interaction as ideal functionalities, then the security of π would imply that Bob has no advantage in

guessing x1−b after running the protocol with the input that does not reveal Alice’s bit. Being an exchange

function, G has the property that Bob always learns all of Alice’s inputs. Thus Alice can send her G-inputs

directly to Bob, without any affect on the security of the protocol. This is exactly what happens in the

(1− b) interaction.

For the case where F is exchange-like, we completely characterize when F vppt G is equivalent to the

sh-OT assumption.

Lemma 15. Let F and G be exchange-like, so without loss of generality, F = F i,j
exch and G = F i′,j′

exch.

Then if i ≤ i′ and j ≤ j′, or if i ≤ j′ and j ≤ i′, then F vstat G. Otherwise, F vppt G is implies the

sh-OT assumption.

Proof. The protocol to show F vstat G is elementary. To perform an i, j exchange using G, simply place G

in the appropriate send inputs directly to G (with Alice and Bob exchanged if necessary). Each party aborts

if the other party provided an input to the (i′, j′) exchange which was out of bounds for an (i, j) exchange.

The security of this protocol is straight-forward.

We sketch here the main ideas behind proving the other direction. The full proof is given in the appendix.

For simplicity, suppose that F = F i,i
exch and G = F (i−1),(i−1)

exch .

Suppose we have a protocol π demonstrating F vppt G. The role of the simulator for π is to first extract

the input of a corrupt party, send it to F in the ideal world, and then continues to simulate π consistently

given the output from F .

Again for simplicity, suppose that the simulator for a passively corrupt Alice always extracts during round

rA.1 Then through rA − 1 rounds of the simulation, Alice’s view is independent of Bob’s input. If Bob’s

input is random (uniform in [i]), then after round rA, Alice cannot guess Bob’s input with probability greater

than ζ = (i− 1)/i, since there are only i− 1 possible responses from the simulated G that the simulator can

give to complete the round. By the soundness of the simulation, an honest Alice cannot predict Bob’s input

with probability greater than ζ +negl(k) after rA rounds of an honest interaction with Bob. Similarly, if the

simulator for a passively corrupt Bob always extracts during round rB , then an honest Bob cannot predict
1If a round begins with a call to the external functionality G, then the round concludes when the parties receive their output

from this external functionality. Extracting during round r means that the simulator extracts after seeing the adversary’s input
to the external functionality, and before delivering the corresponding output.
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Alice’s random input with probability greater than ζ +negl(k) after rB rounds of an honest interaction with

Alice.

By symmetry, suppose that rA ≤ rB . Then a semi-honest protocol for a weak variant of OT is as follows:

• Alice chooses two random elements x0, x1 ∈ [i] and runs two instances of the protocol π with these

respective inputs, for rA rounds.

• Bob’s input is a choice bit b ∈ {0, 1}, and in the bth interaction with π, Bob runs the simulator for π

against Alice (including simulating her interface with instances of G). In the (1− b) interaction, Bob

runs the π protocol honestly on a fixed input, and also honestly simulates all instances of G. After rA

rounds, the b-interaction successfully extracts xb, which Bob outputs.

By the security of the protocol π, Alice cannot distinguish between the b and (1− b) instances. In the (1− b)

instance, Bob runs the protocol honestly against Alice for rA ≤ rB rounds, and as such, cannot predict x1−b

with probability greater than ζ +negl(k). Using a standard amplification technique (Appendix A.2), we can

obtain a full-fledged OT protocol in which Bob has no advantage in predicting x1−b.

The main proof is more involved in several ways. First, the case where the dimensions of F and G

are incomparable requires a more careful analysis. Second, rA and rB need not be fixed rounds, but may

be random variables. In this case, the parties must essentially guess min{rA, rB}. Still, we can obtain a

weak OT protocol in which Bob has noticeable uncertainty about x1−b, and which is therefore amenable to

amplification.

Using an analogous approach, we also show the following in the appendix:

Lemma 16. F2,2
exch v Fcoin is equivalent to the sh-OT assumption.

4.2.1 Reductions to Publicly-selectable Source

In this section we shall prove the following theorem:

Theorem 6. Let F be a two-party randomized SSFE and G be a publicly-selectable source. Either F vstat

G or F vppt G is equivalent to sh-OT assumption.

The result reduces to two main cases: F has bidirectional influence or not; each of which are dealt in the

following sections.

4.2.2 Hardness of SSFE Functionalities with Bidirectional Influence

In this section we will show the following result:
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Lemma 17. Let F be a (possibly randomized) SSFE, with bidirectional influence. For any publicly-selectable

source G, F has a UC secure protocol in the G-hybrid then there exists a semi-honest secure protocol for OT.

This generalizes a result we considered earlier, where we showed the same result when F was a two-party

deterministic SSFE. We will sketch the outline of the ideas of the major modifications and the interested

reader is requested to refer to the original proof in the appendix.

Consider the following protocol PA→B : Suppose Alice has two inputs x0, x1 from her input domain of

F and Bob has a choice bit b. There are two session S0 and S1. In session Sb, Bob runs the simulator for

corrupt Alice and in session S1−b Bob runs the protocol honestly. Bob aborts both sessions at a round which

is uniformly chosen at random. The instance of GA and GB are realized by Alice and Bob, respectively,

computing the output honestly and sending it to the other party. If in session Sb, Bob is unable to extract

Alice’s input xb, then it asks Alice to send both her inputs; and Alice sends (x0, x1) to Bob.

There is a similar protocol where the roles of Alice and Bob are reversed, say PB→A. It has been shown in

[MPR10a] that under certain guarantees, the protocols PA→B and PB→A can be amplified into semi-honest

secure protocols for OT. We will show that if F has a UC secure protocol in the G-hybrid then the conditions

are satisfied for PA→B or PB→A.

Since F is bidirectional, for every Alice input x and x′ there exists a Bob input y such that the distri-

butions f(x, y) and f(x′, y) are different. Similarly, for every Bob input y and y′ there exists an Alice input

x such that the distributions f(x, y) and f(x, y′) are different. Consider the case when Alice is semi-honest

corrupt. Let tA be the round where Alice can predict Bob’s input with probability at least ζ = 1/n + c < 1,

where the size of Bob’s input domain is n and c is a small constant. Suppose in round sB , the simulator

for corrupt Alice extracts her inputs and sends it to F . The simulator extracts the correct input of Alice,

otherwise there exists a Bob input which can distinguish the actual input of Alice from the input sent by

the simulator. Since Bob input is chosen uniformly at random, the environment can distinguish these two

case with constant probability. We claim that tA ≥ sB +1. Suppose sB is a round where Alice sends a bit or

they use GA. In this case, at this round, all inputs for Bob are equally likely and hence tA > sB . Otherwise,

if sB is a round where Bob sends a bit or they use GB , then the simulator could have alternatively extracted

one round earlier. This reduces the problem to the previous case.

In particular, we can conclude that E[tA] ≥ E[sB ] + 1. Let uA be the round where Alice in the real

protocol can predict Bob’s input with probability ζ. Security guarantee implies that the simulated view

should not be significantly different from the real view. Hence we obtain that |E[uA]− E[tA]| ≤ ε/ζ = ε′.

This implies that E[uA] ≥ E[sB ] + (1− ε′).

Similarly, we define the quantities sA, tB and uB and conclude that E[uB ] ≥ E[sA] + (1− ε′). These two
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inequalities imply that either E[uA] ≥ E[sA]+(1−ε′) or E[uB ] ≥ E[sB ]+(1−ε′). In other words, either the

simulator for corrupt Bob extracts significantly before Alice has a good guess about Bob’s input; or other

way around. Using the algorithm mentioned earlier, this guarantee is sufficient to obtain a semi-honest

secure protocol for oblivious-transfer.

4.2.3 Case of Oblivious Sampling

In this section we prove the following result:

Theorem 7. Let F be a selectable source which is not publicly-selectable source, then F reduces to Fcoin is

equivalent to sh-OT.

But first we prove the following simple lemma that will be useful in proving the above mentioned theorem.

Lemma 18. For any publicly-selectable source G, in the computationally unbounded (as well as PPT) setting,

G reduces to Fcoin; also, Fcoin reduces to G, unless G is trivial.

Proof. W.l.o.g, let Alice be the party whose input may have influence on the output in G. LetD denote the set

of output distributions for non-redundant inputs for Alice. Note that since G is a publicly-selectable source,

the distributions in D have disjoint supports.

G reduces to Fcoin: this follows from a simple protocol for G as follows (we omit the routine security

analysis):

• On input x, Alice determines the unique convex combination of distributions in D that equals the

output distribution for x. The uniqueness is a consequence of those distributions having disjoint

supports.

• Alice samples an element from D according to its weight in the above convex combination, and an-

nounces it. (We remark that a cheating Alice could use any strategy to choose an element from D;

however it can be mapped to simply choosing an input and then following the protocol honestly.)

• Alice and Bob obtain coins from Fcoin, and use them to sample an outcome from the announced

distribution.

Fcoin reduces to G, unless G is trivial: G is trivial iff every distribution in D has zero entropy. Otherwise

the following is a secure protocol2 for Fcoin using G (again, we omit the standard security analysis). Briefly,
2Note that in a secure realization for Fcoin (without guaranteed output delivery) either party is allowed to abort the protocol,

possibly after seeing the outcome of the protocol. This is the standard UC security guarantee for 2-party functionalities (and
more generally, when there is no honest majority assumption).
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in this protocol the parties apply a von Neumann extractor to the outcome sampled from G, to obtain a fair

coin.

– Let x be a fixed non-redundant input for Alice such that the output distribution for x is in D and has

positive entropy. Let Z0 ⊆ Z be a subset of the outcomes so that for input x, the probability that the

outcome is in Z0 is p, 0 < p < 1. Let Z1 = Z\Z0.

– Alice and Bob repeat the following until they are “satisfied”:

– Alice sends x to G twice.

– If in either instance, the output from G is not from the support of the distribution corresponding

to x, Bob aborts the protocol. Note that since G is a publicly-selectable source, this essentially

forces Alice to either send an input equivalent to x or probabilistically abort.

– Else, if exactly one of the outputs is from Z0 and one from Z1 then the parties are satisfied

– If the outputs in the last pair of invocations of G where in Z0 and Z1 respectively, the common output

is 0; else (the outputs where in Z1 and Z0 respectively) the common output is 1.

Since p is a constant independent of the security parameter, this protocol runs in expected constant

number of rounds, and except with negligible probability, ends in a polynomial number of rounds.

Proof of Theorem 7

We start with the following classification of 2-party (randomized) SSFE functionalities.

Lemma 19. Every 2-party SSFE functionality falls into one of the following categories.

1. UC-reduces to Fcoin (in the computationally unbounded setting).

2. An oblivious sampling functionality.

3. A functionality with bi-directional influence.

Proof Sketch. This follows from the partitioning of SSFE functionalities into (a) uninfluenced functionalities,

(b) functionalities with unidirectional influence, and (c) those with bidirectional influence (see Chapter 2).

If F is publicly-selectable source, then it statistically reduces to Fcoin. If F is selectable source which is not

publicly-selectable source then it is oblivious sampling. Finally, if F is not a selectable source, then it has

bidirectional influence.
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Given the above classification we prove Theorem 5 by considering functionalities in each of the above

categories separately.

• Category 1. Since F in this category is UC-reducible to Fcoin in the computationally unbounded

setting, the condition in the theorem is satisfied.

• Category 2. If Fcoin is useful for UC-securely realizing a functionality F in this category, and therefore

in particular F UC-securely reduces to Fcoin, then below we shall give a semi-honest secure OT

protocol.

• Category 3. Previously, it has already been shown that if a functionality in this category reduces to

Fcoin, then there exists a semi-honest secure OT protocol.

Thus to complete the proof of Theorem 5 it remains to show the following.

Lemma 20. If an oblivious sampling functionality F has a UC-secure protocol in the Fcoin-hybrid model,

then there exists a semi-honest secure OT protocol.

Proof. Since F is an oblivious sampling functionality, it is an SSFE functionality Ff with unidirectional

influence (w.l.o.g, assume that Alice’s input influences Bob’s output) such that there exist two non-redundant

inputs x0, x1 ∈ X and an output z ∈ Z, such that the distributions f(x0) 6= f(x1) and z falls in the

intersection of the supports of f(x0) and f(x1).

Suppose Π is a protocol in Fcoin-hybrid that securely realizes F . Before we specify and analyze our

protocol, we elaborate on what it means for Π to securely realize F . Let SA
Π be the simulator for a corrupt

Alice, such that no environment can distinguish between Alice being in an execution of Π and Alice being

in an execution simulated by SA
Π . (Similarly, let SB

Π be the simulator for corrupt Bob.) Then SA
Π behaves as

follows: it interacts with corrupt Alice simulating to her Bob’s messages in Π, while also interacting with the

ideal functionality F playing Alice’s role. At some point SA
Π would send an input to F on behalf of Alice,

and obtain an outcome (which Bob also obtains and outputs to the environment). We use the following

observation about the input that SA
Π sends to F , when corrupt Alice follows the protocol Π honestly. Here,

two inputs x and x′ are called equivalent if the distributions f(x) and f(x′) are identical.

Claim 1. Consider the ideal execution involving a corrupt Alice, SA
Π and the ideal functionality F . If corrupt

Alice follows Π honestly using a non-redundant input x, then the input that SA
Π sends to F is, except with

negligible probability, equivalent to x.

Proof. Let αx′ be the probability with which SA
Π sends the input x′ to F . Then the resulting output

distribution is
∑

x′∈X αx′f(x′). However, for the simulation to be good, we require this to be negligibly
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different from f(x). Consider the set X ′ of all inputs not equivalent to x. Since x is not redundant,

f(x) lies outside the convex hull of the set of distributions {f(x′)|x′ ∈ X ′}. Since the probabilities are

constant (independent of the security parameter), the Euclidean distance between f(x) (considered a point

in the space R|Z|) and this convex hull is some constant, say `. Then, the distribution
∑

x′∈X αx′f(x′) has

a Euclidean distance of at least `(
∑

x′∈X′ αx′) from f(x). Since this distance must be negligible (as the

Euclidean distance is at most twice the statistical distance), and ` is constant, it must be that
∑

x′∈X′ αx′ is

negligible. In other words, except with negligible probability SA
Π sends an input equivalent to x, completing

the proof of the claim.

To show that there exists a semi-honest secure protocol for OT, we shall show that there is such a protocol

for the functionality Fand, which takes a bit each from Alice and Bob and outputs their logical AND to Bob

(Alice gets an empty output). (This is enough since it is easy to see that in the semi-honest case OT reduces

to Fand.) Consider the following protocol for Fand.

Let Alice’s input be x∗ ∈ {0, 1} and Bob’s input be y∗ ∈ {0, 1}.

For i = 1 to k

Until Alice and Bob are “satisfied”

Alice picks bi ← {0, 1}, and executes Π with Bob, with Bob implementing Fcoin, with input

xi := xbi

If y∗ = 0, then

Bob executes the protocol Π with Alice, implementing Fcoin himself, and obtains output

ẑ.

Else (y∗ = 1),

Bob runs the simulator SA
Π for a corrupt Alice in Π, until the simulator extracts an input

x̂i; the simulator expects a response from F on sending this input to it.

Bob samples ẑ from f(x̂i), and feeds this back to the simulator as the output from F .

Bob continues executing the simulator until the end of the protocol.

If ẑ = z then Alice and Bob are satisfied, else not.

Alice sends w = x∗ ⊕ b1 ⊕ b2 ⊕ . . .⊕ bk to Bob.

If y∗ = 0 Bob outputs 0, else he outputs w ⊕ b̂1 ⊕ b̂2 ⊕ . . .⊕ b̂k, where the bit b̂i is 0 iff x̂i = x0.
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We shall argue that if Π is a secure protocol for F , then this protocol is a semi-honest secure protocol

for Fand in the PPT setting.

Firstly, we show that the protocol is correct: for any pair of inputs, the outputs of the protocol is the

same as that of the ideal functionality Fand. Alice produces an empty output in the protocol and in the

ideal execution. When y∗ = 0, Bob’s output is 0 in both cases. It only remains to analyze the case when

y∗ = 1. For this case, we argue that in the protocol, x̂i = xi for all i, so that Bob’s ouput is indeed x∗ as it

will be in the ideal execution. This follows from Claim 1.

It is enough to consider the case when exactly one of Alice and Bob is passively corrupt.

Given the correctness of the protocol, it remains to show that the view of the corrupt party can be

simulated based on the corrupt party’s input and output (and given those, independent of the input of the

other party).

If Alice is corrupt, consider a simulator which simply runs our protocol with Bob’s input set to (say) 0,

and sends Alice’s input to Fand. By the correctness of the protocol, we need only argue that the view of

Alice is nearly the same as in the simulation for y∗ = 0 and y∗ = 1. Clearly this is true when y∗ = 0. On the

other hand, Alice’s view is nearly identical when y∗ = 1 and y∗ = 0 by the indistinguishability guarantee of

the simulator SA
Π .

If Bob is corrupt, consider the following (semi-honest) simulation. If y∗ = 1, then the simulator sends

1 to Fand and obtains x∗ in response; then it faithfully runs our protocol with Alice’s input set to x∗. If

y∗ = 0, then the simulator obtains no information from Fand; in this case it simply picks an arbitrary input

for Alice, say 0, and runs our protocol faithfully. Note that this has the effect that the last message sent

in the protocol when x∗ = 1 could be wrongly distributed. However we argue that the last message when

x∗ = 1 is nearly identically distributed as when x∗ = 0, conditioned on Bob’s view in the rest of the protocol.

For this, we first replace each execution of Π in our protocol as well as in our simulation with a simulation

using SB
Π interacting with an instance of the ideal functionality F . This causes a negligible change in the

two distributions. Then, for an execution of Π, conditioned on Bob’s view (in which the only information

about each bi is the fact that the response from the ideal functionality F is z), p := Pr[bi = 0] = Pr[f(x0) =

z]/(Pr[f(x0) = z] + Pr[f(x1) = z]), and Pr[bi = 1] = 1 − p (independently for each i), for some constant

(i.e., independent of k) p, with 0 < p < 1. Then |Pr[
⊕k

i=1 bi = 0] − Pr[
⊕k

i=1 bi = 1]| = |(p − (1 − p))k| is

negligible, or in other words
⊕k

i=1 bi is close to a uniformly distributed bit. Thus the last message sent out

by Alice is nearly identically distributed for x∗ = 0 and x∗ = 1.
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Chapter 5

Weak Coin Tossing

A fundamental problem in cryptography is to design protocols that allow two mutually distrusting parties

to agree on a random coin. The problem of coin flipping is certainly intrinsically fascinating, but moreover

coin flipping protocols have proven to be extremely useful to the theory and design of secure protocols:

For example, they are an essential ingredient in all known secure two-party and multi-party computation

protocols (e.g. Goldreich, Micali, and Wigderson [GMW87]). They have also proven to be influential more

widely: For example, they provide a primary motivation for the utility of the Common Random String

(CRS) model [BFM88], one of the most popular models for cryptographic protocol design.

The problem of coin flipping was introduced in the seminal work of Blum [Blu82], who described the

task by means of the following scenario: Alice and Bob are divorcing, and have agreed to let the ownership

of their favorite car be decided by a coin toss: Heads means that Alice gets the car, and Tails means that

Bob gets it. Unfortunately, Alice and Bob are not willing to be in the same room, and need to implement

this coin toss over the telephone. As such, Alice and Bob want a protocol such that (informally speaking):

1. The transcript of their conversation uniquely determines who gets the car.

2. If both Alice and Bob behave honestly, then Alice and Bob should both get the car with probability

1/2.

3. If Alice behaves maliciously but Bob behaves honestly, then Alice cannot significantly increase the

probability that she gets the car. Similarly, if Bob behaves maliciously but Alice behaves honestly,

then Bob cannot significantly increase the probability that he gets the car.

Such a protocol incentivizes honest behavior by both parties, since they know that deviating from the

protocol would not allow them to obtain any significant gain. Here, we are making the non-trivial assumption

that both parties want to get the car – that is, we do not disallow a cheating Alice to increase the probability

of Bob getting the car1. As such, this notion of coin flipping is often called “weak” coin flipping (explicitly
1Note that by symmetry, our requirements imply that if a protocol fails to meet the requirements, it must be the case

that either (1) a single party can bias the outcome significantly in both directions, or (2) both parties can bias the outcome
significantly in the same direction. If neither of these attacks are possible, then there is always a renaming of Alice and Bob
that implies that the protocol meets our requirements.
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in the quantum cryptography literature [KN04]), in contrast to “strong” coin flipping where neither party

should be able to bias the coin significantly in either direction. 2 Of course, a crucial parameter here is how

much bias constitutes a “significant gain.” Let us define a (1 − δ)-secure weak coin flipping protocol to be

one where no cheating party can increase the probability of their desired outcome by more than an additive

factor of δ.

The Computational Complexity of Coin Flipping. The goal of this paper is to explore the implica-

tions of the existence of such (weak3) coin flipping protocols for complexity theory. Despite the centrality

of randomness and coin flipping to complexity theory and cryptography, surprisingly little is known about

this question, as was recently exposited by Impagliazzo[Imp09].

To the best of our knowledge, the only nontrivial results on the subject show, informally, that if one-way

functions do not exist, then it must be possible to bias every r-round coin flipping protocol by an additive

Θ(1/
√

r) factor [IL89, CI93, Imp10]. Informally speaking, this does show that (1 − negligible)-secure weak

coin flipping implies the existence of one-way functions. (This result is “tight” for this setting, since if

one-way functions exist then weak coin flipping protocols do exist that rule out non-negligible additive

bias [Blu82, GL89].)

However, what about other natural notions of significant gain? For example, what are the consequences

of (1− ε)-secure weak coin flipping protocols – protocols that do not allow a bias of any additive constant

ε or more?4 What about c-secure weak coin flipping protocols where c ∈ (0, 1) is a fixed constant?

For both these questions, the only consequences known are of the flavor that PSPACE * BPP. Indeed, it

is not difficult to see that if PSPACE ⊆ BPP, then for any coin flipping protocol, either a cheating Alice could

force the output 1 with probability 1 or Bob could force the output 0 with probability 1. This attack would

proceed by using the power of PSPACE to perform an iterated min-max (actually max-average) computation,

with polynomial look-ahead depth for each round of the protocol. The question before us is whether a similar

attack (but with relaxed success goals) could be carried out with much less computational power, for instance

with only a constant level of look-ahead, or using a max (instead of max-average) computation – something

that intuitively can be carried out with only the power of NP – even though the overall protocol can have

polynomially many rounds?
2 This is also closely related to the notion of “coin flipping with abort”, where the requirement, informally speaking, is that

unless a cheating party aborts or is “caught cheating” by the honest party, it cannot bias the coin in either direction. Note
that such a protocol immediately implies weak coin flipping, since we can define the output of the protocol to be Tails if Alice
aborts or is caught cheating, and similarly Heads if Bob aborts or is caught cheating.

3Since strong coin flipping and “coin flipping with abort” both imply weak coin flipping, our results of course also apply to
the existence of these other types of protocols.

4More precisely, for every constant ε > 0, for large enough security parameters 1k provided as common input to both Alice
and Bob, the protocol should not allow additive bias of at least ε.
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Our Main Result and Intuition. In this chapter, we show (as our main result) that the existence of any

(3/4 + ε)-secure weak coin flipping protocol implies that NP * BPP. This resolves an open question posed

by Impagliazzo [Imp09]: whether (1−ε)-secure weak coin flipping protocols are possible if P = NP (we show

they are not). To prove this result, we introduce a new attack strategy that we call Hedged Greedy that is

fundamentally different from previous attacks in this setting.

At an intuitive level, previous attacks [IL89, CI93] work by having the attacking party behave honestly

until it notices that it has reached a node where its choice will have a significant effect on the expected

outcome assuming honest behavior (conditioned on its choices so far) from that point onwards. The attack

only deviates from honest behavior at this one point, and the non-triviality of this attack follows from an

argument that there must be at least one round in the protocol where the attacker’s choice influences the

outcome by an additive factor of at least Θ(1/
√

r) for an r-round protocol. Informally speaking, as pointed

out to us by Impagliazzo [Imp10], this technique fundamentally cannot get a stronger result since a stronger

result by this attack would also imply better unconditional attacks on strong coin flipping protocols by

fail-stop adversaries, where a bias of Θ(1/
√

r) is known to be tight (see e.g. [MNS09]).

A conceptually even simpler attack strategy is a “greedy” strategy. To illustrate, let’s consider a toy

protocol, as described in the protocol tree drawn in Example 1 below.

A/1/2

A/ (1/2− ε) B/ (1/2 + ε)

B/ε B/ (1− ε)

Figure 5.1: Example 1: Motivating Hedged-Greedy.

In this protocol tree, for instance the annotation “A/1/2” on the root node denotes two facts: (1) the

value (or “color”) of this node is 1/2, meaning that an honest execution of the protocol from this node would

lead to a coin with expected value 1/2 (i.e. a fair coin), and (2) the first message of the protocol is sent

by Alice, and the bit that is sent determines which child of this node corresponds to the next step of the

protocol. The honest Alice will place appropriate probabilities on its children so as to maintain the value of

the coin – in this example at the root node, the honest Alice would proceed left with probability 1/2, and

proceed right otherwise. A leaf node marked “B/ε”, for instance, just means that honest Bob declares the

output to be 1 with probability ε, and declares the output to be 0 otherwise (but Bob has full control over

the outcome of the protocol if this leaf node is reached).

We would define the “greedy” attack strategy for Alice (when she is attempting to bias the outcome
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towards 1) to be one where she always proceeds toward the child with higher value. As this example

illustrates, however, this attack may obtain only a tiny additive bias: Here, greedy Alice would proceed to

the right child at the root of the tree, obtaining an additive bias of only ε, which can be arbitrarily small. (In

this example, however, greedy Bob would still be quite successful. In Appendix B.1, we show an extension

of this example where greedy strategies for both Alice and Bob perform poorly.)

In this example, the optimal strategy for Alice is in fact to always proceed to the left child; however, in

more complex versions of this example (where “dummy” rounds are added in between the actual rounds of

the protocol), it may be very difficult for an attacking Alice to realize that she would have near complete

control of the outcome on the left branch of the tree. Given only a bounded look-ahead capability to observe

nodes in the protocol tree, for instance, Alice would not be able to ascertain whether or not she can control

the output of the protocol on the left due to “dummy” rounds.

Instead, the basic intuitive idea behind our attack strategy is to implement a hedged greedy strategy:

instead of always following the greedy strategy, our attack will “hedge its bet” by also proceeding to the

other child with some probability. Intuitively, when the advantage of behaving greedily is clearer, the attack

will potentially deviate more from honest behavior. In the example above, at the root node, since the values

of the children are so close, the hedged greedy Alice strategy will place almost equal probabilities to both

children (behaving very much like the honest Alice would). But at the level below, on the left, where the

values of the two children are so different, the hedged greedy Alice strategy would proceed to the node with

value (1 − ε) with probability very close to 1 (thus deviating very strongly from how honest Alice would

behave at this node).

In the example above, the hedged greedy Alice strategy would be able to bias the coin to nearly 3/4.

Through a careful choice of the exact hedging behavior of our strategy, we show that in fact we can guarantee

similar performance for any protocol – in the sense that either hedged greedy Alice will be able to bias to at

least roughly 3/4 or hedged greedy Bob will be able to bias to at most roughly 1/4. In fact we prove a more

general tradeoff between the relative success of hedged greedy Alice and hedged greedy Bob: for example,

if hedged greedy Bob does not significantly bias the outcome below 1/2, then we show that hedged greedy

Alice must be able to bias the outcome all the way to roughly 1. (In the example above, however, note that

even greedy Bob would be able to guarantee the output 0. As such, the example above only illustrates the

idea behind our attack, not the actual analysis of it, which is fairly delicate. We are not aware of any simpler

attack and analysis that even guarantees a tiny constant additive bias.) We also show that our analysis of

our attack is tight, by showing that in fact any attack that bases its decisions on only a bounded look-ahead

view of the protocol tree (including the values of the nodes, as illustrated above) cannot obtain better bias.
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At a technical level, our proof proceeds in two stages: First, we use the power of NP to convert an

arbitrary coin flipping protocol to a stateless coin flipping protocol with nearly identical security guarantees.

In a stateless protocol, honest parties only need the transcript of the protocol so far (and fresh randomness)

to determine their next move. We then show an unconditional polynomial-time “hedged greedy” attack on

any stateless protocol. We believe this modular approach may be of independent interest.

A stronger result for constant-round protocols. For constant round protocols, it is not difficult to

see that the “PSPACE” attack described above can be implemented if NP ⊆ BPP, since a constant round

protocol would only involve a constant number of alternations. A natural question is whether any potentially

stronger consequence is true.

For this setting, informally speaking, we obtain essentially the best possible result: even the existence of

ε-secure weak coin flipping protocols implies the existence of (infinitely often) one-way functions. The core

difference between the setting of NP ⊆ BPP and the non-existence of one-way functions is that in the latter

case, one only obtains an inverse sampler and approximator that works with high probability over a fixed

distribution of inputs. Our attack works by showing how to combine a constant number of inverters for a

constant number of related functions to carry out the desired attack.

Conclusions and Future Directions. This work revisits the fundamental question of the computational

complexity implications of the existence of coin flipping protocols, where surprisingly little was known. We

provide new results which show that in many natural settings of parameters, weak coin flipping protocols in

fact imply NP * BPP, where previously only PSPACE * BPP was known. We do this by introducing new

techniques for this setting, including a hedged greedy attack strategy and a method for its analysis.

A number of important natural questions remain open: For the parameters that we consider in our main

result, can we conclude that one-way functions exist (and not just that NP * BPP)? Is it possible that an

ε-secure weak coin flipping protocol (with polynomially many rounds) can exist even if P = NP? Recently,

[HO11] have shown that existence of Θ(1)-secure strong coin tossing protocols imply the existence of one-way

functions. Due the a classical reduction of optimal quantum strong coin-tossing [Kit03] to optimal quantum

weak coin-tossing [Moc07] by [CK09], we know that extremely good attacks against strong coin-tossing

protocols translate into good attacks against weak coin-tossing protocols. The result of [HO11] does not

guarantee sufficient bias so that one could conclude that Θ(1)-secure weak coin-tossing protocols also imply

existence of one-way functions. Thus, this problem still remains open.
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5.1 Preliminaries and Conventions

Consider any 2-party protocol π. We view the transcript generation procedure as traversal of a tree, called

the transcript tree of π. Any transcript prefix v is a node in this tree and the two extensions of the transcript

v0 and v1 are its two children in the tree. The leaves of the tree are labeled with an output 0 or 1. The depth

of the tree D is the communication complexity (maximum number of bits exchanged) of the protocol. Each

node is annotated as an Alice node or a Bob node, indicating which party must send the next message in

the protocol. When a polynomial blow-up in the round complexity of the protocol is not important, we may

consider the Alice and Bob nodes as alternating in any path in the tree. (In Section 5.4.1, where the number

of rounds is important, we remove the restriction that the tree is binary, but will retain the convention that

Alice and Bob nodes alternate.)

The protocol is specified by a randomized algorithm fπ which takes as input a transcript prefix v and

a private “state” and outputs an updated state and a next bit (or, if v is a complete transcript, produces

a deterministic binary output based only on v). A protocol is called stateless if the state variable is always

empty.

Let χv be the probability of the output of the protocol being 1 conditioned on v being a prefix of the final

transcript (when both parties honestly follow the protocol). We call this the color of the node v. We shall

denote the subtree rooted at v by Sv. We will assume that the height D of the protocol π is the security

parameter. When we mention that some event occurs with high probability (written as w.h.p.) it implies

that the probability of that event is at least 1− exp(−Θ(D + 1/ε)).

We define a µ-secure protocol for a χ∗-weak coin as follows:

Definition 1 (µ-secure implementation of χ∗-Weak coin). For χ∗ ∈ [0, 1] and µ ∈ [0, 1], let χ+ = 1 −

µ(D)(1 − χ∗) and χ− = µ(D)χ∗. A protocol π is said to be a µ-secure implementation of χ∗ weak coin-

flipping, if the outcome is a χ∗-coin if both parties follow the protocol honestly, and either

1. (Secure when Alice wants 1 and Bob wants 0) For any efficient (PPT) adversarial Alice strategy, the

expected outcome of the protocol when playing against the honest Bob strategy is no higher than χ+

and for any efficient Bob strategy, the expected outcome when playing against the honest Alice strategy

is no lower than χ−, or

2. (Secure when Alice wants 0 and Bob wants 1) For any efficient (PPT) adversarial Alice strategy, the

expected outcome of the protocol when playing against the honest Bob strategy is no lower than χ− and

for any efficient Bob strategy, the expected outcome when playing against the honest Alice strategy is

no higher than χ+.
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With increasing µ, the protocol has a better security guarantee: if µ = 1, then neither party can bias the

coin away from χ∗ towards their desired outcome. Against an adversary with access to a PSPACE oracle, it

is easy to see that any efficient protocol is 0-secure. Our attack in Section 5.2 renders any protocol about

1/2-secure; for χ∗ = 1/2, this means that some party can bias the protocol to about 1/4 (if its desired outcome

is 0) or to about 3/4 (if its desired outcome is 1). (Our attack in Section 5.4.1 on the other hand renders any

protocol µ secure with µ close to 0.)

In Section 5.4.1 we show that if a constant round weak coin-flipping protocol must be secure, then a

standard weaker variant of one-way functions, called infinitely-often one-way functions must exist. This

variant appears in earlier work like [OW93], but seems to have been named so in [HI08]. A polynomial time

computable function f : {0, 1}∗ → {0, 1}∗ is called an infinitely-often one-way function if for any polynomial

p and any PPT adversary A, if for infinitely many values n, Prx←{0,1}n [f(A(f(x)) = f(x)] < 1/p(n) (where

the probability is also over the coins of A). Thus, if f is not an infinitely-often one-way function, then there

is a PPT adversary A which for all but finitely many values of n has a significant probability of inverting f

on random inputs from {0, 1}n.

5.2 Complexity of Weak Coin-Tossing

In this section we show our main result, that if there is a polynomial time weak coin-tossing protocol, then

NP * BPP. In fact, we show that any weak coin-tossing protocol can be attacked significantly (biasing the

outcome by close to 3/4) by polynomial time adversaries with access to an NP oracle. We arrive at this result

in a few steps:

• First, we observe that for any polynomial time protocol π, there exists a state-less protocol π′ that

runs in polynomial time with access to an NP oracle, such that π′ is “as secure as” π when considering

adversaries with access to NP oracles. (Lemma 21.)

• Next we show that, unconditionally, any state-less protocol for weak coin-flipping can be attacked

efficiently, using just the protocol itself as a black-box.

Together, these give an attack on any polynomial time protocol π, wherein the attack will use an NP oracle

(which will be used to implement the state-less protocol π′ that will be accessed as a black-box by the

attack).

The first of these follows rather easily from a result on uniform generation of NP-witnesses given an

NP oracle [JVV86, BGP00]. (details of which shall be provided in Section 5.2.1) We remark that while

much weaker computational power (namely inverting a one-way function) is enough for carrying out such a
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reconstruction in the normal course of the protocol, it is much harder to ensure that the reconstruction works

with adequate accuracy even when the protocol is under attack and may result in a transcript distribution

significantly different from that in the normal execution. However, by [JVV86, BGP00], such reconstruction

can be accurately carried out for any transcript history when an NP-oracle is given.

Our main work then is in showing an attack on a state-less protocol. Surprisingly we can do this efficiently

using the protocol itself as a black-box, and with no further computational complexity assumption. In

Section 5.2.2 we provide an intuition for the way the attack works, assuming we have certain additional oracles

related to the protcol. Then in Section 5.3 we present the actual attack, which involves additional checks to

make the simpler attack robust, and then replaces the oracles it required by approximate implementations.

5.2.1 Private State is Not Useful

Access to an NP-oracle can be used to reconstruct a correctly distributed random tape for a party in a

protocol, using just the public history of the protocol. We remark that while much weaker computational

power (namely inverting a one-way function) is enough for carrying out such a reconstruction in the normal

course of the protocol, it is much harder to ensure that the reconstruction works with adequate accuracy

even when the protocol is under attack and may result in a transcript distribution significantly different

from that in the normal execution. However, by a result on uniform generation of NP-witnesses given an NP

oracle [JVV86, BGP00], such reconstruction can be accurately carried out for any transcript history when

an NP-oracle is given. More formally, we need the following result.

Lemma 21. For any polynomial time protocol π for χ∗ weak coin-flipping that is µ-secure against polynomial

time adversaries with access to NP oracles, there is a state-less protocol π′ that runs in (expected) polynomial

time with access to an NP oracle, and is also a χ∗ weak coin-flipping that is µ-secure against polynomial

time adversaries with access to NP oracles.

Proof Sketch. We shall in fact show a much more general result here: π can be any arbitrary polynomial

time protocol (not necessarily for coin-flipping) and we can consider its behavior against any arbitrary class

of adversaries. We shall describe a protocol π′ which is executed with the help of an NP oracle, such that

any adversary’s view when interacting with honest players running π and those running π′ are identical (or

statistically close, if using a strict polynomial time implementation of π′).

To define π′ we shall use the result of Bellare et al. [BGP00] that for any NP relation R(·; ·), there is

an expected polynomial time algorithm S3-SAT
R (with access to the oracle for 3-SAT) such that given x, it

samples an element uniformly from the set R−1(x) := {w|R(x;w) = 1}, provided that this set is non-empty.
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Define RA(v; rA) = 1 iff v is a prefix of the transcript generated when Alice executes the protocol π

with a random tape rA and receives responses from Bob consistent with v. Note that this is indeed an NP

relation5 since Alice’s program is polynomial time. Hence, by [BGP00], S3-SAT
RA

(v) outputs a random tape

rA uniformly from R−1
A (v). Similarly define RB and SRB

.

Define π′ to be the stateless protocol in which Alice and Bob behave as follows: on being given a transcript

prefix v, Alice uses S3-SAT
RA

(v) to sample a random tape rA, internally simulates the stateful protocol π with

this random tape, and responses from Bob as given in v, and outputs the next bit after v in the transcript

so generated. Bob behaves symmetrically, using SRB
instead.

Then, the protocol tree defined for π′ is identical to that of π, and for any adversary, the view on attacking

π′ is the same as that of attacking π.

5.2.2 A Simplified Sketch of the Attack

In this section we describe an attack on any weak coin flipping protocol π, given an oracle that, for any

partial transcript v, can return χv, the color of v in the protocol π.

Given such an oracle for the colors, we define four attacks, two each for corrupt Alice and corrupt Bob

— for each party, one to bias the outcome towards 0 and one to bias it towards 1. In Figure 5.2, we describe

the attack for Alice to bias the outcome towards 1; the other attacks are symmetric.

Intuition of Attack Adv
(1)
A

A D round protocol π with for a χ∗-coin is given. We have access to an oracle which provides the

exact color χv of any node v.

Suppose the protocol is currently at an Alice-node v (i.e., the next message is sent by Alice). Let v0

and v1 be its two children. For convenience we write χ, χ0 and χ1 respectively for χv, χv0, and χv1.

Let p0 = Prπ[v0|v] and p1 = Prπ[v1|v] so that p0 + p1 = 1 and χ = p0χ0 + p1χ1. Given χ, χ0 and χ1

we can calculate p0 and p1.

• Let tb =
pbχb(1−χ(1−b))

(χ−χ0χ1)
, for b ∈ {0, 1}. Send 0 as the next message with probability t0 and 1 as

the next message with probability t1.

Figure 5.2: Intuition of Attack Adv
(1)
A for Alice to bias towards outcome 1.

Note that indeed t0 + t1 = (p0χ0+p1χ1)−(p0+p1)χ0χ1
χ−χ0χ1

= 1, since p0χ0 + p1χ1 = χ and p0 + p1 = 1.

5More formally we can include the security parameter on both arguments to R to ensure that it is polynomially balanced.
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We shall show that our choice of the probabilities t0 and t1 are such that no matter what the protocol

is, these attacks break the security of the protocol. More precisely, if we denote the four attacks by Adv
(0)
A ,

Adv
(1)
A , Adv

(0)
B and Adv

(1)
B (with Adv

(0)
A corresponding to Alice trying to bias towards 0 and so on), we show

that in any such protocol either Adv
(1)
A biases the outcome to 1 with probability at least 0.75, or Adv

(0)
B biases

the outcome to 0 with probability at least 0.75. Also, either Adv
(0)
A biases the outcome to 0 or Adv

(1)
B biases

the outcome to 1 with probability at least 0.75. Then, the protocol π is not a secure weak coin-flipping

protocol.

In order to analyze these attacks, we will define the following functions to assign a score for the (failure

of) performance in biasing the orginal color χ at a node to a value x when the goal is to bias towards a bit

b: sb(x, χ) := |b−x|
|b−χ| (for χ 6= b). That is,

s1(x, χ) =
1− x

(1− χ)
s0(x, χ) =

x

χ

In addition, we define s0(0, 0) := 0 and s1(1, 1) := 0. Note that the lower the score, the better the perfor-

mance in biasing towards b.

For any node v in the transcript tree, let A(0)(v), A(1)(v), B(0)(v), B(1)(v) denote the colors induced at

the node v by our four attacks. Then, we will show that:

A(1)(v), B(1)(v) ∈ [χv, 1] and A(0)(v), B(0)(v) ∈ [0, χv] (5.1)

s1(A(1)(v), χv) + s0(B(0)(v), χv) ≤ 1 (5.2)

s0(A(0)(v), χv) + s1(B(1)(v), χv) ≤ 1 (5.3)

Intuitively these two inequalities state that if Alice fails to bias the output to b by a significant amount

then Bob can bias the output to (1 − b) by a significant amount. More precisely, when v is the root of

a protocol that yields a fair coin under honest execution (χv = 1/2), the first equation above shows that

either s1(A(1)(v), χv) ≥ 1/2 (which implies that A(1)(v) ≥ 3/4) or s0(B(0)(v), χv) ≥ 1/2 (which implies that

B(0)(v) ≤ 1/4). That is, the protocol is not secure against an Alice who prefers 1 and a Bob who prefers

0. Similarly, the second equation shows that protocol is not secure when Alice and Bob prefer 0 and 1

respectively either.

We will prove the result by induction on the height h of Sv the subtree rooted at v. If h = 1, it is trivial

to see that both the conditions are satisfied. Let the four tuple associated with the performance of our
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attack on the Svb be (A(0)
b , A

(1)
b , B

(0)
b , B

(1)
b ) = (A(0)(vb), A(1)(vb), B(0)(vb), B(1)(vb)). We will only show how

the induction works for the first case, i.e. s1(A(1)(v), χv)+ s0(B(0)(v), χv) ≤ 1. By induction hypothesis, we

know that: B
(0)
b ≤ χb and

1−A
(1)
b

(1− χb)
+

B
(0)
b

χb
≤ 1 =⇒ (1−A

(1)
b ) ≤

(
1−

B
(0)
b

χb

)
(1− χb).

(This inequality in fact holds for the extreme cases of χ0 = 0 and χ0 = 1 as well: when χ0 = 1, we have

A
(0)
1 ∈ [χ0, 1] =⇒ A

(0)
1 = 1; when χ0 = 0, then B

(0)
0 = 0 and our convention for the score will interpret

B
(0)
0

χ0
as 0.)

Suppose v is an Alice node and she outputs b as the next message with probability tb, where b ∈ {0, 1}.

Then A(1)(v) = t0A
(1)
0 + t1A

(1)
1 and B(0)(v) = p0B

(0)
0 + p1B

(0)
1 .

s1(A(1)(v), χ) + s0(B(0)(v), χ) =
1−A(1)(v)

(1− χ)
+

B(0)(v)
χ

=
t0(1−A

(1)
0 ) + t1(1−A

(1)
1 )

(1− χ)
+

p0B
(0)
0 + p1B

(0)
1

χ

≤ B
(0)
0 T0 + B

(0)
1 T1 +

t0(1− χ0) + t1(1− χ1)
(1− χ)

where T0 =
[

p0
χ −

t0(1−χ0)
(1−χ)χ0

]
and T1 =

[
p1
χ −

t1(1−χ1)
(1−χ)χ1

]
. If we show that T0 ≥ 0 and T1 ≥ 0, then indeed

s1(A(1)(v), χ) + s0(B(0)(v), χ) ≤ χ0T0 + χ1T1 +
t0(1− χ0) + t1(1− χ1)

(1− χ)

=
p0χ0 + p1χ1

χ
= 1

(using the fact that B
(0)
b ≤ χb). Now, substituting t0 = p0χ0(1−χ1)

(χ−χ0χ1)
and t1 = p1χ1(1−χ0)

(χ−χ0χ1)
, we observe that

T0 =
p0 [(1− χ)(χ− χ0χ1)− χ(1− χ0)(1− χ1)]

χ(1− χ)(χ− χ0χ1)
=

p0(χ1 − χ)(χ− χ0)
χ(1− χ)(χ− χ0χ1)

≥ 0

(using the fact that min{χ0, χ1} ≤ χ ≤ max{χ0, χ1}), and similarly T1 ≥ 0.

Now we need to show that A(1)(v) ∈ [χ, 1] and B(0)(v) ∈ [0, χ]. Note that if χ0 ≥ χ1 then t0 ≥ p0 and

if χ1 ≥ χ0, then t1 ≥ p1. Hence we have A(1)(v) = t0χ0 + t1χ1 ≥ p0χ0 + p1χ1 = χ. Also, since B
(0)
0 ≤ χ0

and B
(0)
1 ≤ χ1, we have B(0)(v) = p0B

(0)
0 + p1B

(0)
1 ≤ p0χ0 + p1χ1 = χ. This completes the analysis of this

simplified attack, which assumes t0 and t1 can be computed correctly.

Our actual attack is significantly complicated than the one explained in this section, by the fact that we

do not have oracles to find χv exactly (even given an NP oracle). In fact, we can only estimate χv with a

small additive error term. The effect of this error on our attack can be severe when χ is very close to 1 or
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(χ− χ0χ1) is very small. The actual attack takes care of these special cases separately.

5.2.3 A Step Closer to the Actual Attack

We describe our actual attack against a stateless protocol in Section 5.3. The attack closely follows the

intuition above, but significantly differs in the details and the analysis. The differences arise from the fact

that the above attack depended on accurately knowing certain ratios, which simply cannot be estimated

sufficiently accurately.

As described in Figure 5.3, the attack has two additional checks before carrying out an approximate

version of the above attack. Firstly, if the color of the current node is very close to 0 or 1, the attack

continues by simply following the protocol honestly (even if it later encounters nodes with different colors).

Note that this is done even on reaching a node with the color opposite to what the attack desires. The

second check is more subtle, and is designed to handle the technical difficulty in accurately estimating t0

and t1 when the denominator is close to 0. In the case of Adv
(1)
A (Alice biasing towards 1), this denominator

is χ− χ0χ1; if we see that χ is close to min{χ0, χ1}, then the current step of the attack is changed to weigh

the two children using the contribution (in the honest execution) that they make to the color of the current

node, i.e., using probabilities hb = pbχb/χ instead of tb. If these checks pass, then the original attack (but

with ratios calculated according to the estimated values) is carried out.

In Section 5.3, first we describe the attack in terms of a couple of oracles; but using the fact that π

is a stateless protocol, we show that we can indeed implement statistically close approximations of these

oracles, using black-box access to (the next message function of) π. Also, the attack needs estimating various

quantities with sufficient accuracy, which also can be carried out with black-box access to π.

In Section 5.3.1, we prove the following theorem.

Theorem 8. Let π be a D round stateless coin-flipping protocol with expected outcome (under honest exe-

cution) χ ∈ (0, 1). For any function (of the security parameter) 0 < ε < 1 define χ− = χ − χ
2 (1 − ε), and

χ+ = χ+ (1−χ)
2 (1− ε). Then there exist attacks Adv

(0)
A , Adv

(1)
A , Adv

(0)
B and Adv

(1)
B which use black-box access

to π and run in poly(1/ε + D) time, such that

1. A(1) ≥ χ+ or B(0) ≤ χ−, (i.e., not secure if Alice wants 1 and Bob wants 0)

2. and, B(1) ≥ χ+ or A(0) ≤ χ− (i.e., not secure if Bob wants 1 and Alice wants 0).

where A(b) (resp. B(b)), for b ∈ {0, 1}, is the expectation of the outcome when Alice runs the attack Adv
(b)
A

against honest Bob (resp. Bob runs Adv
(b)
B against honest Alice).

As a corollary of Theorem 8, we can conclude that:
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Corollary 9. If a stateless protocol π is a µ-secure polynomial time implementation of χ∗-weak coin for any

constant 0 < χ∗ < 1, then µ ≤ 1/2 + negl(D), where D is the number of rounds in π and negl is a negligible

function.

Note that an ideal secure protocol for weak coin-flipping would be a 1-secure protocol. Relative to

adversaries with access to a PSPACE oracle, all protocols are 0-secure protocols. Our attack is not as effective

as an attack with a PSPACE oracle, but instead renders any (stateless) protocol at most 1/2+negl(D)-secure.

Theorem 8 is proven in Section 5.3.1. Here we give a brief summary. At the heart of the analysis is

an analogue of the inductively maintained inequalities equation (5.1)-equation (5.3). These inequalities had

depended on the fact the we could arrange the quantities T0 and T1 to be positive. Unfortunately, this is no

more the case in the analysis of the actual attack. But by carefully choosing our parameters, we can carry

out a case analysis and prove Lemma 22. Note that we described the attack assuming access to oracles ΠH

and ΠT in addition to Π, and required estimates of various quantities. To complete the proof we show how

to estimate these values required by our attack (Lemma 23) and implement (good approximations of) the

oracles ΠT and ΠH (Lemma 24) using black-box access to the protocol π. Finally, in Section 5.3.3 we give

the choice of parameters to conclude the proof of Theorem 8.

Finally, from Theorem 8 and Lemma 21 we obtain our main result.

Theorem 10. Let π be a polynomial time (possibly stateful) coin-flipping protocol with expected outcome

(under honest execution) χ ∈ (0, 1). For any function (of the security parameter) 0 < ε < 1 define χ− =

χ− χ
2 (1− ε), and χ+ = χ + (1−χ)

2 (1− ε). Then there exist attacks Adv
(0)
A , Adv

(1)
A , Adv

(0)
B and Adv

(1)
B which

use an NP oracle, but otherwise run in poly( 1
ε + D) time, such that at

1. A(1) ≥ χ+ or B(0) ≤ χ−,

2. and, B(1) ≥ χ+ or A(0) ≤ χ−,

where A(b) (resp. B(b)), for b ∈ {0, 1}, is the expectation of the outcome when Alice runs the attack Adv
(b)
A

against honest Bob (resp. Bob runs Adv
(b)
B against honest Alice).

Proof Sketch. Consider the stateless protocol π′ guaranteed by Lemma 21. (This protocol is polynomial

time given an NP oracle.) By Theorem 8, there are adversaries Adv
(0)
A , Adv

(0)
B , Adv

(1)
A , Adv

(1)
B , which attack

π′, and access π′ as a black-box. Thus these adversaries can be implemented in polynomial time, given an

NP oracle. By Lemma 21 (or rather, its proof) these adversaries have the same advantage with π as with

π′, and hence one of the four conditions stated in Theorem 8 hold with respect to π and these adversaries.

Note that these are the same conditions described above, arranged differently.
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Finally, note that if NP ⊆ BPP, then a highly accurate NP oracle can be implemented in probabilistic

polynomial time, and hence the adversaries in the above theorem can be converted to PPT adversaries.

Corollary 11. If π is a µ-secure polynomial time implementation of χ∗-weak coin for any constant 0 <

χ∗ < 1, then unless NP 6⊆ BPP, µ ≤ 1/2 + negl(D), where D is the number of rounds in π and negl is a

negligible function.

In particular, if there is a weak coin-flip protocol for a coin of bias 1/2 which is µ-secure with µ > 1/2 + α

for some non-negligible function α (corresponding to limiting the bias approximately to the range [1/4, 3/4]),

then NP 6⊆ BPP.

5.3 Attack on Stateless Protocols

In this section we describe our actual attack against a stateless protocol, which follows the intuition of the

attack in Section 5.2.2, but does not use exact color oracles. Instead, the attack uses only the protocol itself

as a black-box.

Let π be a protocol for coin with bias χ∗ ∈ (0, 1) (henceforth, called a χ∗-coin). For convenience first we

shall describe the attack using a few oracles related to the π:

1. Π: Given a partial transcript v as input, it outputs the next message (bit) as specified by the protocol

π. (Recall that the protocol is stateless.)

2. ΠH : Given a partial transcript v as input, it samples a transcript τ as generated by the protocol,

conditioned on v being a prefix of τ and the outcome of the protocol at τ being 1 (heads). Then it

outputs the bit b such that vb is a prefix of τ .

3. ΠT : Given a partial transcript v as input, it samples a transcript τ as generated by the protocol,

conditioned on v being a prefix of τ and the outcome of the protocol at τ being 0 (tails). Then it

outputs the bit b such that vb is a prefix of τ .
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Attack Adv
(1)
A

A D round protocol π with bias χ∗ (along with corresponding oracles Π and ΠH) is given. The attack

is parametrized by a function of the security parameter 0 < ε < 1. Let δ = min
{

(1−χ∗)ε
4 , χ∗ε

4

}
and

λ = min
{

δ3

36D , ε3δ3

(72)3D3 , 1
29

}
= ε3δ3

(72)3D3 .

Alice performs the following attack at all nodes v where she is supposed to send the next bit. First,

compute the following estimates, as described in Lemma 23. Let χ̃ be an estimate of χ := χv, so that

|χ̃− χ| ≤ λ w.h.p.. Similarly, let χ̃0 and χ̃1 be estimates of χ0 := χv0 and χ1 := χv1 respectively.

Then proceed as follows:

1. If χ̃ ≥ 1− (δ + λ) or χ̃ ≤ (δ + λ): Henceforth, follow the protocol honestly by making calls to

Π. This case takes care of nodes in the transcript tree such that χ is too close to 0 or 1.

2. Else, if χ̃ − min{χ̃0 χ̃1} < λ1/3 + 2λ, then output d = ΠH(v) as the next message. This case

takes care of nodes in the transcript tree such that χ− χ0χ1 is too small.

3. Else (here, χ ∈ [δ, 1 − δ] and χ − min{χ0, χ1} ≥ λ1/3), we perform a variant of our original

attack. Let c′ ∈ {0, 1} be such that min{χ̃0, χ̃1} = χ̃c′ (i.e., the child with lower estimated

probability of heads). Let p0 and p1 be the probabilities assigned by π to the two possible next

messages at v, so that p0 +p1 = 1 and χ = p0χ0 +p1χ1. Let h̃c′ be an estimation of hc′ = pc′χc′
χ

such that
∣∣∣h̃c′ − hc′

∣∣∣ ≤ 3λ1/3 (see Lemma 23). Evaluate t̃c′ which is an approximation of

tc′ =
pc′χc′

(
1− χ(1−c′)

)
(χ− χ0χ1)

,

such that
∣∣t̃c′ − tc

∣∣ ≤ 9λ1/3 (Lemma 23). Set r̃c′ = min{t̃c′ ,max{0, h̃c′ − 3λ1/3}}.

Send the bit c′ with probability r̃c′ and send 1− c′ with probability 1− r̃c′ .

Figure 5.3: Attack Adv
(1)
A for Alice to bias towards outcome 1.

We will define the four attacks Adv
(b)
A and Adv

(b)
B , where b ∈ {0, 1} as before: Adv

(b)
A is an algorithm which

will provide Alice with a strategy to bias the output towards b. Similarly, Adv
(b)
B will provide a strategy for

Bob to bias the output towards b. In Figure 5.3, we explicitly define Adv
(1)
A and all other attacks can be

symmetrically defined: algorithm Adv
(0)
A is obtained from Adv

(1)
A by interchanging the interpretations of 1

(Heads) and 0 (Tails). And Adv
(b)
B is defined similarly where that attack is carried out at Bob-nodes in the

protocol (i.e., where Bob sends the next bit of the transcript).

The attack refers to oracles ΠH and ΠT , and also estimates of various quantities. But (as we shall see)

since π is a stateless protocol, we can indeed implement statistically close approximations of these oracles,
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and also obtain good estimates of the quantities used in the attack, simply using black-box access to the

protocol π.

5.3.1 Proof of Theorem 8

In this section we analyze the protocol in Section 5.3 and prove Theorem 8.

First, similar to the analysis of our simpler attack, we shall prove a lower-bound on the sum of the scores

of a pair of attacks.

Lemma 22. For a stateless weak coin-flipping protocol π, if v is a node in the protocol tree at height h, we

have A(0)(v), B(0)(v) ∈ [0, χv] and A(1)(v), B(1)(v) ∈ [χv, 1]; and

s1(A(1)(v), χv) + s0(B(0)(v), χv) ≤ 1 +
δ

(1− χv)
+

δ

χv
+ νh

s0(A(0)(v), χv) + s1(B(1)(v), χv) ≤ 1 +
δ

(1− χv)
+

δ

χv
+ νh

where A(b)(v) (resp. B(b)), for b ∈ {0, 1}, is the expectation of the outcome when Alice runs the attack

Adv
(b)
A against honest Bob (resp. Bob runs Adv

(b)
B against honest Alice), and ν0 = 0 and νh+1 = 9λ1/3

δ +

νh

(
1 + 9λ1/3

δ

)
.

We will just prove the first part of the result, i.e. s1(A(1)(v), χv)+s0(B(0)(v), χv) ≤ 1+ δ
(1−χv) + δ

χv
+νh.

We will proceed by induction on the height of v (i.e., height of Sv, the sub-tree rooted at v). It is easy to

see that for the base case of h = 1, the result is true since χv ∈ {0, 1} and then one of the two terms is 1 and

the other is 0 (corresponding to the fact that one of Alice and Bob has zero advantage (and hence score 1)

in biasing to their desired value, while for the other party, the outcome is completely biased to their desired

value).

Suppose v has height (h + 1) and we will use the notation χ = χv, χ0 = χv0 and χ1 = χv1. Let

χlow = min{χ0, χ1} = χc and χhigh = max{χ0, χ1} = χ(1−c), where c ∈ {0, 1}. If p0 and p1 are the

probabilities that the next bit after v is 0 and 1, respectively, then we can express χ = pcχlow + p(1−c)χhigh .

The four tuple summarizing the performance of our attack on the protocol on Svb be (A(0)
b , A

(1)
b , B

(0)
b , B

(1)
b ) =

(A(0)(vb), A(1)(vb), B(0)(vb), B(1)(vb)). By induction hypothesis, we have the following constraint:

s1(A
(1)
b , χb) + sb(B

(0)
b , χb) =

1−A
(1)
b

(1− χb)
+

B
(0)
b

χb
≤ 1 +

δ

(1− χb)
+

δ

χb
+ νh

=⇒ (1−A
(1)
b ) ≤

[
1 +

δ

(1− χb)
+

δ

χb
+ νh −

B
(0)
b

χb

]
(1− χb)
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Suppose, Alice is expected to send the bit after v is generated in the protocol. She decides to send 0

with probability r̃0 and 1 with probability r̃1 = 1 − r̃0. Now, A(1)(v) = r̃0A
(1)
0 + r̃1A

(1)
1 and B(0)(v) =

p0B
(0)
0 + p1B

(1)
1 . We define the following quantity E:

E = s1(A(1)(v), χ) + s0(B(0)(v), χ) =
1−A(1)(v)

(1− χ)
+

B(0)(v)
χ

=
r̃0(1−A

(1)
0 ) + r̃1(1−A

(1)
1 )

(1− χ)
+

p0B
(0)
0 + p1B

(0)
1

χ

≤ B
(0)
0

[
p0

χ
− r̃0(1− χ0)

(1− χ)χ0

]
+ B

(0)
1

[
p1

χ
− r̃1(1− χ1)

(1− χ)χ1

]
+

r̃0(1− χ0) + r̃1(1− χ1)
(1− χ)

+
(r̃0 + r̃1)δ
(1− χ)

+
δ

(1− χ)

(
r̃0(1− χ0)

χ0
+

r̃1(1− χ1)
χ1

)
+ νh

(
r̃0(1− χ0) + r̃1(1− χ1)

(1− χ)

)

Let T̃0 =
[

p0
χ −

r̃0(1−χ0)
(1−χ)χ0

]
and T̃1 =

[
p1
χ −

r̃1(1−χ1)
(1−χ)χ1

]
. Let δ

χ′ = δ
(1−χ)

(
r̃0(1−χ0)

χ0
+ r̃1(1−χ1)

χ1

)
and ν′h =

νh

(
r̃0(1−χ0)+r̃1(1−χ1)

(1−χ)

)
. We define r∗b as the value of r̃b such that T̃b = 0. It is impossible to have T̃0, T̃1 < 0

because r∗0 + r∗1 > 1 (Lemma 39). So, there are only three cases to consider:

1. If T̃0 ≥ 0 and T̃1 ≥ 0, then

E ≤ χ0T̃0 + χ1T̃1 +
r̃0(1− χ0) + r̃1(1− χ1)

(1− χ)
+

δ

(1− χ)
+

δ

χ′
+ ν′h

= 1 +
δ

(1− χ)
+

δ

χ′
+ ν′h = E(+,+)

2. If T̃0 ≥ 0 and T̃1 < 0, then:

E ≤ χ0T̃0 + 0 · T̃1 +
r̃0(1− χ0) + r̃1(1− χ1)

(1− χ)
+

δ

(1− χ)
+

δ

χ′
+ ν′h

=
p0χ0

χ
+

r̃1(1− χ1)
(1− χ)

+
δ

(1− χ)
+

δ

χ′
+ ν′h

= 1 +
δ

(1− χ)
+

δ

χ′
+
(

r̃1(1− χ1)
(1− χ)

− p1χ1

χ

)
+ ν′h

= E(+,−)

3. Similarly, if T̃0 < 0 and T̃1 ≥ 0, then:

E ≤ 1 +
δ

(1− χ)
+

δ

χ′
+
(

r̃0(1− χ0)
(1− χ)

− p0χ0

χ

)
+ ν′h

= E(−,+)
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In our attacks, we intend to use r̃c ≤ hc = pcχc

χ because:

1
χ′

=
1

(1− χ)

(
r̃0(1− χ0)

χ0
+

r̃1(1− χ1)
χ1

)
≤ 1

χ

⇐⇒ r̃0

χ0
+

r̃1

χ1
≤ 1

χ

⇐⇒ r̃c

(
1
χc
− 1

χ1−c

)
≤
(

1
χ
− 1

χ1−c

)
⇐⇒ r̃c ≤

pcχc

χ
= hc

The three cases of our attack are analyzed below:

Case 0: Suppose χ̃ ≥ 1− (δ + λ) or χ̃ ≤ (δ + λ), then we know that w.h.p. χ ≥ 1− (δ + 2λ) or χ ≤ (δ + 2λ).

In this case Lemma 41 shows that the induction goes through.

Case 1: In this case χ ∈ [δ, 1− δ] and χ− χc ≤ λ1/3 + 4λ. We use r̃0 = p0χ0
χ and r̃1 = p1χ1

χ and Lemma 42

shows that the induction also works in this case.

Case 2: In this case χ ∈ [δ, 1 − δ] and χ̃ −min{χ̃0, χ̃1} ≥ λ1/3 + 2λ. Observe that |χ0 − χ1| ≥ λ1/3 ≥ 2λ.

So, χ̃0 < χ̃1 if and only if χ0 ≤ χ1. Therefore, c = c′.

Since, (χ̃−min{χ̃0, χ̃1}) ≥ λ1/3 + 2λ, we have (χ− χ0χ1) ≥ λ1/3. So, we can use Lemma 23 to

estimate tc such that
∣∣t̃c − tc

∣∣ ≤ 9λ1/3. Recall, r̃c = min
{

t̃c,max
{

0, h̃c − 3λ1/3
}}
≤ hc (Lemma 44).

Now, Lemma 45 implies that |r̃c − tc| ≤ 9λ1/3 and Lemma 43 shows that the induction works for this

case.

Observe that in all cases of our attack, we used r̃c ≤ hc = pcχc

χ ≤ pc and hence A(1)(v) = r̃cA
(1)
c +

r̃(1−c)A
(1)
(1−c) ≥ r̃cχc+r̃(1−c)χ(1−c) ≥ pcχc+p(1−c)χ(1−c) = χ. And B(0)(v) = p0B

(0)
0 +p1B

(0)
1 ≤ p0χ0+p1χ1 =

χ. This completes the proof of this lemma.

5.3.2 Estimating Quantities and Implementing Oracles ΠH and ΠT

Estimation of quantities. In our attack, we used estimations of χ, χb, pb, hb = pbχb

χ and tb =
pbχb(1−χ(1−b))

(χ−χ0χ1)
. The color of any node can be estimated by sampling N of transcripts which have v as

their prefix, according to the honest distribution, and computing the average of all the outcomes. A ran-

dom transcript can be generated by repeated invocation of the oracle Π. By simple Chernoff Bound, if

N = (D+1/ε)/λ2, then the difference between the estimated and actual colors is at most λ with probability

1− exp(−Θ(D + 1/ε)). Similarly, to estimate pb, invoke Π at v for N times and estimate pb as the fraction

of instances where b is obtained the next bit.
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Estimation of hb and tb is performed by estimating the individual quantities in the expression and then

using them for the calculation. For example, to estimate hb we first compute p̃b (estimation of pb), χ̃b

(estimation of χb) and χ̃ (estimation of χ). Then we define h̃b = p̃bχ̃b

χ̃ . But the error in estimation could

increase significantly if χ is very small. So, this method to estimate hb should only be used when χ is larger

than a particular threshold. Lemma 23 provides the exact details and bounds on these values:

Lemma 23 (Estimation). In the oracle world we can efficiently find χ̃, χ̃0, χ̃1, p̃b, h̃b and t̃b such that,

w.h.p.:

1. |χ̃− χ| , |χ̃0 − χ0| , |χ̃1 − χ1| , |p̃c − pc| ≤ λ, and

2.
∣∣∣h̃b − hb

∣∣∣ ≤ 3λ1/3, if χ ≥ δ ≥ λ1/3 and λ ≤ 1/3.

3.
∣∣t̃b − tb

∣∣ ≤ 9λ1/3, if χ− χ0χ1 ≥ λ1/3 and λ ≤ 1
29 .

Proof. We provide the explicit mechanisms to evaluate these quantities.

1. Estimation of pb: Call Π N times at node v. Let Nb be the number of times the output of the oracle

is b. Define p̃b = Nb/N . If N = D/λ2 then w.h.p. |p̃b − pb| ≤ λ.

2. Estimation of χ, χ0 and χ1: Using access to Π, sample N transcripts with prefix v. Let N1 be the

total number of transcripts where the outcome of the coin is 1. Define χ̃ = N1/N . If N = D/λ2 then

w.h.p. |χ̃− χ| ≤ λ. Similarly, we can also estimate χ̃0 and χ̃1.

3. Estimation of hb: Compute p̃b, χ̃b and χ̃ as approximations of pb, χb and χ, such that |p̃b − pb| ≤ λ,

|χ̃b − χb| ≤ λ and |χ̃− χ| ≤ λ. Let a1 = pbχb. Define the estimation of a1 as ã1 = p̃bχ̃b. We know that

|ã1 − a1| ≤ 3λ. Define the estimation of a2 = 1
χ as ã2 = 1

χ̃ . Then, we know that |ã2 − a2| ≤ λ
δ(δ−λ) ≤

2λ/δ2 ≤ 2λ1/3. Define h̃b = ã1ã2. Now,
∣∣∣h̃b − hb

∣∣∣ ≤ 2λ + 2λ1/3 ≤ 3λ1/3.

4. Estimation of tb: Suppose we compute χ̃, χ̃0, χ̃1 and p̃b such that |χ̃− χ| ≤ λ, |χ̃0 − χ0| ≤ λ,

|χ̃1 − χ1| ≤ λ and |p̃b − pb| ≤ λ. First we will estimate a1 = pbχb

(
1− χ(1−b)

)
. Define ã1 =

p̃bχ̃b

(
1− χ̃(1−b)

)
, then |ã1 − a1| ≤ 7λ. Next, we will estimate a2 = (χ− χ0χ1). Define ã2 =

(χ̃− χ̃0χ̃1), then |ã2 − a2| ≤ 4λ. Let a3 = 1/a2. If we define ã3 = 1/ã2, then:

|ã3 − a3| ≤
4λ

λ1/3
(
λ1/3 − 4λ

) (
∵ a2 ≥ λ1/3

)
≤ 8λ1/3

(
∵

1(
λ1/3 − 4λ

) ≤ 2
λ1/3

)

Let t̃b = ã1ã3, then
∣∣t̃b − tb

∣∣ ≤ 9λ1/3, because λ ≤ 1
29 .
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Implementing the Oracles ΠH and ΠT . We show how to implement these oracles using only black-box

access tothe protocol.

Lemma 24. Given black-box access to the next message function of a stateless protocol π, we can efficiently

implement the oracle Π and provide statistically close approximations of ΠH and ΠT on queries v such that

χv ∈ [δ, 1− δ].

Proof. Implementing Π simply involves picking a random string r uniformly at random and returning the

bit fπ(v; r), where fπ is the next message function of the protocol π.

Suppose we want to implement ΠH for input v, such that χv ≥ δ. We generate (D + 1/ε)/δ transcripts

which are extensions of v. (This is performed by repeatedly calling Π on ui starting with u|v| = v and

ui+1 := Π(ui), till getting a complete transcript τ = uD.)

If there are no transcripts with outcome 1 (Heads) then we return 0 as the bit after v. Otherwise, return

the bit after v in the first transcript which has outcome 1 (Heads). Conditioned on there being such a

transcript, the bit produced is correctly distributed. On the other hand, the probability that none of the

transcripts has outcome 1 is at most (1− δ)(D+1/ε)/δ ≤ exp(−D− 1/ε). So the probability of generating the

output b is exponentially close to hb. The oracle ΠT is also implemented similarly.

So, by making at most D(D + 1/ε)/δ calls to f(·; ·) we can implement Π̃H and Π̃T that are statistically

close to ΠH and ΠT respectively, for all v such that χv ∈ [1− δ, δ].

5.3.3 Putting Everything Together

Now we can combine Lemma 22, Lemma 23 and Lemma 24 to obtain Theorem 8. When we run our attack

in the oracle world, we have νD =
(
1 + 9λ1/3

δ

)D

− 1 ≤ 18Dλ1/3/δ ≤ ε/4, since 9λ1/3/δ ≤ 1 and λ ≤
(

εδ
72D

)3
.

So, in the oracle world, for the root node of the protocol we have:

s1(A(1)(v), χ∗) + s0(B(0)(v), χ∗) ≤ 1 +
δ

(1− χ∗)
+

δ

χ∗
+

ε

4
≤ 1 +

3ε

4

s0(A(0)(v), χ∗) + s1(B(1)(v), χ∗) ≤ 1 +
δ

(1− χ∗)
+

δ

χ∗
+

ε

4
≤ 1 +

3ε

4

In the oracle world, the oracles are accessed at most poly(D+ε−1) times. Since the approximate oracles Π̃H

and Π̃T are statistically close to the respective original oracles, the attack behavior in the real world and
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the oracle world differ by at most ε/4. So, in the real world, for the root node of the protocol π we have:

s1(A(1)(v), χ∗) + s0(B(0)(v), χ∗) ≤ 1 + ε

s0(A(0)(v), χ∗) + s1(B(1)(v), χ∗) ≤ 1 + ε

Let χ+ and χ− be such that s1(χ+, χ∗) = s0(χ−, χ∗) = 1
2 + ε

2 . Now, Theorem 8 immediately follows.

5.4 Constant Round Weak Coin-Flipping

In this section we show a much stronger intractability implication of a weak coin-flipping protocol with a

very weak unbiasability guarantee, if the protocol has only constantly many rounds. Note that we do allow

the communication complexity of the protocol to be polynomial. We show the following result:

Theorem 12. If infinitely-often one-way functions do not exist then for any constant round coin-tossing

protocol π, there exist attacks Adv
(0)
A , Adv

(1)
A , Adv

(0)
B and Adv

(1)
B , such that for any ε = 1/poly(k) (0 < ε < 1),

the attacks run in polynomial time in k, and for sufficiently large k:

1. min
{
1−A(1), B(0)

}
≤ ε, and

2. min
{
A(0), 1−B(1)

}
≤ ε,

where A(b) (resp. B(b)) for b ∈ {0, 1}, is the expectation of the outcome when Alice runs the attack Adv
(b)
A

against honest Bob (resp. Bob runs Adv
(b)
B against honest Alice).

In other words, if infinitely-often one-way functions do not exist then with probability close to 1 either

Alice can bias the outcome to b or Bob can bias it to (1− b) starting from any transcript prefix v.

The attack has the following intuitive form: use the fact that any polynomial time function can be

inverted to implement next message function oracle for the protocol. At any point in the protocol, use this

to sample a polynomial-sized sub-tree of the protocol (with the density of children sampled at each node

increasing with depth), and run the PSPACE attack on this sampled tree to decide on the next move in the

attack. While conceptually simple, this idea runs into two complications.

• At each round, the response from the honest party may not fall within the sub-tree that was sampled for

the attack at that round; and as such the original attack computed may have no further relevance, and

no use in deciding the response in subsequent rounds. Further, the PSPACE attack involves evaluating

a max-average tree, and by sampling it is quite possible to miss the maximum.
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• During the attack the distributions on the nodes at each level of the tree can deviate significantly from

that under the honest execution, and the next message function oracles need to work well on these

distributions. These distributions depend on the behavior of the attack in the previous rounds, which

however carries out recursive look-aheads (in implementing the PSPACE attack), and these look-aheads

in turn involve accessing the next message function oracles. A simple attempt at implementing the

next message function oracles can lead to circularity.

The second issue can be taken care of by carefully defining a family of next message function oracles, which

not only depend on what depth in the protocol it is sampling a message for, but also on which iteration in

the PSPACE attack it appears in.

The first issue is addressed by the following intuition: even though it is possible for (say) Alice to miss

the maximum (i.e., the child where her advantage is maximum) by a large margin when sampling, this means

that a random choice should cause Alice to perform badly; hence this node confers advantage to Bob who is

trying to bias the coin in the opposite direction. The actual calculations include more details, and are given

in Section 5.4.1.

Implementing Inverters. Our attack is based on realizing an efficient algorithm I, called inverter, which

can efficiently perform the following task: Given a partial transcript v, it outputs a k-bit message m such

that Pr(m|v) is identical to the probability of π generating a transcript vm conditioned on the fact that v

is generated as a partial transcript.

Alternately, if we are able to sample uniformly at random from the set of randomness Rv of pairs (rA, rB)

such that Alice and Bob with local randomness rA and rB generate the partial transcript v when running

the protocol π, then we can implement I. We shall reverse sample from the set Rv and run the protocol for

one more round and obtain a transcript prefix vm.

We will show the following result:

Lemma 25. If infinitely-often one-way functions do not exist, then, for sufficiently large k, there exists a

class I = {Ĩi,j |i ∈ [D] and j ∈ [i]} of efficient inverters, such that if Alice uses Ĩi,j to invert v at height j

when she is attacking the (D− i+1)-th round then the behavior of Adv
(1)
A is at most 1/poly(k) different from

the case when she uses the actual inverter I.

Let f(x) = y be a polynomial time function and D be the distribution of f(x) when x is uniformly

sampled. If one-way functions do not exist, then there exists an efficient algorithm A such that A(y) is 1/kc

close to the uniform distribution when y is sampled according to the distribution D. Note that the guarantee

is only for the distribution D and not for any arbitrary distribution.
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So, we can not use this result to directly create an inverter. The main observation is that the set of nodes

Qi,j at height j required to invert when Alice is attacking the i-th round could be performed simultaneously.

In other words, they only depend on the nodes inverted while attacking i′ > i rounds or at higher levels

j′ > j. So, we define the the execution of Adv
(1)
A just before it inverts Qi,j as the function f . Now, the

inverter Ii,j = A could be used to invert all partial transcripts in Qi,j .

It is worth mentioning that the time complexity of Ii,j is only guaranteed to be polynomial in the time

complexity of all the inverters {Ii′,j′ |i′ > i or j′ > j}. So, the time complexity of the inverter I1,1 turns out

to be kΘ(1)D

, which is polynomial if and only if D is constant. Therefore, this approach works only when D

is a constant.

5.4.1 Constant Round Weak Coin-Flipping

In this section we will consider protocols whose transcripts are polynomially long but there are only constant

number of rounds (i.e., alternations between Alice and Bob while generating the transcript). In general, the

transcript tree can be thought of as a depth D (constant) tree with 2k fan-out at each node, where k is the

security parameter.

Recall that A(b)(v) (resp. B(b)(v)) represents the expectation of the outcome when Alice (resp. Bob)

wants to bias the outcome towards b in the subtree Sv. We will show the following result:

Theorem 5. If infinitely-often one-way functions do not exist then for any constant round coin-tossing

protocol π, there exist attacks Adv
(0)
A , Adv

(1)
A , Adv

(0)
B and Adv

(1)
B , such that for any ε = 1/poly(k) (0 < ε < 1),

the attacks run in polynomial time in k, and for sufficiently large k:

1. min
{
1−A(1), B(0)

}
≤ ε, and

2. min
{
A(0), 1−B(1)

}
≤ ε,

where A(b) (resp. B(b)) for b ∈ {0, 1}, is the expectation of the outcome when Alice runs the attack Adv
(b)
A

against honest Bob (resp. Bob runs Adv
(b)
B against honest Alice).

In other words, if infinitely-often one-way functions do not exist then with probability close to 1 either

Alice can bias the outcome to b or Bob can bias it to (1− b) starting from any transcript prefix v.

5.4.2 Oracle World

For simplicity, we will prove Theorem 12 in an oracle world where we have access to inverters. An inverter I,

when presented with a partial transcript v, honestly extends v by one round. The challenge is to implement
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these inverters so that they work well on the distributions effected by the attack (which in turn depends on

inverters). In Section 5.4.3, we will show how to efficiently approximate these inverters, if infinitely-often

one-way functions do not exist, such that the actual algorithm’s execution differ from the execution of the

attack in the oracle world by at most 1/poly(k).

Hypothetical Attack. First we present the ideal attack we want to perform when we are provided access

to inverters. We will describe the attack for Alice to bias towards 1 and other attacks can be analogously

defined. When Alice wants to bias the outcome towards 1, she attacks at all nodes in the transcript tree

which are Alice nodes. Suppose v is a partial transcript generated during the execution of the protocol. Our

attack is recursively defined. Let h be the height of the node v in the transcript tree and A(1)(v) be the

expected outcome when Alice is trying to bias towards 1 by performing her attack v onwards. For a leaf,

A(1)(v) is defined to be the color of v and for a Bob node v, A(1)(v) is the expectation of A(1)(u), where u is

a honest extension of the partial transcript v. When v is an Alice node, we shall use the following strategy

for Alice: Alice will sample Nh extensions of the partial transcript v, i.e. {u1, . . . , uNh
}, and finds i ∈ Nh

such that A(1)(ui) = maxi∈[Nh] ui. She sends the next message so that the computation moves to the node

ui in the transcript tree. Thus, A(1)(v) is defined as the expectation of maxi∈[Nh] ui where each ui is an

honest extension of v. The quantity Nh will be defined suitably later in this section. We remark that, for

every node v in the transcript tree, A(1)(v) or B(0)(v) are close to 1 or 0 respectively. This statement will be

formalized as a lemma later in this section and we will also see how we can choose our parameters so that

Alice or Bob can force 1 or 0 with near certainty.

Actual Attack. Despite having access to inverters, it is extremely hard to exactly compute the expected

A(1)(u) when u is an honest extension of v. The problem is considerably harder when we try to compute the

expectation maxi∈[Nh] ui. Instead, we will try to estimate the performance of the hypothetical attack using

repetitive sampling. Note that we might incur an additive error in our estimation and, with extremely low

probability, our estimation could be completely wrong. Thus, we will try to compute Ã(1)(v) and B̃(0)(v)

which are good estimations of A(1)(v) and B(0)(v) respectively with high probability; and we will recursively

use them in our attack instead of the exact A(1)(v) and B(0)(v) values.

Formally, the functions Ã(1)(v), B̃(0)(v) are such that, with probability (1− εh), the following conditions

are satisfied:

1.
∣∣∣A(1)(v)− Ã(1)(v)

∣∣∣ ≤ εh,

2.
∣∣∣B(0)(v)− B̃(0)(v)

∣∣∣ ≤ εh, and
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3. min
{

1− Ã(1)(v), B̃(0)(v)
}
≤ εh,

where h is the height of v in the transcript tree, εh+1 = Γ1/2ε
1/6
h and ε0 = Γ3/5ε6D+1

and Γ is a parameter

which will be defined later. The parameter Γ will be a large number which will be of the form (1/ε)Θ(1).

Given, a particular ε = 1/poly(k), we will show how to perform our attack. We will prove the following

result:

Lemma 26. In the oracle world where we have access to the ideal inverters, we can efficiently implement

Ã(1)(v) and B̃(0)(v) for all partial transcripts v; and min{1 − A(1)(v), B(0)(v)} ≤ εh, where h is the height

of the node v in the transcript tree.

We emphasize that the condition min{1−A(1)(v), B(0)(v)} ≤ εh is not probabilistic, unlike the properties

of the quantities Ã(1)(v) and B̃(0)(v). We also do not try to obtain tighter bounds because the qualitative

result does not change; although as intermediate steps, we will prove and use tighter bounds on these

quantities. To prove this lemma, we will proceed by induction on the height h of the node v. Recall that

leaves, which correspond to complete transcripts, have height h = 0 and the root r of the transcript tree has

height h = D. For the base case, consider any node v at height 0, i.e. either Alice or Bob announces that

the outcome is 0 or 1. In this case, it is trivial to implement Ã(1)(v) and B̃(0)(v).

For the inductive step, we will show that given an implementation of these functions for nodes with

height h we can implement these functions for any node at height (h + 1). W.l.o.g., let v be an Alice node

at height (h + 1).

Computation of Ã(1)(v). Prepare a set {u1, . . . , uNh+1}, where Nh+1 = ε
−1/2
h , of honest extensions of

the partial transcript v. Find the maximum Ã(1)(ui), for i ∈ [Nh+1]. Recall, that A(1)(v) is the expected

outcome of this experiment. Perform this task Mh+1 = Γ1/3ε
−1/3
h times and define Ã(1)(v) as the average

of the respective maximums. Intuitively, we are repeating the experiment Mh+1 times to obtain a good

estimation of A(1)(v). We will prove that this definition of Ã(1)(v) suffices by considering several intermediate

hybrid worlds.

1. As an intermediate world, suppose we have access to the ideal values of A(1)(u), where u is a honest

extension of the transcript v. A(1)(v) is defined as the expected outcome when we honestly sample

Nh+1 children of v and compute their average. Repeating this experiment Mh+1 times helps us

estimate A(1)(v) with ζ such that, with probability 1 − exp(−Θ(Γ)), the quantity
∣∣ζ −A(1)(v)

∣∣ is at
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most
√

Γ
Mh+1

= k1/3ε
1/6
h . We will choose Γ = Θ

((
1

ε6D

)5/8
)

such that,

exp(−Θ(Γ)) ≤ Θ
(

1
Γ

)
≤ Γ3/5ε6D

= ε1

≤ εh

This implies that the expression 1 − exp(−Θ(Γ)) in the Chernoff bound is at least 1 − εh, i.e. with

probability (1− εh) our estimation is within k1/3ε
1/6
h additive error of the actual value of A(1)(v).

2. Now, we replace every ideal value of A(1)(u) with (A(1)(u))′ such that (A(1)(u))′ = A(1)(u) with

probability 1−εh. In this hybrid, we get a new estimate ζ ′ such that, with probability 1−Mh+1Nh+1εh−

εh = 1− k1/3ε
1/6
h − εh, the error in our estimation

∣∣ζ ′ −A(1)(v)
∣∣ is at most k1/3ε

1/6
h . This step follows

from union bound.

3. Finally, replacing (A(1)(u))′ values with the Ã(1)(u) values, the new estimate Ã(1)(v) can deviate at

most εh away from the estimated ζ ′. This step follows from the fact that Ã(1)(v) is a convex linear

combination of Ã(1)(u) values. Thus, we can conclude that
∣∣∣A(1)(v)− Ã(1)(v)

∣∣∣ ≤ k1/3ε
1/6
h +εh ≤ εh+1,

with probability at least 1− k1/3ε
1/6
h − εh ≥ 1− εh+1.

Computation of B̃(0)(v). Compute {u1, . . . , uMh+1} honest extensions of the partial transcript v. Define

B̃(0)(v) as the average of B̃(0)(ui), where i ∈ [Mh+1]. Similar to the argument presented above, with

probability at least (1−Mh+1εh−εh) ≥ (1−εh+1), the quantity
∣∣∣B(0)(v)− B̃(0)(v)

∣∣∣ is at most Mh+1εh+εh ≤

Γ1/3ε
1/6
h + εh ≤ εh+1.

Attacks are good. For the final step in our inductive proof, we need to show that the quantities Ã(1)(v)

and B̃(0)(v) satisfy the third property of our theorem, i.e. at least one them is a very good attack; and

we also need to show that A(1)(v) or B(0)(v) is (respectively) close to 1 or 0 as well. Let (1 − p) be the

probability of A(1)(u) ≥ 1 − εh, where u is some honest extension of v by one round. Let q ≥ p (since,

inductively, A(1)(u) or B(0)(v) is within εh of 1 or 0 respectively) be the probability of B(0)(u) ≤ εh, where

u is some honest extension of v by one round. Observe that the maximum of Nh+1 samples of A(1)(u) is

at least 1− εh, unless each one of the sampled A(1)(u)s were less than 1− εh. Thus, the expected outcome

A(1)(v) is at least
(
1− pNh+1

)
(1− εh). Similarly, one can argue that B(0)(v) ≤ (1− p) + pεh ≤ (1− p) + εh.

There are two cases to consider:
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1. If p ≥ 1− ε
1/4
h , then B(0)(v) ≤ ε

1/4
h + εh.

2. If p ≤ 1− ε
1/4
h , then

A(1)(v) ≥
(
1− pNh+1

)
(1− εh)

≥
(

1−
(
1− ε

1/4
h

)Nh+1
)

(1− εh) , since p ≤ 1− ε
1/4
h

≥
(
1− exp

(
−Nh+1ε

1/4
h

))
(1− εh) , since (1− x) ≤ exp(−x)

=
(
1− exp

(
−ε
−1/4
h

))
(1− εh) , since Nh+1 = ε

−1/2
h

≥ (1− ε
1/4
h )(1− εh) , since x ≤ 1 =⇒ exp(−1/x) ≤ x

≥ 1− ε1/4 − εh , by expansion

So, we obtain that min{1 − A(1)(v), B(0)(v)} ≤ ε1/4 + εh ≤ εh+1. Finally, with probability (1 − εh+1), we

have min{1 − Ã(1)(v), B̃(0)(v)} ≤ (Γ1/3ε
1/6
h + εh) + (ε1/4

h + εh) ≤ εh+1. This completes the induction step

and the proof of the lemma.

Figure 5.4 describes the algorithm to implement Ã(1)(v). One important observation is that, since the

number of rounds D is constant, we have εi ≥ ε1 = Γ3/5εΘ(1). Since, at each round the time complexity of

our attack is poly(1/εi), our attack runs in polynomial time. Moreover, it is also easy to see that 1−A(1)(r)

or B(0)(r) is at most ε, where r is the root of the transcript tree.
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Subroutine to compute Ã(1)(v)

1. If v is a leaf, return Ã(1)(v) = χv.

2. If v is an Alice node at height j: Sample {u1, . . . , uNjMj} honest extensions of v by calling I(v).

Return

Ã(1)(v) =

∑Mj

k=1

[
maxNj

k′=1 Ã(1)
(
u(k−1)Nj+k′

)]
Mj

3. If v is a Bob node at height j: Sample {u1, . . . , uMj} honest extensions of v by calling I(v).

Return

Ã(1)(v) =
∑Mj

k=1 Ã(1)(uk)
Mj

Algorithm Adv
(1)
A

Let v be an Alice node at height j.

1. Sample {u1, . . . , vNj
} honest extensions of v using I(·).

2. Output the message m such that vm = argmaxk∈[Nj ] Ã
(1)(uk).

Figure 5.4: Computation of Ã(1)(v) to help Alice bias towards outcome 1.

5.4.3 Implementing Efficient Inverters

Before we proceed, let us recall some terminology related to nodes in the transcript tree. We will assume

that every complete transcript is comprised of D message exchanges. The root of the transcript tree is at

level 0; and every other node is at level one more than its ancestor. So, a full transcript describes a traversal

of nodes which are respectively at levels 0, 1, . . . , D. A level i node is reached as a consequence of i message

exchanges between Alice and Bob, for i ∈ [D]∪{0}. The height of a leaf of the transcript tree is 0; and every

internal node has height one more than its child. So, a leaf to root path visits nodes with height 0, 1, . . . , D

in that particular order. If a node has height h, then there are h more message exchanges between Alice and

Bob remaining before the full transcript is generated. Notice that the sum of the height and level of a node

is always D. Next, using this terminologies, we shall prove Theorem 12.

Given access to efficient inverters, Section 5.4.2 shows how Alice and Bob can efficiently bias the outcome

ε-close to b or (1− b), respectively. In this section, we will show that if infinitely-often one-way functions do

not exist then for sufficiently large Γ, we can efficiently implement close approximations of these inverters.

A closer look at our attack reveals that the inverters are used in the following manner. Suppose Alice

wants to bias the outcome to 1. Let the current partial transcript be v (suppose (D− i) message exchanges

have already taken place) and Alice is supposed to send the next message of the transcript. To generate her
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message, she needs to implement Ã(1)(·) functions for some nodes in Sv. In fact, she samples a subtree of

Sv such that, for some node u in it:

1. If u is an Alice node, then its degree is NjMj , and

2. If u is a Bob node, then its degree is Mj ,

where j is the height of u in the transcript tree. So, in other words, to generate the (D− i + 1)-th message,

Alice accesses polynomially many inverters on nodes u which are at height i, (i−1), . . . , 1 in that order. Let

Qi,j be the set of nodes at height j queried by Alice. Observe that all queries in Qi,j are independent of each

other; and without loss of generality, we can assume that all queries in Qi,j are performed simultaneously.

The number of queries performed is upper bounded in the following manner: |Qi,j | ≤
∏i

k=j MkNk.

Let Ĩi,j be the inverter used by Alice to query the nodes at height j when she is generating the (D−i+1)-

th message. We will provide an inductive construction of Ĩi,j , where i ∈ [D] and j ∈ [i]. Define Ii,j as the

collection of all inverters of the form
{

Ĩi′,j′ |(D ≥ i′ > i or D ≥ j′ > j) and j′ ∈ [i′] and i′ ≥ i
}

. Let A(rA)

be the attack algorithm for Alice when she tries to bias the outcome to 1, where rA is its random tape and

she uses the oracles provided in I0,0. We can assume, without loss of generality, that the random tape used

by A(rA) to run an instance of the inverter Ĩi,j is independently chosen. Let A(pre)
i,j (rA) be the execution of

A(rA) till it makes the Qi,j queries and outputs the set Qi,j , using the oracles provided in Ii,j . Consider the

following machine C(k,A(pre)
i,j ): It samples rA and rB uniformly at random and simulates a run of A(pre)

i,j (rA)

against a honest Bob with local randomness rB . Let C∗(k,A(pre)
i,j ) be the machine which runs C(k,A(pre)

i,j )

and concatenates rA ◦ rB at the end.

If infinitely-often one-way functions do not exist, then for any constant c and sufficiently large k, there

exists an efficient machine Ĩi,j such that [OW93]:

∥∥∥C∗(k,A(pre)
i,j )− C(k,A(pre)

i,j ) ◦ Ĩi,j(C,A(pre)
i,j , 0kcD2|Qi,j |)

∥∥∥
1
≤ 1

kcD2|Qi,j |

Note that the time complexity of Ĩi,j is at most kΘ(1)D2

, which is a polynomial because D is a constant.

Since there are finitely many inverters Ĩi,j and four different attacks, for sufficiently large k all inverters used

in each of our attacks perform well. By union bound, the behavior of our attacks when provided with I0,0

instead of the actual inverters I(·) can differ by at most 1/kc. This completes the proof of Theorem 12.
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Chapter 6

Separations

In our framework, we have seen that all our earlier results showed that reductions of the form F vppt G

are equivalent to either OWF assumption or sh-OT assumption. In this chapter, we will look at reductions

such that the computational assumptions necessary and sufficient to securely realize them define potentially

new assumptions which are intermediate to OWF assumption and sh-OT assumption. We shall consider

two-party semi-honest deterministic SSFE.

Two-party deterministic function evaluations which have perfectly secure protocols against semi-honest

adversaries were characterized by Kushilevitz and Beaver [Kus89, Bea89]. They showed that decompos-

able F (Chapter 2) are the only two-party deterministic functions which have perfectly semi-honest secure

protocols. It was shown recently that this characterization also extends when we consider statistical semi-

honest security [MPR09]. The functionalities are called semi-honest trivial functionalities. We emphasize

that this characterization extends to functionalities where the input domain sizes of the two parties are

bounded by a polynomial in the security parameter. Further, there are extremely complex functionalities

which need extremely strong computational assumptions to securely realize them against semi-honest adver-

saries. Kilian [Kil91] showed that if a deterministic SSFE F has an OR-minor then F vppt ∅ is equivalent

to sh-OT assumption. Moreover, any such F is also complete, i.e. using F as a black-box we can securely

compute any other functionality against semi-honest adversaries.

When the output space of these functionalities is of size at most 3, then every two-party deterministic

SSFE is either semi-honest trivial or complete [CK89, Kre11]. But if the output space is greater than 4,

then there are functions which are neither semi-honest trivial nor complete (refer Figure 1.3). Let CF be the

assumption: “There exists a semi-honest secure protocol for F”, where F is an intermediate deterministic

two-party SSFE. It is clear that CF is not unconditionally true and it implied by the sh-OT assumption.

Furthermore, incorporating the techniques of [IL89] in the proof of [MPR09], we can show that CF implies

OWF assumption. Characterizing the exact complexity of this assumption is the main focus of this chapter.

To claim that this assumption is distinct from the known assumptions intermediate to OWF assumption

and OWF assumption, we need to show that OWF assumption and PKE assumption do not imply CF .
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Additionally, CF does not imply the sh-OT assumption. These questions are dealt with in [MMP11] and in

this chapter we shall present partial results to this end.

We emphasize that the exact characterizations of complexity classes P and BPP are still unknown and,

thus, it seems difficult to define when one cryptographic primitive cannot be constructed given another.

Impagliazzo and Rudich [IR89] created a framework to show when one computational assumption does not

imply another computational assumption, when we consider some specific types of protocols. For exam-

ple, they showed a relativized world where OWF assumption holds but KA assumption does not. This

proves that any secure KA protocol cannot be based on black-box usage of OWF. In general, any rel-

ativizing technique cannot be used for building KA schemes based on OWF assumption. More formally,

they rule out fully black-box constructions as defined by [RTV04]. We note that non black-box techniques

in theoretical computer science, in general, and cryptography, in particular, are extremely rare. Only re-

cently, have we successfully learned to use the code of the adversary in security reductions [Bar01]. So,

such relativized separations are interpreted to imply that the cryptographic primitives capture distinct

classes of computational intractability assumptions. It is known that OWF assumption, KA assumption,

PKE assumption and sh-OT assumption are all distinct. Following [IR89] many other black-box separation

results followed [Sim98, GMR01, BPR+08, KSY11, MM11] (which this list is only a partial incomplete

one). Another trend of results is to prove lower-bounds on the efficiency of the implementation reduction

in black-box constructions [KST99, GGKT05, LTW05, HHRS07, BMG07, BM09, HHRS07]. A complemen-

tary approach has been to find black-box reductions for cases that non-black-box reductions were known

originally [GMW91, IL89, Ost91, OW93, Hai08, HNO+09]. Similar results are mentioned in Section 2.1.2.

The technique introduced in [IR89] considers an oracle O which provides parties access to a random

oracle and a PSPACE oracle. Providing access to the PSPACE oracle implies that any non-triviality in

security achieved by protocols in this relativized world can be attributed to the random oracle and not

on the bounded computational power of the parties. In this relativized world, it is easy to see that one-

way functions exist. Even parties with unbounded computational power which perform only polynomially

many queries to the random oracle, cannot invert a random image of the random oracle with non-negligible

probability. They show that if there exists any secure KA protocol where parties access O then there exists a

KA protocol where parties do not access the random oracle (but still have access to the PSPACE oracle). We

know that this is impossible, because any eavesdropper can successfully guess the secret with non-negligible

probability if the parties agree on a secret with non-negligible probability. In this chapter we shall show

that CF is separated from OWF assumption. We will also generalize this result to a wide class of oracles

called atomic sub-modular oracle. Further arguments in [MMP11] show that CF is also separated from
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PKE assumption.

Random oracles have proven to be extremely powerful in cryptography, for example [FS86], to securely

realize information theoretically impossible cryptographic constructs and improve round complexity of cryp-

tographic schemes. For example, using a random oracle we can construct information theoretically standalone

secure commitment schemes, which are impossible in the plain model. In fact, these schemes can be perfectly

binding, with probability close to 1, if the random oracle is length tripling. Although random oracles are

used to capture the idealized versions of several properties of cryptographic functions, for example one-way

functions etc., a security proof in the random oracle model is not accepted as a convincing proof, following

[CGH98]. But, it is still used for heuristic arguments of security and as an idealized version of cryptographic

primitives like one-way functions, collision resistant hash functions etc. Similar to [IR89], we show that

random oracles are useless for two-party deterministic SSFE.

6.1 Techniques

Our approach is a generalization of the techniques introduced in [BM09]. We will build and improve their

approach to show that if parties have unbounded computational power then random oracles are useless

for them for semi-honest secure computation. Next, we apply the semi-honest attack on undecomposable

SSFE introduced in [MPR09] to this compiled protocol. We emphasize that the approach in [MMP11] uses

similar ideas but, instead of generalizing the results of [BM09], reduces the current problem to the results

in [BM09, DLMM11].

Compilation. The first step in our proof is to show that if an undecomposable SSFE F has semi-honest

secure protocol when parties have access to O = (R,PSPACE), where R is a random oracle, then there

exists a semi-honest secure protocol for F when parties have access to PSPACE oracle only. This compiled

protocol has similar completeness and security guarantees. Barak and Mahmoody [BM09] showed a similar

result which proved that access to random oracles is useless for key-agreement protocols. The main idea is to

create a curious eavesdropper Eve who asks highly likely queries based on her view. The eavesdropper’s view

comprises of the publicly generated transcript and the prior query-answer list she obtained by querying the

random oracle. Their Eve algorithm queried all highly likely queries and when she stopped, the probability

of any query being in Alice or Bob view conditioned on her local view was below a threshold ε. Additionally,

the joint view of Alice and Bob views consistent with Eve’s view was close to a product distribution. Thus,

Eve could sample one Bob view consistent with her current view and can predict the common key agreed

by Alice and Bob with significant probability.
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This strategy does not suffice for our problem. First problem is that Alice and Bob run the protocol

with inputs x and y which might be correlated. In the key-agreement protocol Alice and Bob did not have

local inputs for their next message generation algorithms. Eve, who is unaware of the exact values of x and

y, needs to perform her attack oblivious of these values.

The second issue that arises is due to the nature of our attacks on undecomposable F as introduced

in [MPR09]. These attacks crucially depend on the fact that the next message function of the parties is

randomized function of the partial transcript generated so far and their local inputs. We shall call this

property “Markov-chain property”, because the next message function of, say, Alice depends only on the

partial transcript and her local input x and not on Bob’s view. But in presence of random oracles it is not

guaranteed that the Markov-chain property holds. So, Eve needs to kill the dependencies between Alice and

Bob views so that the Markov-chain property holds without knowing the explicit values of Alice and Bob’s

local inputs.

Our eavesdropper algorithm works as follows. We assume that there are several input-less protocols

π(x, y), where Alice and Bob have local inputs fixed to x and y respectively. Our eavesdropper spawns one

curious eavesdropper for every (x, y) ∈ X × Y . If there is any query which is highly likely for some protocol

π(x, y) all eavesdroppers ask this query. We show that if there are no highly likely queries left in any of

these protocols, then the Markov-chain property holds. Furthermore, such an eavesdropper is efficient. To

show that this strategy is efficient, we need to prove stronger versions of the results included in [BM09].

Completeness vs. Security. Previously, we saw that it is possible to compile out the random oracle if

parties have unbounded computational power (access to a PSPACE oracle suffices). For any protocol which

is (1− negl) complete and (1− negl) semi-honest secure, we obtain a protocol which is (1− ε) complete and

(1−ε) semi-honest secure. And the running time of the compiled protocol depends on 1/ε. Although, ε could

be driven down to arbitrary precision, it is still non-negligible. So, the compiled protocol has non-negligible

insecurity and incompleteness. It is not evident whether a given undecomposable F could possible have such

weakly semi-honest secure protocols. For example, coin tossing protocols could have arbitrary low insecurity

if a sufficiently long protocol is used [Cle86].

The result in [MPR09] provides a gradual tradeoff between completeness and security. They show that as

we increase completeness, the semi-honest insecurity of the protocol also increases. Thus, there is a unique

ε∗ such that (1− ε∗) complete protocol for F has (1− ε∗) semi-honest security, where ε∗ = 1/poly for some

polynomial. Using this result, we can obtain a contradiction by using any ε < ε∗.
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Generalized Oracles. The above mentioned results consider oracles which are restricted to random or-

acles. We can, in fact, generalize these oracles to much more general oracles, called atomic sub-modular

oracles. These oracles can be used to capture several useful properties. For example, we can consider oracles

which are injective length tripling random oracles. Moreover, we can also provide access to oracles which

answer whether a particular point in the range of the random oracle has a pre-image or not. Showing that

any atomic sub-modular oracle is useless for semi-honest secure computation is extremely useful in lifting

our results to other oracles which show much more structure.

For example, consider the generic PKE-oracle with respect to which there exists a secure PKE protocol

[GKM+00].

1. Gen: Given a secret key sk, Gen(sk) is an injective length tripling random oracle which provides a

public key pk.

2. Enc: Given a public key pk and a message m, Enc(pk, m) is an injective length tripling oracle which

outputs the cipher text corresponding to encrypting m with the public key pk.

3. Test1: Given a pk, it answers whether there exists sk such that Gen(sk) = pk or not.

4. Test2: Given a pk and c, it answers whether there exits sk and m such that Gen(sk) = pk and

Enc(pk, m) = c.

5. Dec: This is the decryption oracle and dealing with this oracle needs slightly different approach (refer

[MMP11]). Given sk and c, it outputs m such that Gen(sk) = pk and Enc(pk, m) = c.

The quartet of oracles without the decryption oracle, (Gen,Enc,Test1,Test2), shows significantly more

structure than random oracles. We show that our compiler which shows that random oracles are useless for

semi-honest secure function evaluation also works when we consider atomic sub-modular oracles. The result

of [MMP11] which shows that PKE-oracle is useless for semi-honest secure function evaluation crucially relies

on this result.

6.2 Random Oracles do not Help Semi-honest Secure

Computation

In this section we will prove the following theorem:
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Theorem 6. Suppose there exists a (1 − negl) semi-honest secure protocol for an undecomposable F when

parties have access to a random oracle and PSPACE oracle; then there exists a (1− 1/poly) semi-honest secure

for F where parties have access to a PSPACE oracle and arbitrarily chosen polynomial poly.

This theorem will be useful to show that random oracles are useless for semi-honest secure computation

when deterministic two-party SSFE is considered. In other words, we will show that the assumption “There

exists a semi-honest secure protocol for F”, where F is an undecomposable two-party deterministic SSFE,

is black-box separated from OWF assumption. We will provide a proof which does not use the results in

[BM09, DLMM11] in a black box manner. The main technique will involve transforming the secure protocol

for F which uses O into one where parties have access to a PSPACE oracle but have no access to the random

oracle. A result from [MPR09] shows that no undecomposable F can have a semi-honest secure protocol

when parties have unbounded computational power (PSPACE oracle suffices).

Lemma 27 (Completeness vs. Security [MPR09]). Let F : X × Y 7→ {0, 1}∗ be an undecomposable SSFE.

Suppose Π is a two party protocol to evaluate F where Alice has an input x ∈ X and Bob has an input

y ∈ Y . If Π is a (1− ν) complete protocol then Π is σ-insecure, where

σ ≥
(

1− 1
21/(|X|+|Y |)

)
(1− 4|X||Y |ν)

4|X||Y |(|X|+ |Y |)
≥ (1− 4|X||Y |ν)

2(|X|+ |Y |)4
.

In particular, there exists a polynomial poly such that for any function F which does not have a perfectly

secure protocol, any protocol for evaluating f has a security error of at least 1/poly(|X × Y |).

We emphasize that this transformation is not round preserving. In this dissertation, we will present

a proof which generalized results in [BM09] to show the result. The proof included in [MMP11], uses

[BM09, DLMM11] reduces Theorem 6 to the results included in these prior works. We will assume that the

reader is familiar with the proof techniques introduced in [BM09].

6.2.1 Notation

A random oracle is an infinite string R = R1R2 . . . , whose each bit is picked uniformly at random. When

queried at a point q, the random oracle replies back with the bit Rq in O(1) time. A 2n round two party

protocol between Alice and Bob accessing a random oracle is said to be in normal form if it satisfies the

following conditions:

1. During round i ∈ [2n], Alice or Bob sends only one bit τi. Alice sends the first message and thereafter

they send messages alternately, i.e. the bit τ2j−1 is sent by Alice τ2j is sent by Bob.
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2. Suppose i is odd and to generate the bit τi Alice does the following: Based on her local input x, local

randomness rA, transcript seen so far τ i−1
1 and her local query-answer list I

(i)
A , she deterministically

generates the bit τi as instructed by the next message function of π. Similarly, Bob also generates the

bit τi when i is even.

3. Alice and Bob never repeat a query, i.e. they always perform new queries in every round1.

4. For any Alice and Bob input x and y, any arbitrary transcript is generated with non-zero probability2.

If some two-party deterministic SSFE can be evaluated in a semi-honest securely using a random oracle,

then we can assume that it also has a semi-honest secure protocol in the normal form.

Suppose Alice and Bob are running a 2n round normal form protocol π, i.e. Alice and Bob send n bits

each. At the end of i rounds of the protocol π, the view of Alice comprises of: a) her input x ∈ X, b) local

randomness rA, c) the transcript τ i
1, and d) her list of query answer-pairs represented by I

(i)
A . Similarly,

Bob has input y ∈ Y , local randomness rB and his list of query answer-pairs I
(i)
B . Then the view of Alice is

V
(i)
A = (x, τ i

1, rA, I
(i)
A ) and Bob’s view is V

(i)
B = (y, τ i

1, rB , I
(i)
B ).

We intend to define a consistency graph of views with respect to an eavesdropper Eve who has access

to the random oracle and the transcript being generated by Alice and Bob. Let I(i) be the public set of

query-answer pairs that an eavesdropper generated after seeing a transcript τ i
1. Here Eve’s view can be

represented by the tuple V
(i)
E = (τ i

1, I
(i)). An execution of π is well defined by a tuple (x, y, rA, rB , R), where

x, y are Alice and Bob inputs, rA, rB are their respective local randomness and R is the random oracle.

We say that an Alice view V
(i)
A = (x, τ i

1, rA, I
(i)
A ) and a Bob view V

(i)
B = (y, τ i

1, rB , I
(i)
B ) are consistent with

Eve’s view VE = (τ i
1, I

(i)) if, there exists a random oracle R such that the execution defined by the tuple

(x, y, rA, rB , R) produces Alice, Bob and Eve views (x, τ i
1, rA, I

(i)
A ), (y, τ i

1, rB , I
(i)
B ) and (τ i

1, I
(i)) respectively.

An Alice view V
(i)
A is consistent with Eve’s view V

(i)
E , if there exists a Bob view V

(i)
B such that V

(i)
A and

V
(i)
B are consistent with V

(i)
E . Similarly, we can define consistency of a Bob view V

(i)
B with Eve’s view V

(i)
E .

We define A(i)
x as a multi-set of all Alice views V

(i)
A which are consistent with the Eve’s view V

(i)
E and Alice

has local input x, and the number of copies of view V
(i)
A in A(i)

x is proportional to 2−|I
(i)
A \I

(i)|. In particular,

we can consider a multi-set Ax, where there are 2n−|I(i)
A \I

(i)| copies of V
(i)
A . Intuitively, we want to weigh

each V
(i)
A proportional to the number of random oracles which are consistent with V

(i)
A and V

(i)
E which is

1If Alice was supposed to query at q and Alice had already queried q, then she queries the smallest query after q which she
has not yet queried. This transformation should work for any protocol which permits curious parties.

2If the first n-bits in the local random tape of Alice is 0n, then in the i-th round Alice queries the random oracle at i and
sends the (n + i)-th bit in its local random tape. If the first half of the bits in the local random tape is not all 0s, then the
random tape is used to run the original protocol. Similar modification can also be done for Bob.
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2N−|I(i)
A \I

(i)|.3 Analogously, we define B(i)
y as the multi-set of Bob views consistent with Eve’s view where

each view is suitably weighted.

A consistency graph with respect to Eve’s view V
(i)
E , represented as C(V (i)

E ), is a bipartite graph with

partite sets A(i) = ∪x∈X A(i)
x and B(i) = ∪y∈Y B(i)

y . We add an edge between V
(i)
A and V

(i)
B if V

(i)
A and

V
(i)
B are consistent with respect to V

(i)
E . A projection of C(V (i)

E ) to include only the vertices A(i)
x and B(i)

y is

represented as C(V (i)
E )[A(i)

x ,B(i)
y ]. One can make a simple observation that if V

(i)
A is consistent with V

(i)
E and

V
(i)
B is consistent with V

(i)
E then V

(i)
A and V

(i)
B are consistent with respect to V

(i)
E if and only if all queries in

I
(i)
A \ I(i) and I

(i)
B \ I(i) are consistently answered.

A restricted notion of consistency was introduced in [BM09]. Two views V
(i)
A and V

(i)
B are good with

respect to V
(i)
E if I

(i)
A ∩ I

(i)
B ⊆ I(i), i.e. all intersection queries in I

(i)
A and I

(i)
B are included in I(i). It is easy

to see that goodness implies consistency, because if two views V
(i)
A and V

(i)
B are good with respect to i then

they are also consistent with respect to V
(i)
E . Although it might be the case that there are consistent views

such that the I
(i)
A ∩ I

(i)
B 6⊆ I(i). Now, we can define a good-execution graph with respect to Eve’s view V

(i)
E ,

represented as G(V (i)
E ). It is a subgraph of C(V (i)

E ) where we add edges between two views V
(i)
A and V

(i)
B if

they are good with respect to V
(i)
E . So, we exclude any edge in C(V (i)

E ) which is between two views V
(i)
A and

V
(i)
B consistent with V

(i)
E but are not good. One important property of this representation is:

Lemma 28 ([BM09]). The following two are identical distributions:

1. Picking a random edge from G(V (i)
E )[A(i)

x ,B(i)
y ] and return the corresponding Alice and Bob views.

2. Fix Alice and Bob inputs to be x and y respectively. Sample uniformly from the space of all executions

such that after i rounds Alice and Bob views are good with respect to V
(i)
E and the inputs of Alice and

Bob are x and y, respectively. Return Alice and Bob views generated after running i rounds of the

protocol π.

This result can be used to uniformly sample from any good execution consistent with V
(i)
E . It is equivalent

to uniformly picking an edge in G(V (i)
E ) and returning the corresponding Alice and Bob views.

A (γ, δ)-nice Eve view V
(i)
E = (τ i

1, I
(i)) satisfies the following properties:

1. Low weight queries: For any A(i)
x , a query q occurs in at most γ fraction of the views in A(i)

x . Similarly,

for any By, a query q occurs in at most γ fraction of the views in By.

3We are using 2n−|I(i)
A

\I(i)| copies of V
(i)
A instead of simply using 2N−|I(i)

A
\I(i)| copies because in the first representation,

there is a efficient representation for every vertex in A(i)
x and in the latter case there is no efficient representation of the vertices

in A(i)
x .
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2. High connectivity: For any A(i)
x and B(i)

y , a view V
(i)
A ∈ A(i)

x is connected to at least (1 − δ) fraction

of the views in B(i)
y . Similarly, for any A(i)

x and B(i)
y , a view V

(i)
B ∈ B(i)

y is connected to at least (1− δ)

fraction of the views in A(i)
x .

Intuitively, it means that there is no high probability query in either Alice or Bob view in G(V (i)
E ) and the

joint-distribution of Alice-Bob views is close to a product distribution.

6.2.2 Argument

Suppose we have executed i rounds of a normal form protocol π and Alice is supposed to send the next bit

in the protocol. In this section, we assume that Eve has generated a (γ, δ)-nice view V
(i)
E = (I(i), τ i

1) and in

the next section we will see how to generate such an Eve view inductively. For any view V
(i)
A in A(i), we

can deterministically compute the next query q that Alice will perform. If this query lies in I
(i)
B \ I(i), when

V
(i)
B is uniformly chosen from B(i)

y , then we say that event Inter-turn-Faili has occurred. Conditioned

on this event not occurring, there are two cases to consider:

1. If q is already included in I
(i)
A ∪I(i): Since the protocol is in the normal form, q ∈ I(i) \I(i)

A . Let I
(i)
A

be the local query-answer list of Alice and I
(+)
A be the local query-answer list after the query-answer

pair (q, b) is added to I
(i)
A , where b = Rq and (q, b) ∈ I(i). We denote the new Alice view as V

(+)
A .

Observe that V
(+)
A and V

(i)
B are good with respect to V

(i)
E if and only if V

(i)
A and V

(i)
B are good with

respect to V
(i)
E . So, V

(+)
A is connected to at least (1− δ) fraction of any B(i)

y , for y ∈ Y .

2. If q is not included in I
(i)
A ∪ I(i): In this case, from the current public query-answer list generated

by Eve and from Alice’s view, querying the random oracle at q is equally likely to return 0 and 1.

Observe that if V
(i)
A and V

(i)
B are good with respect to V

(i)
E and q is not queried in V

(i)
B , i.e. q 6∈ I

(i)
B ,

then V
(+)
A , regardless of the random oracle’s answer b, and V

(i)
B are also good with respect to V

(i)
E .

The view V
(i)
A and at least (1− γ − δ) fraction of Bob views in B(i)

y are good with respect to V
(i)
E and

q 6∈ I
(i)
B , because q occurs in less than γ fraction of views of B(i)

y .

Now, for every Alice view V
(+)
A , we can deterministically ascertain whether the next bit τi+1 in the protocol

is 0 or 1.

We are interested in computing an intermediate graph to capture the view of Alice and Bob executions

just prior to sending τi+1 which are good with respect to V
(i)
E . If V

(i)
A was such that q ∈ I(i) then for every

copy of V
(i)
A ∈ A(i) we make a copy of V

(+)
A (this is because I

(+)
A \I(i)

E and I
(i)
A \I

(i)
E are identical). Otherwise,

for every two copies of V
(i)
A we make one copy of V

(+)
A with b = 0 and another with b = 1 (this is because

|I(+)
A \ I

(i)
E | − |I

(i)
A \ I

(i)
E | = 1). Similar to the notation earlier, let this set of Alice views be called A(+) and
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those with Alice input x be called A(+)
x . Basically, it is the multi-set of all Alice views just prior to sending

τi+1 with appropriate multiplicity for every view. We consider the bipartite graph G+(V (i)
E ) with partite

sets A(+) and B(i) with edges between V
(+)
A and V

(i)
B if they are good with respect to V

(i)
E . Let αI(i)(x, τ i

1)

be the fraction of Alice views in A(+)
x which sends 0 as the next bit in the protocol. For any arbitrary x ∈ X

and y ∈ Y , it can easily be concluded that:

(1− γ − δ) ≤
Pr

(VA,VB)←G(+)(V
(i)

E )[A(+)
x ,B(i)

y ]
[τi+1 = 0]

αI(i)(x, τ i
1)

≤ 1
(1− γ − δ)

We use the notation u ≈µ v to represent min{µ, 1/µ} ≤ u/v ≤ max{µ, 1/µ}. So, we have shown that

Pr
(VA,VB)←G(+)(V

(i)
E )[A(+)

x ,B(i)
y ]

[τi+1 = 0] ≈(1−γ−δ) αI(i)(x, τ i
1)

Observe that the quantity αI(i)(x, τ i
1), for every x ∈ X, can be estimated by Eve if she has unbounded

computational power. So, we can conclude the following:

Lemma 29. Conditioned on the event that the execution has remained “good” for every round r ∈ [i]

1. The probability of the event Inter-turn-Faili is at most γ.

2. Conditioned on the event that Inter-turn-Faili does not happen, the probability of Alice sending

next bit τi+1 = 0 is within a multiplicative factor of (1− γ − δ) from αI(i)(x, τ i
1).

6.2.3 Eve Strategy

We follow the notation introduced in [BM09] to explain our Eve strategy, represented by Eve∗. With respect

to an Eve view V
(i)
E , a query q is heavy for an input pair (x, y) if Pr

(V
(i)

A ,V
(i)

B )←G(V (i)
E )[A(i)

x ,B(i)
y ]

[q ∈ I
(i)
A ∪I

(i)
B ] ≥

ε/n.

1. Initialize list L to an empty set. The list L will contain all inputs (x, y) such that, over the history of

generation of V
(i)
E , Eve tried to perform the (1 + n2

/ε2)-th heavy query in G(V (i)
E )[A(i)

x ,B(i)
y ].

2. Choose q which is heavy for some (x, y) such that (x, y) 6∈ L. Increment the count of heavy queries

for every (x′, y′) 6∈ L if q is heavy for (x′, y′). For every (x′, y′), if q is (1 + n2
/ε2)-th heavy query for

(x′, y′), then add (x′, y′) to L. If the set X × Y \ L is non-empty, then query the random oracle at q;

otherwise abort.

We can import the following result form [BM09]:
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Lemma 30 (Highly like to be Good [BM09]). Conditioned on the fact that Eve∗ does not abort, an execution

will remain “good” for every round of π with probability at least (1− 3ε).

At the end of a round, if we have no heavy queries for any input pair (x, y) ∈ X × Y , then it implies a

(2ε/n, 2ε)-nice Eve view. By definition, the Eve∗ algorithm presented here is efficient4. It aborts if it tries

to perform |X||Y |(1 + n2
/ε2) queries. So, all we need to ensure is that the probability of Eve∗ aborting is

small.

In the remainder of the section, we will introduce the notion of eavesdroppers who are allowed to perform

only bounded number of heavy queries. Then we will show that we can come up with an algorithm Eveπ

which uses these eavesdroppers to mimic the behavior of Eve∗ and it fails with probability at most 4ε.

Alternate Eve Description. We introduce a particular class of Eve strategies, called bounded-query Eve

strategy. Let ρ be an input less protocol in normal form, i.e. Alice and Bob locally honestly pick random

tapes rA and rB and they are allowed to access the random oracle once every round. An Eve algorithm in

the class Bounded-Eve(B, ρ) satisfies the following conditions:

1. The algorithm of Eve can follow any arbitrary mechanism to generate the queries for the public query-

answer list I(i).

2. At any particular round i ∈ [2n], we consider the good executions of ρ consistent with Eve view V
(i)
E .

A query q is classified as “heavy” if, with respect to the current Eve view V
(i)
E , q is a query which

occurs with probability at least ε/n. The only restriction is that, at the end of each round i when Eve

stops querying there should be no more heavy queries left in the good-execution graph of ρ.

3. The algorithm is permitted to perform at most B heavy queries. If it tries to perform (B +1)-th heavy

queries then it returns Failure.

4. Eve is terminated if all queries consistent with the current Eve view, at the end of round 2n of the

protocol ρ, are not heavy or if it returns Failure. If Eve terminates without failure, it returns

Success.

Basically, in this class we are trying to capture Eve algorithms which might perform several light queries

in between the heavy queries; but we charge the algorithm only when heavy queries are performed. The

result in [BM09] can be generalized to the following:
4 Explicitly, Eve∗ performs a query q if:

1. The query q is heavy for some input pair (x, y) 6∈ L, and

2. There exists an input pair (x′, y′) 6∈ L such that: Either q is not heavy with respect to (x′, y′), or q is at most the

n2/ε2-th heavy query for (x′, y′) over the history of generation of V
(i)
E .

114



Lemma 31 (Heavy Queries are never Useless [BM09]). For any two party protocol ρ, when ρ is honestly

run, any Bounded-Eve(n2
/ε2, ρ) outputs Failure with probability at most 4ε.

Proof. The bound on the event “Fail” still remains identical.

For the remainder of the proof, we can define the variables suitably and keep the analysis identical as in

[BM09]. For example, we need to make the following changes:

1. Long is the event that Eve makes more than n2
/ε2 heavy queries.

2. Yj as indicator variable for the event that Eve sends at least j heavy queries.

3. pj as the probability that Eve asks the j-th heavy query.

4. Y q
j as the indicator variable for the j-th heavy query asked by Eve is q and q was asked before by Alice

or Bob.

The whole proof remains identical.

Here we are considering arbitrary Eve strategies; but the guarantee of “Fail” probability being small

is dependent on the fact that transcripts were generated based on honest execution of ρ. Intuitively, the

lemma says that there is no way an Eve can make more than n2
/ε2 heavy queries and the event that the

good-execution graph still has a heavy query remaining happens with probability more than 4ε.

Our construction of Eveπ for the protocol π honestly running with any input x∗ ∈ X and y∗ ∈ Y is as

follows5:

1. It will spawn an algorithm Eve(x,y), for every Alice input x and Bob input y, in the class Bounded-

Eve(n2
/ε2, π(x, y)). Here π(x, y) is the input-less protocol π where Alice and Bob have their inputs

fixed to x and y respectively, and both parties uniformly choose their local randomness and follow the

protocol π accessing a random oracle R.

2. List L is initialized to an empty set. List L is going to store inputs pairs (x, y) such that Eve(x,y)

were terminated when it tried to perform its (1 + n2
/ε2)-th heavy query. We will assume that if Eveπ

requests an Eve(x,y), for some (x, y) ∈ L, to query the random oracle it keeps returning Failure.

This list will be updated every time Eveπ decides to query the random oracle. For account keeping

purposes, we will additionally define last(x, y) as the (1 + n2
/ε2)-th heavy query that Eve(x,y) tried to

perform.
5The construction of Eveπ is oblivious to the exact x∗ and y∗ values.
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3. If there exists an input pair (x′, y′) 6∈ L and a query q such that q is heavy for input pair (x′, y′) then

Eveπ requests every Eve(x,y) to query q. If some Eve(x,y) queries the random oracle at q, i.e. not all

Eve(x,y)s output Failure6, then we add the query answer pair (q, Rq) to the public query list I(i). We

add entries to the list L to include any (x, y) such that Eve(x,y) returned Failure for the first time

and suitably add last(x, y) entries for them. If every Eve(x,y) outputs Failure then Eve aborts the

protocol and outputs Failure overall. Every round, we repeat these steps till there are no heavy

queries for any input pair (x, y) left in the graph G(V (i)
E )[A(i)

x ,B(i)
y ]. And if we are able to successfully

complete this algorithm for every round i ∈ [2n] of the protocol π then return Success overall.

Bounding the failure probability: It is easy to see that Eveπ queries at most |X||Y |(1 + n2
/ε2) queries,

because every query is heavy for some input not in L and we never delete an entry from L.

Consider an execution of Eveπ where it outputs Failure overall, then we know that every entry X×Y

is in L. In particular (x∗, y∗) is in L. This implies that just prior to performing last(x∗, y∗) there was a

heavy query left in G(V (i)
E )[A(i)

x∗ ,B(i)
y∗ ]. Consider Eve′ which runs Eveπ and terminates just before performing

the query last(x, y). Eve′ is in the class Bounded-Eve(n2
/ε2, π(x∗, y∗)). This shows that Failure overall

is at most 4ε; otherwise we will get a contradiction.

Finally, it is trivial to see that Eve∗ aborts if and only if Eveπ outputs Failure overall; hence we

conclude that Eve∗ aborts with probability at most 4ε.

6.2.4 Putting Everything Together

Consider the following π∗ algorithm: We run Eve∗ after every round of the protocol. To build the protocol

tree T(x,y), for every partial transcript τ i
1, we define the probability of next bit being 0 to be αI(i)(x, τ i

1) if

it is an Alice node. Similarly, for a Bob node, we define the probability of next bit being 0 as βI(i)(y, τ i
1).

For every edge in the protocol tree we have a probability associated to make that transition and every node

has an associated query-answer list generated by Eve. In these protocol trees, the random oracle is only

accessed by Eve∗. Alternately, Eve∗ can simulate such an random oracle in her head, i.e. when she needs

to query the random oracle at q, she uniformly samples a random oracle R consistent with her current view

and pretends that R(q) is the outcome of the random oracle when queried at q. Moreover, Eve∗’s strategy

is deterministic, so Alice or Bob could implement the Eve∗ strategy, thus providing a protocol T(x,y) in the

plain model.

Using simple union bound, we can claim that the distribution of transcripts generated in the simulation

of π by π∗ and the distribution of transcripts as generated by π have statistical distance at most Θ(ε).

6Every Eve(x,y) such that (x, y) ∈ L always returns Failure.
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Hence, we obtain Theorem 6. If the original protocol, where parties have access to the random oracle and

the PSPACE oracle, was (1−negl(n)) complete and (1−negl(n)) semi-honest secure, then the final protocol,

where parties have access to a PSPACE oracle, is (1−1/poly(n)) complete and (1−1/poly(n)) semi-honest secure

for arbitrary choice of polynomial poly.

6.3 Black-Box Separations

In this section we prove the blackbox separations implied by our impossibility result in the random oracle

model.

Theorem 7. Suppose F : X × Y 7→ Z is a function which is not decomposable (and thus does not have

a perfectly secure two-party protocol) and |X| · |Y | = poly(n) where n is the security parameter. Then

there is no secure black-box two-party protocol for computing F based on the primitive P if P is one of the

following: one-way function, one-way permutation, collision resistant hash function, block-cipher (including

exponentially hard versions of these primitives). In fact, P can be any primitive that can be constructed from

random oracle (or ideal cipher) in a black-box manner.

In this section we will assume that the random oracle is a random function from {0, 1}n to {0, 1}n, where

n is the security parameter. Our previous results, where we interpreted a random oracle as a long string

with every bit independently and uniformly generated, also extend to this model of random oracles.

The Case of P = one-way functions (OWF). Let F be the function described in the statement of the

theorem. Suppose CO is a black-box construction of a semi-honest secure evaluation of F with completeness

1 − negl(n), given black-box access to any one-way function O. Let S be the efficient black-box security

reduction that for every oracle O, and every adversary A against CO which violates the semi-honest security

with non-negligible probability, SO,A inverts O with non-negligible probability. We feed the construction

a random oracle O as input. Since, F is undecomposable we know from Theorem 6 and Lemma 27 that

there exists an adversary A′ which violates the semi-honest security of the construction with non-negligible

probability ε. Formally, over all choices of random oracles and the random tapes of this adversary A′ the

probability that it violates the security the protocol is at least ε. This implies that there are ε/2 fraction of

random oracles such that A′ violates the security of the protocol with probability at least ε/2. For each such

random oracle, we can use the reduction SO,A′
to invert the one-way function with non-negligible probability.

Thus, we have an efficient algorithm which performs only poly(n) queries to the random oracle and inverts it

with non-negliible probability. But this is a contradiction, because any, possibly computationally unbounded,
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algorithm who asks at most k = 2o(n) queries to a random oracle, is able to invert a random image O(Un)

only with probability ≤ k/2n = 2−Ω(n) = negl(n).

The Case of P = collision resistant hashing (CRH). The case for collision resistant hash functions is

very similar to that of one-way function. In fact, the same argument as for the case of one-way function can

be used for any primitive that can be derived in an information theoretically secure way, from random oracle

model. An implementation of a CRH h from a random oracle O is very easy: h(x) = O(x)d
|x|/2e

1 , where yj
i

represents the i to j bits of the string y. Then, again, the black-box implementation reduction allows us to

feed the construction with a random oracle, and the black-box security reduction gives a way to break the

random hash function with only poly(n) queries, which is impossible.

The Case of P = one-way permutation (OWP). Here, the argument relies on a fact, first employed

by Impagliazzo and Rudich [IR89]. If the honest parties of a protocol together with an adversary attacking

this protocol protocols in the random oracle model ask only k oracle queries, then the very same attacker

will succeed also in the random permutation oracle as well, as long as all the parties ask their oracle queries

only from domains of size at least� k2. More formally, asking k queries from a random orale over a domain

of size αk2 will lead to a collision with probability at most k2/(αk2) = 1/α, and thus this experiment can

not differentiate the random oracle from a random permutation with an advantage more than 1/α. If the

original attack in the random oracle model succeeds with advantage ε = 1/poly(n), then the adversary in

the random permutation oracle could use α = 10/ε and ask all of the permutation queries for domains of size

1, 2, . . . , α · k2 (which is a total of only 1 + 2 + · · · + αk2 = O(α2k4) = poly(n) many queries). This way,

the adversary can pretend that the parties are asking their queries only from the domains of size at least

αk2 (and smaller domains are public knowledge). This modified attack will break the scheme in the random

permutation oracle with advantage at least ε− ε/10 > ε/2 which is still noticeable. The rest of the argument

is similar to the case of one-way function. Namely, to finish the proof we observe that, similar to the case

of a random function, any poly(n)-query algorithm is able to invert a random permutation O only with a

negligible chance.

The Case of P = block cipher. Note that an ideal-cipher oracle can be used as a black-box to get a block-

cipher with exponential security, against adversaries who ask only poly(n) oracle queries. Therefore, similar

to the cases above, we would be done if we could break the security of any candidate black-box protocol for

computing F in the ideal-cipher model, with poly(n) number of oracle queries. It would suffice if we could

show how to to “simulate” an ideal cipher oracle IC using access to a random oracle O (which, for example,
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was trivial for the case of CRH). Simulating an ideal cipher oracle using a random oracle, however, is a

highly nontrivial task, and it was only a few years ago [CPS08] that finally such a construction was proved.7

More formally, the result of [CPS08, HKT11] shows that for any construction CIC of some cryptographic

primitive in the ideal cipher model, there is a closely related construction in the random oracle model CO,

such that if the latter construction CO can be broken by an adversary AO with k queries and ε advantage,

then the former construction C IC can be also broken by another adversary AIC who asks only poly(k, n, 1/ε)

oracle queries (to the ideal cipher oracle) and breaks the scheme with advantage poly(1/k, 1/n, ε). Therefore,

by taking the adversary AO to be our attacker of Theorem 7, we can derive an query-efficient attacker A′

against any protocol, based on the ideal-cipher oracle. As we said before, this is sufficient for deriving the

black-box separation against block ciphers (as well as any primitive which is implied by an ideal-cipher in

an information theoretic way).

6.4 Generalized Oracles

In this section we generalize our result for random oracles to a larger class of oracles. As before, an oracle

O is a function from inputs to outputs, which is chosen according to a distribution at the beginning of the

execution and kept fixed. However, unlike in the case of random-oracles, now we will allow a distribution

such that the output at a certain input can depend on outputs at other inputs, in a limited way. A set of

query-answer pairs X is called valid if there is a positive probability that for every (q, a) ∈ X, O(q) = a.

The probability Pr[O(q) = a | X] represents the probability of O(q) being answered as a when O is sampled,

conditioned on being consistent with the (valid) set of query-answer pairs X. We define the closure of a set

of query-answer pairs X, represented by X∗, as the largest set of all query-answer pairs which get fixed when

we condition that O is consistent with X. Formally, X∗ = {(q, a) | Pr[O(q) = a | X] = 1}. (Considering

functions as sets of query-answer pairs, X∗ is the intersection of all functions in the support of O that are

consistent with the query-answer pairs in X.) A query q is answered in a set of query-answer pairs X, if the

entry (q, a) exists in the set X, for some a.

Definition 2 (Atomic Sub-modular Oracles). O is a atomic sub-modular oracle if, for any two query-answer

sets X, Y such that X ∪ Y is valid and |X∗|, |Y ∗| are at most poly(n), any query q not answered in X∗ ∪ Y ∗

and any answer a in the range of the functions in the support of O,

Pr[O(q) = a | X ∪ Y ] ≈(1+ν) Pr[O(q) = a | X].
7The presented construction was simply a six-round Fiestel network with a very complicated proof of security. However,

Holenstein et al. [HKT11] showed that the proof of [CPS08] is incorrect. But, they showed that using fourteen rounds instead
of six-round Fiestel network would remedy the proof.
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We will provide a slightly general definition later but the results proven in this section will carry over to

the more general definition as well.

That is, if O is a atomic sub-modular oracle, and a query is answered neither in X∗ nor in Y ∗, then

X ∪ Y contains virtually no information about the query. Here sub-modularity refers to the fact that two

sets X and Y cannot be combined to obtain information that is not already given by X or Y , and atomicity

refers to the fact that (by considering X = ∅ above) a query-answer set Y either fixes the answer for q or

reveals virtually no information about q.

It is trivial to see that random oracles are atomic sub-modular oracles with ν = 0. But there are other

useful examples too. To show the result that a generic PKE oracle cannot help perform semi-honest secure

computation of undecomposable SSFE, we will depend on the following oracle (represented by a quartet of

oracles (Gen,Enc,Test1,Test2)) being a atomic sub-modular oracle:

• Gen: It is a length-tripling random oracle from the set of inputs {0, 1}n to {0, 1}3n. It takes as input

a secret key sk and provides a public-key pk corresponding to it, i.e. Gen(sk) = pk.

• Enc: It is a length-tripling random oracle from the set of inputs {0, 1}4n to {0, 1}12n. It takes as input

a (possibly invalid) public key pk and a message m and provides the corresponding cipher text c for

it, i.e. Enc(pk, m) = c.

• Test1: It is a test function which tests the validity of a public key, i.e. given a public-key pk, it outputs

1 if and only if there exists a secret key sk such that Gen(sk) = pk.

• Test2: It is a test function which tests the validity of a public key and cipher text pair, i.e. given a

public-key pk and cipher text c, it output 1 if and only if there exists sk and m such that Gen(sk) = pk

and Enc(pk, m) = c.

We note that the encryption oracle produces cipher texts for public keys pk irrespective of whether

there exists sk satisfying Gen(sk) = pk. If we additionally provide access to a decryption oracle Dec such

that Dec(sk, c) = m, where Gen(sk) = pk and Enc(pk, m) = c, then we can perform public key encryption

using this oracle. In [MMP11] we show that even this oracle is useless for semi-honest deterministic SSFE.

But, that result crucially depends of the fact that the quartet of oracles mentioned above are useless for

semi-honest deterministic SSFE. We next show that this quartet of oracles is a atomic sub-modular oracle.

6.4.1 Some Examples

Let us consider some other non-trivial examples of atomic sub-modular oracles. Consider the following pair

of oracles (R,Test), where
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1. R is a random oracle from domain {0, 1}n to range {0, 1}3n, and

2. Test is a boolean function from {0, 1}3n to {0, 1}; and Test(a) = 1 if and only if there exists q such

that R(q) = a.

The closure of sets for this oracle is defined in the following manner:

1. {(R(q), a)} ∗ = { (R(q), a), (Test(a), 1) },

2. {(Test(a), b)} ∗ = { (Test(a), b) } where b ∈ {0, 1}, and

3. If X is valid, then X∗ = ∪x∈X {x}∗.

We point out that if an oracle O satisfies the property that (X ∪ Y )∗ = X∗ ∪ Y ∗, and for any q not

answered in X∗, Pr[O(q) = a | X] ≈(1+ν) Pr[O(q) = a], then O is an atomic sub-modular oracle. Since the

oracle (R,Test) does indeed satisfy the first property, we turn to proving the second one:

Claim 2. Consider a valid set of query-answer pairs X. For any a ∈ {0, 1}3n not answered in X∗, we have

Pr[Test(a) = 1 | X∗] ≈(1+ν) Pr[Test(a) = 1].

Proof. Without loss of generality, we can assume that X consists only of R queries and query-answer pairs

of the form Test(y) = 0.8 Suppose there are δ queries to the R oracle and λ queries to the Test oracle

in the set X. Conditioned on random oracles which are consistent with the query-answer pairs in X, the

probability of Test(a) = 1 is:

1−
(

1− 1
23n − λ− 1

)2n−δ

Define the function:

fN (x, y) = 1−
(

1− 1
N3 − y

)N−x

To prove the lemma, it suffices to show a negligible upper bound, for δ, λ = poly(n), on the quantity

(f2n(0, 0)− f2n(δ, λ))
f2n(0, 0)

Using Lemma 47, we get an upper bound of

δ + o(1)
2n − o(1)

≤ 1
2n/2

= ν

Using this value of ν we can satisfy the definition of atomic sub-modular oracle.
8If there are Test(y) = 1 queries in the set X we can replace each of them with a new R(xy) = y query.
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Observe that the probability of a query-answer pair (Test(a), 0), where a is not answered in P , is close

to 1. The above mentioned result for the query-answer pairs of the form (Test(a), 1) is sufficient to derive

an analogous result for (Test(a), 0) query-answer pairs.

Using the same argument, we can show that in the oracle (Gen,Enc,Test1,Test2) Test1 queries satisfy

the atomic sub-modular oracle definiton. Also, we can use the same technique, along with a union bound

on m ∈ {0, 1}n, to show that Test2 queries also satisfy the atomic sub-modular oracle definition.

6.4.2 Generalized Independence Learners

In this section, we will show that an approximate version of the product characterization of protocols using

random oracles in [BM09] can be extended to protocols with access to atomic sub-modular oracles. Consider

a two party oracle protocol where parties have access to an oracle O. Suppose the eavesdropper Eve has

produced a public query-answer list I and the transcript generated so far is M . We say that an execution

is Good with respect to (M, I) if all random oracles queries in the intersection of Alice and Bob views, IA

and IB respectively, lie in the Eve query-answer list I, i.e. IA ∩ IB ⊆ I. We can generalize this notion of

good executions to atomic sub-modular oracles and an execution is called good with respect to (M, I∗) if

intersection of IA
∗ and IB

∗ is contained in I∗. The distribution GEXEC(M, I∗) is the distribution of good

executions where Eve’s query-answer list is I∗ and the transcript generated by the protocol is M . When

O is a random oracle, it was shown in [BM09] that GEXEC(M, I∗) = (AI∗ × BI∗) | Good(M, I∗), where

Good(M, I∗) is true if the execution is good with respect to the transcript M and Eve query-answer list I∗.

Instead of the “equality” in this equation, we can claim an approximate version of this statement for atomic

sub-modular oracles. We can show that the two terms are within a (1 + negl(n)) multiplicative factor of

each other.

Lemma 32 (Generalization of Product Characterization in [BM09]). Let O be an atomic sub-modular oracle.

There exists a negligible function ν̃, such that:

GEXEC(M, I∗) ≈(1+ν̃) (AI∗ × BI∗) | Good(M, I∗)

Proof. Consider a pair of Alice and Bob views (A,B) which are good with respect to (M, I∗). So, if the

queries in A and B are represented by IA and IB respectively, then the probability of sampling (A,B)

according to the distribution GEXEC(M, I∗) is proportional to:

Pr[IA
∗, IB

∗ | I∗] = Pr[IA
∗ | I∗]× Pr[IB

∗ | I∗, IA
∗]
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The only nontrivial step in this theorem is to use the property of atomic sub-modular oracles to show that

Pr[IB
∗ | I∗, IA

∗] ≈(1+ν̃) Pr[IB
∗ | I∗]. Let Y = IB

∗ = {e1, . . . , ek} and Y (i) = {e1, . . . , ei−1}. We will show

that Pr[ei | Y (i), I∗, IA
∗] ≈(1+ν) Pr[ei | Y (i), I∗].

1. If ei ∈ (Y (i) ∪ I∗)
∗
: In this case Pr[ei | Y (i), I∗, IA

∗] = Pr[ei | Y (i), I∗] = 1.

2. If ei ∈ IA
∗ \ (Y (i) ∪ I∗)

∗
: This case is not possible, because we know that IA

∗ ∩ IB
∗ ⊆ I∗.

3. If ei 6∈ IA
∗ ∪ (Y (i) ∪ I∗)

∗
: In this case we can apply the property of atomic sub-modular oracle to

obtain:

Pr[ei | IA
∗ ∪ (Y (i) ∪ I∗)

∗
] ≈(1+ν) Pr[ei | (Y (i) ∪ I∗)

∗
] = Pr[ei | Y (i), I∗]

This implies that Pr[IB
∗ | I∗, IA

∗] ≈(1+ν)|IB
∗| Pr[IB

∗ | I∗] and ν̃ = (|IB
∗| + 1)ν suffices, since |IB

∗| is at

most poly(n).

The distribution AI∗ is defined as follows: For any Alice view A, the probability of sampling A is

proportional to Pr[IA
∗ | I∗], where IA is the set of query-answer pairs in the Alice view A. Similarly, we can

define the distribution BI∗ over Bob views.

6.4.3 General Definition

We introduce a more general definition of atomic sub-modular oracle

Definition 3 (Atomic Sub-modular Oracles). An oracle O is said to be a atomic sub-modular oracle if there

exists a set of views Unlikely such that for any system interacting with the oracle with polynomial number

of queries, the view that the system gets of the oracle is in Unlikely only with negligible probability, and the

following holds. Consider any two query-answer sets X, Y ⊆ Q for any Q 6∈ Unlikely, such that |X∗|, |Y ∗|

are at most poly(n). Let q be a query not answered in X∗ ∪ Y ∗ and a be any answer in the range of the

oracle O. Then it must hold that Pr[O(q) = a | X, Y ] ≈(1+ν) Pr[O(q) = a | X].

This general definition is helpful in certain cases. Consider the case of a length tripling random oracles

R and a test oracle Test which tells whether a point in the range has a pre-image or not. Suppose we restrict

our attention to only injective random oracles R. Then this pair of oracles satisfies this general definition.

Similarly, we can consider the quartet of oracles (Gen, Enc, Test 1, Test 2) where both Gen and Enc are

restricted to injective functions.

It is easy to see that the product characterization of Lemma 32 extends to this definition of oracles. This

product characterization is crucially used to argue that the failure probability of Bounded-Eve(n2
/ε2, π(x, y))

is low. If the product characterization is satisfied only approximately, instead of exactly, then we can
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still show that the probability of failure of Bounded-Eve(n2
/ε2, π(x, y)) is low, though this bound is weaker

than the case when the product characterization holds exactly. Thus, we can generality Theorem 6 to the

following:

Theorem 8. Suppose there exists a (1 − negl) semi-honest secure protocol for an undecomposable F when

parties have access to a atomic sub-modular oracle and PSPACE oracle; then there exists a (1 − 1/poly)

semi-honest secure for F where parties have access to a PSPACE oracle and arbitrarily chosen polynomial

poly.

This result will be used by [MMP11] to show that the generic PKE oracle proposed by [GKM+00] is

useless for semi-honest deterministic SSFE.
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Chapter 7

Conclusion

As exhibited by our results, the traditional study of triviality and completeness is not sufficient to fully

understand the complexity of secure multi-party computation. Although these two aspects are good points

to start our study of cryptographic complexity theory, there are several structures which are left unexplored.

A sophisticated treatment of the topic based on a reduction based framework can exhibit significantly more

structure and intricacies. As immediate extensions of the work presented in this dissertation, we mention

some open problems.

7.1 Randomized Function Evaluation

In two-party symmetric randomized function evaluation, Alice and Bob obtain an output which is distribution

which is a function of their local inputs. Our understanding of which two-party symmetric randomized

function evaluations can be securely performed when parties are semi-honest corrupt is extremely limited.

We are only aware of completeness result by [Kil00] and the problem of triviality is still open. Surprisingly,

this problem is non-trivial even when Alice and Bob have binary inputs and there are at least three output

alphabets. One of the main motives of studying the Fcoin-hybrid in [MOPR11, MP11] is to gain intuition

for this problem.

Open Problem 1. Characterize semi-honest trivial two-party symmetric randomized function evaluations.

7.2 Implication and Equivalences

We have seen that when we consider UC secure reductions, most reductions involving two party function-

alities are either unconditionally true, intermediate to OWF assumption and sh-OT assumption or false.

When we consider UC-security against parties with bounded computational power, we showed that several

reductions F vppt G are equivalent to OWF assumption and sh-OT assumption. In fact it, could be possible

that these reductions have intermediate complexity, but we conjecture that it is not the case.
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Open Problem 2. When we consider UC-secure realization of two-party functionalities against adversaries

with bounded computational power, are all reductions of the form F vppt G equivalent to OWF assumption

and sh-OT assumption.

But, as shown in Chapter 6, if we change the notion of security, the number of intermediate assumptions

could possibly be infinite.

7.3 Separations

We considered the separation of the assumption: F vppt ∅ for semi-honest security and F being a non-

trivial incomplete two-party deterministic function evaluation. We showed that this assumption is separated

from the assumptions that one-way functions exist and public-key encryption is possible. But it is unknown

whether existence of semi-honest secure protocol for oblivious transfer is separated from such assumptions.

The main technical hurdle here is to provide an oracle with limited power which helps compute a non-trvial

incomplete two-party deterministic function but does not help perform oblivious transfer. This construction

is extremely important to understand the “irreducibility vs. separation” conjecture:

Open Problem 3. Construct an oracle which helps perform a nontrivial incomplete function evaluation

but is insufficient to compute oblivious transfer.

Consider secure function evaluation against semi-honest adversaries. It has been shown that there are F

such that F vppt ∅ is separated from OWF assumption and PKE assumption [MMP11].

Open Problem 4. Are there infinitely many distinct assumptions of the form F vppt ∅, where we consider

semi-honest secure computation?

Consider any two functionalities F and G such that F does not statistically reduce to G, i.e. F 6vstat

G. We can consider different notions of security like semi-honest security, standalone security, UC-security

etc. Can such an irreducibility result be transformed into a separation result? Observe that if G itself can

be securely realized then the problem is trivial. The non-trviality of the problem arises for the case when

G itself cannot be securely realized. The random oracle to show such a separation cannot be too powerful,

other it would also help securely realize F and not just G. On the other hand, an extremely weak random

oracle will be useless to realize G. So, proving such a separation necessitates appropriately providing tight

characterization of the complexity of securely realizing G and enabling the oracle with power sufficient to

securely compute G.
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Open Problem 5. Consider F and G such that F does not statistically reduce to G for some notion of

security and G itself is non-trivial function. Does there exist an oracle with respect to which G has a secure

protocol but F does not?

7.4 Coin Tossing

Recently, Haitner and Omri [HO11] have shown that secure strong coin-tossing protocols entail existence of

one-way functions. But the corresponding problem for weak coin-tossing is still open. Moreover, exploring

whether the attack presented in [HO11] is optimal or not is extremely important due to the reduction

between strong and wek coin tossing by [CK09].

Open Problem 6. Is existence of one-way function essential for secure weak coin-tossing protocols? Can

we achieve beyond 1/
√

2 bias in strong coin-tossing protocols if one-way functions do not exist?

For general protocols, it was shown in [MPS10] that if NP ⊆ BPP, then one of the parties can force its

preferred outcome with probability 3/4. And this bound is optimal for any “local algorithm”. But can a

non-local algorithm overcome this bound?

Open Problem 7. If NP ⊆ BPP, can one of the parties force it preferred outcomes with probability > 3/4.

In fact is it possible that one party can force its preferred outcome with near certainty.
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Appendix A

Implications and Equivalences

A.1 Details for the Proof of Theorem 5

In this section we complete the proof of Theorem 5 outlined in the main body. What remains to be shown

are the details of Lemma 15 — namely, that if the dimensions of one exchange function F are not “smaller”

than the dimensions of another exchange function G, then F vppt G implies the sh-OT assumption.

We develop the proof in several parts. First, to introduce our approach to proving separations involving

exchange functions, we show that F2,2
exch vppt Fcoin implies sh-OT assumption. Then we show that F i,j

exch vppt

F (i−1),(j−1)
exch implies the sh-OT assumption, and finally that F i,j

exch vppt F i′,j′

exch implies the sh-OT assumption,

where min{i′, j′} < i, j ≤ max{i′, j′}. These two cases suffice to prove the desired characterization.

A.1.1 Reduction to Fcoin.

Lemma 33. F2,2
exch vppt Fcoin implies the sh-OT assumption.

Proof. Let π be a secure protocol for F2,2
exch in the Fcoin-hybrid world. We will transform π to obtain a

secure protocol for Fot against semi-honest adversaries.

Let sB be the random variable denoting the round in which the simulator extracts from a passively

corrupt Alice and sends her input to F2,2
exch and TA be the round where any adversary with unbounded

computational power can guess Bob’s input with probability at least ζ = 3/4 given Alice’s view. Fix any

passive adversarial strategy for Alice which outputs a guess of Bob’s input at each step of the protocol, and

define tA as the random variable denoting the round when this guess is correct with probability at least

ζ = 3/4 (where the probability is over the randomness independent of Alice’s view), when interacting with

the simulator. It is easy to see that tA ≥ TA. First, we observe that we can assume, without loss of generality,

that the simulator always extracts in a round where Alice sends a message to the simulator. Otherwise, if

the simulator extracts in a round where she sends a message to Alice or after receiving a request to run

Fcoin, we can construct another simulator which could have extracted one round earlier. By the definition

of the simulation, Alice’s view is completely independent of Bob’s input through the first sB rounds (even
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Protocol for a weak variant of Fot. Alice has inputs x0, x1 ∈ {0, 1}, and Bob has input b ∈ {0, 1}.

1. Alice runs two instances of the protocol π with Bob, using inputs x0 and x1, respectively.

2. Bob picks a random r ∈ [r(k)], where r(k) is a polynomial bound on the number of rounds in π.

3. In the bth instance of π, Bob runs the simulator for π against Alice (including simulating her
interface with instances of Fcoin), and halts the interaction after the rth round of π.

4. In the (1 − b) instance of π, Bob runs the π protocol honestly with Alice on a fixed input (say,
0), and also honestly simulates all instances of Fcoin for Alice. Bob halts the interaction after
the rth round of π.

5. If the simulator has extracted xb, then Bob outputs it. Otherwise, he asks Alice for (x0, x1), and
she sends it to him.

Figure A.1: Weak oblivious transfer protocol, using any secure protocol π for F2,2
exch in the Fcoin-hybrid

world.

in the presence of an ideal Fcoin). Thus tA ≥ TA ≥ sB + 1, and in particular, E[tA] ≥ E[sB ] + 1.

Now consider running this passive adversarial strategy for Alice against an honest Bob in the actual

protocol execution, instead of against the simulator. We define uA to be the random variable denoting the

first round in which Alice’s guess is correct with probability at least ζ. By the security of π, these two

interactions must be indistinguishable to this Alice strategy, thus |E[uA]−E[tA]| < ε/ζ = ε′, where ε is the

negligible simulation error of the protocol. Thus E[uA] ≥ E[sB ] + 1− ε′.

Similarly we can define uB and sA and conclude that E[uB ] ≥ E[sA]+1−ε′. Then, either E[uA] ≥ E[sA]+

1−ε′, or E[uB ] ≥ E[sB ]+1−ε′; otherwise we would get that E[uA] < E[sA]+1−ε′ ≤ E[uB ] < E[sB ]+1−ε′.

By symmetry, we assume that E[uB ] ≥ E[sB ] + 1− ε′. In other words, in an interaction with an honest

Alice, the simulator will, on average, extract Alice’s input earlier than any passive Bob could guess Alice’s

input with probability at least ζ.

Now consider the protocol given in Figure A.1. First, since Alice cannot distinguish a simulated instance

of π from an honest execution of π, Alice has no advanatage in predicting Bob’s bit b. Thus the protocol

gives complete privacy for Bob.

Then a passively corrupt Bob in this protocol can guess Alice’s input x1−b correctly with probability at

most

Pr[sB ≤ r < uB ]ζ + (1− Pr[sB ≤ r < uB ])

= 1− (1− ζ) Pr[sB ≤ r < uB ]

≤ 1− (1− ζ)E[uB − sB ]/r(k)

≤ 1− (1− ζ)(1− ε′)/r(k)
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by the definition of uB . Or, in other words, Bob’s guess is incorrect with probability at least (1 − ζ)(1 −

ε′)/r(k), which is an inverse polynomial in the security parameter. In Appendix A.2, we show how a weak Fot

protocol with this security property can be amplified to give a full-fledged (semi-honest) Fot protocol.

A.1.2 Reductions Between Exchange Functions

We first establish a convenient technical lemma:

Lemma 34. For each j ∈ [i], let Dj be a probability distribution over the elements {m1, . . . ,mi−1}. Now

consider the following experiment: Choose j ∈ [i] in random, and then output a sample according to Dj.

The probability of correctly predicting j given only the output of this procedure is at most (i− 1)/i.

Proof. Let pu,v be the probability of sampling message mv when using Du. So, we have:

i−1∑
v=1

pu,v = 1 for all u ∈ [i]

Let qv,u be the probability of outputting u after seeing message v. So, we have:

i∑
u=1

qv,u = 1 for all v ∈ [i− 1]

The probability of being correct is:

ζ =
∑i

u=1

∑i−1
v=1 pu,vqv,u

i

=
∑i−1

v=1

∑i
u=1 pu,vqv,u

i

≤
∑i−1

v=1 maxi
u=1 pu,v

i

≤ i− 1
i

Before we prove the general result, let us prove an intermediate result

Lemma 35. Let i ≥ 3. Then F i,i
exch vppt F (i−1),(i−1)

exch implies the sh-OT assumption.

Proof. The proof is very similar to that of the previous lemma. However, now that the purported protocol π

can use F (i−1),(i−1)
exch , we must consider information about the parties’ inputs that is exchanged via the ideal

functionality.

Note that in the proof of the previous lemma, we would obtain a suitable weak OT protocol (i.e., amenable

to amplification) even if ζ is at most 1− 1
poly in the security parameter
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Consider ζ = c + i−1
i , where c > 0 is any constant. As before, we let sB be the round during which

the simulator extracts from a passively corrupt Alice. Thus, Alice may send an input to her interface of

F (i−1),(i−1)
exch , then the simulator will send the extracted input to F i,i

exch, receive the output, and then complete

the round by simulate the response of the simulated F (i−1),(i−1)
exch functionality to Alice.

The simulator will complete the round by simulating a response from F (i−1),(i−1)
exch , which will be an

element of [i− 1]. At the start of round sB , Alice’s view is independent of the honest Bob’s input y ∈ [i] to

F i,i
exch. There are only i−1 possible responses the simulator can provide after receiving y from the ideal F i,i

exch

functionality. So after round sB is complete, Alice cannot guess y with probability greater than (i−1)/i < ζ,

where ν(·) is negligible. Since tB is defined as the first point at which Alice can guess Bob’s input with

probability at least ζ, we have tB ≥ sA + 1.

Similarly we can conclude that tA ≥ sB + 1. Rest of the proof is identical to the proof mentioned

above.

Finally we move to our general result.

Lemma 36. Let i, j, i′, j′ be such that (i > i′ or j > j′) and (i > j′ or j > i′). Then F i,j
exch vppt F i′,j′

exch

implies the sh-OT assumption.

Proof. The proof is very similar to that of the previous lemma. However, now that the purported protocol

π can use F i′,j′

exch, we must consider information about the parties’ inputs that is exchanged via the ideal

functionality.

Note that in the proof of the previous lemma, we would obtain a suitable weak OT protocol (i.e., amenable

to amplification) even if ζ is 1 − 1
poly in the security parameter, and one of {E[tB − sB ], E[tA − sA]} is at

least 1
poly in the security parameter.

Case 1: (max{i, j} > max{i′, j′}): Suppose i ≥ j and i > i′ ≥ j′ and Bob feeds input from [i] into the

ideal functionality. We define ζ = c + i−1
i . Now we define sB and tA as we had done earlier. Similar to the

argument in the previous lemma we get that tA ≥ sB + 1 (because i − 1 ≥ i′ ≥ j′). It is always the case

that tB ≥ sA. So, we get the condition that tA ≥ sB + 1 and tB ≥ sA.

In general we can say that:

(tA ≥ sB and tB ≥ sA + 1), or

(tB ≥ sA and tA ≥ sB + 1)
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These conditions imply that:

E[uA] ≥ E[sA] + (1/2− ε′), or

E[uB ] ≥ E[sB ] + (1/2− ε′)

Observe that in our weak OT construction, all we needed was that E[uA − sA] or E[uB − sB ] is 1
poly in

the security parameter. So, we can continue with our weak OT construction as we had mentioned earlier.

Case 2: (min{i′, j′} < i, j ≤ max i′, j′): Observe that even if for some polynomial λ(·) we have:

(
E[tA] ≥ E[sB ] and E[tB ] ≥ E[sA] +

1
λ(k)

)
, or(

E[tB ] ≥ E[sA] and E[tA] ≥ E[sB ] +
1

λ(k)

)

we can use the approach mentioned above to get the weak OT protocol. So, we just need to consider the

case when E[tB ] ∈
[
E[sA], E[sA] + 1

λ(k)

)
and E[tA] ∈

[
E[sB ], E[sB ] + 1

λ(k)

)
, where λ(·) is a suitably chosen

large polynomial.

In this case, we will prove that:

1. Pr(tB ≥ sB + 1) or Pr(tA ≥ sA + 1) is ≥ 1
5

2. |Pr(uA = i)− Pr(tA = i)|, |Pr(uB = i)− Pr(tB = i)| are both ≤ 1
ρ(k) for any polynomial ρ

These will imply that our weak OT construction will work in this case as well.

Now, we show that the above mentioned properties hold. If E[tB ] ∈
[
E[sA], E[sA] + 1

λ(k)

)
and E[tA] ∈[

E[sB ], E[sB ] + 1
λ(k)

)
, then with probability ≥ 1− 2

λ(k)n we will have the event that tB = sA and tA = sB .

Consider the set of rounds S where tA = sB . Similarly define T to be the set of rounds where tB = sA.

WLOG, we can assume that Alice uses i′ side of F i′,j′

exch only in even rounds and the j′ side of the F i′,j′

exch only

in odd rounds. So, we conclude that the sets S and T are mutually disjoint.

Let xS(i) be the probability of the event tA = sB ≤ i happens. Similarly define xT (i) as the probability

of the event tB = sA ≤ i happens. Initially xS(0) = xT (0) = 0 and xS(n) = xT (n) = 1 − 2
λ(k)n . So

look at the first i such that xS(i) or xT (i) becomes ≥ 1
2

(
1− 2

λ(k)n

)
. Observe that at any given round

only xS(i) or xT (i) changes. WLOG assume that xS(i) reaches the threshold first. Then since yS(i) could

not have changed at this round, we get that yS(i) ≤ 1
2

(
1− 2

λ(k)n

)
. Then we see that with probability

≥
(

1/2− 1
λ(k)n

)2

≥ 1
4 −

2
λ(k)n ≥

1
5 , we have the event that sB ≤ tB − 1.

Now, all we need to show is that Pr(uB = i) and Pr(tB = i) are 1/poly-close. We pick a suitable

polynomial ρ. We run an honest execution of the protocol against a simulator for Alice. We can estimate
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Pr(tB = i) within 1
ρ additive error in polynomial time. Similarly, we run an honest execution of the protocol

against honest Alice. We can estimate Pr(uB = i) within 1
ρ additive error in polynomial time.

If |Pr(tB = i)− Pr(uB = i)| > 3
ρ , then we can create a polynomial time distinguisher which distinguishes

between the real and ideal world. So, for every round i ∈ [r(k)], |Pr(tB = i)− Pr(uB = i)| ≤ 3
ρ .

Given the guarantee that, for all i ∈ [r(k)], |Pr(tB = i)− Pr(uB = i)| ≤ 3
ρ and Pr(sB ≤ tB − 1) ≥ 1

5 , the

construction given earlier gives us a weak OT.

A.2 Oblivious Transfer Amplification

We first establish the following convenient technical lemma:

Lemma 37 (Noisy Channel Bounds). Consider a noisy channel C, which either forwards an input element

x ∈ ZN unchanged with probability q, and otherwise replaces it uniformly chosen element from ZN \ {x}.

Suppose a string s = s1 . . . sk ∈ Zk
N is passed through C, and t = t1 . . . tk is the result. Then the probability

that
∑k

i=1 ti =
∑k

i=1 si is at most
1
N

+ exp
(
− 1

N
− (1− q)k

(N − 1)

)
.

Proof. Without loss of generality, suppose that
∑k

i=1 si = 0. Consider the following polynomial:

f(x) =
(

q +
1− q

N − 1
x + . . .

1− q

N − 1
xN−1

)k

Observe that the probability that
∑k

i=1 ti = 0 is given by the following expression:

∑
λ∈Z

[xλN ]f(x) =
∑n−1

i=0 f(ωi)
N

,
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where 1, ω, . . . , ωN−1 are distinct roots of zN = 1. We can evaluate the expression in the following manner:

1
N

N−1∑
i=0

f(ωi) =
1
N

N−1∑
i=0

Nq − 1
N − 1

+
1− q

N − 1

N−1∑
j=0

ωij

k

=
1
N

+
(N − 1)

(
Nq−1
N−1

)k

N

=
1
N

+
(

1− 1
N

)(
1− 1− q

N − 1

)k

≤ 1
N

+ exp
(
− 1

N
− (1− q)k

(N − 1)

)

We now define our variant of a weak Oblivious Transfer (OT) and how it can be amplified to obtain the

conventional one-out-of-two OT.

Similar to the definition of (p, q)-OT used in [DKS99], we introduce a notion of a weak OT.

Definition 4 (q-weak-OT). A q-weak-OT is a protocol that satisfies the following conditions:

• The sender has inputs (x0, x1) ∈ Z2
N . The receiver has input b ∈ {0, 1} to the functionality and receives

xb as output.

• A passively corrupt sender has no advantage in guessing the bit b.

• No passively corrupt receiver can guess x1−b with probability greater than q, when the sender’s inputs

are random.

Thus, 1
N -weak-OT is a standard OT with sender input set ZN .

We can amplify a q-weak-OT using an algorithm taken from [DKS99].

Definition 5 (R-Reduce). R-Reduce(k,W) is defined as the following protocol, where W is a weak-OT.

1. Let (x0, x1) ∈ Z2
N be the input of the sender; and b ∈ {0, 1} be the input of the receiver.

2. The sender generates random (x0i, x1i) ∈ Z2
N , for i ∈ [k]. Let r0 =

∑k
i=1 x0i and r1 =

∑k
i=1 x1i. The

sender sends z0 = x0 + r0 and z1 = x1 + r1 to the receiver

3. Both parties execute W, k times with input (x0i, x1i) ∈ Z2
N for the sender and input b for the receiver.

4. The receiver outputs xb = zb − (
∑k

i=1 xb,i).

Lemma 38. If W is a q-weak-OT, then R-Reduce(k,W) is a ( 1
N + ν(q, k))-weak-OT, where:

ν(q, k) ≤ exp
(
− 1

N
− (1− q)k

(N − 1)

)
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Proof. We consider the probability that the receiver can successfully guess x1−b. Let s = s1 . . . sk ∈ Zk
N be

chosen uniformly at random.Suppose we are given a string t1 . . . tk ∈ Zk
N which has the property that ti = si

with probability q. Observe that if ti is wrong, it adds an error si − ti which is uniformly random over ZN .

So, in general with probability q it either adds 0 error; or adds a random error from the set ZN \ {0} with

probability (1− q)/(N − 1). Then, using Lemma 37, the probability that
∑k

i=1 si =
∑k

i=1 ti is at most:

1
N

+ exp
(
− 1

N
− (1− q)k

(N − 1)

)

Thus, if q ≤ 1− 1
poly(k) , then R-Reduce(κ/(1− q),W) is a full-fledged 1-out-of-2 OT protocol.
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Appendix B

Weak Coin

B.1 Examples

Greedy does not work well. Greedy strategy is one of the basic strategies to bias the outcome towards

b. At a partial transcript v, output a bit d such that the color χvd is closer to b than χv(1−d). But this

strategy is not good and we explicitly construct a protocol tree where we can make the bias obtained by the

greedy algorithm arbitrarily small. Recall that if A/χv is written at a node, it means that Alice is supposed

to send the next message after the partial transcript v is generated and the subtree Sv computes a χv-coin

when both parties are honest. For simplicity, when we explain the transcript tree construction, we do not

insist that Alice and Bob nodes alternate. If an Alice node v follows an Alice node v′, then we can assume

that there is a dummy Bob node v′′ such that whatever bit is sent at v′′ it does not not effect the outcome.

We can assume that both children of v′′ are identical to v′.

Consider the following recursive graph construction (Figure B.1):

1. For the base case of k = 0, define G0 as the tree where Alice announces the outcome of the 1/2-coin.

2. For any other k > 0, we recursively define Gk using Gk−1. The root node v is an Alice node that

implements a 1/2-coin. Its two children v0 and v1 are Bob nodes which implement 1/2− ε and 1/2 + ε-

coins respectively. Nodes v00 is an Alice node implementing 1/2 − 2ε-coin and v11 is a Bob node

implementing 1/2 + 2ε coin. The Sv01 and Sv10 are the tree Gk−1.
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A/1/2

G0:

A/1/2− 2ε Gk−1 Gk−1 B/1/2 + 2ε

B/1/2− ε B/1/2 + ε

A/1/2

For k ≥ 1, Gk:

Figure B.1: Greedy strategy is not good.

Let gA
b (k) (resp. gB

b (k)) be the expectation of the outcome when Alice (resp. Bob) is trying to bias the

outcome to b in Gk.

gA
1 (k) = 1/2gA

1 (k − 1) +
(

1
4

+ ε

)
= 1/2 + 2ε +

Θ(1)
2k

gB
0 (k) = 1/2gB

0 (k − 1) +
(

1
4
− ε

)
= 1/2− 2ε +

Θ(1)
2k

By symmetry, 1 − gA
0 (k) = gA

1 (k) and 1 − gB
1 (k) = gB

0 (k). We see that we can drive the bias obtained by

the greedy algorithm to negligibly close to 1/2.

Let hA
b (k) (resp. hB

b (k)) be the expectation of the outcome when Alice (resp. Bob) is trying to bias the

outcome to b in Gk. We can write the following recurrence:

hA
1 (k) = 1/2hA

1 (k − 1) +
(

3
8

+
2ε2(1− ε)
(1 + 4ε2)

)(
Adv

(1)
A on Gk

)
=

3
4

+
4ε2(1− ε)
(1 + 4ε2)

+
Θ(1)
2k

hB
0 (k) = 1/2hB

0 (k − 1) +
(

1
8
− 2ε2

)(
Adv

(0)
B on Gk

)
=

1
4
− 4ε2 +

Θ(1)
2k

This shows that our attack achieves nearly close to 3/4 and 1/4 bias.

Need to attack at more than constant rounds. Consider the recursive graph construction as shown

in Figure B.2. Fix a particular k and consider the tree Gk such that the probability that the honest protocol

reaches any A/1/2 leaf is ε and the probability of reaching any B/1/2 leaf is 1
k+1 −

kε
k+1 . If Bob is honest then

Alice can not bias the outcome by more than kε, which can be made arbitrarily small. If Bob is not honest

and he attacks at only c rounds, then the maximum bias he could generate is c
k+1 −

kcε
k+1 . So, to go beyond
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1/poly(k) bias, Bob needs to attack at more than constant number of rounds.

B/1/2

G0 :

B/1/2

Gk :

A/1/2 A/1/2

B/1/2 Gk−1

Figure B.2: Attacking constant number of grounds does not help.

Beyond 1/4 bias. Consider the class of adversarial strategies which uses only χv, χv0, χv1 and |v| to

determine the distribution according to which the next bit is sampled. We will show that any adversary

in this class can not bias by more than 1/4. Consider the performance of such adversaries on the graph in

Figure B.3. Suppose the probability of reaching any child vb from a node v in the honest protocol is 1/2.

If Bob is not honest, then with probability 1/2it can decide the outcome of a 1/2-coin. So, the maximum

bias it can obtain is 1/4. Now, if Alice is not honest then she can reach a leaf A/1/2 coin with probability

1/2independent of her strategy. So, she can obtain a maximum bias of 1/4.

If we expand the class of adversaries to include any adversary with constant look ahead in the protocol

tree, then we can generalize the graph in Figure B.3 so that they can obtain at most 1/4 bias. The class

of adversaries we have considered currently can be interpreted as 1-look ahead adversaries. Suppose, we

introduce c redundant levels between any two levels of the graph in Figure B.3. Then any adversary with

(c + 1) look ahead in the protocol tree can not obtain more than 1/4 bias. Note that by adding dummy

nodes, even if the adversary’s strategy looks ahead a bounded depth or tries to take into account whose turn

is next, this cannot help it achieve a better bias.

B/1/2

A/1/2 A/1/2

B/1/2 A/1/2 A/1/2 B/1/2

Figure B.3: Certain class of local algorithms can not go beyond 1/4 bias.
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B.2 Deferred Calculations

Lemma 39. If χ0, χ1, p0 ∈ (0, 1) then 1− r∗(1−c) < r∗c < pc.

Proof. Recall that r∗(1−c) = p(1−c)

[
χhigh−χχhigh

χ−χχhigh

]
and r∗c = pc

[
χlow−χχlow

χ−χχlow

]
= pc

( 1
χ−1)“
1

χlow
−1

” < pc , where χ =

pcχlow + p(1−c)χhigh and pc + p(1−c) = 1.

1− r∗(1−c) = 1−
p(1−c)(1− χ)χhigh

(1− χhigh)χ

=
(χ− p(1−c)χhigh)− (χχhigh − p(1−c)χχhigh)

(1− χhigh)χ

= pc

[
χlow − χχhigh

χ− χχhigh

]

Consider the function f(x) = pc

[
1− χ−χlow

χ−χx

]
. It is easy to see that it is a monotonically decreasing function.

Observe that f(χlow ) = r∗c and f(χhigh) = 1− r∗(1−c). So, 1− r∗(1−c) < r∗c < pc.

Lemma 40. Let χ = p0χ0 + p1χ1 ≤ 1− δ and p0, p1 ∈ [0, 1] such that p0 + p1 = 1. Suppose r̃0 = r0 + e and

r̃1 = 1− r̃0, where rc ≤ pc and e ∈ [−B,B], then:

(
r̃0(1− χ0) + r̃1(1− χ1)

(1− χ)

)
≤ 1 +

B

δ

Proof. Consider the following manipulation:

(
r̃0(1− χ0) + r̃1(1− χ1)

(1− χ)

)
=

1− (rcχc + (1− rc)χ(1−c)) + e(χ(1−c) − χc)
(1− χ)

≤ 1− χ + e

(1− χ)
≤ 1 +

B

δ

Lemma 41 (Case 0). If χ ≥ 1 − (δ + 2λ) or χ ≤ (δ + 2λ) and we honestly follow the protocol then

E ≤ 2 ≤ 1 + δ
(1−χ) + δ

χ + νh+1.

Proof. The result is immediate from the observation that E ≤ 2 and from the following inequality:

1 ≤ δ

1− (1− (δ + 2λ))
+ ν1

Lemma 42 (Case 1). If χ − χc ≤ λ1/3 + 4λ, χ ≤ 1 − δ, and we substitute r̃0 = p0χ0
χ and r̃1 = p1χ1

χ , then

E ≤ 1 + δ
(1−χ) + δ

χ + νh+1.
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Proof. Since r̃c = pcχc

χ > r∗c and r̃(1−c) = p(1−c)χ(1−c)

χ < r∗(1−c), we have T̃c < 0 and T̃(1−c) > 0. We know

that 1
χ′ ≤ 1

χ if and only if r̃c ≤ hc. Because e = 0, we can use the bound in Lemma 40 in our lower bound

to obtain:

E ≤ 1 +
δ

(1− χ)
+

δ

χ′
+

pcχc

χ

(
χ− χc

(1− χ)

)
+ ν′h

≤ 1 +
δ

(1− χ)
+

δ

χ
+

λ1/3 + 4λ

δ
+ νh

≤ 1 +
δ

(1− χ)
+

δ

χ
+ νh+1

Lemma 43 (Case 2). If χ ≤ 1− δ, and we substitute r̃0 = t0 + e and r̃1 = t1 − e, where e ∈ [−9λ1/3, 9λ1/3]

and r̃c ≤ hc, then E ≤ 1 + δ
(1−χ) + δ

χ + νh+1.

Proof. Recall that 1
χ′ ≤ 1

χ if and only if r̃c ≤ hc. Since tc < pc, we can use the bound in Lemma 40. When

we substitute r̃0 and r̃1 and we get T̃low ≥ 0 and T̃high ≥ 0 then:

E(+,+) ≤ 1 +
δ

(1− χ)
+

δ

χ′
+ ν′h

≤ 1 +
δ

(1− χ)
+

δ

χ
+ νh

(
1 +

9λ1/3

δ

)
≤ 1 +

δ

(1− χ)
+

δ

χ
+ νh+1

If we substitute r̃0 and r̃1 and we get T̃0 ≥ 0 and T̃1 < 0 then we know that r̃1 = r∗1 + e′ such that

e′ ∈ [0, 9λ1/3] (Lemma 44). In this case:

E(+,−) ≤ 1 +
δ

(1− δ)
+

δ

χ′
+

e′(1− χ1)
(1− χ)

+ ν′h

≤ 1 +
δ

(1− χ)
+

δ

χ
+

e′(1− χ1)
(1− χ)

+ νh

(
1 +

9λ1/3

δ

)
≤ 1 +

δ

(1− χ)
+

δ

χ
+

9λ1/3

δ
+ νh

(
1 +

9λ1/3

δ

)
= 1 +

δ

(1− χ)
+

δ

χ
+ νh+1
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Similarly, if T̃0 < 0 and T̃1 ≥ 0 then:

E(−,+) ≤ 1 +
δ

(1− χ)
+

δ

χ′
+

e′(1− χ0)
(1− χ)

+ ν′h

≤ 1 +
δ

(1− χ)
+

δ

χ
+

e′(1− χ0)
(1− χ)

+ νh

(
1 +

9λ1/3

δ

)
≤ 1 +

δ

(1− χ)
+

δ

χ
+

9λ1/3

δ
+ νh

(
1 +

9λ1/3

δ

)
= 1 +

δ

(1− χ)
+

δ

χ
+ νh+1

Lemma 44. tc ≤ r∗c ≤ hc and t(1−c) ≤ r∗(1−c) and tc + t(1−c) = 1.

Proof. It is trivial to see that r∗c = pcχc(1−χ)
χ(1−χc)

≤ hc = pcχc

χ . The remainder of the proof is immediate from

simple manipulation of terms:

tc =
pcχc(1− χ(1−c))

(χ− χ0χ1)
≤ pcχc(1− χ)

χ(1− χc)
= r∗c

⇐⇒ χ− (χ0 + χ1)χ + χχ0χ1 ≤ χ− χ0χ1 − χ2 + χχ0χ1

⇐⇒ 0 ≤ (χ0 − χ)(χ− χ1)

⇐⇒ t(1−c) =
p(1−c)χ(1−c)(1− χc)

(χ− χ0χ1)
≤

p(1−c)χ(1−c)(1− χ)
χ(1− χ(1−c))

= r∗(1−c)

And for the second part,

tc + t(1−c) =
p0χ0 − p0χ0χ1 + p1χ1 − p1χ0χ1

(χ− χ0χ1)
= 1

Lemma 45. If
∣∣t̃c − tc

∣∣ ≤ 9λ1/3,
∣∣∣h̃c − hc

∣∣∣ ≤ 3λ1/3 and r̃c = min{t̃c,max{0, h̃c − 3λ1/3}}, then |r̃c − tc| ≤

9λ1/3 and r̃c ≤ hc.

Proof. Let ã = max{0, h̃c − 3λ1/3}. It is trivial to observe that ã ≤ hc. We will show that |ã− hc| ≤ 6λ1/3,

i.e. ã is a good approximation of hc. If h̃c ≥ 3λ1/3 then the result is trivial. Otherwise, hc ≤ 6λ1/3 and,

hence, |ã− pc| ≤ 6λ1/3.

If t̃c ≤ ã then |r̃c − tc| ≤ 9λ1/3. Otherwise, i.e. t̃c > ã, we need to consider two cases. If tc ≤ ã then

|ã− tc| = ã − tc ≤ t̃c − tc =
∣∣t̃c − tc

∣∣ ≤ 9λ1/3. If hc ≥ tc ≥ ã (Lemma 44) then |ã− tc| ≤ |ã− hc| ≤ 6λ1/3.

Hence, |r̃c − tc| ≤ max{6λ1/3, 9λ1/3} = 9λ1/3.

Moreover, r̃c ≤ ã ≤ hc.
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Appendix C

Separations

C.1 Technical Results

We will talk about some technical results useful in Chapter 6. We state the following lemma without proof:

Lemma 46. There exists a constant c > 0 such that for all x ∈ [0, c], the following inequalities hold:

(1− x + x2) ≥ exp(−x) ≥ (1− x) ≥ exp(−x− x2)

Lemma 47. Let f(x, y) = 1−(1− 1/(N3−y))N−x. For δ, λ = o(N), we have (f(0,0)−f(δ,λ))/f(0,0) ≤ (δ+o(1))/(N−o(1)).

Proof.

Denominator: f(0, 0) = 1−
(

1− 1
N3

)N

≥ 1− exp
(
− 1

N2

)
≥ 1−

(
1− 1

N2
+

1
N4

)
=

1
N2

(
1− 1

N2

)
Numerator: f(0, 0)− f(δ, λ) =

(
1− 1

N3 − λ

)N−δ

−
(

1− 1
N3

)N

≤ exp
(
− N − δ

N3 − λ

)
− exp

(
− 1

N2
− 1

N5

)
≤ 1− N − δ

N3 − λ
+
(

N − δ

N3 − λ

)2

− 1 +
1

N2
+

1
N5

=
δ

N3 − λ
− λ

N3(N2 − o(1))
+

1
N3

(
N − δ

N3/2 − o(1)

)2

+
1

N5

≤ δ + o(1)
N3 − λ

Therefore,
f(0, 0)− f(δ, λ)

f(0, 0)
<

δ + o(1)
N − o(1)
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[CK09] André Chailloux and Iordanis Kerenidis. Optimal quantum strong coin flipping. In FOCS, pages
527–533. IEEE Computer Society, 2009. 79, 127

[CKL03] Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations of universally composable
two-party computation without set-up assumptions. In Eli Biham, editor, EUROCRYPT, volume
2656 of Lecture Notes in Computer Science, pages 68–86. Springer, 2003. 4, 11, 23, 25, 34

144



[CKOR97] Ran Canetti, Eyal Kushilevitz, Rafail Ostrovsky, and Adi Rosén. Randomness vs. fault-tolerance.
In PODC, pages 35–44, 1997. 24

[Cle86] Richard Cleve. Limits on the security of coin flips when half the processors are faulty (extended
abstract). In STOC, pages 364–369. ACM, 1986. 41, 107

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-
party and multi-party secure computation. In STOC, pages 494–503, 2002. 4, 27, 40

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In STOC, pages 151–158.
ACM, 1971. 29

[CPS08] Jean-Sébastien Coron, Jacques Patarin, and Yannick Seurin. The random oracle model and the
ideal cipher model are equivalent. In David Wagner, editor, CRYPTO, volume 5157 of Lecture
Notes in Computer Science, pages 1–20. Springer, 2008. 29, 119
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