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Abstract

The high complexity of modern software, and our pervasive reliance on that software, has

made the problems of software reliability increasingly important. Yet despite advances in

software engineering practice, pre-release testing, and automated analysis, reports of high-

profile production failures are still common. This dissertation proposes several run-time

techniques to analyze and alleviate software failures dynamically, during production runs.

The first technique is low overhead checkpoint, rollback, and re-execution. By allowing

a window of time in which a period of execution can be relived, low overhead checkpointing

allows expensive analytical steps to be saved for only when they are needed. The second

technique is a collection of dynamically insertable run-time analysis tools, which can use in-

formation gleaned over multiple analytical runs of the same execution to incrementally build

picture of a production run failure more completely than any individual analysis could.

Finally, based on my experience with the behavior of programs under failure, and the un-

derlying causes of said failures, this dissertation introduces the concept of, and provides a

run time which supports, delta execution. Delta execution (or ∆ execution) is the process of

running more than one instance or version of a program, while sharing the majority of issued

instructions and state. This dissertation uses ∆ execution specifically to validate software

patches at production run time.

These three techniques have been demonstrated in three implemented systems supporting

various end-level reliability goals. The first system, called Sweeper, is a run-time defensive

system against security bugs. Low overhead checkpointing captures system state until an

intrusion tripwire notices an anomaly. The system can then roll back to perform a more
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thorough (and expensive) analysis of past execution to determine the nature of the exploit.

Because of the low overhead of the initial checkpointing, the barriers to widespread deploy-

ment are low. Further, because Sweeper can still perform more complex analysis, there is

the opportunity to generate strong protective measures, like vulnerability specific execution

filters (or VSEFs), which can effectively stop a worm infestation. The implemented Sweeper

system imposes only 1% overhead in ordinary operation, and can generate an effective pro-

tective measure in only 60 milliseconds. From an analytic model, this is sufficient to minimize

the spread of a fast worm to only 5% of the susceptible hosts, even for a worm which spreads

10,000 times faster than any previously observed in the wild.

The second system is called Triage. Rather than improving reliability by improving

security, Triage attempts to enable the improvement of the underlying code by automating

failure diagnosis of production run systems. Production run failures are difficult to address.

Such failures commonly are irreproducible in a development environment due to workload

or scale issues. As they occured in a production run, these are clearly faults which were

not caught and fixed by the developer’s standard pre-release testing. Finally, production

runs have stringent restrictions on overhead and privacy. Hence giving the programmer

enough insight into the failure to implement a patch is challenging. Triage addresses this

by performing failure diagnosis post-hoc at the end-user’s site. Low overhead checkpointing

allows the capture of a failing execution, so expensive analysis can be deferred until it is

definitely needed. Repeated replays allows the incremental application of a variety of failure

analysis techniques, similar to the process a human programmer may undertake. For analysis

which generally takes direction from a human, Triage substitutes the results of previous

analytical steps. Overall, Triage imposes only 5% overhead in failure free execution, and, if

a failure occurs, all of the analysis which requires re-execution is complete within about 5

minutes. In a study with human programmers, the output of Triage analysis reduced the

time to patch real software faults by 45%.

The third system presented in this dissertation deals with the problems introduced when
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programmers make changes. Despite testing before release, a large number of software

patches are released buggy. Indeed, software patches are generally of such poor quality that

to optimize uptime it is better to delay applying even security patches while others act as

“volunteer” beta testers uncovering the faults which made it though the vendor’s quality con-

trol. However, as Triage’s novel delta analysis diagnostic tool shows, the difference between

correct and buggy execution can be minimal. Indeed, a manual study of software patches

described in this dissertation shows that many patches should not create large changes in

the underlying execution. Hence this dissertation proposes ∆ execution. If the execution

(in terms of instruction streams and data) of the patched and unpatched versions of a pro-

gram are mostly identical, then it is possible to run both versions mostly in one instruction

stream. Only rarely, when the executions do differ, is it necessary to run two sets of in-

structions. By only running the differing, or delta, segments separately, ∆ execution allows

low overhead production run patch validation which is 12% faster than side-by-side patch

validation. Further (and perhaps more important), many of the effects which make patch

validation difficult (multithreading, timing sensitivity, and system level nondeterminism) are

nullified as they effect the two logical executions inside the one physical execution identically.

This dissertation shows that, of ten applications tested, ∆ execution can validate all of the

patches, while traditional side-by-side validation only manages to validate 2.
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Chapter 1

Introduction

1.1 Motivation

Modern software is plagued by failures. The growing size and complexity of modern software

systems has increased the difficulty of finding and fixing bugs, with dozens to hundreds of

programmers frequently devoted to quality control. It is inevitable that production software

will contain a significant number of bugs. These bugs contribute to 26-30% of system fail-

ures [80], and cause costly downtime. Worse, many of these bugs are security vulnerabilities.

Worms such as Blaster [20] and SQL Slammer [22] take advantage of such vulnerabilities to

rapidly do billions of dollars of damage [69].

Clearly it is important to react to these bugs as quickly as possible. As they represent

cases which are causing actual (rather than theoretical) harm, production run failures should

be our highest priority. In the case of security flaws, even waiting for an administrator to

manually patch the system is too slow, since by the time an alert goes out, it is already too

late [130]. For both normal software failures and for security vulnerabilities, automating as

much of the response as possible would be ideal. If we could automate the initial diagnostic

steps, programmers could more quickly generate patches; if we could automate the security

response processes we could stand a chance against fast worms [129]. Unfortunately, current

techniques for dealing with software failures are incapable of addressing the problem of

production run failures.

Many failure diagnosis techniques do not provide enough information for automated use.

Some are simply too manual for automation to be applicable. While interactive debug-
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gers [53] or even reverse debuggers [128] are clearly powerful, they require a human pro-

grammer to actually perform diagnosis. Others, such as bug detectors, are not as manual,

but still are insufficient. Although bug detectors such as buffer overflow detectors [30, 94] or

race detectors [95] are more automatic, they do not isolate root causes. Instead, they notify

programmers of errors, or incorrect program states. It is up to the programmer to iden-

tify the underlying root cause. For security vulnerabilities, tools such as StackGuard [34]

or ProPolice [48] are incapable of detecting many classes of attacks [148]. Address space

randomization [102, 50], can detect (and temporarily prevent) many attacks, but doesn’t

give much information about the attack. At best execution is halted at the vulnerable in-

struction, and at worst the attack succeeds anyway. None of these techniques give enough

information for an automatic response.

There are techniques which can give sufficient information for a response, and which do

not rely on human guidance, such as program slicing [2, 147, 156], path reconstruction as in

PSE [79], or taint analysis [99]. However, these techniques tend to impose crippling overheads

in the range of 10 to 1000x. Clearly 1000x overhead for dynamic slicing is impractical for

production run deployment. Even the more limited case of dealing with security flaws

suffers from this problem. Tools like DIRA [125], DACODA [35], or Vigilante [33] are too

expensive (30-40x slowdowns) for widespread use, and instead must rely on a canary-like

deployment. A small number of sentinel machines provide very thorough analysis; the bulk

of hosts, however, are unmonitored and open to attack. For both normal failures and for

security vulnerabilities buggy executions cannot be adequately analyzed while maintaining

acceptable performance.

A further problem is how to verify the correctness of any proposed response. Released

patches are often buggy [7, 90]. Pre-release testing is useful, but it is a poor substitute for live

workloads. Further, extensive periods of pre-release testing can lengthen the window of vul-

nerability for security related bugs. Yet it is because patches are buggy that administrators

are wary of immediately deploying patches, even delaying the application of critical security
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patches to allow for more testing [7]. While there is work in patch validation, the current

efforts have shortcomings. Off-line validation, where a test workload is played against a test

system and compared against a known correct result, may not exhibit all of the characteris-

tics of the production workload. On-line validation, which compares the test system against

the production system while running the same workload, is too resource intensive; it may

either interfere with the production instance, or require additional resources beyond what is

reasonable. Both types also incur additional and costly administrator labor, and, as pointed

out in [88], non-determinism can make it very difficult to actually compare the output of

the new code to the old code without excessive false positives. Hence we lack an effective

mechanism to properly vet patches for correctness.

1.2 Contributions

This dissertation works towards developing run-time techniques to address software failures

during production runs.

• Use system support for checkpoint and re-executing to capture the failures.

Checkpointing has often been used for failure recovery [108]; I propose using such

techniques for capturing production run failures. Because the propagation chain from

trigger to failure is typically short in software failures, the amount of state which must

be captured is small, and generally does not need to be captured to persistent storage.

Hence the run-time overhead can be especially low, allowing production deployment.

Further, by using re-execution rather than deterministic replay, we can relive the failure

as if it had been instrumented for analysis the first time around. Finally, the flexibility

for re-execution allows the use of “what-if” scenarios; this results in further insights

into the failure, as well as allowing post-failure recovery.

• Adapt and systematically apply previously proposed analysis tools for post-

hoc analysis of failures. Since we can relive the failure as needed, it is not necessary
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to use expensive analysis during normal runs. After a failure has occurred, we can

focus any analysis technique we desire on that segment of execution which contains

the failure. Even the most expensive analysis techniques are feasible, because they

only need be applied for brief time periods. I propose diagnosis protocols in order to

select which analysis is appropriate at which time. For security vulnerabilities, this

protocol focuses on generating results quickly, in order to beat fast worms. For normal

failures, our protocol traces back from the failure to find the entire fault propagation

chain, and suggest the actual fault itself.

• Allow new analysis techniques and new responses. Due to the flexibility of

our re-execution, I propose delta analysis, a new analysis technique. Delta analysis

involves generating many possible runs of the program, some failing and some not, us-

ing flexible re-execution. Subsequently diffing the most similar failing/non-failing pair

highlights those aspects of the execution which separate success from failure. This

dissertation also proposes a new vulnerability-specific execution filter (VSEF [96]) to

respond to security vulnerabilities. By detecting the specific buffer overflow responsi-

ble for the vulnerability, all future exploit attempts can be easily protected against,

without imposing the overhead of bounds checking throughout the entire program.

Further, because the system has checkpoints available, it can use hits against the

VSEF filter to trigger recovery; refining vulnerability signatures based on the input

which triggered the VSEF and then re-executing catches all exploit attempts without

ceasing execution.

• Allow low-overhead comparison of patched and unpatched production runs.

From comparison of various failing and non-failing runs, it becomes apparent that

the differences in various executions are surprisingly small. Due to this observation,

I propose that it is possible to run both the original and the patched version of a

program within one execution. That is, for the majority of the execution, it is possible
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to run both old and new program version inside of one execution stream, and to run

two execution streams only for those portions of the execution which differ. This delta

execution allows users to validate the correctness of a patch on their own workloads,

without the full expense of running their applications twice. Additionally, many of

the difficulties in performing a live validation of two versions of a system come from

small non-determinisms in the execution. Even two identical program versions run side

by side may exhibit different output due to differences in thread interleaving, message

order, timing, and random number generation. However, because both the original and

modified program are running in the same physical execution stream most of the time,

such non-determinism effects both logical streams identically. This greatly reduces the

spurious differences that can frustrate on-line validation.

1.3 Summary of Results

These techniques are, as shown in this dissertation, quite effective. They demonstrate feasible

overheads and good functional results. In more concrete terms, this dissertation presents

measurements of the ordinary-case runtime overhead, the time to generate a result, and the

end functional result.

For both the automatic debugging and security use-cases, the overhead in the common

case is the continuous checkpointing. This overhead depends on the application and the

checkpoint interval. For a 200 ms checkpoint interval, the overhead can range from 1 to 5%

(see Chapters 3 and 4). This is much lower than the overhead of the software analysis tools

used after an issue is detected, which emphasizes the advantages of using checkpointing to

defer analysis. In the patch validation use case, delta execution (Chapter 5) imposes 12%

less overhead than side-by-side validation, despite the overhead imposed by Pin [77].

Both the debugging and security use-cases generate a result. For security purposes, the

system should generate the initial result as soon as possible; as described in more detail in
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Section 3.5.3, this can be as quick as 40-60 milliseconds. This low turnaround time minimizes

the amount of time a worm has to get ahead of an antibody. For automatic debugging, the

on-line portion of analysis is the important limiter; this can be completed (see 4.9.2) in about

5 minutes.

Finally, even if the overhead is trivial, expending that overhead is only worthwhile some-

thing is gained in return. First, for security, we care about what the extent of infection is

for a fast-spreading worm. Sweeper, the system presented in Chapter 3, limits the extent of

infection to only 5% for susceptible hosts, for a worm with a contact rate (β) of 1000. For

comparison, the fastest worm to date, Slammer [22] only had a β of 0.1. Second, the auto-

matic debugging system in Chapter 4 (Triage) can be measured by improvement in the time

to fix a bug. The results of a human study (see 4.9.4) show a 44.7% reduction in the time

to generate a fix. Finally, for the patch validation system in Chapter 5 (∆ execution), we

care about the ability to validate fixes. Delta execution can validate all ten of the attempted

patches, while traditional side-by-side validation only managed to validate two.

1.4 Outline

The remainder of this dissertation is organized as follows. Chapter 2 covers background

material and related work. Chapter 3 discusses using run-time analysis to prevent fast worms

with Sweeper. Chapter 4 presents techniques for automatically diagnosis of production

run failures, and an implementation of those techniques embodied in the Triage system.

Chapter 5 presents ∆ execution, a method for on-line patch validation. Chapter 6 briefly

presents potential future work, and Chapter 7 concludes the dissertation.

Much of the material in this dissertation has been published in journals, conference

proceedings, and workshops. The checkpointing system has been presented previously in

[108, 109, 110]. The security aspects of this work have been presented in [137]. [135, 136]

present the failure diagnosis work, and [159, 138] presents the patch validation work.
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Chapter 2

Background

2.1 Checkpointing for Software Reliability

Checkpoints have long been used to increase software reliability [12]. In [54], 3 of the

5 schemes described to survive software failures are some variety of checkpointing. The

principle behind these checkpoints is the assumption that most failures are “Heisenbugs”,

which depend on specific conditions in order to be triggered. If the checkpoint system doesn’t

capture those failure triggering conditions, they may not be present on replay. Hence, the

natural variations in execution when replaying from a checkpoint will prevent the fault

from manifesting. In general, these checkpoint systems assume that the entire system is

vulnerable to failure; hence they store their checkpoints to disk or to a separate system.

This greatly increases the overhead involved. Further, a study of software faults by Chandra

and Chen [24] shows that “only 4-14% of the faults were triggered by transient conditions ...

that naturally fix themselves during recovery”, implying that Heisenbugs are not as common

as once thought.

Another completely different use of checkpoints in software reliability is time traveling

or reverse debugging [49, 114, 128, 64]. Rather than trying to make the failure go away, in

reverse debugging the goal is to replicate a failure so that a programmer can inspect it. To

do this, such systems attempt to capture as much of the relevant environment as possible,

including memory access interleavings [114], and the complete results of system calls [128].

TTVM [64] performs checkpoints at the virtual machine level, allowing even kernel bugs

to be reliably duplicated and inspected. With varying levels of overhead, such systems do
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allow programmers to easily step backward through a software failure, greatly easing the

debugging process compared to “cyclic debugging” [64]. However, the diagnosis itself is still

performed by the programmer manually. If a failure is difficult to trigger in the first place

(one of the key motivations for such debuggers), the failure must be triggered at least once

in front of the programmer. This does not address the problem of production run failures.

All of the previously discussed checkpoint systems attempt a faithful reproduction of the

execution. Even for failure recovery, that the re-execution is successful is merely accidental.

In contrast, the Rx system [108] purposefully disturbs the environment during re-execution

in the hopes of preventing the failure from reoccurring. While Chandra and Chen find that

only a small proportion of faults are truly Heisenbugs, they do find that up to 56% of fail-

ures depend on some system or environmental condition [24]. By purposefully modifying

the environment (for a wide definition of environment) during re-execution, Rx can avoid

otherwise deterministic bugs during re-execution. Unlike the deterministic (or mostly de-

terministic) re-execution and replay used by previous systems, Rx uses a semi-deterministic

re-execution. This re-execution is capable of reproducing a failure, and is also capable of

producing an execution that could have happened, if some environmental condition had been

different.

A common criticism of using continuous checkpoints is the perceived expense. While

older checkpoint systems did impose non-trivial expense, more recent checkpoint systems

have demonstrated very cheap checkpointing. Rx itself imposes under 5% overhead for a

200 millisecond checkpoint interval [108]. Flashback (which Rx was derived from) imposes

under 10% overhead for a web-server workload [128]. TTVM, which checkpoints an entire

virtual machine, imposes 16-33% for a 10 second checkpoint interval [64]. Recently, the De-

jaView system imposes approximately 5% overhead for “execution capture” checkpoints [66].

Overall, using copy-on-write, minimizing logging, and avoiding disk allow frequent, cheap

checkpoints.

This work builds on the Rx checkpoint/re-execution system. Specifically, the Rx system
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has two properties which make it especially suited for the purposes of this dissertation. First,

it has especially low overhead. Most of the interesting things that happen between activat-

ing a fault and a failure occuring happen within a small time window immediately before

the failure. The fact that Rx does not attempt to maintain checkpoints for a long period

(checkpointing only to memory and then rapidly discarding them) is consequently of little

importance. Second, Rx is not restricted to exactly replicating a previous execution, as some

other checkpointing systems are. Rx explicitly attempted to force execution to happen dif-

ferently. For the systems presented in this dissertation, what is desired is mostly to replicate

the failure, but with analysis tools (e.g. bug detectors) which will perturb the reexecution

from a purely faithful replay. Between these two properites, Rx-style checkpointing is an

especially good match for addressing production-run failures.

2.2 Bug Detection & Diagnosis

There is plentiful work in techniques to automatically detect bugs, and to help diagnose

them. Especially for common bugs, such as memory bugs or data races, there is no shortage

of tools to detect them. Most of these techniques suffer from unacceptably high overhead,

and cannot be used in production runs. This section gives a brief overview of various bug

detection and diagnosis techniques.

2.2.1 Memory Bug Detection

Unlike type safe languages such as Java, programming languages such as C and C++ are

vulnerable to what are called memory bugs; these are bugs which result from the improper

or incorrect use of pointers. Memory bugs are an important class of bugs, as they not only

contribute to a large portion of failures overall, but cause half of the most severe security

vulnerabilities [23].

One way to prevent such faults is to retrofit type-safety onto C and C++. Jones &
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Kelley [60], CRED [115], and CCured [92, 30] all do this. The JK checker assumes that all

pointers point to correct objects; they then enforce that pointer arithmetic never creates an

incorrect pointer. However, this cannot deal with out of bounds pointers which will later

be manipulated to be valid. Further, it can impose overheads of up to 12x [40]. The other

techniques explicitly track what the original object was. They all modify the compiler so that

the compiled code uses some variant of “fat” 1 pointers. A fat pointer is a pointer which has

been augmented with information about what object it is pointing to. Pointer assignment

updates which object the pointer is referencing; other pointer arithmetic merely changes the

offset within that object. Since we know the sizes of all objects, we can easily tell if a fat

pointer is dereferenced while it points outside of the bounds of the object it should point at.

C and C++, however, are decidedly not type safe. Correctly inferring all pointer arithmetic

is difficult. Furthermore, fat pointers involve non-trivial overhead in both time and space,

and the runtime bounds checks are expensive as well. The original CCured [92] can impose

up to 150% overhead. In later work, CCured [30] attempted to prove that many types are

only used in a type-safe way, and hence do not require any dynamic checks. Depending on

the extent to which type safety can be statically proven, the overheads range from nearly

zero to 87%. This can still be unacceptably expensive. Further, these techniques all require

that the programs be compiled with the special CCured compiler.

More recently, advances in compile-time analysis and compiler-provided runtimes (e.g. as

in LLVM [67]) have brought down the costs of retrofitting type-safety, both in terms of run-

time overhead and code changes. In [40], Dhurjati and Adve show extreme reductions in the

overhead necessary for JK-style bounds checking. Specifically, they show that by using auto-

matic pool allocation, which isolates different types into separate heap areas automatically,

they are able to much more efficiently look up the bounds of a pointer. They further com-

bine this with static analysis to eliminate runtime checks where possible, and with compiler

optimizations tuned at reducing the overhead of the runtime checks that remain.

1Alternatively known as “chubby” pointers”.
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The result is an overhead of 12% overall across a selection of benchmarks, with a peak of

69% in one case. Further, it worked with unmodified C code, rather than a restricted subset

of C. In slight contrast, this work was later used by the Secure Virtual Architecture [37], or

SVA, to provide run-time memory safety guarantees to the Linux kernel. SVA did require

changes to the kernel code, primarily for two reasons. First and foremost, operating system

kernels are not generally written in pure C, but include substantial assembly code. SVA

required this to be redone using provided primitives in a virtual architecture. Second, OS

kernels are notoriously type unsafe, freely and frequently casting between dissimilar types2.

Further, SVA showed much higher overhead than [40], with typical values of 50% and ranging

up to 4x for kernel-heavy workloads. This implies that type-safe C/C++ is close to feasible

for general case use, but not quite.

It is also possible to use instrumentation to detect memory bugs. This can potentially

be the only choice if the program’s source code is unavaiable, or if it is impractical to

recompile using a special compiler. Purify [56] and Valgrind [94] are to popular tools for

performing memory safety checking. As Annelid shows, fat pointers can be used when

using instrumentation [93], but in general instrumentation-based memory bug detectors use

redzones. Redzoning involves monitoring for accesses to memory locations which should not

be touched. This is done by adding padding before and after each buffer. Any access to

these redzones is invalid, and can be flagged as a bug. Although this will not catch truly wild

pointers, it will detect most buffer overflows. While these techniques can apply to already

compiled programs, the flexibility comes at a cost. Valgrind imposes approximately 22x

overhead, while Purify imposes 5.5x. This is clearly much too expensive for production run

use.

A more limited case of memory bugs is stack smashing. Stack smashing occurs when

a buffer overflow overwrites the return address on the stack. This will generally allow

2There is a joke that kernel programmers only belive in three types: integers, bytes, and arrays of bytes.
The authors of [37] make a note of the prediliction of Linux kernel code to declare a variable as an integer
when it is used nearly exclusively as a pointer.
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an execution hijacking attack. StackGuard [34] and ProPolice [48] are two tools which

defend against such stack smashing attacks. By placing canary values around the return

address on the stack, both StackGuard and ProPolice can detect stack smashing attacks. A

canary is a value put before and/or after some important variable. Since most overflows will

overwrite in sequence, any buffer overflow which modifies the important variable will also

modify the canary. By verifying that the canary values haven’t changed prior to accessing

the important variable, writes to the important can be detected. Both StackGuard and

ProPolice make minor, non-intrusive modifications to the compiler; gcc currently includes

a version of ProPolice. While the overheads are reasonable, they are limited to detecting

stack smashing attacks on the return address; further, they give minimal information about

how the return address was corrupted, only that it was.

Another alternative is to use hardware to support memory bug detection. The Intel iAPX

432 [100] did not support directly accessing memory by a raw address, but instead required

the use of a segment and an offset. The segments were bounds checked, and also imposed

a hardware enforced type mechanism; a segment could either point to data or segment de-

scriptors, preventing arbitrary data from being treated as a pointer. Mondrian memory [149]

allows read/write/execute permissions to be specified on arbitrarily small segments of mem-

ory; small non-accessible segments before and after each buffer can easily act as hardware

enforced redzones. Similarly, iWatcher [158] allows inexpensive notification when specified

address are accessed, and SafeMem provides similar notification at the granularity of a cache

line [107]. While quite efficient, hardware based bug detection is only possible on special

hardware. For programs running on commonly available hardware, it is not an option.

2.2.2 Data Race Detection

A data race occurs when two different threads access the same memory location without

any synchronization between them. Data races are the classic example of a hard to debug

Heisenbug; they are highly dependent on the precise interleaving of memory accesses, and are
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hence difficult to reproduce. There are two dominant techniques for detecting data races:

the happens before algorithm [41, 95, 105] and the lockset algorithm [27, 117, 118]. The

happens before algorithm produces a partial order among memory access between threads.

Within a thread, each access occurs after the ones prior to it. Between threads, access to

a synchronization primitive is necessary to order accesses. For example, if several threads

reach the same barrier, then everything that happens after the barrier in each thread is

ordered after all accesses from before the barrier in the other threads. Similarly, everything

which happens after a lock acquire also happens after the last release of the same lock. If

there are two accesses to the same memory location which do not have a well defined order,

then a data race is reported.

The lockset algorithm instead looks at locks. The set of locks each thread holds is noted

for every shared variable access. If two threads ever access a shared variable without holding

a consistent set of locks, then it is assumed that a data race between those accesses is possible,

and a race is reported. Put another way, when accessing a particular shared variable, if the

intersection between set of locks held by thread A and the set of locks help by thread B is

empty, then the locks did not well protect the variable, and a race could be possible. This

has the advantage that the race need not actually occur during a run to be detected.

Both the happens before and lockset algorithms require many checks for shared memory

accesses. Therefore, they both impose high runtime overheads; the Valgrind implementation

of lockset imposes 694x overhead [76]. Further, both of them require knowledge of the

synchronization primitives used. If a programmer uses their own primitive (e.g. a while

flag), both may report false positives. Also, it may be impossible for a race to actually occur

for control-flow reasons, causing even more false positives.

A new approach is to look for invariants in memory accesses. Both SVD [153] and

Avio [76] do this. The programmer assumes that certain pairs of accesses will happen

atomically; bugs occur when this invariant is not enforced by the program and the assumption

is violated. SVD extracts invariants from static analysis, while Avio uses training runs.
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As runtime techniques, both impose large overhead (65x for SVD, 25x for the software

implementation of Avio). Furthermore, they require the exact data race to actually occur.

2.2.3 Crash Reports

One of the earliest forms of debugging information was the core dump: a snapshot of the

memory state of the computer at the time a failure occured. A somewhat more modern

variant of this is the crash report. Crash reports are data (e.g. core dumps, but also stack

traces, symbol tables, log files, hardware information, etc.) about the state of a computer

at the time of a failure which are automatically collected at a remote site and sent back to

the programmer. There are many crash-reporting frameworks, such as the Mozilla Quality

Feedback Agent [86], Dr. Watson [43], and Microsoft’s Windows Error Reporting [52].

Typically they do not send full core dumps, but stack information, version information, PC

values at the time of the fault, and occassionaly program specific information (e.g. a web-

browser crash-report tool may send the URL that caused the crash). The programmers can

use the crash reports to try to identify root causes, but also to prioritize fixing the most

common bugs.

Microsoft’s Windows Error Reporting, or WER, is by far the most common crash-

reporting framework (with an installed base of one billion clients), and the most well-

described in the literature. As described in Glerum et al’s paper on WER [52], when a

failure occurs, the user is prompted to submit error information back to the programmer.

If the user is asked every time, 40 to 50% of failures are reported; changing the prompt to

allow one time opt-in and simplifying the wording of the prompt increased the submission

rate to 70 to 80% in Windows Vista. These submission rates are surprisingly high, given

that there is some risk of sensitive or personally identifiable information being included in

the crash report.

One of the most important uses of WER is prioritizing which bugs to fix. Hence, the WER

backend has extensive support for heuristically assigning crash reports to “buckets”. The
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ability of the backend server to automiatically catagorize the bug also allows programmers

tracking down a specific bug to request additional information. For instance, they can

request a full memory dump, or the contents of a specific file. Further, they can request that

the specific client turn on further debugging support to get more details if the same failiure

occurs in the future.

Unfortunately, while crash reports are extremely useful for prioritizing bugfixing work,

they still only provide information about a failure after it has occured. They give information

about the state at the time of failure, but don’t give any explicit information about the fault

propagation chain. There are some tools which can extract more useful infomation from a

core dump. For example, a tool such as PSE [79] can infer possible execution paths from

static analysis and symbolic exection. However, without runtime information, the task of

tracing from the failure state to the root cause is more difficult.

2.2.4 Other Techniques

Invariant Based Bug Detection

The bug detectors described previously target generic behaviors; for example, for most pro-

grams it is probably incorrect to overwrite the return address. These generic invariants are

easy to develop detectors for. However, many buggy behaviors are specific to a particular

program, and cannot be captured by a generic detector. Instead, invariants must be devel-

oped automatically. Daikon [47] takes as its input many training runs; based on variable

values during these runs it guesses as to what may be invariants for the values of those vari-

ables. For instance, if a particular variable only every has values between 1 and 10 during

training, Daikon may decide that this bounds range is an invariant, and that violations of

the invariant indicate a bug. Similarly, DIDUCE [55] examines a program as it runs, and

hypothesizes as to invariants. As they are violated, it reports the violations and refines its

hypothetical model. AccMon [157] proposes program counter based invariants. By analogy,
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a credit card company monitors where a credit card is used; if it is used in a new place,

they may flag that transaction as suspicious. Similarly, particular memory locations are typ-

ically only accessed by a small subset of PC values. If a new PC value accesses the memory

location, it is suspicious, and can be reported as a bug.

Slicing

[147] notes that “Programmers use slices when debugging”. A slice is the portion of a

program which propagates values to (or from) a particular statement. Slices show how

statements influenced one another, and leave out statements which don’t matter (relative

to the statement of interest). Slices can be either forward or backward, and either static or

dynamic. A forward slice from statement s consists of all of the statements after s which have

a data or control dependency on s. Similarly, a backward slice from s is all of the statements

before s on which s has a data or control dependency. A static slice is one computed from

the source code, while a dynamic slice is one computed from an actual execution trace.

Although slices are quite useful in debugging, they are inconvenient to generate. Static

slices suffer from imprecision; without specific information from a particular run, poor alias

analysis and ambiguity as to control flow causes the slices to be overly large. Dynamic slices

are small, but are expensive to compute [156]. Even though they are imprecise, static slices

have seen more use simply because they are more practical to compute [127].

Delta Debugging

Delta debugging [155, 84] examines how changes in input can turn a failing execution into

a success. Specifically, delta debugging repeatedly mutates an input known to cause a

failure for two purposes. The first is to find a minimally sized failure-triggering input. By

eliminating those portions of the input which are extraneous to the failure, delta debugging

makes determining what causes the failure easier. Second, delta debugging searches for

a maximally similar input which succeeds. In the best cases, delta debugging can find
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a successful/failing pair separated by as little as one character. Seeing this difference is

helpful to the programmer in determining why the program failed.

Model Checking

Model checking seeks to prove that a program will exhibit or not exhibit a particular be-

havior, e.g. to prove that there will be no null pointer exceptions. One method of model

checking is exhaustive state space exploration, in which the model checking software explores

many many inputs to check if the desired properties hold in all reachable program states.

As I mention in previous work [159], delta execution (presented in Chapter 5) can be used

to reduce the effort of such model checking, by attempting multiple inputs simultaneously.

This idea is developed in [38]. Modifications to the Java Path Finder model checker allow

thousands of executions to run while sharing large amounts of state and execution. Al-

though the modifications to JPF impose a large amount of overhead, in the tested instances

there are many thousands of simultaneous executions, and hence [38] can model check more

quickly than the base model checker.

2.3 Worm Response

Ever since the Morris worm [46] struck the internet in 1988, the threat of automatically

spreading worms has existed. In more recent years, worms such as Blaster [20], Code

Red [21], and SQL Slammer [22] have demonstrated that this threat is not academic. Al-

though these worms did not have particularly malicious payloads, they still caused billions of

dollars in damage [69]. Distressingly, the Witty worm [121] incorporated a purposely dam-

aging payload: in between attempts to spread it would randomly overwrite disk blocks, until

the infected host was too damaged to continue. Witty targeted a relatively obscure piece of

software; a worm with a similarly malicious payload which targeted a commonly deployed

core service (such as a popular web server) could be devastating. Further, these worms are
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much faster than we can rely on a manual response. Slammer, currently the fastest spread-

ing worm known, infected 90% of susceptible hosts within 10 minutes minutes [85]. Recent

academic work [129, 130] has shown the possibility of far more efficient worms. By avoiding

scanning, building hit lists, and carefully ordering which hosts will infect which others and

in what order, it is possible to build worms of frightening speed; 95% infection rates are

possible in 510 ms for UDP and 1.3 seconds for TCP [129].

In order to protect against network-based exploits (automatic worms or otherwise), a

significant amount of research effort has gone into developing exploit signatures. Such sig-

natures provide a template against which incoming messages can be checked; if there is a

match, the input is considered malicious and can be dropped. Work such as Earlybird [124],

Honeycomb [65], and Autograph [63] all provide signatures for use as input filters. Unfortu-

nately, these filters are contiguous strings. In order to bypass them, a worm author merely

needs vary the specific message string they send to trigger the exploit. Such polymorphic

and metamorphic attacks are much more difficult to detect. Although creating polymorphic

signatures (e.g. Polygraph [98]) is possible, recent work [98, 104] shows that misleading

such generators is possible. The result is a signature with much higher false negative and

false positive rates. By fooling the filter into dropping perfectly legitimate traffic, malicious

training makes such polymorphic signatures much less useful; conversely a high false neg-

ative rate allows evil traffic to pass by unmolested. An alternative to training based on

detecting exploit attempts is to derive a signature from the vulnerability itself; Shield [142],

Vigilante [33], Bouncer [32], DACODA [35], and Brumley et. al. [18, 19] all do this. Al-

though such techniques can prove a zero false positive rate, they suffer from false negatives.

In general, these techniques will generate signatures with a sensitivity to the execution path

taken during exploitation. Bouncer [32] and [19] are much less sensitive to path, but still

have false negatives. Extracting a “perfect” signature from such analysis is equivalent to the

halting problem, and so is impossible in the general case.

A completely different approach is to target the vulnerability directly. Vulnerability spe-
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cific execution filters, or VSEFs [96], define a detector based on the execution of the software

itself. By specifying the path by which an observed exploit propagates to incorrect behav-

ior (e.g. execution of attacker provided data), one knows exactly those instructions which

need to be monitored in order to detect future exploit attempts. This specific technique,

however, is sensitive to variation in the execution path, and so may be defeated by metamor-

phism which varies the vulnerable software’s execution path. Also, detection occurs after

the program has consumed the malicious input; the state of the program can therefore not

be trusted, and the only recourse is to restart the service.

A further problem with both signatures and VSEFs is that they have to be derived and

distributed. While this is feasible for known exploits and known vulnerabilities, zero-day

attacks (which focus on previously unknown security vulnerabilities) are much harder to

respond to. Given the potential speed of worms, it is clear that we must respond automati-

cally. Vigilante [33] is such an automatic defense. In Vigilante, a subset of nodes will monitor

their execution (or the execution a subset of requests). If an exploit attempt is detected,

Vigilante will generate a self certifying alert (SCA). The SCA includes sufficient information

to generate a filter, and to verify (certify) that the vulnerability is real. This SCA can then

be shared with all other potentially vulnerable hosts. This sort of reactive antibody system

is effective against such worms as Slammer. However, there are weaknesses through which a

worm author could defeat Vigilante. First, since monitoring is only performed on a subset of

hosts (or requests), if the worm can avoid such sentinel hosts it can avoid detection. Second,

and most important, any method one can use to quickly spread an antibody, a worm author

can use to spread a worm. Vigilante relies on the ability to notify hosts far faster than the

worm can spread; a top-speed worm is far too fast, and gets a head start [129].
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2.4 Patches

The long term solution to a security vulnerability, and the end-goal of bug analysis tech-

niques, is a patch for the underlying fault. In the case of a security vulnerability, patching

quickly is required to minimize the window of vulnerability [15, 61]. Unfortunately, reports

of buggy patches are all too common [89, 90, 68]. System administrators loath to be the first

ones to apply a new patch, for fear that the cure will be worse than the disease. Their fears

are not unfounded; [8] shows that even for security patches, administrators are better off

waiting. Even a month after release, 6% of patches are still buggy. Due to poor patch quality,

vendors invest much effort into testing, which delays the availability of security fixes [5].

2.4.1 Patch Validation

To protect against bugs in patches, a patch can be validated against the behavior of the

unpatched software. Most patch validation efforts focus on offline regression testing [62].

[42] discusses various regression testing techniques. Selecting which test cases to run, how

to generate test cases, and how to test the integration of the entire system are all key issues

in regression testing. However, there is no substitute for testing on production runs [88].

On-line workloads exercise the entire system, can cover extreme or unusual conditions, and

are more useful for the individual administrator. What order and which test cases a vendor

runs is not of interest to a system administrator deciding whether or not to apply a patch;

what matters is merely “will it break my workload?”

Because of this, on-line testing is greatly preferred [31, 88]. In general, this requires

setting up a separate test machine, which doubles the hardware costs and requires extra

administration. This can be difficult; further, the upgrade needs to be done once for the

testing and again for the actual production run, doubling the chances of an operator error.

[75] considers using a “devirtualizable virtual machine” to ease maintenance while only using

a single machine. Once validation is complete, the workload is switched to the “testing”
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machine and the other VM is destroyed. Unfortunately, this still results in one half of

machine resources to be dedicated to the patched version. Deciding whether a patch is good

can also be problematic; predicates can be used to validate correct behavior [61].

2.4.2 Dynamic Software Update

In dynamic software update (e.g. [59, 78]), a program may be patched while it is still run-

ning. Of particular interest are procedure-based dynamic update systems, where individual

procedures within a program may be updated. The PODUS system is an example [119].

Although “any program can be so poorly written that it cannot be dynamically updated”,

most well-structured systems are suitable. During the update, two different versions will be

resident at once. Typically the old version will be resident as long as there is a stack frame

which points to within the old code.

Another technique similar to dynamic software update is band-aid patching [122]. Band-

aid patching will run the old and new versions of patched code in sequence. It then must

immediately determine which version to use. The unused instance is then squashed; unfor-

tunately this prevents dealing with faults with even short latent periods. Band-aid patching

only handles cases where the change is isolated to within one function.
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Chapter 3

Sweeper

3.1 Introduction

Security vulnerabilities are one particularly critical class of software bug. This chapter

considers a technique to address such vulnerabilities, specifically those exploited by fast

self-spreading worms, and describes an implementation of the technique in a system called

Sweeper1

Self-propagating worms are malicious programs which use software vulnerabilities to

spread from computer to computer. Even if the author of the worm is trying to avoid

negative consequences, they can cause much damage by overloading infected machines and

requiring administrator effort to clean up [46]. An attacker who is out for maximum effect

can do up to 50 to 100 billion dollars worth of damage in one incident [146]. Worms which

have been seen in the wild, like Blaster [20], Code Red [21], and SQL Slammer [22] have not

approached this upper bound, but have still been quite expensive. SQL Slammer alone cost

1.2 billion dollars, while Code Red cost 2.6 billion dollars [69].

Further, these worms can do their damage in very little time: only 10 minutes from

starting SQL slammer had reached a 90% infection rate [85]. Again, a potential for far

worse exists; [129] estimates a 95% infection rate in only 1.3 seconds for a worm exploiting

a TCP-based vulnerability, and only 510 milliseconds for a UDP vulnerability. Even at

much slower rates, a manual response is inadequate. If a patch were made available the very

1This work is based on an earlier work: Sweeper: a lightweight end-to-end system for defending against
fast worms, in ACM SIGOPS Operating Systems Review - EuroSys’07 Conference Proceedings, Volume 41,
Issue 3, June 2007 (c) ACM, 2007. http://doi.acm.org/10.1145/1272998.1273010
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moment the infection started, by the time an administrator found out about it the systems

they mange would likely have already been infected [130].

Since worms attacks are clearly too fast for humans, an automated response is imperative.

Consider a hypothetical ideal automatic worm defense with the following behavior. If a

worm attempts to infect it, the defense system detects the attack. It then analyzes the

attack attempt to find the underlying vulnerability. Without human assistance, it devises a

shareable “antibody” suitable for stopping all attack attempts of this vulnerability (not just

this particular exploit) with no false positives. After the analysis, the machine can recover

to continue execution as if the worm had not attacked. Finally, the overheads of running the

defense system are low enough to allow deployment on all hosts. This ideal defense system

leaves no room for worms; wherever they go, they are detected, picked apart, and have the

underlying vulnerability they use sealed off. The only traces of the worm’s existence are log

messages and new antibodies.

Essentially, what is needed is an Internet worm defense system that satisfies three prop-

erties:

• Fast and accurate attack detection/analysis : The defense system needs to detect and

analyze the attack efficiently and accurately to prevent damage and future attacks

exploiting the same vulnerability.

• Low overhead for universal deployment : The defense system has to have low overhead

to enable practical production system deployment, especially in server scenarios where

performance is important.

• Efficient recovery : It is also highly desirable for the defense system to recover from an

attack as efficiently as possible to provide non-stop service, especially for applications

that demand high availability.

As discussed in Chapter 2, existing defenses are insufficient. For instance, some existing

solutions such as PaX [102], StackGuard [34], LibSafe [134], and ProPolice [48] add reason-

23



ably low overhead (22%-0%) so that they can potentially deploy universally. Unfortunately,

they only detect some types of attacks, as shown by a prior work [148]. Address space

randomization [102, 50] detects many memory-related vulnerabilities but provides too lim-

ited of information about an exploit to analyze the attack and generate antibodies against

future exploits. At best, the program will halt at the vulnerable instruction, at worst the

attack will (with low probability) succeed. Similarly, stack canaries tell us that the stack

was overwritten, but not by who. Tools like LibSafe only detect issues in the specific library

functions they target. We can deploy such systems, but we will not learn much from them.

In contrast, those techniques which provide reasonably accurate attack detection and

analysis incur too much overhead (up to 30-40X slowdowns [99]) to be practical to deploy

universally. Example of these tools include DIRA [125], DACODA [35], Vigilante [33],

or TaintCheck [99]. The techniques which can best detect and analyze an attack (e.g.,

TaintCheck or DACODA) impose the highest overheads. To provide detailed analysis of

the exploit, they instrument most of the instructions, and record many details about what

happens. Due to high runtime overheads, such tools must instead rely on a limited, sentinel-

or canary-like deployment. If an unlucky worm happens to infect such a sentinel host, it will

be caught, but the bulk of hosts are unmonitored, open to attack.

A partial remedy proposed in Vigilante [33] is to, once caught at a sentinel machine, ana-

lyze the attack and automatically generate antibodies (called Self-Certifying Alerts or SCAs

in Vigilante’s parlance), to quickly distribute to other hosts against infection. Unfortunately

fast hit-list worms can, if unimpeded, infect every vulnerable host in milliseconds [129]; the

time it takes to generate, distribute, and verify an alert in a Vigilante-like system is too

long. In summary, none of these remedies completely address the fundamental limitation of

most existing solutions, i.e., they fail to provide accurate and fast detection and analysis of

Internet attacks without incurring high normal execution overhead.

In addition to the above limitation, a parallel shortcoming of existing solutions is recovery:

most fail to provide efficient recovery because they have to stop the service and restart after
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an attack. For example, although TaintCheck will identify the improper use of untrusted data

and stop execution, the original implementation of TaintCheck cannot undo the bad effects;

any overrun buffers will remain overrun. TaintCheck merely stops the attack, delegating

recovery to restart. Unfortunately, restarting a system or an application usually takes up

to several seconds [140]. For servers that buffer significant amount of state in main memory

(e.g., data buffer caches), it requires a long period to warm up to full service capacity [13,

141].

In summary, to maximize the level of defense against security attacks, it is highly de-

sirable to develop a solution that can meet all three properties, namely fast and accurate

detection/analysis, low overhead for universal deployment, and efficient recovery.

3.1.1 Contributions

This chapter describes techniques to defend against self-spreading worms which address

these issues and achieves the three goals. The techniques described are implemented in the

demonstration system Sweeper2. Sweeper does this in three ways:

First, by cleverly leveraging a lightweight checkpointing and monitoring support, Sweeper

can postpone heavyweight monitoring until absolutely necessary — after being attacked. In

other words, during normal execution, the system takes only lightweight checkpoints and

runs lightweight monitoring. The checkponts allow allow re-execution and recovery in case

of an attack, while the monitoring detects a wide range of suspicious requests. Unknown ex-

ploits can be detected using generic detectors (such as address randomization), while known

exploits can be detected through Sweeper’s automatically generated antibodies. Both the

checkpoinging and monitoring impose very low overhead, making near universial deployment

practical.

Second, after an attack is detected, Sweeper “goes back in time” (i.e., rolls back) and

dynamically adds heavy-weight instrumentation and analysis during replay to conduct com-

2Like a sweeper in soccer, Sweeper is intended to be fast, tough, and add depth to the defense.
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prehensive and thorough attack analysis. This includes dynamic memory bug detection,

dynamic program slicing, memory state analysis, and dynamic taint analysis, as well as

automatically generating antibodies such as input signatures and vulnerability-specific ex-

ecution filters (VSEF) [96]. Antibodies are further discussed in Section 3.3. Doing such

allows sophisticated and detailed analysis to be performed only for those recent messages

and execution period that are relevant to the occurred attack—server initialization and long

runs of harmless inputs and normal execution need not suffer expensive monitoring and in-

formation recording. This novel use of checkpoint and rollback provides both low overhead

and thorough analysis.

Third, Sweeper again leverages checkpoint/re-execution, this time to achieve recovery:

after an exploit attempt is detected (and any necessary analysis is performed) Sweeper rolls

back and re-executes the program while dropping the attacker’s input. This allows Sweeper

to use not only input signatures, but VSEFs as well, because without recovery, VSEFs only

transform a code-execution vulnerability into a denial-of-service vulnerability.

These ideas are implemented in a real system. The functioning prototype is implemented

in Linux, building on a modified version of the previous Rx framework [108]. Sweeper

uses address space randomization for lightweight detection, backed by post-exploit analysis

tools such as dynamic memory bug detection, dynamic taint analysis [99], and backward

slicing [147]. Sweeper uses the PIN [77] dynamic instrumentation tool to add these analysis

tools on-demand. Sweeper also has an implementation of both input based filtering and

VSEFs for defense on both hosts performing analysis and those hosts which choose not to.

Sweeper is tested using 4 real exploits in 3 servers: Apache, Squid, and CVS. The over-

head during pre-attack execution (normal execution) is under 1%, making Sweeper clearly

suitable for widespread production deployment. Antibodies can be generated in under 60

ms. Finally, this chapter presents analytical results showing that even when partially de-

ployed, Sweeper is capable of containing even fast hit-list worms. To summarize, Sweeper

has the following unique advantages compared to previous solutions:
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1. It imposes low overhead during normal execution. During normal execution,

only lightweight monitoring and lightweight checkpointing are active. Lightweight

monitoring techniques such as randomization [26, 50, 150] or lightweight dynamic

bug detection [39, 107, 157] impose reasonable amount of overhead (nearly zero for

address space randomization), feasible for production run deployment. In-memory

checkpointing, such as the previous Flashback and Rx systems [108, 128], also impose

only marginal amounts of overhead (e.g., 1-5%). As demonstrated in the experimental

results (Section 3.5.1), the low overhead makes widespread production run deployment

feasible.

2. It performs comprehensive and thorough attack analysis, and generates ef-

fective antibodies. Low overhead during normal execution is achieved without sac-

rificing analysis power. When the light-weight monitoring trips, we can roll back and

re-execute with heavyweight analysis. Sweeper then dynamically uses binary instru-

mentation tools (e.g., PIN [77]) to insert analysis such as dynamic taint analysis [99]

or backward slicing [147] after the fact. Therefore, Sweeper does not pay for expensive

analysis for requests which do not need it, but only for those requests where it matters.

3. It allows fast recovery. Simply detecting that an exploit has been attempted is

insufficient; Sweeper must also restore the server to a safe state. Once an attack

is detected, Sweeper uses rollback/re-execution to re-execute without the attacker’s

input. Rollback removes the corruption the attacker may have left, while re-execution

allows the program complete servicing concurrent and further valid requests without

restarting, thus achieving fast recovery.

4. It provides a partial deployment option to hosts that demand even lower

overhead. Although the overheads involved are low, there may be hosts which do

not wish to deploy the analysis tools. Sweeper does not leave such hosts completely

defenseless. As shown in Section 3.6, Sweeper also provides an effective community
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defense option which can protect most hosts even in a hit-list worm attack when only

a fraction deploy the Sweeper analysis mechanisms.

3.2 Architecture
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Figure 3.1: Architecture diagram of Sweeper

3.2.1 Overview

The Sweeper system has four functions: 1) during normal execution, light-weight monitoring

for detecting attacks and light-weight checkpoint for potential rollback-and-re-execution for

attack analysis; 2) after an attack, analyzing the exploit attempt via multiple iterations of

rollback-and-re-execution; 3) generating and deploying an antibody against future exploits;

and 4) recovery after an attack is detected and analyzed.

Figure 3.1 shows the architecture of Sweeper. The above four functions are provided by

three modules: runtime, analysis and antibody. Section 3.3 describes the details of each

component; this section discusses their overall function and interactions.

Runtime module The run time module supports (1) light-weight monitoring and check-

point during normal execution, (2) re-execution during attack analysis, and (3) recovery

after attack is analyzed. During normal execution, the runtime module employs low over-

head monitoring techniques such as address randomization and other techniques discussed
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in more details in Section 3.3 to detect suspicious requests. Moreover, it also uses input sig-

natures and VSEFs generated by the analysis and antibody modules on past attacks to filter

out malicious requests and detect exploits of previously known vulnerabilities. In addition

to light-weight monitoring, the run time module also takes periodic light-weight, in memory

checkpoints similar to Rx [108] and FlashBack [128] to ensure rollback-and-re-execution for

analysis and recovery in case of attacks.

The checkpoints taken by the runtime module, as well as Sweeper’s other private state, are

isolated from the process we are protecting. The checkpoints themselves are stored inside

the operating system as shadow processes; unless an attacker compromises the operating

system’s own memory space, the checkpoints cannot be touched. Further, the analysis

tools are applied after an attack is detected. They take control of the execution path, and

can disallow any access to their internal state. After they are applied, no instructions are

executed without the instrumentation tool first being given the opportunity to monitor it.

In this manner, an attacker is prevented from subverting either the analysis tools or the

checkpoints.

After an attack is detected, the runtime module is also responsible for providing roll-

back and re-execution support as guided by the analysis module to perform various attack

analyses. To support re-execution from a previous checkpoint, Sweeper needs to replay all

or a selected subset of incoming network messages received since that checkpoint based on

the type of analysis performed. During the re-execution, all side effects such as outgoing

network messages are sandboxed and silently dropped.

Finally, after the attack is analyzed and an antibody is generated, the runtime module

rolls back and re-executes again from a selected checkpoint to perform recovery for providing

continuous service. The continuing execution will have the new antibody (input signatures

and VSEFs) in place to detect future exploits to the same vulnerability. During recovery,

the output commit problem and the session consistency are handled in a way similar to my

previous work, Rx. These issues are briefly discussed in Section 3.4, but more details can be
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found in [108].

Analysis module The thorough analysis is performed by the analysis module to generate

input filters and VSEFs. The analysis module is activated only when absolutely necessary —

after an attack is detected by the light-weight monitors in the runtime module. By using the

checkpoint/rollback capabilities of the runtime module, the analysis module can inspect and

re-inspect the execution as necessary, going back to a point prior to the attacking requests

being read in. Because the execution to be monitored represents only a short amount of time,

a few tens of hundreds of milliseconds depending on the checkpoint interval, even expensive

analysis tools complete quickly. Performing heavy-weight analysis only on the periods of

execution where it is necessary greatly improves the efficiency of analysis and also enables

more thorough and accurate analysis.

After rollback, the analysis module dynamically attaches various analysis tools that are

implemented using dynamic binary instrumentation. There are many possible analysis tech-

niques which could be applied; the actual implementation (see Section 3.3 for details) per-

forms a static analysis of the memory state, dynamic memory bug detection similar to

Valgrind [94] and Purify [56], dynamic taint analysis similar to TaintCheck [99], and dy-

namic backward slicing [147]. The overheads of the dynamic techniques range from 20x to

1000x (for backward slicing). Yet since analysis is only performed when necessary and only

on a short execution period that is related to the occurring attack, the total expense is small.

Antibody module The antibody module uses the analysis results and derive antibodies to

detect future exploits to the same vulnerability. There are two types of antibodies supported

by Sweeper: input signature filters, and VSEFs [96]. Given the input responsible for the

exploit, an input signature for filtering can be generated [63, 65, 98, 124]. Also, given

the instructions involved in the exploit (especially for buffer overflows), we can generate a

VSEF. In the case of a memory bug (e.g. stack smashing), the VSEF consists of monitoring
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the instruction which cause the buffer overflow, or monitoring the return address of the

susceptible function. Since these only involve a handful of instructions, these VSEFs are

inexpensive. Together, these antibodies are sufficient to prevent future exploit attempts from

succeeding. Also, they can be distributed to other hosts. If the other hosts are untrusting,

it is sufficient to give them the exploit-containing input; they can then generate their own

signatures and VSEFs.

Together, these modules make up the complete Sweeper system. Deploying all of them

together is the assumed default case. Ideally, all hosts would use all of the modules. Never-

theless, it is possible, and still beneficial, to run only a partial set. This is further discussed

in Section 3.6.

3.2.2 Process

To clarify how the system works, this subsection presents a concrete walk-though of a real

vulnerability. Figure 3.2 shows an exploitable buffer overflow bug in Squid. In step (1), heap

buffer t is allocated as 64 + strlen(user) bytes long. In step (2), the function rfc1738 -

escape part(...) allocates a buffer buf to be strlen(user) * 3 + 1 bytes long, and

then fills it in with an escaped version of the string user. In step (3), buf is copied into t

using strcat(...); since strcat(...) is not bounds checked, t can overflow. The bug is

triggered whenever there are many characters that are escaped in the user string.

Figure 3.3 illustrates the Sweeper defense process. During normal operations, Sweeper

takes periodic checkpoints. At an attack, the light-weight sensors and monitors detect that

something is amiss—for example, a randomized memory layout has caused a segmentation

fault to occur. In response,Sweeper begins its attack analysis. The execution is rolled

back to the previous checkpoint, and heavier weight analysis techniques are performed. In

the current implementation, the first analysis is an examination of the memory state (i.e.,

analyze the core dump). This is a very fast step, and it generates a good-quality VSEF.

In the Squid vulnerability, this tells us that the segmentation fault occurred at instruction
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len = 64 + strlen(user) + ...;
t = xcalloc(len, 1);

t
\0

t
\0

x x x x \0

buf
bufsize = strlen(user)*3 +1;

buf = xcalloc(bufsize,1);

return buf;

//Copy from buf to t
x x x x \0

t

x x x x \0

buf

strcat(t, rfc1738_escape_part(user));

Resulting Heap

Overflow!

Code
(1)

(2)

(3)

Figure 3.2: A buffer overflow in Squid (CVE-2002-0068).
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Figure 3.3: Sweeper defense process.

0x4f0f0907 in strcat. For this example, this is enough to build an initial VSEF: check

for out-of-bounds accesses at that particular instruction. Actually, a small refinement is

necessary, since strcat is a library function: the return address at that time must also

match (0x0804ee82, or ftpBuildTitleUrl). Although later analysis steps can be used to

detect with more certainty, this VSEF is more effective than the generic sensors and it is

available within only 40ms of the first sign of trouble.

Next, memory bug detection is performed. This is more expensive, but it generates im-

proved VSEFs, so we do it second. The analysis includes bounds checking, stack-smashing

detection, double free detection, and dangling pointer detection. Monitoring all memory
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accesses is impractical for normal execution, but since Sweeper can dynamically add instru-

mentation to a replay from a checkpoint, the overhead is manageable. In the Squid example,

the heap is inconsistent, and memory bug detection points out instruction 0x4f0f0907 in

strcat as the source. This confirms earlier results, and takes around 37 seconds.

The next step is dynamic taint analysis [99]. This allows us to isolate the input for a

signature. Dynamic taint analysis traces the influence of “untrusted” data (e.g. network

inputs) through the program, looking for “illegal” uses of tainted data, such as a branch

target. Once an illegal use of tainted data is detected, we can trace the taint back to the

particular request responsible. The identified request can then be passed on to a signature

generator to generate input signatures to filter out further attacks [63, 65, 98, 124]. The

identification of the original input responsible for the attack also allows us to do fast recovery:

we simply rollback the process and re-execute without the malicious input, and thus bring

the process back to a safe state.

The last analysis step is dynamic slicing. The slicing collects the full dependency graph,

including data and control flow dependencies, of the instructions executed since the check-

point. Having the complete set of involved instructions and data allow Sweeper to verify the

results of the previous analyses: any identified issue which is not in the slice is a false positive.

The graph is only for execution on the malicious input, since the checkpoint. Running full

slicing from the very beginning of execution, even in replay, is impractical. Depending on the

program, slicing imposes from 100x to 1000x overhead. Only by dynamically inserting the

graph collection from a checkpoint the slicing overhead becomes acceptable and practical for

automatic defenses. In the Squid example, within around 107 seconds, Sweeper generates a

backward slice which exactly shows the reason of the vulnerability: t is allocated too small,

and there is no bounds check. Further, none of the other tools report anything outside of the

backward slice; if they did, we would suspect that the other tools were incorrect. Backward

slicing can then act as a sanity check against the other tools.

In this particular example, everything points to the same instruction, 0x4f0f0907 in
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strcat. The later, more thorough analysis steps serve as a confirmation of the previous

steps; here they all fully agree. Consider instead a stack-smashing attack: the crash may

occur well after the buffer overflow. Although it is possible to detect from a coredump, and

Sweeper can create a VSEF (use stack canaries or a separate return-address stack for the

effected function), it would be preferable to target the buffer overflow itself. This, however, is

not possible until after memory bug analysis is performed. Also, generating a worm signature

requires identifying the specific input responsible; again, this is not possible with the simple

core analysis. In combining multiple analysis techniques, Sweeper achieves something better

than either one; fast but potentially weak results from static analysis augments slow but

thorough results from dynamic analysis.

3.3 Design and Implementation

As discussed in Section 3.2, Sweeper has three components, one for runtime support, one

for post-attack exploit analysis, and one for dealing with antibodies. This section further

describes the details of each individual components.

3.3.1 Runtime Support

During normal execution, Sweeper needs to: 1) monitor against generic attacks, 2) monitor

network flows and execution against specific attacks, and 3) take checkpoints sufficient to

replay execution for later analysis and recovery. Since these three tasks are being performed

continuously, they are performance critical: the higher the overhead imposed, the fewer sites

will be willing to sacrifice the performance for protection.

Runtime Monitoring Monitoring against generic attacks can be performed with any

lightweight bug detector. In our current prototype implementation, we rely on address space

randomization [102, 10, 11, 26, 50, 50, 150], although there are many other mechanisms
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which could be used [102, 30, 34, 50], including some of our own previous work such as

SafeMem [107], LIFT [106]. The advantage of automated diversity mechanisms like address

space randomization, which places the starting point of the stack and heap at a random

initial offset and randomizes library entry points, is that they detect many attacks with high

probability while imposing minimal performance overhead in processing non-attack requests.

Monitoring for specific attacks has two parts: input monitoring and execution monitoring,

based on the antibodies automatically generated by Sweeper’s antibody module from past

attacks. Monitoring inputs for attack signatures is already widely deployed in network

IDS systems. We combine such monitoring with the input logging which is required to

support replay; it would be possible to separate the monitoring to a separate machine (e.g.

a firewall) if desired. Execution monitoring must occur on the machine in question. We

implement execution monitoring by adding dynamic binary instrumentation with PIN [77].

PIN allows the efficient addition of instrumentation to an already running process. However,

any instrumentation tool which allows dynamically attaching to a running process would be

feasible (e.g. dynInst [45]); we choose PIN due to familiarity and efficiency. Since only a

minute portion of the execution needs to be monitored (generally only the instruction which

causes a buffer overflow), PIN instrumentation for such monitoring is of negligible overhead;

only a handful of extra instructions are inserted, and only in that one location.

Checkpointing Another task performed during normal execution is checkpointing. Sweeper

uses a modified version of the Rx [108] checkpoint and rollback system. Checkpoints are

taken using a fork()-like operation, which copies all process state (e.g. registers and file

descriptors) and uses copy-on-write to duplicate modified memory pages. The use of in-

memory checkpoints is feasible since Sweeper keeps them for a short time (a few minutes

at most) and then discards them. The advantage is much lower overhead than present in

systems which write checkpoints to disk.

Similar to Rx [108], a checkpoint is captured using a shadow process. This provides
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a unique advantage for security purpose because a shadow process has a separate address

space from the monitored process and is entirely invisible at user level, even though some of

their virtual pages may point to the same physical pages due to copy-on-write. Under the

assumption that the operating system kernel is secure, an attack that corrupts the monitored

process is unlikely to affect any checkpoint state because the first update to any page in the

monitored process after a checkpoint will trigger the operating system’s copy-on-write engine

to copy the old page to a different location to ensure that the shadow process’s memory state

is not affected.

Rollback is also straightforward: reinstate the stored state back to the process. This is

nearly instantaneous as it is almost identical to a context switch. File state can be handled

similarly to previous work [74, 128] by keeping a copy of accessed files and file pointers at the

beginning of a checkpoint interval. Network state is logged by a separate proxy process; this

proxy facilitates replaying messages for re-execution and can also implement signature-based

input filtering. The re-execution runs faster than the original, since there are no network

delays or disk cache misses and hence IO costs are lower. More details can be found in the

Rx paper [108].

Recovery As mentioned, the identification of the original input responsible for the attack

also allows fast recovery: Sweeper simply rolls back the process and re-executes it without

the malicious input, and thus brings the process back to a safe state. In the implementation,

rollback is accomplished by reverting to a previously saved system checkpoint. Sweeper

then restarts the system and replays legitimate (non-malicious) requests received after the

checkpoint. Further issues related to recovery of stateful services are discussed in Section 3.4.

3.3.2 Exploit Analysis

After the lightweight monitors have triggered, Sweeper performs a more thorough analysis

of the attack. Sweeper uses a variety of static and dynamic analysis tools, including static
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core dump analysis, memory bug detection, dynamic taint tracking, and dynamic backward

slicing.

Core dump analysis By looking at the state of the program at the time when the

lightweight monitor detects an attack, we can learn some things about the attack. This

tool checks the consistency of the heap data structures, walks the stack to check for consis-

tency, and determines the faulting instruction. This step is very fast (a few milliseconds),

and can provide an initial VSEF. The disadvantage is that, given only a static glimpse of

the program, Sweeper cannot achieve highly precise results. It is possible that an exploit

may trigger the monitors and leave memory in a seemingly consistent state. Hence, Sweeper

must still use more powerful tools later. For straightforward attacks (e.g. a stack buffer

overflow) this step is sufficient to create a VSEF targeting the exact buffer overflow. If the

attack is a stack-smashing attack, and it is detected at the time of the ret instruction, a

VSEF to add stack canaries to that function can be generated. Although a more precise

VSEF would be desirable (target the overflow directly), this initial analysis is available al-

most immediately. Furthermore, anything detected in this stage, useful for a VSEF or not,

is a potential starting point for dynamic backward slicing.

Memory bug detection Memory bug detection is a important step for vulnerability

analysis because memory bugs, such as heap overflows or stack smashing, are commonly

exploited for security attacks [50]. Detecting the misbehaving memory instruction usually

gives an important clue to find the exploited instruction. Furthermore, detecting a memory

bug gives a straightforward VSEF: simply insert the checks necessary to catch that particular

bug.

There are many existing powerful memory bug detection tools commonly used by expe-

rienced programmers during debugging. They are usually not used in production runs due

to the huge overhead (up to 100X slowdowns [157]). Fortunately, in Sweeper, such tools are
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dynamically plugged in during replay after an attack is detected, when overhead is less of

a concern and can also be minimized due to the focused monitoring period. Operationally,

Sweeper dynamically attaches the memory bug detectors during sandboxed replay. In the

short period of replay from the previous checkpoint, memory operations are monitored and

many types of memory bugs throughout this period can be caught.

Specifically, Sweeper detects three important types of memory bugs, all of which are

serious security vulnerabilities. The first is stack smashing. The memory bug detector

records the stack return address location at every function entry and monitors this location

for writes. Pre-existing stack frames are inferred from the stack frame base pointer register

(ebp in x86). The second memory misbehavior Sweeper detects is heap overflow. Sweeper

uses a modified red-zone technique which is simple and reasonably efficient—use malloc()’s

own inline data structures. We monitor these areas for invalid access (e.g., not by malloc()

or free()). Buffers allocated prior to the checkpoint are inferred from the memory image

at the checkpoint. This technique has the advantage, over many existing techniques, that it

can begin mid-execution. For the third type of memory bug—double free, all malloc() and

free() calls are monitored to catch any free() calls to a previously freed location.

With the above described memory bug detection, Sweeper can generate efficient and

accurate vulnerability monitor predicates, and use them to guard the application from future

exploits. Specifically, bounds checking inserted at the effected instruction(s), or monitoring

for double-frees at that particular free, can catch future exploit attempts. This monitoring

is much more efficient than full memory bug detection, since it only involves a few code

locations.

Dynamic Taint Analysis As demonstrated in [99], dynamic taint analysis is a powerful

means of detecting a wide range of exploits, including buffer overrun, format string, and

double free attacks, some of which may be missed by the aforementioned memory bug

detection. Sweeper uses a reimplementation of TaintCheck using PIN, so that it can be
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inserted after an exploit is detected.

TaintCheck tracks the flow of “taint” throughout a program: data read from untrusted

sources are tainted, and the taint is maintained through data movement and arithmetic

operations. Further, TaintCheck verifies that tainted data is not used in a sensitive manner,

e.g. as a return address or as a function pointer. If tainted data is used in such a way,

Sweeper can trace back to the responsible input, identifying the instructions that passed it

along the way. For more details, please see [99].

Dynamic Backward Slicing A backward program slice is the set of instructions which

affected the execution of a particular instruction [147]. That is, for a specific instruction, the

backward slice is the set of dynamic instructions which were necessary for the instruction

to execute. Instructions not in the slice are therefore irrelevant : if they were skipped, the

execution of the selected instruction would not be influenced. This is similar to dynamic

taint tracking, however all influences, including control flow and pointer indirection, are

tracked. Consider the following code:

j=read(taint);

if(w==0)

x=y[i];

else

x=y[j];

z=x;

Suppose w were 3. In a backward slice from z=x, we would find a dependence on x=y[j],

if(w==0), and j=read(taint). We would also find a dependence on whichever instructions

assigned to y[j] and w last. Dynamic taint analysis would not notice the dependence on j

or w, and hence not identify that z is tainted.

Sweeper implements dynamic backward slicing in a way similar to [156]. It tracks the

last dynamic instruction to write to each register and memory location, as well as the last
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instruction to modify the control flags. The PC depends on the last conditional or indirect

jump. Instructions, in turn, depend on any registers they read, any memory they read, and

the PC. Sweeper constructs a dependency tree from these relations; generating a backward

slice from this tree is as simple as walking backward from the selected instruction.

Dynamic backward slicing gives similar (but more thorough) results as dynamic taint

analysis, however it is much much more expensive: the implementation used in Sweeper im-

poses 100x to 1000x overhead. Only because this analysis is performed only when necessary

is it at all practical. This again shows the benefits of deferring analysis until after an attack

is detected.

It is also possible to compute a forward slice: the set of all instructions influenced by

a starting instruction. A forward slice from the exploit input would reveal all instructions

and memory potentially tainted by it. Although Sweeper can compute such a slice from the

dependence tree it generates, it currently does not do so.

3.3.3 Antibodies

Sweeper’s antibodies provide protection against further attacks. They can either be input

signatures, or vulnerability specific execution filters.

Input Signatures Input filters are commonly used to eliminate known exploits before

they reach vulnerable servers [63, 65, 99, 98, 124]. Based on the input which caused the

exploit (derivable from either dynamic taint analysis or backward slicing), many existing

techniques can be used to generate filters. Since Sweeper has VSEFs to provide a safety net,

it can start by generating signatures as exact matches. This has the benefit of very low false

positives, and being impervious to malicious training [97]. Polymorphic signatures are also

feasible; see [18] for details.
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VSEFs Vulnerability specific execution filters [96] provide a low false-negative approach

to detecting attacks. VSEFs in Sweeper function like the heavyweight dynamic analysis

tools, except that they only monitor the instructions necessary to detect the exploit. Since

the number of instructions monitored is much smaller, they are no longer heavy-weight but

are light-weight. VSEF-hardened binaries are able to reliably detect various attacks against

the same vulnerability, even in the face of polymorphism and metamorphism. Since they

look for the same behavior as the heavyweight dynamic analysis, they have similar false

negative and false positive properties. Sweeper considers VSEFs derived both from memory

bug detectors and from dynamic taint analysis.

Memory-bug-derived VSEFs consist of the instruction responsible for the memory bug,

and the type of the bug. For a buffer overflow, this is the store instruction which overflows

the buffer. For a double-free, this is the call to free() which is redundant. In both cases, the

implementation of the VSEF is to monitor for the type of bug at that location: is the write

within bounds, or is the buffer to be freed already free? In the case of stack overflows, this

may be relaxed to simply ensure that a return address is not being overwritten, if information

about the stack layout is not available. The static memory analysis may generate another

sort of memory VSEF: monitor the return address of one particular function. The call

who’s return address is overwritten is recorded in the usual place, and also copied separately.

Just prior to the ret call which pops the return address, the stored value is compared to

the stack’s value. This is simpler than using canaries because the structure of the stack

can remain the same. All of these memory-bug-derived VSEFs only insert a handful of

instrumentation instructions, and therefore impose negligible overhead.

Dynamic taint analysis VSEFs consist of a list of instructions which propagated the

taint, and the instruction which incorrectly consumed tainted data. Ordinary dynamic taint

analysis instrumentation is applied for those instructions only. Again, this imposes much

less overhead than full analysis. For more details, please refer to [96].
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Distribution The generated anti-bodies can be disseminated to other hosts to protect

them against further attacks. The concrete manifestation of an antibody to be disseminated

is a set of VSEFs and an exploit-triggering input. Together, these allow hosts to protect

themselves in multiple ways. Including the exploit-triggering input allows hosts to verify

the antibodies: in a sandbox, feed the input to the vulnerable program while performing

heavy-weight analysis.

Since receiving and applying VSEFs is a time-critical operation, hosts may want to apply

them without verifying them first. By deferring verification, hosts reduce their exposure to

infection. A VSEF is a set of instruction addresses which need to have certain monitoring

(e.g. buffer overflow monitoring, dynamic taint analysis, etc.). By their nature, then, VSEFs

cannot be harmful; incorrect or malicious VSEFs will result in unnecessary bounds checking

or taint tracking, but cannot create behaviors that full monitoring would not. At worst they

cause a performance degradation. Unneeded VSEFs can be removed when they are verified.

Since verification is deferred, we distributed antibodies piecemeal. As each step completes, a

host will distribute results as it generates them. Similarly, hosts consuming antibodies apply

them as they receive them, deferring verification until after the exploit input is isolated.

3.4 Issues and Discussion

3.4.1 Recovery and Re-Execution

The Rx-based re-execution allows recovery in many practical cases. However, there may be

instances where dropping the attacking requests and re-executing is not sufficient to maintain

consistency. Consider, for example, an SSL-enabled web server. Session keys depend on

random numbers; for connections concurrent to the attack these numbers may be different

on re-execution. An alternative to Rx is to use a Flashback [128] based checkpointing system.

Flashback logs all of the system calls made by the process, in order to allow deterministic re-

execution. This allows Sweeper to either re-execute the application with more consistency or,
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failing that, to detect the inconsistency and abort. If the execution depends on a system call

returning the same result (e.g. a read() to a file, or a call to gettimeofday()), Flashback

will replay the same result as previous executions. Therefore, differences in the results of

system calls will not perturb the execution. To verify the consistency of results, Sweeper can

compare the re-execution’s calls to write() to the previous results Flashback recorded; if

they match, we know that Sweepwer was successful. In the case that the lack of the attack has

caused a change in program state (e.g., a counter of the number of connections accepted)

which changes the output, Sweeper can abort the re-execution and resort to restart. In

practice this is a rare case, however, for those instances where the execution is sensitive to

small changes, this alternative exists.

A further issue would be the reliance on other, non-checkpointed programs, or the possi-

bility that the operating system itself becomes compromised prior to the lightweight mon-

itoring tripping. In both cases Sweeper would be unable to apply a correct rollback and

re-execution. To prevent this, the same checkpointing techniques could be applied to the

whole OS through a virtual machine (e.g. as is done in Time Traveling Virtual Machines [64]).

This allows rollback of an entire software stack, including the OS, any helper applications,

and even disk state. Although the OS is unlikely to be corrupted prior to the lightweight

monitoring registering an attack, it is nearly a sure thing that the VM hypervisor will not

become corrupted by a network-based attack on one of its guests.

3.4.2 Sampling to Catch More Attacks

In order to deal with a broader range of attacks, Sweeper can use more expensive moni-

toring to analyze a fraction of requests. Although many security attacks involve memory

corruption attacks that can be noticed by lightweight bug detectors, those that are not can

be caught through sampling and analysis with heavy-weight detection mechanisms. Since

the instrumentation is dynamic, the decision to more thoroughly analyze a message can be

made at runtime. It would even be feasible for hosts to use heavier-weight detection when
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they are idle, and shift to address space randomization as they become fully loaded.

3.4.3 Effects of Limited Deployment

Although Sweeper has very low overhead, widespread deployment does not necessarily mean

100%; it is unlikely to reach such high levels. Sweeper does not require universal deployment

to function. Hosts may choose to act as consumers of antibodies; the lightweight monitoring

will still make them more difficult to exploit. There will be, however, a chance that such

hosts will become infected, since multiple infection attempts are likely to be made before an

antibody is available. If deployment rates are too low, the worm is too fast, or the antibodies

are too slow to be delivered, Sweeper will be unable to contain the worm. Compared to

previous systems, however, failure comes in more extreme conditions. Section 3.6 discusses

in much greater detail the performance of Sweeper as a whole under varying conditions.

3.5 Experimental Results

3.5.1 Experiment Setup

Name CVE ID [139] Bug Type Security Threat Description

Apache1 CVE-2003-0542 Stack Local exploitable vulnerability enables
Smashing unauthorized access

Apache2 CVE-2003-1054 NULL Remotely exploitable vulnerability
Pointer allows disruption of service

CVS CVE-2003-0015 Double Remotely exploitable vulnerability provides
Free unauthorized access and disruption of service

Squid CVE-2002-0068 Heap Buffer Remotely exploitable vulnerability provides
Overflow unauthorized access and disruption of service

Table 3.1: List of tested exploits

Implementation Sweeper is implemented in Linux by modifying the Linux kernel 2.4.22

to support lightweight checkpoint and rollback-and-replay. The various monitoring and
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analysis techniques are implemented using the PIN binary instrumentation tool [77]. All

of the tools are integrated together except for taint analysis; it is implemented stand alone

although it could be integrated. Hence this sectin provides functionality results but not

performance numbers for taint analysis. In lieu of taint analysis performance, this section

presents the time to isolate the exploit input by sending the potentially suspicious requests

one at a time. Both approaches provide the exploit input as a result, but, based on experience

with Valgrind-based TaintCheck, taint analysis is expected to be faster.

Experiment Environment and Parameters The experiments were conducted on single-

processor machines with a 2.4GHz Pentium 4 processor. By default, Sweeper keeps the 20

most recent checkpoints, and checkpoints every 200ms.

Evaluation Applications The evaluation of Sweeper is on four real vulnerabilities in

three server applications, as shown in Table 3.1. All of the vulnerabilities are recorded by

US-CERT / NIST [139].

Experimental Design In the experiments, the functionality of Sweeper, as well as the

efficiency of exploit and vulnerability analysis, is evaluated. This section also reports the

normal overhead of checkpointing for various checkpoint intervals.

3.5.2 Functionality Evaluation

Table 3.2 presents the details of what Sweeper’s functionality returns for four exploits. For

all four exploits, Sweeper detects the attack, generates a VSEF, and identifies the original

input which triggered the fault. Somewhat more specifically, the end results for the four

exploits are:
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App.
Detailed Processes and Results

Step Technique Main Results From Each Step

Apache1

#1
Memory State Crash at 0x805e33f (try alias list); stack inconsistent
Analysis VSEF: use a side stack for (try alias list)

#2
Memory Bug Stack smashing by 0x808c3ee (lmatcher)
Detection VSEF: 0x808c3ee should not overflow stack buffer

#3 Input/Taint Analysis GET.../trigger/crash.html...
#4 Slicing Verifies results

Apache2

#1
Memory State Crash at 0x8060029 (is ip); accessing NULL pointer
Analysis VSEF: check for NULL pointer

#2
Memory Bug No memory bug detected, just
Detection a NULL pointer dereference

#3 Input/Taint Analysis * Referer: (ftp://|http://){0}? *
#4 Slicing Verifies results

CVS

#1
Memory State Crash at 0x4f0eaaa0 (lib. free); heap inconsistent
Analysis VSEF: Check for double frees

#2
Memory Bug Double free by 0x808d7ac (dirswitch)
Detection VSEF: 0x808d7ac should not double-free

#3 Input/Taint Analysis [CVS request stream]
#4 Slicing Verifies results

Squid

#1
Memory State Crash at 0x4f0f0907 (lib. strcat); heap inconsistent
Analysis VSEF: Heap bounds-check 0x4f0f0907 (in lib. strcat)

when called by 0x804ee82 (ftpBuildTitleUrl)

#2
Memory Bug Heap buffer overflow at 0x4f0f0907 (lib. strcat)
Detection VSEF: Verified above

#3 Input/Taint Analysis ftp://\\...\\@ftp.site
#4 Slicing Verifies results

Table 3.2: Overall Sweeper results

• Apache 1 - Correct detection of buggy instruction and memory location, correct VSEFs,

and correct configuration-specific triggering input.

• Apache 2 - Correct identification of NULL pointer dereference, correct VSEFs, and

correct triggering input.

• CVS - Correct detection of buggy instruction and memory location, correct VSEFs,

and correct triggering input.

• Squid - Correct detection of buggy instruction and memory location, correct VSEFs,

and correct triggering input.
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The detailed results in Table 3.2 show what each of the analysis steps determines. The

first step, memory state analysis, looks at the stack, heap, and instruction pointer at the

time the lightweight monitoring trips. For all four vulnerabilities, this results in a VSEF; for

the Apache2 and Squid bugs this VSEF ends up being the final “best” VSEF. The second

step, memory bug detection, identifies various memory bugs through dynamic instrumenta-

tion. For the Apache1 and CVS exploits this step provides a more specific VSEF. Consider

specifically the Apache1 VSEFs. The initial VSEF only protects the return address. For

this exploit, this is sufficient. However, the specific buffer overflow may also be exploitable

by overwriting a stack function pointer3; the initial VSEF won’t catch this. The improved

VSEF identifies more exactly the underlying software flaw the resulted in the vulnerability:

“stack buffer overflow”. The initial VSEF captures a subset vulnerability: “overwrite return

address”. However, the initial VSEF will still catch all instances of this exploit, and all

exploits that use the specific sub-vulnerability; hence it will still stop the worm outbreak.

The third step is input/taint analysis—the purpose is to identify the input responsible

so that it can be fed to a signature generator. This is done successfully for all four vulner-

abilities. For the Apache1 bug, however, the input is configuration specific. This makes it

difficult to share the result with other hosts, but also makes it difficult to exploit. Finally,

dynamic slicing is performed. It serves as a sanity check on the other stages; if a previous

stage claims an instruction or data value is involved in the attack and dynamic slicing dis-

agrees, then the previous step is incorrect. In all four cases, however, dynamic slicing was

consistent with the other analysis steps.

These results demonstrate that Sweeper is capable of defending against a variety of

vulnerabilities: a stack overflow, a null pointer dereference, a double free, and a heap buffer

overflow. In all four cases, Sweeper generates a VSEF and identifies the exploit input.
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Figure 3.4: Performance at varying checkpoint intervals for Squid

3.5.3 Performance Evaluation

Checkpointing Since Sweeper is intended for widespread deployment, overhead is an im-

portant concern. As demonstrated by Figure 3.4, the performance overhead of checkpointing

and network logging is low; at a 200ms checkpoint interval, Sweeper only degrades perfor-

mance by -.925% —throughput drops from 93.5 Mbps to 92.6Mbps. The fastest checkpoint

interval, 30 ms, only shows a 5% performance degradation. These results clearly demon-

strate that the checkpoint overhead is nominal, and suitable for production run deployment.

More detailed discussion of the performance of checkpointing can be found in [108].

Vulnerability Monitoring Sweeper’s VSEFs only check a small subset of instructions;

hence they have good performance properties. It is not necessary to bounds check the entire

program, but only the one vulnerable callsite. For Squid, the VSEF checks for a heap buffer

overflow at 0x4f0f0907 (in strcat), and then only when strcat is called by 0x804ee82 (in

3This particular buffer overflow does not have such multiple methods of exploitation.
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Apache 1 Squid
Time to first VSEF 60 ms 40 ms
Time to best VSEF 14 sec 40 ms
Initial Analysis Time 24 sec 38 sec
Total Analysis Time 68 sec 145 sec

Component Diagnosis Time
Memory State Analysis 60 ms 40 ms
Memory Bug Detection 14 sec 30 sec
Input/Taint Analysis 9 sec 7 sec
Dynamic Slicing 45 sec 108 sec

Table 3.3: Sweeper failure analysis time. The component diagnosis times are the times for
each individual component; the other time values are cumulative from the lightweight mon-
itoring triggering. After the time to first VSEF, Sweeper can begin spreading an antibody.
Initial time is the time it takes to generate both VSEFs and isolate the exploit’s input; total
time includes the slicing step.

ftpBuild-TitleUrl). This results in a .93% drop in throughput (91.6 Mbps vs. 92.5Mbps).

Much of the overhead comes from monitoring calls to malloc and free to get the exact

ranges of live buffers; if a second heap buffer overflow was identified, the combined overhead

would increase less. In the worst case, overhead is linear with the number of vulnerabilities;

systems running software with many unpatched vulnerabilities which have wild exploits will

experience higher overheads. Users who wish to avoid such overhead should apply patches

as they become available. Again, the overheads are clearly suitable for production run

deployment.

Analysis Times Sweeper can generate VSEFs very quickly: 60 ms for Apache and 40 ms

for Squid. As we show in Section 3.6, fast antibody generation is important for dealing with

the fastest of worms; 60 ms is more than fast enough. Table 3.3 shows the details of our

analysis performance. For both measured applications, the time to get the “best” VSEF

was under 15 seconds; in Squid’s case the initial result was the best. The time to get the

VSEFs and to isolate the input responsible is under 40 seconds.

Although the complete analysis results are not available immediately, the intermediate

results (i.e., initial VSEFs) are sufficient to use for antibodies because they do not have false
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positives even though they may have a higher false negatives. Waiting for the full analysis to

complete is inadvisable, because the further delay will allow a fast worm to spread. Instead,

antibodies should be distributed immediately upon availability (e.g., within 60 ms). The

initial VSEF is more than sufficient to stop the particular exploit being used (and will catch

poly- and meta-morphic variants); because it is available sooner, it is best for this worm

outbreak. The improved VSEF can be distributed as a follow-on.
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Figure 3.5: Throughput during a single attack against Squid

Recovery Once VSEFs are applied, Sweeper performs recovery. Figure 3.5 shows the

client-perceived throughput as a function of time. Approximately 24 seconds in, the through-

put drops due to recovery taking place; no requests complete service during this time, and

clients perceive increased latency. Shortly thereafter, service resumes as normal. In contrast,

a restart of Squid takes over 5 seconds, and clients perceive dropped connections and refused
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connection attempts. For more details about the recovery performance of Sweeper please

see [108].

3.6 Community Defense Against Fast-Spreading

Worms

As the previous section shows, Sweeper protects individual hosts even from fast-spreading

worm that exploits previously unknown vulnerabilities, i.e., zero-day hit-list worms. The

first time that such a worm tries to infect a Sweeper-protected host, the exploit will be

detected, analyzed, and one or more antibodies deployed to prevent further attacks against

that vulnerability.

This section shows how a Sweeper community can protect even those who do not deploy

Sweeper from new exploit attacks, including fast-spreading worms. In this community,

hosts who deploy the complete Sweeper system are called Producers. When a Producer

detects a new attack and generates the corresponding antibodies, it shares those antibodies

with Consumers (and all other Producers), thus preventing them from becoming infected.

Given the low (> 5%) overhead involved in being a producer, we would expect that the

percentage of Producers to be high; this section considers Producer deployment ratios far

below expectations.

The challenge is to generate antibodies and distribute them to the Consumers before they

are infected. This section uses worm modeling techniques to show that most Consumers can

be protected from even the fastest observed worms. Further, it shows that if Consumers

deploy light-weight proactive defense mechanisms, Sweeper can protect most Consumers

from even hit-list worms.
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3.6.1 Community Model

Worm propagation can be well described with the classic Susceptible-Infected (SI) epidemic

model [58]. Let β be the average contact rate at which a compromised host contacts vulner-

able hosts to try to infect them, t be time, N the total number of vulnerable hosts. Let I(t)

represent the total number of infected hosts at time t. Let α be the fraction of vulnerable

hosts which are Producers, and the remaining vulnerable population (1−α) be Consumers.

Let P (t) be the total number of producers contacted by at least one infection attempt at

time t.

From the SI model, we have:

dI(t)

dt
= βI(t)(1 − α − I(t)/N) (3.1)

dP (t)

dt
= αβI(t)(1 − P (t)/(αN)) (3.2)

The time at which at least one Producer has received an infection attempt, and hence

can begin generating and distributing antibodies, is called T0. By this definition, P (T0) = 1.

The above equation is solvable to find T0.

Once a Producer is contacted with an infection attempt, it takes time γ1 until the pro-

ducer creates an antibody using exploit analysis, and then it takes time γ2 until the antibody

can be disseminated to Consumers (and if needed, verified). Let γ = γ1 + γ2, and call γ

the response time of the Sweeper community. Thus, after time T0 + γ, all the vulnerable

hosts have received and installed the antibody and become immune to the worm outbreak.

Thus, the total number of infected hosts throughout the worm outbreak is I(T0 + γ), and

I(T0 + γ)/N is the infection ratio.
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Figure 3.6: Sweeper defense against Slammer (β = 0.1)

3.6.2 Protection Against Slammer

The fastest-spreading worm to date is Slammer. In the Slammer worm outbreak, the contact

rate β was 0.1, and the number of vulnerable hosts N was approximately 100000 [22].

Figure 3.6 shows that a Sweeper community could have prevented the Slammer worm

from infecting most vulnerable hosts, for a variety of producer ratios α and response times

γ. For example, given a very low deployment ratio α = 0.0001, and a reasonable response

time γ = 5 seconds, the overall infection ratio is only 15%. For a slightly higher producer

ratio α = 0.001, the Sweeper community is even more effective, protecting all but 5% of the

vulnerable hosts even for a relatively slow response time of γ = 20 seconds.

3.6.3 Protection Against Hit-List Worms

A well designed worm could propagate much more quickly than Slammer. In particular, a hit-

list worm contains a hit-list of vulnerable machines. Hit-list worms can spread up to orders
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of magnitude more quickly because they need not scan to find vulnerable hosts [129, 130].

If Slammer had been designed as a hit-list worm, it may have achieved a contact rate

of β = 1000, or even β = 4000; this is ten-thousand to forty-thousand times faster than

observed. In our model, this would result in 100% of vulnerable hosts becoming infected

in mere hundredths of a second. Even if the very first infection attempt was against a

Producer (i.e., T0 = 0), this does not provide enough time to produce, distribute, and verify

antibodies.

Proactive Protection We can protect against even hit-list worms if we combine our

reactive strategy of producing and distributing antibodies with a proactive strategy to slow

down the spread of the worm [17].

For example, for a large class of attacks, address space randomization can provide prob-

abilistic proactive protection. The attack, with high probability, will crash the vulnera-

ble program instead of successfully compromising it. However, because the protection is

only probabilistic, repeated or brute-force attacks will succeed; the attacker will eventually

“guess” the address space layout and successfully infect the host.

Let ρ be the probability that a particular infection attempt successfully exploits a host

with probabilistic protection. The spread of a hit-list worm where vulnerable hosts use

proactive protection can be modeled with:

dI(t)

dt
= βρI(t)(1 − α − I(t)/N) (3.3)

dP (t)

dt
= αβI(t)(1 − P (t)/(αN)) (3.4)

Sweeper combined with proactive protection can protect against even hit-list worms with

contact rate β = 1000 (Figure 3.7), and with contact rate β = 4000 (Figure 3.8). Here, the

probability that an infection attempt succeeds is set to ρ = 2−12, which many address

54



0.5 0.1 0.01 0.001 0.0001
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Deployment Ratio

In
fe

ct
io

n 
R

at
io

γ =5
γ =10
γ =20
γ =30
γ =50
γ =100

Figure 3.7: Sweeper with proactive protection against hit-list (β = 1000). Note that γ = 50
is much worse than γ = 30.

randomizations achieve [120]. We again use N = 100000 vulnerable hosts. For example, the

figures indicate that given deployment rate α = 0.0001 and reaction time γ = 10 seconds,

the overall infection ratio is only 5% for β = 1000 and 40% for β = 4000. For α = 0.0001

and γ = 5 seconds, the overall infection ratio is negligible (less than 1%) in both cases. Note

the large differences in infection ratio as γ increases: for γ = 50 in the β = 1000 case and

γ = 20 in the β = 4000 case the worm would still infect large fractions of all vulnerable

hosts. Hence, even with the proactive protection, an automated defense such as Sweeper is

still required.

These models show that a total end-to-end time (including time for detection, analysis,

and antibody dissemination/ deployment) of about 5 seconds will stop a hit-list worm. Note

that the previously presented experiments (Section 3.5.1) show that detection and analysis

are almost instantaneous, and the total time it takes to create an effective VSEF is well
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Figure 3.8: Sweeper with proactive protection against hit-list (β = 4000). Note that γ = 20
is much worse than γ = 10.

under 2 seconds. Vigilante shows that the initial dissemination of an alert could take less

than 3 seconds [33]. Thus Sweeper achieves an γ = 2+3 = 5. By impeding the spread of the

worm, Sweeper can effectively defend against effectively defend against even hit-list worms

which are thousands of times faster than the fastest observed worm, even for low values of

α.

3.7 Related Work

Chapter 2 provides a more through understanding of the related work; this section briefly

covers closely related work and how it relates to Sweeper.
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3.7.1 Checkpoint and Rollback

While Sweeper leverages a lightweight checkpoint and re-execution support similar to Flash-

Back or Rx [108, 128], it could use other checkpoint systems like the Time-traveling Virtual

Machines [64], or ReVirt [44]. ReVirt also deals in a security setting: specifically, post-

mortem analysis. However, ReVirt is intended as an offline forensic tool, and does not

target on-line systems.

3.7.2 Bug Detection and Analysis

Sweeper makes use of various bug detection techniques both to detect the initial exploit

attempt and to analyze the exploit attempt after rollback. In general, the more useful the

analysis results, the more expensive the tool is to run, and therefore less suitable for use as

a lightweight detector.

Sweeper’s baseline bug detection method, address space randomization [50], provides an

almost free detection mechanism, however, it can be probabilistically bypassed [120]. This

is only a minor concern in Sweeper, since for hosts deploying the full system, capturing

an attack once is sufficient. Slightly less lightweight monitors like SafeMem [107] may also

be used widely. Other monitors exist which trade runtime overhead for greater protection.

Those such as StackGuard [34] or CCured [30, 92] require source code, while Purify [56] or

Valgrind [94] are applicable in the binary-only case. Shadow honeypots [4] consider moving

the attack detectors to a separate machine or separate process in order to allow better

overhead management.

Dynamic taint analysis has been variously proposed in [99, 36, 132]. Taint analysis detects

the usage of data “tainted” by untrusted input in various dangerous ways (for example, using

the input as a return address). Taint analysis is quite similar to dynamic slicing [147, 156],

but focuses on detecting exploit attempts rather than debugging. Although taint analysis is

a powerful technique to detect security exploits it tends to impose infeasibly high overheads.
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A recent work in dynamic binary instrumentation, LIFT [106], reduces the overehad to

potentially manageable levels (2-4x); this may be deployable for a decent fraction of hosts.

3.7.3 Attack Response

A considerable amount of research effort [33, 63, 65, 99, 98, 124] has been devoted to auto-

matically generating attack signatures. Earlybird [124], Honeycomb [65] and Autograph [63],

share a common limitation: the signatures generated are single, contiguous strings. Real

life attacks can often evade such filters. To tackle such polymorphic worms, techniques like

Polygraph [98] generate signatures that consist multiple disjoint content substrings. How-

ever, recent work [97, 104] shows that such polymorphic signature generators can be mislead

into generating bad signatures: specifically signatures with high false negative rates.

There have been various approaches to repair buggy programs. Some techniques are

applied before hand; for instance CCured [30] retrofits memory bounds checking at the

source code level, while DieHard [9] applies whole-program probabilistic memory safety

through replication and library interposition. Rx [108], DIRA [125], and STEM [123] make

attempts at repair post-hoc; Rx through environmental perturbations, DIRA by FIXME, and

STEM through forcibly returning from a failing function. [72] modifies STEM by spreading

the monitoring load out among all instances of an application; such space-wise sampling will

reduce per-instance overhead at the expense of lower per-instance effectiveness.

FLIPS [73] is another automated worm defense, contemporaneous with Vigilante; it

uses emulated execution and instruction set randomization to shepherd the execution of a

potentially vulnerable program and to isolate the exploit input. Like Sweeper, FLIPS applies

subsequent isolated exploit inputs to refine input filters. However, unlike both Sweeper and

Vigilante, FLIPS does not consider fast worms, as it does not provide for sharing of protection

among various hosts, and can take several exploit attempts and up to a full second before

filters can be generated.

Vigilante [33] is a nice automatic worm defense similar to Sweeper. A subset of nodes
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monitor their execution with full dynamic taint analysis (or, nodes may sample requests).

When an exploit is detected, Vigilante creates a self-verifying signature to distribute to all

nodes. There are several important technical differences between Sweeper and Vigilante.

First, Sweeper provides a recovery mechanism through rollback and modified re-execution.

Second, Vigilante provides no means to combine light-weight and heavy-weight detectors.

Therefore, Vigilante either must sample requests or be deployed only on a subset of hon-

eypot hosts. Hosts which are sampling only have a small chance to analyze an exploit

attempt, while honeypot nodes are vulnerable to being avoided. In combining light- and

heavy-weight detectors, Sweeper provides more flexibility, can be more widely deployed, and

increases the number of exploit attempts which will be monitored. Third, the two systems

generate and distributed different sorts of antibodies. Finally, reactive antibody systems,

like Vigilante, can not distribute their antibodies fast enough to deal with a hit-list worm.

The additional layer of defense that Sweeper provides with its lightweight monitors provides

sufficient robustness to react against extremely fast hit-list worms.

Liang and Sekar [70] and Xu et al. [151] independently propose different approaches to

use address space randomization as a protection mechanism and automatically generate a

signature by analyzing the corrupted memory state after a crash. However, their analysis

and applicability are limited. Liang and Sekar’s approach does not work for programs where

static binary analysis is difficult, and their signature generation does not work in many cases

(for example, if the inputs are processed or decoded prior to causing a buffer overflow).

The analysis in Xu et al.’s approach is also limited, and their signatures suffer from similar

problems as described in [35]. Additionally, these approaches rely only on address space

randomization, which can be bypassed; our approach has the flexibility to allow various

light- and heavy-weight detectors to be plugged in, as per an individual host’s requirements.
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3.8 Conclusions

This chapter presents new techniques for defending against self-spreading exploits. By lever-

aging checkpointing and replay, continuous lightweight monitoring can be combined with

heavy-weight analysis. The resulting system has low overhead (1%) during normal execu-

tion, which allows more wide-spread deployment than similar systems. Further, the analysis

is used to generate multiple forms of antibodies, which are available starting at 60 ms from

the signs of attack.

These techniques are implemented in Sweeper. Against 4 real exploits in 3 different

server applications, Sweeper generates effective antibodies quickly (no slower than 60 ms).

This chapter also provides analytical results demonstrating how effective Sweeper would be

against a fast worm outbreak. These results show how sophisticated vulnerability-specific

execution filters can be deployed while maintaining performance suitable for widespread

production deployment.
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Chapter 4

Triage

4.1 Overview

This Chapter presents the Triage1 system. Triage builds on Sweeper (Chapter 3), extending

it to attempt to automatically diagnose failures in production runs.

4.1.1 Motivation

As discussed in the introduction, software failures are a major contributor to system down

time and security holes. Although vendors test their products before release, some bugs

will inevitably be experienced by end users. Since these production run failures are directly

causing pain to their customers, it is these failures that vendors most want to diagnose.

While much work has been conducted on software failure diagnosis, most previous work

focuses on offsite diagnosis (i.e. diagnosis at the development site with the involvement of

programmers). This is insufficient to diagnose production run failures for four reasons:

1. It is difficult to reproduce the user site’s failure-triggering conditions in house for

diagnosis.

2. Offsite failure diagnosis cannot provide timely guidance to select the best online re-

covery strategy or security defense against fast internet worms (e.g. as discussed in

Chapter 3).

1This work is based on an earlier work: Triage: diagnosing production run failures at the user’s site, in
ACM SIGOPS Operating Systems Review - SOSP ’07, Volume 41, Issue 6, December 2007 (c) ACM, 2007.
http://doi.acm.org/10.1145/1323293.1294275
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3. Programmers cannot be provided to debug every end-user failure.

4. Privacy concerns prevent many users from sending failure information such as core-

dumps or stack traces back to programmers2.

Unfortunately, today’s systems provide limited support for this important task: auto-

matically diagnosing software failures occurring in end-user site production runs.

Unlike software bug detection, which is often conducted “blindly” to screen for possible

problems, software failure diagnosis aims to understand a failure that has actually occurred.

While errors detected by a bug detector provide useful information regarding a failure, they

are not necessarily root causes—they could be just manifestations of other errors [1, 147,

156]. Typically programmers will still need to manually debug the fault, utilizing many

different diagnostic techniques, before they have collected enough information to thoroughly

understand a failure.

Following the definition used in software dependability [111], comprehensive knowledge

of a software failure includes three components (shown in Figure 4.1) beyond the failure

itself. The first of these is the fault: the underlying incorrect code which is responsible for

the failure. The second is the trigger: the input or environmental condition which caused

the fault to activate or whatever it was that “tickled the bug”. The third is the error and the

error propagation chain: the incorrect system state which, potentially propagated through

multiple stages, lead to the failure. Consequently, failure diagnosis targets three things: (1)

2 Even if sent back, such information is just a snapshot of system state after the failure, and does not on
its own provide an understanding of the fault.

error

(buggy behavior)(root cause)

fault failure

(service interruption)

trigger (input or environment)

failure diagnosis

Figure 4.1: Failure diagnosis is driven by failure and tries to understand the whole fault
chain.
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what execution misbehavior caused the failure; (2) where the misbehavior originated; and

(3) how the fault was triggered. So while software bug detection is like disease screening,

failure diagnosis is more like disease diagnosis: it is a focused, problem-driven analysis based

on an actual problem.

4.1.2 Current State of the Art

There are many well known bug detection tools. Dmalloc [145] only gives information

about heap corruption at free time, which can be substantially delayed from the corruption

itself. ProPolice [48] and StackGuard [34] can identify stack smashing, although the runtime

overhead is a little high given the limited information they return. The instrumentation

suite Valgrind [94] is well known for its bug detection tools. Memcheck can identify a

variety of memory bugs, while helgrind detects data races through the lockset algorithm.

While providing much more information than, say, dmalloc or StackGuard, Valgrind based

tools are much too expensive to run all of the time. Regardless, all of these “bug detectors”

are actually error detectors; they detect bad runtime states which could possibly cause a

failure. While having the error in hand can be useful for discovering the fault, the actual

incorrect code could be well separated from a detectable error.

Existing failure diagnosis work mostly focuses on offsite diagnosis; hence although they

provide some automated assistance, they rely heavily on programmers to manually and

interactively deduce the root cause. Examples of such offsite tools include interactive de-

buggers [53], program slicing [1, 147, 156], and offline partial execution path constructors

from a coredump such as PSE [79]. Almost all these tools either impose overheads too large

(up to 100x) to be practical for production runs, or heavily rely on human guidance.

The current state of the art of onsite software failure diagnosis is primitive. The few

deployed onsite diagnosis tools, like Dr. Watson [43] and the Mozilla Quality Feedback

Agent [86], only collect simple raw (unprocessed) failure information (e.g. coredumps and

environment information). Recently proposed techniques extract more detailed information
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such as traces of network connections [28], system call traces [154], traces of predicated

values [71], etc. Furthermore, some deterministic replay tools [51, 64, 128] have also been

developed for uniprocessor systems.

One tool of particular note is the Windows Error Reporting service, or WER [52]. WER

is crash reporting service built into modern versions of Windows, and has an installed base

of one billion clients. According to [52], WER is very useful in prioratizing which failures to

fix, by their rate of occurance. Most of the power of WER comes from the backend server’s

ability to automatically catagorize crash occurances into “buckets”, which fairly faithfully

represent occurances of the same bug. For bugs which have been addressed, WER can tell

the user what update to install or workaround to use to prevent future recurrance of the

bug. Further, WER manages a 70 to 80% submission rate, thanks in part to the wording

of the dialog (“Check online for a solution and restart the program?”, or “Do you want to

send more information about the problem?” depending on the version) and the feature to

opt-in once rather than asking every time. In contrast, earlier versions of WER which had

a more detailed message and asked every time had a 40 to 50% submission rate.

While all of these techniques are helpful for in-house analysis of production run failures,

they are still limiting. Many of the more useful techniques (such as slicing) impose run-

time overhead sufficiently high to eliminate production-run use from consideration. The low

overhead techniques (e.g. returning core dumps) are limited in the amount of aid given to

programmers.

4.1.3 Challenges for Onsite Diagnosis

Unfortunately, providing onsite diagnosis is not simply a matter of slapping together a

bunch of diagnosis techniques. In order to achieve this goal one must address several major

challenges:
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1. Efficiently reproduce the occurred failure: Since diagnosis usually requires many

iterations of failure executions to analyze the failure, an onsite diagnosis needs an

effective way to automatically reproduce the failure-triggering conditions. Moreover,

the diagnosis tool should be able to reproduce the failure quickly, even for failures that

occur only after a long setup time.

2. Impose little overhead during normal execution: Even moderate overhead dur-

ing normal execution is unattractive to end-users.

3. Require no human involvement: A programmer cannot be provided for every end-

user site. Therefore, various diagnosis techniques should be employed automatically.

Not only does each individual step need a replacement for any human guidance, but

the overall process must also be automated.

4. Require no prior knowledge: Knowledge of what failures are about to happen does

not exist. So any failure-specific techniques (e.g. memory bug monitoring) are a total

waste during normal execution, prior to failure.

4.1.4 Summary of Contributions

This chapter describes Triage, the first automatic onsite diagnosis system for software failures

that occur during production runs at end-user sites. Triage addresses the above challenges

with the following techniques:

1. Capturing the failure point and conduct just-in-time failure diagnosis with

checkpoint-re-execution system support. Traditional techniques expend equal

heavy-weight monitoring and tracing effort during the whole of execution; this is

clearly wasteful given that most production runs are failure-free. Instead, Triage takes

lightweight checkpoints during execution and rolls back to recent checkpoints for diag-

nosis after a failure has occurred. At this moment, heavy-weight code instrumentation,
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advanced analysis, and even speculative execution (e.g. skipping some code or modify-

ing variables) can be repeatedly applied to multiple iterations of re-execution focusing

only on the moment leading up to the failure. In this scheme, the diagnosis has

most failure-related information at hand; meanwhile both normal-run overhead and

diagnosis times are minimized. In combination with system support for re-execution,

heavy-weight bug detection and analysis tools become feasible for onsite diagnosis.

Furthermore, the failure moment can be relived over and over. Triage can study it

from different angles, and manipulate the execution to gain further insights.

2. New failure diagnosis techniques — delta generation and delta analysis —

that effectively leverage the runtime system support with extensive access to

the whole failure environment and the ability to repeatedly revisit the moment of

failure. The delta generation relies on the runtime system support to speculatively

modify the promising aspects of the inputs and execution environment to create many

similar but successful and failing replays to identify failure-triggering conditions (inputs

and execution environment settings). From these similar replays, Triage conducts delta

analysis automatically to narrow down the failure-related code paths and variables.

3. An automated, top-down, human-like software failure diagnosis protocol. As

will be shown in Figure 4.3, the Triage diagnosis framework automates the methodical

manual debugging process into a diagnosis protocol, called the TDP (Triage Diagnosis

Protocol). Taking over the role of humans in diagnosis, the TDP processes the collected

information, and selects the appropriate diagnosis technique at each step to get more

information. It guides the diagnosis deeper to reach a comprehensive understanding of

the failure. Using the results of past steps to guide future steps increases their power

and usefulness.

Within the TDP framework, many different diagnosis techniques, such as delta gen-

eration, delta analysis, coredump analysis and bug detection, are integrated. These
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techniques are automatically selected at different diagnosis stages and applied dur-

ing different iterations of re-execution to find the following information regarding the

occurred failure:

• Failure nature and type: Triage automatically analyzes the failure symptoms, and

uses dynamic bug detection during re-execution to find the likely type of program

misbehavior that caused the failure, including both the general bug nature such

as nondeterministic vs. deterministic, and the specific bug type such as buffer

overflow, data race, etc.

Failure-triggering conditions (inputs and execution environment): Through re-

peated trials, Triage uses the delta generation technique to forcefully manipu-

late inputs (e.g. client requests) and execution environment to identify failure-

triggering conditions.

•• Failure-related code/variable and the fault propagation chain: Triage uses delta

analysis to compare failing replays with non-failing replays to identify failure-

related code/variables. Then it may intersect the delta results with the dynamic

backward slice to find the most relevant fault propagation chain.

4. Leverage previous failure analysis techniques for onsite and post-hoc diag-

nosis. Runtime system support for re-execution with instrumentation and the guid-

ance of the TDP allow Triage to synergistically use previous failure analysis techniques.

Triage implements some such techniques, including static coredump analysis, dynamic

memory bug detectors, race detectors and backward slicing. However, as they are

dynamically plugged in after the failure has occurred, they require some modification.

Both information from the beginning of execution and human guidance are unavail-

able. Either the tools must do without, or (especially in the case of human guidance)

the results of previous analysis steps must fill in.
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As will be detailed in Section 4.9, this chapter evaluates Triage using real system im-

plementation and experiments on Linux with 10 real software failures from 9 applications

(including 4 servers: MySQL, Apache, CVS and Squid). The experimental results show that

Triage, including its delta generator and delta analyzer, effectively identifies the failure type,

fault-triggering inputs and environments, and key execution features for most of the tested

failures. It successfully isolates the root cause and fault propagation information within a

short list; under 10 lines of suspect code in 8 out of the 10 failure cases. Triage provides

all this while it imposes less than 5% overhead in normal execution and requires at most 5

minutes to provide a full diagnosis.

Finally, a user study with 10 programmers shows that the diagnostic information provided

by Triage shortens the time to diagnose real bugs (statistically significant with p < .01), with

an average reduction of 44.7%.

4.2 Triage Architecture Overview
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Figure 4.2: Triage architecture overview
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Triage is composed of a set of user- and kernel-level components to support onsite just-in-

time failure diagnosis. As shown in Figure 4.2, it is divided into three groups of components.

First, the runtime group provides three functions: lightweight periodic checkpointing during

normal execution, catching software failures, and sandboxed re-execution (simple replay

or re-execution with controlled execution perturbation and variation) for failure diagnosis.

Second, the control group deals with deciding how the sub-components should all interact,

and implements the Triage Diagnosis Protocol (see Section 4.3). It also directs the activities

of the third layer: failure diagnosis. Finally, the analysis group deals with post-failure

analysis; it is comprised of various dynamic failure analysis tools, both existing techniques

and new techniques such as automatic delta generation and delta analysis presented in

Sections 4.4 and 4.5.

Checkpoint and Re-execution In order to allow repeated analysis of the failure, Triage

requires checkpoint and re-execution support. There are many ways to implement re-

execution, such as Time Traveling Virtual Machines [64] or Flashback [128]. Triage leverages

the lightweight checkpoint and re-execution runtime system provided in Rx. It is briefly de-

scribed here; details can be found it [108, 128].

Rx takes checkpoints using a fork()-like operation, keeping everything in memory to

avoid the overhead of disk accesses. Rollback operations are a straightforward reinstatement

of the saved task state. Files are handled similarly to previous work [74, 128] by keeping a

copy of accessed files and file pointers at the beginning of a checkpoint interval and reinstating

it for rollback. Network messages are recorded by a network proxy for later replay during

re-execution. This replay may be potentially modified to suit the current re-execution run

(e.g. dropped or played out of order). Triage leverages the above support to checkpoint the

target application at runtime, and, upon a failure, to roll back the application to perform

diagnosis. Rx is particularly well suited for Triage’s goals because it tolerates large variation

in how the re-execution occurs. This allows us not only to add instrumentation, but to use
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controlled execution perturbations for delta generation.

However, Rx and Triage have vastly different purposes and hence divergent designs. First,

Triage’s goal is diagnosis, while Rx’s is recovery. Triage systematically tries to achieve an

understanding of the occurring failure. Such an understanding has wide utility, including

recovery, security hot fixes, and debugging. Rx simply tries to achieve survival for the cur-

rent execution–gathering failure information is a minor concern so long as Rx can recover

from the failure. That is, Rx considers the “why?” to be unimportant. Second, while Rx

needs to commit the side effects of a successful re-execution, Triage must instead sandbox

such effects. Fortunately, this allows Triage to completely ignore both the output commit

problem and session consistency. Hence Triage can consider much larger and varied exe-

cution perturbations than Rx, even those which are potentially unsafe (e.g. skipping code,

modifying variable values), with minimal consistency concerns. Triage directly uses some of

Rx’s existing perturbations (e.g. changing memory layouts), uses others with both a much

higher degree of refinement and variety (e.g. input-related manipulations, see Section 4.4),

and briefly considers some radical changes (patching the code).

Lightweight Monitoring Also like Rx, Triage must detect that a failure has occurred.

Any monitoring performed at normal time cannot impose high overhead. Therefore, the

cheapest way to detect a failure is to just catch fault traps including assertion failures, access

violations, divide-by-zero exceptions, etc. Unique to Triage, though, is the need to monitor

execution history for subtle software faults. More sophisticated techniques such as program

invariant monitoring or memory safety monitoring [107, 92] can be employed as long as they

impose low overhead. In addition to detecting failures, lightweight monitoring can be also

used to collected some global program execution history such as branch history or system call

traces that will be useful for onsite diagnosis upon a failure. Previous work [16] has shown

that branch history collection imposes less than 5% overhead. The current implementation

relies on assertions and exceptions as the only normal-run monitors.
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Control Layer The process of applying diagnosis tools through multiple re-executions is

guided by the control layer, which implements the Triage Diagnosis Protocol described in

Section 4.3. It chooses which analysis is appropriate given the results of previous analysis,

and also provides any inputs necessary for each analysis step. After all analysis is complete,

the control layer sends the results off to the off-site programmers for them to use in fixing

the bug.
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Figure 4.3: Diagnosis protocol diagram (This figure illustrates the Triage diagnosis protocol,
including the implemented failure diagnosis components. These separate analysis components are
run in one or more iterations of re-execution, during which all side-effects are sandboxed. Later
stages are fed results from earlier stages as necessary.

Analysis (Failure Diagnosis) Layer Figure 4.3 provides a brief summary of the dif-

ferent failure diagnosis components in Triage. The stage one techniques are modified from

existing work to make them applicable for onsite failure diagnosis. Stage 2 (delta generation)

is enabled by our runtime system support for automatic re-execution with perturbation and

variation. Dynamic backward slicing, although previously proposed, is made much more fea-

sible in post-hoc application during re-execution. Finally, delta analysis is newly proposed.

The details of these techniques are presented in Section 4.4, 4.5, and 4.6.
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4.3 Triage Diagnosis Protocol

This section describes Triage’s diagnosis protocol. The goal of the protocol is to stand in for

the programmer, who cannot be present, and to direct the onsite software diagnosis process

automatically. The default protocol using some representative fault analysis techniques is

presented first, and then the protocol extensions and customizations to the default protocol

are discussed.
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CodeLine

return NULL;

get_directory_contents
(char * path, dev_t device){

dirp = opendir(dir);

/*Omitted*/

char * dirp = savedir(path);

}

}

/*More variable declarations*/
if(!dirp)

savedir_error(path);

char *
savedir

char const * entry;

char *

errno = 0;
/*More code omitted*/
if(children != NO_CHILDREN)

for(entry = dirp;
    (len = strlen(entry));

if(dirp == NULL)

(const char *dir){

    entry += len + 1;){
/*Omitted*/

DIR *pdirp;
/*More variable declarations*/

}

/*Omitted*/

Figure 4.4: Simplified excerpt of a real bug in tar-1.13.25 as a running example to explain
the diagnosis protocol.

4.3.1 Default Protocol

Figure 4.3 shows a flow chart of the default diagnosis protocol after a failure is detected.

Triage uses different diagnostic techniques (some new and some modified from existing work)

to automatically collect different types of diagnostic information (as described in Section 4.1)

including (1) the failure type and nature, (2) failure-triggering input and environmental con-

ditions, and (3) failure-related code/variables and the fault-propagation chain. The diagnosis

stages are arranged in a way so that the later stages can effectively use the results produced
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by the earlier stages as inputs, starting points, or hints to improve diagnosis accuracy and

efficiency. Note that the default protocol is not the most comprehensive. Its purpose is to

provide a basic framework that performs a general fault analysis as well as a concrete exam-

ple to demonstrate the diagnosis process and ideas, and it could be extended and customized

with new or application-specific diagnosis techniques.

Figure 4.4 shows a simplified version of a bug in tar, the common Unix archive program,

which is used as a running example to explain the diagnosis protocol and new diagnosis tech-

niques. Briefly, the bug occurs when the line 24 call to opendir returns NULL; subsequently

this value is passed into strlen on line 13 without being checked. In the actual source code

this bug is spread across thousands of lines in two separate files in separate directories.

In the first stage of diagnosis, Triage conducts analysis to identify the nature and type

of the failure. It first mimics the initial steps a programmer would follow when diagnosing a

failure: simply retry the execution, without any control or change and without duplicating

timing conditions, to determine if the failure is deterministic or nondeterministic. If the

failure repeats, it is classified as deterministic; otherwise it is classified as nondeterministic

based on timing. Subsequent steps vary depending on this initial classification. For the tar

example, this step indicates a deterministic bug.

To find out whether the failure is related to memory, Triage analyzes the memory image

at the time of failure, when coredumps are readily available, by walking through the heap

and stack to find possible corruptions. For tar, the coredump analysis determines that the

heap and the stack are both consistent; the cause of the failure is a segmentation fault at

0x4FOF1E15 in the library call strlen.

After coredump analysis, the diagnosed software is repeatedly rolled back and determin-

istically re-executed from a previous checkpoint, each time with a bug detection technique

dynamically plugged in, to check for specific types of bugs such as buffer overflows, dangling

pointers, double frees, data races, semantic bugs, etc. Most existing dynamic bug detection

techniques can be plugged into this step with some modifications described in Section 4.6.
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Additionally, the high overhead associated with these tools becomes tolerable because they

are not used during normal execution, but are dynamically plugged in at re-execution, dur-

ing diagnosis, after a failure has occurred. For tar, the segfault was caused by a null-pointer

dereference.

The second stage of the diagnosis is to find failure triggering conditions including inputs

and execution environment settings, such as thread scheduling, memory layout, signals,

etc. To achieve this, Triage uses a new technique called delta generation (Section 4.4)

that intentionally introduces variation during replays in inputs, thread scheduling, memory

layouts, signal delivery, and even control flows and memory states to narrow the conditions

that trigger the failure for easy reproduction.

Unlike in Rx, which varies execution environments to bypass deterministic failures for

recovery, Triage’s execution environment variation can be much more aggressive since it is

done during diagnostic replay while side effects are sandboxed and discarded. For example,

not only does Triage drop some inputs (client requests), but it also alters the inputs to

identify the input signature that triggers the failure.

In the third stage, Triage aims at collecting information regarding failure-related code

and variables as well as the fault propagation chain. This stage is done by a new diagnosis

technique called delta analysis (Section 4.5) and with a modified dynamic backward slicing

technique [147]. From the delta generation, Triage obtains many failed replays as well as

successful replays from previous checkpoints. By comparing the code paths (and potentially

data flows) from these replays, Triage finds the differences between failed replays and non-

failing replays. Further, the backward slice identifies those code paths which were involved in

this particular fault propagation chain. Both of these are very useful debugging information.

All of the analysis steps end in producing a report. If ranking is desired, results of different

stages could be cross-correlated with one another; the current implementation doesn’t do this

yet. Furthermore, information which is likely to be more precise (e.g. memory bug detection

vs. coredump analysis) can be prioritized. The summary report gives the programmer a
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comprehensive analysis of the failure. An example of a report (as used in the user study)

can be seen in Table 4.6.

4.3.2 Protocol Extensions and Variations

The above protocol and diagnostic techniques discussed above provide good results for diag-

nosis, and indeed represent what has been implemented for evaluation. However, especially

for more specific cases, there could be many potential variations. There are many bug di-

agnosis techniques, both existing and as of yet not-proposed, which could be added. For

instance, information flow tracking [99, 116] can reliably detect “bad behavior” caused by

inappropriate use of user-supplied data. Also, the diagnosis order can be rearranged to suit

specific diagnosis goals or specific applications. For example, input testing could be done

for nondeterministic bugs. Or, for some applications, some steps could be omitted entirely

(e.g. memory bug detection may be skipped for programs using a memory safe language like

Java). To extend the protocol, all that is necessary is to know what inputs the tool needs

(e.g. a set of potentially buggy code lines), what priority it is (e.g. low-cost tools are high

priority), and what outputs it generates (e.g. the failing instruction). Alternatively, a pro-

tocol may be custom-designed for a particular application and include application-specific

tools (say, a log analyzer for DB2).

The dynamic backward slice and the results from delta analysis can be combined through

intersection. That is, Triage could consider to be more relevant those portions of the back-

ward slice which are also in the path delta (see Section 4.5). This will not only identify

the code paths which are possibly in the propagation chain, but highlight those which differ

from normal execution.

Triage may attempt to automatically fix the bug. Quite a large amount of information

is at hand after Triage finishes its analysis. In a straightforward manner, Triage can begin

automatically filtering failure-triggering inputs (e.g. as described in Chapter 3, or as in [18,

63, 137]), to avoid triggering the bug in the future. With a higher degree of risk it may be
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possible to generate a patch. Currently Triage can tentatively identify heap-buffer overflows

and repair them, by instrumenting the calculation for how large the buffer must be allocated.

More details on these preliminary patches are detailed in 4.4. Finally, since the goal is merely

to gather diagnostic information, Triage can attempt quite “risky” fixes, such as dynamically

deleting code or changing variable values, in an attempt to see which changes will prevent

failure during replay. Such speculative techniques that were proposed for recovery, such as

failure oblivious computing [112] or forcing the function to return an error value proposed

in STEM [123], can also be borrowed here. While those techniques can be very risky when

used for recovery, they are fine for diagnosis purposes, since all side-effects of any replay are

discarded during the diagnostic process.

4.4 Delta Generation

A key and useful technique commonly used by programmers when they manually debug

programs, is to identify what differs between failing and non-failing runs. Differences in

terms of inputs, execution environments, code paths and data values can help programmers

narrow down the space of possible buggy code segments to search for the root cause. Triage

automates this manual, time-consuming process using a delta generation technique, which

(through the runtime system support for re-execution) captures the failure environment and

allows automatic, repetitive delta replays of the recent moment prior to the failure, with

controlled variation and manipulation to execution environment.

Delta generation has two goals. The first goal is to generate many similar replays from

a previous checkpoint, some of which fail and some of which do not. During each replay,

much detailed information is collected via dynamic binary instrumentation to perform the

next step — delta analysis.

Second, from those similar replays, the delta generator identifies the signatures of failure-

triggering inputs and execution environments, which can be used for two purposes: (1) report
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to programmers to understand the occurred failure and efficiently find a way to reproduce

the failure; and (2) guide the online failure recovery or security defense solutions by actively

filtering failure triggering inputs like in Vigilante [33], Autograph [63], Sweeper [137] and

others [124, 65, 104], or avoiding failure triggering execution environments like in the Rx

recovery system [108].

To achieve the above goals, the delta generator automatically and repeatedly replays from

a recent checkpoint, with controlled changes in input and execution environment (including

potentially forcefully modifying control flows, variable values, etc). Thus, it obtains closely

related failing and non-failing runs.

Changing the Input (Input Testing) If a program is given a different input (client

request stream for servers), in most cases it will have a different execution. If it is given two

similar inputs, then one would expect that the executions would also be similar. Further-

more, if one input fails and one succeeds, the differences in the executions and in the inputs

should hold insights into the failure. It is this idea that motivates the previously proposed

delta debugging idea [155], an offline debugging technique for isolating minimally different

inputs which respectively succeed and fail in applications such as gcc.

So inspired by offline delta debugging, Triage automates this process and applies it to

server applications by replaying client requests through a network proxy (see Section 4.2).

The proxy extracts requests as they arrive and stores them for future replay. Since Triage is

meant for the end-user’s site, it can leverage the availability of real workloads. After a failure,

the input tester searches for which input triggers the failure by replaying a subset of requests

during re-execution from a previous checkpoint. If the failure is caused by combinations of

requests, finding minimal triggers can be done by applying hierarchical delta debugging [84].

Besides identifying the bug-triggering request, the input-tester also tries to isolate the

part of the request that is responsible for the bug. It does this in a manner reminiscent of

data fuzzing [126], “twiddling” the request, to create a non-failing request with the “min-
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imum distance” from the failing one. For well-structured inputs, like HTTP requests, the

difference between inputs can be as little as one character, and can generate highly simi-

lar executions. This maximizes the usefulness of the later delta analysis step. Finally, if

the specific triggering portion of the input is known, Triage can create a “normal form” of

the input. This can address user’s privacy concerns, since their actual input need not be

reported.

Changing the Environment If a program is executed in a different environment such

as memory layout and thread scheduling, then execution could also be different. This can

be done artificially by modifying the execution environment during re-execution. There are

several known techniques proposed by previous work such as Rx [108] and DieHard [9]. Some

examples include allocating new buffers in isolated locations, padding or zero-filling new

allocations, changing scheduling and message orders, etc. Triage applies these techniques to

generate different replays even from the same input. Unlike the previous work, Triage is not

randomly twiddling with the environment for recovery purposes, but rather to generate more

failing and succeeding executions. Further, unlike in Rx, Triage already has some idea about

the failure based on earlier failure analysis steps. It can target its perturbations directly at

the expected fault. For example, for a deterministic failure, Triage does not attempt different

thread scheduling. Similarly, given we know a particular buffer has overflowed, we specifically

target its allocation, rather than blindly changing all allocations. Moreover, a non-recovery

focus implies correctness is no longer an overriding concern, and Triage can exploit some

speculative changes described below.

Speculative Changes (preliminary) Execution perturbation during replay can be spec-

ulative since all side-effects during replay are sandboxed and discarded. For example, during

replay, Triage could force the control flow to fall through a non-taken branch edge. It could

also forcefully change some key data’s value during replay. The new value could be some
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common value in non-failing runs (generated by the input tester). Such changes clearly vio-

late the semantic correctness requirements of Rx; however, they may be useful for diagnosis.

A H I
CJ

K
B E F GD Bad Run

Good Run

CFG

Figure 4.5: Control flow graph and two executions of our running tar bug example shown in
Figure 4.4

Result of Delta Generation The result of delta generation is a set of many similar failing

and non-failing replays. To feed into the next stage, delta analysis, Triage extracts a vector

of the exercise counts of each basic block (the basic block vector) and a trace of basic blocks

from each replay. Alternatively, the granularity could be increased to the instruction level or

reduced to the level of function calls. Further, both instruction- or function- level granularity

could include or exclude data arguments. Finer granularities capture more detail, but also

introduce more noise. For general use, the basic-block level is a good trade-off.

Figure 4.5 shows the control-flow graph of our running bug example bug, with a failing run

and a non-faining run superimposed. The good run visits basic blocks AHIKBDEFEF...EG,

while the bad run visits blocks AHIJBCDE, and then fails. The good run has a basic block

vector of {A:1, B:1, D:1, E:11, F:10, G:1, H:1, I:1, K:1}, while the bad run has {A:1, B:1,

C:1, D:1, E:1, H:1, I:1, J:1}.

4.5 Delta Analysis

Based on the detailed information from many failing and non-failing replays produced by

the delta generator, the delta analyzer examines these data to identify failure-related code,

variables and the most relevant fault propagation chain. It is conducted in three steps:

(1) Basic Block Vector (BBV) comparison: Find a pair of most similar failing and non-failing
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replay, S and F , using a basic block vector (BBV) comparison and also identify those basic

blocks unique to failing runs—suspects for root causes.

(2) Path comparison: Compare the execution path of S and F and get the difference in the

control flow path.

(3) Intersection with backward slice: Intersects the above difference with dynamic backward

slices to find out those differences that contribute to the failure.

Basic Block Vector (BBV) Comparison For each replay produced by the delta gener-

ator, the number of times that each basic block is executed during this replay is recorded in

a basic block vector (BBV). This information is collected by using dynamic binary instru-

mentation to instrument before the first instruction of every basic block.

The first part of the BBV comparison algorithm calculates the Manhattan distance of

the BBVs of every pair of failing replay and non-failing replay and then finds the pair with

the minimum Manhattan distance. The computation is not expensive for a small number of

failing and non-failing replays. If needed, one could also trade-off accuracy for performance

since it is not necessary to find the absolute minimum pair—as long as a pair of failing and

non-failing replays are reasonably similar, it may be sufficient.

In the running example shown on Figure 4.5 (which only has 2 replays), the BBV dif-

ference between the two replays is {C:-1, E:10, F:10, G:1, J:-1, K:1}; the successful replays

makes many iterations through the EF loop, and does not execute C or J at all. The

Manhattan distance between the two would therefore be 24.

To identify basic blocks unique to failing replays (and thus good suspects for root causes),

a more thorough BBV comparison algorithm could compute statistics (e.g. the mean and

standard deviation) on each BBV entry. Performing significance tests between the means of

the failing and non-failing replays in a way similar to PeerPressure [143] would allow a key

question to be answered–is there a statistically significant difference between the exercise
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count of each individual basic block? Currently, the implementation does not consider such

tests.

Path Comparison While the BBV difference is helpful to identify basic blocks unique to

failing runs, it does not consider basic block execution order and sequence. This limitation

is addressed by Triage’s path comparison. The goal with the path difference is to identify

those segments of execution where the paths of the failing and non-failing replay diverge.

The pair of failing and non-failing replays is the most similar pair identified by the BBV

comparison. Similar to BBV, the execution path information is collected during each replay

in the delta generation process. It is represented in a path sequence, a stream of basic block

executed in a replay.

Given two path sequences (one from the failing replay and the other from the non-failing

replay), the path comparison computes the minimum edit distance between the two, i.e.

the minimum number of simple edit operations (insertion, deletion and substitution) to

transform one into the other. Much work has been done on finding minimum edit distances;

Triage uses the O(ND) approach found in [87]. The path comparison algorithm also records

these edit operations that give the minimum edit distance between the two path sequences.

In the running example, the minimum edit distance between AHIJBCDE (failing) and

AHIKBDEFEF...EG (non-failing) would be found. In a modified sdiff format, this is:

A H I K B D E F E F ... E G

- v ^ ^ ^ ^ ^

A H I J B C D E

This demonstrates the difference in program execution: the failing replay takes branch J

instead of K, while the non-failing replay takes an extra block C, and is truncated prior to

the EF loop.
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Figure 4.6: An example presenting backward slicing, delta analysis results and their inter-
section. It is derived from Figure 4.4.

Backward Slicing and Result Intersection To further highlight important information

and eliminate noise, those path differences which are related to the failure (i.e. in the fault

propagation chain) are extracted. This can be achieved by intersecting the path difference

with the dynamic backward slice, which is a program analysis technique that extracts a

program slice consisting of all and only those statements that lead to a given instruction’s

execution [147]. The intersection results can help focus attention on those instructions or

basic blocks that are not only in the fault propagation chain but also are unique to failing

replays.

As shown in Figure 4.6, for a given instruction (the starting point of a backward slice),

its data or control dependent codes are extracted and a lot of irrelevant codes (shown in

Figure 4.4), are discarded. This greatly reduces the amount of noisy information that is
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irrelevant to the occurred failure. In our tar example, only lines 12, 4 and 26 belong to the

dynamic backward slice of the failing instruction (line 13). This information, beyond being

useful to refine delta analysis, is useful to the programmer. Therefore, the Triage report

includes the the whole backward slice.

Unfortunately, backward slicing is non-trivial to apply to productions runs. First, back-

ward slicing requires a starting point from which to slice; this would usually be supplied

by the programmer. In Triage, the results of other stages of analysis (see Figure 4.3) are

substituted for this human guidance.

Additionally, backward slicing incurs large time and space overheads, and therefore has

seldom been used during production runs. In Triage, the overhead problem is addressed

in two ways. First, the re-execution support makes the analysis post-hoc: backward slicing

is used only during replays after a failure occurs, when the overhead is no longer a major

concern. By using forward computation backward slicing [156] Triage can dynamically build

dependence trees during replay and need not trace the application from the beginning. As

a further optimization, Triage applies a function call summary technique to certain known

library calls. For some select library calls just one dependency, “return value depends on

input arguments”, is recorded. This greatly reduces the overhead for some commonly-

called library functions. The experiments show that the resulting total analysis overhead is

acceptably low.

Returning again to the running example, the difference between the two replays lies in

the blocks {+J, -K, +C, +E, -F, -G}, +J meaning that block J either appears only at the

failing run or contains the failing instruction and -K meaning that K appears only at the

successful run. In the backward slice, F, G, and K do not appear at all, while J is very

close on the potential propagation chain. Considering these {E, J, C, K, F, G}, the key

differences can be ranked to the very top: the null pointer dereference in E is the failure,

and the return NULL; statement in J along with the entry=disp; assignment in E are very

important factors in the fault. Therefore, the two most relevant to the failure basic blocks,
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as shown in Figure 4.6, are E and J. Normal differences caused by accident of execution that

are far from the fault are ranked low, as they do not have a close impact on the fault itself.

Data delta analysis (unimplemented) It is conceivable that one could also compare

the data values of key variables (e.g. branch variables) to complement the comparison in

control flows. However, this method requires collecting too much information and also it

is hard to statistically compare data of various types such as floating point variables, etc.

Therefore, Triage does not perform any data delta analysis.

4.6 Other Diagnosis Techniques

Delta generation and delta analysis comprise stages 2 and 3 of the TDP (Figure 4.3). For

stage 1 Triage also uses other diagnosis techniques. This section briefly describes these

techniques.

Coredump analysis The Triage coredump analyzer reports the register state, what signal

caused the fault, and basic summaries of the stack and heap state. The stack can be

unwound starting from the current ebp register value. By checking whether each stack

frame is indeed on the stack, and whether the return values point into the symbol table,

Triage generates a call-chain signature and detect possible stack corruption such as stack

smashing attacks. Heap analysis examines malloc()’s internal data structures, walking

chunk-by-chunk through the block lists and the free lists. This identifies some heap buffer

overflows. If the application uses its own memory allocator, an application specific heap

consistency checker is needed. This step is extremely efficient (under 1s), and provides a

starting point for further diagnosis.
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Dynamic bug detection Triage can leverage many existing dynamic bug detection tech-

niques to detect common bugs3. Currently, Triage employs two types of common dynamic

bug detectors, a memory bug detector and a race detector, and only during re-execution

via dynamic instrumentation [77] to address overhead concerns. Triage’s memory bug

detector (MD) detects memory misbehavior during re-execution to search for four types

of memory errors: stack smashing, heap overflow, double free and dangling pointers using

techniques similar to previous work [56, 94]. Once simple replay determines that a failure

is nondeterministic, Triage invokes the data race detector to detect possible races in a

deterministic replay. Triage currently implements the happens-before race detection algo-

rithm [95] by instrumenting memory accesses with PIN; other techniques [117] would also

certainly work.

4.7 Limitations and Extensions

Privacy policy for diagnosis report After failure diagnosis, Triage reports the diagnosis

results back to the programmers. However, for some end-users, results such as failure-

triggering inputs may still contain potentially private information. To address this problem,

it is conceivable to extend Triage to allow users to specify privacy policies to control what

types of diagnosis results can be sent to programmers. Furthermore, unlike a coredump,

the information Triage sends back4 is “transparent”–comprehending what is being sent in a

Triage report, and verifying that nothing confidential is being leaked, is much easier than

with a memory image.

Automatic patch generation Triage provides a wealth of information about occurring

failures; this information has been used to automatically generate patches. However, without

an understanding of the semantics of the program, success has been limited. For heap

3Note that dynamic bug detectors find errors, not faults, and while useful, other techniques (e.g. delta
analysis) are needed to find root causes

4See, for example, Table 4.6.
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Name Program App Description #LOC Bug Type
Root Cause Description

Apache1 apache-1.3.27 web server 114K Stack Smash
Long alias match pattern overflows a local array

Apache2 apache-1.3.12 web server 102K Semantic (NULL ptr)
Missing certain part of url causes NULL pointer dereference

CVS cvs-1.11.4 version control server 115K Double Free
Error-handling code placed at wrong order leads to double free

MySQL msql-4.0.12 database server 1028K Data Race
Database logging error in case of data race

Squid squid-2.3 web cache server 94K Heap Buffer Overflow
Buffer length calculation misses special character cases

BC bc-1.06 algebraic language 17K Heap Buffer Overflow
Using wrong variable in for-loop end-condition

Linux linux-extract from linux-2.6.6 0.3K Semantic (copy-paste error)
Forget-to-change variable identifier due to copy-paste

MAN man-1.5h1 documentation tools 4.7K Global Buffer Overflow
Wrong for-loop end-condition

NCOMP ncompress-4.2.4 file (de)compression 1.9K Stack Smash
Fixed-length array can not hold long input file name

TAR tar-1.13.25 tar archive tool 27K Semantic (NULL ptr)
Directory property corner case is not well handled

Table 4.1: Applications and real bugs evaluated in our experiments.

buffer overflows, Triage can identify the allocation point of buffer which overflows. Similar

to Rx [108], Triage can apply padding; unlike Rx one particular allocation point is clearly

identified. As Triage is not blindly extending every buffer, it can apply a permanent padding.

Triage tries a linear buffer increase up to a cutoff, and then it tries a multiplicative increase.

Although limited to a subset of heap buffer overflows, this technique does provide an adequate

patch for the buffer overflow in Squid (see Section 4.9) which addresses all possible triggers.

Triage is currently unable to create correct patches for an other bugs.

Bug handling limitations Of course, Triage is not a panacea. For some bugs, it may

be difficult for Triage to provide accurate diagnostic information. For example, since Triage

does not have information prior to the checkpoint, it is difficult to pinpoint memory leaks,

although our coredump analysis may provide some clues about buffers that are not freed and
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also no longer accessible. To address this may require new bug detection techniques that do

very lightweight monitoring during normal execution such as sample-based monitoring [57] in

order to help the heavy-weight instrumentation used during re-execution. Similarly, Triage

is ineffective if no failures are detected. While many bugs lead to obvious failures, some bugs,

especially semantic bugs, result merely in incorrect operation, sometimes in subtle ways. At

the expense of normal run performance, failure detectors can help, but some failures will be

quite difficult to automatically detect.

Another class of difficult bugs, although previous work [91] reports they are rare, is bugs

that take a long time to manifest. To diagnose such failures, Triage needs to replay from

very old checkpoints. Rolling back to old checkpoints is not a problem since Triage can store

old checkpoints to disk, given sufficient disk space. The challenge lies in quickly replaying

long windows of execution to reduce diagnosis time.

Reproduce nondeterministic bugs on multiprocessor architectures The current

prototype of Triage only supports deterministic replay of both single- and multi- threaded

applications on uniprocessor architectures. For multiprocessor architectures, replay of multi-

threaded applications is on a best-effort basis. Although this works well enough for most

bugs, deterministic replay may be necessary for some faults. It is very difficult to support

this functionality with low overhead in multiprocessor architectures. Hardware support, such

as Flight Data Recorder [152] or BugNet [91], may be necessary to achieve sufficiently low

overhead. Alternative techniques, such as output deterministic replay [3], are available to

trade off record-time performance for replay time performance, although currently only at a

swingeing replay time penalty.

Deployment on highly-loaded machines Triage imposes negligible overhead in the

normal-run case. However, it does expend significant resources during analysis. Although

the optimal case is to perform diagnosis immediately after the failure in the exact same
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environment, there are cases where this is infeasible. To alleviate this, there are several

possibilities. First, diagnosis can occur in the background, while normal activities (or even

recovery) continue. It may even be deferred until a later time when resources are available.

Second, one possibility would be to perform the analysis on a separate machine, albeit one

still at the user’s site; this would require extending Triage to include process-migration

support. Finally, it may be acceptable to skip the more expensive analysis steps; although

they are useful, it is better to get something than nothing. Regardless, it is always the intent

that analysis should be done at the end-user’s site, and that only results should be sent back

to the programmers.

Handle false positives Even though in the experiments Triage never reported misleading

information, it is conceivable that in some rare cases Triage may report incorrect diagnosis

results due to the false positives introduced by some specific diagnosis techniques. This

problem can be addressed by performing more sophisticated consistency checks among re-

sults produced by different diagnosis techniques and also incorporate the accuracy of each

technique into the result confidence ranking.

4.8 Evaluation Methodology

To evaluate Triage, this section presents various experiments using 10 real software failures

with 9 applications (including 4 servers) as well as a user study with real programmers.

Triage is implemented in the Linux operating system, version 2.4.22. Various diagnosis

techniques are implemented on top of a dynamic binary instrumentation tool, PIN [77]. After

a failure occurs, Triage dynamically attaches PIN to the target program in the beginning of

every re-execution attempt.

Machine environment and parameters The experiments were conducted on single-

processor machines with a 2.4GHz Pentium-4, 512KB L2 cache, and 1GB of memory. Server
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application experiments use two such machines connected with 100Mbps Ethernet; the server

runs on one and the client runs on the other. By default, Triage keeps twenty checkpoints,

and checkpoints every 200ms.

Evaluated Applications and Failures Table 4.1 shows the 9 applications (4 server

and 5 open source utilities) and 10 bugs that were evaluated. This suite covers a wide

spectrum of representative applications and real software failures. The software failures are

segmentation faults or assertion failures, with the underlying defects belonging to different

categories: semantic bugs (2 null pointer and 1 copy-paste), memory bugs (2 stack smashing,

2 heap overflow, 1 static buffer overflow, and 1 double free) and 1 data race bug. The error

propagation distances also vary among these applications.

User Study To validate that Triage reduces programmer effort in fixing bugs, I conducted

a user study. The study used 5 fail-stop bugs: 3 toy programs with injected bugs, and two

real bugs (the bugs in BC and TAR). Participants were asked to fix the bugs as best as

they could. They were provide a controlled workstation with a full install of Fedora Core 6

including a full suite of programming tools, including Valgrind. To balance the difficulty of

the bugs, we randomly selected 50% of the programmers to diagnose each bug with the error

reports produced by Triage, and, as a control, the remaining 50% without the reports. Aside

from formatting, Table 4.6 is precisely the report given in the TAR case. All participants

were given a coredump, sample good and bad inputs, a prepped source tree, and instructions

on how to replicate the bug; although this eliminated the difficulty of replicating the bug

for the non-Triage case, it was necessary to bring the task down to an achievable difficulty.

Further, there was a half hour time limit per real bug and 15 minute time limit per toy bug;

failure to fix the bug resulted in a recorded time of the full limit5. The time limits were

necessary for practical purposes; participants averaged approximately two hours of total

5These time limits artificially show Triage in a bad light because they bound the maximum time, and
this improves the reported performance of the non-Triage cases.
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time each.

As it took almost 6 months to get legal approval to use human subjects in the study, the

experiments include only 10 programmers, drawing from local graduate students, faculty,

and research programmers. No undergraduates were used. All of the subjects indicated

that they have extensive and recent experience in C/C++. We tested statistical significance

using a 1 sided paired t-test [131, 113]. This test compares each subject against themselves,

to help account for individual programmer skill; the variation of individual programmer skill

still appears in the overall means.

4.9 Experimental Results

Table 4.2 presents a summary of Triage’s diagnosis results for each failure for server bugs,

while Table 4.3 presents a summary for the non-server bugs. For the four deterministic

server bugs, the table presents results from input testing/delta generation, delta analysis,

and backward slicing. For the nondeterministic bugs, the table presents the results from

schedule manipulation. Finally, for the five application bugs, the results do not provide

input testing, and delta analysis is only provided for BC and TAR.

In all cases, Triage correctly diagnosed the nature of the bug (deterministic or nonde-

terministic), and in all 6 applicable cases Triage correctly pinpointed the bug type, buggy

instruction, and memory location. Hence, Table 4.2 and Table 4.3 omit detailed listings

of Stage 1 results. To summarize Stage 2 and 3 results, for all the 5 server applications,

Triage successfully captured and reproduced the fault-triggering input. Also, for the cases

where delta analysis is applied, it reduced the amount of execution that must be considered

by 63%; for the best case (the BC application) it reduces it by 98%. In 8 of the 10 cases,

the root cause instruction appeared within the top 10 failure-relevant candidate instructions

and in the other 2, within the top 10 failure relevant functions. Finally, of note is that for

the nondeterministic MySQL bug, Triage found an example interleaving pair which is the
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Server Applications

App
Results - Stages 2 & 3

Method Results Useful?

A
p
a
ch

e
1

Input GET /trigger/crash.html ... Yes
Testing Key part: /trigger/crash.html Yes

Backward Found root-cause line Yes
Slicing 8 instructions from crash Yes
Delta Edit distance is 79089 Yes

Analysis Removes 12% Yes

A
p
a
ch

e
2

Input GET ... Referer:1.2.3.4 Yes
Testing Key part: Referer: Yes

Backward Found root-cause line Yes
Slicing 3 instructions from crash Yes
Delta Edit Distance is 5964 Yes

Analysis Removes 69% Yes

C
V

S

Input
Stream of requests... Yes

Testing
Backward Found root-cause function Yes

Slicing 4 functions from crash Yes
Delta No result No

Analysis Not applicable No

M
y
S
Q

L

Schedule
Bad interleaving pair:

Yes
Manipulate

0x8132fa8 – 0x8128c4b
Found root-cause Yes

S
q
u
id

Input ftp://user\ *30:p@... Yes
Testing Key parts: ftp, user Yes

Backward Found root-cause line Yes
Slicing 6 instructions from crash Yes
Delta Edit distance is 54310 Yes

Analysis Removes 71% Yes

Table 4.2: Diagnosis results. “U” means whether each piece of failure information is useful—
‘Y’ for useful and “N” otherwise. Y indicates exceptionaly good results. For all of the bugs,
Stage 1 (identify failure/error types and locations) works admirably.

trigger for the failure.

4.9.1 Triage Report Case Studies

This section uses three case studies to show how Triage reports can help developers under-

stand failures.
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Other Open-Source Applications

App
Results - Stages 2 & 3

Method Results Useful?

B
C

Backward Found root-cause line Yes
Slicing 3 instructions from crash Yes
Delta Edit distance is 5381 Yes

Analysis Removes 98% Yes
L
in

u
x
-e

x
tr

.
Backward Found root-cause line Yes

Slicing 6 instructions from crash Yes
Delta No result No

Analysis Not applicable No

M
A

N

Backward Found root-cause function Yes
Slicing 9 functions from crash Yes
Delta No result No

Analysis Not applicable No

N
C

O
M

P Backward Found root-cause line Yes
Slicing 5 instructions from crash Yes
Delta No result No

Analysis Not applicable No

T
A

R

Backward Found root-cause line Yes
Slicing 6 instructions from crash Yes
Delta Edit distance is 83564 Yes

Analysis Removes 68% Yes

Table 4.3: Diagnosis results. “U” means whether each piece of failure information is useful—
‘Y’ for useful and “N” otherwise. Y indicates exceptionaly good results. For all of the bugs,
Stage 1 (identify failure/error types and locations) works admirably.

Case 1: Apache The bug in Apache 1.13.27 is a stack related, difficult to reproduce and

diagnose bug. As shown in Table 4.4, the failure occurs at a call to function ap gregsub.

Coredump analysis informs us an invalid pointer dereference at variable r. However, r was

correctly dereferenced a few lines before, and is not changed throughout the function. For-

tunately, Triage’s bug detector catches a stack-smash in function lmatcher, engine.c:212.

This is useful, however, there are some confusing wrinkles: (1) the application fails before

function try alias list returns, which means the overwritten return address is NOT the

reason for the failure; and (2) there is no obvious connection between lmatcher and try -

alias list. How lmatcher can smash the stack of try alias list is unclear.
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Triage Report for Application — Apache
Failure Point Information

Segment Fault (at) Instr:0x805e33f@ mod alias.c:313
Stack / Heap? Corrupt / OK

Bug Detection Information
Deterministic Bug? Yes
Stack-smash (at) engine.c:212

Fault Propagation Information

Crash Point

util.c:374
<try_alias_list> mod_alias.c:311

if(!ap_regexec(..))

<regexec>
regexec.c:140

<lmatcher>
engine.c:147

<lmatcher>
engine.c:210

<ldissect>
engine.c:398

<lmatcher> engine.c:212
pmatch[i] m−>pmatch[i]

<try_alias_list> mod_alias.c:313
ap_gregsub(..,r−>uri,..)

Bug Point

<ap_regexec>

Failure Trigger Information
Failure-triggering input: GET /trigger/crash.html HTTP/1.1 ...
Critical part: GET /trigger/crash.html HTTP/1.1 ...
Normal-form: GET /trigger/crash.html HTTP/1.1 ...
Close non-failing inputs: GET /trigger/ HTTP/1.1 ...

GET / HTTP/1.1 ...

Table 4.4: Triage report for Apache-1.3.27 version

The fault tree and the path differences provided by Triage’s delta analyzer and the

backward slicer clears up the above confusions. Tracing from the root, the edge from

engine.c:212 to root indicates the crashing function call gets pointer variable r’s value from

the assignment in the stack-smash statement (engine.c:212). This explains the failure: the

stack-smashing overwrites the stack frame(s) above it, and invalidates pointer variable r, an

argument of function try alias list. Tracing further back, we can identify that this func-

tion is called by try alias list via a function pointer. The destination, pmatch[i] in

engine.c:212, is a fixed length stack array declared in try alias list. It is filled in by

function ap regexec without bounds check (mod alias.c:311).

The input testing in Triage’s delta generator in this case identifies that the failure is

independent of the headers of the request and also that the failure is triggered by requests

for a very specific resource (/trigger/crash.html).
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Triage Report for Application — Squid
Failure Point Information

Segment Fault (at) Instruction: 0x4f0f0907 (in lib. strcat)
called from ftp.c:1033

Stack/Heap? OK/Corrupt
Bug Detection Information

Deterministic Bug? Yes
Heap Overflow (at) lib. strcat

called from ftp.c:1033
Fault Propagation Information

<rfc1738_do_escape> rfc1738.c: 100
buf = xcalloc (bufsize, 1)

Bug Point
Crash Point

<rfc1738_do_escape> rfc1738.c: 99
bufsize = strlen (url) *3 + 1

<ftpBuildTitleUrl> ftp.c: 1004
len = 64 + srlen (user) + strlen 

(host) + strLen (urlpath)

<ftpBuildTitleUrl> ftp.c: 1030
t = xcalloc (len, 1)

strcat 
(library call)

<ftpBuildTitleUrl> ftp.c:1033
strcat (t, rfc1738_escape_part (user))

Failure Trigger Information
The failure triggering input was:

ftp://user\ (repeat 43 times):password@ftp.slackware.com
Trigger-critical parts: protocol,username
Normal-form of failure-triggering input:

ftp://user\ (repeat 30 times):p@ftp.slackware.com
Similar but not-failure-triggering inputs:

ftp://user\ (repeat 29 times):password@ftp.slackware.com
http://user\ (repeat 43 times):password@ftp.slackware.com

Table 4.5: Triage report for Squid 2.3-Stable5 version

Case 2: Squid As shown in Table 4.5 coredump analysis indicates that Squid probably

has a heap overflow triggered by a call to strcat from ftp.c line 1003. Triage’s memory

bug detector confirms this, catching a heap-overflow bug at said point. It is fairly certain

that the failure is caused by a heap-overflow of buffer t in ftp.c, line 1003. The fault

propagation tree shows us how this happens: a strcat of two buffers, one returned from

rfc1730 escape part, and t from ftpBuildTitleUrl. It also shows how these buffers were

allocated; in the left branch we multiply strlen(url) by 3 while in the right branch we

simply add the length strlen(user) (which is passed as url) to some other numbers. This

is the root cause: it is possible for the buffer returned by rfc1730 escape part to be three

times longer than expected (if there are many characters that need escaping), while the

strcat only can deal with 64 extra characters.
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Triage Report for Application — Tar
Failure Point Information

Segment Fault (at) Instr: 0x4f0f1e13 (in lib. strlen)
called from increment.c:207

Stack/Heap? OK/OK
Bug Detection Information

Deterministic Bug? Yes
Null Pointer (at) lib. strlen, called from incremen.c:207

Fault Propagation Information

Crash Point <strlen>

<get_directory_contents>
incremen.c:206

entry = dirp

<get_directory_contents>
incremen.c:180

dirp = savedir(path)

<savedir>
savedir.c:87
return NULL

<get_directory_contents>
incremen.c:207

entrylen = strlen(entry)

Table 4.6: Triage report for tar-1.13.25

Finally, input testing, provides the actual request that triggered the failure. It is an ftp

request, where the username has 43 instances of “

”. Furthermore, it identifies the normal-form of the bug triggering request, one with 30

repetitions of “

” in the username field, and a minimally different non-failing request, where there are only

29 repetitions.

Case 3: tar Case study three is the running example (see Figure 4.4). Briefly, Table 4.6

shows the output of Triage on this bug. Since previous sections have discussed this bug, it

is not explained further here. Of note is that the figure shows exactly the same information

provided in the user study; the only difference is that the user study report doesn’t suffer

from space limitations and hence has a loose format.

4.9.2 Normal Execution Overhead

Triage imposes negligible overhead during execution; it should be nearly indistinguishable

from the overhead of the underlying checkpoint system [108]. Figure 4.7 shows the results

for three applications: Squid (network bound), BC (CPU bound), and MySQL (both). To
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Figure 4.7: Normalized performance during normal-time execution. a) shows squid at checkpoint
intervals from 400 ms to 30 ms, while b) shows squid, MySQL, and bc at 200ms intervals.

explore the effects of checkpoint interval, squid is also run at checkpoint intervals from 400 to

30 ms. In no case is the overhead during normal runtime over 5%. For the 400ms checkpoint

interval, the overhead drops to 0.1%. Given such low overhead, Triage is acceptable during

normal execution. This is because Triage only runs analysis after a failure has occurred.

4.9.3 Diagnosis Efficiency

With the exception of delta analysis, Triage’s diagnosis is very efficient: all diagnostic steps

finish within 5 minutes, when running in the foreground. Table 4.7 lists the diagnosis time

break down for three representative applications, i.e. an IO & network-bound application,

apache; a CPU-bound application, bc; and a network-bound application, squid. Among the

different diagnosis components, delta analysis takes the longest time, because it examines

every single basic block. For tasks with very small deltas (like BC), it is efficient. If the

edit distance becomes large, the D (edit distance) term in the O(ND) complexity becomes

expensive. Also, for the apache and squid bugs chosen, the larger D causes high memory

pressure; more complex implementations of the edit distance algorithm have much better

space efficiencies [87]. However, given their expense, the path comparison stage of delta

analysis as well as backward slicing are top candidates to be run in the background (or on

a different machine) to avoid interfering with foreground tasks.
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Component Diagnosis Time
App. Total Core- Input Bug Slicing Delta

Dump Test Detect Anal.
Apache1 68 s 0.06 s 9 s 14 s 45 s 27 m

BC 303 s 0.03 s 0 s 98 s 205 s 9 s
Squid 145 s 0.04 s 7 s 30 s 108 s 64 m

Table 4.7: Triage failure diagnosis time, in seconds (s) and minute (m). Total excludes delta
analysis.
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Figure 4.8: Results from user study, with error bars showing 95% confidence intervals. Normal-
ization is to real bugs without Triage

4.9.4 User Study

The user study (described in Section 4.8) has demonstrated very positive results. As shown

in Figure 4.8, on average programmers took 44.7% less time debugging the real bugs

when they had the diagnostic information provided by Triage (13.4 ± 5.7 minutes versus

24.1 ± 4.5 minutes). A paired t-test shows that this is significant at the 99% confidence

interval (p = .00141), indicating that the hypothesis that Triage reduces the time to fix bugs

is very strongly supported by the data. The results for the toy bugs are less, as programmers

saved 22.9% (9.117±1.991 minutes versus 11.831±1.342 minutes), with significance at 95%

confidence (p = .03830); although Triage still helped, the effect was not as large since the toy

bugs are very simple and straightforward to diagnose without Triage. To verify, a statistical

measure for size of impact, Cohen’s d [29], is used. Values of this measure of d = .2, d = .5,

and d = .8 are considered small, medium, and large effects respectively. For the real bugs,

we get d = 1.29; for the toy bugs we get d = .99. Both of these are considered large effects,

although the effect for the toy bugs is not as overwhelmingly large as for the real bugs.

Less formally, the study participants reported that the Triage reports were a significant
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aid in helping them understand the bugs. By observation, the BC bug was particularly

tricky; several of the control group went on time consuming wild goose chases through auto-

generated parser code which, although close in time to the bug, was unrelated. In contrast,

one participant commented “[the Triage report] pointed out the error right away. Most of

my time was spent in getting the program to compile and run.”

Overall, Triage has a large, statistically significant effect on programmers’ diagnosis time.

While there are many factors that can affect the accuracy of the user study (sample rep-

resentativeness, sample set size, etc.), these results still provide strong evidence about the

usefulness of Triage in helping programmers diagnose software failures.

4.10 Related Work

Chapter 2 provides a more thorough coverage of the related work; this section briefly covers

closely related work and how it relates to Triage.

Software Failure offline diagnosis As discussed in Section 4.1, most existing software

failure diagnosis focuses on offline tools that provide some assistance but still rely heavily on

programmers to manually determine the root cause of a failure. Such tools include interactive

debugging tools [53], program backward and forward slicing [1, 147, 156], deterministic replay

tools [64, 128], and delta debugging techniques [84, 155] (described briefly in Section 4.4).

Triage has a two-fold relation to the above work. First, Triage differs by focusing on onsite

diagnosis during production runs at end-user sites. Therefore, it must be fully automatic

and impose low overhead during normal execution; many of the above techniques do not

satisfy these constraints. Second, Triage can incorporate many of the above techniques and

bypass their high overheads by employing them only during diagnostic replay.

Onsite Failure Information Collection. Most existing work on onsite failure informa-

tion collection has been discussed in 4.1.2. While these techniques are helpful for postmortem
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analysis, they are still limited, leaving the majority of the diagnosis task to programmers.

Moreover, these coredumps or execution traces may not be made available by end-users due

to privacy and confidentiality concerns.

Triage differs from and also well compliments the above work because it provides au-

tomatic, onsite failure diagnosis at the end-user site. When a failure occurs, Triage au-

tomatically follows the human-like, top-down error diagnosis protocol without any user or

programmer involvement. Moreover, by performing the diagnosis right after a failure at the

end-user site, Triage can make an effective usage of all failure information without violating

the end user’s privacy concerns.

Dynamic Software Bug Detection This work is related to and well complemented by

dynamic software bug detection tools, such as Purify [56]. While these tools effectively

detect certain types of bugs during in-house testing, most of them impose large overheads

(up to 100X slowdowns) unsuitable for production runs on end-user sites. Fortunately, by

using the Triage framework, many of these tools can be dynamically plugged in as needed

during diagnostic replay after a failure occurs, when overhead is no longer such a concern.

Moreover, Triage goes beyond dynamic bug detection. It also uses other error diagnosis

techniques like the input tester, environmental manipulator, delta generation, delta ana-

lyzer, coredump analyzer and backward slicer to collect more diagnostic information. It is

important to fully understand a failure since the errors detected by dynamic bug detectors

are not necessarily root causes [1, 147, 156].

Checkpointing and Re-execution Triage is related to previous checkpointing system

such as Zap [101], FlashBack [128], Rx [108], and TTVM [64], most of which are used for

recovery or interactive debugging. Triage uses checkpoint, rollback, and re-execution for a

very different purposes—onsite software failure diagnosis. Different design goals lead to sev-

eral major, important differences in research challenges, design and implementations issues.
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Among the many differences, the most significant one is that the proposed project needs to

perform various failure analysis to obtain failure information and find clues about production-

run failures onsite. As discussed in Section 4.2, even for checkpoint and re-execution, our

proposed project has different requirements, namely all side effects are sandboxed, no need

to deal with output commit problems and allowing speculative re-execution such as forcefully

skipping code and modifying variables.

Distributed Systems Fault Localization Recently some research efforts have been

devoted to pinpointing faults (failures [25] and performance problems [2]) in distributed sys-

tems. These techniques support onsite diagnosis but the granularity of the fault information

provided is much coarser (usually at component level) than what Triage provides. Triage

complements these tools to provide more detailed diagnosis.

Advanced Input Filtering Triage’s input tester can be further enhanced by using re-

cently proposed advanced techniques in automatically generating input/execution filter-

ing [18, 63].

4.11 Conclusions

This chapter presents Triage, an approach for diagnosing software failures. By leveraging

lightweight checkpoint and re-execution techniques, Triage captures the moment of a fail-

ure, and automatically performs diagnosis at the end user’s site. This chapter proposes a

failure diagnosis protocol, which mimics the debugging process a programmer would take.

Additionally, this chapter proposes a new online diagnosis techniques, delta analysis, to

identify failure-triggering conditions, related code, and variables. Beyond onsite diagnosis,

Triage is also helpful for in-house debugging. By performing the initial steps speedily and

automatically, Triage can free programmers from some labor intensive parts of debugging.
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Chapter 5

Delta Execution

This chapter presents delta execution1, or ∆ execution. Delta analyis (Section 4.5) showed

that two runs of the same program with different input could have very similar traces of

instruction streams. ∆ execution builds on this, and attempts to leverage the potential

of a high level of similary in the instruction streams of two different versions of the same

program, for the purpose of online patch validation.

5.1 Overview

Although the rapid diagnosis of software faults is important, we have to wonder why pro-

grams are so buggy in the first place. Programs are not like machines or buildings; they do

not suffer from rust or physical wear. “Bits don’t rot”. Hence all of the faults we find in

programs are design faults, introduced when the programmer made a change to the code.

If we never made changes to software, except to fix faults, we would expect that over time

the software would become fault free. However, software is constantly changed to add new

features or improve performance. Further, even the changes made to correct faults com-

monly introduce new ones [7]. This is especially problematic, since patches to fix security

issues are common (over 7600 as per CERT in 2007 [23])). Every one of those changes is an

opportunity to introduce a new fault, and cause new failures.

Failures caused by even supposedly well-tested patches commonly make the news. In

1This work is based on an earlier work: Efficient online validation with delta execution, in
ACM SIGPLAN Notices - ASPLOS 2009, Volume 44, Issue 3, March 2009 (c) ACM, 2009.
http://doi.acm.org/10.1145/1508284.1508267
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2008, Microsoft had to withdraw the first service pack to Windows Vista because it caused

“computers to crash or enter an endless cycle of boots and reboots” [81]. Also in 2008,

Apple’s “Leopard” update to Mac OS X broke applications [103]. Large operating system

updates are not the only sort of patches to suffer such problems. In early 2009, Seagate

went through a series of firmware patches that first caused drives to sporadically fail, and

then to cause drives to fail on reboot, before a fourth firmware version finally addressed

the issue [82]. Because patching is such a risky business, administrators do not want to

be the first to apply a patch. Indeed, Microsoft’s Patch Tuesday, when an entire month’s

worth of changes are released in one go, was created to give Microsoft additional time for

testing and to give administrators a predictable schedule for validation and roll out [83].

While this unfortunately increases the window of vulnerability [61], it allows additional time

to test security patches still increases uptime [7]. Even so, unusual end-user configurations

can still cause problems, such as the 2010 security update which took some users’ machines

from being infected with a rootkit (bad) to being unbootable (worse) [14]. It is therefore

unsurprising that administrators do not immediately apply patches if they can help it.

5.1.1 Patch Validation

Especially if we want a more rapid cycle between the initial discovery of a fault and the

deployment of a fix (as in Chapters 3 and 4), we must have increased confidence that the

changes programmers make are correct. As discussed in Section 2.4.1, there are two primary

methods for patch validation; off-line or on-line. Off-line validation encompasses traditional

regression testing; one sets up a system and sees if it fails. On-line validation involves running

a production workload on the new version and comparing it to the old production instance.

Although off-line validation is a necessary step, since it allows the vendor to detect problems

before a patch is released, the greater variety of conditions a program will experience in the

field on users sites suggests that on-line validation is more accurate. Specifically, on-line

validation allows users to answer the question that they care about most: “Does this patch
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break my workload?”

Despite on-line validation’s promise of greater accuracy, it is rarely used. First, there is

the trouble and expense of deploying two instances which can both support the full produc-

tion workload. From a computational resources point of view, either the two instances can

share resources (e.g. isolated by a VMM [75]) or on a completely separate set of hardware.

Although the additional hardware cost may be affordable, secondary costs (e.g. power, cool-

ing, floorspace, software & support licenses, etc.) can be significant, especially the cost of

administrator labor. The administrator must configure a system that is nearly identical

to the production instance, but differing just enough so that it doesn’t interfere with the

production instance. Maintaining a separate testing instance represents an expensive drain

of human resources.

Second, and even more problematic, is that performing the comparison between the two

instances is non-trivial [88]. Even if we run two identical copies side-by-side, non-determinism

from things like thread interleaving, message timing, and random number generation will

cause the outputs to differ. These spurious differences can be quite large, and make directly

comparing the outputs infeasible. Instead, the comparison must be at a higher semantic

level, which is error prone and troublesome. Because of these two problems, the strong

evidence that on-line validation gives that a patch won’t break when put into production is

generally viewed as not worth the trouble.

5.1.2 Multiple Almost Redundant Executions

Although the challenges to on-line validation are large, the changes that typically need

validating are not. Figure 5.1 shows a real bug fix in GNU tar. The only difference is in

handling the special case of dirp being null; if dirp is null, then the main body of the loop

is skipped. The patch is only two lines long, compared to the 100 lines of the main loop. In

practice we expect the main loop to be executed because dirp will be non-null. One would

therefore expect that the execution of the patched code and the original code will be almost
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Patch: tar null pointer

tar/src/incremen.c

+ if (dirp) {

if (children!=NO_CHILDREN) {

for (entry=dirp; ... ; ...) {

// main loop

// 100 lines omitted

}

}

free(dirp);

+ }

Figure 5.1: Illustrative bug fix patch extracted from GNU tar. ’+’ indicates code insertion.

Patch: CAN-2004-0493

httpd-2.0/server/protocol.c

+ if ((fold_len-1) > (r->server->limit)) {

+ r->status = BAD_REQUEST;

+ return;

+ }

Figure 5.2: Illustrative bug fix patch extracted from Apache httpd. ’+’ indicates code
insertion.

Patch: CAN-2004-0811

httpd-2.0/server/core.c

if (new->satisfy[i] != SATISFY_NOSPEC) {

conf->satisfy[i] = new->satisfy[i];

+ } else {

+ conf->satisfy[i] = base->satisfy[i];

}

Figure 5.3: Illustrative bug fix patch extracted from Apache httpd. ’+’ indicates code
insertion.
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identical almost all of the time. Even at the level of individual instructions, the common

case will have the patched version running only two more: a compare and a conditional

jump.

Such highly similar executions are called MAREs, for multiple almost redundant exe-

cutions. That is, MAREs are more than one (multiple) executions that are very nearly

identical (almost redundant) to one another, but not quite. These MAREs are common

in patch validation, especially for security patches. Figures 5.2 and 5.3 show two security

patches in the Apache web server that one would expect to usually not have much effect.

Both insert a small amount of conditional code. Since security patches attempt to solve

one specific problem, that they are small is unsurprising. Further, in the case of a security

patch, the changes are often corner-case handling. Since most of the time the program is

not being exploited, the corner cases do not commonly occur, and there is minimal effect

on execution. Consider, for example, that adding a bounds check is the easiest way to deal

with a buffer overflow. The patch is small, and if there is not an exploit attempt, nothing

of note happens. Indeed, this is precisely what Figure 5.2 shows; in this instance, even the

bounds to check had already been computed by previously included code. Together, their

small size and exception-handling nature suggests that security patches will generally only

lead to small changes in the execution.

5.1.3 Summary of Delta Execution

Split Point Merge Point Split Point Merge Point

run delta coderun common code

read and write
shared state

read and write
split state

Merged (both)
Split, Original

Split, Modified

Legend

Figure 5.4: Logical diagram of delta execution
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This chapter proposes a new technique, called delta (or ∆) execution, which exploits

MAREs in patch validation to improve the efficiency and effectiveness of on-line patch vali-

dation. As illustrated in Figure 5.4, ∆ execution runs two separate logical executions as one

physical execution, only running those segments of execution that differ (e.g. the deltas)

separately. For the most part, the one physical merged execution is all that is needed. In the

segments where the original and the patched versions differ (called ∆ code), two separate

executions are run (split execution). After a time, the two separate physical executions can

be joined back into one, resuming merged execution. Further, during split execution state

updates are tracked, so that note can be made of program state which differs (that is, the

∆ state) between the two logical executions. Further executions of delta code or accesses to

delta state will cause another split, with each logical execution behaving as if it had been

running separately the entire time.

This should have two advantages. First, ∆ execution should have lower overhead. We

expect that the bulk of execution between the two logical versions will be identical. Hence,

the majority of runtime will be merged execution. Most CPU operations, I/O operations,

and system calls will be performed one time, and there will be only one copy of most state,

and there won’t be contention between instances for resources (e.g. the processor cache).

This should greatly improve performance. Further, even during split execution, competition

between the logical executions for expensive operations can be minimized. Rather than issue

them twice, I/O operations and system calls are monitored by the ∆ execution runtime to

ensure that if both are identical, they are only issued once. This is especially helpful for

operations involving the disk. Since both split and merged execution can be faster in ∆

execution than running two instances, one would expect for overall performance to be better.

Second, and perhaps more important, ∆ execution reduces the non-determinism between

the two instances. As mentioned previously, small sources of non-determinism (e.g. thread

interleaving, message order, and random number generation) can cause differences in the

results of side-by-side validation even if the changed code is never run. During ∆ execution,
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however, we expect the two logical instances to run mostly merged. During merged execution

any sources of non-determinism will influence both logical executions identically. Only non-

determinism during split execution will affect the output of the two versions. By minimizing

the window for non-determinism to cause the two versions to vary, ∆ execution can mostly

eliminate false positives in patch validation.

These advantages result in more efficient and effective patch validation. As detailed

in Section 5.5, the reduced resource contention during ∆ execution validation allows ∆

execution to outperform side-by-side validation by 12% (by 74% if the baseline overhead of

instrumentation is ignored). Further, the reduction in non-determinism allows ∆ execution

to validate all 10 sample patches, while side-by-side validation flags 8 of the test cases as false

positives. ∆ execution should also be widely applicable; a manual examination of patches

shows that 77% should be straightforward to run under ∆ execution. These results suggest

that ∆ execution could greatly increase the practicality of on-line patch validation.

The rest of the chapter is organized as follows. Section 5.2 presents a characteristic

study of patches, validating that many patches are appropriate for ∆ execution. Section 5.3

describes the overall design of ∆ execution. Section 5.4 goes into further detail about

implementing ∆ execution. Section 5.5 presents experimental results with ∆ execution,

while Section 5.6 sums up the chapter.

5.2 Characteristic Study of Patches

Delta execution is predicated on the idea that for many patches, the differences between

the original execution and the patched execution is small. The three patches shown in

Figures 5.1, 5.2, and 5.3 are all indeed small; the largest patch (Figure 5.2 is only 4 lines

including the closing brace. Indeed, it is not surprising that most patches are small and un-

obtrusive. Work in binary differencing [6] and binary matching [144] shows that executables

can be highly similar between versions. At the development side, large and intrusive patches
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Category Description ∆-EXE
Refactor Changing the names of variables, functions, etc. all

Rare path The code that is changed is almost never run all
Stack effect The changes are expected to be isolated to the stack most

The changes are expected to have global effects,
Side effect e.g. manipulating the heap or different I/O. some

Adding or changing a conditional, e.g.
Conditional adding a buffer overflow check. most

Changes related to concurrency, e.g.
Synchronization data race prevention or deadlock elimination. most

Data structure Changing a structure size none
Macro Patches that involve modifying a macro most W/C

Polymorphic Data type changes that don’t affect memory layout most W/C
Complex Changes that are too complex to segregate
changes into small patches, e.g. 100s of lines changed. none

Table 5.1: The ten patch categories. The last column indicates if patches in the category
can be dealt with using the implementation used in the evaluation (Section 5.5). “W/C”
indicates that although the implemented version cannot, with small amounts of support
from the compiler it would.

are hard to understand; hence they are (or, least, are perceived as) more likely to introduce

bugs. Because of this, some software projects, such as the Linux kernel, explicitly discourage

large patches [133], and encourage changes to be provided as small, separate pieces which can

be verified in isolation. Hence, it is intuitive that most patches will be small, and suitable

for ∆ execution.

To validate this intuition, this section presents a study of real world patches. 60 patches

each from four representative open source applications (Apache, MySQL, OpenSSL, and

Squid) were manually evaluated, and categorized according to how they would behave under

∆ execution. Further, in the course of examining all of these patches, 10 general categories

which the patches fall into based on distinguishing characteristics were identified.

5.2.1 Ten Categories of Patches

In examining the 240 patches, it became apparent that many patches had similarities. Many

of them involved changing a conditional statement. Another common sort had its effects
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limited to just one function. From these commonalities, several overarching categories that

patches could fall into can be identified. Table 5.2 shows theese ten categories of patches,

and Figures 5.2.1 through 5.2.1 show concrete examples of 9 of these 10, drawn from the

applications used in the experiments and in the characteristic study2. These categories

summarized essential qualities of the patches as they relate to ∆ execution, and are not

necessarily an exhaustive taxonomy of patch qualities. However, all of the changes studied

fall into one or more of these categories. Table 5.2 also shows how the current implementation

of ∆ execution handles each category, based on the 240 patches examined.

More specifically, the categories are defined as follows:

Patch: OpenSSL function rename

openssl/crypto/des/des_enc.c

- void des_encrypt(DLONG * data, k_sched ks, int enc) {

+ void des_encrypt1(DLONG * data, k_sched ks, int enc) {

Figure 5.5: Example of the “Refactor” category, extracted and simplified

Refactor “Harmless refactoring” is intended to improve the readability or organization of

the code, and is not intended to change the behavior of the program at all. As shown in

Figure 5.2.1, this can be as simple as renaming a function. If the changes really don’t change

anything, as expected, then the execution should be identical. Only if the refactoring was

buggy (e.g., the name change caused a conflict in name due to scoping) will split execution

be necessary. This is an ideal case for ∆ execution.

Rare path Some code is not run very often. Patches to such code can be categorized

simply by frequency of execution. For example, the changed segfault handler in Figure 5.2.1

should almost never be run, and hence is a good candidate for ∆ execution. Other cases

of rare path patches include uncommonly used functionality and error handlers. For most

2The tenth category, “complex”, does not have an example. Complex patches are by their nature large,
invasive, and difficult to summarize.
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Patch: MySQL segfault handler tweak

sql/mysqld.cc

sig_handler handle_segfault(int sig) {

+ curr_time = time(NULL);

+ localtime_r(&curr_time, &tm);

Figure 5.6: Example of the “Rare Path” category, extracted and simplified

users and for most runs, rare path changes will not be executed, and so ∆ execution will

work very well.

Patch: ATPHttpd buffer overflow

atphttpd/sockhelp.c

int sock_gets(int sockfd, char * str, int count) {

+ --count;

Figure 5.7: Example of the “Stack Effect” category, extracted and simplified

Stack effect Some patches are expected only to have local effects, limited to the scope of

the function that they are in. The patch may vary how a function works, but is not intended

to changes its external behavior (e.g. the return value or any side-effects). An example of

this is shown in Figure 5.2.1; the change is to a local variable and generally won’t effect

the output of the function. In such cases, the need for split execution will be limited to the

single function in question, and ∆ execution should be effective most of the time.

Patch: Apache error log tweak

httpd/server/scoreboard.c

if (rv != APR_SUCCESS) {

ap_log_error(APLOG_MARK, ...,

- "unable to create scoreboard\"%s\"",

+ "unable to create or access scoreboard\"%s\"",

Figure 5.8: Example of the “Side Effect” category, extracted and simplified
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Side effect While some patches are expected only to have local effect, some patches are

expected only to have an effect elsewhere. For instance, the patch shown in Figure 5.2.1

varies the message printed to the log. Asides from the additional work done, the program

should vary little at the time of the difference. Instead, a differing side effect in the heap

is introduced. This will likely cause further splitting due to differing data. Whether or

not ∆ execution will work well depends on how confined the delta data remains. In some

cases, such as this change to the log, the change in heap state will have only minor further

effects. However, in other cases, the heap state change may cause further heap changes,

which accumulate until ∆ execution is spending most of its time splitting due to delta data.

Patch: Apache regular expression matching

http/modules/proxy/mod_proxy.c

if (strcmp(e[i].sch, "*") == 0 ||

(e[i].regex &&

- regexec(e[i].regex, url, 0, 0 0)) ||

+ regexec(e[i].regex, url, 0, 0 0) == 0) ||

Figure 5.9: Example of the “Conditional” category, extracted and simplified

Conditional Changes to condition statements are the most common class of patch. Most

of these, like the patch to Apache illustrated in Figure 5.2.1, are intended to better deal

with a corner cases. In the common case, the overall value of the conditional will be the

same. Hence, ∆ execution will work well; it will compute the different logic statement, get

the same final answer, and continue on identically.

Synchronization Changes to synchronization code (e.g. like adding a lock as Figure 5.2.1

illustrates) are similar to rare path changes or conditional changes. Such changes are meant

to deal with the rare case of data races or deadlocks. Hence, like rare path changes and

conditional changes, most of the time execution will happen identically with or without the

lock. Only under the unusual case where event ordering comes out wrong will ∆ execution
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Patch: OpenSSL data race fix

openssl/crypto/rsa/rsa_eay.c

int helper(RSA *rsa, BTX *ctx) {

+ CRYPTO_r_lock(CRYPTO_LOCK_RSA);

if (rsa->flags & RSA_NO_BLINDING)

ret = 1;

+ CRYPTO_r_unlock(CRYPTO_LOCK_RSA);

Figure 5.10: Example of the “Synchronization” category, extracted and simplified

experience much trouble.

Patch: Apache data structure change

httpd/..../mod_deflate.c

struct delfate_ctx_t {

//....omitted....

+ int inflate_init;

};

//....omitted...

- if (!inflate_init++) {

+ if (!ctx->inflate_init++) {

Figure 5.11: Example of the “Data Structure” category, extracted and simplified

Data structure Not all patches work well with ∆ execution. Changes to data structures

do not work well at all in the current implementation. Adding (as illustrated in Figure 5.2.1,

a patch in Apache) or removing a field in a data structure can change the entire layout of

memory. Hence a naive comparison of raw bytes cannot identify whether two sets of data

are semantically equivalent. This is especially true for languages such as C or C++, which

are not type safe. Even for type-safe language like Java, such a change means a direct

comparison of the raw bits cannot identify that two structures are semantically identical.

∆ execution cannot deal with such changes without a large amount of support from the

compiler, language, and/or runtime environment.
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Patch: Apache object cache macro

httpd/modules/cache/mod_mem_cache.c

- #define DEFAULT_MIN_CACHE_OBJECT_SIZE 0

+ #define DEFAULT_MIN_CACHE_OBJECT_SIZE 1

Figure 5.12: Example of the “Macro” category, extracted and simplified

Macro Changes to macros, as in Figure 5.2.1, are another case which the current imple-

mentation of ∆ execution does not deal with well. Although the change in the source code

is isolated, after the preprocessor runs it can result in many diverse changes. However, if the

compiler (or the preprocessor) could label where the changes in the code are, ∆ execution

could be applied as normal.

Patch: MySQL typedef

sql/log_event.h, and sql/log_event.cc

class Log_event {

+ typedef unsigned char Byte;

}

- void get_strlen_and_ptr(const char **src, ....

+ void get_strlen_and_ptr(const Log_event::Byte **src, ....

Figure 5.13: Example of the “Polymorphic” category, extracted and simplified

Polymorphic Changes involving polymorphism exhibit similar effects as macro changes:

a small change in the source code can lead to many small changes throughout the binary.

Or, as illustrated in Figure 5.2.1, it may lead to many trivial textual changes which have

minimal real effect. If the compiler could indicate to ∆ execution where the changes in the

binary were, the current implementation would likely be applicable.

Complex Finally, although the vast majority of patches are small and simple, there are a

few which are large and intrusive. Such patches can involve many changes involving hundreds

of lines of code scattered across multiple modules, hence we neither provide an example, nor
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Apache MySQL OpenSSL Squid Total (%)
Category Number of Patches

Refactor 5 4 6 2 17 (7%)
Rare Path 8 4 7 6 25 (10%)
Stack Effect 16 12 14 11 53 (22%)
Side Effect 10 11 7 9 37 (15%)
Conditional 31 34 28 32 125 (52%)
Synchronization 0 2 3 0 5 (2%)
Data Structure 7 7 1 7 22 (9%)
Macro 5 2 3 5 15 (6%)
Polymorphic 0 2 0 1 3 (1%)
Complex Changes 3 3 4 5 15 (6%)

Support % Patches Supported
Yes 76.7% 78.3% 81.7% 73.3% 77.5%
With Compiler 83.3% 83.3% 88.3% 78.3% 83.3%
No 16.7% 16.7% 11.7% 21.7% 16.7%

Table 5.2: Distribution of patches among the 10 categories. Some patches involve more than
one category, and are counted twice.

do we claim the ∆ execution can deal with such patches. However, because such big patches

are difficult even for humans to deal with [133], they consist of only a minority of patches

(6% in this study).

5.2.2 Distribution of the Categories

Table 5.2.1 summarizes the distribution of patch types among the ten categories. The two

most common types of patches, conditional and stack effect, are also of types well suited to

∆ execution. Overall, 77% of the patches are of the sort that ∆ execution should be able to

handle. A further 6% of the patches are either macro patches or polymorphic patches; these

should be feasible for ∆ execution to verify with minor additional compiler support. Only

6% of patches are of the complex sort, and approximately 9% involve changing the layout

of a data structure. Overall, this implies that the general technique of ∆ execution should

be applicable to a wide variety of patches.
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5.3 Delta Execution Design

The patch study implies that most execution during patch validation is redundant. Hence

there seems little reason to actually have two separate physical executions. Instead, one

physical execution, which applies state updates to both logical executions, would be suffi-

cient. Further, since most of the state is also identical, only one physical set of state, for the

most part, needs to be stored. The small portions of execution where two execution streams

and two set of state are needed can be treated as a special case, rather than keeping two

streams and sets of state for the entire validation run.

Figure 5.4 illustrates ∆ execution at a high level. Initially, there is only one physical

execution and one set of state. Both logical executions are captured by one set of memory

state, CPU state, instruction counter, etc. Runtime monitoring will tell us when the program

eventually accesses patched code (or delta code). This causes a split; the execution continues

with two contexts, one running the old version and one running the new. During this split

execution, the runtime can monitor I/O operations, both to validate that the two versions are

behaving the same and to eliminate unnecessary work. Further, during split data any state

updates must be tracked by the runtime. State updates that differ will result in delta state.

After the runtime merges the execution, the runtime must monitor not only for executing

delta code, but also for access to delta state, since by operating on different data the two

logical executions may diverge.

Eventually the two separate physical executions should be merged back into one. Any

time that the register state and instruction pointers of the two physical executions are the

same is a potential time to merge the two executions together. This is because computers are

deterministic state machines — once two contexts are identical they will remain in lockstep

until something external (e.g. accessing memory with different values or fetching different

instructions) causes them to diverge. That is, we can return to having one physical execution

which will perform the work of both logical executions. Specifically, when each instance
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reaches the end of the patched code, we block them to compare them to one another. If they

match, then merged execution can continue, with the runtime environment monitoring for

further splits (accesses to delta code or delta data).

Running merged most of the time saves the cost of performing computation and IO twice

for validation. Further, any nondeterminism that occurs during merged execution will have

identical effects on both the original and validation instances. Hence, there will be fewer

harmless differences in the output, making the validation itself much easier.

Of course, these benefits do not come for free. There are certain patches for which

delta execution is not suitable . Further, the underlying delta execution mechanism must

cost something. Finally, ∆ execution is not trivial to actually implement. Specifically, any

implementation of ∆ execution must address the following challenges:

• Splitting. Whenever the execution would diverge between the original and the patched

versions, there must be a split. An implementation of ∆ execution must detect when

a divergence will occur, begin two instruction streams, and arrange for eventually

merging the split instruction streams together.

• Running split. To the extent possible, any implementation should minimize the

overhead of running split. Further, an implementation must track any changes in

program state that differ between the two versions. Any writes that are different must

be tracked, and any reads of differing data must return the value of the correct version.

• Merging. Eventually, the split execution must be merged. An implementation of ∆

execution must detect when the executions have become identical, identify the data

which is shared between the two instances, join the two instruction streams together

again, and arrange for any further splits.

• System calls and I/O. It is likely that both versions will perform system operations.

Whenever possible an implementation should arrange to share the work performed be-
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tween the two versions. Further, the implementation must prevent the non-production

instance from becoming externally visible.

• Minimizing split execution. The benefits of delta execution mostly come from

the merged execution. Consequently it is desirable to maximize merged execution

and minimize split execution. This means that an implementation should prevent the

introduction of trivial or moot differences between the two versions, and attempt to

prevent small differences from exploding into larger ones.

• Threads. As multi-core processors have become common, it is important for any

system to support multithreading. However, in the context of delta execution, threads

impose special challenges, as detailed in Subsection 5.4.3.

5.4 Implementation of Delta Execution

The previous section describes the overall idea of ∆ execution: that it is possible to run

two logically different versions of a program execution together in one physical execution,

minimizing most duplicated effort and minimizing the exposure of the validation run to non-

deterministic effects. This section describes the practical issues involved in implementing

the ∆ execution mechanism.

5.4.1 Basic Delta Execution

There are three basic issues a ∆ execution implementation must face. These are splitting,

running split, and then merging again. Related to these, an implementation must also decide

when splitting and merging are appropriate to attempt.

Splitting There are two reasons the execution of the two versions could diverge: they

could diverge because they are running different code, or they could diverge because they
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are operating on different data. To monitor execution of delta code, the implementation takes

a list of patched functions, and then use dynamic instrumentation to insert a split at the

beginning of them. For delta data, the implementation uses mprotect to deny read access

to pages containing delta data. Using the page protection hardware avoids the expense

of instrumenting every memory access; the tradeoff is that there be “false sharing” (see

Subsection 5.4.2).

Actually spliting, uses the fork() system call. Calling fork() creates two copies of

the current program (the parent and child) and arranges for copy-on-write (COW) sharing

of memory. COW is precisely what delta-execution calls for: copying only pages that are

potentially modified while sharing identical pages. By arbitrary convention, consider the

child instance to be the patched version, and the parent instance to be the original unpatched

execution. If the split was caused by delta code, the implmentation sets the instruction

pointer of the child instance to the patched version of the function. Otherwise it leaves the

instruction pointer unchanged. For all splits, whether due to delta code or delta data, the

implementaiton restores any delta data which was saved by a previous merge into the child

instance; again by arbitrary convention, it leaves the unpatched version’s delta data in place

during merges. Once the instruction pointers have been modified (if needed) and delta data

has been moved into place, there will be two instances of the execution, one running as the

original version and one as the patched version.

Running split Most of the work of running split is handled by the semantics of the

fork() system call. The two instances have their own instruction pointers and logically

separate memory spaces. Our responsibility is to track delta state. Before allowing execution

to continue, the implementation first uses mprotect to restrict access to memory pages.

Delta pages are given both read and write access, since a read to these pages cannot cause

another split, and the pages are already tainted from the previous write. Non-delta pages are

restricted from writing. Any attempt to write to a non-delta page will cause the operating
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system to deliver a segmentation fault to the process. At program initialization, the delta

execution runtime adds a signal handler to deal with these faults. If it receives one to a non-

delta page while the program is running split, the ∆ execution runtime can mark the page

as containing delta-state and then re-enable write access. Since we called fork() previously,

the kernel will then copy the page for us.

Merging After a period of time running split, it is likely that the two executions will

return to executing identical instructions on identical data. There are two things to consider

with respect to merging: when and how. When can be addressed with a heuristic. The ∆

execution runtime attempts to merge whenever it returns to a lower stack level than where

it split. This is based on the results of the patch characteristic study: most patches are

contained within one function. At a worst case, this heuristic will never trigger (e.g. a patch

to main) although this doesn’t happen in practice.

As for how to merge, the runtime first forces synchronization among the split instances;

it blocks until the other instance reaches the same stack level. If the processor state (e.g.

register files) of the two instances are the same, the runtime begins to merge. First, it

compares all of the pages flagged as containing delta data. If a pair of pages actually differ

between two instances, it saves the child’s version off as a ∆ page. After all of the ∆ pages

are saved, it can terminate the child. In the single remaining process, the ∆ execution

runtime uses mprotect to restore read and write access to the non-delta pages, and to

remove permission to access the delta pages (hence restoring the monitoring for access to

delta state). Finally, it continues with merged execution.

5.4.2 Advanced Delta Execution

The basic implementation of delta execution will work well for simple patches in simple

programs (e.g. trivial changes to a SPEC benchmark). However, basic ∆ execution is

insufficient to handle either complex patches or complex server programs. There are issues
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relating to real systems (e.g. I/O), as well as issues relating to efficiency. This subsection

discusses the further features needed for such cases.

I/O During split execution, I/O writes from the child instance must be verified and sand-

boxed. Further, some I/O operations are non-idempotent. For instance, network socket data

read by one process won’t be there for another process to read. The ∆ execution runtime

must instrument all calls to read and write to manage I/O on behalf of the program. The

runtime 1) compares the writes made by the child to those of the parent for validation pur-

poses, and 2) performs all I/O operations once, sharing the results between both processes.

By forwarding the results of all I/O reads, the runtime not only deals with non-idempotent

operations, but it also reduces the overhead of repeating expensive I/O calls. Finally, be-

cause an I/O operation could target delta data, even in merged mode the runtime monitors

I/O calls.

One issue that remains unaddressed is RPC. If the verification instance sends an RPC

which the production instance does not, the runtime has no way to continue the verification

instance. The ∆ execution runtime can’t allow the verification instance to send the request,

because that would make the verification instance visible to the outside, and it can’t share

the production instance’s request because that request doesn’t exist. One way to address this

is to maintain a verification instance of any possible RPC targets [88]. However, maintenance

of such a “mirror world” is difficult; it may be better to run delta-execution targets of RPC

instances, although doing so is well beyond the scope of this work. Communication with the

outside world, rather than within RPC targets under a common administrative domain, is

an issue that frustrates any on-line validation system, and there is currently no satisfactory

solution.

Minimizing delta state The advantage of ∆ execution over traditional validation is the

merged execution. We get the maximum benefit if we minimize the portion of the execution

120



void ftpBuildTtileUrl(FtpStateData *ftpState) {

size_t len; char *t;

len = 64

- + strlen(ftpState->user)

- + strlen(ftpState->password)

+ + strlen(ftpState->user) * 3

+ + strlen(ftpState->password) * 3

+ strlen(ftpState->request->host)

+ strlen(ftpState->request->urlpath);

t = xcalloc (len, 1);

...

strcat(t, do_escape(ftpState->user));

strcat(t, do_escape(ftpState->password);

...

}

Figure 5.14: Simplified patch to buffer overflow bug in Squid 2.4

that is run split. One avoidable source of split execution is false delta data. False delta

data is state which is literally different and will be detected as different by the runtime, but

is actually semantically identical. If the runtime can make the two semantically identical

copies also physically identical, then it can avoid some needless splits. The simplest example

of false delta data is the dead area of the stack. An original and patched function may

differ greatly in how they use the scratch space of their activation record, but once they are

complete, that state is moot. By “scrubbing” the state, so that both stacks are filled with

zeros, the ∆ execution runtime can avoid situations where top of the stack appears to be in

a delta page.

Another source of false delta data is from memory allocation. If the original and modi-

fied executions allocate different amounts of memory, the heaps will become different, and

subsequent allocations will be shifted between the two. This can cause substantial diver-

gence in the amount of detected delta data, for two reasons. First, pointer values to the

misaligned heaps will be different, even though they are pointing to semantically the same

data. Second, and more importantly, as we are only detecting identical data if there are

in the same place in the address space, the misalignment will likely cause all of the data
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to appear different, even though it has only been shifted over. A further source of trouble

is malloc’s internal data structures. As they diverge, future allocation and deallocation

actions will cause access to delta data, and hence a split. Figure 5.14 shows a patch in Squid

which suffers particularly badly from memory allocation issues.

The bug is that the user and password fields are escaped before being copied into the

temporary buffer t, which can expend their length by a factor of 3. However, in the original

code, their unescaped length was used to decide how big of a temporary buffer to allocate.

Increasing the size of the allocation avoids the buffer overflow, but causes all future memory

operations to become misaligned. This causes the entire heap to quickly becomes delta data.

Requested allocation Extra allocation

Patched

Original 10 510

10

Legend

7

7

5

5 2

2 7 2

2

Unmodified
allocation

With aligning
allocations

Figure 5.15: How ∆ execution improves memory alignment

To reduce the amount of delta data caused by differing heap allocations, the ∆ execution

runtime instruments all calls to malloc and free that occur during split execution. As

shown in Figure 5.15, if either instance makes an allocation different from the other, the

runtime will make a false allocation for both. For example, suppose the original program

will allocate 10 bytes, 5 bytes, and then 2 bytes, while the patched version allocates 7 bytes

and then 2 bytes. To force the heaps to line up, the runtime can insert a fake allocation

for 7 bytes in the original execution, and insert fake allocations for 10 and 5 bytes in the

patched execution. If it further forces the allocations to occur in the same order, then the

two executions will have the same heap state, and malloc’s internal data structures will be

122



identical between the two.

The mechanism for the order forcing is to maintain a queue of allocation sizes requested

by the execution which is “ahead” of the other. Allocations by the “ahead” execution keep

getting added to the queue. If the “slower” execution requests an allocation size which is

not at the head of the queue, the ∆ execution runtime allocates a fake allocation of that size

anyway. It will drain allocations from the queue until it either finds a matching execution, or

the queue is empty. When it finds a matching size, the runtime satisfies the slower execution’s

request and dequeues that request. If the queue is empty, then both executions are considered

to be at the same place in their allocation streams, and so whichever execution next requests

allocation becomes “ahead”, gaining ownership of the queue. Finally, to minimize the delta

state during merged execution, when merging the runtime will make fake allocations as

necessary to empty the queue.

Calls to free also need to be intercepted. If one execution calls free and the other

does not, then the heap state will also diverge. When the program calls free, we defer

actually deallocating the memory until 1) the other execution deallocates the same memory

block too, and 2) the allocation metadata state is otherwise identical. The first condition

prevents an area of memory from appearing to be available in one execution and not the

other. In effect, it converts the earlier freed memory into a fake allocation. If we were freeing

a fake allocation, then we treat it as if the other execution had already freed it. The second

condition preserves the total order of allocation operations. It will be met whenever the

allocation queue is empty; this at a minimum will occur whenever we merge.

Together, these changes to memory management minimize the impact of differing memory

management between executions on the rest of the program. For Squid, these changes are

mandatory for efficient ∆ execution. Unfortunately, this sacrifices execution fidelity. Suppose

a patch was attempting to fix a memory leak. That the ∆ execution runtime defers freeing

memory until both executions have done so means it will have duplicated the memory leak

in both executions. Further, these manipulations of memory allocation changes the layout
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of the heap, which means that some memory bugs will occur differently under ∆ execution

than under unmodified execution. For type-unsafe C programs, this is probably the best

trade-off that can be managed. However, for a type-safe environment like Java, one would

not be limited to comparing state by direct byte-for-byte comparison. Instead, one could

track if the underlying objects are the same.

Reducing split/merge overhead Some patches lie on commonly taken execution paths,

which could force rapid splits and merges. Although fork() is an inexpensive mechanism

for splitting, merging is expensive, due to the need to synchronize between two separate

processes. The patch in ATPhttpd shown in Figure 5.2.1, for example, is run multiple times

per http request.

To reduce the overhead of splitting and merging, there is a possible alternative to fork()

based splitting and merging using instrumentation. First, the instrumentation needs to save

the processor context, and then run the unmodified version. Rather than use the copy-on-

write mechanisms of fork(), the signal handler used to monitor delta writes can copy the

pages as needed. When a merge point is hit, the runtime can save any modified pages as

if it were doing a usual merge, but then it can use the state saved by the signal handler

to roll back to the split point. From there, it can run the modified version. When the

modified version reaches the merge point, the ∆ execution runtime can perform a merge as

usual, except that it is already in a single process and hence does not need any cross-process

synchronization operations.

Handling small deltas in large functions Sometimes a patch only involves one branch

of a large function. If the the whole function is flagged as delta code, the runtime will incur

unnecessary splits. To avoid this, the implementation supports a mechanism to support

smaller segments of delta code. Instead of labeling entire functions, the areas of delta code

are labbeled, and what was added/subtracted, by adding macros to the source. Figure 5.16
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Patch: Small delta version of CAN-2004-0493

httpd-2.0/server/protocol.c

void ap_get_mim_headers_core(/*...*/) {

/* 55 lines omitted * /

DELTA_START();

D_MOD_START();

if ((fold_len-1) > (r->server->limit)) {

r->status = BAD_REQUEST;

return;

}

D_MOD_END();

DELTA_STOP();

/* 92 lines omitted */

}

Figure 5.16: Apache httpd patch implemented using small delta support.

illustrates this. It shows the same patch as in Figure 5.2, but using small delta support.

DELTA START() and DELTA END() markers wrap the entire area which should be run split,

with the start being a split point and the end being a candidate for merging. D ORIG START()

and D ORIG END() markers would wrap statements which were removed in the batch (e.g.,

the “-” lines in the diff), had there been any in the patch. The new lines are wrapped in

D MOD START() and D MOD END() markers. Given the diff of a patch, it is trivial to decide

where to place the markers, and this could be easily automated. This allows 157 of lines be

run under ∆ execution rather than split.

Competitive analysis for worst case situations There are situations where ∆ execu-

tion is not suitable. A change in data could cause data differences throughout the memory,

or the two executions could follow drastically different paths. In this case, the two versions

actually would be different, and there would be few opportunities for merged execution.

Another situation where ∆ execution would work poorly occurs when the differences occur

in a hotspot. The executions could well be highly similar, but there would be too much

overhead repeatedly splitting and merging. In either case, the implementation has a fallback
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mechanism to avoid worst-case behavior. It divides the execution into epochs, and moni-

tors how much time is spent split, how much is spent merged, and how much time is spent

either splitting or merging. Given an estimate of the overhead of running two instances

side-by-side, the runtime can calculate if the epoch would have been more efficient under ∆

execution or under side-by-side validation. Specifically, ∆ execution is more efficient that

side-by-side validation if and only if

ε · time merged + time split

epoch length
≥ 1

where ε is the slowdown imposed by side-by-side execution. Although ε varies from program

to program, in general 2 is a good estimate (see 5.5 for more details). The numerator is

an estimate of how long this epoch would have taken under side-by-side validation. If the

ratio is less than 1 for 3 epochs in a row, the ∆ execution runtime environment can remove

itself and fall back to side-by-side validation. Later, if the load on the system is reduced, ∆

execution can be dynamically re-enabled to allow high-fidelity validation.

Type changes A final issue which the current implementation is incapable of addressing

is type changes. A change in types, e.g. inserting a new field into a structure, can change

the layout of memory. Changing the layout of the stack in one or two functions is fine,

since the difference will be discarded after the function returns. Changing the layout of the

heap, however, is not easy to deal with. Even adding a single new member to a structure

completely breaks the implementation of ∆ execution presented here. Although sufficient

language or compiler support [119] could potentially allow such patches to be supported in

the future, such patches are outside the scope of current support.
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5.4.3 Threads

Given the current trend of increasing numbers of multicore processors, it would be remiss

to ignore the issues raised by threads. Beyond the increased complexity of writing thread

safe instrumentation, threads raise several difficulties. First, threads are more difficult to

split because the fork() system call doesn’t duplicate threads. Further, there is the issue

of thread creation or destruction during split execution.

There are 3 ways to deal with fork() not duplicating threads. One can create a modified

fork() call, which does duplicate threads. This has the advantage of supporting the widest

variety of changes and programs. The disadvantage is requiring a modified system call; this

is fairly intrusive. Alternatively, one can use instrumentation to recreate the threads. By

directing a signal at each specific thread, one can trap them in a barrier. Then, the splitting

thread can copy their execution contexts and then fork. The parent can then resume the

stopped threads, while in the child process, we recreate all of the threads before continuing.

Although this does not require modifications to the kernel, it is much more expensive. Finally

one can temporarily disable other threads for the duration of split execution. Again, a

signal can be used to pause the other threads so the don’t have to be recreated. This is

simple, inexpensive, and minimally intrusive. The downside is the potential for deadlock

if the thread which caused the split needs a resource which has been locked by one of

the suspended threads. Such deadlock situations can be avoided by temporarily merging

execution, executing the thread that holds the resource, and then splitting again. The

primary implementation, uses this option. In the experiments such deadlock has never been

observed, and the implementation doesn’t require changes to the kernel.

Thread creation and destruction during delta execution is more complex. If both versions

create (or destroy) a thread, then issues are minimized. However, if only one version does

this, then there will be a mismatch in the number of threads. The number of live threads is

in some ways state intrinsic to the entire process, and may prevent merging. However, aside
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from contrived cases (e.g. changing a MAX THREADS variable) such a situation is extremely

rare; if it were to happen side-by-side validation is a fall-back.

5.5 Experimental Evaluation

5.5.1 Methodology

For the evaluation, both ∆ execution and traditional side-by-side on-line validation are

implemented. For ∆ execution, Pin [77], a dynamic instrumentation tool, is used to insert

code implementing the individual functions of ∆ execution:

• Delta code split and merge Before (and after) functions which contain delta code,

the implentation inserts calls to functions which performed splitting (and merging).

This code called fork() (or arranged a join), set up delta state (or saved it), modified

the page tables via calls to mprotect(), signaled other threads to stall their execution,

called fork(), and dispatched to the proper version of the delta function.

• Signal handlers For handling delta state, instrumentation to add signal handlers for

SIGSEGV was added.

• System calls All system calls which could perform IO or access delta state were

instrumented to check if a split was necessary or if only a single call is needed.

In these experiments, traditional side-by-side validation, is implemented either with a net-

work proxy in front of two separate instances for networked applications, or with a script

wrapping two calls and a verification for command line applications.

Table 5.3 shows the tests cases which were used, summarizing the programs used and the

changes to be validated. The table presents 10 different applications, 7 of which are server

programs. Further, 5 of the programs can utilize multiple cores. 6 of the changes are bug

fixes, 2 add functionality, 1 is a refactoring, and 1 is a change which unintentionally intro-

duced a bug. The workloads used for testing were as close to standard benchmark workloads
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Benchmark Program Change Description
crafty Chess Program Code refactoring

raytrace Raytracer Fixed bug in result reporting
tar Archive Utility Fixed incremental archiving

Apache 1 Web Server Fixed overflow in mod alias
Apache 2 Web Server Fixed overflow in mime parser

ATPhttpd Web Server Fixed overflow in HTTP parsing
DNSCache DNS Cache Behavior change
MySQL 5.0 Database Server Extra permission checks

OpenSSL Security Library Regression - unintentional bug in TLS handling
squid Web Cache Fixed overflow in FTP parsing

Table 5.3: Test applications and the change between the two versions.

as possible. For instance, since crafty is a SPEC CPU benchmark, the experiments used

the workload specified by SPEC. However, because the versions of the programs specified

by the benchmarks do not necessarily contain bugs, and because the benchmark workloads

are not necessarily bug-triggering, it cannot be said that these are precisely the same as

the benchmarks. It should also be noted that these are not all the same patches as used to

illustrate the patch categories in Section 5.2.1, because of the need to have inputs which can

cause the patches to be executed.

All of the experiments were run on identically configured machines. The processors used

were 2.4 GHz Pentium-4 based Xeons configured in 2-way SMP. The machines all had 2.5

GB of memory, and gigabit network. For the server programs, the clients were identically

configured as the servers, and were connected to the same gigabit switch.

For the performance evaluation, three cases are compared:

• Traditional validation by running two copies side-by-side.

• Traditional validation (as above), but also with a “null” pintool. A null pintool imposes

the overhead of Pin’s recompilation and code cache, but does not add any actual

instrumentation.

• Validation using ∆ execution
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In all three cases, the results presented normalize the performance to the performance of

running a single instance without any instrumentation or validation.

5.5.2 Functionality of Patch Validation

Benchmark ∆ Execution Baseline Reason baseline failed
crafty pass fail “Kibitzes” differ

raytrace pass fail (large) Nondeterminism from threads
tar pass pass (N/A)

Apache 1 pass fail Randomized etags are output
Apache 2 pass fail Randomized etags are output

ATPHttpd pass fail (minor) Timestamps differ
DNSCache pass fail Randomized Tx IDs & timing sensitivity
MySQL 5.0 pass fail (large) Nondeterminism from threads

OpenSSL pass fail (major) Random nonce for key exchange
squid pass pass (N/A)

Table 5.4: Functionality of validation for baseline side-by-side validation and for ∆ execution.
The baseline validation fails 8 of the 10 applications when they should pass; 3 of these
(MySQL, OpenSSL, & raytrace) fail badly enough to be considered unvalidatable.

Table 5.4 shows the function effectiveness of ∆ execution versus side-by-side validation.

A pass occurs when the validation correctly identified the runs as matching, while a fail

indicates that the validation technique incorrectly identified the runs as differing. The base-

line validation has trouble with 8 of the 10 runs, only passing tar and squid cleanly. Five

of the runs fail validation in small ways. The crafty chess benchmark periodically prints

what moves it is considering (called “kibitzes”); this varies slightly from run to run due to

timing. For both runs of Apache, the “Etag” field in the HTTP response varies from run to

run, and fools the baseline validation into thinking that the patch has changed the output.

ATPHttpd occasionally fails because requests will occasionally have different timestamps,

although most requests are the same. Finally, of the more minor failures, DNSCache uses

random transaction ID as a nonce for security purposes, and also is sensitive to timing (be-

cause of cache entry expiry). This causes small differences in the replies. All of these five

failures could be overcome by writing a more sophisticated validation engine, which has more
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understanding of which output fields are important and which are not.

The baseline validation does poorly for two of the threaded benchmarks, raytrace and

MySQL. Both have slightly variable output based on thread interleaving. From run to run

raytrace renders the same thing, but the image differs in low-significance bits. For MySQL,

although the transactions may all finish atomically and correctly, they may occur in different

orders. Correctly identifying that the output for the two runs is correct, even though they

differ, is difficult.

The baseline validation is completely broken for OpenSSL. As part of the SSL handshake,

OpenSSL generates a random nonce to exchange with the client. Since the client can only

see the nonce from one of the two instances, the replies it generates will be nonsense to the

test instance. The test instance, therefore, reports an error and stops, even though the bug is

not triggered. To the test instance, the proxy is creating what looks like a poorly-done man-

in-the-middle attack, which SSL is supposed to detect. Because of the non-determinism in

random number generation, and the high dependence of the output on the random numbers,

the baseline validation does not work at all.

In contrast with the baseline validation, ∆ execution correctly identifies all of the runs

as passing. Since the bulk of the execution occurs only once for “both” copies, ∆ execution

ensures that the non-determinism doesn’t cause the outputs to diverge. For the kibitzes in

crafty, they are computed and called during merged execution. The calls to get the time,

and to generate random numbers, which makes Apache, ATPHttpd, and DNSCache to differ

for the baseline validation occur only once in ∆ execution, and so both copies have the same

data to work with. In raytrace and MySQL, the data races occur the same way for “both”

copies, and so the outputs are identical. Finally, OpenSSL uses the same nonce for both

the production and test instance, and so can proceed through the entire SSL handshake

while producing identical output. The lack of non-deterministic effects causing the outputs

between instances to diverge makes validation with ∆ execution simple.
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5.5.3 Performance
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Figure 5.17: Overhead of validation with ∆ execution.
Note that 1x is normalized to the performance of a single, unvalidated and uninstru-
mented instance of the application.

Figure 5.17 shows the performance of ∆ execution, compared to side-by-side validation,

and side-by-side validation running a null pintool. For four of the benchmarks (crafty,

raytrace, tar, and Squid), ∆ execution outperforms side-by-side validation. This is on top

of the overhead that ∆ execution must pay for using Pin for dynamic instrumentation. tar

stands out as a particularly good result; the high cost of IO interference between the test

instance and the production instance make side-by-side validation particularly poor, and ∆

execution is 128% faster. Overall, ∆ execution manages to be 12% faster than side-by-side

validation, averaged over all of the benchmarks.

The “black sheep” performance-wise is MySQL. ∆ execution is 37% slower than the side-

by-side validation. However, ∆ execution is still 63% faster than side-by-side with nullpin. It

turns out that Pin imposes a very large overhead even without instrumentation for MySQL,

running 3.23 times more slowly even with nullpin. ∆ execution is only 9.6% slower than

this.

Another interesting thing is the high efficiency of validation of ATPhttpd and OpenSSL.

Both applications are CPU bound, yet neither program is capable of taking advantage of

the multiple cores they had available. Hence, when running two copies side-by-side, there is

an unusually low level of overhead. Indeed, because OpenSSL detects the network proxy as

a man in the middle attack, the second copy doesn’t even perform any work, and aborts the

connection prematurely.
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splits/sec % merged % split % splitting % merging
crafty .005 99.996 .001 .011 .035

raytrace .037 99.134 .696 .130 .055
tar 5.360 45.400 10.500 3.080 40.600

Apache1 .368 94.500 .002 .072 2.420
Apache2 6.560 72.900 .081 1.800 25.200

ATPhttpd 19.100 12.100 3.850 16.300 67.600
DNSCache 9.638 55.691 2.164 17.178 24.917

MySQL .520 87.827 5.122 .469 7.440
OpenSSL 11.700 59.500 .229 6.290 33.900

squid .903 88.200 .358 .896 10.500

Table 5.5: Detailed accounting of where time was spent in each application. Rows may not
sum to 100% due to rounding.

5.5.4 Detailed Performance Characteristics

Table 5.5 shows a detailed listing of where each program spent its time while running under

delta execution. 8 of the 10 applications spend most of their time merged. The exceptions are

tar (45% merged) and ATPhttpd (only 12% merged). Tar is especially interesting because it

in fact performs better under ∆ execution than any other application. Yet that tar spends

10.5% of its runtime split, and 40.6% of its runtime merging would imply that tar should

have terrible performance. It turns out that most of the contention in tar is due not to the

CPU but due to I/O. Although a large amount of CPU cycles are spent in merging, most

of that time would have otherwise been spent waiting for the disk. Further, although tar

has the most time spent split, most of that time is composed of waiting for I/O. Even when

split, delta execution will issue only one I/O operation to the system if both versions are

issuing the same operation. This allows tar to perform well under delta execution despite

its large amount of split execution and merge overhead.

ATPhttpd, on the other hand, has the highest number of splits per second, at 19.1. On

average among all of the benchmarks, a split takes 9.81 ms and a merge takes 105.9 ms. At

19 split/merges per second, ATPhttpd should spend 2.2 seconds per second either splitting

or merging. Clearly it would make no forward progress at all if it weren’t for the fact that

it takes far less time per merge than average, only 35.3 ms. Since ATPhttpd is completely
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serial, it does not suffer from scheduling contention while merging. Even so, ATPhttpd still

spends over two thirds of its running time in merging back together. Unfortunately, although

the patch in ATPhttpd does not change the path of execution in nearly all cases, the patch

is called a minimum of three times per request. Cases like ATPhttpd motivate working on

more efficient methods of merging.

5.6 Summary

In summary, ∆ execution is a workable technique for allowing online validation of patches.

It can allow system administrators to validate the patches that they currently view with

suspicion by testing them with their own production workloads. Based on a study of real

software, it is clear that ∆ execution can be successfully applied to most patches. The basic

implementation of ∆ execution presented here imposes reasonably low overhead, allowing

validation to occur without consuming undue resources. More importantly, compared to

traditional on-line validation, ∆ execution greatly improves the quality of the validation.

Differences in output caused by thread interleavings, timing events, random number gener-

ation, and other sources of spurious influence do not cause ∆ execution to falsely claim that

the patch is causing different output.
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Chapter 6

Future Work

This dissertation does not address all issues regarding dynamically addressing production

run failures; nor does it completely address the specific areas it explores. The trend of

fast worms which motivated Sweeper has given way to a threat of careful, slow, persistent

attacks. The ability to react within milliseconds is less important for such attacks; the

ability to retrospectively analyze suspicious segments of execution should still be valuable.

Triage shows that there are many analyses that can be used for automatically diagnosing

failures; beyond delta analysis there should be other undiscovered techniques which would

ordinarily be intractable if not applied to finely focused execution segments. Further, Triage

is tantalizingly close to being able to automatically fix some software bugs; automatic bug

fixing seems to be a promising area to explore.

With respect to ∆ execution, there are several issues that need to addressed in order to

make it sufficiently practical such as to be commercially deployed. Although the study of

patches in Section 5.2 is a start, it would greatly increase our confidence that ∆ execution

can address many patches if the study were extended. With a formal taxonomy of patches, it

would be possible to more precisely describe the sorts of patches which ∆ execution can and

cannot work with. Further, the overheads of ∆ execution are still high enough that end-users

may be concerned about the impact. It seems likely that there is room for improvement,

through reducing the overhead of ∆ execution primitive operations (e.g. merging), reducing

the number of times these primitives occur (e.g. via finer granularity detection of delta code

and further reductions in false delta data), and by reducing the overhead of the framework

∆ execution is implemented in (e.g by using static instrumentation rather than dynamic,
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or by extending the operating system kernel). The compiler could also be enlisted. Given

both the original and patched versions of a program, the compiler can, as mentioned before,

identify the locations where code was changed due to either changes to macros or due to

a type changing. Further, the compiler could automatically identify shorter segments of

delta code, and either use the support for short segments, or if the change supports it,

hoist the differing segment into another sub-function. Finally, ∆ execution would benefit

from enlisting the aid of software vendors and of the programmers who make the patches.

The vendor can ship binaries which are already annotated to support ∆ execution, and

programmers can structure their changes such that they are smaller and more likely to be

well suited for ∆ execution. As implemented, ∆ execution can only be applied if the source

code of the patched and unpatched versions are available. If a vendor is unwilling to provide

the source code or to provide a binary already annotated with split points and delta code,

then ∆ execution must rely on binary differencing, which is more difficult and currently not

implemented. Although ∆ execution as it currently exists is an interesting proof of concept,

to be made practical for commercial deployment would clearly require additional effort.
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Chapter 7

Conclusions

This dissertation demonstrates that it is advantageous to address software reliability dynam-

ically, during production runs, as opposed to before deployment, in post-failure debugging,

or during dedicated testing or validation runs. The wealth of information available during a

production run, and the “live-fire” nature of such runs, are qualitatively invaluable. Further,

this dissertation demonstrates that the overheads of leveraging production runs for software

reliability purposes can be made low enough for continuous use in production. In the past,

production runs have been underutilized as a way to improve software quality, due to over-

heads which excluded widespread use. This dissertation demonstrates that we can now take

advantage of production runs and the real-world workloads and failures they experience.

In demonstrating that production run failures can be leveraged to improve reliability, this

dissertation highlights five key insights. The first insight is that many software reliability

tools are wasteful, especially when applied to production runs. Online patch validation, for

example, runs two nearly identical sequences of instructions and system calls with nearly

identical data. Whenever the two sequences are identical, the second run is wasted. When

running a buffer overflow detector on a production run, every bounds check that passes is

also wasted. Similarly wasted is all of the effort spent taint tracking, data-race or deadlock

detecting, or slicing during failure free execution. The overheads would be much lower if the

effort could be focused only on the portion of production run execution where it is useful:

on failures and potential failures.

The second insight is that checkpointing can help provide this focus. Recently developed

modern checkpointing techniques can capture the behavior of production runs at fairly low
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execution cost: 10 to 20%. For many software reliability purposes, however, this can be

reduced further, based on the insight that the checkpoints are only needed for a very short

time period (a few seconds) and that perfect fidelity during replay is unnecessary. Indeed,

it is not so much replay as reexecution that is needed. It is possible to take ephemeral

checkpoints for the purposes of reexecution with overheads of 2 to 10%.

The third insight is that failure analysis tools can be applied after the fact. Dynamic

instrumentation tools allow instrumentation to be added to an already running program.

Even with these tools, however, in the usual case it is not known when to apply a failure

analysis, since the future cannot be foreseen. However, with checkpointing and reexecution,

when a failure is about to occur is easy to predict: while it is being reexecuted. Hence the

overhead of analysis can be focused on the short segments of execution which are expected

to have failures; this reduces the overhead for moderately expensive analysis and allows for

extremely expensive analysis to be actually run. This makes it worthwhile to figure out

how to make existing analysis techniques work when they’re starting without information

from the very beginning of execution. As a further benefit, since one can immediately apply

the analysis to the failure, one immediately gains the benefit of the analysis result. Having

immediate access to the analysis results allows security problems to be addressed, where

quick results can be more important.

Fourth, given the ability to apply failure analysis tools repeatedly to the same failure, the

outputs of various tools can be combined, use the output of one tool can be used as an input

of another, to greatly improve the results of analysis. A buffer overflow detector is useful,

but feeding it’s output to backward slicing gives the programmer much more information

about why the buffer overflowed. This can result in a much quicker time to generate a patch.

Fifth and finally, failing and successful runs can be highly similar, as can runs from

different versions of the same program. This can be used for patch validation, where the

normal behavior is expected to be identical. One can reduce the overhead of validation

by sharing a single instruction stream for the original and changed instance except for the
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rare times that they do differ. Furthermore, by sharing a single instruction stream, the

original and patched executions will be identically influenced by exigent non-determinism

(e.g. the timing of system calls, random number generation, and thread interleaving), which

will result in a higher fidelity of validation.

Beyond presenting these insights, this dissertation also demonstrates the practicality of

using the resulting techniques, through implementations of functional systems acting on real

programs and real software reliability concerns. Chapters 3 and 4 present the Sweeper and

Triage systems, which use production run checkpointing to capture failures for immediate

post-failure analysis. Sweeper shows how analysis tools such as taint tracking and memory

bug detection can be used while re-executing an exploit attempt. Chapter 3 also shows

how the quickly available results of such analysis could be used to stop fast-spreading worm

infestations.

Triage, in Chapter 4, demonstrates using similar post-hoc failure analysis to attempt

to automatically debug production run faults. Triage uses the outputs of repeated runs of

various failure analysis tools as the inputs to further runs, to walk backward from the failure

to the underlying root cause. Furthermore, because Triage can focus analysis effort on the

small segments of execution, it allows much more expensive analysis tools to be used than

would otherwise be realistic for a production run. For example, backwards slicing, which

ordinarily imposes a 100 to 1000x overhead, is completed by Triage within a minute or two

of a failure. Chapter 4 also presents a new failure analysis, delta analysis, which computes

an edit script (i.e. a diff) between a failing and successful run. Such a diff can highlight

why a failure occurred, but computing it can impose an overhead of up to 20000x. Such

an expensive analysis is only remotely feasible if it is focused on promising segments of

execution; reexecuted segments of a failing execution counts as promising. The result of all

of Triage’s analysis is a report, which can appreciably (about 45%) reduce the time taken to

produce a working patch.

Finally, in Chapter 5, this dissertation shows how the high degree of similarity between
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a patched and unpatched program can be used to improve online validation. By running

only one instruction stream whenever the two versions are running identical instructions on

identical data, the new technique of delta execution, or ∆ execution, can reduce the overhead

of online validation. More importantly, because the two logical executions mostly occur

in one instruction stream, they are equally influenced by non-determinism. This greatly

increases the similarity between the outputs, since things like differing random number

draws occur identically in both logical executions. Hence ∆ execution improves the fidelity

of validation.
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