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Abstract 

 

Given the increasing prevalence of sedentary behaviors during childhood, and the concomitant 

pervasiveness of neurobehavioral disorders such as attention-deficit/hyperactivity disorder 

(ADHD), a greater understanding of the extent to which physical activity relates to brain health 

and cognition during development is of increasing importance. Accordingly, the aim of this 

investigation was to examine the effect of a single bout of moderately- intense aerobic exercise 

on preadolescent children with ADHD. Using a within-participants design, event-related 

potentials and task performance were assessed while participants performed an interference 

control task following a bout of exercise or seated reading during two separate, counterbalanced 

sessions. Following a single bout of exercise, both children with ADHD and healthy match-

control children exhibited greater response accuracy and enhanced stimulus-related processing, 

with ADHD children also exhibiting selective enhancements in regulatory processes, relative to 

after a similar duration of seated reading. Enhanced scholastic performance in the areas of 

Reading and Arithmetic were also observed following exercise for both children with ADHD 

and healthy match-control children. These findings indicate that single bouts of moderately-

intense aerobic exercise may serve as a transient non-pharmaceutical treatment option for 

children with ADHD to improve the cognitive health, academic performance, and overall 

effective functioning of this population. 
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Chapter 1 

Introduction 

Attention-deficit/hyperactivity disorder (ADHD) has become one of the most prevalent 

childhood disorders in the United States affecting over 2.5 million children (American 

Psychiatric Association, 2000; Biederman, 1998; Wolraich, Hannah, Baumgaertel, & Feurer, 

1998). This neurobehavioral disorder is characterized by developmentally inappropriate levels of 

inattention, over-activity, distractibility, and impulsiveness, which manifests during childhood 

(American Psychiatric Association, 2000; Banaschewski et al., 2006; Scharchar, Mota, Logan, 

Tannock, & Klim, 2000). However, research suggests that failures in inhibition may represent 

the core cognitive deficit underlying the manifestation of ADHD (Barkley, 1997). Although 

pharmacological treatments have largely been found effective in the short-term management of 

behavioral symptoms (Solanto, Arnsten, & Castellanos, 2001), concerns over the long-term 

implications of psychostimulant use have led a push for alternative, non-pharmaceutical 

treatment options for children with ADHD (Wilson & Jennings, 1996). One such option may be 

single bouts of short-duration, moderately intense aerobic exercise. Anecdotal reports from 

parents, teachers, and scholars have suggested that single bouts of aerobic activity may benefit 

children with ADHD (Panksepp, 2007; Tantillo, Kesick, Hynd, & Dishman, 2002). Yet, a 

paucity of empirical evidence exists in this population. However, previous research in healthy 

children and young adults has suggested that a single bout of aerobic exercise is beneficial for a 

variety of cognitive functions (Lambourne & Tomporowski, 2010), with a disproportionately 

larger benefit for inhibitory aspects of cognitive control (Brisswalter, Collardeau, & Arcelin, 

2002; Hillman, Snook, & Jerome, 2003, Hillman, Pontifex et al., 2009; Hogervorst, Riedel, 
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Jeukendrup, & Jolles, 1996; Lichtman & Poser, 1983; Sibley, Etnier, & LeMasurier, 2006; 

Tomporowski, 2003a, 2003b). 

Cognitive control describes an overarching set of higher-order cognitive operations, 

which are involved in the regulation of goal-directed interactions within the environment 

(Botvinick, Braver, Barch, Carter, & Cohen, 2001; Meyer & Keiras, 1997; Norman & Shallice, 

1986). These processes allow for the optimization of behavior through the selection, scheduling, 

coordination, and maintenance of computational processes that underlie aspects of perception, 

memory, and action (Botvinick et al., 2001; Meyer & Keiras, 1997; Miyake, Friedman, Emerson, 

Witzki, & Howerter, 2000; Norman & Shallice, 1986). The core cognitive processes, which 

collectively comprise what is termed ‘cognitive control’, include inhibition, working memory, 

and cognitive flexibility (Diamond, 2006). In developing populations, inhibition is particularly 

important to cognitive operations as it allows for sustained attention and maintenance of control 

over one’s actions (Diamond, 2006). Thus, inhibitory control allows for one to deliberately 

override a dominant response in order to perform a less potent but correct response, suppress task 

irrelevant information in the stimulus environment, and override an ongoing response (Barkley, 

1997; Davidson, Amso, Anderson, & Diamond, 2006).  

Of the core cognitive control processes, deficits in inhibition have consistently been 

observed (via decreased response accuracy, and longer and more variable reaction time [RT]) in 

previous investigations into ADHD across a variety of tasks (e.g., flanker, Go/No-Go, Stroop; 

Albrecht et al., 2008; Booth, Carlson, & Tucker, 2007; Castellanos et al., 2000; Crone, Jennings, 

& van der Molen, 2003; Hartung, Milich, Lynam, & Martin, 2002; Iaboni, Douglas, & Baker, 

1995; Jonkman et al., 1999; Konrad, Neufang, Hanisch, Fink, & Herpertz-Dahlmann, 2006; 

Scheres et al., 2004; Vaidya et al., 1998, 2005; van Meel, Heslenfeld, Oosterlan, & Sergeant, 
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2007; Yong-Liang et al., 2000). Findings from a number of meta-analysis have observed 

moderate effect sizes for ADHD-related deficits of inhibitory control ranging from 0.54 to 0.75 

(Homack & Riccio, 2004; Pennington & Ozonoff, 1996; Willcut, Doyle, Nigg, Faraone, & 

Pennington, 2005). Collectively, these findings provide converging evidence to support the 

conclusion that inhibitory aspects of cognitive control are impaired in ADHD. 

Interestingly, investigations into the effects of acute exercise on behavioral indices of 

cognitive control in healthy young adults have predominately-utilized tasks that tap aspects of 

inhibition (i.e., flanker, Stroop, and the Paced Auditory Serial Addition Test; Hillman et al., 

2003; Hogervorst et al., 1996; Kamijo, Nishihira, Higashiura, & Kuroiwa, 2007; Lichtman & 

Poser, 1983; Sibley et al., 2006; Tomporowski et al., 2005). Findings from these investigations 

have observed that a single 20 to 40 minute bout of aerobic physical activity at an intensity 

between 60 and 85% of maximal heart rate resulted in facilitations in general aspects of 

cognition, with a selectively larger increase in performance for task components requiring larger 

inhibitory control demands (Hogervorst et al., 1996; Kamijo et al., 2007; Lichtman & Poser, 

1983; Sibley et al., 2006; Tomporowski et al., 2005). Although substantially less research has 

examined the effects of a single bout of physical activity in healthy children, findings from these 

investigations are consonant with previous research into the effects of acute exercise on 

cognition in adult populations. That is, following participation in a single bout of structured 

physical activities lasting at least 20 minutes, improvements in cognition have been observed for 

both simple and choice RT tasks (Ellemberg & St-Louis-Deschênes, 2010), aspects of 

concentration (Caterino & Polak, 1999; Mahar et al., 2006; McNaughten & Gabbard, 1993) and 

mathematics (Gabbard & Barton, 1979), brief tests of academic achievement (Hillman, Pontifex 

et al., 2009), and inhibitory control (Hillman, Pontifex et al., 2009).  
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Despite these seemingly disparate bodies of literature, there is striking similarity between 

the aspects of cognition that are influenced by acute exercise and those that exhibit ADHD 

related deficits. However, to date, no prior research has investigated the influence of a single 

bout of physical activity on inhibitory aspects of cognitive control in children with ADHD. Some 

evidence to suggest that physical activity may be beneficial to children with ADHD is provided 

by Taylor, Kuo, and Sullivan (2001), who found a reduction in parent-reported ADHD-related 

symptoms following exposure to environmental settings conducive to physically active behaviors 

(e.g., parks, backyards, and neighborhoods) relative to urban settings (e.g., parking lots, 

downtown areas, and indoors). Thus, this investigation suggests that physically active behaviors 

may provide a transient, non-pharmaceutical treatment option for children with ADHD. 

A more precise understanding of the relationship between acute exercise and ADHD may 

be provided through the assessment of event-related brain potentials (ERPs). ERPs refer to a 

class of neuroelectric activity that occurs in response to, or in preparation for, a stimulus or 

response; and provide a means of gaining insight into a subset of covert processes that occur 

between stimulus encoding and response production (Coles, Gratton, & Fabiani, 1990). One such 

ERP component, which occurs in response to a stimulus, is the fronto-central N2. The amplitude 

of the fronto-central N2 is believed to reflect response inhibition (Schmitt, Münte, & Kutas, 

2000) associated with conflict monitoring processes during correct trials in a manner similar to 

that proposed for the ERN discussed below (Ridderinkhof et al., 2002; van Veen & Carter, 2002; 

Yeung, Cohen, & Botvinick, 2004), while the latency of the fronto-central N2 is thought to 

reflect aspects of the response selection process (Gajewski, Stoerig, & Falkenstein, 2008).  

Distinct from the N2, the amplitude of the P3 component has been related to the allocation of 

attentional resources (Polich, 1987; Polich & Heine, 1996), while the latency of the P3 is thought 
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to index stimulus classification and evaluation speed, independent of response selection and 

action (Duncan-Johnson, 1981; Verleger, 1997). A separate ERP component that occurs 

following errors of commission is the error-related negativity (ERN; also known as the Ne). The 

ERN is thought to reflect activation of action monitoring processes in response to erroneous 

behaviors in order to initiate the upregulation of top-down compensatory processes regardless of 

an individual’s awareness of the error (Falkenstein, Hohnsbein, Hoormann, & Blanke, 1991; 

Gehring & Knight, 2000; Gehring, Goss, Coles, Meyer, & Donchin, 1993; Nieuwenhuis, 

Ridderinkhof, Blom, Band, & Kok, 2001). 

Previous examinations of children with ADHD using neuroelectric measures have begun 

to elucidate a number of deficient neurocognitive processes. Specifically, children with ADHD, 

relative to healthy controls, exhibit reductions in the amplitude of the fronto-central N2 (Albrecht 

et al., 2008; Barry, Johnstone, & Clarke, 2003; Dimoska, Johnstone, Barry, & Clarke, 2003; 

Johnstone & Barry, 1996; Liotti et al., 2007; Pliszka, Liotti, & Woldorff, 2000; Wiersema, van 

der Meere, Roeyers, Coster, & Baeyens, 2006), smaller P3 amplitude (Barry et al., 2003; 

Jonkman et al., 1999, 2000; Kemner et al., 1996; Liotti et al., 2007; Loiselle, Stamm, Maitinsky, 

& Whipple, 1980; Wiersema et al., 2006), longer P3 latency (Barry et al., 2003; Jonkman et al., 

1999), and smaller ERN amplitude (Albrecht et al., 2008; Liotti, Pliszka, Perez, Kothmann, & 

Woldorff, 2005; van Meel et al., 2007) across a variety of tasks. Such a pattern of findings 

suggest that deficits in the cascade of processes underlying the stimulus-response relationship; 

including reductions in response inhibition (N2 amplitude), the allocation of attentional resources 

(P3 amplitude) and the speed in which stimuli are processed (P3 latency), and failures to 

appropriately implement action monitoring processes (ERN amplitude), may underlie ADHD-

related deficits in inhibitory control.  
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With regard to acute exercise, little research has utilized neuroelectric measures to 

examine the effects of a single bout of physical activity on inhibitory aspects of cognitive 

control, with only a single study examining a preadolescent population (Hillman, Pontifex et al., 

2009). However, findings in children and college age young adults have suggested that a 20-30 

minute bout of moderate-intensity aerobic exercise increases the allocation of attentional 

resources (as indexed by an enhancement of the amplitude of the P3 ERP component), and 

facilitates cognitive processing and stimulus classification speed (as indexed by a decrease in the 

latency of the P3 ERP component), with a disproportionately larger effect for task conditions 

requiring greater inhibitory control demands (Hillman et al., 2003; Hillman, Pontifex et al., 2009; 

Kamijo et al., 2004, 2007, 2009). To date, only a single study has investigated the relationship 

between acute exercise and action monitoring processes in college-aged young adults, and 

observed no exercise-induced modulations in the ERN ERP component (Themanson & Hillman, 

2006). Thus, additional research is needed in order to better understand the relationship between 

acute exercise and action monitoring processes. 

One means of investigating action monitoring processes is through the utilization of task 

conditions that modulate the demands on cognitive control. That is, previous research in young 

adults has observed an upregulation of action monitoring processes as a function of task 

instructions stressing accuracy over speed (Gehring et al., 1993). However, preadolescent 

children exhibit a tendency to respond with greater impulsivity and variability in RT than adults, 

suggesting that this population may be unable to modulate response strategies via instruction 

(Davidson et al., 2006). Accordingly, previous investigations have suggested that the modulation 

of action monitoring processes may be achieved in preadolescent children by manipulating 

stimulus-response compatibility characteristics of a modified flanker task to create multiple 
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gradations of stimulus and response configurations, allowing for the modulation of inhibitory 

control requirements (Friedman, Nessler, Cycowicz, & Horton, 2009; Pontifex et al., 2011). 

Thus, the purpose of this study was to examine the effect of a single bout of moderate 

intensity aerobic exercise on the modulation of inhibitory control deficits using a task that elicits 

multiple levels of conflict in children with ADHD. Given that a single bout of aerobic exercise 

exerts a positive effect over the same aspects of cognition in which children with ADHD exhibit 

deficits; it was hypothesized that acute exercise would result in a reduction of ADHD-related 

deficits in task performance, P3 amplitude, and P3 latency with selectively larger effects for task 

conditions requiring greater amounts of cognitive control. Such a pattern of findings would 

suggest that a single bout of aerobic exercise ameliorates ADHD-related deficits in inhibitory 

control function through an increase in the allocation of attentional resources and faster stimulus 

classification and processing speed. Alternatively, based on previous acute exercise findings 

(Hillman, Pontifex et al., 2009; Themanson & Hillman, 2006), no exercise induced changes in 

N2 or ERN amplitude were hypothesized, suggesting that a single bout of aerobic exercise does 

not exert an effect over response conflict or action monitoring processes. Thus, the current 

investigation may provide additional insight into the nature of ADHD-related deficits in 

cognitive control and indicate that acute exercise may serve as a transient non-pharmaceutical 

treatment option for children with ADHD to increase the cognitive health and effective 

functioning of this population. 
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Chapter 2 

Review of Literature 

To better understand why a single bout of aerobic exercise may serve to modulate 

ADHD-related deficits in cognitive control, it is necessary to review the existing literature on 

ADHD, cognitive control, neuroelectric indices of cognition, and acute exercise. First, a 

theoretical overview of ADHD, its proposed subtypes, and its relationship to cognitive control 

will be discussed to provide a framework for understanding this participant population. Second, 

the literature on single bouts of physical activity will be reviewed to elucidate the beneficial 

influences of acute exercise on aspects of cognitive control. Finally, the existing literature on 

both ADHD and acute exercise on neuroelectric indices of cognitive processes will be examined 

to provide justifications for the present investigation. 

Attention Deficit-Hyperactivity Disorder 

ADHD is the most prevalent neurobehavioral disorder of childhood in the United States 

(American Academy of Pediatrics, 2000), affecting approximately 5-15% of school aged 

children (American Psychiatric Association, 2000; Biederman, 1998; Wolraich et al., 1998), with 

approximately 30-50% of clinically diagnosed cases persisting into adulthood (Barkley, Fischer, 

Edelbrock, & Smallish, 1990; Klein & Mannuzza, 1991; Weiss, Hechtman, & Weiss, 1999). 

According to the National Institutes of Health (NIH), this neurobehavioral disorder resulted in 

over $3 billion in expenses to the public school systems in the United States in 1995 alone (NIH, 

1998). Over the course of development, ADHD is associated with increased risks for poorer 

academic achievement and peer/family relations, disciplinary problems in and out of school, 

early substance experimentation and abuse, anxiety, depression, aggression, and later in life 

difficulties in adult social/romantic relationships and maintaining employment (Barkley, 
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Guevremont, Anastopoulos, DuPaul, & Shelton, 1993; Booth et al., 2007; Bracken & 

Boatwright, 2005). ADHD is defined by developmentally malapropos levels of inattention, over-

activity, distractibility, and impulsiveness manifesting as a childhood-onset disorder (American 

Psychiatric Association, 2000; Banaschewski et al., 2006; Scharchar et al., 2000).  

According to the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR; 

American Psychiatric Association, 2000) ADHD refers to the diagnostic entity encompassing 

three subtypes of ADHD: predominately inattentive (ADHD-I), predominately 

hyperactive/impulsive (ADHD-H), and combined inattentive/hyperactive/impulsive (ADHD-C). 

According to Applegate and colleagues (1997), the predominately hyperactive/impulsive 

(ADHD-H) subgroup is typically observed among preschool children, as the hyperactive-

impulsive behavior pattern seems to first emerge during the preschool years, and only accounts 

for approximately 10% of children with ADHD (American Academy of Pediatrics and National 

Initiative for Children’s Healthcare Quality, 2002).  Symptoms of inattention appear to have later 

onsets with ADHD-I and ADHD-C predominately occurring during the school-aged years (Hart, 

Lahey, Loeber, Applegate, & Frick, 1995; Loeber, Green, Lahey, Christ, & Frick, 1992). The 

ADHD-I subgroup (formerly classified as attention-deficit disorder [ADD]) is characterized by 

developmentally inappropriate behaviors such as failing to attend and follow directions, having 

difficulty sustaining attention and organizing activities, and being easily distracted and forgetful 

(Barkley, DuPaul, & McMurray, 1990; Bracken & Boatwright, 2005). Further, the ADHD-I 

subgroup has been found to have a higher prevalence rate among girls (American Academy of 

Pediatrics and National Initiative for Children’s Healthcare Quality, 2002). According to Barkley 

(1997), despite differences in symptomology between ADHD subtypes, they appear to share a 

central deficit related to cognitive control dysfunction, and in particular failures of inhibitory 
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control (Barkley, 1997; Geurts, Verté, Oosterlaan, Roeyers, & Sergeant, 2005; Schachar & 

Logan, 1990). 

Cognitive Control 

The term cognitive control (also referred to as ‘executive control’) describes an 

overarching set of higher-order, cognitive operations, which are involved in the regulation of 

goal-directed interactions within the environment (Botvinick et al., 2001; Meyer & Keiras, 1997; 

Norman & Shallice, 1986). These processes allow for the optimization of behavior through the 

selection, scheduling, coordination, and maintenance of computational processes underlying 

aspects of perception, memory, and action (Botvinick et al., 2001; Meyer & Keiras, 1997; 

Miyake et al., 2000; Norman & Shallice, 1986). The core cognitive processes which are 

collectively termed ‘cognitive control’ include inhibition, working memory, and cognitive 

flexibility (Diamond, 2006). Of these core processes, inhibition has been the most studied in the 

acute exercise literature (e.g., Hillman et al., 2003; Hillman, Pontifex et al., 2009; Kamijo et al., 

2004, 2007) and relates to the ability to act on the basis of choice rather than impulse (Davidson 

et al., 2006). That is, inhibitory control often requires one to deliberately override a dominant 

response in order to perform a less potent but correct response, suppress task irrelevant 

information in the stimulus environment, or stop an ongoing response (Barkley, 1997; Davidson 

et al., 2006). This ability to inhibit attention to task irrelevant or distracting stimuli is central to 

the ability to sustain attention and allow control over one’s actions. Further, these abilities are 

particularly important to the effective functioning of cognitive control (Barkley, 1997; Brocki & 

Brohlin, 2004), and exhibit protracted development relative to other cognitive processes 

(Diamond, 2006).  
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One model of cognitive control which has been proposed is the dual mechanisms of 

cognitive control model (Braver, Gray, & Burgess, 2007) which suggests that the adaptability of 

the cognitive control system is achieved through two dissociable subsystems of control referred 

to as ‘proactive’ and ‘reactive’ (Braver et al., 2007). These systems are distinguished by the time 

course in which behavior modifications occur; with proactive control modifying interactions in 

the environment prior to stimulus engagement (i.e., early selection) and reactive control 

occurring in direct response to the demands of an event (i.e., late correction; Jacoby, Kelley, & 

McElree, 1999). That is, proactive cognitive control, which neuroimaging research suggest is 

likely rooted in the dorsolateral prefrontal cortex (DLPFC; Braver et al., 2007; MacDonald, 

Cohen, Stenger, & Carter, 2000), works to continually exert top-down control in preparation for 

and during ongoing information processing allowing for flexible, online adjustments of attention 

(Braver et al., 2007; Botvinick et al., 2001). These alterations in attention serve to facilitate 

optimal completion of a task by providing enhanced maintenance of task demands and stimulus 

representations (Botvinick et al., 2001). This active maintenance comes at a cost however; as it 

requires extended periods of high levels of neuronal activity (in areas such as the lateral PFC) 

resulting in a larger metabolic demands (Braver et al., 2007). In contrast, reactive cognitive 

control, which neuroimaging research suggests is likely rooted in the anterior cingulate cortex 

(ACC), is transiently engaged following the occurrence of some imperative event and serves to 

initiate the activation of compensatory adjustments in top-down control in order to resolve 

conflict, increase response strength, or correct an impending error (Braver et al., 2007; Botvinick 

et al., 2001). However, reactive cognitive control represents a suboptimal control strategy which 

may be more susceptible to stimulus-based interference and may be insufficient when stimulus 

processing is constrained (Braver et al., 2007). Taken together, these ‘proactive’ and ‘reactive’ 
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cognitive control mechanisms interact to optimize behavioral interactions within the environment 

(MacDonald et al., 2000). 

One paradigm often used to elicit cognitive control, known as the Eriksen flanker task 

(Eriksen & Eriksen, 1974), employs multiple gradations of stimulus and response configurations 

requiring the modulation of inhibition for successful performance. This paradigm is conceptually 

simplistic in that it requires the discrimination of a centrally presented target stimulus amid 

lateral flanking stimuli, and has been utilized with a variety of stimuli (e.g. letters, arrows, fish; 

Eriksen & Schultz, 1979; Hillman et al., 2003; Ridderinkhof, van der Molen, Band, & Bashore, 

1997; Rueda et al., 2004) and participant populations (e.g., children, young adults, older adults, 

athletes with a history of mild traumatic brain injury; Friedman et al., 2009; Pontifex et al., 2010, 

2011; Pontifex, O’Connor, Broglio, & Hillman, 2009) indicating that children as young as 4 

years can successfully complete this task (Mezzacappa, 2004). In this task, perceptually-induced 

response interference can be evoked by manipulating the compatibility of the target and flanking 

stimuli. In the congruent array (e.g., <<<<< or HHHHH), the target stimulus and the flanking 

stimuli are identical, resulting in faster and more accurate responses relative to the incongruent 

array (e.g., <<><< or HHSHH), where the target and flanking stimuli are mapped to opposing 

action-schemas (Eriksen & Schultz, 1979). The incongruent array results in the concurrent 

activation of both the correct response (elicited by the target) and the incorrect response (elicited 

by the flanking stimuli) before stimulus evaluation is complete; thus, requiring greater amounts 

of interference control to inhibit the flanking stimuli and execute the correct response (Spencer & 

Coles, 1999). Variants of this task have also manipulated the response characteristics of the 

target stimuli to require even greater levels of inhibitory control (Friedman et al., 2009; Pontifex 

et al., 2011). In these variants, participants first complete the standard flanker task described 
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above with the congruent and incongruent arrays to build-up a prepotent response mapping. 

Next, an incompatible stimulus-response condition is performed, wherein the response mappings 

to each of the stimuli are reversed (e.g., a target stimulus which previously required a left 

response, now requires a right response). Thus, this condition necessitates the greatest amount of 

inhibitory control among the four conditions (congruent-compatible, congruent-incompatible, 

incongruent-compatible, incongruent-incompatible) to regulate the interference of the flanking 

stimuli as well as inhibit the prepotent response-mapping (Friedman et al., 2009; Pontifex et al., 

2011). 

Cognitive Control and ADHD 

Previous investigations into the relationship of ADHD to cognitive control have 

consistently observed deficits in inhibition. That is, within the flanker task, findings from a 

number of investigations have observed decreased response accuracy (Albrecht et al., 2008; 

Booth et al., 2007; Crone et al., 2003; Jonkman et al., 1999; Konrad et al., 2006; Scheres et al., 

2004; Vaidya et al., 2005; van Meel et al., 2007) as well as longer and more variable RT 

(Albrecht et al., 2008; Booth et al., 2007; Crone et al., 2003; Jonkman et al., 1999) for children 

with ADHD, relative to healthy match-controls. These findings of ADHD-related deficits in 

cognition appear to be robust across a variety of inhibitory control tasks. For instance, the Stroop 

task taps inhibitory aspects of cognitive control by requiring participants to inhibit the dominant 

response tendency to read the color word and instead name the color of the ink in which the word 

is printed (Homack & Riccio, 2004). Findings from meta-analyses of children with ADHD have 

revealed moderate effect sizes ranging from 0.69 to 0.75 for ADHD-related deficits on the 

condition of the Stroop task requiring inhibitory control (Homack & Riccio, 2004; Pennington & 

Ozonoff, 1996). Similarly, investigations utilizing the Go/NoGo task, which taps inhibitory 
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aspects of cognitive control by developing a prepotent response during the Go condition, with 

the NoGo condition requiring response inhibition of the prepotent response, have consistently 

observed longer RT and increases in error rates for ADHD populations (Castellanos et al., 2000; 

Hartung et al., 2002; Iaboni et al., 1995; Trommer et al., 1988; Vaidya et al., 1998; Yong-Liang 

et al., 2000). Taken together, these findings provide converging evidence to support the 

conclusion that inhibitory aspects of cognitive control are impaired in ADHD. To date, within 

the limited body of research examining differences in inhibitory control as a function of ADHD 

subtype , there appears to be no difference between any of the three subtypes as measured 

through the flanker and Stroop tasks (Mullane, Corkum, Klein, & McLaughlin, 2009; Scheres et 

al., 2004). Further insight into these ADHD-related deficits in inhibitory control may be garnered 

from investigations utilizing structural and functional MRI, which have observed reduced tissue 

volume in the prefrontal cortex (Castellanos et al., 1996; Filipek et al., 1997; Giedd et al., 1994; 

Hynd et al., 1991; Yeo et al., 2003), the corpus callosum (Baumgardner et al., 1996; Giedd et al., 

1994), and the basal ganglia (Aylward et al., 1996; Castellanos et al., 2001; Hynd et al., 1991; 

Rubia et al., 1999), in addition to decreased activation of the ACC in response to inhibitory 

control tasks for ADHD participants (Bush et al., 1999; Pliszka et al., 2006), suggesting that 

dysregultion of these brain structures may contribute to producing the core cognitive deficits of 

ADHD (Bush et al., 1999). 

Physical Activity and ADHD 

Thus far, pharmacological treatments using psychostimulants have been found effective 

in the short-term treatment of behavioral symptoms of ADHD (Solanto et al., 2001). However, 

concerns over the long term implications of psychostimulant use, including abuse and 

dependence, have yet to be adequately addressed (Moll, Hause, Ruther, Rothenberger & 
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Huether, 2001; Wilson & Jennings, 1996). As a result, research suggests that parents are 

increasingly willing to investigate alternative treatments for ADHD, particularly those treatments 

that do not include medication administration (Wilson & Jennings, 1996). One such non-

pharmaceutical treatment option for children with ADHD may be physical activity. Anecdotal 

reports from parents, teachers, and scholars have suggested that single bouts of physical activity 

may be beneficial to children with ADHD (Panksepp, 2007; Tantillo et al., 2002). Empirically, 

research utilizing animal models has observed that physical activity served to ameliorate 

impulsivity in rats lesioned to exhibit ADHD-like symptoms (Panksepp, Burgdorf, Turner, & 

Gordon, 2003). Although there is a tenuous link between artificially-induced ADHD-like 

symptoms in rats and ADHD in children, this investigation provides compelling evidence to 

suggest that physical activity may be beneficial to children with ADHD. Further evidence can be 

gleaned from Taylor , Kuo, and Sullivan (2001), who observed an amelioration of self-reported 

ADHD symptoms following exposure to environmental settings conducive to physically active 

behaviors (e.g., parks, backyards, and neighborhoods) relative to urban settings (e.g., parking 

lots, downtown areas, and indoors) in a sample of 96 preadolescent children with ADHD. Taken 

together, these findings provide converging evidence to suggest that physically active behaviors 

may provide a non-pharmaceutical treatment option for children with ADHD.  

However, limited research has reported on the effect of a single bout of physical activity 

on cognition in children with ADHD (Craft, 1983), with no prior research focusing on inhibitory 

aspects of cognitive control. Craft (1983) was the first to empirically investigate the relationship 

between acute exercise and cognition in children with ADHD. Specifically, Craft (1983) utilized 

a sample of 31 ADHD and 31 healthy-match control boys between the ages of 7 and 10 years old 

to examine the effects of 1, 5, and 10 minutes of cycling on a stationary ergometer. Findings 
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revealed no differences in cognition, as measured by the Wechsler Intelligence Scale for 

Children – Revised (WISC-R) digit span and coding B or the Illinois Test of Psycholinguistic 

Abilities (ITPA) – visual sequential memory assessments, for either the ADHD or healthy 

control participants (Craft, 1983). Although children with ADHD exhibited decrements in 

performance for both tests of the WISC-R and the ITPA, the duration of the exercise bout may 

have been insufficient to alter cognition given that no acute exercise effects were observed for 

either participant group. Further, the exercise modality (i.e., cycling) may have been poorly 

chosen for this age group as preadolescent children have underdeveloped knee extensor muscles 

resulting in localized muscular fatigue and exhaustion following pedaling on a cycle (Bar-Or, 

1983). Craft (1983) noted that the majority of participants exhibited signs of exhaustion at the 10 

minute mark, providing additional support for this view.  

Within the small body of research that has investigated the effects of a single bout of 

physical activity on healthy children; improvements in cognition have been observed for aspects 

of concentration (Caterino & Polak, 1999; Mahar et al., 2006; McNaughten & Gabbard, 1993) 

and mathematics (Gabbard & Barton, 1979), as well as shorter RT for both simple and choice RT 

tasks (Ellemberg & St-Louis-Deschênes, 2010) following participation in single bouts of 

structured physical activities lasting at least 20 minutes. These findings are consonant with 

previous research into the effects of acute exercise on cognition in adults, suggesting that a single 

bout of aerobic exercise positively influences a variety of cognitive functions (Brisswalter et al., 

2002; Etnier et al., 1997; Lambourne & Tomporowski, 2010; Tomporowski, 2003b), with a 

disproportionately larger benefit for tasks or task components requiring greater cognitive control 

demands (Hillman et al., 2003; Hillman, Pontifex et al., 2009; Hogervorst et al., 1996; Lichtman 

& Poser, 1983; Sibley et al., 2006; Pontifex, Hillman, Fernhall, Thompson, & Valentini, 2009). 
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Investigations into acute exercise-induced changes in behavioral indices of cognitive 

control have predominately used tasks that tap aspects of inhibitory control (i.e., Stroop and the 

Paced Auditory Serial Addition Test), and have observed improvements in performance 

following at least 20 minutes of exercise (Hogervorst et al., 1996; Lichtman & Poser, 1983; 

Sibley et al., 2006; Tomporowski et al., 2005). Specifically, following an hour of aerobic 

exercise at 70% of maximal work capacity, Hogervorst et al. (1996) observed improved 

performance only on the color-word condition of the Stroop task, which requires the greatest 

amount of cognitive control, relative to the pre-exercise and baseline conditions. Similarly, both 

Sibley et al. (2006), and Lichtman & Poser (1983) observed general, yet selective effects on the 

Stroop task following 20 and 40 minutes of moderate intensity aerobic exercise, respectively. 

Further support for the beneficial effects of acute exercise on inhibitory aspects of cognitive 

control have been garnered from Tomporowski et al. (2005), who observed facilitations in 

performance on the Paced Auditory Serial Addition Test following a 40 minute bout of moderate 

intensity aerobic exercise. Collectively, the findings from these investigations suggest that 

changes in cognition following acute exercise may be selectively larger for aspects of cognitive 

control.  

Extending these previous investigations, recent findings by Pontifex, Hillman, Fernhall 

and colleagues (2009) observed that exercise-induced modulations in cognitive control may be 

selective to aerobic exercise. Specifically, shorter RT on a Sternberg working memory task was 

observed immediately and 30 minutes following a 30 minute bout of moderate intensity aerobic 

exercise, with a disproportionately larger reduction in RT for task conditions placing the greatest 

demands upon working memory (Pontifex, Hillman, Fernhall et al., 2009). These findings were 

not observed following a 30 minute bout of resistance training (anaerobic exercise condition) or 
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seated rest. Accordingly, the results of these investigations indicate that brief bouts of moderate 

intensity aerobic exercise relate to facilitations in behavioral indices of cognitive control 

processes. 

Event-Related Brain Potentials 

Beyond the assessment of overt actions, event-related brain potentials (ERPs) provide a 

means of gaining insight into the relationship between single bouts of aerobic exercise and 

cognitive control through the examination of a subset of processes that occur between stimulus 

encoding and response production. Accordingly, these measures allow for a more precise 

understanding of the effects of acute exercise on changes in cognition. ERPs refer to a class of 

neuroelectric activity that occurs in response to, or in preparation for, a stimulus or response 

(Coles et al., 1990). This neuroelectric activity is reflective of the synchronous activity of large 

populations of neurons (Hugdahl, 1995), and can reflect obligatory responses (exogenous) and 

higher-order cognitive processing that often require active participation from the subject 

(endogenous; Hugdahl, 1995). The stimulus-locked ERP is characterized by a succession of 

positive (P) and negative (N) components, which are constructed according to their direction and 

the relative time that they occur (Hruby & Marsalek, 2003). Earlier components (N1, P2) of the 

stimulus-locked potential relate to aspects of selective attention, while later components (N2, P3) 

relate to various aspects of endogenous cognitive function (e.g., response inhibition, attentional 

resource allocation).  

N2. 

The fronto-central N2 (also known as the N200, control-related N2, and the conflict N2) 

is a negative going deflection that peaks approximately 180 to 350 milliseconds after stimulus 

onset, with a topographic maximum over fronto-central recording sites (Folstein & Van Petten, 
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2008; Patel & Azzam, 2005). The amplitude of the N2 is believed to reflect response inhibition 

(Falkenstein, Hoormann, & Hohnsbein, 1999; Schmitt et al., 2000) associated with conflict 

monitoring processes during correct trials, such that larger N2 amplitude is associated with 

increased conflict (Ridderinkhof et al., 2002; van Veen & Carter, 2002; Yeung et al., 2004). 

While the latency of the N2 ERP component is thought to reflect aspects of the response 

selection process (Gajewski et al., 2008). The neural tissue underlying the generation of the 

fronto-central N2 has been localized to midline frontal cortical areas, in particular the anterior 

cingulate cortex (ACC), through a number of hemodynamic and high-density dipole modeling 

localization studies (Ridderinkhof, Ullsperger, Crone, & Nieuwenhuis, 2004; van Veen & Carter, 

2002). Given that the fronto-central N2 and the response locked ERN component (discuss below) 

have been localized to the ACC, a number of researchers have posited that the N2 and ERN may 

reflect similar conflict-related processes (van Veen & Carter, 2002; Yeung et al., 2004). 

P3. 

Among ERP components, the P3 (also known as the P300 or P3b) has garnered 

considerable attention in the literature in regards to the effects of acute exercise on changes in 

cognition. Originally discovered in 1965 by Sutton, Braren, Zubin, and John; the P3 is a positive 

going deflection occurring approximately 300 to 800 milliseconds after stimulus presentation, 

with a topographic maximum at electrode sites over the parietal cortex (Polich & Kok, 1995). 

This endogenous component reflects neuronal activity associated with the revision of the mental 

representation of the previous event (Donchin, 1981), such that the P3 is sensitive to the 

allocation of attentional resources during stimulus engagement (Polich, 2007). Accordingly, 

based on a recent theoretical account of the P3 by Polich (2007), the amplitude is believed to be 

proportional to the resources allocated towards the suppression of extraneous neuronal activity in 
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order to facilitate attentional processing. P3 latency is generally considered as a measure of 

stimulus detection and evaluation time (Ilan & Polich, 1999; Magliero, Bashore, Coles, & 

Donchin, 1984), which is independent of response selection and behavioral action (Verleger, 

1997). Further, P3 latency appears to be negatively correlated with mental function, with shorter 

latencies related to superior cognitive performance (Emmerson, Dustman, Shearer, & Turner, 

1989; Howard & Polich, 1985; Johnson, Pfefferbaum, & Kopell, 1985; Polich & Martin, 1992; 

Polich, Howard, & Starr, 1983). Although the precise neural origins of the P3 are still unknown, 

the generation of the P3 appears to result from the interaction between frontal and 

temporal/parietal networks with additional contributions stemming from a number of subcortical 

structures (Ebmeier et al., 1995; Kirino, Belger, Goldman-Rakic, & McCarthy, 2000; Polich, 

2003). 

Error-Related Negativity (ERN). 

Another class of ERPs is time-locked to an individual’s response. One such ERP 

component is the error-related negativity (ERN; also known as the Ne), a negative going 

deflection occurring approximately 50 to 150 milliseconds after errors of commission with a 

topographic maximum over fronto-central recording sites (Falkenstein et al., 1991; Gehring et 

al., 1993). The ERN is thought to reflect the activation of action monitoring processes in 

response to erroneous behaviors to initiate the upregulation of top-down compensatory processes 

to correct an individual’s responses during subsequent environmental interaction (Falkenstein et 

al., 1991; Gehring & Knight, 2000; Gehring et al., 1993). Further, the ERN occurs regardless of 

an individual’s awareness of error commission (Nieuwenhuis et al., 2001). The neural tissue 

underlying the generation of the ERN has been localized through hemodynamic (Carter et al., 

1998), magneto-encephalographic (Miltner et al., 2003), and high-density dipole modeling 
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(Dehaene, Posner, & Tucker, 1994; van Veen & Carter, 2002) studies to the dorsal portion of the 

ACC.  

Event-Related Brain Potentials and ADHD 

Findings from neuroelectric investigations of children with ADHD have predominately 

observed deficits in a number of neurocognitive processes. In particular, converging evidence 

across a variety of tasks suggest that children with ADHD exhibit deficits in: response inhibition 

as indexed by reductions in the fronto-central N2 (Barry et al., 2003; Dimoska et al., 2003; 

Johnstone & Barry, 1996; Liotti et al., 2007; Pliszka et al., 2000; Wiersema et al., 2006), the 

allocation of attentional resources as indexed by reductions in P3 amplitude (Barry et al., 2003; 

Jonkman et al., 2000; Kemner et al., 1996; Liotti et al., 2007; Loiselle et al., 1980; Wiersema et 

al., 2006), stimulus classification and processing speed as indexed by longer P3 latency (Barry et 

al., 2003), and action monitoring processes as indexed by reductions in the ERN component 

(Liotti et al., 2005). Consistent findings have been observed from investigations examining 

ADHD related deficits in neuroelectric indices of cognitive control in response to the flanker task 

(Albrecht, et al., 2008; Jonkman et al., 1999; van Meel et al., 2007). That is, in samples of 

preadolescent children with ADHD, relative to healthy controls, participants exhibit reductions 

in the amplitude of the fronto-central N2 (Albrecht et al., 2008), smaller P3 amplitude and longer 

P3 latency (Jonkman et al., 1999), and smaller ERN amplitude (Albrecht et al., 2008; van Meel 

et al., 2007). Taken together, these findings suggest that children with ADHD may exhibit 

decreased task performance on the flanker task as a result of deficient response inhibition, 

allocation of attentional resources and stimulus processing, and failures to appropriately 

implement action monitoring processes. Limited research exists examining ADHD subtype 

differences in neuroelectric components. However, Holcombe, Ackerman, and Dykman (1985) 
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provides some preliminary evidence to suggest that deficits in P3 latency may be shared by both 

ADHD-I and ADHD-C subtypes, while reduced P3 amplitude may be specific to ADHD-I 

subtypes in response to perceptual discrimination tasks. Conservatively however, Baeyens, 

Roeyers, and Walle (2006) note that the lack of consistent differentiation between ADHD 

subtypes on neurophysiological measures reflects the similarity between subtypes with varying 

degrees of deviation from normal development. 

The Effects of Single Bouts of Exercise on Event-Related Brain Potentials 

To date, only a handful of previous investigations have examined the effect of brief bouts 

of aerobic exercise on neuroelectric indices of cognitive control. Findings from these 

investigations have largely been positive, suggesting benefits to neurocognitive processes 

following the cessation of a single bout of exercise (Hillman et al., 2003; Hillman, Pontifex et 

al., 2009; Kamijo et al., 2004, 2007, 2009). Both Hillman et al. (2003) and Kamijo et al. (2007) 

separately investigated the effect of acute aerobic exercise on the P3-ERP component in college-

aged young adults in response to a modified Eriksen flanker task (Eriksen & Eriksen, 1974). 

Replicating the findings of Hillman et al. (2003), Kamijo et al. (2007) observed that after 

moderate intensity aerobic exercise, participants’ exhibited larger P3 amplitudes across task 

conditions with selectively shorter P3 latencies observed for incongruent trials, which require the 

greatest amount of cognitive control to manage flanker-related interference. These findings 

(Hillman et al., 2003; Kamijo et al., 2007) indicate that in college-aged young adults, single 

bouts of moderate intensity aerobic exercise influence neuroelectric processes underlying 

cognitive control through the increased allocation of attentional resources and changes in 

cognitive processing and stimulus classification speed. Additional support for the beneficial 

effects of acute exercise on neurocognitive processes have been garnered from other research 
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employing a different cognitive control task. Specifically, Kamijo et al. (2004) examined the 

influence of a single bout of aerobic exercise on the P3-ERP component in college-aged young 

adults in response to a Go/NoGo task, which manipulates the need for response inhibition. 

Findings revealed that following an acute bout of moderate intensity aerobic exercise, larger P3 

amplitude was observed for both the Go and NoGo conditions, suggesting that acute exercise 

may relate to general improvements in the allocation of neuroelectric resources involved in 

attention and inhibition (Kamijo et al., 2004). 

Acute Exercise, Cognition, and Preadolescent Children 

Although the majority of research on acute exercise and cognition has focused on adult 

populations, a more recent focus has been on pediatric populations. Reviews of early behavioral 

studies testing this relationship suggest that school age children also may derive cognitive 

benefits from physical activity participation (Sibley & Etnier, 2003; Tomporowski, 2003a). 

Accordingly, Hillman, Pontifex et al. (2009) assessed the extent to which improvements in 

cognition following a single bout of moderate intensity aerobic exercise effect both basic (i.e., 

laboratory tests) and applied (i.e., scholastic performance) aspects of cognition in preadolescent 

children. Findings from this investigation revealed that following a single 20 minute bout of 

moderately-intense treadmill walking, relative to seated rest, children exhibited improved 

response accuracy in response to a modified flanker task, had selectively larger P3 amplitudes 

for incongruent trials, and better performance on the Wide Range Achievement Test ― 3rd 

edition (Hillman, Pontifex et al., 2009). Collectively, these findings indicate a positive effect of 

single, acute bouts of moderately-intense aerobic exercise and inhibitory aspects of cognitive 

control, which appears to relate to alterations in attentional resource allocation, cognitive 

processing and stimulus classification speed, and scholastic performance. 
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Although the majority of previous investigations on acute exercise and neuroelectric 

indices of cognitive control have focused on the P3-ERP component, only a single study has 

investigated the effect of acute exercise and response-locked action monitoring processes as 

indexed by the ERN-ERP component. Themanson and Hillman (2006) examined action 

monitoring processes in response to a flanker task in a sample of college-aged young adults. 

Findings revealed no relationship between 30 minutes of moderate intensity aerobic exercise and 

neuroelectric indices of action monitoring (Themanson & Hillman, 2006). Thus, these findings 

suggest that acute exercise-induced changes in neuroelectric processes underlying cognitive 

control are selective to the allocation of attentional resources and appear to be unrelated to action 

monitoring processes. It is important to note however, that this investigation only assessed 

college-aged young adults who collectively were performing the flanker task at an accuracy level 

above 90%, which allowed for a relatively small number of error trials to include in ERN 

averages. Thus, further research is necessary to better understand single bout of exercise on 

action monitoring processes under conditions allowing for a greater number of errors to achieve 

a more robust index of the neuroelectric indices underlying action monitoring. Additional 

research is needed to explore other participant populations to better understand the relationship 

between acute exercise and action monitoring processes. Accordingly, with the robust 

relationship between ADHD and reductions in the ERN component underlying action 

monitoring, this population may be primed to examine such an effect. 

Purpose 

Given that a single bout of aerobic exercise exerts a positive effect over the same aspects 

of cognition in which children with ADHD exhibit deficits; this proposal employed a 

neuroelectric perspective to examine the relationship between a single bout of moderately intense 
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aerobic exercise and children with ADHD. Specifically, this proposal sought to understand how 

ADHD-related deficits in neuroelectric indices of response inhibition, attentional resource 

allocation, cognitive processing and stimulus classification speed, and action monitoring 

processes may modulate as a function of acute exercise. Proper control groups (i.e., ‘healthy’, 

age-matched children) and conditions (i.e., seated reading) were implemented for comparison 

purposes. Accordingly, the examination of this relationship provides additional insight into the 

nature of ADHD-related deficits in cognitive control as well as the beneficial influence that 

physical activity has on processes related to cognitive function. 

Rationale 

Despite the growing body of research, the understanding of the relationship between 

single bouts of exercise and cognition remains incomplete, particularly as it relates to 

preadolescent populations. Thus, the present investigation provides insight into the flexible 

modulation of cognitive control processes and its relationship with acute exercise. Further, the 

nature of this relationship was examined in both “normal” prototypical preadolescent children 

and children with ADHD. If a significant relationship exists between acute exercise and 

cognitive control in children with ADHD, these findings may inform about transient non-

pharmaceutical options for the treatment of ADHD, and would support the use of single bouts of 

exercise as a means for improving the cognitive health, academic performance, and overall 

effective functioning of this population. 

Hypothesis 

The first purpose of this investigation was to determine the effects of a single bout of 

aerobic exercise on behavioral and neuroelectric indices of cognition during performance of a 
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task requiring variable amounts of cognitive control in children with Attention-

deficit/hyperactivity Disorder, relative to seated rest. It was predicted that: 

a. Participation in a single bout of aerobic exercise would result in more accurate task 

performance with a selectively larger effect for task conditions requiring greater 

amounts of cognitive control, indicating that aerobic exercise is beneficial to 

behavioral indices of cognitive function. 

b. Participation in a single bout of aerobic exercise would result in an increase in the 

stimulus-locked P3 amplitude and shorter P3 latency, reflecting greater shifts in 

attention and processing speed. Selectively larger effects were predicted for task 

conditions requiring greater amount of cognitive control, indicating that a single bout 

of aerobic exercise is beneficial to neuroelectric indices of attention. 

c. Participation in a single bout of aerobic exercise would result in no changes in the 

stimulus-locked N2 or response-locked ERN, indicating that acute exercise-induced 

changes in cognitive performance are specific to aspects of attention and processing 

speed. 

The second purpose of this investigation was to determine the effects of a single bout of 

aerobic exercise on behavioral and neuroelectric indices of cognition during performance of a 

task requiring variable amounts of cognitive control in children with ADHD, relative to healthy 

match-control children. It was predicted that: 

a. At rest, differences in children with ADHD, relative to healthy match-control 

children, would manifest as less accurate performance, smaller N2 and P3 amplitudes, 

longer P3 latency, and reduced ERN amplitude, indicating impairments in inhibitory 

aspects of cognitive control. 
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b. Participation in a single bout of aerobic exercise would result in a reduction of 

ADHD-related deficits in task performance and P3 amplitude and latency, such that 

differences between groups would no longer be apparent.  
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Chapter 3 

Methodology 

The relationship between a single bout of aerobic exercise and modulations in cognitive 

control in children with ADHD was investigated. A sample of preadolescent children with 

ADHD and healthy match-control children were recruited from the East Central Illinois area. 

Each participant underwent neuroelectric and behavioral assessment during the completion of 

two conditions of a modified flanker task following 20 minutes of aerobic exercise and 20 

minutes of reading. 

Participants and Recruitment 

A total of 20 ADHD (6 female) and 20 healthy match-control (6 female) preadolescent 

children between the ages of 8 and 10 from the East Central Illinois area were recruited to 

participate. ADHD participants were recruited from the general community population based on 

suspected or diagnosed attention deficit/hyperactivity disorder. Clinical status was verified 

through the ADHD supplement of the Kiddie-Sads-Present and Lifetime Version (K-SADS) 

semi-structured diagnostic interview using DSM-IV-TR criteria for any subtype of ADHD, 

including evidence for impairment in two or more settings and onset of symptoms before 7 years 

of age (American Psychiatric Association, 2000). Quantification of the clinical characteristics 

were assessed using the ADHD Rating Scale IV – Parent Version (DuPaul, Power, 

Anastopoulos, & Reid, 1998), the Child Behavioral Checklist – Parent Version (Achenbach & 

Rescorla, 2001), the Disruptive Behavior Rating Scale – Parent Version (Erford, 1993), and the 

Social Communication Questionnaire (Rutter, Bailey, & Lord, 2003). Children with ADHD 

scoring high on the oppositional defiance disorder (ODD) subscale of the Disruptive Behavior 

Rating Scale were retained given the high comorbidity between ADHD and ODD (Jenson, 



 

29 

Martin, & Cantwell, 1997). All participants provided written assent and their legal guardians 

provided written informed consent in accordance with the Institutional Review Board of the 

University of Illinois at Urbana-Champaign and Carle Foundation Hospital. All participants were 

administered the Kaufman Brief Intelligence Test (K-BIT; Kaufman & Kaufman, 1990) by a 

trained experimenter to assess intelligence quotient, and completed the Eidenburgh Handedness 

Inventory (Oldfield, 1971) to determine hand dominance. Socioeconomic status (SES) was 

determined using a trichotomous index based on: participation in free or reduced-price lunch 

program at school, the highest level of education obtained by the mother and father, and number 

of parents who worked full-time (Hillman et al., in press). Healthy match-control children were 

yoked by sex, age, pubertal status, and SES; which are factors known to influence cognitive 

function in this age group.  

Exclusionary criteria. 

Non-consent of the child or the child’s guardian resulted in the participant being excluded 

from the investigation. Any participant outside of the 8-10 year old age range was not included 

as a result of individual differences in the onset of puberty and its effects on ERP measures 

(Davies, Segalowitz, & Gavin, 2004). That is, significant findings may be confounded by the fact 

that some of the participants may enter puberty at an earlier age than others, and the occurrence 

of this confound increases with age. To ensure that all study participants were in the earliest 

stages of puberty or have not yet begun pubertal changes, any participant with a score greater 

than 2 on the modified Tanner Staging Scales (Taylor et al., 2001) was excluded from the 

investigation. Any participant who was not capable of performing exercise based on the Physical 

Activity Readiness Questionnaire (PAR-Q; Thomas, Reading, & Shephard, 1992) and/or Health 

History & Demographics Questionnaire was excluded from the investigation for their safety. 
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Similarly, all participants had normal or corrected to normal vision, and were free of any central 

nervous system-active pharmacologic therapy for at least 1 month prior to testing. However, no 

participant was taken off medication specifically for this investigation. All participants were 

screened for autism spectrum disorders using the Social Communication Questionnaire with 

scores above 15 resulting in exclusion (Rutter et al., 2003), and affective disorders (including 

depressive and bipolar disorders), anxiety disorders, conduct disorders, and somatic disorders 

using the Child Behavioral Checklist with DSM-oriented scores falling above the 97th percentile 

resulting in exclusion (Achenbach & Rescorla, 2001). Children with ADHD were screened to 

ensure that they were currently exhibiting ongoing ADHD symptoms as indicated by a score at 

or above the 90th percentile on the ADHD Rating Scale-IV. Inclusionary criteria for all 

participants, as well as specific inclusionary criteria for ADHD and healthy-control participants 

are provided in Table 3.1. 

Power Analysis 

An a priori power analysis was conducted to estimate the appropriate sample size 

necessary for detecting an effect of acute aerobic exercise on P3 amplitude given the inclusion of 

potentially confounding variables (i.e., age, sex, IQ, and SES). An effect size was calculated 

from the results reported in Hillman, Pontifex et al. (2009) for the effect of acute aerobic exercise 

on P3 amplitude in healthy preadolescent children. Specifically, Hillman, Pontifex, and 

colleagues (2009) observed increased P3 amplitude following acute exercise (M=8.6 μV, 

SD=3.67) relative to rest (M=5.5 μV, SD=4.16) resulting in a moderate-to-large effect size 

(Cohen’s d = 0.79). To determine the appropriate sample size necessary for detecting differences 

between children with ADHD and healthy match-controls in cognitive control tasks, a moderate 

effect size (Cohen’s d = 0.54) is provided by a recent meta-analysis conducted by Willcut et al. 
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(2005). Therefore, conservatively assuming the smaller effect size (d = 0.54), two-sided alpha of 

.05, and beta of .20 (i.e., 80% power), a sample size of 20 participants per group should yield a 

final sample size appropriate for adequate power.  

Cognitive Control Task 

Participants completed a modified version of the Eriksen flanker task (Eriksen & Eriksen, 

1974) in which participants were instructed to respond as accurately as possible to the direction 

of a centrally presented target fish amid either congruous or incongruous flanking fish (see figure 

3.1; Hillman et al., 2006; Pontifex & Hillman, 2007). The task also manipulated stimulus-

response compatibility to vary cognitive control requirements by instructing participants to first 

complete a compatible condition (described above) and then complete an incompatible condition 

whereby participants were instructed to respond as quickly and accurately as possible in the 

direction opposite that of the centrally presented target arrow (Friedman et al., 2009; Pontifex et 

al., 2011). This task manipulated task difficulty through multiple levels of conflict (i.e., 

perceptual and response conflict) such that incongruent trials presented during the incompatible 

response condition should necessitate the greatest amount of inhibitory control. For each 

compatibility condition, two blocks of 100 trials were presented with equiprobable congruency 

and directionality. The stimuli were 3 cm tall yellow fish, which were presented focally for 200 

ms on a blue background with a fixed inter-stimulus interval of 1700 ms. This task results in a 

number of behavioral performance indices of interest. In particular, primary analysis utilized 

reaction time (RT; i.e., time in ms from the presentation of the stimulus) and response accuracy 

(i.e., number of correct and error responses) measures in addition to interference score measures 

(incongruent – congruent). Additional mean response latencies were calculated within each 

participant for: 1) correct trials, 2) error trials, 3) matched-correct trials (the subset of correct 



 

32 

trials matched to specific error trials based on RT), 4) correct trials following an error trial, and 

5) correct trials following a matched-correct trial. Stimulus presentation, timing, and 

measurement of behavioral response time and accuracy was controlled by Neuroscan Stim (v 

2.0) software. 

Neuroelectric Assessment 

Electroencephalographic (EEG) activity was recorded from 64 sintered Ag-AgCl 

electrode (10 mm) sites (FPz, Fz, FCz, Cz, CPz, Pz, POz, Oz, FP1/2, F7/5/3/1/2/4/6/8, FT7/8, 

FC3/1/2/4, T7/8, C5/3/1/2/4/6, M1/2, TP7/8, CB1/2, P7/5/3/1/2/4/6/8, PO7/5/3/4/6/8, O1/2) 

arranged in an extended montage based on the International 10-10 system (Chatrian, Lettich, & 

Nelson, 1985) using a Neuroscan Quik-cap (Compumedics, Inc, Charlotte, NC). Recordings 

were referenced to averaged mastoids (M1, M2), with AFz serving as the ground electrode, and 

impedance less than 10kΩ. Additional electrodes were placed above and below the left orbit and 

on the outer canthus of each eye to monitor electro-oculographic (EOG) activity with a bipolar 

recording. Continuous raw EEG data was collected using Neuroscan Scan software (v 4.5) 

through a Neuroscan Synamps 2 amplifier with a 24 bit A/D converter and +/- 200 millivolt 

(mV) input range (763 µV/bit resolution) at a sampling rate of 500 Hz, amplified 500 times with 

a DC to 70 Hz filter, and a 60 Hz notch filter. Continuous data was corrected offline for EOG 

artifacts using a spatial filter (Compumedics Inc, Neuroscan, 2003). The spatial filter procedure 

utilizes a spatial singular value decomposition (SVD) analysis that performs a Principle 

Component Analysis (PCA) approach to determine the major components that characterize the 

covariance matrix of the EOG artifact between all channels. This procedure then reconstructs all 

of the original channels without the artifact components from the SVD analysis (Compumedics 

Inc, Neuroscan, 2003). 
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Stimulus-locked epochs were created for correct trials from -100 to 1000 ms around the 

stimulus, baseline corrected using the -100 to 0 ms pre-stimulus period, and filtered using a zero 

phase shift low-pass filter at 30Hz (24 dB/octave). Additional screening for artifact in the EEG 

signal was conducted using a P3-screening procedure in which a 2 Hz half-sine wave template 

was shifted across a 300-700 ms window from the centro-parietal (CPz) and parietal electrode 

(Pz) sites to identify when a P3 was absent (Ford, White, Lim, & Pfefferbaum, 1994) or if an 

amplitude excursion of ± 75 μV occurred. Artifact-free data that were accompanied by correct 

responses were averaged. The N2 and P3 components were evaluated as the mean amplitude 

within a 50 ms interval surrounding the largest negative going peak within a 150 – 350 ms 

latency window and the largest positive going peak within a 300 – 700 ms latency window, 

respectively (Gamer & Berti, 2010; Sass et al., 2010). Amplitude was measured as the difference 

between the mean pre-stimulus baseline and mean peak-interval amplitude; peak latency was 

defined as the time point corresponding to the maximum peak amplitude. 

Response-locked epochs were created from -600 to 1000 ms around the response, 

baseline corrected using the -400 to -200 ms pre-response period (Olvet & Hajcak, 2009; 

Pontifex et al., 2010), and filtered using a zero phase shift 1 Hz (24 dB/octave) to 12 Hz (24 

dB/octave) band-pass filter. Average ERP waveforms were created for error of commission trials 

and correct trials, which were individually matched (without replacement) to an error of 

commission trial with the closest possible RT latency (Coles, Scheffers, & Holroyd, 2001), to 

account for potential artifacts that may exist due to differences in response latency between 

correct and incorrect trials (Falkenstein et al., 2001; Mathewson, Dywan, & Segalowitz, 2005). 

Trials with an error of omission or artifact exceeding ±75 µV were rejected. The ERN 
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component was evaluated as the mean amplitude within a 50 ms interval surrounding the largest 

negative going peak within a 0 – 150 ms window relative to the response.  

Academic Achievement Assessment 

Participants completed the Wide Range Achievement Test - 3
rd

 edition (WRAT3; Wide 

Range, Inc., Wilmington, DE) to assess aptitude in reading, spelling, and arithmetic. The 

WRAT3 allows for repeated administration through the use of two equivalent forms designed 

specifically for pre- and post- intervention testing (Wilkinson, 1993). The WRAT3 is strongly 

correlated with the California Achievement Test – Form E and the Stanford Achievement Test 

(Wilkinson, 1993). Administration of the WRAT3 was conducted by trained experimenters with 

the order of the subtests presented in a counterbalanced order with the duration of the assessment 

taking approximately 15 minutes. 

Cardiorespiratory Fitness Assessment 

Maximal oxygen consumption (VO2max) was measured using a computerized indirect 

calorimetry system (ParvoMedics True Max 2400) with averages for oxygen uptake (VO2) and 

respiratory exchange ratio (RER) assessed every 20 seconds. A modified Balke protocol (ACSM, 

2006) was employed using a motor-driven treadmill at a constant speed with increases in grade 

increments of 2.5% every two minutes until volitional exhaustion occurred. A Polar heart rate 

monitor (Polar WearLink®+ 31, Polar Electro, Finland) was used to measure HR throughout the 

test and ratings of perceived exertion (RPE) were assessed every two minutes using the 

children’s OMNI scale (Utter, Roberson, Nieman, & Kang, 2002). The children’s OMNI scale 

for RPE uses a numerical scale from 0 to 10, with a score of 2 indicating “a little tired” and a 

score of 9 indicating “very, very tired”, with associated pictographs representing perceived 

physical effort. Relative peak oxygen consumption was expressed in ml/kg/min and was based 
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upon maximal effort as evidenced by: 1) a plateau in oxygen consumption corresponding to an 

increase of less than 2 ml/kg/min despite an increase in workload, 2) a peak heart rate > 185 bpm 

(ACSM, 2006) and a heart rate plateau (Freedson & Goodman, 1993); 3) RER > 1.0 (Bar-Or, 

1983); and/or 4) ratings on the children’s OMNI scale of perceived exertion > 8 (Utter et al., 

2002). 

Procedure 

A within-participants design had participants visit the laboratory on three separate days in 

which they had not previously participated in physical education or other structured physical 

activities. During the first visit, participants and their legal guardians were provided a detailed 

explanation of the purpose of the research and its potential risks and were given the opportunity 

to ask questions prior to obtaining informed written assent from the participant and consent from 

their legal guardian. Following completion of the informed consent/assent, participants 

completed the Edinburgh Handedness Inventory (Oldfield, 1971), the K-BIT (Kaufman & 

Kaufman, 1990), and a VO2max test. Concurrently, participants’ legal guardians completed the 

Physical Activity Readiness Questionnaire (Thomas et al., 1992), the modified Tanner Staging 

System questionnaire (Taylor et al., 2001), the Social Communication Questionnaire (Rutter et 

al., 2003), the Child Behavioral Checklist (Achenbach & Rescorla, 2001), the ADHD Rating 

Scale IV (DuPaul et al., 1998), the Disruptive Behavior Rating Scale (Erford, 1993), and a health 

history and demographics questionnaire.  

Participants were then counterbalanced into two different session orders such that half of 

the participants received the resting session on the second day and the aerobic exercise session 

on the third day. The other half received the aerobic exercise session on the second day and the 

resting session on the third day. During each visit, heart rate (HR) was measured at 2 minute 
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intervals throughout the entire session using a Polar heart rate monitor (Polar WearLink®+ 31, 

Polar Electro, Finland). The experimental conditions consisted of 20 minutes of either seated 

reading or aerobic exercise on a motor-driven treadmill at an intensity between 65% and 75% of 

their maximum heart rate (M = 70.2 ± 0.8% HRmax). Following the completion of the 

experimental conditions, participants were outfitted with an electrode cap and provided task 

instructions and forty practice trials. Once HR returned to within 10% of pre-experimental 

condition levels, the two conditions of the modified flanker task were preformed (Compatible: 

16.0 ± 0.6 minutes post exercise; Incompatible: 27.4 ± 0.8 minutes post exercise) followed by 

administration of the WRAT3 (38.1 ± 1.4 minutes post exercise). Upon completion of the study, 

participants and their legal guardians were briefed on the purpose of the experiment and received 

$40 remuneration ($10/hour) for their involvement in the experiment. 

Statistical Analysis 

All statistical analyses were conducted using a significance level of p = .05, and analyses 

with three or more within-subjects levels used the Greenhouse-Geisser statistic with subsidiary 

univariate ANOVAs and Bonferroni corrected t tests for post hoc comparisons. The family-wise 

alpha level was set at 0.05. Prior to hypothesis testing, preliminary analysis were conducted to 

ensure that the ADHD and healthy match-control group did not significantly differ on any factors 

known to influence cognitive function in this age group (e.g., SES, age, pubertal timing, sex, 

etc.). Additionally, analysis were conducted to examine the order in which the sessions occurred 

to ensure that the observed effects were not due to the specific order in which participants 

received the exercise and rest conditions. These analyses employed an additional between-

subjects variable with two levels (Session Order: Post Reading, Post Exercise vs. Post Exercise, 

Post Reading) to the analyses described below for each dependent measure.  
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Analysis of task performance measures (median RT and response accuracy) was 

conducted separately using a 2 (Group: ADHD, Healthy Match-Control) × 2 (Session: Post 

Exercise, Post Reading) × 2 (Compatibility: Compatible, Incompatible) × 2 (Congruency: 

Congruent, Incongruent) multivariate repeated measures ANOVA. Secondary analyses examined 

task performance interference scores using a 2 (Group: ADHD, Healthy Match-Control) × 2 

(Session: Post Exercise, Post Reading) × 2 (Compatibility: Compatible, Incompatible) 

multivariate repeated measures ANOVA. Post trial task performance was also assessed using a 2 

(Group: ADHD, Healthy Match-Control) × 2 (Session: Post Exercise, Post Reading) × 2 

(Compatibility: Compatible, Incompatible) × 2 (Accuracy: Post Error, Post Match Correct) 

multivariate repeated measures ANOVA. 

The N2 and P3 ERP components were assessed separately for amplitude and latency 

using a 2 (Group: ADHD, Healthy Match-Control) × 2 (Session: Post Exercise, Post Reading) × 

2 (Compatibility: Compatible, Incompatible) × 2 (Congruency: Congruent, Incongruent) × 7 

(Site: Fz, FCz, Cz, CPz, Pz, POz, Oz) multivariate repeated measures ANOVA. The ERN 

component was assessed at the FCz electrode site (Carter et al., 1998; Dehaene et al., 1994; 

Miltner et al., 2003) using a 2 (Group: ADHD, Healthy Match-Control) × 2 (Session: Post 

Exercise, Post Reading) × 2 (Accuracy: Error, Match Correct) multivariate repeated measures 

ANOVA. 

Finally, analysis of academic achievement was conducted separately for each academic 

achievement subject (reading comprehension, spelling, arithmetic) using a 2 (Group: ADHD, 

Healthy Match-Control) × 2 (Session: Post Exercise, Post Reading) repeated measures ANOVA. 
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Tables 

Table 3.1.  

Inclusion Criteria for Participant Acceptance into the Current Project 

Inclusion Criteria for All Participants 

1. 8–10 years of age 

2. Physically capable of performing exercise based on the PAR-Q and the Health History & 

Demographics Questionnaire. 

3. Normal or corrected-to-normal vision 

4. Free of any central nervous system-active pharmacologic therapy for at least 1 month prior to 

testing. However, no participant was taken off medication specifically for this investigation. 

5. Pubertal status at or below 2 on the Tanner Staging System questionnaire. 

6. Free of autistic spectrum disorders with scores below 15 on the Social Communication 

Questionnaire. 

7. Free of affective disorders (including depressive and bipolar disorders), anxiety disorders, 

conduct disorders, and somatic disorders using the Child Behavioral Checklist with DSM-

oriented scores falling below the 93rd percentile. 

8. K-BIT composite score at or above 85. 

Inclusion Criteria for ADHD participants Inclusion Criteria Healthy-Control participants 

1. Verified clinical status using the ADHD 

supplement of the K-SADS semi-structured 

diagnostic interview using DSM-IV-TR 

criteria for any subtype of ADHD, including 

evidence for impairment in two or more 

settings and onset of symptoms before 7 

years of age. 

1. Free of ADHD disorders as measured by a: 

a. Score below the 80th percentile on the 

ADHD Rating Scale IV – Parent Version  

b. T-score below 60 on the Disruptive 

Behavior Rating Scale – Parent Version  

c. Score below the 93rd percentile on the 

DSM-oriented scale of Attention Deficit 

/Hyperactivity problems of the Child 

Behavioral Checklist. 

2. Ongoing ADHD symptoms as indicated by a 

score at or above the 90th percentile on the 

ADHD Rating Scale-IV. 
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Figures 

Figure 3.1. Illustration of the congruent (A) and incongruent (B) fish stimuli used in the modified 

flanker task. 
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Chapter 4 

Results 

The results section is organized according to dependent measure. First, participant 

characteristics are reported in relation to ADHD status. Second, task performance measures of 

median reaction time, response accuracy, interference scores, and post trial performance are 

reviewed. Next, analyses of the neuroelectric components are provided (N2, P3, and ERN) with 

amplitude presented first followed by latency within each component. Finally, academic 

achievement findings are reviewed. 

Participant Characteristics 

Participant demographics and clinical characteristics are provided in Table 4.1. No 

significant differences between groups were observed for Age, Pubertal Timing, IQ, or SES, t’s 

(38) ≤ 1.6, p’s ≥ 0.116, confirming the efficacy of the participant matching procedure. Clinical 

characteristics of the ADHD group, split based upon ADHD subtype using the K-SADS 

diagnostic interview classification, are provided in Table 4.2. No significant differences in HR 

were observed between ADHD and healthy match-control groups for any condition, t’s (38) ≤ 

1.3, p’s ≥ 0.207 (see Figure 4.1). 

Preliminary analyses were performed to test whether Session Order, which was 

counterbalanced across participants, was related to any of the dependent variables. Findings 

revealed no significant main effects or interactions involving Session Order for any variable, F‘s 

(1,38) ≤ 3.2, p ≥ 0.08, ηp
2
 ≤ 0.08. Thus, all further analyses were collapsed across Session Order. 

Task Performance 

Reaction time. 
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Analysis revealed main effects of Compatibility, with longer RT latency for the 

incompatible (509.0 ± 17.2 ms) relative to the compatible (493.0 ± 17.4 ms) condition, F (1,38) 

= 6.9, p = 0.01, ηp
2
 = 0.15; and Congruency, with longer RT latency for incongruent (515.6 ± 

17.1 ms) relative to congruent (486.5 ± 17.0 ms) trials, F (1,38) = 198.3, p < 0.001, ηp
2
 = 0.84. 

No main effects or interactions involving Group or Session were observed for RT latency, F‘s 

(1,38) ≤ 2.8, p ≥ 0.1, ηp
2
 ≤ 0.07 (see Figure 4.2). 

Response accuracy. 

Analysis revealed main effects of Group, with decreased response accuracy for the 

ADHD (81.8 ± 2.7 %) relative to the control (88.8 ± 1.3 %) group, F (1,38) = 5.4, p = 0.026, ηp
2
 

= 0.12; and Session, with increased response accuracy post exercise (87.1 ± 1.7 %) relative to 

post reading (83.5 ± 1.8 %), F (1,38) = 7.1, p = 0.011, ηp
2
 = 0.16 (see Figure 4.2). Further, main 

effects of Compatibility,  F (1,38) = 16.1, p < 0.001, ηp
2
 = 0.3; and Congruency,  F (1,38) = 58.8, 

p < 0.001, ηp
2
 = 0.6, were observed with increased response accuracy for compatible (86.7 ± 1.5 

%) and congruent (87.8 ± 1.4 %) trials relative to incompatible (83.8 ± 1.7 %) and incongruent 

(82.7 ± 1.7 %) trials. 

Interference score. 

No significant findings were observed for median RT latency or response accuracy 

interference scores, F‘s (1,38) ≤ 3.4, p ≥ 0.07, ηp
2
 ≤ 0.08. 

Post trial performance. 

Analysis of post-trial latency revealed a main effect of Accuracy, F (1,38) = 20.3, p < 

0.001, ηp
2
 = 0.35, which was superseded by an interaction of Group × Session × Accuracy, F 

(1,38) = 6.2, p = 0.017, ηp
2
 = 0.14. Decomposition of the Group × Session × Accuracy 

interaction occurred by assessing Group × Session within each accuracy condition and revealed 
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greater post-error slowing following the exercise condition (579.4 ± 35.1 ms) relative to 

following the reading condition (500.3 ± 32.4 ms) only for the ADHD group, t (19) = 3.0, p = 

0.008, see Figure 4.3. A main effect of Compatibility, F (1,38) = 13.8, p = 0.001, ηp
2
 = 0.27, was 

also observed with increased post-trial latency for incompatible (525.0 ± 18.8 ms) relative to 

compatible (492.3 ± 17.9 ms) trials. No main effects or interactions involving Group or Session 

were observed for post-trial accuracy, F‘s (1,38) ≤ 3.0, p ≥ 0.09, ηp
2
 ≤ 0.07. 

Event-related Brain Potentials 

Preliminary analyses were conducted on the number of trials included in both stimulus-

locked ERP averages and response-locked ERP averages to ensure that any observed effects 

were not the result of different numbers of included trials. Analyses of the number of trials 

included in stimulus-locked averages revealed no significant differences for any of the dependent 

variables of interest, F‘s (1,38) ≤ 2.4, p ≥ 0.13, ηp
2
 ≤ 0.06. Analysis conducted on the number of 

error/correct trials included in response-locked ERP averages similarly revealed no significant 

differences for any of the dependent variables of interest, F‘s (1,34) ≤ 3.6, p ≥ 0.07, ηp
2
 ≤ 0.09. 

N2. 

Amplitude. 

Figure 4.4 illustrates the grand average stimulus-locked ERP waveforms for each group 

and session. Analysis of N2 amplitude revealed main effects of Session, F (1,38) = 12.5, p = 

0.001, ηp
2
 = 0.25; and Site, F (6,38) = 15.2, p < 0.001, ηp

2
 = 0.29; which were superseded by an 

interaction of Session × Site, F (6,38) = 4.8, p = 0.008, ηp
2
 = 0.11. Decomposition of the 

interaction of Session × Site revealed reduced N2 amplitude following exercise relative to 

following reading at the Fz, FCz, Cz, and CPz electrode sites, t’s (39) ≥ 3.5, p ≤ 0.001. A main 
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effect of Compatibility, F (1,38) = 13.0, p = 0.001, ηp
2
 = 0.25, was also observed with larger N2 

amplitude for compatible (-3.2 ± 0.7 µV) relative to incompatible (-1.6 ± 0.6 µV) trials. 

Latency. 

Analysis of N2 latency revealed a main effect of Session, F (1,38) = 12.1, p = 0.001, ηp
2
 

= 0.24, which was superseded by an interaction of Group × Session × Congruency, F (1,38) = 

8.2, p = 0.007, ηp
2
 = 0.18. Decomposition of the Group × Session × Congruency interaction was 

conducted by assessing Group × Session within each congruency condition (see Figure 4.5). 

Analysis of Group × Session within congruent trials revealed a main effect of Session, F (1,38) = 

8.6, p = 0.006, ηp
2
 = 0.19, which was superseded by a Group × Session interaction, F (1,38) = 

4.1, p = 0.049, ηp
2
 = 0.1. Decomposition of the Group × Session interaction within congruent 

trials revealed longer N2 latency for the ADHD group (273.7 ± 8.9 ms) relative to the Healthy 

Match-Control group (249.0 ± 5.3 ms) only following reading, t (38) = 2.4, p = 0.023. No group 

differences in N2 latency were observed following exercise (ADHD: 248.2 ± 8.1 ms; Healthy 

Match-Control: 244.3 ± 5.7 ms), t (38) = 0.4, p = 0.7. Analysis of Group × Session within 

incongruent trials only revealed a main effect of Session, F (1,38) = 12.5, p = 0.001, ηp
2
 = 0.25, 

with shorter N2 latency following exercise (245.4 ± 5.2 ms) relative to following reading (264.1 

± 5.4 ms). A main effect of Site, F (6,38) = 7.0, p = 0.001, ηp
2
 = 0.16, was also observed with 

shorter N2 latency for the Cz and CPz electrode sites relative to the Fz and FCz electrode sites, 

t’s (39) ≥ 4.4, p ≤ 0.001. 

P3. 

Amplitude. 

Figure 4.4 illustrates the grand average stimulus-locked ERP waveforms for each group 

and session. Analysis of P3 amplitude revealed main effects of Session, F (1,38) = 25.9, p < 
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0.001, ηp
2
 = 0.41, with increased P3 amplitude following exercise (10.9 ± 0.6 µV) relative to 

following reading (7.9 ± 0.5 µV); and Site, F (6,38) = 7.8, p < 0.001, ηp
2
 = 0.17, with smaller P3 

amplitude at Fz relative to all other electrode sites, t’s (39) ≥ 3.7, p ≤ .001. A main effect of 

Group was also observed, F (1,38) = 4.3, p = 0.044, ηp
2
 = 0.1; which was superseded by an 

interaction of Group × Congruency, F (1,38) = 5.9, p = 0.02, ηp
2
 = 0.14. Decomposition of the 

Group × Congruency interaction revealed smaller P3 amplitude for the ADHD group (7.8 ± 0.6 

µV) relative to the Healthy Match-Control group (10.1 ± 0.6 µV), only for incongruent trials, t 

(38) = 2.8, p = 0.009. 

Latency. 

Analysis of P3 latency revealed main effects of Session, F (1,38) = 13.0, p = 0.001, ηp
2
 = 

0.25; and Site, F (6,38) = 12.5, p < 0.001, ηp
2
 = 0.25; which were superseded by an interaction of 

Session × Site, F (6,38) = 3.1, p = 0.025, ηp
2
 = 0.08. Decomposition of the Session × Site 

interaction revealed shorter P3 latency following exercise relative to following reading only at 

the FCz, Cz, and CPz electrode sites, t’s (39) ≥ 3.1, p ≤ 0.004 (see Figure 4.6). Main effects of 

Compatibility,  F (1,38) = 9.2, p = 0.004, ηp
2
 = 0.2; and Congruency,  F (1,38) = 14.8, p < 0.001, 

ηp
2
 = 0.28, were also observed with shorter P3 latency for compatible (401.7 ± 8.2 ms) and 

congruent (401.6 ± 7.8 ms) trials relative to incompatible (417.9 ± 7.8 ms) and incongruent 

(418.0 ± 7.9 ms) trials. 

ERN. 

Previous research has established that a minimum of six error of commission trials are 

necessary to obtain a stable ERN component (Olvet & Hajcak, 2009; Pontifex et al., 2010). 

Accordingly, an insufficient number of participants (N = 12 ADHD, 11 Healthy Match-Control) 

exhibited the necessary number of trials within each compatibility condition to parse the separate 
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effects of Group and Session on ERN amplitude within each compatibility condition. 

Accordingly, compatible and incompatible trials were collapsed after matching error and correct 

trials within each compatibility. Remaining participants with fewer than six errors of commission 

were discarded from analysis of the ERN component (N = 4; 2 ADHD), leaving a total of 36 

participants. No significant differences between Groups were observed in this subset of 

participants for Age, Pubertal Timing, IQ, or SES, t’s (34) ≤ 1.8, p’s ≥ 0.089.  

Analysis of ERN amplitude revealed a main effect of Accuracy, F (1,34) = 115.9, p < 

0.001, ηp
2
 = 0.77, which was superseded by interactions of Session × Accuracy, F (1,34) = 7.5, p 

= 0.01, ηp
2
 = 0.18, and Group × Session × Accuracy, F (1,34) = 5.4, p = 0.026, ηp

2
 = 0.14. 

Decomposition of the Group × Session × Accuracy interaction was conducted by assessing 

Group × Session within each accuracy condition. Analysis of Group × Session within error trials 

revealed an interaction of Group × Session, F (1,34) = 4.1, p = 0.05, ηp
2
 = 0.11, with smaller 

ERN amplitude for the ADHD group (-7.3 ± 1.1 µV) relative to the Healthy Match-Control 

group (-11.2 ± 1.1 µV) only following the reading session, t (34) = 2.5, p = 0.017 (see Figure 

4.7). No group differences were observed following exercise, t (34) = 0.03, p = 0.98. Similarly, 

analysis of Group × Session within match-correct trials revealed no main effects or interactions 

involving Group or Session, F‘s (1,34) ≤ 1.6, p ≥ 0.21, ηp
2
 ≤ 0.05. 

Academic Achievement 

Analysis of the three subtest of the WRAT3 revealed main effects of Session for reading 

comprehension, F (1,38) = 20.1, p < 0.001, ηp
2
 = 0.35; and arithmetic, F (1,38) = 5.0, p = 0.032, 

ηp
2
 = 0.12; with increased performance following exercise (reading comprehension: 115.2 ± 2.2; 

arithmetic: 112.5 ± 2.7) relative to following reading (reading comprehension: 110.1 ± 1.8; 
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arithmetic: 110.0 ± 3.1). No main effects or interactions involving Group or Session were 

observed for spelling, F‘s (1,38) ≤ 2.2, p ≥ 0.15, ηp
2
 ≤ 0.05 (see Figure 4.8). 
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Tables 

Table 4.1.  

Participant demographic values (± 1 SE). 

Measure ADHD Healthy  

Match-Control 

N 20 (6 females) 20 (6 females) 

Age (years) 9.5 ± 0.2 9.8 ± 0.14 

Tanner stage 1.4 ± 0.1 1.4 ± 0.1 

K-BIT composite (IQ) 112.3 ± 2.7 118.7 ± 2.9 

Socioeconomic status (SES) 2.3 ± 0.2 2.3 ± 0.2 

ADHD rating scale-IV (composite) 97.0 ± 1.1
†
 31.3 ± 4.2

†
 

Disruptive behavior rating scale 

(composite ADHD) 

61.9 ± 2.5
†
 44.8 ± 1.0

†
 

Oppositional defiance disorder score 52.3 ± 2.2
†
 43.7 ± 1.0

†
 

Autism spectrum disorder score 5.7 ± 0.7 3.5 ± 0.8 

Body mass index (kg/m
2
) 17.3 ± 0.6 20.0 ± 1.2 

VO2max (ml/kg/min) 
43.0 ± 1.1 40.5 ± 1.1 

HRmax (bpm) 187.9 ± 2.7 190.2 ± 2.9 

Note: ADHD rating scale-IV – percentile for the composite subscale of the ADHD-IV rating 

scale. Disruptive behavior rating scale – T-score from the DBRS distractible and impulsive-

hyperactive subscales. Oppositional defiance disorder score – T-score from the DBRS 

oppositional defiance disorder subscale. Autism spectrum disorder score – total score on the 

Social Communication Questionnaire. 
†
 p ≤ 0.001.
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Table 4.2.  

Clinical characteristics of the ADHD group (±1 SE). 

 ADHD Subtype 

Measure ADHD-C ADHD-I ADHD-H 

N 6 (2 females) 11 (3 females) 3 (1 female) 

K-SADS inattentive symptoms 7.3 ± 0.3 7.0 ± 0.3 3.7 ± 1.3 

K-SADS impulsive/hyperactive 

symptoms 

6.5 ± 0.2 3.3 ± 0.4 8.0 ± 1.0 

ADHD-IV composite percentile 98.2 ± 1.3 98.2 ± 0.7 90.0 ± 5.5 

ADHD-IV inattentive percentile 92.7 ± 4.1 92.0 ± 2.2 62.3 ± 12.3 

ADHD-IV impulsive/hyperactive 

percentile 

94.5 ± 2.1 80.5 ± 6.1 91.3 ± 0.9 

DBRS distractible subscale T-score 66.2 ± 6.5 64.7 ± 3.5 49.3 ± 2.9 

DBRS impulsive-hyperactive subscale 

T-score 

65.5 ± 4.5 59.8 ± 3.2 56.0 ± 6.4 

DBRS oppositional defiance disorder 

subscale T-score 

57.0 ± 3.5 51.0 ± 3.3 47.7 ± 4.3 

Autism spectrum disorder score 7.0 ± 1.1 4.6 ± 1.0 7.3 ± 0.9 

Note: ADHD subtype was based upon K-SADS diagnostic interview classification. Percentiles 

greater than or equal to 90 on the ADHD-IV rating scale indicate high likelihood for the presence 

of ADHD. T-scores below 60 on the DBRS are considered to be normal behavioral ratings. 

Autism spectrum disorder scores below 15 indicate the absence of autism spectrum disorders. 
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Figures 

 

Figure 4.1. Mean HR (± SE) over the course of each of the experimental sessions by group. 
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Figure 4.2. Mean (± SE) response accuracy (A) and median (± SE) reaction time (B) for each 

session by group collapsed across compatibility and congruency conditions. 
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Figure 4.3. Mean (± SE) post error latency for each session by group collapsed across 

compatibility and congruency conditions. 
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Figure 4.4. Stimulus-locked grand-average waveforms for each group and session collapsed 

across compatibility and congruency conditions.
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Figure 4.5. Mean (± SE) N2 latency for each session by group for congruent (A) and incongruent 

(B) trials collapsed across compatibility conditions. 
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Figure 4.6. Mean (± SE) P3 latency for each session by midline electrode site collapsed across 

group and the compatibility and congruency conditions.. 
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Figure 4.7. Response-locked grand-average waveforms for error (A) and match-correct (B) 

trials. 
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Figure 4.8. Mean (± SE) standard score for each session on each of the three WRAT3 

achievement tests. 
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Chapter 5 

Discussion 

In this investigation, the extent to which a single bout of moderate-intensity aerobic 

physical activity might be effective in transiently improving behavioral and neuroelectric deficits 

in cognition associated with ADHD was assessed. Findings revealed that acute exercise served to 

enhance neuroelectric and behavioral indices of performance in children with ADHD and healthy 

controls. Specifically, following 20 minutes of aerobic exercise, both children with ADHD and 

healthy match-control children exhibited greater overall response accuracy across compatibility 

conditions of the modified flanker task; relative to following a similar duration of seated rest in 

which they were afforded the opportunity to read literature of their choosing. Neuroelectric 

findings revealed decreased N2 amplitude, increased P3 amplitude, and shorter N2 and P3 

latency following exercise, relative to following reading; suggesting that a single bout of exercise 

served to reduce response conflict and enhance the allocation of attentional resources, response 

selection processes, and stimulus classification/processing speed. Further, children with ADHD 

exhibited additional exercise induced enhancements in cognition, with facilitations in action 

monitoring processes and greater post-error slowing following exercise, relative to following 

reading. Scholastic benefits were also observed following exercise, in that both children with 

ADHD and healthy match-control children exhibiting improved performance on academic 

achievement tests of reading comprehension and arithmetic. Thus, these data indicate that acute 

exercise might serve as a transient, cost-effective means for improving the cognitive health, 

academic performance, and overall effective functioning of both “normal” prototypical 

preadolescent children and children with ADHD. 

Task Performance 
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Replicating previous investigations, deficits in inhibitory control were observed for 

children with ADHD, with decreased overall response accuracy relative to healthy match-control 

children (Albrecht et al., 2008; Booth et al., 2007; Crone et al., 2003; Jonkman et al., 1999; 

Konrad et al., 2006; Scheres et al., 2004; Vaidya et al., 2005; van Meel et al., 2007). Further, the 

size of this observed deficit (Cohen’s d = 0.74) is consistent with the extant literature, as meta-

analyses have indicated moderate effect sizes ranging from 0.69 to 0.75 for ADHD-related 

deficits in inhibitory control (Homack & Riccio, 2004; Pennington & Ozonoff, 1996). Novel to 

this investigation, however, was the inclusion of the stimulus-response manipulation during the 

flanker task. Replicating the findings of Friedman et al. (2009) and Pontifex et al. (2011), 

decreased response accuracy was observed for the incompatible stimulus-response mapping 

relative to the compatible stimulus-response mapping, suggesting that the stimulus-response 

manipulation engendered greater inhibitory control requirements. Despite the fact that the 

interaction of Group and Compatibility did not reach a level of statistical significance (p = 0.08), 

examination of the absolute means for response accuracy suggests that inhibitory deficits 

associated with ADHD were larger for the incompatible condition (Cohen’s d = 0.79) relative to 

the compatible condition (Cohen’s d = 0.63). In line with previous assertions, this trend suggests 

that ADHD related deficits in performance are magnified with greater inhibitory control 

demands. 

Germane to the focus of this investigation, however, was the extent to which a single 

bout of moderately intense aerobic exercise might be effective in reducing these ADHD-related 

deficits in inhibitory control. Although findings from this investigation revealed that children 

with ADHD did not experience a disproportionately greater exercise induced enhancement in 

response accuracy relative to healthy match-control children, a single bout of exercise did serve 
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to enhance the overall response accuracy of children with ADHD by almost 5% (Cohen’s d = 

0.3), relative to following reading. Accordingly, findings from this investigation revealed that 

both children with ADHD, and healthy-match control children, exhibited similar overall 

enhancements in behavioral indices of inhibitory control following a single 20 minute bout of 

exercise. Thus, these findings add to a growing body of research demonstrating that a single, 

short duration bout of aerobic exercise is beneficial for inhibitory aspects of cognitive control 

(Hillman, Pontifex et al., 2009; Hogervorst et al., 1996; Kamijo et al., 2007; Lichtman & Poser, 

1983; Sibley et al., 2006; Tomporowski et al., 2005), and suggest that short bouts of aerobic 

physical activity may be equally beneficial for healthy children and children with attentional 

disorders. It is important to note, however, that replicating previous findings (Hillman, Pontifex 

et al., 2009) these exercise-induced enhancements in response accuracy were observed in the 

absence of modulations in the speed of children’s responses. The absence of such an effect was 

not unexpected however, as previous research has observed that preadolescent children, 

particularly those with ADHD, exhibit greater impulsivity in responding than adults with less 

modulation of their RT (Albrecht et al., 2008; Booth et al., 2007; Crone et al., 2003; Davidson et 

al., 2006; Jonkman et al., 1999). Thus, although median RT was used within the present 

investigation to better represent intra-individual trends in RT, and findings do replicate previous 

investigations observing robust differences in RT between congruency (Bunge, Dudukovic, 

Thomason, Vaidya, & Gabrieli, 2002; Hillman, Pontifex et al., 2009; Mezzacappa, 2004; 

Pontifex et al., 2011) and compatibility (Pontifex et al., 2011) conditions, no group or session 

differences were observed for RT latency. 

Interestingly, although exercise induced enhancements in response accuracy were 

observed for both children with ADHD and healthy control children; a selective enhancement in 
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post-error slowing was observed only for children with ADHD following exercise relative to 

following reading. Post-error slowing is believed to serve as a behavioral indicator of the 

increased recruitment and implementation of top-down attentional control in order to improve 

subsequent interactions within the environment (Gehring et al., 1993; Kerns et al., 2004). 

Therefore, these findings suggest that following a single bout of exercise, relative to following a 

similar duration of reading, children with ADHD may be better capable of regulatory 

adjustments in behavior following the commission of an error thus enhancing future 

performance. Further, these findings replicate previous research in children (Hillman, Pontifex et 

al., 2009) and young adults (Hillman et al., 2003; Kamijo et al., 2007, 2009), which have failed 

to observe exercise-induced modulations in post-error slowing in healthy populations. Thus, it 

may be that healthy individuals already operate at a relative peak regulatory capacity, and as 

such, do not derive regulatory benefits from single bouts of physical activity; while the 

compromised nature of inhibitory control in children with ADHD may allow for these exercise-

induced enhancements in regulatory adjustments in behavior to be observed. 

Event-Related Brain Potentials 

A more precise understanding of the relationship between acute exercise and ADHD may 

be provided through the assessment of the specific component processes that underlie goal-

direction behavior. One neuroelectric potential, which has been extensively studied and been 

found sensitive to both ADHD-related deficits, and exercise-induced enhancements, is the P3 

ERP. With regard to the relationship between ADHD and P3 amplitude, findings from the 

present investigation revealed smaller P3 amplitude for children with ADHD, relative to healthy 

match-control children, only in response to the incongruent trials replicating previous research 

that has observed ADHD-related deficits in the allocation of attentional resources for task 
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conditions requiring the greatest amount of inhibitory control (Jonkman et al., 1999). Novel to 

the present investigation, however, was the assessment of exercise-induced modulations in P3 

amplitude in children with ADHD. Findings revealed that following a single bout of exercise, a 

general enhancement in P3 amplitude was observed for both children with ADHD and healthy-

match control children, relative to reading. Interestingly, the findings in healthy children reported 

herein do not perfectly replicate those observed by Hillman, Pontifex, and colleagues (2009) who 

observed selective enhancements in response accuracy and P3 amplitude only for incongruent 

trials of the flanker task following a single bout of similar duration exercise in a sample of 

healthy preadolescent children. However, it is important to note that the effect of acute exercise 

on congruent trials was marginally significant in that investigation (Hillman, Pontifex et al., 

2009). Thus, a number of factors, both methodological and statistical, may be responsible for the 

general effects observed within the present investigation. That is, given the absence of Group by 

Session interactions for response accuracy and P3 amplitude, these analyses benefitted from an 

increase in statistical power provided by the additional 20 children with ADHD, which may have 

allowed the effect of exercise on congruent trials to reach statistical significance. Another 

possibility is that the greater inhibitory control requirements of the congruent stimulus-response 

incompatible trials may have served to enhance the overall inhibitory control necessary for 

congruent trials. Given that previous research has suggested that exercise exerts a selectively 

larger influence over task components with larger inhibitory control demands (Hogervorst et al., 

1996; Kamijo et al., 2007; Lichtman & Poser, 1983; Sibley et al., 2006; Tomporowski et al., 

2005), this increased inhibitory requirement for congruent trials may have resulted in a greater 

exercise induced enhancement. Lastly, the exercise intensity of the present investigations may 

also be responsible for the general effects observed within the present investigation. That is, as 
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has been frequently posited in the literature (Hillman, Kamijo, & Pontifex, in press; Kamijo et 

al., 2007, 2009; Tomporowski and Ellis, 1986), acute exercise-induced enhancements in 

cognition appear to exhibit a curvilinear relationship with exercise intensity, with intensities 

between 65 and 85% of HRmax appearing to exert the greatest benefit for inhibitory aspects of 

cognition (Hillman, Kamijo, & Pontifex, in press). Within the present investigation, children 

exercised at an intensity of approximately 70% of HRmax (HR = 132.1 ± 1.6 bpm), while 

Hillman, Pontifex, and colleagues (2009) had children exercise at approximately 65% of HRmax 

(HR = 125.4 ± 1.0 bpm). Although the functional differences in HR between these two 

investigations are diminutive, the greater exercise intensity utilized within the present 

investigation may have served to optimize the mechanism underlying these exercise-induced 

enhancements in inhibition. Consonant with this assertion, comparison of the effect of exercise 

on P3 amplitude between investigations reveals a larger effect of exercise for the present 

investigation, Cohen’s d = 0.89, relative to that observed by Hillman, Pontifex and colleagues 

(2009), Cohen’s d = 0.79. While each of these possibilities is discussed separately, it is important 

to note that they are not necessarily mutually exclusive. Thus, they each may have contributed to 

the observed effects. Taken together, however, findings from this investigation add to a growing 

body of research, which has observed acute exercise induced enhancements in the allocation of 

attentional resources (Hillman et al., 2003; Hillman, Pontifex et al., 2009; Kamijo et al., 2004, 

2007, 2009). 

Another aspect of the P3 ERP that has garnered interest in both the ADHD and acute 

exercise literatures is its latency. Contrary to the findings of Jonkman and colleagues (1999), no 

ADHD related delays in stimulus classification and processing speed – as indexed by longer P3 

latency – were observed in response to the flanker task within the present investigation. 
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Although speculative, a number of possible explanations for this discrepancy exist. One such 

possibility may be that these ADHD-related deficits in P3 latency manifest in a linear fashion 

with greater severity of ADHD. That is, the present investigation utilized a community based 

sample of children with suspected or diagnosed ADHD who were free of any central nervous 

system-active pharmacologic therapy for at least 1 month prior to testing, in contrast to the 

ADHD sample utilized by Jonkman and colleagues (1999) who were currently undergoing 

treatment within the department of Child Psychiatry of a research hospital and refrained from 

medication use for only 3 days prior to testing. Consequently, the participant population utilized 

by Jonkman and colleagues (1999) represents a sample that was experiencing greater severity of 

ADHD symptoms than the population tested within the current investigation. Further research is 

necessary, however, to fully elucidate the extent to which the severity of ADHD symptoms and 

delays in P3 latency may be related. Alternatively, the discrepancy between investigations may 

also be a function of task parameters. That is, the flanker stimuli presented within the current 

investigation were presented 300 ms faster than those presented by Jonkman et al. (1999), who 

also utilized a cue stimulus. As a result, given that the mean P3 latency for this investigation was 

almost 200 ms faster than that reported by Jonkman et al., (1999), even for healthy children, the 

speeded nature of the current task may be responsible for the observed discrepancy in P3 latency 

for children with ADHD.  

Nevertheless, investigation of the extent to which acute exercise served to induced 

modulations in P3 latency in children with ADHD revealed that following a single bout of 

aerobic physical activity shorter P3 latency was observed, relative to following reading, in the 

fronto-central, central, and central-parietal electrode sites for both children with ADHD and 

healthy match-control children. Accordingly, these findings corroborate previous findings in 
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children (Hillman, Pontifex et al., 2009) and college-age young adults (Hillman et al., 2003; 

Kamijo et al., 2007), and older adults (Kamijo et al., 2009), and collectively support the 

observation of facilitations in stimulus classification and processing speed following a single 

bout of short duration aerobic physical activity.  

Contrary to the a priori hypothesis that acute exercise would not modulate conflict-

related processes; findings from this investigation revealed a general, yet selective, effect of 

exercise on the N2 and ERN components. That is, the amplitude of the fronto-central N2, which 

exhibits a topographic maximum over fronto-central recording sites (Folstein & Van Petten, 

2008; Patel & Azzam, 2005), is believed to reflect aspects of response inhibition (Falkenstein, 

Hoormann, & Hohnsbein, 1999; Schmitt et al., 2000) associated with conflict monitoring 

processes during correct trials with greater N2 amplitude reflecting increased conflict 

(Ridderinkhof et al., 2002; van Veen & Carter, 2002; Yeung et al., 2004). Following a single 20-

minute bout of exercise, both children with ADHD and healthy-match control children exhibited 

reductions in N2 amplitude over the frontal to central-parietal electrode sites, relative to seated 

reading. Interestingly, the selective localization of this exercise-induced reduction in response 

conflict to frontal cortical areas provides some support for the validity of this finding to suggest 

that the reduction in N2 amplitude may not simply be a byproduct of the initial generation of the 

exercise-induced enhancement in P3 amplitude pulling down the N2 ERP. Rather, this finding 

suggests that acute exercise may serve to enhance the functional integration of information 

within neural circuits involved in conflict monitoring.  

Although to date, no prior acute exercise investigation has observed this exercise-induced 

reduction in response conflict, some insight into this novel finding may be provided through the 

investigation of N2 latency. That is, although acute exercise, relative to reading, served to 
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facilitate general aspects of the response selection process – as index by shorter N2 latency 

(Gajewski et al., 2008) – in children with ADHD; in healthy match-control children this exercise 

induced facilitation was only observed in response to the incongruent trials of the flanker task. 

However, visual inspection of the data suggests that the selective findings observed in healthy 

match-control children may be a product of a ceiling effect such that in healthy children, the 

response selection process for congruent trials was already optimized and thus was unable to 

benefit from acute exercise. Consequently, it may be that these exercise-induced enhancements 

in conflict-related processes may only manifest when inhibitory processes are compromised – as 

in the case of the children with ADHD – or when inhibitory control is sufficiently taxed. Thus, 

although no interactions with compatibility were observed for N2 amplitude or latency, the 

additional layering of inhibitory control required for the stimulus-response incompatible 

condition may have served to sufficiently tax these inhibitory processes and allowed acute 

exercise to exert its beneficial effect. 

Consonant with this assertion, analysis of the error-related negativity revealed a selective 

enhancement following a bout of aerobic exercise, relative to reading, only for the children with 

ADHD. That is, replicating previous research that has observed ADHD related deficits in action 

monitoring processes (Albrecht et al., 2008; van Meel et al., 2007); children with ADHD 

exhibited a smaller ERN than healthy match-control children following the reading condition. 

However, those ADHD related deficits in action monitoring were ameliorated following just 20 

minutes of aerobic exercise. As such, these findings suggest that the compromised nature of the 

action monitoring system in children with ADHD may have allowed acute exercise to exert its 

beneficial influence over the ERN. 
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Collectively, the present findings contribute to a greater understanding of the relationship 

between single bouts of aerobic physical activity and neurocognitive function as it relates to the 

prototypical “healthy” preadolescent population and children with ADHD. That is, findings from 

the present investigation suggest that single bouts of moderately intense aerobic physical activity 

serve to enhance inhibitory control in both children with ADHD and healthy-match control 

children through reductions in response conflict, and facilitations in the response selection 

process, the allocation of attentional resources, and stimulus-classification and processing speed. 

Further, children with ADHD appear to disproportionately benefit from acute exercise with 

additional enhancements in action monitoring processes and regulatory adjustments in behavior. 

Thus, these findings add to a growing body of research demonstrating that a single short duration 

bout of aerobic exercise is beneficial for neuroelectric and behavioral indices of inhibitory 

control (Hillman et al., 2003; Hillman, Pontifex et al., 2009; Hogervorst et al., 1996; Kamijo et 

al., 2004, 2007, 2009; Lichtman & Poser, 1983; Sibley et al., 2006; Tomporowski et al., 2005). 

Academic Achievement Performance 

Interesting, these exercise-induced enhancements in inhibitory aspects of cognitive 

control may have particular relevance for maximizing scholastic performance. That is, inhibition 

has been linked as a necessary faculty involved in academic achievement (Bull, Espy, & Wiebe, 

2008; St. Clair-Thompson & Gathercole, 2006), with scholastic performance in the areas of 

reading and mathematics having been found to be heavily dependent upon the successful 

inhibition of unrelated information (Bull & Scerif, 2001; St. Clair-Thompson & Gathercole, 

2006). Accordingly, given that acute exercise appears to enhance inhibitory control, it may also 

be effective in transiently reducing ADHD related deficits in scholastic achievement (Frazier, 

Youngstrom, Gluttig, & Watkins, 2007). While no group differences in performance were 
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observed for any of the subtests of the WRAT3 within the present investigation, findings did 

reveal that following a single bout of aerobic exercise, both children with ADHD and healthy 

match-control children, exhibited enhanced performance on tests of reading comprehension and 

arithmetic, relative to following a similar duration of reading. These findings partially replicate 

those of Hillman, Pontifex, and colleagues (2009) who observed acute exercise-induced 

enhancements in reading comprehension in a sample of healthy children. As discussed 

previously, it may be that the greater exercise intensity utilized within the present investigation, 

relative to that utilized by Hillman, Pontifex, and colleagues (2009), was necessary to engender 

acute exercise-induced enhancements in arithmetic. However, it is also important to note that, in 

contrast to the fixed administration order of achievement tests utilized by Hillman, Pontifex et al. 

(2009), within the present investigation the order of the achievement tests was counterbalanced. 

Thus, it may be that the exercise-induced enhancements in cognition begin to wane over the 

course of an hour. Thus, future research is necessary to better understand the relationship 

between acute exercise and scholastic performance administered more closely following the bout 

of exercise using a measure that possesses greater sensitivity to detect more fine-grained changes 

in achievement. Collectively, however these findings provide support for recommendations by 

the National Association for Sport and Physical Education (NASPE) that short exercise bouts be 

incorporated during the school day as part of a comprehensive school physical activity program 

(NASPE, 2008), and suggest that acute bouts of exercise may have real-world implications for 

maximizing cognitive health and function during development while serving to transiently 

reduce ADHD-related impairments in academic performance (Gapin, Labban, & Etnier, 2011). 

Conclusions 
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The results of this investigation appear to support the use of single bouts of moderately 

intense aerobic physical activity as a non-pharmaceutical treatment for temporarily improving 

the cognitive health and effective functioning of preadolescent children with ADHD. This 

neurobehavioral disorder represents one of the most prevalent childhood disorders in the United 

States (American Psychiatric Association, 2000; Biederman, 1998; Wolraich et al., 1998), 

accounting for a combined total cost to public school systems exceeding $3 billion in 1995 alone 

(NIH, 1998). Over the course of development, ADHD has been associated with increased risks 

for poorer academic achievement, disciplinary problems, early substance experimentation and 

abuse, anxiety, depression, and difficulty maintaining employment (Barkley et al., 1993; Booth 

et al., 2007; Bracken & Boatwright, 2005). Further, there is a general societal concern regarding 

the over-diagnosis of ADHD and, in particular, the use of psychostimulants as the primary 

method of treatment for ADHD (Wilson & Jennings, 1996). As a result, one of the ramifications 

of over-diagnosis of ADHD is the exorbitant cost to our health-care system and families for 

long-term medication use for children who may not necessarily have ADHD. While 

pharmacological treatments have largely been found effective in the short-term management of 

the behavioral symptoms of ADHD (Solanto et al., 2001); psychostimulants only serve to 

ameliorate behavioral symptoms, not necessarily treatment of the root failure in inhibition, which 

is believed to be responsible for deficits underlying the manifestation of ADHD (Barkley, 1997). 

Thus, while medication use offers a temporary respite from their disorder, children may face a 

potential lifetime of battling it. 

Accordingly, the finding that acute exercise is effective in enhancing inhibitory aspects of 

cognition in children with ADHD has a number of important societal implications that may help 

to guide future healthcare and educational policies. That is, a treatment plan that includes regular 
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acute bouts of aerobic exercise may provide a unique initial treatment option for any child who 

may be exhibiting ADHD like symptoms, given that it has been found to relate to enhancements 

in inhibition and scholastic performance in healthy children as well. Further, given that changes 

in cognition associated with chronic physical activity participation are believed to be 

progressively accrued through repeated bouts of acute exercise, such a treatment plan may also 

serve to create more long-term changes in inhibitory control. That is, a growing body of research 

has begun to elucidate the beneficial effects of chronic physical activity participation leading to 

increased aerobic fitness has on brain health and cognition (see Hillman, Erickson, & Kramer, 

2008 for review). Interestingly, results from these investigations have observed that individuals 

with greater physical activity/aerobic fitness exhibit a general enhancement in cognition with a 

disproportionately larger effect for tasks requiring greater cognitive control demands (Colcombe 

& Kramer, 2003; Kramer, Colcombe, McAuley, Scalf, & Erickson, 2005; Kramer et al., 1999; 

Pontifex et al., 2011), similar to the observed relationship between acute bouts of exercise and 

cognition. Further, chronic physical activity participation leading to increased aerobic fitness has 

also been found to relate to structural changes within the brain, with increased tissue volume in 

the prefrontal and temporal cortices (Colcombe et al., 2004, 2006) as well as portions of the 

basal ganglia and hippocampus (Chaddock, Erickson, Prakash, Kim et al., 2010; Chaddock, 

Erickson, Prakash, VanPatter et al., 2010); in addition to functional enhancements in neural 

processes related to the allocation of attentional resources (Hillman, Buck, Themanson, Pontifex, 

& Castelli, 2009; Pontifex, Hillman, & Polich, 2009; Pontifex et al., 2011), response conflict 

(Pontifex et al., 2011), and greater integrity of action monitoring processes (Pontifex et al., 2011; 

Themanson & Hillman, 2006; Themanson, Hillman, & Curtin, 2006; Themanson, Pontifex, & 

Hillman, 2008). Given that these neural structures and processes mirror those which exhibit 
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deficits in children with ADHD (Aylward et al., 1996; Barry et al., 2003; Castellanos et al., 

1996, 2001; Dimoska et al., 2003; Filipek et al., 1997; Giedd et al., 1994; Hynd et al., 1991; 

Johnstone & Barry, 1996; Jonkman et al., 2000; Kemner et al., 1996; Liotti et al., 2005, 2007; 

Pliszka et al., 2000; Rubia et al., 1999; van Meel et al., 2007; Wiersema et al., 2006; Yeo et al., 

2003), over the course of repeated bouts of acute aerobic exercise, these neuronal structures and 

processes may be sufficiently enhanced to more permanently treat the underlying etiology of 

ADHD (Gapin et al., 2011). Further research is necessary in this area; however, to better 

understand how acute bouts of exercise combine and compare with other more traditional ADHD 

treatment strategies and how chronic physical activity participation serves to influence children 

with ADHD. 

To better understand the relationship between physical activity and cognition, research 

has attempted to examine the cellular and molecular cascades that are triggered by physical 

activity in non-human animal models (which in humans can only be indirectly examined and 

inferred), as well as the structural and functional manifestations of changes in cognition resulting 

from physical activity in humans. Thus, this research has allowed for speculation regarding some 

of the possible mechanisms underlying acute exercise-induced enhancements in cognition. One 

such mechanism that has been postulated as being involved in this relationship are neurotrophic 

factors such as insulin-like growth factor (IGF1) and brain derived neurotrophic factor (BDNF), 

which have been implicated in chronic physical activity induced increases in angiogenesis (i.e., 

the creation of new capillaries), neurogenesis (i.e., the creation of new neurons), cellular 

proliferation, and neural plasticity (Brezun & Daszuta, 2000; Russo-Neustadt, Ha, Ramirez, & 

Kesslak, 2001; van Praag, Kempermann, & Gage, 1999; Vaynman & Gomez-Pinilla, 2005). 

Interestingly, in non-human animal models, the upregulation of BDNF associated with chronic 
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exercise occurred after only 3 bouts of exercise (Molteni, Ying, & Gomez-Pinilla, 2002). While, 

in humans, previous research has observed intensity dependent increases in circulating serum 

concentrations of BDNF after acute physical activity participation (Ferris, Williams, & Shen, 

2007). Further, hippocampal neurogenesis, and associated increases in learning and memory, has 

been found to reach its maximum in non-human animal models after only two weeks of an 

exercise intervention (Periera et al., 2007). Consequently, these neural modulations, coupled with 

exercise-induced facilitations in microglia and astrocytes (Ehninger & Kempermann, 2003), may 

contribute to enhancing cognition following a single bout of exercise. 

Another possible mechanism, which has been posited as underlying acute exercise-

induced enhancements in cognition, is increases in cerebral blood flow (see Querido & Sheel, 

2007 for review). That is, previous findings from non-human animal models have observed that 

physical activity participation serves to increase cerebral blood flow to specific neural regions 

involved in locomotion, equilibrium, cardiorespiratory control, and areas of the hippocampus 

(Delp et al., 2001; Pereira et al., 2007). Thus, these exercise-induced increases in cerebral blood 

flow may serve to enhance neural function by supplying greater metabolic resources and 

removing metabolic waste from these regions. Another intriguing mechanism underlying these 

acute-exercise induced enhancements may be that acute-exercise serves to modulate aspects of 

the default-mode network. Research into the default mode network has exploded in recent years 

with findings suggesting that functional interconnectivity among neural regions relates to aspects 

of cognitive health (Miller et al., 2008; Voss, Erickson et al., 2010). Although to date no prior 

research has investigated the extent to which this default-mode network may be sensitive to acute 

bouts of exercise, recent findings from a randomized controlled trial have indicated that a 

chronic exercise intervention in older adults served to enhance aspects of the default-mode 
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network (Voss, Prakash et al., 2010). Accordingly, future research is clearly necessary to better 

address these potential mechanisms as they relate to acute exercise-induced changes in cognition. 

Given the relative infancy of research in the area of acute exercise and cognition, 

particularly with regard to preadolescent populations, a great deal of research is still necessary to 

understand the specific parameters of exercise which optimize its influence on cognition and 

how other factors (i.e., personality, dietary intake, brain health, etc…) may relate to changes in 

cognition associated with acute exercise. Further, with regard to children with ADHD, the extent 

to which the effects observed within the current investigation generalize to children with more 

severe cases of ADHD or children undergoing pharmacological treatment is still unknown. Thus, 

future research will need to investigate these factors further to better understand the utility of 

acute exercise in enhancing inhibition in these populations. However, given that approximately 

44% of US children with ADHD do not undergo pharmacological treatments (Biederman & 

Faraone, 2005); these findings do have substantial clinical utility in enhancing the cognitive 

health and functioning of children with ADHD. It is also important to note that we do not yet 

have a clear understanding of what the half-life of a bout of acute exercise is. That is, limited 

research in this area has investigated multiple time points following an acute bout of physical 

activity to examine how long exercise-induced modulations persist. Clearly, one area of future 

research that is much needed is to better characterize the duration of the potential benefits for 

cognition incurred by an acute bout of physical activity. Some insight can be gleaned from the 

findings of Pontifex, Hillman, Ferhall and colleagues (2009), Hillman et al. (2003) and Hillman, 

Pontifex et al. (2009), which suggest that a single bout of aerobic exercise relates to 

enhancements in inhibition and working memory and may persist for up to an hour following the 

cessation of exercise. However, other adaptations may persist for hours, if not days, or beyond.  
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Collectively, the current investigation is the first to examine the relationship between 

acute bouts of aerobic exercise and inhibitory control in children with ADHD. Given that 

previous research has observed that children with ADHD are less likely to participate in vigorous 

physical activity and organized sports relative to children without ADHD (Kim, Mutyala, 

Agiovlasitis, & Fernhall, 2011), the current findings suggest that motivating children with 

ADHD to be physically active is of particular importance for both their physical and mental 

health. The current study further replicates and extends prior research to suggest that single bouts 

of aerobic exercise are effective in facilitating neural processes underlying inhibitory aspects of 

cognitive control in both healthy children and children with ADHD. Accordingly, these findings 

indicate that single bouts of moderate intensity aerobic exercise may serve as a transient non-

pharmaceutical treatment option for children with ADHD to improve the cognitive health, 

academic performance, and overall effective functioning of this population. 
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