
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright 2011 Wen-Pin Hsieh 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
 
 
 
 

TESTING THEORIES FOR THERMAL TRANSPORT USING HIGH PRESSURE 
 
 
 
 
 
 

BY 
 

WEN-PIN HSIEH 
 
 
 
 
 
 
 
 

DISSERTATION 
 

Submitted in partial fulfillment of the requirements 
for the degree of Doctor of Philosophy in Physics 

in the Graduate College of the  
University of Illinois at Urbana-Champaign, 2011 

 
 
 
 
 

Urbana, Illinois 
 
 

Doctoral Committee:   
 

Professor S. Lance Cooper, Chair 
Professor David G. Cahill, Adviser 
Professor Robert Clegg 
Assistant Professor Dallas Trinkle 

 
 
 

 



ii 
 

ABSTRACT 

 

 

This dissertation focuses on experimental studies of thermal transport in 

various materials, such as heat transfer in crystals and amorphous polymers, and 

across interfaces, using an ultrafast pump-probe method, time-domain 

thermoreflectance (TDTR), combined with gem anvil cell techniques. I demonstrated 

that pressure tuning of physical properties of materials is an elegant approach to test 

the validity of theories for thermal transport. 

Pressure dependence of the cross-plane thermal conductivity Λ(P) of a layered 

muscovite mica crystal was measured by TDTR combined with diamond anvil cell 

techniques. Under a simple relaxation time approximation, most of the Λ(P) of 

muscovite mica can be described by the pressure dependence of the cross-plane sound 

velocity, indicating that the cross-plane sound velocity plays an important role in the 

thermal transport in a layered crystal. 

The validity of the minimum thermal conductivity model for amorphous 

polymers was verified by the good agreement between my measurements of the 

pressure dependent thermal conductivity of poly(methyl methacrylate) (PMMA) and 

the model prediction. The thermal energy exchange between non-propagating 
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vibrational modes is the dominant mechanism of thermal transport in amorphous 

polymers. 

I also used high pressure to demonstrate the importance of interface stiffness 

on the interfacial thermal transport. By measuring the pressure dependence of thermal 

conductance G(P) of clean and modified Al/SiC interfaces, I found that G(P) of a 

clean interface with high interface stiffness is weakly dependent on pressure and can 

be well accounted for by the diffuse mismatch model (DMM). By contrast, G(P) of 

modified interfaces with low interface stiffness initially increase rapidly with pressure; 

as the interface stiffness is increased to be comparable to the stiffness of chemical 

bonds, G(P) saturate at the value for the clean interface and value predicted by the 

DMM. 

 In order to extend the TDTR measurements to high pressures and high 

temperatures, I studied the pressure dependent thermoreflectance and piezo-optical 

coefficient of metal film transducers—Al, Ta, and Au(Pd) alloy (≈5 at. % Pd) at a 

laser wavelength of 785 nm. The thermoreflectance of Ta and Au(Pd) are comparable 

to that of Al at ambient conditions and independent of pressure in the range 0<P<10 

GPa. Ta and Au(Pd) also present strong acoustic echo strengths in this pressure range. 

I conclude that Ta and Au(Pd) films can replace Al as metal transducers and extend 

TDTR to higher pressures and temperatures. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1  Thermal transport 

Thermal transport through a material is described by Fourier’s law of heat  

conduction: J T
→ →

= −Λ∇ ,     (1.1) 

where J
→

is the heat flux, T
→

∇ is the temperature gradient across the material, andΛ is 

the thermal conductivity of the material. For non-metallic materials, thermal energy is 

predominantly conducted by atomic vibrations. In crystals, these wave-like, collective 

lattice vibrations are called phonons. Phonons are scattered by crystalline defects, 

grain boundaries, and anharmonic interactions (e.g., three-phonon scattering) in a 

material and the mean-free-path, which characterizes the average distance that 

phonons can travel before being scattered, plays a crucial role in determining the 

thermal conductivity. Therefore, the basic physical picture of phonon interactions and 

transport behavior can be revealed through measurements of the thermal conductivity 

of a material. 

Studies of the thermal transport properties could also provide useful guidelines 
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to design materials with new applications in thermal management. Thermal 

conductivity is an important factor that affects the performance of thermal devices, 

e.g., thermoelectric devices, which convert thermal energy into electrical energy [1-3]. 

Researchers have been able to reduce the thermal conductivity of thermoelectric 

materials and thereby increase the energy conversion efficiency [4-7]. 

While heat transport through a bulk material is described by its thermal 

conductivity, interfaces between two materials generate their own thermal barrier. 

Thermal transport at interfaces is characterized by the interface thermal conductance 

G which relates the heat flux across the interface (J) to the finite temperature drop 

across the interface ( TΔ ): J G T= Δ . The interface thermal conductance plays an 

important role in determining the thermal transport behavior in nanomaterials [8] and 

superlattices [9, 10]. By increasing the density of interfaces in multilayered 

nanostructures, the thermal conductivity of a bulk material can be substantially 

decreased because the mismatch in the phonon vibrational density of states and elastic 

properties of materials at either side of the interface inhibits the transfer of thermal 

energy across the interface [11, 12]. 

The physics of phonon transport across interfaces has been studied for decades 

by measuring the thermal conductance of various interfaces [8, 13-17]. Predictions of 

conventional models, e.g., acoustic mismatch model and diffuse mismatch model [18], 
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are often employed to compare with experimental data to gain insights into the 

interface heat transfer mechanism. However, since these models assume that thermal 

conductance is only related to physical properties of materials on each side of the 

interface, interfacial heat transfer by other effects, such as the acoustic and vibrational 

properties of the interface itself, are not completely clear. 

 

1.2  Varying physical parameters to study thermal transport 

By applying external stimuli such as temperature, pressure, or magnetic / 

electric fields, physical parameters that affect thermal transport, such as heat capacity, 

elastic constants, or phonon mean-free-path, can be modulated. Of these external 

stimuli, temperature has been the most studied because of its simplicity to employ and 

its significant impact on relevant parameters, e.g., phonon mean-free-path and heat 

capacity. Therefore, measurements of the temperature dependence of thermal 

conductivity and interface thermal conductance [9, 13, 18-20] can advance 

understanding of the heat transport mechanism. For example, the observation of a 

linear temperature dependence in the thermal conductance of an individual single 

crystalline Si nanowire at low temperatures suggests that the phonon boundary 

scattering is highly frequency-dependent and ranges from diffusive to specular 

scattering at the interface [21].  
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High pressure provides another route to significantly alter the properties of 

materials. In contrast to temperature, which strongly changes the phonon 

mean-free-path, applying high pressure to a material has an impact on changing the 

elastic constants, sound velocities, phonon densities of states, and interface bonding 

stiffness. Figure 1.1 shows the bulk modulus BT as a function of pressure for several 

materials. (The elastic modulus determines the phonon density of states and speed of 

sound, two important quantities affecting thermal transport properties, and the 

anharmonicity of a material can be derived from the pressure derivative of the elastic 

modulus.) For example, the bulk modulus of Al increases from BT =80 GPa at 

ambient conditions to BT =130 GPa at P=10 GPa. 
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Fig. 1.1. Bulk modulus as a function of pressure for several materials [22-26]. 

 

Pressure tuning of physical properties of a material enables critical tests of the 

validity of conventional models of phonon transport in various condensed matter 
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systems. For instance, the model of minimum thermal conductivity is often used to 

predict the minimum thermal conductivity minΛ of amorphous or strongly disordered 

materials. In the high temperature limit, minΛ can be simplified to be only a function of 

number density n and elastic constant C11 of the material [23]. The application of 

pressure increases Λ, n and C11. Thus, this model can be tested by comparing 

measurements of the pressure dependence of thermal conductivity with the 

predicted minΛ . Details of testing the minimum thermal conductivity model will be 

presented in Chapter 4. A key component of this thesis will be using in-situ 

measurements of thermal conductivity and interface thermal conductance under high 

pressure to elucidate the physics of thermal transport in various materials. 

 

1.3  Reviews of measurements of thermal transport at high 

pressures 

Pressure dependence of the thermal transport in solids [27-31] and amorphous 

materials [32-35] has been studied for approximately 40 years. One of the 

conventional approaches to measure the thermal conductivity under pressure is to 

employ a steady-state technique: samples under study are loaded into a symmetric 

piston pressure cell with a configuration—P T S T H T S T P, where H is a heating 

source embedded in the center of the cell, T is the thermocouples to measure the 
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temperature drop across the sample S, and the pressure P is applied via two ends of 

the cylindrical cell [33, 35]. This method was widely used to measure the thermal 

conductivity of various polymers [33-35] under pressure and the thermal conductivity 

is obtained by measuring the temperature gradient across the sample combined with 

the Fourier’s law of heat conduction (Eq. 1.1). 

Transient techniques, e.g., the hot-wire method, have also been used to 

measure the thermal conductivity under pressure. For instance, a Ni wire as well as 

the sample under study are installed in a cylinder cell [36]. The Ni wire is heated 

electrically at constant power and the temperature change as a function of time is 

recorded by monitoring the wire resistance via an electronic bridge. The thermal 

conductivity of the sample can be extracted by comparing the data as a function of 

time with the temperature evolution calculated using a theoretical model. 

The piston-cylinder pressure cell has a limited range of pressure and thus the 

above techniques can only measure thermal conductivity to a few GPa [31, 32, 37]. 

For example, the diameter and maximum force of the steel disk used for loading 

pressure are typically ~10 mm and ~105 N [35], which correspond to a pressure of 

approximately a few GPa. However, pressures of at least 10 to 20 GPa are needed to 

significantly alter the physical properties that are relevant to thermal transport, e.g., 

the elastic constants. As shown in Fig. 1.1, creating ≈50 % increase in the bulk 



7 
 

modulus typically requires pressures in excess of 10 GPa. Polymers, such as PMMA, 

are a special case because their bulk modulus increases by about an order of 

magnitude when P is increased from ambient conditions to 10 GPa. 

Measurements of thermal conductivity at higher pressures, i.e., P ≥ 10 GPa, 

are challenging and requires the use of a multi-anvil apparatus or modern gem anvil 

cells. Thermal diffusivity of silica glass and several minerals, such as olivine and 

CaGeO3 perovskite, have been measured up to P≈20 GPa by using the Ångström 

method within a multi-anvil apparatus [38-40]. The thousand-tons multi-anvil press 

[41] has been widely used to provide high pressure and high temperature 

environments; currently the upper limit of the pressure and temperature in multi-anvil 

press are ≈30 GPa and ≈ 3000 K. The sample under study is encapsulated in a 

cylindrical tube in which a heater (typically graphite or LaCrO3) is used to heat the 

sample to high temperatures and a thermocouple wire is embedded in the sample or 

located next to the sample to measure the temperature. This sample cylinder is then 

encapsulated in an MgO octahedron with ≈14-25 mm edge length. The high pressure 

environment is generated by using 6 outer anvil wedges and 8 WC (tungsten carbide) 

cubic inner anvils with ≈3-10 mm truncated edge length to compress the MgO 

octahedron containing the sample. Using a loading of 900 tons and inner-anvil with 

truncated length of 3 mm, a pressure of ≈25 GPa can be achieved [41]. 
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In the Ångström method [40, 42, 43], a sinusoidal temperature wave with an 

angular frequency is applied by a heater surrounding a cylindrical shape sample and 

propagates radially into the sample. The amplitude and phase of the varying 

temperature wave depend on the thermal diffusivity of the sample under study. 

Therefore, by measuring the amplitude ratio and phase difference of the temperature 

between two different positions, typically at the center and the outer surface, of the 

sample, the thermal diffusivity can be obtained. Fig. 1.2 shows the schematic 

cross-section of the Ångström method within a multi-anvil apparatus [38].  

 

 
Fig. 1.2. Schematic cross-section of the Ångström method within a multi-anvil 
apparatus. A cylindrical shape sample (shaded yellow) with diameter of ≈3-4 mm is 
embedded in the center of the multi-anvil apparatus. The outer case represents the 
MgO octahedron with ≈14-25 mm edge length. A sinusoidal temperature wave 
generated by a heater surrounding the cylindrical sample is measured by two 
thermocouples placed at the center and along the outer surface of the sample, 
respectively (marked by two black dots) [38]. 
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Diamond anvil cells (DAC) are able to provide even higher pressures because 

of the much smaller size of sample, ~50 μm, and anvil culet diameter, ≈100-600 μm. 

To generate pressures higher than 200 GPa, a smaller flat anvil culet which is ≈30 μm 

in diameter and fabricated on a beveled diamond anvil, is used, see Ref. [44] for the 

details. The upper limit of the pressure generated by DAC is mainly determined by 

the size of the small, flat anvil culet fabricated on the beveled diamond anvil. 

The optical thermal grating technique [45-47] is compatible with the diamond 

anvil cell and has been used to measure thermal diffusivity at high pressures. In this 

technique [46], two mode-locked optical pulses, ≈80 ps duration, are incident on the 

sample at an angle 2θ to create a constructive interference with periodic distribution 

of laser intensity. (The sample under study has to be optically absorbing at the laser 

wavelength energy.) The absorption of the incident light produces a periodic 

distribution of temperature as well as a periodic distribution of the index of refraction 

in the sample. The period of the thermal grating /(2sin )d λ θ= , whereλ is the laser 

wavelength. To monitor the temperature evolution as a function of time another 

Bragg-diffracting probe pulse is incident; if the heat diffusion can be approximated to 

be one-dimensional, the decay rate of the periodic temperature distribution Rd 

provides the information about the thermal diffusivity of the sample: 2 24 /dR D dπ= , 

where D is the thermal diffusivity. 
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Recently, an optical pulsed transient heating method [48-50] has been 

developed to measure the thermal diffusivity of several minerals within the diamond 

anvil cell at pressures as high as 125 GPa. A thin metallic coupler, e.g., Ir or Pt, is 

embedded in the sample under study; this metallic coupler is heated by a pulsed laser 

and its surface temperature variation as a function of time is measured by collecting 

the thermal emission spectrum using an all-reflective microscope. Then the thermal 

diffusivity of the sample is extracted by fitting the measured temperature evolution to 

the calculation by a finite element model. 

However, the accuracy of this method is not better than ≈50 % because the 

heat flux model used to extract the thermal diffusivity is insufficient in describing 

phenomena occurring after the laser heating, such as a non-negligible laser energy 

absorption in the metallic coupler which reduces the surface temperature of the 

coupler and is not included in the model calculation. (Typical data measured by this 

pulsed transient heating technique show a clear discrepancy between the measured 

temperature and the calculated temperature at the first ≈20 ns, see Ref. [50] for the 

example data.) Moreover, the transient heating technique can only be applied to study 

a sample with temperature higher than ≈1400 K since the diagnostics used to measure 

the temperature of the sample, time-resolved spectroradiometry, only works 

adequately above 1400 K. (The lower the temperature, the smaller the intensity of 
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black-body radiation spectrum, which causes the main difficulty in precisely 

measuring the temperature.) 

In contrast to other experimental techniques employed to measure the thermal 

transport properties of materials at high pressures, time-domain theoreflectance 

(TDTR), the main technique used in this thesis, has been extensively applied in 

studies of the thermal conductivity of thin films [11, 51] and thermal conductance of 

interfaces [15, 52] and its accuracy is typically better than 10%. The details of TDTR 

will be discussed in Chapter 2. Since the sample dimensions can be as small as the 

laser spot size (~10 μm), TDTR is much more suitable for measurements of the lattice 

thermal conductivity in the DAC at extreme pressures [53]. In addition, the 

combination of TDTR and DAC could be operated, in principle, from a temperature 

as low as liquid nitrogen to a few thousand Kelvin. The lower and upper limits of the 

measurement temperature depend on the thermoreflectance and stability of the metal 

film transducer, respectively. 

Figure 1.3 summaries the progress in thermal measurements at high pressures 

introduced in this section. In the plot, each point labels the first author of the 

experimental work with the year (x-axis) that the work was published and the highest 

pressure (y-axis) that was achieved. The table lists the first author, experimental 

technique, samples, and a reference paper for each point in the plot. 



12 
 

1920 1940 1960 1980 2000 2020

Xu

Beck

Abramson
Hsieh

Chai

Hakansson

Barker

Katsura
Fujisawa

Bridgeman

Ambient pressure

50

20

2

5
10

10-4

1

 

 

Pr
es

su
re

 (G
Pa

)

Year  

Author(s) Method Materials under study Reference 

Bridgeman Steady-state Rock and Pyrex glass Am. J. Sci. 7, 81 (1924) 

Fujisawa 
Ångström method 

within a multi-anvil 
Mg2SiO4, Fe2SiO4 J. Geophys. Res. 73, 4727 (1968) 

Barker et al. Steady-state Polytetrafluorethylene J. Chem. Phys. 53, 2616 (1970) 

Hakansson 
et al. 

Transient hot-wire NaCl Rev. Sci. Instrum. 59, 2269 (1988)

Katsura 
Ångström method 

within a multi-anvil 
Silica glass Phys. Chem. Min. 20, 201 (1993) 

Chai et al. Thermal grating Olivine Phys. Chem. Miner. 23, 470 (1996)

Abramson 
et al. 

Thermal grating Liquid O2 J. Chem. Phys. 111, 9357 (1999) 

Xu et al. 
Ångström method 

within a multi-anvil 
Olivine 

Phys. Earth Planet. Inter. 143, 324 

(2004) 

Beck et al. 
Optical transient 

heating 
MgO, NaCl Appl. Phys. Lett. 91, 181914 (2007)

Hsieh et al. TDTR Muscovite mica Phys. Rev. B 80, 180302 (R) (2009)

Fig. 1.3. Progress in thermal measurements at high pressures.  
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1.4  Outline of the thesis 

In this thesis, I combine an ultrafast pump-probe method, time-domain 

thermoreflectance, with high-pressure techniques, diamond and SiC anvil cell to 

investigate the fundamental physics of thermal transport in several materials, e.g., in 

crystals and amorphous polymers, and across interfaces. 

In Chapter 2, I will first describe the main experimental methods I used to 

conduct experiments: time-domain thermoreflectance (TDTR) and diamond anvil cell 

(DAC). The novel combination of these two techniques not only provides a powerful 

approach to study the physics of thermal transport in condensed matter systems, but 

also opens up a route to measure the thermal transport properties of geophysically 

important materials, which would help reconstruct the thermal history and 

geodynamics of our Earth interior.  

Chapter 3 presents the first successful combination of TDTR and DAC to 

study heat transport at high pressures. The dominant mechanism of thermal transport 

in anisotropic layered crystals is elucidated, and the preliminary result of my 

measurements of the thermal conductivity of MgO at room temperature up to 60 GPa 

is also presented. 

Testing the validity of the minimum thermal conductivity model for 

amorphous polymers using high pressure is described in Chapter 4. I study the 
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pressure dependence of the thermal conductivity Λ(P) and elastic constant C11 of the 

poly(methyl methacrylate) (PMMA). The good agreement between my measurements 

and the prediction of Λ(P) based on the minimum thermal conductivity model 

confirms that the dominant thermal transport mechanism in amorphous polymers is 

the thermal energy exchange between non-propagating vibrational modes of 

polymers. 

In Chapter 5, I demonstrate the importance of interface stiffness on the 

thermal transport across interfaces by measuring the pressure dependence of the 

thermal conductance G(P) of various Al/SiC interfaces. I find that in the low pressure 

regime the G(P) of weak interfaces increases approximately linearly with pressure; 

when P>8 GPa, G(P) saturates at the values for strong interfaces. Conventional DMM 

fails to describe the strong pressure dependence of the G(P) of weak interfaces until 

pressures are large enough for the interface stiffness to approach the values more 

typical of the stiffness of chemical bonding. 

In Chapter 6, I study the critical factors in TDTR measurements, i.e., the 

thermoreflectance, piezo-optical coefficient, and physical stability of metal 

transducers, under pressure. Ta and Au with 5 at. % Pd can replace Al as the metal 

film transducers for TDTR measurements at high pressure and temperature. Finally, 

the Chapter 7 summarizes the whole thesis work.  
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CHAPTER 2 

 

EXPERIMENTAL TECHNIQUES 
 

 

2.1  Time-domain Thermoreflectance (TDTR) 

2.1.1  TDTR apparatus and data analysis 

Time-domain thermoreflectance (TDTR) is an ultrafast optical pump-probe 

technique which utilizes the output of a femtosecond, mode-locked Ti:sapphire laser 

to both generate surface heating and probe the resultant temperature evolution on a 

metal film through the use of the change in optical reflectivity with temperature, 

known as thermoreflectance dR/dT [1, 2]. The concept of using transient 

thermoreflectance to study thermal transport properties of materials was proposed and 

realized approximately 25 years ago [3, 4]. However, more recently Cahill et al. [1, 5] 

made improvements which take advantage of the out-of-phase component of the 

thermoreflectance signals to improve the accuracy of TDTR. TDTR has since been 

widely employed to measure the thermal conductivity [6, 7] and the interface thermal 

conductance [8, 9]. Figs. 2.1(a) and (b) show the setup and the schematic layout of the 

TDTR system at the University of Illinois. 

To perform thermal measurements using TDTR, a thin metal film, typically 

≈80 nm-thick Al, is first deposited on the sample of interest using magnetron 
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        (b) 

 

Fig. 2.1. (a) Time-domain thermoreflectance (TDTR) setup at the University of 

Illinois. (b) Schematic layout of TDTR [2]. 
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sputtering and serves as both the light absorber and thermoreflectance transducer. Al 

is the typical metal film transducer due to its large thermoreflectance at Ti:sapphire 

laser wavelengths (~785 nm). Large thermal conductivity, large piezo-optical 

coefficient, and good adhesion to substrates are other useful features for Al being an 

ideal thermal transducer in TDTR measurements. Large thermal conductivity ensures 

that after the pump pulse heating, the temperature evenly distributes over the metal 

film within ~100 ps; beyond this time, the measurement becomes insensitive to the 

thermal conductivity of metal film transducer and thus does not significantly 

propagate error to the measured thermal conductivity of the sample under study, see 

section 2.1.3 for the estimation of uncertainties in the TDTR measurements. Large 

piezo-optical coefficient, which describes the changes in the optical reflectivity with 

acoustic strain, is useful to determine the thickness of the metal film. 

In the TDTR system, the output of a femtosecond mode-locked Ti:sapphire 

laser with repetition rate of ≈80 MHz is split into pump and probe beams by a 

polarized beam splitter. The pump beam, modulated at ≈10 MHz by an electro-optical 

modulator, passes through a mechanical delay stage which adjusts the relative delay 

time t between pump and probe beams (typically -20 ps t≤ ≤ 4 ns), and is focused on 

the surface of the sample by an objective lens. (The laser beam is focused to 1/e2 

intensity radius of ≈7.5 μm by the 10× objective lens and ≈15 μm by the 5× objective 

lens.) The probe beam is mechanically chopped at ≈200 Hz for double modulation [2], 

and is also focused on the sample by the same objective. The double modulation is 

used to suppress the artifacts that occur at the same frequency as the modulation of 
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the pump beam, such as diffuse pump scattering and unfiltered pump-light, see Ref. [2] 

for the details. 

The temperature evolution at the Al surface is probed as a function of time by 

measuring changes in the intensity of the reflected probe pulse by a Si photodiode 

detector. A resonant band-pass filter with a quality factor Q≈10 is used to enhance the 

output of the Si photodiode as well as to eliminate the higher, odd harmonic signals. 

The signal is then further enhanced by a preamplifier with a voltage gain of 5 and 

measured by a radio-frequency (rf) lock-in amplifier that is set to be synchronized to 

the modulation frequency of the pump beam, 10 MHz. (The 10 MHz modulation 

frequency is chosen since under a laser repetition rate of 80 MHz, the real part of the 

changes in the optical reflectivity is minimized at negative delay times [1].) 

To increase the signal-to-noise ratio and prevent the Si photodiode detector 

from collecting diffuse scattering of the pump pulse due to the unfocused reflection 

from the interface of SiC and air, in addition to the double modulation technique, a 

“two-tint” method is used [2]. In this configuration, a 790 nm long-pass filter is 

placed in the path of the pump beam, and a 785 nm band-pass filter with a bandwidth 

of 3 nm is placed in the path of the probe beam and is rotated by ≈13° to blue-shift the 

peak wavelength to ≈781 nm. As a result, the peak wavelength of pump and probe 

beams after the optical filters are separated by ≈10 nm. Finally, a 780 nm short-pass 

filter is placed in front of the Si photodiode detector to filter out the diffusively 

scattered pump beam signals. The diffuse pump light scattered from the rough surface 

of sample is then suppressed by an extra three orders of magnitude [2]. 



24 
 

The steady-state temperature rise sTΔ at the surface of Al due to the pump pulse 

heating is given by [1] 

0

(1 )
2

i
s

P RT
wπ
−

Δ =
Λ

  ,    (2.1) 

where iP is the incident laser power, R is the optical reflectivity of metal film, 0w is the 

spot size of pump and probe beams focused on the surface of sample, and Λ is the 

thermal conductivity of the sample. Typically a 20 mW of pump beam is used, which 

corresponds to an energy of ≈500 pJ per pulse, and a 10 mW of probe beam to limit 

the sTΔ on the Al surface to be < 10 K. (The ratio of the power of pump beam to probe 

beam does not necessarily need to be 2:1 [10], see section 2.1.2.) For instance, with 

the incident pump power iP =20 mW, R=0.9 for Al, the thermal conductivity Λ of Si 

=142 W m-1 K-1 and 0w =7.5 μm, the steady-state temperature rise for Al on Si under 

these conditions is sTΔ =0.5 K. By contrast, in muscovite mica, the cross-plane thermal 

conductivity ⊥Λ is only 0.46 W m-1 K-1 and the in-plane thermal conductivityΛ is 4 W 

m-1 K-1. The steady-state temperature rise under the same conditions as before 

is sTΔ ≈55 K, which increases the measurement temperature from room temperature to 

355 K. (For a material with anisotropic thermal conductivity, a geometric mean of the 

in-plane and cross-plane thermal conductivities ⊥Λ = Λ Λ is used in the calculation 

in Eq. 2.1.) Note that the thermal conductivity of muscovite changes by less than 4% 

when the measurement temperature changes from 300 K to 355 K [11]. 

The depth that the thermal energy can propagate into the sample determines 

the geometry of the heat flow in my experiments: the thermal penetration depth dth, 
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which characterizes the temperature excursion in the sample, is given by 

th
s

d
C fπ
Λ

=   ,    (2.2) 

where Λ  is the thermal conductivity and sC is the volumetric heat capacity of the 

sample, f is the modulation frequency of the pump beam. For example, if Λ=10 W 

m-1 K-1, sC =1.5 J cm-3 K-1, and f =10 MHz, dth ≈460 nm. Since the thermal 

penetration depth dth is typically much smaller than the radius of laser beams after 

focused on the sample surface (≈7.5 μm for 10× objective and ≈15 μm for 5× 

objective), heat flow in TDTR measurements is predominantly one dimensional. 

To extract the thermal transport properties of the sample under study, I analyze 

the output of the rf lock-in amplifier V(t) which has an in-phase component Vin(t) and 

an out-of-phase component Vout(t), V(t)= Vin(t)+iVout(t), where t is the delay time 

between pump and probe beams. Although the Vout(t) signal provides most of the 

useful information about the thermal conductivity of the sample (at 100 ps t≤ ≤ 500 ps, 

Vout(t) is approximately proportional to 1/ CΛ , where CΛ is the thermal effusivity 

of the sample), I analyze the ratio Vin(t)/Vout(t) which eliminates undesirable artifacts 

due to the variation of laser spot size and the change in the position of pump beam 

during the scanning of mechanical delay stage. 

 

2.1.2  Thermal model and data analysis 

Thermal conductivity of the sample is determined by comparing the measured 

ratio Vin(t)/Vout(t), where 80 ps t≤ ≤ 4 ns, to the ratio calculated from an exact 
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numerical solution to the heat diffusion equation for a multilayered structure in 

cylindrical coordinates [1]. In the thermal model, two boundary conditions are 

imposed: (1) a pump pulse with the Gaussian spatial distribution of intensity 

periodically heats the surface of the sample and (2) the heat flows continuously across 

each interface. Interface thermal conductance is introduced between each layer by an 

additional interface between each layer, modeled as a thin layer with thickness hi =1 

nm and a non-zero, small volumetric heat capacity Ci =0.1 J cm-3 K-1. The thickness of 

1 nm is chosen for convenience; the interface thermal conductance given by the 

thermal conductivity per unit thickness of the interface layer does not change if 

different thicknesses are used. The heat capacity of 0.1 J cm-3 K-1 is used such that the 

interface layer does not absorb significant heat. The detailed description of the 

thermal model is given in Ref.[1]. 

There are many parameters in the thermal model: (1) laser spot size 0w , (2) 

modulation frequency of the pump beam f =10 MHz, (3) repetition rate of the laser 

oscillator, 80 MHz, (4) thickness hAl, volumetric heat capacity CAl and thermal 

conductivity ΛAl of Al, (5) thermal conductance G of Al/sample interface, (6) thermal 

conductivity and volumetric heat capacity of the sample. (When studying a thin film 

sample which is sandwiched between Al and a substrate, the sample is modeled as a 

thin layer. Therefore, thickness of the thin film sample and thermal conductivity and 

volumetric heat capacity of the substrate are also input parameters in the thermal 

model.) 
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All of these parameters are either obtained from the literatures or 

independently measured. For instance, the thicknesses of Al and thin film sample are 

measured by picosecond acoustics [12] which will be described in the section 2.1.5; 

the thermal conductivity of Al is obtained by the four-point probe measurements of 

the in-plane electrical conductivity combined with the Wiedemann-Franz law. The 

thermal model is not necessarily sensitive to all of these parameters, however. 

In general, the thermal conductance G of Al/sample interface and the thermal 

conductivity Λ of the sample, the two free parameters during the thermal model fitting, 

can be separated and derived at different delay time regimes. At 100 ps t≤ ≤ 500 ps, 

the ratio Vin(t)/Vout(t) is more sensitive to the Λ of the sample; at longer delay time, i.e., 

t ≥ 1 ns, Vin(t)/Vout(t) has stronger dependence on the G of Al/sample interface. (For 

the definition of sensitivity and how these free parameters affect TDTR measurements, 

see section 2.1.3 and Fig. 2.3.) Example data and fittings by the thermal model are 

shown in Fig. 2.2.  

In the section 2.1.1, it was stated that the ratio of the incident power of pump 

beam to probe beam does not necessarily need to be 2:1. I used ratios of 5:1, 2:1, and 

1:1 to measure the thermal conductivity of muscovite mica and did not observe any 

difference in the measured thermal conductivity. A similar result was also mentioned 

in Ref. [10]. This is because when the ratio Vin(t)/Vout(t) is used to analyze the data, 

the incident laser power and ratio of the pump and probe beams are not parameters in 

the thermal model. Note, however, that the signal-to-noise ratio is improved when a 

large ratio of the power of pump beam to probe beam is used, such as 5:1 or 10:1. 
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Fig. 2.2. Ratio of the in-phase voltage to the out-of-phase voltage Vin(t)/Vout(t) as a 
function of delay time for Si, sapphire, 500 nm SiO2, and mica. The solid lines are the 
fits by the thermal model to the data. In these TDTR measurements, the thickness, 
volumetric heat capacity, and thermal conductivity of Al are ≈80-90 nm, 2.44 J cm-3 
K-1, and 200 W m-1 K-1, respectively; the laser spot size is ≈7.5 μm. The heat 
capacities of 1.62 J cm-3 K-1 for Si, 3.19 J cm-3 K-1 for sapphire, 1.64 J cm-3 K-1 for 
SiO2, and 2.3 J cm-3 K-1 for mica are used to analyze the data. Thermal conductivities 
of Si, sapphire, 500 nm SiO2, and mica are determined to be 140 W m-1 K-1, 35 W m-1 
K-1, 1.32 W m-1 K-1, and 0.46 W m-1 K-1, respectively. 

 

2.1.3  Estimation of uncertainties in the TDTR measurements 

To estimate uncertainties in the TDTR measurements, it is helpful to calculate 

the sensitivity parameter [13], defined as: 

ln( / )
ln

in outV VSα α
∂ −

=
∂

 ,  (2.3) 

where /in outV V− is the ratio of the in-phase to out-of-phase voltages in TDTR 

measurements, α is one of the parameters in the thermal model described above, e.g., 

laser spot size, thickness hAl, volumetric heat capacity CAl and thermal conductivity 

ΛAl of Al, and thermal conductivity of substrate. Fig. 2.3 shows the calculated Sα for 
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each parameter in the thermal model. For an example sample of Al on Si substrate, at 

100 ps t≤ ≤ 500 ps, the ratio, /in outV V− , is sensitive to the thickness hAl and heat 

capacity CAl of Al film as well as the thermal conductivity ΛSi and heat capacity CSi of 

Si. At t ≥ 1 ns, the ratio, /in outV V− , is more sensitive to the thermal conductance G of 

Al/Si interface. 
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Fig. 2.3. Calculated sensitivity parameter Sα for each parameter in the thermal model. 
An example sample of Al on Si substrate is considered in this calculation: the 
thickness hAl, heat capacity CAl, and thermal conductivity ΛAl of Al are 80 nm, 2.44 J 
cm-3 K-1, and 200 W m-1 K-1, respectively; the heat capacity CSi and thermal 
conductivity ΛSi of Si are 1.62 J cm-3 K-1 and 142 W m-1 K-1, respectively. Thermal 
conductance G of Al/SiC interface is 160 MW m-2 K-1 and laser spot size is 0w =7.5 
μm. The larger the absolute value of Sα , the more sensitive the parameter to the 
ratio, /in outV V− . 

 

The accuracy of the thermal measurements is limited by the uncertainties in all 

the parameters in the thermal model. With the calculation of Sα for each parameter,  

the error in the thermal conductivity measurements ΛΔ that is caused by the 

uncertainty αΔ from a parameterα : /S Sα αΛ ΛΔ = Δ can be estimated. For example, at 
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100 ps t≤ ≤ 500 ps, the sensitivity for thermal conductivity of Si is SΛ ≈0.55 and the 

sensitivity for the thickness of Al is hAlS ≈0.9; if the uncertainty in the Al thickness 

hAlΔ is 3 % , it will propagate ≈5 % error in the measured thermal conductivity of Si.  

The total error in the measured thermal conductivity of sample can be 

estimated by the square root of the sum of the squares of errors caused by 

uncertainties in each parameter. Assuming 3 % uncertainties in all the parameters, 

such as the thickness and heat capacity of Al and heat capacity of Si, the total error in 

the thermal conductivity of Si is estimated to be ≈7.5 %. 

 

2.1.4  Time-domain stimulated Brillouin scattering 

The elastic constants or speed of sound of materials are often measured by 

Brillouin scattering, inelastic light scattering from acoustic modes. The frequency 

shift of the scattered light is called the Brillouin frequency fB. 

TDTR also provides in situ measurements of the elasticity and speed of sound 

of transparent materials through time-domain stimulated Brillouin scattering, also 

called picosecond interferometry [14, 15]. Figure 2.4 illustrates the principle of 

time-domain stimulated Brillouin scattering. In TDTR measurements, after the pump 

pulse heats the Al film, the thermal expansion of Al generates a longitudinal acoustic 

strain pulse propagating in the transparent sample. Part of the subsequent incident 

probe pulse reflecting from this moving acoustic strain wave interferes with the 

remainder of the probe pulse reflecting from the Al film. The position of the moving 

strain determines the optical path difference between these two reflected probe pulses 
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and therefore determines the interference is constructive or destructive. When the 

interference is coherent, a periodic oscillation of the Vin(t) signal will be observed. 

The period (inverse of the Brillouin frequency) of the oscillatory Vin(t) signal provides 

the information about the speed of sound of the sample. 

 
Fig. 2.4. Schematic illustration of the time-domain stimulated Brillouin scattering. A 
longitudinal acoustic strain (dashed line) is generated by the thermal expansion of Al 
and propagates in the transparent sample. Part of the incident probe pulse reflecting 
from this moving acoustic strain wave interferes with the remainder of the probe pulse 
reflecting from the Al film. The Vc denotes the speed of sound of the sample. 

 

In my experiments, the pump and probe beams are focused by a 10× objective 

lens with a numerical aperture of 0.28 and incident on the sample by an angel θ of 

≈16° from the sample surface normal (θ=0° for the normal incident). If the Brillouin 

scattering is approximated as being in a backscattering geometry with normal incident 

of laser beam, the Brillouin frequency Bf in the longitudinal modes is 2 /B lf Nv λ= , 

where N is the index of refraction of the sample, vl the longitudinal speed of sound, 

and λ the laser wavelength. This approximation introduces ≈3-4 % error in the 

measured Bf . Once Bf , N, and λ are known, vl and the corresponding elastic constant 
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of the sample can be obtained. 

Traditional techniques for measuring elasticity, such as Brillouin spectroscopy 

[16] and impulsive stimulated light scattering [17], are time-consuming (minutes to 

hours of accumulation time). By contrast, the picosecond interferometry of TDTR 

takes much less time (only few minutes) to probe the longitudinal sound velocity with 

high accuracy. 

 

2.1.5  Picosecond acoustics 

The acoustic properties or thickness of a material can be characterized by 

picosecond acoustics using TDTR [12]. As described in the section 2.1.4 time-domain 

stimulated Brillouin scattering, when the pump pulse heats the Al film coated on a 

substrate, the thermal expansion of Al creates a longitudinal strain pulse. This strain 

wave propagates through the metal film and partially reflects at the interface between 

Al and the substrate. As the reflected strain pulse returns back to the Al surface, it 

changes the optical reflectivity of the Al film. Thus, by multiplying the average 

longitudinal speed of sound of Al, vl = 6.42 nm ps-1, by half of this acoustic echo time, 

the thickness of Al is determined. Example data for the Al on Si wafer and Al on mica 

are shown in Fig. 2.5. The acoustic echo peak at t= 36.2 ps for Al/Si and t= 24.1 ps for 

Al/mica are observed; therefore, the Al thicknesses hAl are determined to be 116 nm 

and 77 nm, respectively. 
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Fig. 2.5. Example data for the acoustic signals of Al on Si and Al on mica. Vin(t) is 
proportional to the changes in the optical reflectivity of the Al surface. The acoustic 
echo peak at t=36.2 ps for Al/Si corresponds to hAl=116 nm and the acoustic echo at 
t=24.1 ps for Al/mica corresponds to hAl=77 nm. The acoustic echoes of Al/Si and 
Al/mica have opposite signs because the acoustic impedance, product of atomic 
density and speed of sound, of Al is smaller than that of Si but larger than mica. Vin(t) 
of Al/Si is up-shifted for clarity.  

 

A computer code is also used to simulate the acoustic signals. The program is 

based on Ref. [12] and provided by Prof. H. Maris of Brown University. There are 

several parameters in the program: (1) laser wavelength of pump and probe beams; (2) 

thickness, atomic density, sound velocity, index of refraction, and diffusion length of 

each layer. (The diffusion length characterizes the distance that the deposited heat 

extends in the material [18].) For a multilayered sample structure, this simulation 

program is particularly helpful to identify acoustic echoes in the picosecond acoustics 

data. For example, Fig. 2.6 shows the acoustic signals of an Al-coated poly(methyl 

methacrylate) (PMMA) on a SiC substrate. The open circles represent the acoustic 

signals measured by piscosecond acoustics and the red curve shows the simulation 
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results. As an acoustic strain propagates through the Al film and arrives at the 

interface of Al and PMMA layer, part of the acoustic strain reflects back toward the Al 

surface and the remainder of the strain continues to propagate into the PMMA layer 

and then reflects at the interface of PMMA and SiC. In Fig. 2.6, the downward peak at 

t=20.2 ps is caused by the acoustic strain reflecting from the Al/PMMA interface and 

therefore the thickness of Al is determined to be hAl=65 nm. Compared to the strain 

reflecting from the Al/PMMA interface, the strain propagating through the PMMA 

and reflecting back at the PMMA/SiC interface propagates an additional distance, i.e., 

twice of the thickness of PMMA layer. By comparing the data with simulation results, 
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Fig. 2.6. Example data for the acoustic signals of an Al-coated PMMA on SiC. 
The open circles show the picosecond acoustics data and the red curve shows the 
acoustic signals simulated by the program. The thickness of Al is determined by the 
acoustic echo at t=20.2 ps, corresponding to hAl=65 nm; the echo at t=35.3 ps is 
caused by a strain reflecting from the PMMA/SiC interface and returning back to the 
Al surface. The thickness of PMMA is hPMMA=22 nm. Note that the acoustic echo at 
t=10.1 ps is caused by acoustic strain waves launched from the Al surface which 
contacts with the PMMA layer. Such acoustic strain wave is generated by hot 
electrons that diffuse through the Al film before losing energy to phonons.  
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the acoustic echo at t=35.3 ps is confirmed to be caused by the strain which reflects at 

the PMMA/SiC interface and returns back to the Al surface; therefore the thickness of 

PMMA hPMMA is determined by multiplying the speed of sound of PMMA, vl = 2.9 

nm ps-1, by half of the time difference between the echo of Al (t=20.2 ps) and PMMA 

(t=35.3 ps). 

 

2.2  Generating high pressures: Diamond Anvil Cell (DAC) 

2.2.1  Fundamental aspects of DAC 

High pressure environment can be generated by either static or dynamic 

loading. Shock waves are able to provide dynamic compression to pressures as high 

as the conditions in Earth’s core [19]; however, this approach is severely limited by 

the short duration time on the order of milliseconds. Diamond anvil cell (DAC) is a 

powerful and commonly used technique generating static high pressures above 100 

GPa [20-24]. In this thesis, all the high pressure experiments were conducted using 

diamond or SiC anvil cells. Fig. 2.7 shows two types of cells used in this thesis. 

Figure 2.8 shows the principle of the diamond anvil cell: an external force is 

applied on the large table facets of two opposing diamonds which will transmit the 

force directly to their small culet facets, typically ≈500 μm or smaller, creating a 

pressure P=F/A, where F is the external force and A is the area of the small culet. 

Pressures of few gigapascal can be easily generated by a pair of diamond or SiC 

anvils with the culet size of 500 μm. 
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Fig. 2.7. Two types of the opposing-plate diamond and SiC anvil cells used in this 
thesis work. A penny is included as the scale bar of anvil cells. 
 
 
 

 
Fig. 2.8. Schematic drawing of the configuration of opposing-plate diamond anvil 
cell. 
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Diamond has excellent mechanical and optical properties for optical 

measurements under high pressure. For example, diamond is the hardest material and 

is transparent in a wide range of the electromagnetic spectrum which enables in situ 

measurements using X-ray, visible light, and infra-red. Therefore, diamond anvil is 

the ideal candidate to be used to create high pressure environments.  

SiC is another material widely used in the high pressure anvil cell and is also 

transparent in a wide range of the electromagnetic spectrum. In this dissertation, I 

show that interesting physics of thermal transport can be observed during the pressure 

range created by SiC anvil cell, i.e., 0<P<12 GPa. As a practical matter, SiC anvils are 

much less expensive than the diamond anvils, typically by a factor of 10 for the same 

weight of anvil. A 1/3 carat SiC anvil manufactured by Charles & Colvard Ltd. costs 

≈ $110. 

 

2.2.2  Preparation of the high pressure cell 

Figure 2.9 summaries the procedure for preparing the high pressure cell. To 

prepare the high pressure cell, epoxy was used to mount a pair of diamond or SiC 

anvils on backing plates (seats) that are made of hardened steel. Before loading 

samples onto the anvil, the two culets of the diamond anvils were aligned to achieve 

optical parallelism; a symmetric ring at the center of the anvils is observed when these 

two anvils contact with each other. These two well-aligned anvils are then used to 

pre-indent a gasket. The gasket is made of hardened stainless steel SS301 and is used 

to confine the sample within the sealed chamber as well as to protect the anvils from 
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breakage. Typically, I pre-indent the gasket from an initial thickness of 250 μm to 

≈100 μm and then drill a hole with ≈100 μm in diameter at the center of the 

pre-indented area by electric discharge machining. The drilled hole serves as the 

sample chamber as shown in Fig. 2.8. 

 

Fig. 2.9. Schematic illustration of the procedure for preparing a pressure cell. 

 

After these preparations, a sample that has been coated with Al film and cut 

into a small piece (~50×50 μm2) is manually loaded onto the gem anvil. For thin film 

samples, such as polymers, the sample is directly deposited on the anvil and then 

coated with Al. A small ruby crystal is also loaded into the sample chamber to 

calibrate the hydrostatic pressure by ruby fluorescence [25]. To transmit the 

hydrostatic pressure on the sample, typically Ar is loaded as the pressure medium into 
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the sample chamber using cryogenic loading. When performing thermal 

measurements at low pressure regime, P< 1.3 GPa, H2O is used as the pressure 

medium since the liquid Ar may leak from the cell. (At room temperature and P<1.3 

GPa, Ar is a liquid; when P >1.3 GPa, the equilibrium phase of Ar is a hcp crystal 

[26].) The pressure acting on the sample is increased (decreased) by tightening 

(loosening) the long tension screws on the cell. 

 

2.3  Combination of TDTR and DAC 

The main contribution of this thesis is to combine the ultrafast optical 

pump-probe method, TDTR, with DAC to explore the physics of thermal transport at 

higher pressures [15, 27-29].  

This novel combination, in principle, can be applied to any material as long as 

the material is able to be (1) prepared or deposited with a flat surface, (2) coated with 

a metal film, and (3) loaded into the DAC. In addition, the measurement temperature 

can be varied from liquid nitrogen temperature to room temperature, or even a few 

thousand Kelvin. The physical stability of the metal film transducer determines the 

upper limit of the measurement temperature. For instance, typically Al is used as the 

thermal transducer; however, Al is not suitable for the high temperature measurements 

because of its low melting temperature, ≈930 K. Extension of the TDTR 

measurements to higher pressures and temperatures will be described in Chapter 6. 

Furthermore, advances in the experimental technique also benefit the studies 

of thermal conductivity of minerals at Earth’s lower mantle and core. For example, 
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the thermal conductivities of (Fe, Mg)O ferropericlase and (Fe,Mg)SiO3 perovskite at 

extreme pressures and temperatures could be precisely measured using TDTR within 

DAC. Examples of studying the thermal conductivity of H2O at high pressures [27] 

and measurements of the thermal conductivity of MgO up to 60 GPa at room 

temperature will be described in Chapter 3. These measurement results will be 

important steps to reconstruct the thermal history of icy planets and Earth’s interior, 

respectively. 
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CHAPTER 3 

 

PRESSURE TUNING OF THE THERMAL 

CONDUCTIVITY OF CRYSTALS  

 

 

Parts of Section 3.1 were published in Phys. Rev. B 80, 180302(R) (2009) by 

Wen-Pin Hsieh, Bin Chen, Jie Li, P. Keblinski, and David G. Cahill. Parts of Section 3.3 

were published in Phys. Rev. B 83, 132301 (2011) by Bin Chen, Wen-Pin Hsieh, David G. 

Cahill, Dallas R. Trinkle, and Jie Li. 

 

 

3.1  Heat conduction in layered, anisotropic crystals 

Recently, Chiritescu and Cahill et al. reported the observation of ultra-low thermal 

conductivity, thermal conductivity substantially lower than predicted by the minimum 

thermal conductivity model [1], in a disordered, layered crystal WSe2 [2]. Low thermal 

conductivity in layered crystals has many applications, ranging from improvements in 

thermal barriers to materials for thermoelectric energy conversion [3-6].To understand the 
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origin of ultralow thermal conductivity in disordered, layered crystals, a subsequent 

molecular dynamics (MD) simulations was performed and showed that a high degree of 

anisotropy in elastic constants plays a critical role in suppressing the cross-plane thermal 

conductivity of a layered crystal [7]. As introduced in Chapter 1, pressure tuning of the 

elastic constant and thermal conductivity in the cross-plane direction enables a critical 

test of the validity of the MD results; in general, the softer cross-plane elastic constant 

C33 of a layered crystal has a higher anharmonicity and therefore increases more rapidly 

with pressure than the stiffer in-plane elastic constants. 

To study the physics of thermal transport experimentally in layered crystals, a 

prototypical layered crystal, muscovite mica was chosen. Even though the layered 

structure of muscovite is not disordered, the cross-plane thermal conductivity Λ=0.46 W 

m-1 K-1 is extremely small for an oxide; it is a factor of ≈2 lower than the predicted 

minimum thermal conductivity in the cross-plane direction , 0.9 W m-1 K-1 [8, 9]. (The 

longitudinal and transverse speeds of sound in the cross-plane direction at ambient 

pressure, vl=4.5 km s-1 and vt=2.4 km s-1, were calculated from the elastic constants 

C33=58.6 GPa, C44=16.5 GPa [10] , and mass density ρ=2.83 g cm-3. The atomic density 

is n= 8.26×1022 cm-3.) In addition, the thermal conductivity of muscovite at ambient 

pressure is also highly anisotropic: the in-plane thermal conductivity is ≈ 4 W m-1 K-1 [8]. 
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To prepare the sample, a sheet of ≈20 μm-thick muscovite mica, 

KAl2(Si3Al)O10(OH)2 (grade V-1 from SPI Supplies) was first coated with ≈80 nm-thick 

Al film and cut into a small piece, ~50×50 μm2, using a razor blade. This small Al-coated 

muscovite mica and a small ruby crystal were then loaded into a diamond anvil cell 

(DAC) with culet size of ≈500 μm and pressurized by high-pressure gas loading with Ar 

[11], see Fig. 3.1 for the schematic diagram of the Al/muscovite sample in DAC. (The 

schematic unit cell of muscovite is shown in Ref. [10].) 

 

 

Fig. 3.1. Schematic drawing of the optical pump-probe measurements, i.e., TDTR and 
Brillouin scattering, of a muscovite mica within a diamond anvil cell. An Al thin film 
serves as a transducer to absorb energy from the pump beam and enables measurements 
of temperature evolution by measuring changes in the intensity of the reflected probe 
beam. The pressure medium is Ar. 
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I measured the cross-plane thermal conductivity Λ of muscovite at room 

temperature using time-domain thermoreflectance (TDTR) [12-14], see Chapter 2 for the 

details. In the TDTR system, after the optical pump pulse heats the Al film coated on the 

muscovite mica I measured the changes in the reflectivity of Al as a function of time 

which reveals its surface temperature evolution. The time dependence of the temperature 

variation on the Al surface provides important information about the thermal transport 

properties of the muscovite sample. However, I found the thermoreflectance of Al at 785 

nm crosses through zero at P≈6 GPa [15], which substantially degrades the accuracy of 

my thermal measurements near this pressure. 

To maintain a high signal-to-noise ratio at pressures near P=6 GPa, I modified the 

TDTR setup outlined in Chapter 2 in four ways. First, I shifted the fundamental 

wavelength of the laser to 765 nm. Second, I replaced the 790 nm long-pass filter in the 

pump beam path with a 770 nm long-pass filter. Third, I replaced the 785 nm band-pass 

filter in the path of the probe beam with a 770 nm short-pass filter rotated by ≈18° to 

blue-shift the peak wavelength to ≈761 nm. Fourth, I replaced the short-pass filter in front 

of the Si photodiode detector with a 760 nm short-pass filter. These changes allowed me 

conduct my experiments with a probe beam at a wavelength of 765 nm, where 

thermoreflectance of Al does not approach zero until ≈8 GPa. 
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In order to determine the cross-plane thermal conductivity of muscovite, I 

compare the ratio Vin/Vout as a function of delay time with calculations from a thermal 

model [16] that was modified to take into account heat flow into the muscovite as well as 

into the Ar pressure medium [17]. Since the thermal penetration depth at the modulation 

frequency of the pump beam, 10 MHz, is ≈50-200 nm, much smaller than the radius of 

the laser spot size, ≈7.5 μm, heat flow is predominately one-dimensional in the 

cross-plane direction. Fig. 3.2 (a) shows the example data and fits to the thermal model. 

As described in section 2.1.2, there are many parameters in the thermal 

model—laser spot size (≈7.5 μm), Al film thickness hAl, thermal conductivity and heat 

capacity of each layer—but the thermal conductivity of muscovite mica is the only 

significant unknown model parameter. I measured the hAl at ambient conditions by 

picosecond acoustics [18]. The pressure dependent thermal conductivity of Ar at room 

temperature was taken from recently published molecular dynamics simulations [19], see 

Fig. 3.3. Since the thermal conductivities of muscovite and Ar are relatively small, the 

thermal model calculation is insensitive to the thermal conductance G of interfaces 

between Al and these materials. Therefore, I set G= 200 MW m-2 K-1 for the Al/muscovite 

interface and G= 80 MW m-2 K-1 for the Al/Ar interface at low pressures, and find that 

G= 200 MW m-2 K-1 for the Al/Ar interface provides the best fit to my data at high  



48 
 

 

100 1000

1

10

Ambient

1.7 GPa

10.3 GPa

23.5 GPa

 

 

-V
in

 / 
V

ou
t

Delay time (ps)

(a)
5

2

0.5

 

300 400 500 600
10

15

20

25
(b)

0.5 GPa

9.5 GPa

18.5 GPa

 

 

V
in

Delay time (ps)  
Fig. 3.2. (a) Example data for the ratio Vin/Vout as a function of delay time and fits (solid 
lines) to the thermal model of Ref. [16]; data and fits are labeled by the pressure. (b) 
Example data for the periodic oscillations in Vin that are used to measure the Brillouin 
frequency of muscovite mica. 
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pressures. At intermediate pressures, I linearly scale the pressure dependence of thermal 

conductance of Al/Ar interface by G= G0+ G1P MW m-2 K-1, where G0=70 MW m-2 K-1 

and G1=5.2 MW m-2 K-1 GPa-1, and P is the pressure in GPa. 
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Fig. 3.3. Pressure dependence of the thermal conductivity of Ar at room temperature 
calculated by molecular dynamics (MD) simulations using Green-Kubo formalism (solid 
symbols) [19]. The thermal conductivity of Ar predicted by the Leibfried-Schlömann (LS) 
equation (dashed line), see Eq. (3.2), is plotted for comparison. The Grüneisen constant as 
a function of pressure in the LS equation is taken from Ref. [19]. 

 

Since the heat capacities of Al, muscovite mica, and Ar at high pressures are not 

known, I estimate the pressure dependence of the heat capacities from data for the 

temperature dependence of the heat capacity combined with data for the pressure 

dependence of the atomic density and elastic constants. For example, because of the 
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relatively low Debye temperature of Ar, the heat capacity should be in good agreement 

with the value at the classical limit [19]. (The Debye temperature DΘ is 132 K and 370 K 

at P=2 and 20 GPa, respectively.) Thus, I fix the heat capacity per atom as the classical 

value, i.e.,3 Bk per atom, where Bk is the Boltzmann constant; C= 1.36, 1.86, and 2.16 J 

cm-3 K-1 at P=2, 10, and 20 GPa, respectively [20]. 

For Al, I assume that changes in the specific heat at high pressures can be 

estimated from the specific heat at ambient pressure but at reduced temperature [21]. For 

example, at 10 and 20 GPa, the Debye temperature DΘ of Al increases by 24 % and 43 % 

[22], respectively, and therefore I use the measured specific heats of Al at 

T=300/1.24=242 K and T=300/1.43=210 K to calculate the heat capacities at 10 GPa and 

20 GPa. Figure 3.4 shows the estimated specific heat of Al (solid symbols) as a function 

of reduced temperature T/ DΘ , where T is the measurement temperature, 300 K. 

In my first paper [23], an error was made due to the double counting of this 

volumetric heat capacity of Al film under pressure. To correct this error, I take into 

account changes in the Al thickness hAl under pressure. The changes in hAl as a function 

of pressure is obtained by calculating changes in the volume of Al using the equation of 

state, 73 4.54TB P= + [24] and by assuming that the Al film adheres well to the muscovite 

mica substrate and that the Al film plastically deforms to accommodate the mismatch in  
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Fig. 3.4. Estimated heat capacity per atom of Al as a function of reduced temperature 
T/ DΘ , where T=300 K and DΘ is the Debye temperature of Al. Heat capacity per atom 
obtained by ab initio calculation [25] (open circles) is plotted for comparison. 

 

lateral compression of the Al film and the muscovite substrate. The changes in the lattice 

constants of muscovite under pressure are taken from the data in Ref. [26]. For example, 

at 10 GPa, the volume of Al decreases by 10 % and the lattice constants of muscovite 

decrease by 2.2 % and 2.3 % along a and b direction, respectively, where a and b are two 

principal axes in the basal plane of muscovite. Therefore, the decrease in the Al thickness 

hAl is 5.5 %. The hAl decreases by 3.1 % at 5 GPa, 5.5 % at 10 GPa, and 7.5 % at 20 GPa. 

Figure 3.5 summarizes the heat capacity per atom, volumetric heat capacity, thickness, 

and heat capacity per unit area of Al as a function of pressure. 
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Fig. 3.5. Estimated (a) heat capacity per atom and (b) volumetric heat capacity of Al as a 
function of pressure. (c) Pressure dependence of the thickness of an Al film (80 nm thick 
at ambient) on muscovite. (d) Heat capacity per unit area, product of volumetric heat 
capacity in (b) and thickness in (c), of Al on mica as a function of pressure. 
 

 

For muscovite, I use data for the pressure dependence of elastic constants of 

MgSiO3 [27] to estimate the changes in the Debye temperature of muscovite mica at high 

pressures. This is justified because MgSiO3 has nearly the same average atomic weight as 

muscovite and the temperature dependence of the specific heats are nearly identical to 

that of mica over a wide temperature range [21]. The pressure dependence of the heat 
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capacity of muscovite mica was estimated by the calculation of changes in the Debye 

temperature combined with the data for temperature dependence of specific heat at 

ambient pressure. The volumetric heat capacity of muscovite at ambient conditions is 

Cmuscovite= 2.3 J cm-3 K-1 and increases by 9% at 10 GPa and 15% at 20 GPa. The density 

of muscovite increases by 11.5% at 10 GPa and 20% at 20 GPa [28]. 

The elastic constants of mica were measured by time-domain stimulated Brillouin 

scattering, see section 2.1.4 for the details. The frequency of the periodic oscillations in 

the in-phase signal Vin, as shown in Fig 3.2 (b), is just the Brillouin frequency fB. For 

longitudinal modes in a backscattering geometry, 2 /B lf Nv λ= , where N is the index of 

refraction, vl the longitudinal speed of sound, and λ the laser wavelength. 

The pressure dependence of fB of the muscovite mica is shown in Fig. 3.6(a). In 

order to obtain the corresponding cross-plane elastic constant C33, see Fig. 3.6(b), I 

calculated the pressure dependence of the density ρ using the equation of state of 

muscovite [28] and calculated the index of refraction N using the Lorentz-Lorenz formula 

( ) ( )( )2 21 2N N Aρ− + = , where A is assumed to be a constant [29]. At ambient 

conditions, N= 1.56, ρ= 2.83 g cm-3, and A= 0.114; N increases by 4.8% at 10 GPa and 

9% at 20 GPa. 
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Fig. 3.6. Pressure dependence of the (a) Brillouin frequency and (b) C33 of the muscovite 
mica. C33 is obtained from the Brillouin frequency measurements combined with the 
equation of state of muscovite and an assumption that the index of refraction follows the 
Lorentz-Lorenz formula. The estimated C11 = 184 GPa +4P and previously measured 
bulk modulus TB = 61.4 GPa + 6.9P [28] are plotted as solid and dashed line, respectively, 
for comparison. 
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The pressure dependence of the in-plane elastic constant C11 and the transverse 

speed of sound can not be measured using the current apparatus. However, if I assume 

that 11 4dC dP ≈ , a typical value for many silicates [30, 31], then C11= 184 GPa +4P and 

C33 approaches C11 as the measurement pressure increases to P≈24 GPa, see Fig. 3.6(b). 

As the layered muscovite is compressed along the cross-plane direction, the force 

constants of the interaction between the silicate layers increases [29]. 

Pressure dependence of the cross-plane thermal conductivity Λ of muscovite mica 

is shown in Fig. 3.7. Λ increases with pressure [32] by a factor of ≈3 and ≈11 at a 

pressure of 5 GPa and 24 GPa, respectively. Note that this data set includes 

measurements for both increasing and decreasing pressure. To check if there is hysteresis 

in the measured thermal conductivity, I also measured the thermal conductivity at 

ambient pressure after I unloaded the cell and obtained the same value, 0.46 W m-1 K-1, as 

I measured before the muscovite mica was compressed. As a result, the changes in the 

thermal conductivity of muscovite mica are reversible and I have not observed significant 

hysteresis in the thermal conductivity. Furthermore, my measurements do not support a 

previous study which reports that a crystal-to-amorphous transition in muscovite is 

observed at P≥20 GPa [28]. 
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Fig. 3.7. Measurements (solid symbol) and theoretical predictions of the cross-plane 
thermal conductivity Λ of muscovite as a function of pressure. Error bars on the data 
points are dominated by uncertainties in the parameters in the thermal model used to 
analyze the data. The predicted Λ based on a constant relaxation time and an anisotropic 
Debye model (Eq. 3.1) is shown as a solid line; and the dashed-dot line shows the scaling 

2
zcΛ ∝ . The difference between the scaling predicted by Eq. 3.1 and the scaling 2

zcΛ ∝  

is the contribution to the pressure dependence of Λ due to changes in elastic anisotropy. 

The prediction of the LS equation using the scaling 33D Cω ∝  is shown as a dashed 

line. 

 

As mentioned before, in my first paper [23], an error was made due to the double 

counting of the volumetric heat capacity of Al film under pressure. When the pressure 

dependence of the Al thickness is corrected, the thermal conductivity of the muscovite 

mica decreases by 23% at the highest pressure, P=23.5 GPa, in the data shown in Ref. 

[23]. This error is comparable to the experimental uncertainties and the correction does 
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not change any conclusion in Ref. [23]. The data shown in Fig. 3.7 have been corrected. 

To gain insight into the physics of thermal transport in layered crystals, I compare 

my thermal conductivity data with two simple models. First, I consider the thermal 

conductivity in a relaxation time approximation, 2
zC v τΛ = , where C is the 

volumetric heat capacity of the vibrational modes that contribute significantly to thermal 

transport, τ is the relaxation time, and 2
zv  is the average of the square of the group 

velocities of the vibrational modes in cross-plane direction. If both the volumetric heat 

capacity C and relaxation time τ can be assumed to be weakly dependent on the pressure, 

then the changes in 2
zv  dominates the changes in Λ. 

In an anisotropic Debye model, the phonon dispersion is given by 

( ) ( ) ( )22 22
x x y y z zk c k c k cω = + + , where ik  and ic are the wave vector and speed of 

sound along the i  direction. The group velocity in the cross-plane direction is 

z zv kω= ∂ ∂ . For muscovite mica, C11≈C22; therefore, I assume cx=cy which gives: 

2 2/22 2
2 2 2 20

cos sin
sin cos

z
z z

x z

cv c d
c c

π θ θ θ
θ θ

=
+∫ .    (3.1)      

To evaluate Eq. (3.1), since 2
11 /xc C ρ=  and 2

33 /zc C ρ= , I assume the pressure 

dependence of 2
xc  and 2

zc  follows the pressure dependence of C11 and C33. The solid 

line in Fig. 3.7 shows the predicted Λ based on the relaxation time approximation and 

using 2
zv  from Eq. (3.1) and a fit to Λ at ambient pressure; i.e., 2

0 zvΛ = Λ  with 
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0Λ =4.2×10-8 J s m-3 K-1. Even though the effects of changes in the relaxation time with 

pressure cannot be excluded, the good agreement between my data and the prediction 

based on Eq. (3.1) suggests that most of the pressure dependence of Λ can be accounted 

for by changes in the sound velocities in the cross-plane direction. 

Note that such good agreement between the data and this simple model also 

suggests that the thermal energy transport along the cross-plane direction in muscovite 

mica is predominantly carried by acoustic phonons. Even though the acoustic phonons 

are known to be the dominant heat carriers in dielectric materials, this conclusion is not 

obviously true for thermal transport along the cross-plane direction of muscovite because 

the cross-plane thermal conductivity is much smaller than the predicted minimum value 

and only a minority of the vibrational modes are acoustic modes with large group 

velocities. 

On the other hand, the Leibfried-Schlömann (LS) equation can also describe my 

data:  

1
33

0 2
DVA

T
ω

γ
Λ = ,         (3.2) 

whereV is the volume, Dω the Debye frequency,γ the Grüneisen constant,T the 

temperature, and A0 is a constant that is independent of pressure [33, 34]. If I assume that 
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the Debye frequency Dω scales with C33, i.e., 33D Cω ∝ , then the prediction of Eq. (3.2) 

is proportional to 3/2
33C and also agrees well with the data, see Fig. 3.7. I assume the 

Grüneisen constant for longitudinal modes in the cross-plane direction, 

γ =(1/2)dC33/dP≈3.8, is approximately a constant. However, since the original derivation 

of LS equation assumes an isotropic crystal, the scaling 33D Cω ∝  is difficult to justify. 

 

3.2  Thermal conductivity of MgO up to 60 GPa at room  

temperature 

Understanding the thermal evolution and geodynamics of the Earth’s core and 

mantle is one of the most important topics in geophysics. Thermal conductivity of 

minerals in Earth’s interior plays a critical role in interpreting many geophysical 

phenomena, such as the temperature evolution of mantle and core [35, 36]. Knowledge of 

the pressure dependence of thermal conductivity of minerals in Earth’s mantle would 

advance the progress in mantle convection models [37-39]. However, current estimates of 

the thermal and electrical conductivity of minerals in the mantle and core rely mostly on 

theoretical calculations [40-43] and extrapolations [44] with large uncertainties. 

Therefore, precise measurements of thermal conductivities of main constituents in Earth’s 

lower mantle, e.g., (Mg, Fe)O ferropericlase and (Mg, Fe)SiO3 perovskite, are essential. 
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In collaboration with Dr. Alex Goncharov at the Geophysical Laboratory of Carnegie 

Institution of Washington, we have studied the thermal conductivity of single crystalline 

MgO at room temperature up to 60 GPa. 

A piece of single crystalline MgO (from SPI supplies), 5×5 mm2 and 0.5 mm in 

thickness, was first placed on a graphite sheet heater and electrically heated to ≈1200 K 

for 30 minutes under a pressure of ≈4×10-7 torr to remove the volatile contaminants on 

the MgO surface. After the MgO cools down to near room temperature, it was coated 

with ≈80 nm-thick Al film by magnetron sputtering. Subsequent sample preparation was 

completed by Dr. Allen Dalton in Dr. Alex Goncharov’s group. The back side of the 

MgO was manually polished down to ≈20 μm in thickness and cut into a smaller piece, 

≈30×30 μm2 with a razor blade. The Al-coated MgO and a ruby chip were then loaded 

into a diamond anvil cell with culet size of ≈300 μm using high-pressure gas loading. Ar 

was used as the pressure medium. The pressure was determined by ruby fluorescence 

[45]. 

The sample preparation plays a critical role in obtaining correct data. When the 

MgO was polished first, and then coated with Al on the polished side, a thin layer of 

hydroxide on the surface of MgO is formed which substantially reduces the interface 

thermal conductance between MgO and Al. This high interface thermal resistance results 
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in my measurements being less sensitive to the thermal conductivity, increasing the 

uncertainty in my measurements. Heating the polished MgO to ≈1200 K before Al 

deposition may not completely remove the hydroxide layer. I was unable to obtain a 

reliable measurement of the thermal conductivity of MgO, near the expected value of 

Λ=53 W m-1 K-1, at ambient conditions on samples that were polished prior to Al 

deposition. 

I used time-domain thermoreflectance to measure the thermal conductivity of 

MgO at high pressures. The experimental setup is the same as that in the studies of 

muscovite mica. The heat capacity CAl of Al, thermal conductivity ΛAr and heat capacity 

CAr of Ar as a function of pressure are all obtained by the same approaches as described 

in section 3.1. However, the heat capacity of Ar at pressures higher than 30 GPa starts to 

deviate from the classical limit since the T/ DΘ is smaller than 0.7 [46]. The Debye 

temperature DΘ of Ar is 440 K, 530 K, and 600 K at P=30, 45, and 60 GPa, respectively. I 

correct the deviation of heat capacity from the classical limit by assuming a Debye-like 

density of states for Ar [46]. 

For the pressure dependence of the thickness hAl of Al, see Fig. 3.8 (c), I calculate 

changes in the volume of Al using the equation of state, 73 4.54TB P= + [24], and assume 

that the Al film adheres well to the MgO substrate and that the Al plastically deforms to 
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accommodate the mismatch in lateral compression of the Al film and MgO. The changes 

in the lattice constants of MgO under pressure are calculated by the equation of state from 

Ref. [47]. Figure 3.8 presents the heat capacity per atom, volumetric heat capacity, 

thickness, and heat capacity per unit area of Al as a function of pressure. 

0 10 20 30 40 50 60
2.2

2.4

2.6

2.8

3.0

(a) 

 

 

H
ea

t c
ap

ac
ity

 p
er

 a
to

m
 (k

B
)

Pressure (GPa)
0 10 20 30 40 50 60

2.4

2.5

2.6

2.7

2.8

 

 

C
v (

J 
cm

-3
 K

-1
)

Pressure (GPa)

(b) 

 

0 10 20 30 40 50 60
64

68

72

76

80

84

(c) 

 

 

Th
ic

kn
es

s 
of

 A
l o

n 
M

gO
 (n

m
)

Pressure (GPa)
0 10 20 30 40 50 60

1.70

1.75

1.80

1.85

1.90

1.95

2.00

(d) 

 

 

C
 p

er
 u

ni
t a

re
a 

x 
10

5 (J
 c

m
-2
K-1

)

Pressure (GPa)  
Fig. 3.8. Pressure dependence of (a) heat capacity per atom and (b) volumetric heat 
capacity of Al. (c) Thickness of an Al film (80 nm thick at ambient) on MgO as a function 
of pressure. (d) Pressure dependence of the heat capacity per unit area, product of 
volumetric heat capacity in (b) and thickness in (c), of Al. 
 
 

Literature data for the heat capacity per atom aC of MgO at high pressures are 

shown in Fig. 3.9(a) [48-51]. To estimate the pressure dependence of heat capacity per 



63 
 

atom ( )aC P over the pressure range I studied, I fitted these data to a second order 

polynomial in P and obtained 2
0 1 2( )aC P C C P C P= + + , where C0=2.23 Bk , 

C1= 1.38− ×10-2
Bk GPa-1, C2=1.16×10-4

Bk GPa-2, and P in GPa, see the dashed curve in 

Fig. 3.9(a). The calculated volumetric heat capacity of MgO at high pressures is plotted in 

Fig. 3.9(b). 
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Fig. 3.9. (a) Heat capacity per atom and (b) volumetric heat capacity of MgO as a 
function of pressure. In (a), the solid line shows the heat capacity per atom estimated by 
specific heat at ambient pressure and reduced temperature combined with the changes in 
the Debye temperature under pressure, see section 3.1 for the details. VS Exp denotes the 
heat capacity was obtained by measuring the vibrational spectrum of Cr-doped MgO [48, 
49]; IXS Exp denotes the heat capacity was obtained by inelastic x-ray scattering 
combined with ab intio calculations [50]. 

 

Figure 3.10 presents the thermal conductivity Λ of MgO at room temperature up 

to 60 GPa. Λ increases from 53 W m-1 K-1 at ambient conditions to 161 W m-1 K-1 at 

P=59 GPa. This data set includes measurements for both increasing (solid circles) and 

decreasing (open circles) pressure; the changes in the Λ of MgO are reversible.  



64 
 

0 10 20 30 40 50 60
0

50

100

150

200

LS Eq, γ=const.

LS Eq,
γ=1/2(dBT/dP)-1/6

 

 

Th
er

m
al

 C
on

du
ct

iv
ity

 (W
 m

-1
 K

-1
)

Pressure (GPa)  

Fig. 3.10. Thermal conductivity of MgO up to 60 GPa at room temperature. The solid 
(open) circles show compression (decompression) data. The solid curve shows the 

predicted thermal conductivity based on the LS equation with 1 1
2 6

TdB
dP

γ = − , which is 

calculated by the pressure derivative of the isothermal bulk modulus from the EOS of 
MgO in Ref. [47]. The thermal conductivity predicted by the LS equation with a 
constantγ is plotted as the dashed curve for comparison. 

 

In Fig. 3.10, I also compare my measurements with the prediction of Λ of MgO 

based on the Leibfried-Schlömann (LS) equation (Eq. 3.2). As mentioned in the end of 

section 3.1, the LS equation is widely employed to describe or predict the pressure 

dependence of thermal conductivity of non-metallic, isotropic crystals where heat is 

predominantly carried by phonons. The LS equation [33, 34] assumes that most of the 

thermal energy is conducted by acoustic phonons and the contribution of optical phonons 

can be neglected. In addition, the LS equation also assumes that the phonon 
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mean-free-path is dominated by the three-phonon anharmonic scattering between acoustic 

phonons. 

In the LS equation (Eq. 3.2), the pressure dependence of the lattice constant of 

MgO is calculated using the equation of state (EOS) from Ref. [47]. The Debye 

temperature, proportional to the Debye frequency Dω , at high pressures is calculated 

using the pressure dependence of elastic constants and EOS from Ref. [47] combined 

with a method described in Ref. [22]. To calculate the Grüneisen parameterγ , the 

Slaterγ [52], I assume that the Poisson ratio and elastic anisotropy are both constant 

under pressure and therefore the Grüneisen parameterγ can be derived from the pressure 

derivative of the isothermal bulk modulus: 1 1
2 6

TdB
dP

γ = − , where TB is the isothermal 

bulk modulus of MgO. Taking the pressure derivative of TB of MgO from the EOS [47], 

the Grüneisen parameter at ambient pressure isγ =1.82 and decreases by 15 % at 30 GPa 

and 23% at 60 GPa. 

The predicted Λ of MgO based on the LS equation

1
33

2
DVA ω

γ
Λ = , where the 

constant A=1.71×10-28 J s2 m-2 K-1,V is the volume, Dω is the Debye frequency, andγ is the 

Grüneisen parameter, is shown as the solid curve in Fig. 3.10. Since the original 

derivation of the LS equation assumes that the thermal energy is dominantly transported 
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by acoustic phonons, the good agreement between my measurements and the prediction 

by the LS equation suggests that optical phonons in MgO play a minor role in the thermal 

transport. However, sinceγ varies widely [47, 53-56] due to the uncertainties in the 

pressure dependence of elastic constants used to derive the Grüneisen parameter, an 

accurate prediction of Λ by the LS equation requires accurate measurements of the EOS 

of MgO. 

Since minerals at Earth’s lower mantle are under extreme pressure and 

temperature, data for the thermal conductivity of MgO at elevated temperature are 

essential. I am currently collaborating with Dr. Alex Goncharov’s group to perform 

measurements of the Λ of MgO at high temperature, ≈900 K, using resistive heating. 

 

3.3  Testing the LS equation on materials with multi-atoms 

per unit cell 

Through the collaboration with Dr. Bin Chen and Prof. Jie Li at the University of 

Michigan, we also tested the validity of the Leibfried-Schlömann equation on a material 

with multi-atoms per unit cell by measuring the thermal conductivity of H2O (water, ice 

VI, and ice VII phases) at room temperature up to 22 GPa using TDTR and DAC [57], 

see Fig. 3.11.We found that the LS equation describes our measurements of the thermal 
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conductivity of H2O to within 20 %. This suggests that the LS equation could be used to 

predict the thermal conductivity of a non-metallic pure material at high pressures if the 

thermal conductivity at ambient pressure and the EOS of the material are known.  

 
Fig. 3.11. Pressure dependence of the thermal conductivity of H2O (water, ice VI, and ice 
VII) at room temperature [57]. 

 

3.4  Conclusion 

In this chapter, I have shown that the combination of TDTR and DAC is a 

powerful tool to study the pressure dependence of thermal transport properties of crystals. 

I anticipate that measurements of the thermal conductivity of MgO at high temperature 

will provide significant information to examine the validity of current theoretical models 

for geodynamics in the Earth interior. 
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CHAPTER 4 

 

TESTING THE MINIMUM THERMAL 

CONDUCTIVITY MODEL USING HIGH PRESSURE 

 

 

Parts of this chapter were published in Phys. Rev. B 83, 174205 (2011) by Wen-Pin 

Hsieh, Mark Losego, Paul Braun, Sergei Shenogin, Pawel Keblinski, and David G. Cahill. 

 

4.1  Introduction 

The minimum thermal conductivity model was originally proposed by Einstein 

and later modified by Cahill and coworkers [1, 2]. This model assumes that the thermal 

energy is transported by harmonic interactions between atoms vibrating with random 

phases. Using a harmonic Green-Kubo formalism, Allen and Feldman [3, 4] provided a 

more rigorous foundation for this minimum thermal conductivity model. To classify the 

vibrational modes in disordered materials, Allen and Feldman also introduced the 

following phonon categories: locons, diffusons, and propagons. Locons are localized 

vibrational modes and do not contribute to thermal transport under the harmonic 
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approximation. Propagons, analogous to the phonons in crystals, are wave-like acoustic 

vibrational modes. Diffusons are non-propagating, diffusive vibrational modes and play a 

dominant role in the thermal transport. Based on these ideas and assuming that the 

density of vibrational states follows a Debye-like distribution, the thermal conductivity of 

most amorphous materials as well as many strongly disordered crystals can be accurately 

predicted from elastic constants and atomic density of the materials. (An exception was 

recently reported for amorphous Si deposited by hot-wire chemical vapor deposition [5], 

where the measured thermal conductivity is a factor of 4 larger than the predicted thermal 

conductivity based on the minimum thermal conductivity model.) In the high temperature 

limit in which all vibrational modes are thermally excited, the predicted minimum 

thermal conductivity is ( )2/3
min 0.40 2B l tk n v vΛ = + , where n is the atomic density and vl 

and vt are the longitudinal and transverse speeds of sound, respectively [2]. 

However, the validity of this thermal transport mechanism for amorphous 

polymers is questionable; the density of vibrational states of an amorphous polymer 

substantially deviates from a Debye-like distribution due to the coexistence of strong 

covalent bonding within the polymer backbone and side groups with weak non-bonding 

van der Waals interactions between chains. In addition, since the non-bonding van der 

Waals interactions are significantly non-linear, the effect of “fracton hopping” [6] due to 
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the anharmonic interactions between localized modes could also contribute to thermal 

transport. Recently molecular dynamics simulations of polystyrene [7] and proteins [8, 9] 

have shown the importance of anharmonicity in the thermal conductivity of amorphous 

polymers. Pressure tuning of the thermal conductivity enables a critical test of the 

minimum thermal conductivity model by enabling a continuous variation of the atomic 

density and elastic constants.  

Due to the limitations of the types of pressure cells, previous studies on the 

pressure dependent thermal conductivity of polymers [10-12] extend to only P≈2 GPa. 

Diamond or SiC anvil cell techniques [13-15] can easily generate the high pressures 

needed to substantially alter the elastic constants of a polymer. For instance, the pressure 

dependence of the elastic constant C11 of a typical glassy polymer is on the order of C11≈ 

8 GPa+7P, hence C11 increases by an order of magnitude to C11≈80 GPa at P=10 GPa, 

which is comparable to the elastic constants of Al at ambient conditions. 

 

4.2  Experiments 

4.2.1  Growing polymers on the SiC anvil 

Poly(methyl methacrylate) (PMMA) chains grown on SiC anvils were prepared 

by Dr. Mark Losego in Prof. Paul Braun’s group at the University of Illinois. SiC anvils 
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with a culet size of ≈600 μm were first etched in 10 % HF solutions, rinsed in deionized 

water, and sonicated in chloroform, followed by ethanol to remove residues and 

contaminants. A piranha solution (3:1 H2SO4 /H2O2 (v/v)) was then used to hydroxylate 

the SiC anvil surface and to facilitate chemical attachment of the radical initiator, 

(11-(2-bromo-2-methyl)propionyloxy) undecyltrichlorosilane [16].  

PMMA brushes were grown from these surfaces using atom-transfer radical 

polymerization (ATRP) [17]. The term “brush” refers to polymer chains covalently 

bonded to a substrate at a spacing shorter than the radius of gyration [18]. In the ATRP 

method, the SiC anvil surface was first functionalized with a self-assembled monolayer 

having a bromine termination. Methyl methacrylate monomers were then polymerized 

from this bromine initiator by using copper (I) chloride as the atom-transfer catalyst that 

abstracts the bromine from the SiC surface and initiates the radical polymerization 

process. Figure 4.1 shows the schematic illustration of the ATRP method. 

By increasing polymerization time the thickness of the brush and molecular 

weight of the PMMA chains increased. The thickness of the PMMA brush was 

determined by using picosecond acoustics combined with a simulation of the acoustics 

signals based on Ref. [19], see section 2.1.5 for the details. By the film thickness and the 

molecular weight, a grafting density is determined to be ≈0.6 chains nm-2, which 
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indicates sufficient overlap to force the extension of polymer chains into the brush 

regime[18]. 

 

 
Fig. 4.1. Schematic illustration of the atom-transfer radical polymerization method. In 
step (1), Cu(I)Cl abstracts a Br atom from the SiC surface, giving a propagating radical; 
(2) a monomer, methyl methacrylate, is attached on the radical and then polymerized; (3) 
the brush grows until the radical is capped. 

 

 

An 80 nm-thick Al film was deposited on the PMMA brushes using magnetron 

sputtering and serves as an optical transducer for time-domain thermoreflectance (TDTR) 

measurements. The SiC anvil cell was pressurized by cryogenically loading with Ar or by 

loading with H2O as the pressure medium. (Since at room temperature Ar is a liquid at P 
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<1.3 GPa and sometimes leaked from the cell, H2O was used for thermal measurements 

at P <1.4 GPa. At room temperature and P >1.3 GPa, the equilibrium phase of the 

cryogenically-loaded Ar is a hcp crystal [20].) I determined the pressure by measuring 

ruby fluorescence [21]. Figure 4.2 shows the configuration of the Al-coated PMMA 

sample in the SiC anvil cell and TDTR measurements. 

 

 
Fig. 4.2. Schematic drawing of a TDTR measurement on PMMA brushes in a SiC anvil 
cell. Ar is the typical pressure medium for measurements at P >1.3 GPa; H2O was used 
for measurements at P <1.4 GPa. 
 

 

4.2.2  Thermal conductivity measurements by TDTR 

I measured the thermal conductivity Λ of PMMA brushes at room temperature by 

comparing the TDTR [22-24] data with calculations using a thermal model [25] which 
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takes into account heat flow through the polymer layer and into the SiC substrate as well 

as heat flow into the pressure medium [26].  

There are several parameters in the thermal model—laser spot size, and the 

thickness, heat capacity and thermal conductivity of each layer—but the thermal 

conductivity Λ of the PMMA layer is the only significant unknown. The PMMA layers 

are chosen to be thin (< 25 nm) so that most of the heat flows into the SiC anvil, which 

has a high thermal conductivity, and only a small fraction of the heat flows into the 

pressure medium, which has a much lower thermal conductivity. Uncertainties in the 

thermal conductivity and heat capacity of the pressure medium propagate less than 2% 

error in the thermal conductivity measured for the thickest (22 nm) PMMA layers at 

P=10 GPa. 

The thickness of the Al film at ambient pressures was determined by picosecond 

acoustics and its changes under pressure was calculated by the equation of 

state 73 4.54TB P= + [27] and by assuming that the Al film deforms plastically and 

adheres well to the PMMA layers and that SiC does not have lateral compression. 

Estimates of the pressure dependence of the heat capacity of Al are discussed in Chapter 

3. Figure 4.3 shows the pressure dependence of the thickness and heat capacity per unit 

area of Al film. I also calculated changes in the thickness of PMMA by its equation of 
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state. (The approach for determining the equation of state is described below.) Since the 

PMMA layers are thermally thin, the thermal model is not sensitive to the heat capacity 

of the PMMA brush. 
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Fig. 4.3. (a) Pressure dependence of the thickness of an Al film (80 nm thick at ambient) 
on PMMA/SiC. (b) Heat capacity per unit area, product of volumetric heat capacity and 
thickness in (a), of Al as a function of pressure. 

 

4.2.3  Measurements of elastic constants  

Elastic constants of PMMA were measured by time-domain stimulated Brillouin 

scattering [15, 28, 29], in which the thickness of the PMMA is required to be thicker than 

half of the laser wavelength (~785 nm). Therefore I measured the elastic constant C11 of a 

thick (>1μm), spun-cast PMMA layer. In a backscattering geometry, the Brillouin 

frequency in longitudinal modes is 2 /B lf Nv λ= , where N is the refractive index, vl is the 

longitudinal sound velocity, and λ=785 nm is the laser wavelength. The pressure 
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dependence of fB is shown in Fig. 4.4(a). 

The equation of state and elastic constant C11 of PMMA, see Fig. 4.4(b), are 

determined by a self-consistent and iterative approach. To begin, I use a trial function for 

the isothermal bulk modulus BT=6 GPa+6P and calculate the pressure dependence of the 

density ρ(P), index of refraction N(P), and C11(P) using the Lorentz-Lorenz formula 

2 2( 1) /( ( 2))N N Aρ− + = , where A is a constant [15], combined with the picosecond 

acoustics data. (At ambient pressure ρ=1.19 g cm-3 and A=0.241.) If the Poisson ratio ν 

can be assumed to be a constant ν=1/3, the isothermal bulk modulus 11
2( ) ( ) ( )3TB P C P= . 

I then fit this BT (P) to a second order polynomial in P and calculate the pressure 

dependence of the molecular density n from ( / )T TB n dP dn= .  

This procedure is iterated until C11 and BT are self-consistent; the final equation of 

state is 2
0 1 2TB B B P B P= + + , where B0=6.15 GPa, B1=7, and B2=−0.17 GPa-1. Based on 

this equation of state, the atomic density n increases by 31% at 5 GPa and 46% at 10 GPa. 

Here, I assume that the amorphous polymer plastically deforms under high pressure so 

that the state of stress is close to hydrostatic. (At low pressures, the yield strength of 

PMMA is yτ ≈ 0.05 GPa+0.2P [30].) 
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Fig. 4.4. Pressure dependence of the (a) Brillouin frequency and (b) C11 of a spun-cast 
layer of PMMA. C11 is derived from the Brillouin frequency data using a self-consistent 
equation of state of PMMA and the assumptions that the Poisson ratio is constant and the 
refractive index follows the Lorentz-Lorenz equation. Data for Polydimethylsiloxane 
(PDMS) [31] and previously estimated C11= 110 GPa+4P of Al [27] are plotted for 
comparison. 
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4.3  Results and discussion 

4.3.1  Thermal conductivity of PMMA 

Figure 4.5 presents the pressure dependence of the thermal conductivity Λ(P) of 

PMMA brushes (solid symbols) with different thicknesses. Λ(P) is independent of the 

thickness h when h > 6 nm and increases monotonically with increasing P. The 

uncertainty in my thermal conductivity measurements is estimated to be ≈10 % and is 

dominated by uncertainties in the thicknesses of PMMA and Al. For comparison, I also 

measured Λ(P) of a 10 nm thick spun-cast PMMA (open diamond) and found the 

spun-cast and brush forms of PMMA show the same behavior. The thermal conductivity 

at ambient pressure, Λ≈0.185 W m-1 K-1, agrees well with the literature value, Λ≈0.20 W 

m-1 K-1 (open square) [32, 33]; in the low pressure regime, the weaker pressure 

dependence is similar to that of previous work by Andersson and Ross (open circle) [10] 

whose ambient conductivity, 0.225 W m-1 K-1, is ≈10 % higher than the data reported in 

Refs. [32, 33]. 

The result that brushes and spun-cast PMMA have the same behavior is consistent 

with a previous work by my collaborators who studied the thickness dependence of the 

effective thermal conductivity at ambient pressure [34]. In my experiments, the dry 

PMMA brushes are amorphous and the extension of polymer chains is relatively short; in 
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the previous work, the brushes were estimated to extend to only 25% of their contour 

length, and the increase in the thermal conductivity due to the small chain extension is 

only comparable to the uncertainties of the data shown in Fig. 4.5. 
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Fig. 4. 5. Measurements of the thermal conductivity of PMMA brushes (solid symbols) 
and a spun-cast layer (open diamond) as a function of pressure. The uncertainty in the 
thermal conductivity and pressure measurements are ≈10 % and 0.2 GPa, respectively. Ar 
was the pressure medium for all measurements except for those of the 13 nm brushes and 
10 nm spun-cast layer where H2O was used. The dashed line shows the predicted thermal 
conductivity of PMMA based on the minimum thermal conductivity model, the pressure 
dependence of the atomic density n, and the elastic constant C11 obtained by a polynomial 
fit. Data for bulk PMMA by Andersson et al. (open circle) [10] and by Cahill et al. and 
Putnam et al. (open square) [32, 33] are included for comparison. Lines between 
Andersson’s data are added to emphasize that the pressure dependence of the prior data 
are similar to that of my measurements in the low pressure regime. 
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Data sets for 9 and 22 nm-thick brushes and the 10 nm-thick spun-cast layer 

include measurements for both increasing and decreasing pressure. The lack of hysteresis 

shows that any structural changes in the PMMA under pressure are reversible.  

The measurements of the thermal conductivity of PMMA films include the 

contribution to the thermal resistance from the bulk of the polymer layer as well as the 

thermal resistance of the Al/PMMA and PMMA/SiC interfaces. I have not experimentally 

determined the series sum of the thermal conductance of Al/PMMA and PMMA/SiC 

interfaces; instead, I estimate the interface thermal conductanceG ≈ 300 MW m-2 K-1 

based on the previous study [34]. Using this estimation, the sum of the Kapitza lengths of 

Al/PMMA and PMMA/SiC interfaces is small, /Kl G= Λ ~1 nm, and therefore I do not 

expect a significant reduction in the effective thermal conductivity of PMMA caused by 

the finite interface thermal conductance even for the thinnest, 6 nm, brushes. 

Data for Λ(P) is also compared with the prediction by the minimum thermal 

conductivity model minΛ [2], see Fig. 4.5. In the high temperature limit, the minimum 

thermal conductivity minΛ depends only on atomic density n and the sound 

velocities 11lv C ρ= and 44tv C ρ= . If the ratio 11 44/C C is assumed to be 

approximately constant under pressure, the pressure dependence of minΛ simplifies 

to 1/ 6 1/ 2
min 0 11n CΛ = Λ . A fit to the average of the data at ambient pressure Λ= 0.185 W m-1 
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K-1 using n= 284.3 10× m-3 and C11=9.2 GPa gives 11
0 3.25 10−Λ = × J1/2 m K-1 s-1. The 

dashed line in Fig. 4.5 shows 1/ 6 1/ 2
min 0 11n CΛ = Λ using the C11 [Fig. 4.4 (b)] derived from 

the polynomial fit and n obtained from the equation of state ( / )T TB n dP dn= as described 

above. 

Note that the Λ(P) can also be approximated by a simple function of pressure. In 

the high pressure limit, the elastic constant C11 is roughly linear in P, and n1/6 is 

essentially a constant. Thus, the predicted thermal conductivity can be expressed 

as 1/ 2
1 2PΛ = Λ +Λ , where 1Λ = 0.185 W m-1 K-1 is the thermal conductivity at ambient 

pressure and 2Λ ≈0.11 W m-1 K-1 GPa-1/2. 

As shown in Fig. 4.5, the predicted pressure dependence of the thermal 

conductivity based on 1/ 6 1/ 2
min 0 11n CΛ = Λ captures well the trends in the data and 

accurately predicts Λ(P) at higher pressures. Note, however, that in the low pressure 

regime, P<1 GPa, the data deviate slightly from the prediction of the minimum thermal 

conductivity model but the difference is relatively small and comparable to the 

experimental uncertainties, ≈10 %. (Andersson’s data show a similar deviation from the 

model prediction even after using another 11
0 3.95 10−Λ = × J1/2 m K-1 s-1 to fit their data in 

Ref. [10] at ambient pressure.) The good agreement between my data and the model 

prediction over the entire pressure range supports the idea that the dominant mechanism 
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of thermal transport in glassy polymers is the exchange of thermal energy between 

non-propagating vibrational modes [35]. 

 

4.3.2  Thermal conductivity of polystyrene by molecular dynamics  

simulations 

To gain further insight into the mechanism of heat transport in amorphous 

polymers, and to evaluate the generality of my findings shown in the previous section, Dr. 

Sergei Shenogin and Prof. Pawel Keblinski of Rensselaer Polytechnic Institute calculated 

the pressure dependent thermal conductivity of a model of polystyrene (PS) using 

molecular dynamics (MD) simulations. Although another study of the thermal 

conductivity of polystyrene under pressure by MD simulations was recently reported by 

Algaer et al. [36], their results did not show significant dependence on the elastic 

constants because they only studied pressures up to 60 MPa. Details of the MD 

simulations are described in Ref. [37]. 

Figure 4.6 depicts the pressure dependence of the thermal conductivity Λ(P) of PS 

calculated by our MD simulations. The solid line shows the predicted Λ based on the 

minimum thermal conductivity model 1/ 6 1/ 2
min 0 11n CΛ = Λ , where 11

0 5.66 10−Λ = × J1/2 m 

K-1s-1 is determined by fitting minΛ = 0.20 W m-1 K-1 at ambient pressure. The model 
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prediction agrees well with the MD simulations, indicating that the heat transport 

mechanism in amorphous polystyrene is the same as the mechanism described by the 

minimum thermal conductivity model. Furthermore, the fact that the minimum thermal 

conductivity model describes well the data for both PMMA and PS suggests that indeed 

amorphous polymers share a universal thermal transport mechanism where thermal 

energy is transferred predominately through the diffusion of thermal energy between 

non-propagating vibrational modes. 
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Fig. 4.6. Pressure dependence of the thermal conductivity of polystyrene by molecular 

dynamics simulations (solid circles). The solid line shows the predicted thermal 

conductivity by the model of the minimum thermal conductivity. The dashed line shows 

the pressure dependence of the thermal conductivity predicted by the 

Leibfried-Schlömann equation using the scaling 11D Cω ∝ . 



89 
 

 

Compared to the relatively weak pressure dependence of thermal conductivity 

predicted by the minimum thermal conductivity model, the Leibfried-Schlömann 

equation, as discussed in Chapter 3, is often used to describe the thermal conductivity of 

isotropic crystals and predicts much stronger pressure dependence: 

1
33

2
D

LS
VA

T
ω

γ
Λ = ,      (4.1) 

where V is the volume, Dω the Debye frequency,γ the Grüneisen parameter,T the 

temperature, and A is a constant under pressure [38, 39]. If I assume thatγ is also a 

constant in the pressure range of 0<P<12 GPa and that the Debye frequency scales with 

the square root of elastic constant, i.e., 11D Cω ∝ , then the predicted thermal 

conductivity Λ(P) based on Eq. (4.1) is shown as the dashed line in Fig.4.6. The distinctly 

different pressure dependence of Λ predicted by the LS equation supports my conclusion 

that diffusion of thermal energy between non-propagating vibrational modes dominates 

the heat conduction in amorphous polymers. The propagation of wave-like vibrational 

modes, the dominant mechanism of heat conduction in crystals, plays a minor role in the 

amorphous polymers. 
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4.4  Conclusion 

I present my studies of the pressure dependence of elastic constants and thermal 

conductivity of PMMA using time-domain stimulated Brillouin scattering and 

time-domain thermoreflectance combined with SiC anvil cell techniques. The minimum 

thermal conductivity model can well describe the pressure dependent thermal 

conductivity of PMMA by TDTR measurements and polystyrene by MD simulations, 

suggesting that heat diffusion between non-propagating vibrational modes can mostly 

capture the basic heat transport mechanism in amorphous polymers and contributions to 

heat transport from localized excitations and anharmonic effects are minor 

considerations. 
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CHAPTER 5 

 

PRESSURE TUNING OF THE INTERFACE 

THERMAL CONDUCTANCE 

 

 

Parts of section 5.1 will be published in “Pressure tuning of the thermal 

conductance of weak interfaces” by Wen-Pin Hsieh, Austin S. Lyons, Eric Pop, Pawel 

Keblinski, and David G. Cahill, submitted for publication. 

 

5.1  Pressure tuning of thermal transport across weak  

interfaces 

Thermal transport across interfaces is characterized by the interface thermal 

conductanceG : J G T= Δ , where J is the heat flux across the interface and TΔ the 

temperature drop at the interface. The interface thermal conductance plays a critical 

role in controlling thermal conduction in nanostructures [1], nanoscale composites [2, 

3], and superlattices [4]. For example, a high density of interfaces can reduce the 

thermal conductivity of materials below a value predicted by the minimum thermal 

conductivity model for amorphous limit [5, 6] and therefore may find applications in 
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improving thermoelectric energy conversion [7].  

The acoustic mismatch model (AMM), diffuse mismatch model (DMM), and 

phonon radiation limit (PRL) are conventional theories [8] used to predict and 

compare the experimental data for interface thermal conductance. These models 

assume perfect contact (e.g., strong bonding) at the interface between materials and 

that the interface thermal conductance is determined only by the lattice dynamics, 

such as acoustic and vibrational properties, of the bulk materials on each side of the 

interface; the acoustic and vibrational properties of the interface itself are not included 

in these models. In the AMM, in analogy with transmission line theory, the phonon 

transmission at the interface is derived from acoustic impedances, the products of the 

mass density and speeds of sound. In this model, large mismatch in acoustic 

impedances leads to smaller interface thermal conductance G. The DMM, on the other 

hand, assumes strong phonon scattering at the interface, and that the phonon 

transmission is simply governed by the relative density of phonon vibrational states in 

the materials on either side of the interface. In the DMM, the more dissimilar the 

densities of phonon vibrational states, the smaller the value of G. 

The PRL predicts the maximum possible thermal conductance involving a 

harmonic two-phonon process [9, 10]. Considering the interface studied here, Al/SiC, 

the PRL assumes that phonons incident from SiC into Al have a transmission 
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coefficient of unity for all phonons in SiC with frequencies lower than the highest 

frequency vibrational mode of Al, νmax. For phonons in SiC with frequencies higher 

than the νmax, the transmission coefficient is zero. Thus, the prediction of PRL is a 

function of the highest frequency νmax of Al as well as the phonon density of states of 

SiC. 

The importance of interface bonding on thermal transport at interfaces [11-17] 

has been discussed for decades. For example, anomalously high thermal conductance 

of Pb/diamond interfaces was attributed to the enhanced interface bonding between 

Pb and diamond [11]. Using a lattice-dynamics model, Young and Maris [17] showed 

that when interface spring constant is much smaller than the bulk spring constants of 

two materials on either side of the interface, the phonon transmission at the interface 

is significantly reduced. More recently molecular dynamics simulations have 

demonstrated that low interface stiffness can substantially reduce the interface thermal 

conductance [12, 13]. Analytical models [14, 16] that include the effects of weak 

interface spring constants have shown that in the limit of extremely weak interfaces, 

G scales with the square of the interface spring constant, and as the interface stiffness 

is increased to the strong bonding limit, G approaches the value predicted by the 

AMM. 

The interface stiffness S is related to an applied stressσ via S uσ = Δ , where 
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Δu is the discontinuity in displacement created by the applied stress at the interface 

[18]. An interface between materials can be modeled as a thin layer with an elastic 

constant iC and thickness t [19]. When an applied stressσ creates a strain ε on the 

interface layer, iCσ ε= , where /t tε = Δ and tΔ is the displacement of the interface 

layer due to the applied stress. Then the interface stiffness S can be defined by /iC t , 

the elastic constant of the interface layer per unit thickness. 

Under pressure, the elastic properties of materials are changed [20]. This 

allows us to systematically vary the interface stiffness S and directly reveal the critical 

role that weak interface bonding plays in thermal conductance G. The interface 

stiffness S, analogous to the elastic constants of bulk materials, is expected to initially 

increase linearly with pressure P, 0 1( )S P S S P= + . As introduced in Chapter 1, 

modern gem anvil cell techniques [21, 22] can easily generate high pressures, 

typically P∼10 GPa, needed to increase the small elastic constants of weak van der 

Waals interactions to values that are typical of strong chemical bonds [23]. 

In order to explore how the interface stiffness affects the interface thermal 

conductance, three types of interfaces with stiffness ranging from strong to weak were 

prepared: (1) a clean Al/SiC interface; (2) Al deposited on the native oxide of SiC, 

Al/SiOx/SiC; and (3) a similar interface incorporating a monolayer graphene, i.e., 

Al/graphene/SiOx/SiC. To produce the clean interface (1), a sputtering chamber was 



98 
 

constructed in which the SiC anvil is placed in a small diameter (5 mm), shallow hole 

(0.25 mm in depth) drilled in a thin graphite plate (0.5 mm in depth) and the graphite 

plate is then heated electrically to ≈1300 K for 30 minutes under a pressure of ≈5×10-7 

torr. The temperature of the graphite heater was measured by optical pyrometry. After 

the SiC anvil cools to near room temperature, an 80 nm-thick Al film was in-situ 

deposited on the clean SiC surface by magnetron sputtering without being exposed to 

air. Figure 5.1 shows the setup of the sputtering chamber and graphite plate heater. 

The type (2) interface, Al/SiOx/SiC, was prepared by depositing an 80 

nm-thick Al film on the native oxide of the as-received SiC anvil at room temperature. 

The thickness of the native oxide on the as-received SiC anvil, ≈1 nm, was 

determined by the measured ratio, R≈3, of the integrated intensities of Si-C to Si-O 

peaks in the Si 2p X-ray photoelectron spectrum [24]. The photoelectron current was 

measured at normal incidence. 

To further weaken the interface stiffness, a monolayer of graphene was 

inserted between the Al and the native oxide layer on SiC, forming the type (3) 

interfaces, Al/graphene/SiOx/SiC. The growth of monolayer graphene and subsequent 

transferring graphene onto the SiC anvil were completed by Austin Lyons in Prof. 

Eric Pop’s group at the University of Illinois. Monolayer graphene was first grown on 

a Cu foil by chemical-vapor-deposition [25]. One side of the Cu foil was spin-coated  
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Fig. 5.1. (a) Setup of the sputtering chamber in which samples under study can be 
heated electrically up to ≈1650 K and in situ coated with metal films. (b) Home-made 
graphite plate heater (32×25.4 mm2 and 0.5 mm thick). A SiC anvil, circled by red 
dashed lines, is placed in a small diameter (5 mm), shallow hole (0.25 mm in depth) 
drilled in the graphite plate. 
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with a 250 nm-thick poly(methyl methacrylate) (PMMA) layer, and the other side of 

the foil with extra graphene film was etched in an O2 plasma, followed by an aqueous 

ferric chloride [25]. The PMMA and graphene were then rinsed in deionized water 

and transferred onto the SiC anvil. After using a 1:1 methylene-chloride/methanol 

solution to remove the PMMA carrier layer, the sample was annealed at ≈670 K for 

one hour at atmospheric pressure using a gas flow of 500 sccm H2 and 500 sccm Ar to 

remove organic contaminants. The number of layers of the graphene transferred onto 

the SiC anvil was characterized by Raman spectroscopy; the 

full-width-at-half-maximum (FWHM) of the 2D peak of graphene, ≈34 cm-1, 

confirms that the graphene is monolayer [26], see Fig. 5.2. (Bilayer graphene is easily 

distinguished from monolayer graphene by a significantly larger FWHM ≈60 cm-1 

[26].)  

Two types of “weak” interface samples containing graphene were prepared. 

First, the CVD-grown graphene was transferred directly onto the as-received SiC 

anvil. The other type of sample was prepared to test how the thickness of the native 

oxide layer affects the interface thermal conductance: the as-received SiC was first 

cleaned at high temperatures as described above and then exposed to ambient air for 

~24 hours. X-ray photoelectron spectroscopy (XPS) data showed that the thickness of  
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Fig. 5.2. (a) Raman spectra of a bare SiC (red curve) and a monolayer graphene on a 
SiC anvil (black curve) (b) Raman spectra around the wave number of 2700 cm-1.The 
monolayer graphene is confirmed by the 2D peak near 2700 cm-1 with a 
full-width-at-half-maximum (FWHM) of 34 cm-1. 

 

the regrown native oxide layer was ≈0.5 nm. Both types of “weak”interface samples 

were heated to ≈420 K to remove surface volatile contaminants and then coated with 

Al films. The SiC anvil cells were pressurized by loading Ar or H2O (the pressure 
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medium) into the sample chamber. The pressure was determined by ruby fluorescence 

[27]. 

The thermal conductance G of Al/SiC interfaces were measured using 

time-domain thermoreflectance (TDTR) [1, 30, 31] at room temperature and extracted 

using a thermal model that takes into account the heat flow through the interface layer 

and into the SiC substrate as well as into the pressure medium [28]. The thermal 

model contains several parameters—laser spot size (w0≈6.5 μm), and the thickness, 

heat capacity and thermal conductivity of each layer—but the thermal conductance of 

Al/SiC interfaces is the only significant unknown model parameter. The thickness of 

the Al film hAl for each sample at ambient pressure was determined by picosecond 

acoustics [29]. I calculated the changes in Al thickness hAl under pressure by 

assuming that the Al film deforms plastically and adheres well to the SiC anvil surface 

[30]; hAl decreases by 5.4 % at 5 GPa and 9.4 % at 10 GPa. Estimates of the pressure 

dependence of the volumetric heat capacity of Al are described in Chapter 3. For an 

80 nm-thick Al film, the heat capacity per unit area is hAlC=1.94×10-5 J cm-2 K-1 at 

ambient conditions and decreases by 4 % at 10 GPa. 

Figure 5.3 shows example data for the type (2) Al/SiOx/SiC interfaces and fits 

to the thermal model. At long time delays, the ratio Vin/Vout drops faster as the applied 

pressure increases, indicating that the interface thermal conductance increases with 
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pressure. Since the thermal conductivity of SiC anvil is much higher than the thermal 

conductivity of pressure medium, most of the heat created by the pump pulse flows 

into the SiC anvil and only a small fraction of the heat flows into the pressure medium. 

Thus, uncertainties in the thermal conductivity and volumetric heat capacity of the 

pressure medium propagate to less than ≈2 % error in the measurements of the 

interface thermal conductance G. The overall uncertainty in G is <8 % and is 

dominated by the uncertainty in the thickness of the Al film. 

1
0.50.20.1 51

Ambient

4.5 GPa
9 GPa

 Delay time (ns)

20

10

5

2

 

 

-V
in

 / 
V ou

t

 
Fig. 5.3. Example data for time-domain thermoreflectance measurements on 
Al/SiOx/SiC interfaces and fits (solid lines) to the thermal model as described in Ref. 
[31]. Data and fits are labeled by the pressure. The interface thermal conductance is 
enhanced by the increasing pressure. 

 

Figure 5.4(a) shows the pressure dependence of the thermal conductance G(P) 

of the various Al/SiC interfaces. The thermal conductance of the clean Al/SiC 

interface (open circles) at ambient pressure is high, G≈200 MWm-2 K-1, and is weakly  
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Fig. 5.4. (a) Pressure dependent thermal conductance G(P) of various Al/SiC 
interfaces. G(P) of the clean Al/SiC interface (open circles) is weakly dependent on 
the pressure. By contrast, G(P) of the weak interfaces, Al/SiOx/SiC (solid circles) and 
Al/graphene/SiOx/SiC (open and solid triangles) increase rapidly with pressure due to 
the increasing interface stiffness, and saturate at P>8 GPa. The thickness of the native 
oxide on SiC for solid triangle data, ≈1 nm, is twice as thick as that for the open 
triangle data. The prediction of the G(P) of Al/SiC interface by DMMT is shown as 
the dashed line, which agrees well with the G(P) of the clean interface but fails to 
describe the much stronger pressure dependence of G(P) of weak interfaces. 
Predictions of the G(P) of Al/SiC interface by DMMF and PRL are shown as the 
dashed-dot and solid lines, respectively. (b) G(P) of weak interfaces in the low 
pressure regime. The symbols for each interface are the same as in (a). All measured 
interface thermal conductances increase approximately linearly with pressure. 
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dependent on pressure. The large ambient value and weak pressure dependence of G 

suggests that the interface created by depositing Al on clean SiC is strongly bonded 

with high interface stiffness. In the limit of strong bonding, the diffuse mismatch 

model (DMM) should adequately predict the thermal conductance G. 

The dashed line in Fig. 5.4(a) shows the DMM calculation for the G(P) of type 

(1) Al/SiC interface based on a truncated Debye model, DMMT. The program code for 

DMM calculations is provided by Prof. Yee Kan Koh of National University of 

Singapore. This approach is similar to that described in Ref. [32], in which the 

phonon dispersions in Al and SiC are assumed to be linear. The longitudinal and 

transverse cutoff frequencies have been set using the frequencies of each acoustic 

phonon mode at the Brillouin zone boundary in the [111] direction for Al [33] and 

[0001] direction for SiC [34]. The pressure dependence of the cutoff frequencies was 

assumed to scale with the Debye frequencies of Al and SiC at high pressures. The G(P) 

of the Al/SiC interface calculated by DMMT has a rate of change with pressure, 

dG/dP≈6 MW m-2 K-1 GPa-1, in good agreement with the experimentally determined 

average slope for the clean Al/SiC interface, dG/dP≈4.5±1 MWm-2 K-1 GPa-1. The 

DMMT well describes both the magnitude and pressure dependence of G of a clean 

interface. The dashed-dot line shows the calculated G(P) of Al/SiC interface using 

DMM based on a full Debye model (DMMF) in which the linear phonon dispersion 



106 
 

extends to the zone boundary without being truncated. 

G(P) of the Al/SiC interface predicted by phonon radiation limit (PRL) is 

shown as the solid line in Fig. 5.4(a). In the high temperature limit, the radiation limit 

is given by 3 2
max /PRL B DG k cπ ν= , where Bk is the Boltzmann constant, νmax is the 

maximum vibrational frequency of Al, and Dc is the Debye velocity of SiC. I used 

νmax=10 THz at ambient conditions taken from Ref. [33] and assumed that the 

pressure dependence of νmax scales with the Debye frequency of Al at high pressures. 

The predicted G(P) by PRL is higher than the data for the G(P) of clean Al/SiC 

interface by a factor of ≈3 over the pressure range I studied (see section 5.2 for the 

discussion of PRL). 

The thermal conductance of Al/SiOx/SiC interface, see the solid circles in Fig. 

5.4(a), shows strikingly different behavior. At ambient pressure, G ≈55 MWm-2 K-1, a 

factor of 4 smaller than G of a clean Al/SiC interface. Moreover, G(P) of the 

Al/SiOx/SiC interface increases dramatically with pressure and then saturates at ≈200 

MWm-2 K-1 after P>8 GPa. Such behavior suggests that interfacial thermal transport is 

suppressed by the low interface stiffness at low pressure regime. 

For the graphene-inserted interfaces, i.e., Al/graphene/SiOx/SiC, the interface 

stiffness is further reduced. The thermal conductance G at ambient pressure is lower 

than G of Al/SiOx/SiC interface by an additional factor of ≈2, and is only weakly 
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dependent on the thickness of the native oxide: the open triangles in Fig. 5.4 are G(P) 

of Al/graphene/SiOx/SiC with a 0.5 nm-thick native oxide layer grown on a 

pre-cleaned SiC, and the solid triangles are G(P) of Al/graphene/SiOx/SiC with the 1 

nm native oxide of the as-received SiC anvil. The two sets of data behave nearly the 

same. 

The data for G(P) shown in Fig. 5.4 include measurements for both increasing 

and decreasing P. The lack of any obvious hysteresis shows that changes in the 

interface stiffness under pressure are reversible. 

Fig. 5.4(b) shows that at low pressure regime, G(P) of weak interfaces 

increases approximately linearly with pressure. As the pressure is increased higher 

than 8 GPa , G(P) approach the data for the clean Al/SiC interface and the value 

predicted by the DMMT. Furthermore, the overall behavior of G(P) of weak interfaces 

is consistent with the results of molecular dynamics simulations on qualitatively 

similar interfaces [12, 13]. 

The pressure dependence of interface thermal conductance G(P) can not be 

described by a simple function of pressure. For an interface with low interface 

stiffness, the phonon transmission coefficient decreases rapidly with increasing 

phonon vibrational frequency and the frequency range in which the phonons are 

transmitted is narrow. As pressure increases the interface stiffness, the transmission 
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frequency window broadens, leading to an increase in the average phonon 

transmission coefficient. When the interface stiffness is strengthened to approach the 

limit of strong bonding, most of phonon modes contribute to the thermal transport at 

interface and the transmission coefficient eventually saturates at a large value as 

predicted by the DMMT.  

Pressure tuning of the interface bonding over a broad range of stiffness 

demonstrates that the interface stiffness dominates the thermal transport at weak 

interfaces, but plays a minor role for strong interfaces. The DMM based on a 

truncated Debye model correctly predicts the thermal conductance only when the 

interface stiffness is comparable to the stiffness of chemical bonds. 

 

5.2  Thermal conductance of Al/MgO interface 

In the previous section, it was shown that the DMM based on a truncated 

Debye model, DMMT, well describes both the magnitude and pressure dependence of 

thermal conductance G(P) of a clean Al/SiC interface. Here, I present my 

measurements of G(P) of Al/MgO interface at room temperature up to 60 GPa and 

compare the data with DMM calculations for G(P) using a truncated Debye model 

(DMMT) and a full Debye model (DMMF). 
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Figure 5.5 shows the pressure dependence of thermal conductance G(P) of 

Al/MgO interface measured by TDTR combined with diamond anvil cell techniques. 

G(P) of Al/MgO interface was extracted from the same set of data acquired in the 

measurements of the pressure dependent thermal conductivity of MgO, see section 3.2 

for the details of sample preparation and experimental setup. The thermal conductance 

of the clean Al/MgO interface at ambient pressure is high, G≈470 MWm-2 K-1, and is 

weakly dependent on pressure. The calculated G(P) of Al/MgO interface using the 

DMMT, DMMF, and PRL are shown as the dashed, dashed-dot, and solid lines, 

respectively, in Fig. 5.5. In contrast with the G(P) of Al/SiC interface which is well 

accounted for by the DMMT, the G(P) of Al/MgO interface is better described by the 

DMMF. The calculated G(P) using PRL is much higher than the data. 
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Fig. 5.5. Pressure dependence of the thermal conductance G(P) of Al/MgO interface 
at room temperature. The calculated G(P) using DMMT, DMMF, and PRL are plotted 
as dashed, dashed-dot, and solid lines, respectively. 
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To gain insight into the physics of thermal transport across interfaces, I 

compare phonon densities of states (DOS) of Al, MgO, and SiC under different 

assumptions. Real DOS taken from Refs [35-38] , DOS based on a full Debye model, 

and DOS based on a truncated Debye model are shown in Fig. 5.6(a), (b), and (c), 

respectively; all these DOS are at ambient conditions. As expected, the full Debye 

model overcounts the real DOS, resulting in excess thermal transport at higher 

frequencies that do not exist in the real DOS [39, 40]. The truncated Debye model, on 

the other hand, underestimates the available modes that contribute to the heat 

transport across interfaces. 

Even though the modeled DOS significantly deviates from the details of the 

real DOS, these models may still describe the measured thermal conductance well. 

For example, in the truncated Debye model, see Fig. 5.6(c), the overlap of DOS 

between Al and SiC is similar to the overlap of their real DOS, and thereby the 

calculated thermal conductance of clean Al/SiC interface by DMMT is in good 

agreement with the measured value. By contrast, for the Al/MgO interface, the 

overlap of DOS in the truncated Debye model is much smaller than that of real DOS 

and the calculated G is lower than the measured value. The predicted interface 

thermal conductance depends mostly on the similarity between the overlap of real and  



111 
 

0 2 4 6 8 10 12 14 16 18 20

(a)

0.0

1.8

1.5

1.2

0.9

0.6

0.3

6H-SiC

MgO

Al

 

 

g(
ω

) p
er

 a
to

m
 (1

0-1
3  ra

d-1
 s

)

ω (1013 rad s-1)  

0 2 4 6 8 10 12 14 16 18 20

(b)
1.8

1.5

1.2

0.9

0.6

0.3

0.0

Full Debye model

 

 

g(
ω

) p
er

 a
to

m
 (1

0-1
3  ra

d-1
 s

)

ω (1013 rad s-1)
 

0 2 4 6 8 10 12 14 16 18 20

(c)

0.15

0.45

0.0

0.3

Truncated Debye model

 

 

g(
ω

) p
er

 a
to

m
 (1

0-1
3  ra

d-1
 s

)

ω (1013 rad s-1)  
Fig. 5.6. Phonon densities of states (DOS) of Al (black), MgO (blue), and SiC (red) at 
ambient conditions. (a) Real DOS taken from Refs.[35-38]. The total area under each 
DOS curve is 3. (b) Modeled DOS using full Debye model. (c) Modeled DOS using 
truncated Debye model where the cutoff frequencies are set by the frequencies at zone 
boundaries [33-35]. Note that the DOS in (c) is in different extent. 
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modeled DOS, the quality of which varies depending on the cutoff frequencies set in 

the DMMT. 

Note that the calculated G(P) of Al/SiC and Al/MgO interfaces at ambient 

using PRL are both higher than the measured values, see Fig. 5.4(a) and Fig. 5.5. In 

the real DOS, the maximum frequency of Al, νmax=10 THz, is close to the frequencies 

of transverse acoustic modes of SiC and MgO at zone boundary, where the phonons 

do not substantially contribute to the thermal transport due to the small group 

velocities. In other words, the assumption of the PRL that all the phonons with 

frequencies lower than νmax of Al are linear dispersed and have transmission 

coefficient of unity is invalid, leading to an overestimated thermal conductance. 

 

5.3  Conclusion 

In this chapter, I demonstrate the importance of interface stiffness on the 

interfacial thermal transport by measuring the pressure dependence of thermal 

conductance G(P) of clean and modified Al/SiC interfaces at pressures as high as 

P=12 GPa. Diffuse mismatch model with phonon densities of states and cutoff 

frequencies similar to the real values is able to predict the observed thermal 

conductance of clean interfaces. 

 



113 
 

5.4  References 

[1] D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, 

R. Merlin, and S. R. Phillpot, J. Appl. Phys. 93, 793 (2003). 

[2] C. W. Nan, R. Birringer, D. R. Clarke, and H. Gleiter, J. Appl. Phys. 81, 6692 

(1997). 

[3] S. Shenogin, L. P. Xue, R. Ozisik, P. Keblinski, and D. G. Cahill, J. Appl. Phys. 

95, 8136 (2004). 

[4] Y. K. Koh, Y. Cao, D. G. Cahill, and D. Jena, Adv. Funct. Mater. 19, 610 (2009). 

[5] C. Chiritescu, D. G. Cahill, N. Nguyen, D. Johnson, A. Bodapati, P. Keblinski, 

and P. Zschack, Science 315, 351 (2007). 

[6] R. M. Costescu, D. G. Cahill, F. H. Fabreguette, Z. A. Sechrist, and S. M. George, 

Science 303, 989 (2004). 

[7] S. T. Huxtable, A. R. Abramson, C. L. Tien, A. Majumdar, C. LaBounty, X. Fan, 

G. H. Zeng, J. E. Bowers, A. Shakouri, and E. T. Croke, Appl. Phys. Lett. 80, 1737 

(2002). 

[8] E. T. Swartz, and R. O. Pohl, Rev. Mod. Phys. 61, 605 (1989). 

[9] H. K. Lyeo, and D. G. Cahill, Phys. Rev. B 73, 144301 (2006). 

[10] N. S. Snyder, Cryogenics 10, 89 (1970). 

[11] R. J. Stoner, and H. J. Maris, Phys. Rev. B 48, 16373 (1993). 



114 
 

[12] M. Hu, P. Keblinski, and P. K. Schelling, Phys. Rev. B 79, 104305 (2009). 

[13] Z. Y. Ong, and E. Pop, Phys. Rev. B 81, 155408 (2010). 

[14] B. N. J. Persson, A. I. Volokitin, and H. Ueba, J. Phys. -Conden. Matt. 23, 

045009 (2011). 

[15] M. Shen, W. J. Evans, D. G. Cahill, and P. Keblinski, unpublished. 

[16] R. Prasher, Appl. Phys. Lett. 94, 041905 (2009). 

[17] D. A. Young, and H. J. Maris, Phys. Rev. B 40, 3685 (1989). 

[18] P. Nagy, J. Nondestructive Evaluation 11, 127 (1992). 

[19] G. Tas, J. J. Loomis, H. J. Maris, A. A. Bailes, and L. E. Seiberling, Appl. Phys. 

Lett. 72, 2235 (1998). 

[20] R. G. Ross, P. Andersson, B. Sundqvist, and G. Backstrom, Rep. Prog. Phys. 47, 

1347 (1984). 

[21] P. Beck, A. F. Goncharov, V. V. Struzhkin, B. Militzer, H. K. Mao, and R. J. 

Hemley, Appl. Phys. Lett. 91, 181914 (2007). 

[22] W. P. Hsieh, B. Chen, J. Li, P. Keblinski, and D. G. Cahill, Phys. Rev. B 80, 

180302 (2009). 

[23] W. P. Hsieh, M. D. Losego, P. V. Braun, S. Shenogin, P. Keblinski, and D. G. 

Cahill, Phys. Rev. B 83, 174205 (2011). 

[24] C. Onneby, and C. G. Pantano, J. Vac. Sci. Tech. A 15, 1597 (1997). 



115 
 

[25] X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. 

Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science 

324, 1312 (2009). 

[26] D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz, 

Nano Lett. 7, 238 (2007). 

[27] H. K. Mao, P. M. Bell, J. W. Shaner, and D. J. Steinberg, J. Appl. Phys. 49, 3276 

(1978). 

[28] Z. B. Ge, D. G. Cahill, and P. V. Braun, Phys. Rev. Lett. 96, 186101 (2006). 

[29] C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, Phys. Rev. B 34, 4129 

(1986). 

[30] B. Chen, W. P. Hsieh, D. G. Cahill, D. R. Trinkle, and J. Li, Phys. Rev. B 83, 

132301 (2011). 

[31] D. G. Cahill, Rev. Sci. Instrum. 75, 5119 (2004). 

[32] Y. K. Koh, M. H. Bae, D. G. Cahill, and E. Pop, Nano Lett. 10, 4363 (2010). 

[33] R. Stedman, and G. Nilsson, Phys. Rev. 145, 492 (1966). 

[34] D. W. Feldman, J. H. Parker, W. J. Choyke, and L. Patrick, Phys. Rev. 173, 787 

(1968). 

[35] S. Ghose, M. Krisch, A. R. Oganov, A. Beraud, A. Bosak, R. Gulve, R. 

Seelaboyina, H. Yang, and S. K. Saxena, Phys. Rev. Lett. 96, 035507 (2006). 



116 
 

[36] M. Hofmann, A. Zywietz, K. Karch, and F. Bechstedt, Phys. Rev. B 50, 13401 

(1994). 

[37] R. Stedman, L. Almqvist, and G. Nilsson, Phys. Rev. 162, 549 (1967). 

[38] M. Kresch, M. Lucas, O. Delaire, J. Y. Y. Lin, and B. Fultz, Phys. Rev. B 77, 

024301 (2008). 

[39] J. C. Duda, T. E. Beechem, J. L. Smoyer, P. M. Norris, and P. E. Hopkins, J Appl 

Phys 108, 073515 (2010). 

[40] P. Reddy, K. Castelino, and A. Majumdar, Appl. Phys. Lett. 87, 211908 (2005). 

 

 



117 
 

CHAPTER 6 

 

METAL FILM TRANSDUCERS FOR 

TIME-DOMAIN THERMOREFLECTANCE  

AT HIGH PRESSURES 

 

 

Parts of this chapter were published in J. Appl. Phys. 109, 113520 (2011) by 

Wen-Pin Hsieh and David G. Cahill. 

 

6.1  Introduction 

Time-domain thermoreflectance (TDTR) [1, 2], as introduced in Chapter 2, is 

an ultrafast pump-probe technique and has been widely employed to measure thermal 

conductivity of thin film materials [3, 4] as well as the interface thermal conductance 

[5, 6]. TDTR utilizes the thermoreflectance, changes in the reflectivity as a function 

of temperature dR/dT, of a metal film as a thermometer. The surface temperature 

variation of the metal film is monitored by measuring changes in the reflectivity. 

Typically Al is the metal film transducer used in TDTR measurements due to its large 

thermoreflectance at laser wavelengths near 785 nm. 
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In Chapters 3 to 5, I have shown that the combination of TDTR with diamond 

and SiC anvil cells is a powerful tool to study pressure dependence of heat transport 

in various materials [7-10]. However, dR/dT of Al is found to be sensitive to the 

pressure and even crosses through zero at P≈6 GPa [8] which degrades the 

signal-to-noise ratio. Moreover, the low melting temperature of Al limits its use in 

high temperature measurements. A previous study of the thermoreflectance of several 

metals reported that Ta and Au with ≈5 at. % Pd have thermoreflectances comparable 

to Al at a laser wavelength of 785 nm [11] at ambient pressure. In order to find useful 

alternatives of Al in TDTR measurements at high pressures and temperatures, I 

investigated pressure dependence of the thermoreflectance and piezo-optical 

coefficients of Ta, Au(Pd), and Al films. 

 

6.2  Experiments 

6.2.1  Sample preparation 

I deposited ≈80 nm-thick metal films of Al, Ta, and Au(Pd) on SiC anvils 

using magnetron sputtering. Since the equilibrium α-phase Ta has higher thermal 

conductivity than β-phase Ta, the SiC anvil was heated to ~900 K during the Ta film 

deposition [12-14]. X-ray diffraction shows that such a Ta film deposited on a Si 

wafer heated to ~900 K during the film deposition has a strong [110] texture, which 
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confirms that crystal structure of the Ta film is that of the bcc α-phase. The expected 

[111] texture of Au(Pd) films deposited on Si wafers was also confirmed by X-ray 

diffraction. Since the culet size of the SiC anvil is only 600 μm, I used four-point 

probe measurements of the in-plane electrical conductivity combined with the 

Wiedemann-Franz law to determine the thermal conductivities Λ of Al, Ta, and Au(Pd) 

thin films deposited on Si wafers. (The Si wafers were also included in the sputtering 

chamber during the deposition of metal films on SiC anvils.) The thermal 

conductivities of the Al, Ta, and Au(Pd) thin films were 200, 45, and 80 W m-1 K-1, 

respectively. The SiC anvils coated with metal films were pressurized by loading with 

H2O as the pressure medium. The pressure was measured by ruby fluorescence [15]. 

Figure 6.1 shows a schematic illustration of the TDTR measurements of metal films 

in a SiC anvil cell. 

 
Fig. 6.1. Schematic illustration of the time-domain thermoreflectance measurements 
of metal films within a SiC anvil cell. A small ruby chip is loaded into the sample 
chamber to measure the pressure. H2O is the pressure medium. 
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6.2.2  Measuring thermoreflectance by TDTR 

I used time-domain thermoreflectance (TDTR) with a laser wavelength of 785 

nm to measure the pressure dependence of the thermoreflectance of metal films [1, 2, 

11, 16]. The details of the TDTR system are described in Chapter 2. In my 

experiments, the power of the pump and probe beams were fixed at 20 and 10 mW, 

respectively, and both pump and probe beams were focused on the surface of the 

metal film to a 1/e2 intensity radius of ≈7.5 μm using a 10× objective lens. The 

reflected probe beam intensity was measured by a Si photodiode detector. A resonant 

band-pass filter with a quality factor Q≈10 was used to enhance the output of the Si 

photodiode. The signal was then further enhanced by a preamplifier and finally 

measured by a radio-frequency lock-in amplifier which is set to synchronize with the 

10 MHz modulation frequency of the pump pulse. 

 

6.3  Results and discussion 

6.3.1  Measuring the in-phase signals from TDTR 

The thermoreflectance of metal films are determined by:  

0

( 80 )2
( 80 )

in

p

V t psdR R
dT G Q V T t ps

=
=

Δ =
,     (6.1) 

where pG = 5 is the gain of the preamplifier,Q ≈ 10 is the quality factor of the resonant 



121 
 

circuit, ( 80 )inV t ps= is the in-phase voltage signal of the rf lock-in amplifier at a delay 

time t=80 ps between pump and probe pulses, 0V is the average dc voltage generated 

by the photodiode detector as measured before the preamplifier, R is the optical 

reflectivity of the metal film, and ( 80 )T t psΔ = is the calculated surface temperature at 

t=80 ps using the thermal model described in Ref [1]. Example data for ( )inV t of Al, Ta, 

and Au(Pd) are shown in Fig. 6.2(a), (b), and (c), respectively. 

Figure 6.3(a) shows the Vin signal at t=80 ps for Al, Ta, and Au(Pd) films as a 

function of pressure. Note that due to the reflection losses at interfaces between 

air/SiC and water/SiC, the Vin after the metal film is loaded into a SiC anvil cell is 

only ≈43 % of the signal before loading. At the air/SiC interface the reflectivity is 

R1=0.17, and at the water/SiC interface the reflectivity is R2=0.09. In my experimental 

setup, the pump beam passes through each interface once and the probe beam passes 

through each interface twice. Because the strength of the thermoreflectance signal is 

proportional to the product of the intensities of pump and probe beams, the Vin signal 

after the film is loaded in to the SiC anvil cell decreases by a factor of 

( ) ( )3 3
1 21 1 0.43R R− − = , i.e., 43% of the Vin before loading. For Al, Vin decreases 

from 140 μV to 55 μV; for Ta, Vin decreases from 470 μV to 190 μV; for Au(Pd), Vin 

decreases from 44 μV to 19 μV. All are in good agreement with the estimated 

reduction of the Vin due to the reflection losses. 
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Fig. 6.2. Example data for ( )inV t , the in-phase voltage of the rf lock-in as a function of 
delay time between pump and probe for (a) Al, (b) Ta, and (c) Au(Pd) films deposited 
on SiC anvils. ( )inV t is proportional to the change in optical reflectivity produced by 
the pump pulses. The thicknesses of Al, Ta, and Au(Pd) are 74 nm, 111 nm, and 91 nm, 
respectively, as measured by picosecond acoustics. Each panel includes data acquired 
at ambient pressure before assembling the SiC anvil cell, and data acquired after the 
anvil cell is loaded and pressurized to P≈8.5 GPa. 
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Au(Pd) and Ta films both show nearly constant Vin with pressure. However, 

the Vin signal of Al is highly sensitive to the pressure and undesirably crosses through 

zero near P≈6 GPa. (Data for P>12 GPa were collected from an Al film deposited on 

a muscovite mica within a diamond anvil cell using H2O as the pressure medium.) 

Therefore, the signal-to-noise ratio and accuracy of the thermal measurements using 

Al transducer in the range 5<P<7 GPa are substantially degraded. (To overcome this 

problem I shifted the laser wavelength to 765 nm and used another set of optical 

filters, see section 3.1 for the details.) 

 

6.3.2  Pressure dependence of the thermoreflectance 

Data for the pressure dependence of Vin , as shown in Fig. 6.3(a), were 

converted to the pressure dependence of the thermoreflectance, dR/dT, using Eq. (6.1), 

see Fig.6.3(b). To do this conversion, the optical reflectivity of each metal film [11] 

was assumed to be a constant in the pressure range I studied. At ambient conditions, 

the thermoreflectance of thin films of Al (dR/dT≈1.31×10-4 K-1), Ta (dR/dT≈1.42×10-4 

K-1), and Au(Pd) (dR/dT≈0.6×10-4 K-1) are in good agreement with the literature 

values [11]. The dR/dT of Al under pressure is sensitive to pressure and goes through 

zero near 6 GPa. (The applied pressure blue-shifts the absorption edges of Al to 

higher energy [17].) By contrast, dR/dT of Ta and Au(Pd) are comparable to that of Al 
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Fig. 6.3. (a) Pressure dependence of the in-phase voltage Vin of the rf lock-in 
amplifier at a delay time t=80 ps for Al, Ta, and Au(Pd) thin films deposited on SiC. 
The Vin signal after the film is loaded into a SiC anvil cell is ≈43% of the signal before 
loading. Data for Al at P>12 GPa were collected from an Al film on a muscovite mica 
within a diamond anvil cell. (b) Pressure dependence of the thermoreflectance dR/dT 
of the same three metal films. The dR/dT is obtained using the data for Vin in (a) and 
Eq. (6.1). Solid symbols denote negative values of Vin and dR/dT; open symbols 
denote positive values. Vin and dR/dT of Al change sign near P=6 GPa. 
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at ambient conditions but remains large under pressure, indicating that Ta and Au(Pd) 

transducers provide higher sensitivity than Al in the pressure range 4<P<10 GPa.  

Furthermore, because of their high melting temperatures, Ta and Au(Pd) films 

are more suitable for TDTR measurements at high temperature. The melting points Tm 

of Ta and Au(Pd) at ambient conditions are ≈3269 K [18] and ≈1420 K [19], 

respectively, while Tm of Al is only 930 K. Melting temperatures typically increase 

with pressure: dTm/dP≈11 K GPa-1 for Ta at P<20 GPa [18], dTm/dP≈50 K GPa-1 for 

Au at P<7 GPa [20], and dTm/dP≈50 K GPa-1 at P<20 GPa [21] for Al. 

 

6.3.3  Strength of the acoustic echo at high pressures 

As discussed in the section 2.1.5, the thickness of a metal film can be 

accurately derived from the position of the acoustic echo in picosecond acoustics [22]. 

Therefore, large values of the piezo-optical coefficient, which characterizes changes 

in optical reflectivity with acoustic strain, are desirable in picoseconds acoustics 

experiments. 

The thickness of a metal film is determined by multiplying the speed of sound 

of meal by half of acoustic echo time. The speed of longitudinal sound along the [110] 

direction of bcc Ta is 4.2 nm ps-1 [23].The speed of sound in similar Au(Pd) 5% alloy 

films, 3.3 nm ps-1, was measured by a combination of picosecond acoustics, 
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Rutherford backscattering spectroscopy, and assuming that the atomic density of 

Au(Pd) is accurately described by Vegard’s law [24]. (Vegard’s law is an approximate 

rule that predicts a linear relation between the lattice constant of an alloy and the 

concentration of the constituent elements.) For pure Au, the longitudinal speed of 

sound along the [111] direction is 3.24 nm ps-1 [25]. 

To characterize the relative strength of the piezo-optical coefficient for each 

metal film as a function of pressure, I compared the ratio of the acoustic echo strength 

to an estimate of the thermal expansion of the metal film. The example data in Fig. 

6.2 shows that the acoustic echo of Al almost disappears at P=8.5 GPa; however, at 

similarly high pressures the acoustic echoes of Ta and Au(Pd) are still identifiable. 

To analyze the acoustic echo strength, I first subtracted a smooth curve from 

the ( )inV t and integrated the echo strength over an 8 ps range that is centered at the 

peak position of the echo. This integrated echo strength is then normalized by the 

value of ( )inV t at t≈10 ps after the echo. To compare the acoustic signal strength 

between metal films, a figure-of-merit is created and defined by dividing the 

normalized echo strength obtained above by an estimate of thermal strain, which is 

the product of the thermal expansion coefficientα and the calculated temperature 

rise TΔ at the surface of the metal film. Here I assume thatα of each metal [26, 27] is 

independent of the pressure in the range 0<P<12 GPa. TΔ is calculated using the 
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thermal model described in Ref. [1]. As shown in Fig. 6.4, the figures-of-merit of Ta 

and Au(Pd) are approximately constant as a function of pressure. The figure-of-merit 

of Al, however, drops rapidly by approximately an order of magnitude with initial 

loading and is always small at P>2 GPa. 
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Fig. 6.4. Pressure dependence of the figure-of-merit for the strength of acoustic 
signals (integrated acoustic peak normalized by thermal strain) for Ta, Au(Pd), and Al 
films deposited on SiC anvils. The acoustic signal strengths for Ta and Au(Pd) are 
essentially independent of pressure while the acoustic signal strength for Al drops 
abruptly with initial loading.  

 

6.4  Conclusion 

Pressure dependence of the thermoreflectance and relative piezo-optical 

coefficients of Ta, Au(Pd), and Al metal films were measured by time-domain 

thermoreflectance within SiC anvil cells. I anticipate that this compilation of critical 
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parameters in TDTR measurements at high pressure will assist in the selection of 

suitable transducers, and ultimately enable the extension of TDTR techniques to 

higher pressures and temperatures. This extension will benefit studies of thermal 

transport in condensed matter systems, including geophysically important materials. 

For instance, Ta could be an excellent metal transducer to measure the thermal 

conductivity of major constituent minerals in the lower mantle, e.g., (Mg,Fe)O 

ferropericlase and (Mg,Fe)SiO3 perovskite, under extreme pressures and temperatures 

comparable to the Earth’s lower mantle. 
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CHAPTER 7 

 

CONCLUSIONS 
 

The novel combination of time-domain thermoreflectance (TDTR) with 

diamond and SiC anvil cell techniques is a powerful approach to measure the thermal 

transport properties of materials at extreme pressures and temperatures. Extreme 

pressures are particularly necessary to significantly vary physical properties relevant 

to thermal transport, such as elastic constants, phonon densities of states and interface 

stiffness, and thereby further explore the physics of heat conduction in various 

materials. 

By measuring the pressure dependence of cross-plane thermal conductivity of 

a muscovite mica crystal, I discovered that the cross-plane sound velocity plays a 

dominant role in the thermal transport in anisotropic layered crystals. This study 

provides important clues to the origin of the ultralow thermal conductivity observed in 

disordered layered crystals. 

I tested the minimum thermal conductivity model for a prototypical 

amorphous polymer, poly(methyl methacrylate) (PMMA). The good agreement 

between the pressure dependence of the thermal conductivity of PMMA measured by 
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TDTR combined with a SiC anvil cell and the prediction based on the minimum 

thermal conductivity model verifies the model’s validity for describing thermal 

transport behavior in amorphous polymers. 

I demonstrated the importance of interface stiffness on heat transfer across 

interfaces by studying the pressure dependence of the thermal conductance of weak 

interfaces. The interface stiffness dominates the thermal transport at weak interfaces, 

but becomes a minor effect as the stiffness is strengthened to approach the limit of 

strongly bonded interfaces. 

I also measured the pressure dependence of the thermoreflectance and 

piezo-optical coefficients of Al, Ta, and Au(Pd). Compare to Al, Ta and Au(Pd) are 

more suitable for TDTR experiments at high pressures and temperatures, such as 

measurements of thermal conductivity of minerals at conditions comparable to the 

Earth’s lower mantle. 

Since TDTR combined with gem anvil cells is also compatible with 

applications of other external stimuli, e.g., temperature and magnetic/electric fields, I 

anticipate that much more interesting physics of thermal transport will be uncovered 

using TDTR and anvil cells under some combinations of extreme pressure, 

temperature, and magnetic/electric fields. 
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APPENDIX A 

 

THERMAL TRANSPORT IN SPIN  

LADDER MATERIALS 
 

 

A.1  Introduction 

Thermal transport by collective, magnetic excitations called magnons was first 

predicted by Fröhlich and co-workers [1]. Approximately 30 years later, Luthi 

provided the first experimental evidence showing the heat conduction in 

yttrium-iron-garnet at low temperature regime is mainly due to the magnons [2]. 

Recently large magnetic contribution to the thermal transport was discovered in a spin 

ladder material Sr14Cu24O41 [3-5] and since then various studies on the heat 

conduction in one-dimensional spin ladder materials, in particular the (Sr, Ca, 

La)14Cu24O41 cuprate family, have been performed [6-11].  

In (Sr, Ca, La)14Cu24O41 crystals, there are two quasi-one-dimensional 

subsystems along the c axis. One is the Cu2O3 two-leg ladders in which parallel pairs 

of spin chains are strongly coupled with each other via the Cu-O-Cu interactions. The 

other subsystem is the CuO2 chains that have weak magnetic coupling. Figure A.1 
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illustrates the spin arrangements in the (Sr, Ca, La)14Cu24O41 spin ladder materials. 

Investigations of the magnon thermal transport could provide information 

regarding the magnetic excitations, e.g. the scattering of magnons. Here, I present my 

preliminary studies of the temperature dependent thermal conductivity of the spin 

ladder material Ca9La5Cu24O41. 

 

Fig. A.1. Schematic illustration of the spin structures of (Sr, Ca, La)14Cu24O41. The 
upper panel shows a spin chain and the lower panel shows a two-leg spin ladder. The 
blue bars indicate the antiferromagnetic coupling between spins. 

 

A.2  Experimental results 

The Ca9La5Cu24O41 samples were provided by Prof. Paul H. M.van 

Loosdrecht’s group at the Zernike Institute for Advanced Materials, Groningen, 

Netherlands. The sample was first mounted on a tripod polisher by crystal bond and 

dry-polished using SiC sandpapers with grit sizes of P800, P2400, and P4000 on a 

rotating polisher until the sample surface was observed flat under an optical 
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microscope. The polished sample was then annealed at 820-1170 K for one hour at 

ambient condition and deposited ≈80 nm-thick Al film after the sample cooled to 

room temperature. I measured the temperature dependence of the thermal 

conductivity along the c axis, i.e., the spin ladder direction, at ambient pressure using 

time-domain thermoreflectance (TDTR), see section 2.1 for the details of TDTR. Note 

that since the measurements were performed at ambient pressure, no gem anvil cell 

was used. 

The thickness of Al was measured by picosecond acoustics. Since the 

volumetric heat capacity Cv of Ca9La5Cu24O41 is not known, I used Cv =2.3 J cm-3 K-1, 

a typical value for oxide, at room temperature and fixed the value of Cv at high 

temperatures. 

Figure A.2 shows the preliminary measurements of the thermal conductivity of 

Ca9La5Cu24O41 along the c-axis from room temperature to 573 K. The thermal 

conductivity is weakly dependent on the modulation frequency of the pump beam 

which determines the thermal penetration depth, see Eq. 2.2. (The thermal penetration 

depth is ≈300 nm-5 μm in my experiments.) Because the volumetric heat capacity of 

Ca9La5Cu24O41 is assumed to be a constant, a slope of ≈ -2 on this log-log plot, 

corresponding to 2T −Λ ∝ , is difficult to justify. 
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Fig. A.2. Thermal conductivity of Ca9La5Cu24O41 along the c-axis as a function of 
temperature and modulation frequency of the pump beam. Data measured by 
steady-state technique [3] (open squares) is plotted for comparison. 

 

Also plotted in Fig. A.2 is the literature data measured by steady-state 

technique [3]. At room temperature the thermal conductivity measured by steady-state 

technique is higher than my data by a factor of ≈2-3. Further studies on the reason 

causing such difference and measurements of thermal conductivity at lower 

temperatures are ongoing. 
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