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ABSTRACT

A GKM manifold is a symplectic manifold with a torus action such that the fixed points

are isolated and the isotropy weights at the fixed points are linearly independent. Each

GKM manifold has a GKM graph which contains much of the topological information of

the manifold, in particular the equivariant cohomology and Chern classes. We are interested

in the case where the torus action is Hamiltonian. In this thesis we will consider the case

where the GKM graphs are complete. When the dimension of the torus action is sufficiently

large, we can completely classify the complete, in the graph theoretic sense, GKM graphs,

and thus completely describe the cohomology rings and Chern classes of the associated

”minimal” GKM manifolds. For each possible cohomology ring and total Chern class we can

find a well-known GKM manifold having that ring and class. If we put some restrictions on

the allowable subgraph, and thus restrict the allowable submanifolds, then we can completely

classify the possible cohomology rings and Chern classes of minimal GKM manifolds.

We will also consider one of the cases where the GKM graph is not complete. In the case

of six dimensional symplectic manifolds whose GKM structure comes from a Hamiltonian

2-torus action we can also completely classify all the possible GKM graphs, and thus all the

possible cohomology rings and Chern classes. Once again, for each possible cohomology ring

and total Chern class, we can construct a manifold having that ring and class.
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CHAPTER 1

INTRODUCTION

Symplectic Geometry originated with William Rowan Hamilton’s study of classical mechan-

ics. At its simplest, a symplectic form relates the trajectory of a particle (in phase space) to

its energy function in much the same way that a Riemannian metric relates a function and

its gradient flow. Unlike Riemannian metrics, however, symplectic forms do not exist on all

manifolds.1 Necessary (but certainly not sufficient) conditions for a manifold to have a sym-

plectic form are that it be even dimensional, orientable, have an almost complex structure

and, if compact, have nonzero even-dimensional cohomology groups. (i.e. H2k(M) 6= 0 for

0 ≤ k ≤ 1
2

dimM .)

A symplectic form ω is a closed nondegenerate 2 form on a manifold. A symplectic

manifold is a pair (M,ω) with ω ∈ Ω2(M) symplectic.

If H : M → R is some (smooth) function then the Hamiltonian vector field of H is

the unique vector field XH ∈ Γ(TM) such that ιXH
ω = −dH. In mechanics, integrating this

vector field gives us the trajectory of a particle whose energy function is H. Unsurprisingly,

the value of H along a trajectory is constant.

An integrable system is a generalization of a Hamiltonian vector field. In fact, it

is a family of Hamiltonians that “commute.” More specifically, if f1, . . . , fk are linearly

independent functions (i.e. df1∧· · ·∧dfn 6= 0) whose Poisson brackets are zero (i.e. {fi, fj} =

ω(Xfi
, Xfj

) = 0 for all i and j) then they and their vector fields Xf1 , . . . , Xfk
form an

integrable system. The function

µ = (f1, . . . , fk) : M → Rk

is a generalization of the Hamiltonian vector field of a single vector field and is called a

moment map. Of particular interest is the case where k = 1
2

dimM (we must always have

k ≤ 1
2

dimM .) In this case, which we call a completely integrable system, the compact

1For any manifold M , the cotangent bundle T ∗M is naturally symplectic, so symplectic forms are in some
sense universal.
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connected components of preimages of regular points are Lagrangian torii. The Arnold-

Liouville theorem [Ar78] completely describes the manifold M in a neighborhood of one of

these preimages. One consequence of this is that there is an action of an n-dimensional torus

on this neighborhood that preserves the symplectic form.

By this rather roundabout route we are inaugurated to the study of torus actions on

symplectic manifolds. In particular, we are interested in Hamiltonian torus actions. If

(M,ω) is a compact 2n-dimensional symplectic manifold with an effective Tk ≈ (S1)k action

preserving the symplectic form, then we say the action is Hamiltonian if there is a function2

µ : M → (Rk)∗. such that ιX#ω = −d〈µ,X〉 for all X ∈ Rk with X#, the vector field on

M generated by {exp(tX)}t∈R. The image of the moment map is invariant under the group

action. The torus actions in the Arnold-Liouville theorem are Hamiltonian.

An early result in the study of symplectic manifolds with Hamiltonian torus actions was

proved independently by Atiyah [At82] and Guillemin and Sternberg [GS82]. They show that

the image of the moment map of a compact Hamiltonian symplectic manifold is a polytope;

moreover, that it is the convex hull of the images of the connected components of the fixed

point set.

It is generally impossible to reconstruct the manifold from the moment image. For example

the moment image tells us next to nothing about the dimension of the manifold. If we know

the dimension of the manifold in advance though, there is a case where we can go backwards.

This is a consequence of Delzant’s Theorem. In the case where the torus action is completely

integrable (known as symplectic toric manifolds) the moment image of the manifold is

an n dimensional simple polytope with edges of the form a + tu where u ∈ Zn and where,

at each vertex, the n directional vectors u1, . . . , un of the n edges adjacent to the vertex can

be chosen to be a lattice basis for Zn. Delzant [D88] showed that each such polytope is the

moment image of a compact symplectic manifold with Hamiltonian Tn action, unique up to

equivariant symplectomorphism.

Although it requires a bit more data than just the moment map, Karshon [K99] has proved

a comparable classification theorem for four-dimensional manifolds with Hamiltonian circle

actions. See also [KT01, KT03, T10].

Delzant’s Theorem also shows that all the symplectic toric manifolds admit a Kähler

structure, and are, in fact, the smooth toric varieties. These have been extensively studied

in the algebraic category, and are closely tied to combinatorics. This shows that there is a

close relationship between the study of completely integrable Hamiltonian manifolds and the

2For technical reasons the map is to the dual space.
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algebraic and combinatorial study of polytopes. See also [Au03, CLS11, F93, M93, M96].

Classification becomes harder in the case of 2n-dimensional symplectic manifolds with

Hamiltonian Tk-actions where k < n. Lie group actions on a manifold can be seen as

symmetries of the manifold, and the lower the dimension of the group, the less symmetrical

the manifold needs to be. We can make some progress if we restrict to manifolds that are

“like” toric manifolds.

If we further require that the fixed point set MT be finite and that, for every subgroup

K ⊂ Tk of codimension 1, dimMK ≤ 2 (conditions that are satisfied automatically in the

toric case) then we may use the techniques of Goresky, Kottwitz, and MacPherson [GKM98]

to construct graphs that allow us to study these Hamiltonian GKM manifolds in some

of the same ways that we use polytopes to study symplectic toric manifolds.

Definition 1 (Hamiltonian GKM manifold) A Hamiltonian GKM manifold is a sym-

plectic manifold with a Hamiltonian torus action such that the fixed point set is finite and

for every subgroup K ⊂ Tk of codimension 1, dimMK ≤ 2.

A long standing problem in the study of G-manifolds, and spaces with group actions in

general, is the computation of the equivariant cohomology ring H∗G(M) := H∗(EG×GM). In

general, this is a hard problem, but in special cases progress can be made. Goresky, Kottwitz,

and MacPherson [GKM98] developed a method of computing the equivariant cohomology of

G-spaces provided certain conditions are met. The common conditions that generally make

some form of GKM type analysis possible are equivariant formality and a condition on the

orbit space, which, in the case of Tk actions, reduces to isolated fixed points and isotropy

submanifolds of codimension 1 subgroups having dimension at most 2 (namely, copies of S2.)

A G-manifold is equivariantly formal if the bundle EG×GM → BG satisfies the Leray-Hirsh

Theorem, that is, if H∗G(M) → H∗(M) is a surjection. That symplectic manifolds with

Hamiltonian torus actions are equivariantly formal was proved independently by Kirwan

[K84] and Ginzburg [Gi87].

Since the publication of [GKM98] several notions of “GKM manifold” have appeared.

Sometimes the manifold is assumed to be complex, with a complex torus action [BGT].

In other cases, only an almost complex structure is required [GZ01]. One paper [GHZ06]

looks at a class of homogeneous spaces and shows they are amenable to GKM techniques.

Others work in the more general category of spaces that are equivariantly formal [B]. In

[GKM98] itself, Goresky, Kottwitz, and MacPherson list no fewer than fourteen categories of

spaces (not necessarily manifolds) on which their techniques can be applied. We will confine
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ourselves to the study of Hamiltonian GKM manifolds. (See Definition 1) Henceforth, we

will drop the term “Hamiltonian” and refer to these manifolds as GKM manifolds.

In order to compute the equivariant cohomology of a GKM manifold we construct a labeled

graph from the manifold data. The vertices of the graph are the fixed points of the action.

Since the group action is Hamiltonian, the positive dimensional components of MK (where

K ⊂ Tk has codimension 1) are symplectic and the moment map restricted to MK is still a

moment map, now for the circle action on MK . Thus the positive dimensional components

of MK must be Hamiltonian S1-manifolds, and thus must be copies of S2. Thus they each

contain two points in MT. We connect two vertices by an edge if they lie in the same

connected component of MK for some K ⊂ Tk. We also need a notion of a weight on

each (oriented) edge. We are considering undirected graphs (each edge corresponds to an

isotropy sphere) but it is necessary to consider a notion of direction on the edges. The formal

definition follows:

Definition 2 (The GKM Graph of a GKM manifold) Let M be a GKM manifold. If

V = MT is the set of vertices, then the set of edges E is the subset of the set of unordered

pairs of elements of V such that {p, q} ∈ E if p and q lie in the same connected component

of MK for some codimension 1 K ⊂ T. We also define a set I ⊂ V × V of edges with all

possible choices of orientation by saying (p, q) ∈ I and (q, p) ∈ I if and only if {p, q} ∈ E.

Then we will say that (p, q) is the edge {p, q} oriented to start at p and finish at q. At a

fixed point p ∈ MT the group action induces an action on TpM . We define α : I → (Rk)∗

by letting α(p, q) be the isotropy weight of TpSpq ⊂ TpM where Spq is the isotropy sphere

corresponding to the edge {p, q}. This is well-defined since all symplectic manifolds have

almost complex structures and the space of almost complex structures on any given manifold

is contractible. It is clear that α(p, q) = −α(q, p). The graph with the function α is a GKM

graph of a GKM manifold.

A 2n-dimensional GKM manifold acted upon by Tk with χ fixed points will be called an

(n, k, χ) GKM manifold. An n-valent GKM graph with χ vertices and weights in (Zk)∗ will

be called an (n, k, χ) GKM manifold. It is clear that an (n, k, χ) GKM manifold has an

(n, k, χ) GKM graph.

If we look at GKM manifold acted upon by a subtorus we often get a GKM manifold with

weights lying in a lower dimensional sublattice of the original lattice.

Definition 3 Let M be a symplectic manifold with a Hamiltonian Tk action that makes M

a GKM manifold. Given a lower dimensional sub-torus Tl ⊂ Tk, if the Tl action is effective
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then M with the Tl action is also a GKM manifold. The GKM graph of the new GKM

manifold has the same set of vertices and edges as the GKM graph of the GKM manifold

with the Tk action. The inclusion ι : Tl → Tk induces a projection ι∗ : (Zk)∗ → (Zl)∗. The

weights of the new GKM graph are the projections under this map of the weights of the old

GKM graph. Thus we call the new (n, l, χ) GKM graph a projection of the (n, k, χ) GKM

graph.

As with GKM manifolds, there are multiple ways to define GKM graphs. Some authors

prefer to avoid the subtlety of dealing with two weights on each edge, and prefer the consider

GKM graphs as directed graphs [Sa09, ST10]. Others [GKM98, GHZ06] define GKM graphs

in more general contexts than Hamiltonian symplectic manifolds. There is also a way to

define abstract GKM graphs without any notion of GKM manifold [GZ02, GZ99, GZ01]. We

will introduce another definition of abstract GKM graph specifically tailored for studying

the GKM graphs of GKM manifolds.

A natural place to start in the classification of GKM manifolds is to consider those with

the minimum possible Betti numbers. These are manifolds where dimH i(M) = 1 for 0 ≤
i ≤ 2n even (and dimH i(M) = 0 for i odd.) Equivalently, the manifolds will have the same

rational cohomology as CPn. This corresponds to having one more fixed point than half the

dimension. We refer to these manifolds as minimal GKM manifolds. The GKM graphs of

minimal GKM manifolds are complete graphs, a subclass of GKM graphs that is reasonably

tractable.

The study of manifolds with torus actions and the same cohomology as CPn naturally

invites comparison with the work of Ted Petrie. Petrie [P72] conjectured that any manifold

homotopy equivalent to CPn that has a nontrivial circle action has the same Pontryagin

classes as CPn. This conjecture has been proven when the manifold has dimension at most

8 [DE76, J85, Y77], and when the number of fixed point components is at most 4 [MA81,

TW79, W75].

The conjecture is also known be true in some cases where the S1 action can be extended

to a larger torus action. Petrie, [P73], proved the conjecture when Tn acts smoothly and

effectively on a homotopy CPn. Wang, [W80], extended this to effective Tk actions whose

fixed point set has exactly k + 1 components. Masuda then showed that the conjecture

holds if an effective Tk (k ≥ 2) action preserves an almost complex structure or if the action

is smooth and all fixed point components have positive dimension [MA83]. More recently,

Dessai has proven Petrie’s Conjecture for effective Tk actions with k > n+1
4

.[D04].

Wang has also considers effective topological Tn actions on spaces that are rationally
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cohomologous to CPn (i.e. H∗(M,Q) = Q[α]/(αn+1)) and shows that Petrie’s Conjecture

holds in this case [W77].

In [T10] Tolman considers S1 actions on spaces rationally cohomologous to CPn, but

restricts to the symplectic category. In dimension 6 these hypotheses are sufficient to get

all the possible integral cohomology rings and Chern classes. We prove a similar result for

minimal GKM manifolds acted upon by torii of sufficiently large dimension.

We can now state our main theorems.

Theorem 1 Let M be a 2n dimensional minimal GKM manifold acted on by a k-dimensional

torus. If k > n+1
2

or k = n
2

then the GKM graph of the manifold is the GKM graph of CPn

acted upon by a subtorus of Tn. The manifold has the same integral cohomology ring and

Chern classes as CPn. If k = n+1
2

then the GKM graph of the manifold is either the GKM

graph of CPn acted upon by a subtorus of Tn or the GKM graph of G+(2, n+ 2), the Grass-

mannian of oriented 2-planes in Rn+2, acted upon by Tk. The manifold has the same integral

cohomology ring and Chern classes as either CPn or G+(2, n+ 2).

Proof. This theorem is an immediate consequence of Propositions 4 and 5 in Section 3.3

of Chapter 3.

This theorem does not hold in the case where k = n−1
2

. The known counter example is

G2/P , where G2 is the complexification of the exceptional simple Lie group (also denoted

G2) and P is the parabolic subgroup generated by the Borel subgroup and the exponential

of the short simple root, which is 10-dimensional and acted upon by T2. We will see that if

we put more conditions on the manifolds we will get stronger results.

The conditions necessary for GKM-type analysis are conditions on the type of submanifold

that can be fixed by codimension 1 subgroups of Tk. The proof of Theorem 1 consists

of considering the possible subgraphs corresponding to submanifolds fixed by some larger

subtorus. It is natural then to consider what can happen if we control what these manifolds

can be. In particular, consider the case where we restrict what can happen to submanifolds

fixed by codimension 2 subgroups.

Definition 4 A flag-face of a polytope is an (n+1)-tuple of face consisting of the polytope,

a hyperface of the polytope, a hyperface of the hyperface, etc. A lattice regular polytope

is polytope whose vertices lie on the points of a lattice and, given any two flag-faces, there

exists a lattice-affine (preserving the lattice) transformation mapping one flag-face onto the

other.
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It should be noted that the moment images of CPn acted upon by Tn, G+(2, 2n − 1)

acted upon by Tn, and G2/P acted upon by T2 are all lattice regular polytopes with all the

fixed points mapped to vertices (i.e. not the interior) of the polytope. We show that all

minimal GKM manifolds whose moment image is a lattice regular polytope and whose fixed

points map to the vertices must have the cohomology ring and Chern classes of one of the

aforementioned manifolds. Theorem 2 and Theorem 3 suggest that we have all the possible

cohomology rings and Chern classes of minimal GKM manifolds by showing that any new

GKM graph of a minimal GKM manifold must have radically different GKM subgraphs

and must have a certain amount of asymmetry. All known GKM graphs of minimal GKM

manifolds are projections of a lattice regular graph.

Theorem 2 If the isotropy submanifolds of k − 2 dimensional subgroups of dimension ≥ 4

have GKM graphs that are GKM graphs of complex projective space or oriented Grassman-

nians acted upon by some copy of T2 then the GKM graph of the manifold is the GKM graph

of CPn acted upon by Tk for some k ≤ n or the GKM graph of G+(2, 2n + 1) acted upon

by Tk for some k ≤ n. The manifold must then have the same integral cohomology ring and

Chern classes as CPn or G+(2, 2n+ 1).

Proof. This theorem is an immediate consequence of Proposition 6 in Section 3.4 of

Chapter 3.

Theorem 3 If the image of the moment map of a minimal GKM manifold is a lattice-

regular polytope and all the fixed points map to vertices of the polytope then the GKM graph

of the manifold is the GKM graph of CPn acted upon by Tk for some k ≤ n, the GKM

graph of G+(2, 2n + 1) acted upon by Tk for some k ≤ n, or the graph of the manifold

G2/P . The manifold must then have the integral cohomology ring and Chern classes of CPn,

G+(2, 2n + 1), or G2/P , where P is the parabolic subgroup generated by the Borel subgroup

and the exponential of the short simple root.

Proof. This theorem is an immediate consequence of Proposition 7 in Section 3.4 of

Chapter 3.

The same techniques used to prove Theorem 1 can also be used to prove a similar result

in the case where the number of fixed points is two more than half the dimension of the

manifold.

Theorem 4 Let M be a 2n (n ≥ 2) dimensional GKM manifold acted upon by a k-

dimensional torus with n + 2 fixed points. Then k ≤ n
2

+ 1 and if k = n
2

+ 1 then the
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GKM graph of the manifold is the same as the GKM graph of G+(2, n + 2). Thus the

manifold has the same integral cohomology and Chern classes as G+(2, n+ 2).

Proof. This theorem is an immediate consequence of Proposition 8 in Section 3.5 of

Chapter 3.

This result no longer holds in the case where k = n
2
. When n = 6 and k = 3 we know

of three GKM manifolds with eight fixed points. The first is G+(2, 6) acted upon by a

three-dimensional subtorus of the usual T4 action. The other two are the quotient of SO(7)

by the parabolic subgroup generated by the Borel subgroup and the exponential of the Lie

algebra generated by all but the shortest negative simple weight and the quotient of Sp(3)

by the parabolic subgroup generated by the Borel subgroup and the exponential of the Lie

algebra generated by all but the longest negative simple weight. The SO(7) quotient has

graph the one skeleton of a cube with simplicial faces, and the Sp(3) quotient has graph the

one skeleton of a cube with complete octaplexes as faces.

It should be noted that all the results have been stated in terms of the cohomology of

the manifolds and say nothing about the uniqueness of the manifolds in question. We

cannot say that CPn and G+(2, 2n + 1) are the only GKM manifolds, up to equivariant

symplectomorphism, with the cohomology rings described in Theorem 1.

Whether or not a GKM graph is the GKM graph of a unique (up to equivariant symplecto-

morphism) GKM manifold is in general not known. Indeed, the question of what invariants

are needed to uniquely determine Hamiltonian symplectic manifolds is, in general, hard. The

complexity of the GKM manifold, defined to be 1
2

dim(M)− dim(T) determines how hard

the problem is. The complexity 0 case is the only one that has been solved completely (see

[D88],) as has the case of 4-manifolds with circle actions (see [K99].) This case is the easiest

since the reduced spaces are always points. In the complexity 1 case progress is expected since

the generic reduced spaces are symplectic surfaces, which are completely classified by their

volume and genus. Karshon and Tolman have been able to prove uniqueness results in the

case where the manifold is “centered” [KT01] and “tall” [KT03]. Complexity 2 Hamiltonian

symplectic manifolds are harder to classify since the generic reduced spaces are symplec-

tic 4-manifolds, the complete classification of which is intractable. Some special cases may

be classifiable, however (see [Go11, McD09].) Complete classification for complexity 3 and

higher is generally considered intractible.

In simple cases we can make some progress on the question of existence. In the case of

six-dimensional GKM manifolds acted upon by T2 with six fixed points, we can find all the

possible abstract GKM graphs, which allows us to compute all the (theoretically) possible
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cohomology rings and Chern classes, and show that each of these graphs is the GKM graph

of at least one GKM manifold. We state our result, followed by a discussion of the “right”

notion of abstract GKM graphs for proving this and the previous theorems.

Theorem 5 Let M be a six dimensional GKM manifold acted upon by a two dimensional

torus with six fixed points.. Then one of the following statements is true:

1. M has the GKM graph of P(O(n) ⊕ C) → CP2 acted upon by a two dimensional

subtorus of the Hamiltonian T3 action. Moreover

H∗(M) = Z[α, β]/(α3, β2 + nαβ) and

c(M) = 1 + (3 + n)α + 2β + 3(1 + n)α2 + 6αβ + 6α2β.

2. M has the GKM graph of a P(O(m)⊕O(n)⊕C)→ CP1 acted upon by a two dimen-

sional subtorus of the Hamiltonian T3 action. This family has two parameters, n and

m, with 0 ≤ n ≤ m. Moreover

H∗(M) = Z[α, β]/(α2, β3 − (m+ n)αβ2) and

c(M) = 1 + (2−m− n)α + 3β + 2(3− n−m)αβ + 3β2 + 6αβ2.

3. If we let A,B, . . . , F be the vertices then there exist natural numbers a, b > 0 and

c > −a−b and an SL(2,Z) transformation of the weights of the GKM graph of M such

that α(A,B) = α(F,C) = (1, 0), α(A,D) = α(F,E) = (0, 1), α(B,E) = α(C,D) =

(−1, 1), α(A,B) = (−a, b), α(B,C) = (a+ c, b), α(E,D) = (a, b+ c). Moreover

H∗(M) = Z[α, β]/(α3, β2 − (2a+ c)αβ + a(a+ b+ c)α2) and

c(M) = 1 + (3− 2a− c)α + 2β + 3(1− 2a− c)α2 + 6αβ + 6α2β.

4. If we let A,B, . . . , F be the vertices then there exist natural numbers a, b > 0 and

c > a + b and an SL(2,Z) transformation the weights of the GKM graph of M such

that α(A,C) = α(B,E) = (1, 0), α(A,F ) = α(B,D) = (0, 1), α(C,D) = α(E,F ) =

(−1, 1), α(A,B) = (−a, b), α(C,E) = (a− c, b), α(D,F ) = (a, b− c). Moreover

H∗(M) = Z[α, β]/(α3, β2 − (2a− c)αβ + a(a+ b− c)α2) and

c(M) = 1 + (3− 2a+ c)α + 2β + 3(1− 2a+ c)α2 + 6αβ + 6α2β.
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5. M has the GKM graph of the blow-up of G+(2, 5) with its standard T2 action along one

of it’s large isotropy spheres. Each of the four fixed points of G+(2, 5) represent one of

two planes in R5 with a choice of orientation. The large isotropy spheres connect the

pairs of points that represent the same plane with opposite orientation. Moreover

H∗(M) = Z[α, β, γ, δ]/(α2, αβ − 2γ, β2 + αβ − 2δ, γδ, αγ, β(γ + δ), αδ − βγ) and

c(M) = 1 + 3α + 2β + 2β2 + 7αβ + 3αβ2.

Proof. This theorem follows from Propositions 9, 10, 11, 12 in Section 4.1 of Chapter 4.

The proofs of these theorems rely on the study of the GKM graphs of these manifolds.

In fact, the proofs require that we define an abstract GKM graph independent of GKM

manifolds. We do not use the definition given by Guillemin and Zara in [GZ02, GZ99, GZ01].

Although very general, and useful for studying many properties of GKM graphs in the widest

possible setting, it has the drawback that it allows graphs that cannot be the GKM graphs

of any GKM manifold, so is not well suited to our purposes. We want abstract GKM graphs

to satisfy as many of the properties of GKM graphs of GKM manifolds as possible. Our

definition does not guarantee that each abstract GKM graph is the GKM graph of a GKM

manifolds, but we know of no case where this fails to hold.

We define an abstract GKM graph as follows:

Definition 5 (Abstract GKM Graph) An (n, k, χ) abstract GKM graph is a regular n-

valent graph with vertices V , edges E, directed edges I, and a function α : I → (Zk)∗ such

that:

1. Each vertex has the same number of edges.

2. The weights at each vertex span (Zk)∗ and are pairwise linearly independent.

3. If p and q are adjacent vertices then α(p, q) = −α(q, p).

4. If p and q are adjacent vertices and {pi}n−1
i=1 and {qi}n−1

i=1 are the other vertices adjacent

to p and q respectively, then we can order these vertices so that α(p, pi) = α(q, qi)

mod α(p, q).

5. There exists a function µ : V → (Rk)∗ such that:

(a) For all adjacent vertices p and q, µ(q)− µ(p) = cα(p, q) for some c > 0.
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(b) For all p ∈ V there is a neighborhood U ⊂ (Rk)∗ of µ(p) such that the cone of the

weights at p (the set µ(p) +
∑

(p,q)∈I cqα(p, q) with cq ≥ 0) intersected with U is

the same as the convex hull of µ(V ) intersected with U .

6. Given any sublattice of (Zk)∗, the edges whose weights span that sublattice form a GKM

graph with respect to that sublattice.

Remark. it should be obvious that the notion of a projection (see Definition 3) of a GKM

graph still holds. Simply take any projection (Zk)∗ → (Zl)∗. If the images of the weights

of the original abstract GKM manifold still satisfy condition 2 (the others are satisfied

automatically,) then the graph with the new weights is still an abstract GKM graph. We

will say that this is the projection of the abstract GKM graph.
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CHAPTER 2

BACKGROUND

Theorem 5 is proved independently of Theorems 1, 2, 3, 4. In this chapter we discuss the

preliminary results needed for both sets of theorems. We then prove one key result about

GKM graphs and discuss some examples that we will use later.

A well-known theorem due to Darboux shows that there are no local invariants in sym-

plectic geometry.

Theorem 6 (Darboux Theorem) Let (M,ω) be a 2n-dimensional symplectic manifold,

and p ∈M . Then there is a neighborhood U of p such that there exists a symplectomorphism

f : U → R2n and f ∗ω0 = ω where ω0 =
∑n

i=1 dxi ∧ dyi is the standard symplectic form on

R2n.

Proof. See, for example, [Au03, dS01]. There are multiple proofs of this. One involves

using the exponential map of some Riemannian metric as a local diffeomorphism TpM →M .

Darboux’s Theorem for TpM then follows from an application of Moser’s Trick. If the

manifold has an action of a compact Lie group on it, then the metric in the proof of Darboux’s

Theorem can be taken to be equivariant, and we get the following result:

Theorem 7 (Equivariant Darboux Theorem) Let (M,ω) be a 2n-dimensional symplec-

tic manifold and G a compact Lie group acting on M preserving the symplectic form. Let

p ∈ M be a fixed point of G. Consider the induced symplectic G-action on TpM . Then the

exponential map exp : TpM →M (defined with respect to some G-invariant metric) induces

an equivariant symplectomorphism between an equivariant neighborhood of 0 ∈ TpM and an

equivariant neighborhood of p ∈M .

Proof. See [Au03].

There are many similar results showing the lack of local invariants in symplectic geometry.

These usually involve studying imbeddings of isotropic, Lagrangian, or coisotropic subman-

ifolds. A submanifold is isotropic if the pullback of the symplectic form is 0, coisotropic if
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the tangent space at each point contains its symplectic orthogonal, and Lagrangian if it is

both isotropic and coisotropic. We will need the following result on coisotropic submanifolds

later:

Theorem 8 (Coisotropic Embedding Theorem) Let M be a manifold with symplectic

forms ω1 and ω2, and N ⊂ M a submanifold coisotropic for both ω1 and ω2. If ω1|N =

ω2|N then there exit open neighborhood U1 and U2 of N in M and a symplectomorphism

φ : (U1, ω1) → (U2, ω2) with φ|N = id. If M is a symplectic G-manifold, with G a compact

Lie group, the symplectomorphism can be chosen to be equivariant.

Proof See [Go82].

One of the most important results on Hamiltonian torus actions on compact symplectic

manifolds is the Atiyah Guillemin-Sternberg Theorem showing that the image of the moment

map is a convex polytope. Our definition of abstract GKM (see Definition 5) graph is

specifically designed to include a counterpart to this theorem.

Theorem 9 (Atiyah Guillemin-Sternberg Convexity Theorem) Let (M,ω) be a com-

pact connected symplectic manifold with a Hamiltonian k-torus action with moment map

µ : M → (Rk)∗. Then µ(M) is a convex polytope, namely the convex hull of µ(MT). For

each x ∈ (Rk)∗, the set µ−1(x) is empty or connected.

Proof. See [At82] and [GS82].

We also need this fact about moment maps.

Theorem 10 The moment map of a compact Hamiltonian manifold acted upon by a compact

Lie group is an open map onto its image.

Proof. See [Sj98].

Our main result in this section shows that every GKM graph that comes from a GKM

manifold satisfies the conditions of an abstract GKM graph.

Theorem 11 Every GKM graph of a GKM manifold is an abstract GKM graph.

Proof. Since the manifold is symplectic and the group action is Hamiltonian, there is a

Tk-invariant almost complex structure on the manifold. At a fixed point p, the action of Tk

induces a linear action on TpM . Since the action is compact, we can view Tk as a subset

of U(n), and since the action is abelian we may, after a unitary change of basis, assume
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that the action is diagonal. We may then split TpM into a direct sum of two-dimensional

subspaces on which elements of Tk act by rotation. More specifically TpM = ⊕ni=1 ⊕ Vi and

, if {t1, . . . , tk} are generators of Tk and zi ∈ Vi − {0}, then tj · zi = t
aij

j zi for some aij ∈ Z.

Then the vector αi = (ai1, . . . , aik) is the isotropy weight of of the Tk action on Vi.

By the equivariant Darboux theorem (see Theorem 7,) there is an equivariant symplec-

tomorphism from a neighborhood of the origin in TpM to a neighborhood of p ∈ M . The

intersection of this neighborhood with each Vi is mapped to a submanifold fixed by a codi-

mension 1 subgroup of Tk, namely an isotropy sphere. Thus each fixed point of M is the

fixed point of n isotropy spheres, so each vertex will have n edges. The the graph of the

manifold satisfies Condition 1 of the definition of GKM graphs.

The weights at p are the isotropy weights of TpM . These must be pairwise linearly in-

dependent, since otherwise the same subgroup would fix two isotropy spheres at p. Thus

Condition 2 of Definition 5 is satisfied.

The isotropy weights at the fixed points of a Hamiltonian circle action on a two-sphere

are the negatives of each other. Thus the isotropy weight at p is the negative of the isotropy

weight at q, so α(p, q) = −α(q, p). Condition 3 of Definition 5 follows.

Let K ⊂ T be the codimension 1 subgroup fixing the isotropy sphere connecting p and

q, and k be its Lie algebra. Then α(p, q)(ξ) = 0 for all ξ ∈ k. But then K has an isotropy

representation on the tangent space of each point of the sphere. This representation must

be the same at each point, so in particular must be the same at the two fixed points. Thus

ρKα(p, pi) = ρKα(q, qi) where ρK : t∗ → k∗ is the usual projection. Condition 4 of Definition

5 follows.

The function µ is the restriction of the moment map φ to the fixed points of the manifold.

The image of the moment map restricted to an isotropy sphere is a line segment in the

direction of the corresponding isotropy weight, so µ(q) − µ(p) = cα(p, q) for some c > 0.

Condition 5a follows.

By the Atiyah Guillemin-Sternberg Convexity Theorem (see Theorem 9) we know that

the image of the moment map is a convex polytope, namely the convex hull of the image

of the fixed points. By Theorem 11 the moment map is an open mapping onto its image.

There is also a neighborhood W of p such that φ(W ) is a subset of the cone of the weights

at p. This subset is the intersection of the cone with an open set U of φ(M). Since φ(M) is

the convex hull of µ(V ) condition 5b follows.

Let Λ be a sublattice of (Zk)∗. Then the inclusion Λ → (Zk)∗ induces a projection

Tk → Tdim Λ, and the kernel of this projection fixes all the isotropy spheres corresponding
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to the edges whose weights lie in the sublattice. There must then be a larger submanifold

containing these spheres that is fixed by the same subgroup. This manifold will also be GKM

and its GKM graph will consist of the vertices with adjacent edges lying in the sublattice.

Condition 6 follows. 2

Remark. The function µ allows us to view the GKM graph of a GKM manifold as lying

in the moment image of the manifold. The vertices are just the images of the fixed points,

and the isotropy spheres map to line segments connecting adjacent vertices. In particular,

if a subgraph has weights lying in some subspace of (Zk)∗ then the vertices of the subgraph

are mapped to some affine subspace of (Rk)∗. In this situation we adopt the convention that

the vertices of the subgraph lie on a subspace.

Remark. If we did not have condition 5 we would be forced to allow many abstract GKM

graphs that do not come from GKM manifolds. The simplest example would be the graph

with vertices A and B and three edges connecting these two vertices. The weights of the

oriented edges going from A to B can be taken to be (1, 0), (0, 1) and (−1,−1). This is not

the GKM graph of a Hamiltonian manifold, but is the the GKM graph, under the definition

of Guillemin and Zara, of S6 acted upon by T2. See example 1.9.1 in [GZ01].

Let S(Zk) be the space of symmetric forms on Zk with the obvious grading. We define

the equivariant cohomology ring HE∗(Γ, α) of an abstract GKM graph to be the set of

all maps f : V → S(Zk) such that f(p) = f(q) mod α(p, q) when p and q are adjacent and

(Zk)∗ identified with S(Zk)1, the space of linear forms.

Theorem 12 Let M be a GKM manifold. Then the map

i∗ : H∗T(M,Z)→ H∗T(MT,Z) = ⊕p∈MTH∗T(pt,Z)

is an injection. The image of the function i∗ is determined by the GKM graph of the manifold;

two GKM manifolds with the same GKM graph will have the same equivariant cohomology

rings and equivariant Chern classes. If the subgroup Γn = {t ∈ T|tn = 1} does not act triv-

ially for any n > 1, then the equivariant cohomology ring of the GKM manifold is isomorphic

to the equivariant cohomology ring of its GKM graph.

Proof. See [T11]. See also [GKM98] for the proof with Z replaced by Q (which does not

require the condition on Γn.)

Since GKM manifolds are equivariantly formal, when the condition of Theorem 12 are

satisfied the cohomology ring of a GKM manifold is H∗(M) = HE∗(Γ, α)/S+(Zk)HE∗(Γ, α).
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We then define HE∗(Γ, α)/S+(Zk)HE∗(Γ, α) to be the cohomology ring of an abstract

GKM graph. Both the ordinary and equivariant cohomology rings have the natural grading.

For the graphs we consider in Theorems 1-5 the technical condition on Γn are rarely an

issue. The only cases we must account for are those where the GKM graph is the projection of

a GKM graph with weights lying in a higher dimensional lattice. In this case, since the GKM

graph determines the cohomology ring of the GKM manifold, if we know the cohomology

ring and Chern classes of one manifold with a given GKM graph we know the cohomology

ring and Chern classes of all the GKM manifolds with the same GKM graph. In the cases

where the GKM graph is the projection of another GKM graph the latter GKM graph is

always the the GKM graph of a manifold satisfying the condition on Γn. Since the projection

of the GKM graph of a GKM manifold is merely the GKM graph of the same manifold acted

upon by a lower dimensional torus, this gives us the cohomology ring and Chern classes of

the original GKM manifold. The GKM graphs in question are the projections of the GKM

graphs of CPn, G+(2, 5), P(O(n)⊕ C)→ CP2, and P(O(n)⊕O(m)⊕ C)→ CP1.

The following lemma then holds:

Lemma 1 The cohomology ring and Chern classes of the abstract GKM graphs described in

items 3 and 4 of Theorem 5 and the GKM graph of the blowup of G+(2, 5) are the cohomology

rings and Chern classes of the GKM manifolds that have the respective GKM graphs.

For each p ∈ V (the set of vertices,) let ci(p) be the ith elementary symmetric function on

α(p, q1), . . . , α(p, qn) (viewed as elements of S(Zk)1.) The ith equivariant Chern class of

the graph is defined to be the function f : V → S(Zk)i defined by f(p) = ci(p). The Chern

classes are defined to be the images of the equivariant Chern classes under the quotient

map HE∗(Γ, α)→ HE∗(Γ, α)/S+(Zk)HE∗(Γ, α).

Proposition 1 When the abstract GKM graph comes from a GKM manifold, then the or-

dinary and equivariant Chern classes of the graph are the ordinary and equivariant Chern

classes of the manifold.

Proof. The images of the equivariant Chern classes under the map i∗ in Theorem 12 is the

element of ⊕p∈MTH∗T(pt,Z) consisting of the equivariant Chern classes of the restriction of

the tangent bundle to each of the fixed points. If we choose a set of generators {t1, . . . , tk}
for Tk then this determines elements x1, . . . , xk ∈ H2

Tk(pt) such that H∗Tk(pt) = Z[x1, . . . , xk].

If C → {pt} is an equivariant S1 bundle such that s · z = snz (s acts with speed n) then

the equivariant Euler class is the Euler class of the bundle ES1 ×S1 C→ BS1 which is just
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O(n) → CP∞. Thus if x ∈ H2(CP∞) is the generator of the cohomology of CP∞ then the

equivariant Euler class of C → {pt} is ax. Let C → {pt} be a Tk vector bundle such that

ti · z = tai
i z for each generator ti. Denote the same bundle with only the S1 action generated

by ti as Ci → {pt}. Then the identify map id : Ci → C is equivariant, and the pullback

of the equivariant Euler class of the second bundle is the equivariant Euler class of the first

(i.e. id∗eT(C) = eS1(Ci) = aixi. Thus the equivariant Euler class of the Tk-equivariant line

bundle is
∑k

i=1 aixi. At each fixed point p ∈M the induced action on TpM is diagonalizable,

and thus splits TpM into a direct sum of complex line bundles. Thus the total equivariant

Chern class of TpM → {p} is the product of the total equivariant Chern classes of the two-

dimensional sub-bundles. But The Euler classes of these sub-bundles will be sum of the

isotropy weights of the torus action on TpM . Thus the ith equivariant Chern class will be

the function ci : V → S((Zk)∗)i, where ci(p) is the ith symmetric function on the weights of

p. 2

The rest of this section is examples. The first two are examples of GKM graphs that we

will use frequently in the proofs.

Example 1. The (2, 2, 3) GKM graph with vertices A, B, and C with weights α(A,B) +

α(B,C) = α(A,C). This graph comes from the standard T2 action on CP2.

Example 2. The family of GKM graphs corresponding to the Hirzebruch surfaces. The

graph corresponding to P(O(n) ⊕ C) → CP1 has vertices A, B, C, and D with weights

α(A,B) = α(C,D) and α(B,D) = α(A,C) + nα(A,B).

The (2, 2, 3) and (2, 2, 4) GKM graphs are GKM graphs of toric manifolds. It is well

known that these are the only four dimensional toric manifolds with at most 4 fixed points,

and that all the other four dimensional toric manifolds can be constructed from CP2 or

P(O(n)⊕ C)→ CP1 by a series of blow-ups (see [Au03].)

There are also some more complicated graphs that will be important for us later. These

are the graphs corresponding to the six-dimensional toric manifolds with six fixed points.

These two families of manifolds correspond to two of the families of (3, 2, 6) GKM manifolds,

namely the bundles P(O(n)⊕C)→ CP2 and P(O(n)⊕O(m)⊕C)→ CP1. We can construct

these manifolds using existence part of the proof of Delzant’s Theorem. ([D88, dS01].)

The GKM graph of a toric manifold can be viewed (via the function µ) as the one-skeleton

of the Delzant Polytope of a toric manifold. Different choices of µ will give us different

polytopes, but the set of normal vectors to the facets of the polytopes will remain the same.

Thus the choice of polytope only determines the choice of symplectic form on the manifold,

not the manifold itself. Since the choice of symplectic form is irrelevant (we only need that
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one exits) we will choose one polytope per graph.

Suppose the (3, 3, 6) graph has weights α(A,B) = α(D,E) = (1, 0, 0), α(A,C) = α(D,F ) =

(0, 1, 0), α(B,C) = α(E,F ) = (−1, 1, 0), α(A,D) = (0, 0, 1), α(B,E) = (−n, 0, 1), and

α(C,F ) = (0,−n, 1). We will show that this is the GKM graph of the toric manifold

P(O(n)⊕ C)→ CP2. This GKM graph is the one-skeleton of the following polytope:

∆ = {x ∈ (R3)∗ : 〈x, (−1, 0, 0)〉 ≤ 0, 〈x, (0,−1, 0)〉 ≤ 0,

〈x, (0, 0,−1)〉 ≤ 0, 〈x, (0, 0, 1)〉 ≤ 1, 〈x, (1, 1, n)〉 ≤ n+ 1}.

We define a map π : R5 → R3 by

π =

−1 0 0 0 1

0 −1 0 0 1

0 0 −1 1 n

 .
The kernel of this map is i : ker(π)→ R5, and the dual map is

i∗ =

[
1 1 n 0 1

0 0 1 1 0

]
.

Define φ : C5 → (R5)∗ to be

φ(z) = −(|z1|2, |z2|2, |z3|2, |z4|2, |z5|2) + (0, 0, 0, 1, n+ 1).

This is the moment map for the standard T5 action on C5 that sends the origin to (0, 0, 0, 1, n+

1). Then consider Z = (i∗ ◦ φ)−1(0). This space is {z : |z1|2 + |z2|2 + n|z3|2 + |z5|2 =

n + 1, |z3|2 + |z4|2 = 1}. The map π induces a surjection R5/Z5 → R3/Z3 and these two

spaces can be identified with T5 and T3 respectively. Denote the kernel of this map by N .

Then N acts freely on Z and Z/N is the toric manifold with the Delzant polytope ∆.

We can show that this manifold is a CP1-bundle over CP2. The group N is the subgroup

of T5 generated by {(eiθ1 , eiθ1 , eniθ1 , 1, eiθ1), (1, 1, eiθ2 , eiθ2 , 1)}. Any point of Z/N has a rep-

resentation by (z1, z2, z3, z4, z5) and there is a well-defined equivariant map Z/N → CP2

defined by:

(z1, z2, z3, z4, z5)→ [z1, z2, z5] ∈ CP2.

Given a point p ∈ CP2 and a number a ∈ [1, n + 1] ]we can pick a representation [z1, z2, z5]
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such that |z1|2 + |z2|2 + |z5|2 = a. Then a = n+ 1−n|z3|2. As we vary a this allows for every

possible choice of (z3, z4) satisfying |z3|2 + |z4|2 = 1. Then the set of points (z3, z4) that can

be in a representation of a point in the preimage of p is the whole 3-sphere |z3|2 + |z4|2 = 1.

But when we quotient out by N we see that this reduces to CP1.

In fact, this manifold is P(O(n) ⊕ C) → CP2. When we quotient out by the subgroup

generated by (1, 1, eiθ2 , eiθ2 , 1) we see that what remains is S5 × S1 and when we quotient

out by N/{(1, 1, eiθ2 , eiθ2 , 1)} we see that we have S5×S1 CP1 under the S1 action u · (x, y) =

(ux, uny) where x ∈ S5 and y ∈ CP1. Thus the manifold is P(O(n)⊕ C)→ CP2.

Now suppose the (3, 3, 6) graph has weights α(A,B) = α(C,D) = α(E,F ) = (0, 0, 1),

α(A,C) = (1, 0, 0), α(A,E) = (0, 1, 0), α(C,E) = (−1, 1, 0), α(B,D) = (1, 0,m), α(B,F ) =

(0, 1, n), α(D,F ) = (−1, 1, n − m). Without loss of generality, we may assume that both

n and m are positive and n > m. We will show that this is the GKM graph of P(O(n) ⊕
O(m)⊕ C)→ CP1. Then this GKM graph is the one-skeleton of the following poytope:

∆ = {x ∈ (R3)∗ : 〈x, (−1, 0, 0)〉 ≤ 0, 〈x, (0,−1, 0)〉 ≤ 0, 〈x, (0, 0,−1)〉 ≤ 0,

〈x, (1, 1, 0)〉 ≤ 1, 〈x, (−m,−n, 1)〉 ≤ 1}

Define π : R5 → R3 by

π =

−1 0 0 1 −m
0 −1 0 1 −n
0 0 −1 0 1

 .
The dual of the kernel of this map is

i∗ =

[
1 1 0 1 0

−m −n 1 0 1

]
.

Define φ : C5 → (R5)∗ to be

φ(z) = −(|z1|2, |z2|2, |z3|2, |z4|2, |z5|2) + (0, 0, 0, 1, 1).

Then consider Z = (i∗ ◦ φ)−1(0). This space is {z : |z1|2 + |z2|2 + |z4|2 = 1, |z3|2 + |z5|2 =

1 + m|z1|2 + n|z2|2}. Then N = ker(R5/Z5 → R3Z3) acts freely on Z and Z/N is the toric

manifold with the Delzant polytope ∆. The group N is the subgroup of T5 generated by

{(eiθ1 , eiθ1 , 1, eiθ1 , 1), (e−imθ2 , e−inθ2 , eiθ2 , 1, eiθ2)}.
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Any point of Z/N has a representation by (z1, z2, z3, z4, z5) and there is a well-defined equiv-

ariant map Z/N → CP1 defined by :

(z1, z2, z3, z4, z5)→ [z3, z5].

Given a point p ∈ CP1 and a number a ∈ [1,m + n + 1] we can pick a representation

[z3, z5] such that |z3|2 + |z5|2 = a. Then a = 1 + m|z1|2 + n|z2|2. As a varies this allows

for every possible choice of (z1, z2, z4) satisfying |z1|2 + |z2|2 + |z4|2 = 1. Then the set of

points that can be in a representation of a point in the preimage of p is the whole 5-sphere

|z1|2 + |z2|2 + |z4|2 = 1. But when we quotient out by N we see that this reduces to CP2.

In fact, this manifold is P(O(m) ⊕ O(n) ⊕ C) → CP1. When we quotient out by the

subgroup generated by (eiθ1 , eiθ1 , 1, eiθ1 , 1) we that what remains is S3 × CP2 and when we

quotient out by N/{(eiθ1 , eiθ1 , 1, eiθ1 , 1)} we see that we have S3×S1 CP2 under the S1 action

u ·(x, [x1, x2, x4]) = (ux, [umx1, u
nx2, x4]). Thus the manifold is P(O(m)⊕O(n)⊕C)→ CP1.
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CHAPTER 3

MINIMAL GKM MANIFOLDS AND GRAPHS

3.1 Introduction

There are two well-known families of examples of minimal GKM manifolds. The first is CPn

itself, and the second is G+(2, 2n− 1), the Grassmannian of oriented 2-planes in R2n−1. For

a maximal torus action their respective GKM graphs are the one skeleton of the simplex and

the complete graph on the vertices of the octaplex. The weights of the simplicial graph are

the differences of the images of the fixed points under the canonical moment map (which

sends one fixed point to 0 and the others to {ei}.) The weights of the octaplex are also

the differences of the fixed points under the canonical moment map (which sends the fixed

points to {±ei}) unless the points are antipodal, in which case the weights are half the

differences. The edges connecting antipodal points will be called interior edges, while the

remaining edges are exterior edges. If a subtorus acts then the graph will be a projection

of one of these GKM graphs onto a lower dimensional space. We will call any projection

of a simplex a simplicial graph and any projection of a complete octaplex a complete

octaplex graph.

Both of these families can be realized as quotients of Lie groups. It is well known that

CPn can be realized as U(n+ 1)/U(1)×U(n) and G+(2, 2n+ 1) can be realized as SO(2n+

1)/SO(2)×SO(2n−1). The only other know minimal GKM manifold is also a quotient of a

Lie group, namely G2/P where P is the parabolic subgroup generated by the Borel subgroup

and the exponential of the short simple root.

Simplicial graphs are characterized by the fact that any complete subgraph on three ver-

tices is a GKM subgraph. If A,B,C are three vertices then the complete graph on these

vertices is simplicial if and only if α(A,B) + α(B,C) = α(A,C). The complete graph on

three vertices (A, B, and C) of a complete octaplex graph is either simplicial or (up to

relabeling) satisfies α(A,B) + α(B,C) = 2α(A,C).

Theorem 1 is a consequence of Propositions 4 and 5. Theorem 2 is a consequence of
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Proposition 6. Theorem 3 is a consequence of proposition 7. Theorem 4 is a consequence of

Proposition 8.

3.2 Dimension at Most 8

Our main result in this section is that when n ≤ 4 all GKM manifolds with a minimal

number fixed points have the same equivariant cohomology as complex projective space or

an oriented Grassmannian. This follows from the fact that, under the same hypotheses,

these are the only two complete GKM graphs.

We begin with a few lemmas.

Lemma 2 Let ABC be a complete subgraph of the GKM graph Γ. In order for ABC to be a

GKM subgraph it is sufficient to show that α(A,C) = α(B,C) mod α(A,B) and α(A,B) =

α(C,B) mod α(A,C).

Proof. Since α(A,C)−α(B,C) = 0 mod α(A,B) we have α(A,C)+α(C,B) = nα(A,B),

and thus α(C,B) = nα(A,B) mod α(A,C). But then (n − 1)α(A,B) = 0 mod α(A,C).

Since α(A,B) and α(A,C) are linearly independent, n = 1, and thus ABC is a GKM

subgraph. 2

Lemma 3 To show that a complete GKM graph is simplicial it is sufficient to show that

every triangular subgraph with a fixed vertex is a GKM subgraph.

Proof. Pick a vertex A of the complete GKM graph and suppose every triangular subgraph

containing A in its set of vertices is a GKM subgraph. Let BCD be another triangular

subgraph. Since the graph is complete ABC, ACD, and ABD are subgraphs and thus

GKM subgraphs. Then α(B,C) = α(B,A) + α(A,C), α(C,D) = α(C,A) + α(A,D), and

α(B,D) = α(B,A) + α(A,D). Adding these together we see that

α(B,C) + α(C,D) = α(B,A) + α(A,D) = α(B,D).

Thus the triangle BCD is a GKM subgraph. Since the choice of triangle was arbitrary, we

see that all triangular subgraphs are GKM subgraphs, and thus the graph is simplicial. 2

Lemma 4 Suppose a complete GKM graph lying in (Rk)∗ with n+ 1 vertices has n vertices

lying in an affine subspace of (Rk)∗. Then the whole graph is simplicial.
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Proof. Let A be the vertex not lying in the subspace, and B and C two vertices lying in

the subspace. Then the 2-dimensional subspace spanned by A, B, and C does not contain

any other vertices, so the complete graph on A, B, and C must be simplicial. But since

B and C are arbitrary, we see that the any triangular subgraph containing A is a GKM

subgraph. Thus, by Lemma 3 the whole graph is simplicial. 2

We can now classify all minimal GKM graphs with degree at most 4. When the degree is

1, the graph is a line segment, and when the degree is 2 the graph is the simplicial triangle

of Example 1. Degrees 3 and 4 are classified in the next two propositions.

Proposition 2 The only (3, 2) GKM graphs are the simplicial graphs, and the complete

octaplex graph.

Proof. We have two cases to consider. First, suppose the image of the graph under µ

has three exterior vertices and one interior vertex. We will label the vertices A, B, C, D,

with A the interior vertex. The three interior edges then have weights α(A,B), α(A,C),

and α(A,D). Each of these edges is contained in the border of two half-planes, and since

these are interior edges there is only only one pair of edges in each half plane. These

edges must then have a common vertex. If we start with the edge AB then we see that

α(A,C) = α(B,C) mod α(A,B). Similarly, α(A,B) = α(C,B) mod α(A,C). Thus ABC

is a GKM subgraph. By symmetry, the same holds for ABD and ACD. By lemma 3 the

the full graph is simplicial.

The second case is when there are four exterior vertices, labeled in clockwise order as in

the picture. This case is split into two subcases.

The first subcase is when all four triangular subgraphs are simplicial subgraphs. But then

it is clear that the whole graph is simplicial.

The second subcase is where one of the triangular subgraphs, say ABC, is not a simplicial

subgraph. Thus there is no GKM subgraph containing the edges α(A,B) and α(A,C) so

{α(A,B), α(A,C)} span Z2. Since α(A,B) = α(C,B) mod α(A,C) we see that α(A,B) +

α(B,C) = nα(A,C) where n > 1. Thus

det

[
α(B,A)

α(B,C)

]
= det

[
α(B,A)

α(A,B) + α(B,C)

]
= det

[
α(B,A)

nα(A,C)

]
= n

so {α(B,A), α(B,C)} does not span Z2. Thus there is some GKM subgraph that lies on

the sublattice they do span; this must be the quadrilateral ABCD. Thus either α(A,B) =

α(D,C) or α(A,D) = α(B,C). Without loss of generality we may suppose the former. Then
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Figure 3.1: The two types of (3,2) graphs.
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α(A,D) = α(B,C)+nα(A,B) for some n. But since ABCD is a GKM subgraph we see that

α(B,D) = α(C,A) mod α(B,C), and α(A,C) = α(D,B) mod α(A,D). Thus α(A,D) is

parallel to α(B,C), so n = 0 and α(A,D) = α(B,C).

Since {α(A,B), α(A,C)} span and α(A,C)− α(B,D) is parallel to α(A,B) we see that

det

[
α(A,C)

α(A,B)

]
= det

[
α(B,D)

α(A,B)

]
= det

[
α(B,A)

α(B,D)

]
= 1

and thus {α(B,A), α(B,D)} span the lattice. Similarly, {α(B,C), α(B,D)} span the lattice.

Since {α(A,B), α(A,C)} span the lattice, we see that α(B,D) = rα(A,B) + sα(A,C) for

some r, s ∈ Z. But

det

[
α(B,A)

α(B,D)

]
= det

[
α(B,A)

rα(A,B) + sα(A,C)

]
= s det

[
α(B,A)

α(A,C)

]
= s

so s = 1 and

1 = det

[
α(B,D)

α(B,C)

]
= det

[
rα(A,B) + α(A,C)

α(B,A) + nα(A,C)

]

= rn det

[
α(A,B)

α(A,C)

]
+ det

[
α(A,C)

α(B,A)

]
= −rn− 1

so rn = −2. Since n > 1 we see that r = −1 and n = 2. Then α(A,B) = α(A,C) +α(D,B)

and α(A,B)+α(B,C) = 2α(A,C). By symmetry α(B,C)+α(C,D) = 2α(B,D), α(A,D)+

α(D,C) = 2α(A,C) and α(B,A) + α(A,D) = 2α(B,D). From this we see that the graph

must be a complete octaplex. 2

Proposition 3 The only (4, 2) GKM graphs are the simplicial graphs.

Proof. There are three cases to consider.

Case I

The first case is where there are three exterior vertices. The two interior vertices, labeled

D and E are connected by an edge. There are two half-planes whose boundaries contain

this edge. One half-plane will contain one exterior vertex (B) and the other half-plane will

contain two exterior vertices (A and C). Consider the edge connecting D and B. It too lies
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Figure 3.2: The three types of (4,2) graphs.
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on the boundary of two half planes, one of which will contain A and one of which will contain

C and E. Similarly, the edge connecting B and E divides the plane into half planes, one of

which contains C and one of which contains A and D. One of the half planes whose boundary

contains AD contains B but no other vertices. Thus α(A,B) = α(E,D) mod α(A,E) and

α(D,A) = α(B,A) mod α(B,D). Then by Lemma 2, ABD is a simplicial subgraph. By

symmetry BCE is a simplicial subgraph.

Suppose BDE is not a simplicial subgraph. Then since α(D,B) = α(E,B) mod α(D,E)

we see that α(D,B) + α(B,E) = nα(D,E) where n > 1. Then

det

[
α(B,D)

α(B,E)

]
= det

[
α(E,B) + α(B,D)

α(B,E)

]
= det

[
nα(E,D)

α(B,E)

]

= det

[
α(E,B)

nα(E,D)

]
> n,

so {α(B,D), α(B,E)} cannot span the lattice Z2. But then, by Property 6 of abstract GKM

graphs there must be some GKM subgraph on the lattice they do span. This GKM subgraph

can only be the complete graph on A, B, D, and E, or the complete graph on D, E, C, and

B. But both of two options must be (3, 2) graphs with three exterior vertices, and thus (by

the proof of lemma 2) be simplicial, so BDE will be a simplicial subgraph. Thus BDE is a

simplicial subgraph.

If ABE is not a simplicial subgraph then α(B,A) = α(E,A) mod α(B,E) implies that

{α(A,B), α(AE)} do not span the lattice Z2. Then the complete graph on A, B, D, and

E, or the complete graph on A, B, C, and E must be a GKM subgraph. But these must

both be (3, 2) graphs with three exterior vertices and thus simplicial, so ABE is a simplicial

subgraph. Thus ABE is a simplicial subgraph. By symmetry, so is BCD.

We then see that α(B,A) = α(C,A) mod α(B,C) and α(A,C) = α(B,C) mod α(A,B),

so ABC is a GKM subgraph by lemma 2. Thus every triangular subgraph containing the

vertex B is a GKM subgraph, so by lemma 3 the whole graph is simplicial.

Case II

The second case is where there are four exterior vertices. These four vertices form a quadri-

lateral with two diagonals. We label the vertices A, B, C, and D so that the diagonals

are AC and BD. Without loss of generality we may suppose that E is contained in the
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half plane bordering AC and containing D and the half plane bordering BD containing A.

One of the half planes bordered by AE only contains the vertex D, so α(A,D) = α(E,D)

mod α(A,E). Similarly, α(E,A) = α(D,A) mod α(E,D). Thus ADE is a GKM subgraph.

We will have shown that the whole graph is simplicial if we can show that every triangle

with vertex E is a simplicial subgraph.

First we show that there can be no complete octaplex subgraphs.

Suppose the complete graph on A, B, C, and E is a complete octaplex subgraph. Then

α(B,D) = α(E,D) mod α(B,E).

Suppose BDE is not a GKM subgraph. Then {α(D,B), α(D,E)} does not span the

lattice. Then there is some GKM subgraph whose weights lie on the sublattice spanned

by {α(D,B), α(D,E)}. The only candidates are the complete graph on A, B, D, and E

and the complete graph on B, C, D, and E. The first is a (3, 2) graph with three exterior

vertices, and thus is simplicial, so BCE is a simplicial subgraph. Thus the complete graph

on B, C, D, and E must be a GKM subgraph. If it is simplicial then BDE is simplicial so

this graph must be a complete octaplex subgraph. But then α(A,E) = α(B,C) = α(E,D),

which violates Property 2 of GKM graphs. Thus BDE is a simplicial subgraph.

Suppose ABD is not simplicial. Since α(A,D) = α(B,D) mod α(A,B) we see that

{α(D,A), α(D,B)} cannot span the lattice. Then there must be a larger subgraph whose

weights must lie on the sublattice spanned by {α(D,A), α(D,B)}. Since the GKM subgraph

cannot be simplicial (otherwise ABD would be simplicial) it must be the complete subgraph

on A, B, C, and D and must be a complete octaplex subgraph. But then α(A,D) =

α(B,C) = α(A,E), which violates Property 2 of GKM graphs. Thus ABD is a simplicial

subgraph.

But then

α(B,E) = α(B,D) + α(D,E)

= α(B,A) + α(A,D) + α(D,A) + α(A,E)

= α(B,A) + α(A,E) = 2α(B,E).

Thus the complete graph on A, B, C, and E cannot be a complete octaplex subgraph. By

symmetry, the complete graph on B, C, D, and E cannot be a complete octaplex subgraph.

Suppose the complete graph on A, B, C, and D is a complete octaplex subgraph.

Suppose BDE is not a simplicial subgraph. Since α(B,E) = α(D,E) mod α(B,D)

we see that {α(E,B), α(E,D)} cannot span the lattice. Thus there must be some GKM
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subgraph containing B, D, and E. Since this GKM subgraph cannot be simplicial it must

be BCDE. But then α(B,A) = α(C,D) = α(B,E) or α(E,D) = α(B,C) = α(A,D), both

of which violate Property 2 of GKM graphs. Thus BDE is simplicial.

Suppose ABE is not simplicial. Since α(A,E) = α(B,E) mod α(A,B) we see that

{α(E,A), α(E,B)} cannot span the lattice. But then either the complete graph on A, B,

D, and E or the complete graph on A, B, C, and E must be a GKM subgraph. The first

graph must be simplicial since it is a (3, 2) graph with one interior vertex and the second

graph must be simplicial since it cannot be a complete octaplex graph. Thus ABE must be

simplicial.

Then

α(B,D) = α(B,E) + α(E,D)

= α(B,A) + α(A,E) + α(E,A) + α(A,D)

= α(B,A) + α(A,D) = 2α(B,D).

Thus the complete graph on A, B, C, and D cannot be a complete octaplex subgraph. Thus

there are no complete octaplex subgraphs.

Suppose ABE is not a simplicial subgraph.

If {α(E,A), α(E,B)} do not span the lattice then there must be some GKM subgraph

containing A, B, and E with weights lying on the edges spanned by the lattice. The only

possible non simplicial subgraph that satisfies these condition is the complete graph on A,

B, C, and E, and it must be a complete octaplex subgraph, which is impossible. Thus

{α(E,A), α(E,B)} span the lattice.

Since α(E,A) = α(B,A) mod α(B,E) we see that

det

[
α(B,A)

α(B,E)

]
= det

[
α(E,A)

α(B,E)

]
= det

[
α(E,B)

α(E,A)

]
= 1

and thus {α(B,A), α(B,E)} must also span Z2. Since ABE is not a GKM subgraph,

{α(A,B), α(A,E)} cannot span Z2, so the quadrilateral ABCE must be a GKM subgraph.

Thus either α(B,C) = α(A,E) or α(A,B) = α(E,C).

Suppose α(B,C) = α(A,E). Then {α(B,E), α(B,C)} span the lattice. If the vec-

tors {α(E,B), α(E,C)} do not span then since BCE cannot be a GKM subgraph the

complete graph on B, C, D, and E must be a complete octaplex graph, which is im-

possible. If {α(E,B), α(E,C)} do span then α(B,C) = α(E,C) mod α(B,E). Since
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α(E,C) = α(A,B)+nα(B,C) and α(A,B) = α(B,C) mod α(B,E) this implies n = 0 and

α(A,B) = α(E,C)

Thus we can reduce to the case where α(A,B) = α(E,C).

But then since α(C,A) = α(E,B) mod α(C,E) and α(E,A) = α(C,B) mod α(C,E)

we see that α(A,C) = α(B,E) mod α(A,B) and α(A,E) = α(B,C) mod α(A,B). Thus

α(A,D) = α(B,D) mod α(A,B).

If ABD is not a simplicial subgraph then {α(D,A), α(D,B)} cannot span the lattice. Thus

there must be some larger GKM subgraph containing A, B, and D. The only possibility

that is not simplicial is the complete graph on A, B, C, and D which must be a complete

octaplex graph. But this is impossible. Thus ABD is a simplicial subgraph.

But then since α(B,A) = α(D,A) mod α(B,D) holds, we have α(B,E) = α(D,E)

mod α(B,D).

If BDE is a simplicial subgraph then α(B,D) = α(B,E)+α(E,D) = α(B,E)+α(E,A)+

α(A,D) so α(B,A) = α(B,E) + α(E,A) and ABE is simplicial, which contradicts our

assumption. Thus BDE is not a simplicial subgraph and {α(D,B), α(D,E)} must span the

lattice.

But then {α(B,E), α(B,D)} cannot span the lattice, so BCDE must be a GKM sub-

graph. Then since α(D,C) = α(E,B) mod α(D,E), we see that α(D,B) = α(E,C)

mod α(D,E), and thus {α(E,C), α(E,D)} spans the lattice, just as {α(E,A), α(E,B)}
does. Then by symmetry α(B,E) = α(C,D) and ACD is a simplicial subgraph. But

then α(A,E) = α(C,E) mod α(A,C) and α(A,B) = α(C,B) mod α(A,C). But since

α(A,E) = α(B,C) + nα(A,B), we see that nα(A,B) = 0 mod α(A,C) so n = 0. Thus

α(A,E) = α(B,C) and by symmetry α(E,D) = α(B,C). But then α(A,E) = α(E,D),

which is impossible.

Thus ABE, and by symmetry CDE are simplicial subgraphs.

Now suppose that BCE is not a GKM subgraph. Then {α(E,B), α(E,C)} must span

the lattice. If {α(B,C), α(B,E)} does not span the lattice then the quadrilateral BCDE

is a GKM subgraph. If α(B,E) = α(C,D) then {α(C,E), α(C,D)} span the lattice, so

{α(D,C), α(D,E)} span the and thus {α(B,C), α(B,E)} span, so α(B,C) = α(E,D). If

{α(C,B), α(C,E)} does not span the lattice then similarly, α(B,C) = α(A,E) so α(A,E) =

α(E,D). Thus one of {α(B,C), α(B,E)} or {α(C,B), α(C,E)} must span the lattice; we

may choose the first pair. If the second pair does not span then ABCE is a subgraph.

But α(A,E) = α(B,C) so {α(E,A), α(E,B)} span, and thus {α(A,B), α(A,E)} span, so

{α(C,B), α(C,E)} span. Thus all three pairs of weights on the triangle BCE span the
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lattice, so BCE is a GKM subgraph. Thus BCE must be a GKM subgraph.

It now remains to show that ACE is a GKM subgraph. Then by symmetry BDE will

also be a GKM subgraph. Since α(E,A) = α(C,A) mod α(E,C) and α(A,C) = α(E,C)

mod α(A,E), ACE (and thus BDE) are GKM subgraphs, so the whole graph is simplicial.

Thus every triangular subgraph containing the vertex E is a GKM subgraph. By Lemma 3,

the whole graph is simplicial.

Case III

The final case to consider is when all five vertices are exterior vertices. We label these vertices

clockwise. Thus (for example) one of the half planes whose boundary contains AC contains

the vertex B and the other contains D and E.

We first show that there can be no complete octaplex subgraphs. Suppose the complete

graph on A, B, C, and D is a complete octaplex graph.(The choice of vertices is arbitrary.)

Then α(A,E) = α(B,E) mod α(A,B) and α(E,A) = α(B,A) mod α(B,E), so ABE,

and by symmetry CDE, is a GKM subgraph. Also α(B,E) = α(D,E) mod α(B,D). If

{α(E,B), α(E,D)} span then BDE is a subgraph and α(B,D) = α(B,E) + α(E,D) =

α(B,A) + α(A,E) + α(E,D) = α(B,A) + nα(A,D) for some n since α(A,E) = α(D,E)

mod α(A,D). But α(B,D) = 1
2
(α(B,A) + α(A,D)), so 1

2
α(B,A) =

(
n− 1

2

)
α(A,D), which

is impossible. Thus {α(E,B), α(E,D)} do not span the lattice so either the complete graph

on A, B, D, E is a GKM subgraph or BCDE is a GKM subgraph. In the first case

α(E,D) = α(A,B) = α(D,C), in the second either α(E,D) = α(B,C) = α(A,D) or

α(B,E) = α(C,D) = α(B,A), all of which contradict Property 2 of GKM graphs. Thus

there are no complete octaplex subgraphs.

We then consider the case where ABC, BCD, CDE, ABE, and ADE are all GKM

subgraphs. Suppose ACD is not a GKM subgraph. Then if {α(A,C), α(A,D)} do not

span the lattice the complete graph on A, B, C, and D must be a complete octaplex sub-

graph. We have just shown that this is impossible, so {α(A,C), α(A,D)} span. Then

since α(D,B) = α(C,B) mod α(C,D) and α(C,E) = α(D,E) mod α(C,D) we must

have α(A,C) = α(A,D) mod α(D,C), so α(C,D) = α(C,A) + α(A,D). Thus ACD, and

by symmetry ABD and ACE are GKM subgraphs. Thus every triangle containing vertex

A is a GKM subgraph, and thus a graph is simplicial.

Now consider the case where one outer triangle, say ABC, is not a GKM subgraph. Then

since α(A,B) = α(C,B) mod α(A,C), we see that the pair {α(B,A), α(B,C)} cannot span
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Z2. Thus one of ABCD, ABCE or ABCDE must be a GKM subgraph.

Suppose ABCD is a subgraph. Then we must have either α(B,A) = α(C,D) or α(B,C) =

α(A,D).

First suppose α(B,A) = α(C,D). Then, since {α(A,B), α(B,C)} cannot span the lattice,

{α(C,A), α(C,D)} must span. If {α(A,C), α(A,D)} span then since

det

[
α(A,D)

α(A,C)

]
= det

[
α(C,A)

α(C,D)

]
= det

[
α(D,C)

α(A,C)

]
= 1

we see that

det

[
α(A,D)− α(C,D)

α(A,C)

]
= 0

and thus α(A,D) = α(C,D) mod α(A,C).

But then α(A,D) = α(B,C). Thus we may reduce to the case where α(A,D) = α(B,C).

Then {α(A,C), α(A,D)} span the lattice. Since α(A,C) = α(D,B) mod α(A,D), we

see that {α(D,B), α(D,A)} must span the lattice. Since α(B,C) = α(A,D) we see that

{α(B,C), α(B,D)} span the lattice, and since α(B,C) = α(D,C) mod α(B,D) we see that

{α(D,B), α(D,C)} span the lattice.

Suppose that {α(B,A), α(B,D)} does not span the lattice. Then we have α(C,D) =

α(B,A) + nα(C,B) where n 6= 0 and thus

det

[
α(C,A)

α(C,D)

]
= det

[
α(C,A)

α(B,A) + nα(C,B)

]

= det

[
α(A,C)

α(A,B)

]
+ det

[
α(A,C)

nα(C,B)

]
= 1 + n,

so {α(C,A), α(C,D)} does not span the lattice. Then the quadrilaterals ABDE and ACDE

are GKM subgraphs. Both of these subgraphs contain {α(E,A), α(E,D)} so must lie

in the same sublattice. Thus there is a GKM subgraph with degree at least 3 whose

weights lie on this sublattice. But no such subgraph can exist, so {α(B,A), α(B,D)} and

{α(C,A), α(C,D)} must both span the lattice. Thus n = 0.

Then we have α(A,B) = α(D,C) and α(B,C) = α(A,D). Now since {α(A,B), α(A,C)}
and {α(B,A), α(B,D)} both span we see that α(A,C) = α(B,D) mod α(A,B), and thus
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α(C,A) = α(D,B) mod α(D,C). We also have

α(A,C) = α(D,B) mod α(A,D)

α(C,A) = α(B,D) mod α(B,C)

α(A,B) = α(C,B) mod α(A,C)

α(A,D) = α(C,D) mod α(A,C)

α(B,A) = α(D,A) mod α(B,D)

α(B,C) = α(D,C) mod α(B,D).

Thus the complete graph on A, B, C, and D must be a GKM subgraph, and since it is not

simplicial it must be a complete octaplex subgraph. But this is impossible. Thus ABCD,

and by symmetry ACDE cannot be GKM subgraphs.

Next suppose ABCDE is a GKM subgraph. Then {α(A,B), α(A,E)} do not span the

lattice and α(A,E) = α(B,C) mod α(A,B).

If ABE is a GKM subgraph then α(A,E) = α(B,E) mod α(A,B) so {α(B,A), α(B,E)}
span the same sublattice as {α(B,A), α(B,C)}. Then there is some subgraph containing

ABCDE all of whose weights lie in this sublattice. Since this subgraph must be regular it

can only be the complete graph, which is impossible. Similarly ADE, BCD, and CDE are

not simplicial subgraphs.

If ABDE is a GKM subgraph then α(A,E) = α(B,D) mod α(A,B). Thus the set

{α(B,A), α(B,D)} span the same sublattice as {α(B,A), α(B,C)}. Then there is some

regular subgraph containing ABCDE all of whose weights lie in this sublattice. Since the

only such graph is the complete graph, we see that ABDE cannot be a GKM subgraph. By

symmetry, ACDE, ABCD, and BCDE cannot be GKM subgraphs.

Since {α(A,C), α(A,B)} and {α(B,A), α(B,E)} both span the lattice we must have

α(A,C) = α(B,E) mod α(A,B). Since α(A,E) = α(B,C) mod α(A,B) we see that

α(A,D) = α(B,D) mod α(A,B). Thus if ACD is a GKM subgraph then we see that

α(A,C) = α(D,C) mod α(A,D), and thus α(A,B) = α(D,B) mod α(A,D). But then,

by Lemma 2, we see that ABD is a GKM subgraph. Similarly, ACE, BCE, and BDE are

GKM subgraphs.
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Now α(A,B) + α(B,C) = mα(A,C) and α(A,E) + α(E,D) = lα(A,D). But

α(A,C) = α(A,E) + α(E,C) = α(A,E) + α(E,B) + α(B,C)

= α(A,E) + α(E,D) + α(D,B) + α(B,C)

= α(A,E) + α(E,D) + α(D,A) + α(A,B) + α(B,C)

= (l − 1)α(A,D) +mα(A,B).

Thus (m− 1)α(A,C) = (l − 1)α(A,D) so m = l = 1, which contradicts the fact that ABC

and ADE are not GKM subgraphs.

Thus ACE is not a GKM subgraphs. In particular {α(A,E), α(A,C)} must span the

lattice.

Since {α(B,A), α(B,C)} and {α(A,B), α(A,E)} span the same sublattice we see that

α(A,E) = nα(A,B) +mα(B,C) for some n and m. But {α(A,E), α(A,C)} span Z2 so

1 = det

[
α(A,E)

α(A,C)

]
= det

[
nα(A,B) +mα(B,C)

α(A,C)

]

= n det

[
α(A,B)

α(A,C)

]
+m det

[
α(B,C)

α(A,C)

]
= −n+m

so α(A,E) = nα(A,B) + (1 + n)α(B,C). Also

det

[
α(A,E)

α(A,B)

]
= det

[
nα(A,B) + (1 + n)α(B,C)

α(A,B)

]
= (1 + n) det

[
α(B,C)

α(A,B)

]

so n = 0 and α(A,E) = α(B,C). But then by symmetry α(E,D) = α(A,B) and α(D,C) =

α(E,A) = α(C,B), which is impossible.

Thus ABC, and by symmetry any outer triangle, must be a simplicial subgraph, and the

whole graph must then be simplicial.

Thus every (4, 2) GKM subgraph is simplicial. 2

3.3 The Higher Dimensional Case

In this section we prove that for k > 1
2
n + 1

2
and k = n

2
the only possible GKM graphs

are simplicial, and for k = 1
2
n + 1

2
the only possible GKM graphs are simplicial graphs
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and complete octaplexes. Since these graphs determine the integral cohomology and Chern

classes, Theorem 1 follows.

Proposition 4 Every complete GKM graph with n + 1 vertices whose weights span (Rk)∗,

where k > 1
2
n+ 1

2
, is simplicial. Every complete GKM graph with n+1 vertices whose weights

span (Rk)∗ and where k = 1
2
n+ 1

2
is either simplicial or a complete octaplex graph.

Proof. We will prove the two statements separately. We first consider the case where

k > 1
2
n+ 1

2
.

We proceed by induction. The base case is k = 2. We proved that the (2, 2) graph has

to be simplicial in Example 1. Now suppose this statement is true for all (n, k) graphs with

k > 1
2
n+ 1

2
, and consider a (n+ 2, k + 1) graph.

We first assume that all but one vertex lies on a k-dimensional subspace V . Then lemma

4 shows that the graph must be simplicial.

Now suppose that no k-dimensional subspace has more than n+ 1 vertices. We can then

apply the induction hypothesis. Any subgraph lying on a k-dimensional subspace will be

complete with at most n+ 1 vertices and thus will be simplicial since n < 2k− 1. Any three

vertices must lie in some such subgraph and thus, with the edges connecting them, form a

GKM subgraph. Thus the total graph is simplicial.

The second case is where k = 1
2
n+ 1

2
. The base case is now (3, 2), which, by lemma 2, can

be either simplicial or a complete octaplex graph. We suppose by induction that the theorem

holds for
(
n, n

2
+ 1

2
, n+ 1

)
, and consider a

(
n+ 2, n

2
+ 3

2
, n+ 3

)
graph. If all but one vertex

lies on a k-dimensional subspace V then, by lemma 4, the graph is simplicial. Similarly, if

every k-dimensional subgraph is simplicial then the total graph must be simplicial.

This leaves us with the case where at least one k-dimensional GKM subgraph Γ is a

complete octaplex subgraph. Let E and F be the two vertices not in this subgraph, and let

ABCD be a four vertex complete octaplex subgraph of the k-dimensional complete octaplex

subgraph, where the vertices are labeled A, B, C, and D clockwise around the graph1. We

will say that an edge XY of ABCD is orthodox if the complete graph on X, Y , E, and F

is a complete octaplex graph. An edge that is not orthodox will be called heterodox. If an

edge XY is heterodox then the complete graph on X, Y , E, and F is simplicial.

If two adjacent edges are orthodox then their corresponding quadrilaterals must have three

vertices in common: E, F , and the vertex common to both edges. But their corresponding

1In this and the next proposition we will always label vertices in sequence.
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quadrilaterals must lie in different planes, so can only have one common edge, and thus only

two vertices in common. Thus we cannot have adjacent orthodox edges.

Suppose one of the exterior edges, say AB, is orthodox. Then AC is heterodox. The three

dimensional space containing ABCD and E and F can be split into two half-spaces by the

plane containing ABCD. Either E and F both lie in the same half-space, or they lie in

different half-spaces

Suppose E and F both in the same half-space. Then either α(A,B) = 2α(A,E)+α(E,B)

or α(A,B) = α(A,F ) + 2α(F,B). Without loss of generality we may assume the former.

Then

2α(A,E) + 2α(E,C) = 2α(A,C)

= α(A,B) + α(B,C) = α(A,B) + α(B,E) + α(E,C)

= α(A,E) + α(E,C).

Thus α(E,C) = 0, which is impossible.

Now suppose that E and F lie on opposite sides of ABCD. Then we have 2α(A,B) =

α(A,E) + α(E,B). We still have 2α(A,E) + α(E,C) = α(A,B) + α(B,E). But then

2α(A,E) + α(E,C) = α(A,B) + 2α(B,A) + α(A,E)

and thus α(A,C) = α(A,E) + α(E,C) = α(B,A) which contradicts Property 2 of Theorem

GKM graphs.

Thus only the interior edges can be orthodox. Suppose one interior edge is heterodox, say

AC. Then, since all the exterior vertices are heterodox, α(A,C) = α(A,E) + α(E,C) =

α(A,B) + α(B,E) + α(E,B) + α(B,C) = α(A,B) + α(B,C) = 2α(A,C), so α(A,C) = 0,

which is impossible.

Thus both interior edges must be orthodox. Thus the complete graph on A, B, C, D, E,

and F is a complete octaplex subgraph. Since the choice of ABCD was arbitrary we see

that the whole graph is a complete octaplex graph. 2

Proposition 5 Every complete GKM graph on 2k + 1 vertices in (Rk)∗ is simplicial.

Proof. The proof is by induction. Proposition 3 is the base case of the induction. We

assume the theorem is true for (2k, k), and consider a (2k + 2, k + 1) graph.

Let Γ be a k-dimensional subgraph. If this subgraph contains all but one vertex then

Lemma 4 shows that the graph is simplicial. If it contains all but two vertices then it is a
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(2k, k) graph, and thus simplicial by induction. If it contains all but three vertices, it is a

(2k − 1, k) graph, and thus may be simplicial or a complete octaplex graph by Proposition

4. If there are more vertices lying off of this subgraph, then by Proposition 4 it must be

simplicial.

Thus the total graph must be simplicial unless there is a k-dimensional complete octaplex

subgraph. There will then be three vertices outside this subgraph. The remainder of the

proof will consist of possible ways to configure these three points, and calculations showing

that these positions do not give us a GKM graph.

Let ABCD be a four vertex complete octaplex subgraph of the complete octaplex sub-

graph. Let E, F , and G be the three vertices which do not lie on the larger complete octaplex

subgraph. An edge XY of ABCD will be called orthodox if the complete graph on X, Y

and two of three vertices off the subgraph is a complete octaplex graph. An edge that is not

orthodox will be called heterodox.

Suppose we have a triangle of heterodox edges, say AB, BC, and AC. Then

α(A,C) = α(A,E) + α(E,C)

= α(A,B) + α(B,E) + α(E,B) + α(B,C)

= α(A,B) + α(B,C) = 2α(A,C)

which implies α(A,C) = 0. Since this is impossible, we see that there cannot be a triangle

of heterodox edges.

Suppose we have a triangle, say AB, BC, and AC, with one orthodox edge. Suppose AB is

the orthodox edge. Let E, and F be the other two vertices of the complete octaplex subgraph.

Then ABG, ACG, and BCG are simplicial triangles, and α(A,C) = α(A,G) + α(G,C) =

α(A,B) + α(B,C) = 2α(A,C), which is impossible. Similarly, if BC or AC is the orthodox

edge and E and F are the other vertices of the complete octaplex subgraph, then ABG,

ACG, and BCG are simplicial triangles and α(A,C) = 2α(A,C).

Thus each triangle must have at least two orthodox edges. We note that this implies we

cannot have adjacent heterodox edges.

Thus, if one of the interior edges of ABCD is heterodox, then all the exterior edges must

be orthodox. Suppose AB is an exterior edge of a complete octaplex graph who’s other

vertices are E and F . If CD is an edge of a complete octaplex graph containing G then C,

D, G and one of E or F must be on the the same plane. But since EF is parallel to AB,

and thus to CD, we see that C, D, E, F and G all lie on the same plane, so must be the
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vertices of simplicial (4, 2) graph. Thus CD must be an exterior edge of a complete octaplex

graph containing E and F . Then BCE and ADF must be parallel triangles, so cannot both

be coplanar with G, and thus one of BC or AD must be heterodox. Thus each of the four

exterior edges must be an interior edge of a complete octaplex subgraph containing two of

E, F , or G. Without loss of generality, we can suppose E is on one side of ABCD and F

and G are on the other. But then each of the four complete octaplex subgraphs must have

EF or EG as an interior edge. But then EF and EG can each intersect one edge of ABCD.

Thus only two exterior edges can be orthodox.

Suppose AB is heterodox. Then AD and BC are both orthodox.

Suppose AD is an exterior edge of a complete octaplex graph containing the vertices

E and F . Then, since EF is parallel to AD, it is also parallel to BC. As we saw in the

preceding paragraph, if BC is an edge of a complete octaplex graph containing G then B, C,

E, F , and G are coplanar and thus make a simplicial (4, 2) graph. Thus BCEF is the other

complete octaplex graph, and BC is an exterior edge. Then 2α(A,F ) = α(A,E)+α(E,F ) =

α(A,B)+α(B,E)+α(E,F ) = α(A,B)+2α(B,F ), and thus 2α(A,F )+2α(F,B) = α(A,B).

But 2α(A,F ) + 2α(F,B) = 2α(A,B) so α(A,B) = 2α(A,B) which is impossible.

Now suppose AD is the interior edge of a complete octaplex graph. Then by the previous

paragraph we see that BC must also be the interior edge of a complete octaplex graph.

These graphs must have a common vertex E. But then neither F nor G can lie on the

plane containing AEC, and thus AEC is simplicial. Thus α(A,C) = α(A,E) + α(E,C) =

α(A,B) +α(B,E) +α(E,C) = α(A,B) + 2α(B,C) = 2α(A,C) +α(B,C). Thus α(A,C) +

α(B,C) = 0, which contradicts Property 2 of Theorem GKM graphs, which says α(C,A)

and α(C,B) must be linearly independent.

Thus all configurations of orthodox and heterodox edges are impossible, so all k-dimensional

subgraphs of the total graph are simplicial, and thus the whole graph is simplicial. 2

3.4 Other Results

The GKM category consists of manifolds whose isotropy submanifolds of k − 1 dimensional

subgroups are discrete points or spheres. In the case of minimal GKM manifolds if we im-

pose certain conditions on the possible isotropy submanifolds of k−2 dimensional subgroups

then we can describe all possible cohomology rings and Chern classes. Imposing conditions

on isotropy submanifolds of k − 2 dimensional subgroups is tantamount to imposing con-

ditions on two-dimensional subgraphs. Theorem 2 follows immediately from the following
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proposition.

Proposition 6 If every two dimensional subgraph of a complete GKM graph is simplicial

or a complete octaplex graph, then the graph is simplicial or a complete octaplex graph.

Proof. The case where every two dimensional subgraph is simplicial is trivial.

We now consider the case where at least one two dimensional subgraph is a complete octa-

plex. There are two possible triangular subgraphs in this case. One possibility is simplicial

triangular subgraphs. The other is a subgraph ABC where α(A,B) + α(B,C) = 2α(A,C).

If the subgraph is simplicial then we say that all three edges are short. In the other case we

say that AB and BC are short and AC is long. We first want to show that an edge that is

long on one triangle cannot be short on another. We can then partition the graph into short

and long edges.

Suppose some edge is long for one complete octaplex subgraph but short for another.

We then have two subgraphs ABC and ACD where α(A,B) + α(B,C) = 2α(A,C) and

α(A,C) +α(C,D) = 2α(A,D). We note that complete subgraph on A, B, C, and D cannot

lie in a plane. The triangle ABD can be simplicial or have weights satisfying one of the

following three equations: α(A,B) + α(B,D) = 2α(A,D), α(A,B) + 2α(B,D) = α(A,D),

2α(A,B) + α(B,D) = α(A,D). Similarly, there are four possibilities for the triangle BCD.

Thus there are sixteen possible configurations to check.

We will not write out the calculations for all sixteen configurations. We will give two

examples; the other fourteen cases will all be similar to one of these.

First suppose ABD and BCD are both simplicial. Then

α(A,D) = α(A,B) + α(B,D) = α(A,B) + α(B,C) + α(C,D)

= 2α(A,C) + α(C,D) = α(A,C) + 2α(A,D)

and thus 0 = α(A,C) + α(A,D), which contradicts Property 2 of Theorem GKM graphs,

since α(A,C) and α(A,D) are linearly independent.

Next suppose that α(A,B) + α(B,D) = 2α(A,D) and α(B,C) + α(C,D) = 2α(B,D).

Then

4α(A,D) = 2α(A,B) + 2α(B,D) = 2α(A,B) + α(B,C) + α(C,D)

= α(A,B) + 2α(A,C) + α(C,D) = α(A,B) + α(A,C) + 2α(A,D)

39



and thus 2α(A,D) = α(A,B) + α(A,C) so α(B,D) = α(A,C). But since AC and BD are

parallel, A, B, C, and D must lie on a plane, which is impossible.

Now suppose that one edge is long for a complete octaplex subgraph but is also part of a

simplicial subgraph. We then have two subgraphs ABC andACD where α(A,B)+α(B,C) =

2α(A,C) and α(A,C) + α(C,D) = α(A,D). Once again the complete subgraph on A, B,

C, and D cannot lie on a plane. Once again there are sixteen possibilities for the subgraphs

ABD and BCD. If α(A,D) + α(D,B) = 2α(A,B) or α(B,D) + α(D,C) = 2α(B,C) then

we can reduce to the case where one edge can be both long and short in complete octaplex

subgraphs.. If ABD and BCD are both simplicial then 2α(A,C) = α(A,B) + α(B,C) =

α(A,D)+α(D,C) = α(A,C). If ABD is simplicial and α(B,C)+α(C,D) = 2α(B,D) then

2α(B,D) = 2α(B,A) + 2α(A,D) so

α(B,C) + α(C,D) = 2α(B,A) + 2α(A,D)

α(C,D) + 2α(D,A) = α(C,B) + 2α(B,A)

α(C,A) + α(D,A) = 2α(C,A) + α(B,A)

α(D,A) = α(C,A) + α(B,A)

α(D,B) = α(C,A)

and thus A, B, C, and D lie on a plane. Both of these are impossible. Most of the remaining

cases can be eliminated by similar calculations.

The only case that remains is that of α(A,B) + α(B,D) = 2α(A,D) and α(C,B) +

α(B,D) = 2α(C,D). Each of ABC, ABD and BCD must be part of complete octa-

plex subgraphs, the fourth vertices of which will be denoted E, F , G respectively. Since

α(E,A)+α(A,B) = 2α(E,B) and α(B,A)+α(A,F ) = 2α(B,F ) we see that if BEF is not

a simplicial subgraph then one of BE or BF would be both long and short in complete octa-

plex subgraphs. Thus BEF is simplicial. Since α(E,A) + α(A,F ) = 2α(E,B) + α(B,A) +

α(A,B) + 2α(B,F ) = 2α(E,B) + 2α(B,F ) = 2α(E,F ), we see that AEF is not simplicial.

Thus there is a vertex H such that the complete graph on A, E, F , and H is a complete

octaplex subgraph parallel to the complete graph on B, C, D, G. Similarly, there will be

complete octaplex subgraphs parallel to the complete graphs on A, B, D, F and A, B, C,

E. Thus we have a parallelepiped whose faces are complete octaplex subgraphs.

Consider the complete graph on A, B, C, and G. We know already that α(A,B) +

α(B,C) = 2α(A,C) and α(B,C) + α(C,G) = 2α(B,G). If α(A,G) + α(G,C) = 2α(A,C)

then ACG is part of a complete octaplex subgraph. Call the fourth vertex J . Then α(J,A) =

40



α(C,G) = α(A,F ), which contradicts Property 2 of Theorem GKM graphs. If α(A,G) +

2α(G,C) = α(A,C) or 2α(A,G) + α(G,C) = α(A,C) then AC is both long and short in

a complete octaplex subgraph. Thus ACG must be simplicial. Similarly, ABG must be

simplicial. But then

2α(A,C) = 2α(A,G) + 2α(G,C) = 2α(A,B) + 2α(B,G) + 2α(G,C)

= 2α(A,B) + α(B,C) + α(G,C) = α(A,B) + 2α(A,C) + α(G,C)

so α(A,B) = α(C,G) and A, B, C, and G lie on a plane, which is impossible.

Thus we have a well-defined partition between long and short edges on the complete graph.

This also shows that no two long edges can be adjacent.

We next need to show that every subgraph with four vertices, four short edges and two

long edges is a complete octaplex subgraph. Suppose not. Consider the complete graph on

A, B, C, and D where AB, BC, CD, and AD are short and AC and BD are long. Then

ABC must be part of a complete octaplex subgraph so there is long edge adjacent to B.

But since long edges cannot be adjacent this has to be BD. Thus the complete graph on A,

B, C, and D is a complete octaplex subgraph.

It remains to show that every subgraph with four vertices, five long edges, and one short

edge is part of a complete octaplex graph with 6 vertices. Suppose A, B, C, and D are the

vertices and AD is the long edge. Then there are vertices E and F such that the complete

graphs on A, B, D, E and A, C, D, F are complete octaplex subgraphs. But then the

complete graph on B, C, E, and F has four short and two long edges (BE and CF ) so is

also a complete octaplex subgraph, and thus the complete graph on A, B, C, D, E, and F

is a complete octaplex subgraph.

Now suppose we have a complete graph all of whose two dimensional subgraphs are simpli-

cial or complete octaplex subgraphs, and at least one two dimensional subgraph is a complete

octaplex. Let A be a vertex off of the subgraph. Any two-dimensional subspace containing

this vertex and a long edge BC must contain a forth vertex, and the complete graph on these

four vertices must be a complete octaplex. From this we see that the whole graph must be

a complete octaplex graph. 2

Another case we can classify completely is highly symmetric GKM graphs. We define a

highly symmetric GKM graph to be a complete GKM graph whose vertices are the vertices

of a lattice regular polytope in (Rk)∗. Using the classification of lattice regular polytopes we

can completely classify highly symmetric GKM graphs. Theorem 3 follows.
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Figure 3.3: The two possible non-simplicial highly symmetric GKM graphs with six fixed
points.
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Proposition 7 There are two families of highly symmetric GKM graphs and one exceptional

highly symmetric GKM graph. The two families are the simplicial graphs and the complete

octaplex graphs. The exceptional graph is the GKM graph corresponding to G2/P .

Proof. Lattice regular polytopes are completely classified in [K06] and [MR09].

In dimension three and dimension five and higher, the only lattice regular polytopes are

simplicies, hypercubes, and octaplexes. In dimension four, the lattice regular polytopes are

simplicies, hypercubes, octaplex, and 24-cells. (The last is a lattice regular four-dimensional

polytope with no corresponding regular polytope in any other dimension, see [C69].) Each

two dimensional subgraph must have at most four vertices. Thus by Proposition 2 all the

two dimensional subgraphs are simplicial or complete octaplexes so by Proposition 6 the

total graphs must be simplicial or complete octaplexes.

This leaves us with the case of dimension two. By [K06] and [MR09] there are, up to scale

and SL(2,Z) transformation, six lattice regular polygons: two lattice regular triangles, two

lattice regular quadrilaterals, and two regular hexagons.

The triangles must be simplicial and the quadrilaterals must simplicial or complete octa-

plexes since these are the only complete GKM graphs with at most four vertices.

Up to scale and SL(2,Z) transformation there are two lattice regular hexagons. The first

has vertices A = (0,−1), B = (1,−1), C = (1, 0), D = (0, 1), E = (−1, 1), and F = (−1, 0).

We know that α(A,B) = (n, 0) for some positive integer n, α(A,C) = (m,m) for some

positive integer m, and α(A,D) = (0, r) for some positive integer r.

If n and m are not both 1 then

det

[
α(A,B)

α(A,C)

]
= det

[
n 0

m m

]
= nm 6= 1.

Thus there must be some GKM subgraph containing α(A,B) and α(A,C). This subgraph

has at most five vertices so by Propositions 2 and 3 must be simplicial or a complete octaplex.

But the edge parallel to AB and adjacent to BCand the edge parallel to BC and adjacent

to AB are not adjacent to a common vertex so this subgraph must be simplicial. Thus

α(B,A) + α(A,C) = α(B,C). But α(B,A) + α(A,C) = (m − n,m) and α(B,C) = (0, l)

for some l > 0. Thus l = m and l = n. A similar argument shows that α(E,D) = (n, 0),

α(F,E) = (0, n), α(D,C) = α(F,A) = (n,−n), α(F,D) = (n, n), α(E,C) = α(F,B) =

(2n,−n) and α(E,A) = α(D,B) = (n,−2n).

Since α(A,D) = α(C,F ) mod α(A,C) we see that α(C,F ) = (−r, 0) and n divides r

(similarly α(B,E) = (−r, r).) Thus we must have n = 1 in order to have the weights at each

43



vertex span the lattice. If α(A,B) = α(D,B) mod α(A,D) then (0, 2) = 0 mod (0, r) and

if α(A,B) = α(D,C) mod α(A,D) then (0, 1) = 0 mod α(0, r). Thus r = 1 or r = 2. If

r = 1 the graph is a complete octaplex; if r = 2 the graph is simplicial.

The second lattice regular hexagon has, up to scale and SL(2,Z) transformation, vertices

at U = (−1,−2), V = (−2,−1), W = (−1, 1), X = (1, 2), Y = (2, 1), and Z = (1,−1).

We know that α(U, V ) = (−n, n), α(U,W ) = (0,m), and α(U,X) = (r, 2r) for some

positive integers n m and r.

If n and m are not both 1 then

det

[
α(U,W )

α(U, V )

]
= det

[
0 m

−n n

]
= nm 6= 1.

Thus there must be some GKM subgraph containing α(U, V ) and α(U,W ). This subgraph

has at most five vertices so by Propositions 2 and 3 must be simplicial or a complete octaplex.

But the edge parallel to UV adjacent to VW and the edge parallel to VW and adjacent

to UV are not adjacent to a common vertex so this subgraph must be simplicial. Thus

α(V, U) + α(U,W ) = α(V,W ). But α(V, U) + α(U,W ) = (n,m − n) and α(V,W ) = (l, 2l)

for some l > 0. Thus l = n and m = 3n. A similar argument shows that α(X, Y ) = (n,−n),

α(Z, Y ) = (n, 2n), α(U,Z) = α(W,X) = (2n, n), α(Z,X) = (0, 3n), α(U,Z) = α(W,Y ) =

(3n, 0), and α(V,X) = α(U, Y ) = (3n, 3n).

Since α(U,X) = α(W,Z) mod α(U,W ) we see that α(W,Z) = (r,−r) (and similarly

α(V, Y ) = (2r, r)) and 3n divides 3r. Thus n divides r, so α(U,X) lies in the proper

sublattice spanned by α(U, V ), α(U,W ), α(U, Y ), α(U,Z). Thus the weights at U do not

span the lattice, so this is not a GKM graph.

Thus m = n = 1, and by symmetry α(X, Y ) = (1,−1), α(Z, Y ) = (1, 2), α(U,Z) =

α(W,X) = (2, 1), α(Z,X) = (0, 1), α(U,Z) = α(W,Y ) = (1, 0), and α(V,X) = α(U, Y ) =

(1, 1). The same argument as above shows us that α(U,X) = (r, 2r) and α(V, Y ) = (2r, r).

Then since α(U,W ) 6= α(X,W ) mod α(U,X) (since (2, 2) 6= 0 mod (r, 2r)) we see that

α(U,W ) = α(X, V ) mod α(U,X). But then (1, 2) = 0 mod (r, 2r) so r = 1. This is the

GKM graph of G2/P . 2

Corollary 1 The only minimal GKM graphs of coadjoint orbits of Lie groups are the sim-

plicial graphs, the complete octaplex graphs, and the GKM graph corresponding to G2/P .

Proof. The GKM graphs of coadjoint orbits are lattice regular. 2
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3.5 Beyond Petrie

We can also say something about the case where χ = n+ 2.

If we start with a complete octaplex graph and remove the interior edges then we get an

incomplete octaplex graph. These graph are the GKM graphs of oriented Grassmannians of

even dimensional space. Our last proposition shows that these when k = n+2
2

and χ = n+ 2

these are the only possible GKM graphs. Theorem 4 follows.

Proposition 8 Every degree n GKM graph with n+ 2 (n ≥ 4) vertices whose weights span

Rn+2
2 is a G+(2, n+ 2) graph.

Proof. Consider a (4, 3, 6) graph. This must have a two-dimensional subgraph. Since the

graph is not simplicial, there must be at least one such subgraph that is not simplicial. Thus

it must have at least four vertices, and must contain at least two non-adjacent vertices.

If the subgraph contained five vertices, then the the sixth vertex would be adjacent to four

of the five vertices. Let A be the vertex off the subgraph and B the vertex on the subgraph

not adjacent to A. Then B is adjacent to all four other vertices on the subgraph, while any

other vertex of the subgraph is adjacent to only three. Thus the subgraph is not regular, so

the subgraph cannot have five vertices.

Thus the subgraph must contain four vertices, each with two adjacent edges, so must be

the graph of a Hirzebruch surface. We can label the vertices of the graph A, B, C, D,

with A, D, and B, C the nonadjacent pairs, such that α(A,B) = α(C,D) and α(B,D) =

nα(A,B) +α(A,C) for some n ≥ 0. If E is one of the vertices off the subspace, then each of

A, B, C, and D must be adjacent to E. Thus E must be a vertex of a simplicial subgraph

with each of the adjacent pairs on the subgraph. Thus

α(B,D) = α(B,E) + α(E,D) = α(B,A) + α(A,E) + α(E,D)

= α(B,A) + α(A,E) + α(E,C) + α(C,D)

= α(B,A) + α(A,C) + α(C,D) = α(A,C)

since α(B,A) = α(D,C). Since there is no edge connecting A and D we see that the

subgraph containing A, D, and E must contain a fourth vertex F , and that F must also

be the fourth vertex of the subgraph containing B, C, and E. By the same argument as

above AEDF and BECF must each have two pairs of parallel weights. Thus the graph is

an incomplete octaplex.
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Since α(E,A) + α(A,F ) = α(E,B) + α(B,F ) and α(A,F ) = α(E,D) and α(B,F ) =

α(E,C) we see that α(E,A) +α(E,D)−α(E,B) = α(E,C). Thus, in order to have all four

weights at the vertex E span the lattice, we must have that {α(E,A), α(E,B), α(E,D)} span

the lattice. Thus we may take α(E,A) = (1, 0, 0), α(E,B) = (0, 1, 0), α(E,D) = (0, 0, 1),

and thus α(E,C) = (1,−1, 1).

This graph cannot be the projection of a (4, 4, 6) GKM graph. Suppose there were such

a graph. Then it would have to have a three-dimensional subgraph with fewer vertices. But

this would have to be a (3, 3, 4) GKM graph, and thus simplicial. Since every set of four

vertices would have to lie in a three-dimensional subgraph, we see that the whole graph

must be simplicial. But this is impossible since the graph is not complete. Thus there are

no (4, 4, 6) GKM graphs.

The statement we will now induct on is that the only (n, n+2
2
, n + 2) GKM graph is the

G+(2, n+ 2) graph and there are no (n, k, n+ 2) GKM graphs with k > n+2
2

.

Suppose we have a
(
n, n+2

2
, n+ 2

)
graph with n > 4. There must be a n

2
-dimensional

subgraph that is not minimal, and thus has two vertices which are not adjacent. Both of

these vertices must be adjacent to all the other vertices of the subgraph, so each vertex

of the subgraph must be adjacent all but one other vertex. Thus we must have an even

number of vertices. If there are two vertices not lying on the subgraph then the subgraph

is a (n − 2, n
2
, n) graph. By induction it must be a G+(2, 2n − 4) subgraph. If there are 2l

vertices not lying on the subgraph (l > 1) then the subgraph is a (n−2l, n
2
, n−2l+2) graph,

which by induction cannot exist. Thus there must be 2 vertices lying off the subgraph and

the subgraph is an incomplete octaplex graph.

Let A and B be the two vertices lying off of the subgraph, and let C and D be two

nonadjacent vertices on the subgraph. Then A, C, and D must be vertices of some two-

dimensional subgraph, and, since C and D are not adjacent, this subgraph must contain at

least one other vertex, which can only be B. Thus A and B must lie on opposite sides of

the subgraph. Then each vertex on the subgraph must be adjacent to both A and B, and

if E, and F are two adjacent vertices on the subgraph, then AEF , and BEF are triangular

subgraphs, so α(E,A) +α(A,F ) = α(E,F ). Thus the whole graph is a incomplete octaplex

graph.

If there were a (n, k, n+ 2) graph with k > n+2
2

, then this would have a k− 1 dimensional

subgraph. This subgraph would have to be a (n−2l, k−1, n−2l+2) graph for some positive

l, which is impossible by induction since k − 1 > n
2
> n−2l

2
. Thus there are no (n, k, n + 2)

GKM graphs with k > n+2
2

. 2
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CHAPTER 4

CLASSIFICATION OF COMPLEXITY 1 GKM
MANIFOLDS AND GRAPHS.

We say that a GKM manifold is minimal if it has the smallest possible number of fixed

points (one more than half the dimension of the manifold.) The corresponding GKM graphs

are complete graphs. When the torus action is sufficiently large we can determine all the

possible sets of isotropy weights of minimal GKM manifolds. It is natural to try to answer

the same question for GKM manifolds with more fixed points. In this paper we look at

six dimensional GKM manifolds with six fixed points (five fixed points is impossible) acted

upon by a two-dimensional torus. Theorem 5 follows immediately from Propositions 9, 10,

11, and 12 the construction of the manifolds in section 4.2 and the cohomology computations

in section 4.3.

4.1 Classification of Graphs

In this section we completely classify all possible three valent GKM graphs with six vertices

and weights spanning Z2. These are the (3, 2, 6) GKM graphs.

Proposition 9 All of the (3, 2, 6) graphs with three exterior vertices are the GKM graphs of

P(O(n) ⊕ C) → CP2 acted upon by two-dimensional subtorus of T3 acting by the standard

Hamiltonian action.

Proof. Any graph with three exterior vertices must have all three exterior vertices adjacent.

Then, since the graph is 3-valent, each vertex must be adjacent to one interior vertex. If any

interior vertex is adjacent to two exterior vertices then there must be an interior vertex not

adjacent to any exterior vertex. But then we would have a vertex with three adjacent edges

but only two adjacent vertices. Similarly, if one interior vertex were adjacent to all three

exterior vertices, then the other two interior vertices could only be adjacent to each other.

Thus each interior vertex must be adjacent to one exterior vertices, and then all the interior

vertices must be adjacent to each other.
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We label the exterior vertices A, B, and C and we label the interior vertices D, E, F so

that A and D, B and E, and C and F are adjacent. Since B and E lie in one half-plane

bordered by the line containing A and D and the convex hull of the weights at D must be

R2 we see that C and F lie in the other half-plane. Thus α(A,B) = α(D,E) mod α(A,D).

Similarly α(B,A) = α(E,D) mod α(B,E). Since α(A,D) cannot equal α(B,E) (otherwise

C could not be adjacent to both A and B) we see that α(A,B) = α(D,E). By the same

reasoning α(A,C) = α(D,F ) and α(B,C) = α(E,F ).

Since A and B lie in one half plane bordered by the line containing D and E, we see that,

since the convex hull of the weights at both D and E must be R2, C and F lie in the other.

Thus α(D,F ) = α(E,F ) mod α(D,E). Similarly, α(D,E) = α(F,E) mod α(D,F ) Thus

α(D,E) + α(E,F ) = α(D,F ) so DEF is a GKM subgraph. Then ABC is also a GKM

subgraph.

Since α(A,D) = α(B,E) mod α(A,B) and α(D,A) = α(E,B) mod α(D,E) we see that

ABED is the GKM graph of a Hirzebruch surface. Thus α(B,E) = α(A,D) + nα(A,B)

for some n ∈ Z. Similarly ACFD and BCFE are Hirzebruch surfaces. Thus α(C,F ) =

α(A,D) + mα(A,C) for some m. But since α(B,E) = α(C,F ) mod α(B,C) we see that

nα(B,A) = mα(C,A) mod α(B,C), and thus n = m. Thus ABED, ACFD, and by

symmetry BCFE, are all copies of the GKM graph of the nth Hirzebruch surface.

The graph is then a projection of the graph of P(O(n) ⊕ C) → CP2 acted upon by the

Hamiltonian T3 action. This graph has vertices A′, B′, C ′, D′, E ′, F ′ with α(A′, B′) =

α(D′, E ′) = (1, 0, 0), α(A′, C ′) = α(D′, F ′) = (0, 1, 0), α(B′, C ′) = α(E ′, F ′) = (−1, 1, 0),

α(A′, D′) = (0, 0, 1), α(B′, E ′) = (−n, 0, 1), α(C ′, F ′) = (0,−n, 1). The projection takes

α(A′, B′)→ α(A,B), α(A′, C ′)→ α(A,C), etc.

Thus every graph with three exterior edges is the GKM graph of P(O(n)⊕C) for some n

acted upon by a two dimensional subtorus of T3 acting by the standard Hamiltonian action.

2

Proposition 10 There are two classes of (3, 2, 6) GKM graphs with four exterior vertices.

The first class is GKM graphs of P(O(n)⊕O(m)⊕C)→ CP1 acted upon by a two-dimensional

subtorus of T3 acting by the standard Hamiltonian action. The second class is the twisted

GKM graphs.

Proof. Any graph with four exterior vertices must have two interior vertices. Each of the

four exterior vertices must be adjacent to at least two other exterior vertices, and each of

the interior vertices must be adjacent to at least two exterior vertices. If an interior vertex
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were adjacent to three exterior vertices then the other interior vertex could only be adjacent

to one exterior vertex. Thus the interior vertices are adjacent to each other each interior

vertex is adjacent to two of the exterior vertices.

Label the exterior vertices A, B, C, and D so that AB, AC, BD, and CD are the exterior

edges. Label the interior vertices E and F . Now E and F are either both adjacent to

exterior vertices that are adjacent to each other or E and F are both adjacent to exterior

vertices that are not adjacent to each other. Since the convex hull of the weights of the edges

adjacent to E and the convex hull of the weights of the edges adjacent to F must span R2

we see that we cannot have two pairs of edges intersect. We may suppose that C and D are

positioned so that EC and FD do not intersect. Then α(C,D) = α(E,F ) mod α(C,E) and

α(D,C) = α(F,E) mod α(D,F ). Thus either α(C,D) = α(E,F ) or α(C,E) and α(D,F )

are parallel. But since α(E,C) = α(F,D) mod α(E,F ) we see that if α(C,E) and α(D,F )

are parallel, then they must be equal. Thus α(C,E) = α(D,F ) mod α(C,D) and CDEF

is GKM subgraph.

If the other two edges adjacent to E and F do not intersect then A is a adjacent to E and

B is adjacent to F . We also see that ABFE must be a GKM subgraph for the same reason

that CDEF is a GKM subgraph. If the other two edges adjacent to E and F do intersect

then A is adjacent to F and B is adjacent to E.

Case I

Suppose A is adjacent to E and B is adjacent to F . Then ABFE and CDFE are both

GKM subgraphs. Then consider the half planes whose borders contain the vertices A and

E. By Property 5 of GKM graphs, one of these half-planes contains the vertex C, and the

other contains the vertices B and F . Thus α(A,C) = α(E,C) mod α(A,E). Similarly,

α(C,A) = α(E,A) mod α(C,E). Thus ACE is a GKM subgraph. By the same reasoning,

so is BDF . If α(A,C) = α(B,D) then α(A,E) 6= α(B,F ), and thus α(E,C) 6= α(F,D),

and if either α(A,E) = α(B,F ) or α(E,C) = α(F,D) then α(A,C) 6= α(B,D). Since

α(A,B) = α(C,D) mod α(A,C) and α(B,A) = α(D,C) mod α(B,D) we see that either

α(A,C) and α(B,D) are parallel or α(A,B) = α(C,D). But since α(A,B) = α(E,F )

mod α(A,E) and α(B,A) = α(F,E) mod α(B,F ), and α(C,D) = α(E,F ) mod α(C,E)

and α(D,C) = α(F,E) mod α(D,F ), and at most one pair of α(A,C) and α(B,D), α(A,E)

and α(B,F ), and α(C,E) and α(D,F ) can be parallel we must have α(A,B) = α(C,D) =

α(E,F ).
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NowABFE and CDEF must be the GKM graphs of Hirzebruch surfaces. Since α(A,B) =

α(C,D) and α(A,C) = α(B,D) mod α(A,B) we see that ABDC is also a GKM graph of

a Hirzebruch surface. If α(B,F ) = α(A,E) + nα(A,B) and α(B,D) = α(A,C) +mα(A,B)

then α(D,F ) = α(C,E) + (n−m)α(E,F ).

Thus we see that the GKM graph is the projection of a GKM graph for P(O(n)⊕O(m)⊕
C) → CP1 acted upon by the standard Hamiltonian T3 action. In particular, it is the

projection of the the graph with vertices A′ ,B′, C ′, D′, E ′, and F ′ and weights α(A′, B′) =

α(C ′, D′) = α(E ′, F ′) = (0, 0, 1), α(A′, C ′) = (1, 0, 0), α(A′, E ′) = (0, 1, 0), α(C ′, E ′) =

(−1, 1, 0), α(B′, D′) = (1, 0,m), α(B′, F ′) = (0, 1, n) and α(D′, F ′) = (−1, 1, n−m).

Case II

Now suppose A is adjacent to F and B is adjacent to E.

If CDFE is not a GKM subgraph then by property 6 of GKM graphs {α(C,D), α(C,E)}
must span the lattice, as must the three pairs {α(D,C), α(D.F )}, {α(E,C), α(E,F )}, and

{α(F,D), α(F,E)}. But then

α(C,E) = α(D,F ) mod α(C,D)

α(C,D) = α(E,F ) mod α(C,E)

α(D,C) = α(F,E) mod α(D,F )

and

α(E,C) = α(F,D) mod α(E,F )

and thus CDFE is a GKM subgraph. If α(C,E) = α(D,F ) then, since the weights of the

edges adjacent to E and F must both span R2 we see that AF and BE cannot intersect.

Thus α(C,D) = α(E,F ).

Since A, C, and F cannot be part of a GKM subgraph by property 6 {α(A,C), α(A,F )}
must span the lattice. Thus we can make an SL(2,Z) transformation of all the weights so

that α(A,C) = (1, 0) and α(A,F ) = (0, 1). Then since α(A,C) = α(F,E) mod α(A,F ) we

see that α(F,E) = α(D,C) = (1,−x) for some x > 0.

If ABEC is not a GKM subgraph then {α(C,A), α(C,E)} must span the lattice so

α(C,E) = (−y, 1) for some y > 0. Also {α(E,B), α(E,C)} must span the lattice, as must

{α(B,A), α(B,E)}. If {α(A,C), α(A,B)} spanned the lattice then ABEC would be a GKM
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subgraph, so {α(A,C), α(A,B)} cannot span. By property 6, we see that {α(E,B), α(E,F )}
must span. Then if α(B,E) = (s, t) (s > 0) we have

det

[
α(E,F )

α(E,B)

]
= det

[
−1 x

−s −t

]
= t+ xs = 1

so α(B,E) = (s, 1− xs)and

det

[
α(E,B)

α(E,C)

]
= det

[
−s sx− 1

y −1

]
= s+ y − sxy = 1

so x = s+y−1
sy

. But the only way x can be an integer is if one of s or y is 1, and then

x = 1. If y = 1 then α(E,C) = −α(E,F ) which contradicts Property 2. Thus s = 1 so

α(B,E) = (1, 0). But then {α(A,C), α(A,B)} span because

det

[
α(A,C)

α(A,B)

]
= det

[
α(B,A)

α(B,E)

]
= 1

since α(A,C) = α(B,E). Thus ABEC is a GKM subgraph, and by symmetry so is ABDF .

At least one of α(C,E) or α(F,D) cannot be equal to α(A,B). Thus at least one pair of

α(A,C) and α(B,E) or α(A,F ) and α(B,D) must be equal. Without loss of generality we

may assume α(B,E) = α(A,C) = (1, 0). But then since B, E, and F cannot be part of a

GKM subgraph, α(E,F ) and α(E,B) must span the lattice. Thus α(E,F ) = (−1, 1), and

thus α(C,D=(−1, 1).

Since ABDF is a GKM subgraph we have α(B,E) = α(D,C) mod α(B,D) so (0, 1) = 0

mod α(B,D). Thus α(B,D) = (0, 1).

Finally, we can take α(A,B) = (−a, b), α(C,E) = (a − c, b) and α(D,F ) = α(a, b − c).
This is a twisted GKM graph. 2

Proposition 11 There are two classes of (3, 2, 6) GKM graphs with five exterior vertices.

The first class is GKM graphs of P(O(n) ⊕ C) → CP1 acted upon by a two-dimensional

subtorus of T3 acting by the standard Hamiltonian action. The second class is GKM graphs

of P(O(n) ⊕ O(m) ⊕ C) → CP2 acted upon by a two-dimensional subtorus of T3 acting by

the standard Hamiltonian action.

Proof. If there are five exterior vertices then there must be one interior vertex, and it must

be adjacent to three of the exterior vertices. Label the exterior vertices A, B, C, D, and
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E so that AB, BC, CD, DE, and EA are the exterior edges. Label the interior vertex F .

Without loss of generality we may suppose that F is adjacent to A, C, and E, and that B

and D are adjacent.

Consider the half-planes bordered by the line containing E and F . One of these half-planes

must contain A and, since the convex hull of the weights at F must be R2, the other half-plane

must contain C. Thus α(E,A) = α(F,A) mod α(E,F ), and similarly α(A,E) = α(F,E)

mod α(A,F ). Thus AEF must be a GKM subgraph.

One of the half-planes bordered by the line containing B and D must contain the vertex

C and the other half-plane must contain the vertices A and E.. Thus α(B,C) = α(D,C)

mod α(B,D).

Suppose BCD is not a GKM subgraph. Then by property 6, we see that the pairs

{α(B,C), α(B,D)} and {α(D,B), α(D,C)} must both span the lattice. We can then take

an SL(2,Z) transformation to get α(B,C) = (1, 1) and α(B,D) = (0, 1). Then α(D,C) =

(1,−x) for some positive integer x > 1. Now α(F,C) = (a, b) for some integers a > 0

and b. Since BCD is not a GKM subgraph we see that α(B,D) = α(C,F ) mod α(B,C) so

α(F,C) = (b+1, b). But α(C,F ) = α(D,B) mod α(C,D) so (b+1, b−1) = 0 mod (1,−x).

Then x = 1−b
b+1

so b = 0 and x = 1 (if b = 1 and x = 0 then BCD is a GKM subgraph.) Thus

α(F,C) = (1, 0) and α(D,C) = (1,−1).

If ABCF were a GKM subgraph then we would have α(B,A) = α(C,F ) mod α(B,C)

and thus α(B,D) = α(C,D) mod α(B,C). Thus ABCF cannot be a subgraph, so by

property 6 we see that {α(F,A), α(F,C)} must span the lattice. Thus α(A,F ) = (c, 1)

for some integer c. But then α(A,F ) = α(B,C) mod α(A,B) or α(A,F ) = α(B,D)

mod α(A,B). In either case α(A,B) = (r, 0) for some r. But since {α(A,B), α(A,F )} must

also span the lattice (since ABCF is not a GKM subgraph) we see that α(A,B) = (1, 0).

But then ABCF is a GKM subgraph.

Thus BCD must be a GKM subgraph.

Suppose AEF and BCD have the same weights (i.e α(A,E) = α(B,D), α(A,F ) =

α(B,C), and α(E,F ) = α(D,C).) Then we have α(A,F ) = α(B,C) mod α(A,B) and

α(F,A) = α(C,B) mod α(C,F ), α(A,B) = α(F,C) mod α(A,F ), and α(B,A) = α(C,F )

mod α(B,C). Thus ABCF is a GKM subgraph. Similarly, ABDE and CDEF are also

GKM subgraphs. Thus we see that α(F,C) = α(A,B) + nα(A,F ), α(E,D) = α(A,B) +

mα(A,E), and α(F,C) = α(E,D) + kα(E,F ). for some n, m, and k. But α(F,C) −
α(E,D) = nα(A,F ) − mα(A,E) = kα(E,F ) so k = m = n. Thus ABCF , ABDE, and

CDEF are all copies of the GKM graph of the nth Hirzebruch surface.
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The graph is then a projection of the graph of P(O(n)⊕C)→ CP2 with the standard T3

action. This graph has vertices A′, B′, C ′, D′, E ′, F ′ with α(A′, F ′) = α(B′, C ′) = (1, 0, 0),

α(A′, E ′) = α(B′, D′) = (0, 1, 0), α(F ′, E ′) = α(C ′, D′) = (−1, 1, 0), α(A′, B′) = (0, 0, 1),

α(F ′, C ′) = (−n, 0, 1), α(E ′, D′) = (0,−n, 1). The projection takes α(A′, F ′) → α(A,F ),

α(A′, E ′)→ α(A,E), etc.

Now suppose AEF and BCD do not have the same weights. Then since α(A,B) = α(F,C)

mod α(A,F ) and α(B,A) = α(C,F ) mod α(B,C), α(A,B) = α(E,D) mod α(A,E) and

α(B,A) = α(D,E) mod α(B,D), and α(F,C) = α(E,D) mod α(E,F ) and α(C,F ) =

α(D,E) mod α(C,D), and at most one pair of α(A,F ) and α(B,C), α(A,E) and α(B,D),

and α(E,F ) and α(D,C) can be equal, we see that α(A,B) = α(F,C) = α(E,D).

Then since α(F,A) = α(C,B) mod α(C,F ) we see that α(A,F ) = α(B,C) mod α(A,B).

Thus ABCF is a GKM subgraph. Similarly, ABDE and CDEF are GKM subgraphs.

Thus α(B,C) = α(A,F ) + nα(A,B), α(B,D) = α(A,E) + mα(A,B), and thus α(C,D) =

α(F,E) + (m− n)α(A,B).

Thus we see that the GKM graph is the projection of a GKM graph for a P(O(n) ⊕
O(m) ⊕ C) → CP1 acted upon by the standard Hamiltonian T3 action. In particular, it

is the projection of the the graph with vertices A′ ,B′, C ′, D′, E ′, and F ′ and weights

α(A′, B′) = α(E ′, D′) = α(F ′, C ′) = (0, 0, 1), α(A′, F ′) = (1, 0, 0), α(A′, E ′) = (0, 1, 0),

α(F ′, E ′) = (−1, 1, 0), α(B′, C ′) = (1, 0, n), α(B′, D′) = (0, 1,m) and α(C ′, D′) = (−1, 1,m−
n). 2

Proposition 12 There are two classes of (3, 2, 6) GKM graphs and one exceptional (3, 2, 6)

GKM graph with six exterior vertices. The two classes are GKM graphs of P(O(n)⊕O(m)⊕
C) → CP1 and the flag-like GKM graphs. The exceptional GKM graph is the the graph of

the blow-up of G+(2, 5) along one of it’s large isotropy spheres.

Proof. Label the vertices A, B, C, D, E, and F so that AB, BC, CD, DE, EF , and FA

are the exterior edges. We will consider A and D, B and E, and C and F to be pairs of

antipodal vertices.

Suppose no pair of antipodal vertices are adjacent. Then without loss of generality A

must be adjacent to C, and B must be adjacent to D. But then there must be two edges

connecting E and F , which contradicts Property 2 of GKM graphs. Thus at least one pair of

antipodal vertices must be adjacent. Without loss of generality suppose they are A and D.

We then have two cases to consider. The first is when B and F , and C and E are adjacent

pairs; the second is when B and E, and C and F are adjacent pairs.
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Case I

Suppose B and F , and and C and E are adjacent pairs.

Suppose that ABF is not a GKM subgraph. We see that BA and BF cannot be part of

some GKM subgraph so, by Property 6, {α(B,A), α(B,F )}, and similarly {α(F,A), α(F,B)},
must span the lattice. Then we can take an SL(2,Z) transformation so that α(A,B) =

(−1, 1) and α(B,F ) = (1, 0), and then α(A,F ) = (a, 1) for some integer a. Since ABF is

not a GKM subgraph we see that α(B,F ) = α(A,D) mod α(A,B) and α(A,D) = α(F,B)

mod α(A,F ). If α(A,D) = (b, c) then (b, c) = (1, 0) mod (1,−1) so c = 1 − b. Then

(b, 1 − b) = (−1, 0) mod (a, 1) so a = b+1
1−b . But then b = 0 and a = 1, so α(A,F ) = (1, 1)

and α(A,D) = (0, 1). (If b = −1 then a = 0 and ABF would be a GKM subgraph.)

Now α(A,F ) = α(D,E) mod α(A,D), so {α(D,A), α(D,E)} span the lattice. Similarly,

{α(D,A), α(D,C)} span the lattice. Thus α(C,D) = (1, d) and α(D,E) = (1,−e) for some

d, e > 0.

If CDE is a GKM subgraph then α(D,A) = α(C,B) mod α(C,D) and thus the pair

{α(C,B), α(C,D)} spans the lattice. Let α(B,C) = (s, t) where t > 0. Then α(B,C) =

α(A,F ) mod α(A,B) so (s−1, t−1) = 0 mod (1,−1) and thus s = 2− t. Then α(B,C) =

(2− t, t). Since α(D,A) = α(C,B) mod α(C,D) we see that (2− t, t− 1) = 0 mod (1, d)

so d = t−1
2−t . Thus t = 1 and d = 0. But by symmetry e = 0 as well, so α(C,D) = α(D,E).

This contradicts Property 2 of GKM graphs. Thus CDE is not a GKM subgraph.

Thus {α(C,E), α(CD)} must span the lattice, as must {α(E,C), α(E,D)}. Then if

α(C,E) = (p, q) (p > 0) we see that

det

[
α(C,E)

α(C,D)

]
= det

[
p q

1 d

]
= pd− q = 1

so q = pd− 1 and α(C,E) = (p, pd− 1). Then

det

[
α(E,D)

α(E,C)

]
= det

[
−1 e

−p 1− pd

]
= pd− 1 + pe = 1

so p(d + e) = 2. The only solution that does not make CDE a GKM subgraph is d = e =

p = 1. Thus α(C,D) = (1, 1), α(D,E) = (1,−1) and α(C,E) = (1, 0).

Then α(B,F ) = α(C,E) mod α(B,C) so α(B,A) = α(C,D) mod α(B,C) Thus (0, 2) =

0 mod α(B,C). Then α(B,C) = (0, 1) or α(B,C) = (0, 2). Since α(B,C) = α(A,F )

mod α(A,B) we see that α(B,C) = (0, 2). By symmetry α(F,E) = (0, 2). We will show in
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the next section that this is the GKM graph of the blow-up of G+(2, 5) along one of its large

isotropy spheres.

Now suppose ABF is a GKM subgraph. From the last case we see that if either of

the two triangles is not a GKM subgraph then the other is not a GKM subgraph ei-

ther. Thus CDE must also be a GKM subgraph. Then we have α(A,D) = α(B,C)

mod α(A,B) and α(D,A) = α(C,B) mod α(C,D), α(A,D) = α(F,E) mod α(A,F ) and

α(D,A) = α(E,F ) mod α(D,E), and α(B,C) = α(F,E) mod α(B,F ) and α(C,B) =

α(E,F ) mod α(C,E). Since at most one of the pairs α(A,B) and α(C,D), α(A,F ) and

α(D,E), and α(B,F ) and α(C,E) can be equal, we see that α(A,D) = α(B,C) = α(F,E).

Then since α(A,B) = α(D,C) mod α(A,D) we have α(B,A) = α(C,D) mod α(B,C).

Thus ABCD is a GKM subgraph. Similarly, ADEF and BCEF are GKM subgraphs. Thus

α(C,D) = α(B,A) + nα(A,D), α(D,E) = α(A,F ) + mα(A,D) and α(C,E) = α(B,F ) +

(n+m)α(B,C).

Thus we see that the GKM graph is the projection of a GKM graph for a P(O(n)⊕O(m)⊕
C)→ CP1 with the standard Hamiltonian T3 action. In particular, it is the projection of the

the graph with vertices A′ ,B′, C ′, D′, E ′, and F ′ and weights α(A′, D′) = α(B′, C ′) =

α(F ′, E ′) = (0, 0, 1), α(A′, B′) = (1, 0, 0), α(A′, F ′) = (0, 1, 0), α(B′, F ′) = (−1, 1, 0),

α(C ′, D′) = (−1, 0, n), α(D′, E ′) = (0, 1,m) and α(C ′, E ′) = (−1, 1,m+ n).

Case II

Now suppose that B is adjacent to E and C is adjacent to F .

Suppose one of the quadrilaterals is not a GKM subgraph. Without loss of generality, we

may suppose it to be CDEF . Consider the half-planes bordering the line containing C and F .

One of these planes must contain E and D. Thus there can be no GKM subgraph containing

CF and CD, so {α(C,D), α(C,F )} must span the lattice, as must {α(F,C), α(F,E)}. Thus

by an SL(2,Z) transformation we can take α(F,C) = (1, 0), α(F,E) = (0, 1), and α(C,D) =

(−a, 1) for some integer a.

Since CDEF is not a GKM subgraph we must have that one of {α(D,C), α(D,E)} or

{α(E,D), α(E,F )} does not span the lattice. Without loss of generality we may suppose

{α(E,D), α(E,F )} does not span.

If ADEF is not a GKM subgraph then the exterior edges of the graph form a GKM

subgraph. Thus α(D,C) = α(E,F ) mod α(D,E), so (a, 0) = 0 mod α(D,E). But

then α(E,D) = (x, 0) for some x. Since ADEF is not a GKM subgraph we see that
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{α(D,A), α(D,E)} must span the lattice. Thus α(E,D) = (1, 0), and CDEF is a GKM

subgraph. Thus ADEF is a GKM subgraph. By symmetry BCDE is also a GKM subgraph.

Then α(E,B) = α(F,C) mod α(F,E) so α(B,E) = (−1, b) for some b > 0.

Since BCDE is a GKM subgraph we must have α(E,D) = α(B,C) or α(B,E) = α(C,D).

If α(E,D) = α(B,C) then α(E,D) = (e, f) where f > 0 (since B lies below the line

containing F and C.) Thus α(E,D) 6= α(F,A) so α(A,D) = (0, 1). But then α(C,F ) =

α(D,A) mod α(C,D) so (1,−1) = 0 mod (−a, 1) and a = 1. Since α(B,E) − α(C,D) =

(0, b − 1) = nα(E,D) for some n we see that α(E,D) and α(E,F ) are linearly dependent,

which contradicts property 1 of GKM graphs, or b = 1. Thus we may reduce to the case

where α(B,E) = α(C,D), in which case α(B,E) = α(C,D) = (1,−1). By symmetry

α(A,D) = (0, 1).

Since α(C,B) = α(F,A) mod α(C,F ) we see that α(A,F ) = (r, s) and α(B,C) = (t, s)

for some r, s, t with s > 0. If α(A,F ) = α(B,E) mod α(A,B) and α(A,D) = α(B,C)

mod α(A,B) then (r + 1, s − 1) = 0 mod α(A,B) and (t, s − 1) = 0 mod α(A,B) thus

r = t − 1. But then α(A,F ) 6= α(B,C). Since α(A,B) = α(F,C) mod α(A,F ) and

α(B,A) = α(C,F ) mod α(B,C) we see that α(A,B) = α(F,C) = (1, 0).

Thus we can reduce to the case where α(A,F ) = α(B,C) mod α(A,B) and α(A,D) =

α(B,E) mod α(A,B). The latter equation gives us (1, 0) = 0 mod α(A,B) so α(A,B) =

(1, 0), and thus ABCF is a GKM subgraph.

We can then take α(B,C) = (a+ c, b), α(E,D) = (a, b+ c) and α(A,F ) = (−a, b), where

a, b > 0 and c > −a− b. This is a flag-like GKM graph.

Now suppose that all the quadrilaterals are GKM subgraphs.

If α(C,D) = α(F,E) then α(F,E) 6= α(A,D). Thus α(A,F ) = α(D,E), and similarly

α(A,B) = α(F,E). But then α(A,B) = α(D,C) so α(C,D) = α(D,C), which implies

α(C,D) = 0.

Thus α(C,F ) = α(E,D) = α(A,B), α(A,D) = α(B,C) = α(F,E), and α(B,E) =

α(A,F ) = α(C,D). Since α(A,B) = α(D,C) mod α(A,D) we see that α(A,B) = α(D,C)+

nα(A,D). But α(A,D) = α(F,C) = α(A,B) mod α(D,C) so n = 1. Thus we see that in

order for {α(A,B), α(A,D), α(A,F )} to span the lattice, we must have {α(A,B), α(A,D)}
span the lattice. Thus we can take α(A,B) = (1, 0), α(A,D) = (0, 1) and α(A,F ) = (−1, 1).

This is the GKM graph of the complete flag on C3, which is (obviously) a flag-like GKM

graph. 2
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4.2 Construction of GKM manifolds.

Each of the GKM graphs in section 3 is the GKM graph of at least one GKM manifold. We

have already constructed the manifolds In the cases where the GKM graphs are projections

of three-valent GKM graphs with six fixed points and weights spanning Z3 (see section 2.)

They are the the six-dimensional toric manifolds acted upon by a two-dimensional subgroup

of the three-dimensional torus that acts on them in the standard way.

Now we construct the manifolds corresponding to the twisted graphs. Assume α(A,C) =

α(B,E) = (1, 0), α(A,F ) = α(B,D) = (0, 1), α(C,D) = α(E,F ) = (−1, 1), α(A,B) =

(−a, b), α(C,E) = (a− c, b) and α(D,F ) = (a, b− c) and choose the following moment map

of the graph:

µ(A) = (a, 0), µ(B) = (0, b), µ(C) = (c+ 1, 0)

µ(D) = (0, c+ 1), µ(E) = (a+ 1, b), µ(F ) = (a, b+ 1).

We will construct a manifold for this graph by gluing together parts of two other GKM

manifolds.

The graph of the first manifold is the GKM graph with vertices A′, B′, C ′, D′, E ′, F ′

and weights α(A′, C ′) = α(B′, E ′) = (1, 0), α(A′, F ′) = α(B′, D′) = (0, 1), α(C ′, F ′) =

α(E ′, D′) = (−1, 1) and α(A′, B′) = α(C ′, E ′) = α(F ′, D′) = (−a, c − b). The graph of the

second is the GKM graph with vertices A∗, B∗, C∗, D∗, E∗, F ∗ and weights α(A∗, C∗) =

α(B∗, E∗) = (1, 0), α(A∗, F ∗) = α(B∗, D∗) = (0, 1), α(C∗, F ∗) = α(E∗, D∗) = (−1, 1) and

α(A∗, B∗) = (−a, b), α(C∗, E∗) = (a− c, b), and α(D∗, F ∗) = (a, c− b− 2a).

We define a moment map for each graph. Let µ′ be the moment map of the first graph,

and µ∗ the moment map of the second graph. Then we can take µ′ and µ∗ so that

µ′(A′) = (a, 0), µ′(B′) = (0, b), µ′(C ′) = (c+ 1, 0)

µ′(D′) = (0, a+ b+ 1), µ′(E ′) = (a+ 1, b), µ′(F ′) = (a, c+ 1− a).

and

µ∗(A∗) = (a, 2b− c), µ∗(B∗) = (0, b), µ∗(C∗) = (a− b+ c+ 1, 2b− c)

µ∗(D∗) = (0, c+ 1), µ∗(E∗) = (c+ 1− b, b), µ∗(F ∗) = (a, b+ 1).

The first graph is a GKM graph of CP1 × CP2 and the second graph is the GKM graph
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Figure 4.1: Construction the Twisted GKM manifolds.
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of a CP1 bundle over CP2 both acted upon by some copy of T2 in T3, and the moment

maps of the manifolds, which we will also denote µ′ and µ∗ respectively, are the convex

hulls of the moment maps of the respective graphs. We note that both moment maps have

the same intersection with the line y = b + 1
2
. Consider M ′ = µ′−1({y = b + 1

2
}) and

M∗ = (µ∗)−1({y = b + 1
2
). The preimages of the points (0, b + 1

2
), (a, b + 1

2
), (a + 1

2
, b + 1

2
)

and (c− b+ 1
2
, b+ 1

2
) each contains a cross section (i.e. a circle) of an isotropy sphere. Every

other point of M ′ and M∗ is acted upon freely by S1 × S1, and every point is acted upon

freely by the subgroup H = {e} × S1. Thus M ′/H and M∗/H are compact symplectic

manifolds with semifree Hamiltonian S1 actions. The common image of the moment maps

of these actions is [0, c− b + 1
2
]× {b + 1

2
} and the fixed points map to (0, b + 1

2
), (a, b + 1

2
),

(a + 1
2
, b + 1

2
) and (c − b + 1

2
, b + 1

2
). Thus by Karshon’s classification of 4-dimensional

symplectic manifolds with S1 actions ([K99], see also [AH91] and [Au88]) we see that M ′/H

and M∗/H are equivariantly symplectomorphic.

Both M ′ → M ′/H and M∗ → M∗/H are S1-bundles over S1-equivariantly symplecto-

morphic manifolds. If we can show that their equivariant Chern classes are the same then

we can say that there is a T2-equivariant diffeomorphism between M ′ and M∗. Let F be

the fixed point set of M ′/H. Then by a theorem of Kirwan ([K84], see also [TW99]) the

natural map HS1(M ′/H,Z) → HS1(F,Z) is injective and the equivariant Chern class of a

bundle maps to the equivariant Chern class of its restriction to the fixed points. From the

GKM graphs we see that the group K = S1 × {e} fixes the fiber of the two leftmost fixed

points of both M ′/H and M∗/H and K acts on the fibers of the two rightmost fixed points

of both M ′/H and M∗/H in the same manner as H. Thus the equivariant Chern classes

of the two circle bundles are equal. There is then an equivariant diffeomorphism between

M ′ and M∗ that preserves the pullbacks of the symplectic forms on M ′/H and M∗/H. The

coisotropic embedding theorem then allows us to find equivariantly symplectomorphic neigh-

borhoods W ′ and W ∗ of M ′ and M∗ respectively. Let U = W ′ ∪ µ′−1(R× (−∞, b+ 1
2
]) and

V = W ∗ ∪ (µ∗)−1(R × [b + 1
2
,∞)). Then M = U

∏
V/ ∼, where ∼ is the identification

between points in W ′ and W ∗, is the GKM manifold with the desired GKM graph.

The construction of the manifolds corresponding to the flag-like graphs is similar. Assume

α(A,B) = α(F,C) = (1, 0), α(A,D) = α(F,E) = (0, 1), α(B,E) = α(C,D) = (−1, 1),

and α(F,A) = (a,−b), α(B,C) = (a + c, b) and α(E,D) = (a, b + c) where a, b > 0 and
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c > −a− b. Then choose the moment map µ defined by

µ(A) = (a, 0), µ(B) = (a+ b+ 1, 0), µ(C) = (2a+ b+ c+ 1, b)

µ(D) = (a, a+ 2b+ c+ 1), µ(E) = (0, a+ b+ 1), µ(F ) = (0, b).

We will again construct a GKM manifold for this GKM graph from two other GKM mani-

folds.

The first graph is the GKM graph with vertices A′, B′, C ′, D′, E ′, F ′ and weights

α(A′, B′) = α(F ′, C ′) = (1, 0), α(A′, E ′) = α(F ′, D′) = (0, 1), α(B′, E ′) = α(C ′, D′) =

(−1, 1) and α(A′, F ′) = α(B′, C ′) = α(E ′, D′) = (a, b + c). The second is the GKM

graph with vertices A∗, B∗, C∗, D∗, E∗, F ∗ and weights α(A∗, B∗) = α(F ∗, C∗) = (1, 0),

α(A∗, E∗) = α(F ∗, D∗) = (0, 1), α(B∗, E∗) = α(C∗, D∗) = (−1, 1) and α(A∗, F ∗) = (−a, b),
α(B∗, C∗) = (a+ c, b), and α(D∗, E∗) = (a,−c− b− 2a).

We define a moment map for each graph. Let µ′ be the moment map of the first graph,

and µ∗ the moment map of the second graph. Then we can take µ′ and µ∗ so that

µ′(A′) = (0,−c), µ′(B′) = (a+ b+ c+ 1,−c), µ′(C ′) = (2a+ b+ c+ 1, b)

µ′(D′) = (a, a+ 2b+ c+ 1), µ′(E ′) = (0, a+ b+ 1), µ′(F ′) = (a, b)

and

µ∗(A∗) = (a, 0), µ∗(B∗) = (a+ b+ 1, 0), µ∗(C∗) = (2a+ b+ c+ 1, b)

µ∗(D∗) = (0, 2a+ 2b+ c+ 1), µ∗(E∗) = (a, b+ 1), µ∗(F ∗) = (0, b)

.

The first graph is a GKM graph of CP1 × CP2 and the second graph is the GKM graph

of a CP1 bundle over CP2 both acted upon by some copy of T2 in T3, and the moment

maps of the manifolds, which we will also denote µ′ and µ∗ respectively, are the convex hulls

of the moment maps of the respective graphs. We note that both moment maps have the

same intersection with the line y = b + 1
2
. Then we can use the same argument above to

find equivariantly symplectomorphic open sets W ′ and W ∗ containing µ′−1({y = b+ 1
2
) and

(µ∗)−1({y = b+ 1
2
}). Let U = W ′∪µ′−1(R×[b+ 1

2
,∞)) and V = W ∗∪(µ∗)−1(R×(−∞, b+ 1

2
]).

Then M = U
∏
V/ ∼, where ∼ is the identification between points in W ′ and W ∗, is the

GKM manifold with the desired GKM graph.
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Figure 4.2: Construction of the Flag-like GKM manifolds.
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The final (3, 2, 6) GKM graph has weights α(A,B) = α(E,D) = (1, 1), α(A,F ) =

α(C,D) = (−1, 1), α(F,B) = α(E,C) = (1, 0), α(B,C) = α(F,E) = (0, 2) and α(A,D) =

(0, 1). We can show that the blow-up of G+(2, 5) over one of it’s large isotropy spheres has

this GKM graph. The torus action on G+(2, 5) is induced by the torus action on C2 × R
defined by

(λ1, λ2)(z1, z2, x) = (λ1z1, λ2z2, x).

The fixed points are then the subspaces {z2 = 0, t = 0} and {z1 = 0, t = 0} with either

orientation. There are two possible volumes for the isotropy spheres connecting these fixed

points. The isotropy spheres connecting the fixed points that represent the same plane with

opposite orientation are larger than the other four isotropy spheres. Both of these spheres

are naturally copies of G+(2, 3); one is the set of planes with z1 = 0, the other is the set of

planes with z2 = 0.

The standard GKM graph for G+(2, 5) has four vertices A′, B′, C ′, D′ and weights

α(A′, B′) = α(D′, C ′) = (1, 1), α(A′, D′) = α(B′, C ′) = (−1, 1), α(A′, C ′) = (0, 1), and

α(D′, B′) = (1, 0). The segments AC and BD represent the large isotropy spheres. In a

neighborhood of the fixed point D′ we see that the manifold is equivariantly symplecto-

morphic to a neighborhood of 0 ∈ C3 with T2-action defined by (eiθ1 , eiθ2) · (z1, z2, z3) =

(ei(θ1+θ2)z1, e
iθ1z2, e

i(θ1−θ2)z3). This symplectomorphism maps the large isotropy sphere to

{z1 = z3 = 0}. We then see that (in a neighborhood of the fixed point) the blow-up along

this sphere is equivariantly symplectomorphic to a subset of the subvariety of C3×CP1 (with

coordinates (z1, z2, z3)× [l1, l3]) defined by z1l3 = z3l1. Then the group action is

(eiθ1 , eiθ2) · (z1, z2, z3)× [l1, l3] = (ei(θ1+θ2)z1, e
iθ1z2, e

i(θ1−θ2)z3)× [e2iθ2l1, l3].

There are now two fixed points which map, under the equivariant symplectomorphism be-

tween the blown-up spaces, to (0, 0, 0)× [0, 1] and (0, 0, 0)× [1, 0], with weights (1, 1), (1, 0),

(0,−2) and (1,−1), (1, 0), (0, 2) respectively. Thus these points correspond to E, and F

on the (3, 2, 6) GKM graph. Similarly, we see that the blow-up replaces B′ with two fixed

points with weights (−1, 1), (−1, 0), (0,−2) and (−1,−1), (−1, 0), (0, 2). Thus we see that

the blow-up of G+(2, 5) along a large isotropy sphere has the desired GKM graph.

Remark. If we blow up along one of the small isotropy spheres we get a manifold with

a flag-like GKM graph. All four cases are the same, so without loss of generality we may

take the sphere with fixed points C ′ and D′. After the blow-up we have a manifold whose

GKM graph has six vertices (A′, B′, C ′′, C∗, D′′, D∗) and weights α(A′, B′) = α(D′′, C ′′) =
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α(D∗, C∗) = (1, 1), α(A′, C∗) = α(D′′, D∗) = (0, 1), α(D∗, B′) = α(C∗, C ′′) = (1, 0), and

α(A′, D′′) = α(B′, C ′′) = (−1.1).

Remark. If we blow up G+(2, 5) at a fixed point we get a manifold that no longer satisfies

the GKM properties. The blow-up at the point D′ is the subspace of C3 × CP2 (with

coordinates (z1, z2, z3) × [l1, l2, l3]) defined by z1l2 = z2l1, z1l3 = z3l1, and z2l3 = z3l2.

The group action is then (eiθ1 , eiθ2) · (z1, z2, z3) × [l1, l2, l3] = (ei(θ1+θ2)z1, e
iθ1z2, e

i(θ1−θ2)z3) ×
[eiθ2l1, l2, e

−iθ2l3]. At the fixed point (0, 0, 0)× [0, 1, 0] we then have weights (1, 0), (0, 1), and

(0,−1). But then the subspace fixed by the subgroup generated by eiθ1 has a component

with dimension 4, so the manifold cannot be GKM. This shows that the GKM condition is

not closed under blowing up.

4.3 Cohomology

In this section we use the GKM graphs to compute the cohomology and Chern classes of all

possible (3, 2, 6) GKM manifolds. Since the cohomology and Chern classes are determined

by the GKM graphs, and we have completely classified the (3, 2, 6) GKM graphs, we can give

a complete classification of all the possible cohomology rings and Chern classes for (3, 2, 6)

GKM manifolds. In this section, we will view the weights as elements in S(Z2)1 (or S(Z3))1)

and we will denote elements of equivariant cohomology by Greek letters (i.e. φ) and elements

of regular cohomology by Greek letters in brackets (i.e. [φ].)

Manifolds with the GKM graph of P(O(n)⊕ C)→ CP2

Consider a (3, 2, 6) GKM graph associated to P(O(n) ⊕ C) → CP2 acted upon by some

two-dimensional subtorus of T3. Since we are only interested in the regular cohomology

ring, we may consider the (3, 3, 6) graph of which the (3, 2, 6) graph must be a projection.

We identify S(Z3) with Z[x, y, z] by the map determined by sending the dual basis vectors

(1, 0, 0), (0, 1, 0), and (0, 0, 1) to x, y, and z respectively. This graph has vertices A, B, C,

D, E, F with α(A,B) = α(D,E) = x, α(A,C) = α(D,F ) = y, α(B,C) = α(E,F ) = y − x,

α(A,D) = z, α(B,E) = z − nx, α(C,F ) = z − ny. Each element of the equivariant

cohomology is a function φ : V → S(Z3) such that the difference of the values of φ at two

adjacent vertices is divisible by the weight of the edge (i.e. α(A,B) divides φ(B) − φ(A).)
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We can thus write each element of the equivariant cohomology as a vector

(φ(A), φ(B), φ(C), φ(D), φ(E), φ(F )).

Addition and multiplication of equivariant cohomology elements. Since GKM manifolds

are equivariantly formal, the kernel of the map H∗T3(M) → H∗(M) will consist of all ele-

ments of the equivariant cohomology where each element of the vector has a common factor.

Each element of regular cohomology will then have multiple representatives in equivariant

cohomology.

The basis element of H0(M) is obviously [1] = (1, 1, 1, 1, 1, 1). Since dimH2(M) = 2 we

must find two basis elements for H2(M). These will be represented by vectors of linear

polynomials. We need only consider representations with φ(A) = 0. If φ is a vector with

φ(A) 6= 0, then we may replace it with φ − φ(A)[1]; these will represent the same element

in regular cohomology. We then see that we can choose φ = (0,−x,−y, 0,−x,−y) and

χ = (0, 0, 0,−z, nx− z, ny − z) to represent the basis elements of H2(M). Then

[φ]2 = [(0, x2, y2, 0, x2, y2)] = [φ2]

= [φ2 + xφ] = [(0, 0, y(y − x), 0, 0, y(y − x))]

[χ]2 = [(0, 0, 0, z2, (z − nx)2, (z − ny)2)] = [χ2]

= [χ2 + zχ] = [(0, 0, 0, 0, nx(nx− z), ny(ny − z))]

and

[φχ] = [(0, 0, 0, 0, x(z − nx), y(z − ny))].

Thus [φ]2 and [φχ] are a basis for H4(M), and [χ]2 + n[φχ] = 0. Since dimH6(M) = 1 and

[φ][φχ] = [(0, 0, 0, 0, x2(nx− z), y2(ny − z))]

= [φ2χ+ xφχ] = [(0, 0, 0, 0, 0, y(y − x)(ny − x))]

we see that [φ2χ] is a basis for dimH6(M). Also [φ3] = [yφ2] = 0, and [χ3] = −n[φχ2] =

n2[φ2χ]. Thus H∗(M) = Z[φ, χ]/(φ3, χ2 + nφχ).

The equivariant Chern classes are the vectors whose entries are the symmetric polynomials

of the weights at each vertex. The regular Chern classes are just the images of the equivariant
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Chern classes under the map H∗T2(M)→ H∗(M), and thus are represented by the equivariant

Chern classes. For the GKM manifolds with the GKM graph of P(O(n) ⊕ C) → CP2, the

first Chern class is

c1(M) = [(x+ y + z,−x+ (y − x) + (z − nx),−y + (x− y) + (z − ny),

x+ y − z,−x+ (y − x) + (−z + nx),−y + (x− y) + (−z + ny))]

= [(x+ y + z,−(2 + n)x+ y + z, x− (2 + n)y + z,

x+ y − z, (n− 2)x+ y − z, x+ (n− 2)y − z)]

= [(0,−(3 + n)x,−(3 + n)y,−2z, (n− 3)x− 2z, (n− 3)y − 2z)] + (x+ y + z)[1]

= (3 + n)[φ] + 2[χ]

since (x+ y + z)[1] = 0. The second Chern class is

c2(M) = [(xy + xz + yz, x(x− y) + x(nx− z) + (x− y)(nx− z),

y(y − x) + y(ny − z) + (y − x)(ny − z), xy − xz − yz,

x(x− y) + x(z − nx) + (x− y)(z − nx), y(y − x) + y(z − ny) + (y − x)(z − ny))]

= (xy + xz + yz)[1] + ((1 + 2n)x− (2 + n)y − 3z)[φ]− 2(x+ y)[χ]

+ [(0, 0, 3(1 + n)y(y − x), 0, 6x(z − nx),−3y((1 + n)x+ (−1 + n)y − 2z)]

= 3(1 + n)[φ2] + 6[φχ]

since (xy + xz + yz)[1] + ((1 + 2n)x− (2 + n)y − 3z)[φ]− 2(x+ y)[χ] = 0. The generator of

H6(M) can be represented as a vector with five 0 entries and the sixth entry the product of

the weights at the corresponding fixed point. The third Chern class is represented by a vector

each of whose entries contains the product of the negatives of the weights at the corresponding

fixed point. Thus c3(M) = 6[φ2χ], six times the generator of the top cohomology group.

Remark. The argument for the computation of the top Chern class (aka the Euler class)

holds in general. The equivariant Euler class will always have the product of the weights at

each fixed point in the corresponding entry of the vector. This means it will be equal to the

number of fixed points times the generator of the top cohomology group.
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Manifolds with the GKM graph of P(O(n)⊕O(m)⊕ C)→ CP1

Consider a GKM graph associated to P(O(n)⊕O(m)⊕C)→ CP1 acted upon by some two-

dimensional subtorus of T3. Again, we may consider the (3, 3, 6) graph of which the (3, 2, 6)

graph must be a projection, and identify S(Z3) with Z[x, y, z] in the same way as before. This

graph has vertices A ,B, C, D, E, and F and weights α(A,B) = α(C,D) = α(E,F ) = z,

α(A,C) = x, α(A,E) = y, α(C,E) = −x + y, α(B,D) = x + mz, α(B,F ) = y + nz and

α(D,F ) = −x+ y + (n−m)z.

The basis element of H0(M) is obviously [1] = (1, 1, 1, 1, 1, 1). The basis of H2(M) is

[φ] = [(0,−z, 0,−z, 0,−z)] and [χ] = [(0, 0,−x,−x−mz,−y,−y−nz)]. The same techniques

used above show that the basis of H4(M) is [φχ] = [(0, 0, 0, z(x + mz), 0, z(y + nz)] and

[χ2] = [(0, 0, 0,mz(x + mz), y(y − x), (y + nz)(−x + y + nz))] with [φ2] = 0. We can

also show that [φχ2] = [(0, 0, 0, 0, 0, z(y + mz)(x − y + (n − m)z))] generates H6(M) and

[χ3] = (m+ n)[φχ2]. Thus H∗(M) = Z[φ, χ]/(φ2, χ3 − (m+ n)φχ2).

The Chern classes are then

c1(M) = [(x+ y + z,−z + (x+mz) + (y + nz),−x+ (y − x) + z,

−z+(−x−mz)+(y−x+(n−m)z),−y+(x−y)+z,−z+(−y−nz)+(x−y+(m−n)z))]

= (x+ y + z)[1] + (2−m− n)[φ] + 3[χ]

c2(M) = [(xy + xz + yz, z(−x−mz) + z(−y − nz) + (−x−mz)(−y − nz),

x(x− y)− xz − (x− y)z, z(x+mz) + z(x− y + (m− n)z) + (x+mz)(x− y + (m− n)z),

y(y− x)− yz− (y− x)z, z(y+ nz) + z(−x+ y+ (n−m)z) + (y+ nz)(−x+ y+ (n−m)z))]

= 2(3−m− n)[φχ] + 3[χ2]

and c3(M) = 6[φχ2].

Manifolds with twisted GKM graphs.

These manifolds have GKM graph with α(A,C) = α(B,E) = x, α(A,F ) = α(B,D) = y,

α(C,D) = α(E,F ) = −x + y, α(A,B) = −ax + by, α(C,E) = (a − c)x + by, α(D,F ) =
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ax+ (b− c)y. Then H0(M) has basis [1] = (1, 1, 1, 1, 1, 1), H2(M) has basis

[φ] = [(0, 0,−x,−y,−x,−y)],

[χ] = [(0, ax− by, 0, a(x− y), (c− a)x− by, (c− a− b)y)].

Calculations similar to those above show that [φ2] = [(0, 0, 0, y(y − x), 0, y(y − x))], and

[φχ] = [(0, 0, 0, ay(y − x), x((a− c)x+ by), (a+ b− c)y2)] are a basis for H4(M) and [χ2] =

(2a − c)[φχ] + a(a + b − c)[φ2]. Combined with [φ3] = 0 this shows us that H∗(M) =

Z[φ, χ]/(φ3, χ2 − (2a − c)φχ − a(a + b − c)φ2) and that [φ2χ] = [(0, 0, 0, 0, 0, y(x − y)(ax +

(b− c)y))] generates H6(M).

The Chern classes are then

c1(M) = [(x+ y − (ax− by), x+ y + (ax− by),−x+ (y − x) + (a− c)x+ by,

− y + (x− y) + ax+ (b− c)y,−x+ (y − x) + (c− a)x− by,

− y + (x− y)− ax+ (c− b)y)]

= (3− 2a− c)[φ] + 2[χ]

c2(M) = [(xy + x(ax− by)− y(ax− by), xy + x(ax− by) + y(ax− by),

x(x− y) + x((c− a)x− by) + (x− y)((c− a)x− by),

y(y − x) + y(−ax+ (c− b)y) + (y − x)(−ax+ (c− b)y),

x(x− y) + x((a− c)x+ by) + (x− y)((a− c)x+ by),

y(y − x) + y(ax+ (b− c)y) + (y − x)(ax+ (b− c)y))]

= 3(1− 2a− c)[φ2] + 6[φχ]

and c3(M) = 6[φ2χ].

Manifolds with flag-like GKM graphs.

These manifolds have GKM graphs with α(A,B) = α(F,C) = x, α(A,D) = α(F,E) = y,

α(B,E) = α(C,D) = −x + y, α(A,F ) = −ax + by, α(B,C) = (a + c)x + by, α(E,D) =
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ax+ (b+ c)y. Then H0(M) has basis [1] = (1, 1, 1, 1, 1, 1), H2(M) has basis

[φ] = [(0,−x,−x,−y,−y, 0)],

[χ] = [(0, 0,−(a+ c)x− by,−(a+ b+ c)y, a(x− y), ax− by)].

Calculations similar to those above show that [φ2] = [(0, 0, 0, y(y − x), y(y − x), 0)], and

[φχ] = [(0, 0, 0, (a+ b+ c)y(y − x), a(y − x)2, x(ax− by))] are a basis for H4(M) and [χ2] =

(2a + c)[φχ] − a(a + b + c)[φ2]. This combined with [φ3] = 0 shows us that H∗(M) =

Z[φ, χ]/(φ3, χ2 − (2a + c)φχ − a(a + b + c)φ2) and that [φ2χ] = [(0, 0, 0, 0, 0, xy(ax − by)]

generates H6(M).

The Chern classes are then

c1(M) = [(x+ y − (ax− by),−x+ (y − x) + (a+ c)x+ by,

− x+ (y − x)− (a+ c)x− by,−y + (x− y)− (ax+ (b+ c)y),

− y + (x− y) + (ax+ (b+ c)y), x+ y + (ax− by))]

= (3 + c− 2a)[φ] + 2[χ]

[(xy − x(ax− by)− y(ax− by), x(x− y) + x((−a− c)x− by) + (x− y)((−a− c)x− by),

x(x− y) + x((a+ c)x+ by) + (x− y)((a+ c)x+ by),

y(y − x) + y(ax+ (b+ c)y) + (y − x)(ax+ (b+ c)y),

y(y − x) + y(−ax− (b+ c)y) + (y − x)(−ax− (b+ c)y),

xy − x(−ax+ by)− y(−ax+ by))] = 3(1− 2a+ c)[φ2] + 6[φχ]

and c3(M) = 6[φ2χ].

Manifolds with the GKM graph of a blow-up of G+(2, 5) along a large
isotropy sphere.

These manifolds have GKM graphs with weights α(A,B) = α(E,D) = x + y, α(A,F ) =

α(C,D) = −x + y, α(B,C) = α(F,E) = 2y, α(F,B) = α(E,C) = x, and α(A,D) = y).

Then, as always, H0(M) is generated by [1] = (1, 1, 1, 1, 1, 1). The generators of H2(M)

are then [φ] = [(0, 0,−2y,−2y,−2y, 0)] and [χ] = [(0,−x− y, y − x, 0, x+ y, x− y)]. (Since
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2y must divide φ(C) − φ(B) we must have a factor of 2 in each nonzero term of φ.) Then

[φχ] = [(0, 0, 0, 2y(y − x),−4xy, 0)] and [χ2] = [(0, 0, 0, 2y(y − x), 2x(x + 3y), 2x(x − y))].

Both of these are an element of H4(M) multiplied by 2, so they cannot be a basis of H4(M).

We can, however, take a basis [ψ] = [(0, 0, 0, y(y − x),−2xy, 0)] and [υ] = [(0, 0, 0, 0, x(x +

y), x(x−y))] with [φχ] = 2[ψ] and [β2] = −2[ψ]+2[υ]. We then see that [ψχ] = [(0, 0, 0, y(x−
y)(y + x), 0, 0)] is a basis for H6(M). Because GKM manifolds with this graph do not have

cohomology generated in H2(M), the relations between the generators are more complicated.

The cohomology ring is

H∗(M) = Z[φ, χ, ψ, υ]/(φ2, φχ− 2psi, χ2 + φχ− 2υ, ψυ, φψ, χ(ψ + υ), φυ − χψ).

The Chern classes are then

c1(M) = [((x+ y) + y − (x− y),−(x+ y)− x+ 2y,−x+ (y − x)− 2y,

− (x+ y)− y + (x− y),−2y + (x+ y) + x, 2y + (x− y) + x)]

= 3[φ] + 2[χ]

c2(M) = [((−x− y)(−y) + (−x− y)(x− y) + (−y)(x− y),

(x+ y)x+ (x+ y)(−2y)− 2xy, 2xy + x(x− y) + 2y(x− y),

(x+ y)y + (x+ y)(y − x) + y(y − x),−2yx+ 2y(−x− y)− x(−x− y),

(y − x)(−x)− 2(y − x)y + 2xy))]

= 2[χ2] + 7[φχ]

and c3(M) = 3[φχ2].
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