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ABSTRACT

Climate change awareness, the drive to sustainability and the push for en-

ergy independence have resulted in the wider utilization of renewable energy

sources. Photovoltaic (PV) power is a renewable solar energy source that is

increasing in use as its costs decrease. We have developed an assessment and

planning tool to quantify the longer-term variable effects of large-scale PV en-

ergy production on power systems. The tool consists of a probabilistic model

for the representation of the power output of the PV resources, at single or

multiple sites on the network, and the incorporation of the model into an

extended probabilistic simulation framework for the evaluation of the longer-

term variable effects of the resources. We develop the probabilistic model in

a manner that captures the time-dependent, variable and intermittent nature

of the PV resources and incorporate the model into the extended framework

in a way that captures the correlation between the chronological load and the

uncontrollable PV output. Because typical daily PV output patterns vary

markedly over a year, we construct the probabilistic model on a seasonal ba-

sis, and because the duration and magnitude of PV output changes from day

to day, we scale the daily PV output patterns, both in time and magnitude,

into scaled-output characterizations that allow the meaningful comparison of

different days of the season. We then classify the seasonal set of daily PV

scaled-output characterizations into pattern cluster sets of days with similar

daily output patterns before re-scaling the pattern clusters into class sets

of daily PV output representations. From these class sets, we approximate

the conditional probability distributions of the PV output random variables

conditioned on each pattern class. We extend the conventional probabilistic

simulation framework to incorporate the PV resources by using these ap-

proximations of the conditional probability distributions. By incorporating

the probabilistic PV output model into the extended framework, we are able

to quantify the longer-term variable effects of a high penetration of large-
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scale PV resources on a system in terms of reliability, economic-cost and

environmental-impact metrics. To test the capability of the tool, we have

applied the methodology on a variety of test system cases covering a wide

span of load, system and resource characteristics. The application of the

tool is useful in many areas of power system planning, including investment

decision-making and policy formulation.
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CHAPTER 1

INTRODUCTION

In this thesis, we present the development of a probabilistic model for the

representation of the power output of large-scale photovoltaic (PV) resources

and its incorporation into a probabilistic simulation framework for the eval-

uation of the longer-term variable effects of PV resources on a power system.

In this introductory chapter, we describe the motivation for this research, re-

view the state of the art, provide an overview of our proposed methodology

and present a detailed outline of the rest of the thesis.

1.1 Motivation

Climate change awareness, the drive to sustainability and the push for energy

independence have resulted in wider utilization of renewable energy sources

over the past decade [1]. Government incentives and mandates for renewable

energy production, such as the renewable portfolio standards of various states

in the United States [2], are some of the many indications that renewable

resource penetration, particularly wind and solar resource penetration, will

continue to deepen. PV power, though not currently as prevalent as wind

power, is a solar energy source that continues to increase in utilization as its

costs decrease [3]. The deeper penetration of renewable resources creates the

need for assessment and planning tools to quantify the longer-term variable

effects of renewable energy production on power systems.

Probabilistic tools are used throughout the electric power industry to aid

in the assessment and planning of power systems with the various sources of

uncertainty explicitly represented [4]. For example, the tools may be used

to estimate fuel requirements or the emission of various effluents. Such tools

use a probabilistic simulation framework to calculate the expected economic,

environmental and reliability metrics that measure the variable effects over
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a specified period. Conventional probabilistic simulation tools emulate sys-

tems with controllable generators that have controllable output and constant

outage rates over the simulation period. PV resources are variable, uncon-

trollable, time-dependent, intermittent and not accurately predictable. As a

result, they cannot be modeled in the same way as conventional resources in

a probabilistic simulation framework. In Fig. 1.1, we present eight daily PV

plant output patterns computed from real-world atmospheric measurements

as described in Appendix A. Clearly, the output is variable and intermit-

tent. The output patterns on March 2 and May 31 have high output with

gradual output change, whereas the patterns on April 23 and May 1 change

rapidly from minute to minute at similar magnitudes. The outputs on March

6 and May 3 have increased fluctuation at different times of the day and the

outputs on March 7 and April 20 change rapidly at medium-to-low levels.

In Fig. 1.2 we show the variation in sunrise times, sunset times and daily

maximum power output for the same PV plant over the course of a year. It

is clear that the variation exists throughout the year. When a PV plant is

integrated into the grid, the variation of the plant’s output affects the op-

eration of the other controllable generators, and thus, simulation tools need

to capture the time-dependent, variable and intermittent nature of the PV

resources. In Fig. 1.3, we provide an example of a week of hourly load and

PV resource output. We observe a positive correlation between the daily PV

output and the chronological load. PV output only occurs during the day

and this generally coincides with the higher load hours. For that reason, in

addition to capturing the nature of the PV resources, the probabilistic simu-

lation tools must also capture the relationship between the load and the PV

output.

1.2 Overview of the state of the art

Researchers have developed many techniques for the modeling of PV resource

output for longer-term planning. Many of these techniques, such as those de-

scribed in [9, 10, 11, 12], focus on energy analysis, considering only the energy

yield from the PV resource and not the system into which the resource is in-

tegrated. Some techniques, such as the methods described in [13, 14, 15],

probabilistically model the load, the controllable resources and the PV re-
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Figure 1.1: Daily PV plant power output patterns for eight days of the
year, computed using one-minute resolution atmospheric data collected at
Las Vegas, NV by NREL [5].
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Figure 1.2: The variation of (a) sunrise/sunset times during a yearly cycle,
and (b) maximum daily output over a year for a PV plant computed us-
ing one-minute resolution atmospheric data collected at Las Vegas, NV and
published by NREL [5].
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Figure 1.3: One week of ERCOT hourly load [6] and PV output for a plant
computed using one-hour resolution atmospheric data collected at Abilene,
TX and by NREL [7] and NOAA [8].

source output, but do not consider the time-dependence of the PV output

and its interplay with the chronological load. The methods in [16, 17, 18],

for example, capture the relationship between time-dependent renewable re-

source output and the load, but do so using Monte Carlo methods that are

computationally demanding when simulating larger power systems. Com-

plex PV output characterizations, such as those described in [19], are also

computationally demanding; and techniques for the prediction of PV output,

such as those described in [20, 21], are useful only for short-term operational

decisions. Such methods are inappropriate for longer-term planning. The

approach presented in [22] allows us to determine probabilistically the vari-

able effects of time-dependent wind resources, but it is not suitable for the

modeling of PV resources, whose output duration varies from day to day.

The electric power industry recognizes the need for new methods to gauge

the impacts of uncontrollable renewable energy sources [23], and this need

will intensify as renewable energy penetration deepens.
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1.3 Overview of the proposed methodology

We propose a probabilistic PV resource output model (PPVOM) that cap-

tures the seasonal and diurnal characteristics of PV resource output, when

integrated into a power system, and thus explicitly represents the time-

dependent, variable and intermittent nature of the resources. We also pro-

pose the computationally tractable incorporation of this PPVOM into an

extended probabilistic simulation framework, which captures the interplay

between the PV resource output and the chronological load. Unlike the pre-

diction of short-term power output, our PPVOM takes the average of many

possible outcomes over a longer period and – unlike the long-term prediction

of energy production – captures shorter-term changes in PV resource output.

As a result, our methodology is best suited for application to longer-term

system planning. The incorporation of our PPVOM into the probabilistic

simulation framework, while maintaining the necessary time-dependence, is

crucial to obtaining the realistic measures of the variable effects. Conse-

quently, we employ an incorporation methodology based on that described

in [22], in which a wind resource output model is incorporated into the ex-

tended probabilistic simulation framework.

We construct the PPVOM in three separate steps. In step one, we scale

a seasonal set of daily PV output patterns, both in time and magnitude, into

characterizations that allow the meaningful comparison of the output pat-

terns on different days of the year. In step two, we classify the scaled-output

characterizations into distinct clusters that contain similar output patterns.

In step three, we scale the scaled-output characterizations of each cluster

into a class set of PV output representation patterns with appropriate mag-

nitudes, durations and resolutions. We approximate the class-conditioned,

cumulative probability distributions of the power output random variables

from the class sets of re-scaled PV output representations. We extend the

conventional probabilistic simulation framework [4] to incorporate the power

output random variables in a manner that maintains the time-dependence of

the PV resource output and its ability to be correlated to the chronological

load. The extension of the framework is accomplished by the effective appli-

cation of conditional probability concepts to the probabilistic representation

of the load random variable. We apply the extended framework to compute

the variable effects of interest in the form of system metrics. After we com-
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pute the metrics for each pattern class, we utilize conditional probability to

determine the seasonal system metrics.

1.4 Contents of the remainder of the thesis

We organize the thesis as follows. In Chapter 2, we describe the construction

of the PPVOM. We first describe the collection of the input dataset and then

detail the steps of scaling, clustering and re-scaling of the daily PV output

patterns for the approximation of the power output random variables. In

Chapter 3, making detailed use of conditional probability concepts, we de-

scribe the extension of the probabilistic simulation framework to incorporate

the PPVOM. In the same chapter, we describe how we apply the extended

framework for a case study.

In Chapter 4, we provide the details, the results and our analyses of

a number of representative simulation case studies, which demonstrate the

capability of our proposed methodology. We then provide concluding remarks

and outline future research topics in Chapter 5.

In Appendix A, we describe the instantaneous PV output model we use to

convert atmospheric data into PV output data. In Appendix B, we describe

the computation of benchmark PV output for the scaling and re-scaling pro-

cesses. Finally, in Appendix C, we detail the mechanics of our PV output

scaling and re-scaling algorithms.
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CHAPTER 2

THE PROBABILISTIC PHOTOVOLTAIC
RESOURCE OUTPUT MODEL

In this chapter, we present the development of a probabilistic model for the

large-scale PV resources sited at a single or multiple sites and integrated

into a power system: the PPVOM. With this model, we capture the time-

dependent, variable and intermittent nature of the PV resources. We de-

scribe the three development steps: the scaling of daily PV output patterns

for meaningful comparison of the output on different days of the year, the

classification of daily scaled-output patterns into pattern clusters and the re-

scaling of pattern clusters into pattern classes for the approximation of the

class-conditioned distribution functions of the PV output random variables.

We begin the development with a description of the input to the probabilistic

model.

2.1 Data needs for the construction of the probabilistic

model

PV output patterns vary significantly from season to season. For example,

cloudy days with lower PV output may occur frequently in the Fall season

and rarely in the Summer season. As such, we build the probabilistic PV

output model on a seasonal basis and the initial step is the collection of a

seasonal data set. For a system with PV resources at S sites, we consider

PV resource power output data where M values are used to describe the

output at a single site over a midnight-to-midnight period comprised of M

equal-duration sub-periods. Let u
(d,a)
s,m denote the average PV resource out-

put power at site s over sub-period m of day d in year a. We construct

the vector u
(d,a)
s , [u

(d,a)
s,1 , u

(d,a)
s,2 , . . . , u

(d,a)
s,M ]

T ∈ RM to rep resent the PV

output pattern at the site s over day d in year a. We create such vec-

tors for each site s = 1, 2, . . . S, and we then construct the super-vector

8



u(d,a) , [u
(d,a)
1

T
, u

(d,a)
2

T
, . . . , u

(d,a)
S

T
]
T

∈ R(S·M) to represent the midnight-to-

midnight PV output at all the S sites on day d in year a. We construct the

seasonal, input data set U corresponding to all the days in the same season

of interest that constitute the set D and for all the years available denoted

by A = {a1, a2, . . . aA}. We define

U = {u(d,a) : a ∈ A, d ∈ D} . (2.1)

In general, the larger the data set U , the better the ability to represent

the power output of the multi-site PV resources. As PV resource output

measurement data are scarce, or non-existent in the case of new or future

installations, we make use of past atmospheric data and an instantaneous

PV resource output model to approximate the output power of PV plants.

In Appendix A, we provide the details for the instantaneous model we use in

our work. Having assembled the input data set, we proceed with the scaling

process described in the next section.

2.2 Scaling of the daily PV output patterns

The careful examination of PV output data for a specified season using multi-

year observations leads to the realization that distinct daily output patterns

are discernible. However, days with similar output patterns may have signif-

icantly different output magnitudes and are associated with distinct sunrise

times and sunset times. For example, the PV output patterns of the two

days depicted in Fig. 2.1a appear to be similar, notwithstanding their dif-

ferent magnitudes, sunrise times and sunset times. Indeed, the variation of

the sunrise and sunset times, and hence the daily PV output durations, can

be considerable over a season, as Fig. 1.2a clearly indicates. The maximum

daily output over a year, an example of which is presented in Fig. 1.2b, fluc-

tuates significantly from day to day but has a discernible pattern over the

year. We develop a scaling algorithm to convert the midnight-to-midnight

power output patterns into scaled (per-unit) sunrise-to-sunset output char-

acterizations that allow the meaningful comparison of different days in the

season. The application of the scaling algorithm results in the ability to dis-

cern the similar patterns in a very effective way. For example, its application

9



to the power output patterns in Fig. 2.1a results in the similar scaled-output

patterns in Fig. 2.1b.
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Figure 2.1: Daily PV plant (a) power output patterns for two days of the
year in the same season, computed using one-minute resolution atmospheric
data collected at Las Vegas, NV and published by NREL [5], and (b) their
corresponding scaled-output characterizations obtained by application of the
scaling algorithm.
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For our scaling algorithm, we use a uniform time grid, which consists of a

specified number J scaled sub-periods from sunrise to sunset, to represent the

daily PV output for each day. Clearly, as the number of scaled sub-periods

is fixed, the scaled sub-periods are shorter on days with shorter PV output

duration and longer on days with longer PV output duration. We modify the

clearness index approach, widely employed by atmospheric scientists [24], to

scale the PV output magnitudes. The clearness index is the value of mea-

sured solar radiation divided by the benchmark calculated extraterrestrial

radiation [24] and thus can be considered a “per-unit” measure. Typically,

we observe distortion in clearness indices at times close to sunrise and sun-

set. We use computed clear-sky radiation values and an instantaneous power

output model to compute a benchmark PV output pattern for the day and

site of interest. However, rather than dividing the measured PV output mag-

nitudes by their corresponding benchmark output magnitudes, we divide the

measured magnitudes by the maximum value of the benchmark PV output

pattern over the day. In this way, we eliminate the distortion problems asso-

ciated with clearness indices. In Appendix B, we describe the computation of

the clear sky-radiation values and the subsequent computation of the bench-

mark PV output that we use in our work.

We may view the scaling process to be a mapping αs(·, ·) of the vector

u
(d,a)
s representing the power output on day d in year a at site s into the

scaled-output characterization vector y(d,a)
s
∈ RJ :

y(d,a)
s

= αs(u
(d,a)
s , d) . (2.2)

We provide an illustrative example, in Fig. 2.2, of the application of this

mapping to the single Abilene, TX, site for the day March 18, 1998. The

detailed mechanics of the mapping are described in Appendix C.

The scaled-output characterization y(d,a)
s

, [y
(d,a)
s,1 , y

(d,a)
s,2 , . . . , y

(d,a)
s,J ]

T ∈
RJ describes a scaled-output power pattern, where ys,j is the scaled power

output at site s for the scaled sub-period j. We construct the super-vector

y(d,a) , [y(d,a)
1

T
, y(d,a)

2

T
, . . . , y(d,a)

S

T
]
T
∈ R(S·J) to characterize the scaled-

outputs at the S sites with PV resources on day d of year a. For the S sites we

construct the vector scaling function α(·, ·) , [α1(·, ·), α2(·, ·), . . . , αS(·, ·)]T

and we apply it to u(d,a), as depicted in Fig. 2.3, to obtain the super-vector

y(d,a), i.e.,
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Figure 2.2: Example of a PV (a) output pattern (M = 24), and (b) corre-
sponding scaled-output pattern (J = 15), for a PV plant sited at Abilene,
TX on March 18, 1998 (day 77 of of the year).
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Figure 2.3: The scaling of a super-vector u(d,a) into the scaled-output super-
vector y(d,a) using the scaling functions for the S sites.

y(d,a) = α(u(d,a), d) . (2.3)

We apply (2.3) to perform the scaling process on the seasonal set U of daily

PV power output patterns for the set of days D in each year a ∈ A to obtain

the seasonal set Y of the daily scaled-output characterizations, where

Y = {y(d,a) : y(d,a) = α(u(d,a), d), u(d,a) ∈ U , d ∈ D, a ∈ A} . (2.4)

We work with the scaled super-vectors in Y to classify the days with similar

patterns into clusters.

2.3 Classification of the scaled daily PV output

patterns

We use a clustering scheme to classify the seasonal set of daily scaled-

output characterizations into distinct clusters. After extensive experimen-

tation, we selected the K-means algorithm with a Euclidean distance mea-

sure [25] as most appropriate for this purpose. We deploy the K-means

clustering algorithm on the set Y to construct the K scaled-output pattern

clusters R1,R2, . . . ,RK . We illustrate the clustering process conceptually

in Fig. 2.4. Each cluster Rk is a set of similar daily, scaled-output characteri-

zations and we associate the probability πk computed as the fraction of daily

output patterns classified in the set Rk of the total elements in the scaled

seasonal set Y :

πk =
|Rk|
|Y| . (2.5)
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The clustering algorithm disaggregates Y into the K non-overlapping

pattern clusters Rk with the properties

Rk ∩Rk′ = ∅, k 6= k′ and Y =
K⋃
k=1

Rk .

The pattern clusters Rk contain the characterizations of the similar daily

patterns of the doubly-scaled output vectors at the S sites. To be useful

in deploying such outputs when PV resources are integrated into the power

system, they need to be judiciously re-scaled. We describe the re-scaling

process in the next section.

2.4 Re-scaling of the scaled PV output pattern clusters

In this section, we describe how we re-scale the scaled daily PV output char-

acterizations in the pattern clusters Rk for use in the extended probabilistic

simulation framework. The re-scaled representations must have the appropri-

ate magnitudes and be expressed on the 24 hour midnight-to-midnight time

scale. We use an equal-duration re-scaled sub-period representation of the

24-hour period from midnight-to-midnight. We denote the PV output at site

s for the H re-scaled sub-periods by the vector p
s
, [ps,1, ps,2, . . . , ps,H ]T ∈

RH . We construct the super-vector p for the output at the S sites with

p , [pT
1
, pT

2
, . . . , pT

S
]T ∈ R(S·H).

We may view the re-scaling as the inverse of the scaling function described

14



y1,1 y1,2 . . . y1,J → β1(·, d) → p1,1 p1,2 . . . p1,H
y2,1 y2,2 . . . y2,J → β2(·, d) → p2,1 p2,2 . . . p2,H

...
...

. . .
...

...
...

...
. . .

...
yS,1 yS,2 . . . yS,J → βS(·, d) → pS,1 pS,2 . . . pS,H

Figure 2.5: The re-scaling of a super-vector y into the re-scaled output super-
vector p for day d using the re-scaling functions for the S sites.

in Section 2.2. The idea is to take an element y ∈ Rk and transform it into

an element p ∈ R(S·H). Let β(·, d) denote the mapping of y ∈ Rk into the

vector p for use to represent a day d ∈ D, i.e.,

p = β(y, d) . (2.6)

As depicted in Fig. 2.5, the vector function β(·, d) has S components βs(·, d)

with one for each site s = 1, 2, . . . , S. The day d has an associated output

duration for each site in accordance with sunrise/sunset times. We provide an

illustrative example, in Fig. 2.6, of the application of the re-scaling function

for the day May 15 at the single Abilene, TX, site. The detailed mechanics

of the single-site re-scaling function are described in Appendix C.

We associate an output class P(d)
k of re-scaled PV output representation

super-vectors with each pattern cluster Rk for the day d. We assemble

P(d)
k = {p : p = β(y, d), ∀y ∈ Rk} . (2.7)

We make use of the set P(d)
k to approximate the distributions of the PV output

power random variable conditioned on the output class k, as we describe in

the next section.

2.5 Approximation of the conditional distributions of

the PV output random variable

The re-scaled power output super-vectors in the set P(d)
k , which represent

the possible realizations of daily output patterns at the S sites on day d,

may be considered to be representative samples of the distribution of the

multi-dimensional hourly PV output random variables (RVs). From these re-

alizations, we approximate the joint cumulative distribution function (CDF)

15



 
0.00

0.25

0.50

0.75

1.00

1.25

1.50

j

sc
a
le
d
o
u
tp
u
t
(p
.u
.)

1 5 10 15

y ∈ Rk

(a)

 
0.0

0.5

1.0

1.5

2.0

h

o
u
tp
u
t
(M

W
)

1 8 16 24

p ∈ P(d)
k

(b)

Figure 2.6: PV (a) scaled-output characterization (J = 15), and (b) corre-
sponding re-scaled power output representation (H = 24), for a PV plant
sited at Abilene, TX for the day d of May 15 (day 135 of the year).
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of the multi-dimensional RVs of the power output at the S sites for the H

re-scaled sub-periods conditioned on being in the pattern output class k. In

Fig. 2.7, we present an example of the set P(d)
k and its corresponding approx-

imated conditional CDF for the pattern class k, further conditioned on site

1 and re-scaled sub-period 16. We are unable to present the full joint CDF

pictorially as there are S ·H dimensions.

2.6 Choice of the time-resolution of the scaled-output

The parameter J , i.e., the number of values we use to characterize a daily

scaled-output pattern at each site, plays a significant role in capturing the

details of the PV outputs. The parameter dictates the time-resolutions of the

scaled-output characterizations, and so we must choose J to be sufficiently

high so as to limit the error associated with the scaling and re-scaling pro-

cesses. We present the sensitivity of the scaling and re-scaling process error

to J for two different input/output time-resolutions in Fig 2.8. To perform

this sensitivity study, we scale and then re-scale one year of input data, from

and to the same time-resolution scales, i.e., M = H, and compute the aver-

age absolute difference of the re-scaled output representations to the input

PV output power patterns as a percentage of the average PV output value.

Clearly, for a finer time resolution, i.e., higher values of M and H, a higher

value of J is required for the scaled-output characterizations. We observe

that as J increases, the scale and re-scale error decreases.

2.7 Summary

In this chapter, we describe the construction of a probabilistic model for

the output of PV resources at a single or multiple sites integrated into a

power system: the PPVOM. The PPVOM is built on a seasonal input data

set of daily PV output patterns. The construction process involves three

main steps. In step one, we scale the daily PV output patterns, both in

time and magnitude, into scaled-output characterizations so that we may

compare the output on different days of the year. In step two, we classify the

scaled-output characterizations into K pattern clusters. In step three, we re-

17
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Figure 2.7: An example of (a) a set P(d)
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power output variable conditioned on site 1 and re-scaled sub-period 16.
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Figure 2.8: Sensitivity of the scale and re-scale error to the number of scaled
sub-periods J for H and M equal to 24 (hourly input/output resolution) and
H and M equal to 1440 (one-minute input/output resolution).

scale the elements of each pattern cluster into the power output elements of

the corresponding output class for each day of interest. We use these pattern

classes to approximate the conditional distributions of the PV output random

variables that define the daily pattern. In the next chapter, we describe the

extension of the probabilistic simulation framework and the incorporation of

these class-conditioned CDFs of the PV output RVs into the creation of the

extended framework.
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CHAPTER 3

THE EXTENDED PROBABILISTIC
SIMULATION FRAMEWORK

Probabilistic simulation is widely used to evaluate the power system variable

effects – measured in terms of the appropriate economic, environmental and

reliability metrics. Simulation tools do not, however, have the capability

to effectively represent time-varying resources such as PV plants with their

highly volatile and intermittent outputs. In this chapter, we focus on the ex-

tension of the probabilistic simulation framework to allow the incorporation

of the PPVOM so as to explicitly represent these resources with time vary-

ing outputs. The modifications of the conventional probabilistic simulation

framework [4] are carried out in a manner similar to that for incorporating

a wind model [22]. Thus, we describe the extension of the framework with a

focus on these aspects associated with the incorporation of the PPVOM. We

first describe the extension of the conventional framework and then describe

its application to run case studies of systems with integrated PV resources.

3.1 Extension of the probabilistic simulation

framework

The evaluation of the longer-term metrics requires that the seasonal char-

acteristics of all the variables over the entire study period be appropriately

captured. We partition the study period into W non-overlapping simulation

periods, during which we assume uniform characteristics prevail for all load

and controllable resource variables. The simulation periods need not nec-

essarily have the same duration. Each simulation period w has its own set

of committed units, resource characteristics and load characteristics and is

comprised of Ωw sub-periods. We define Ww , {1, 2, . . . Ωw} to be the

sub-period index for simulation w and we perform probabilistic simulation

of each of the simulation periods.
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The mechanics of the simulation framework involves the convolution of

the load RV with the available capacity RVs of the controllable generation

units as described in Section 4.1 of [26]. We proceed with this methodology

and approximate the CDF of the load RV from samples of historical load.

If a sample lγ represents the load during sub-period γ, we approximate the

CDF of the system load RV L˜ from the set of load samples L, where

L = {lγ : γ ∈ Ww} . (3.1)

In order to capture the time-dependence of the PV output and its correlation

to the chronological load, both the simulation and PV output must have

commensurate time resolution. Thus, the sub-periods of the simulation must

have the same duration as each re-scaled sub-period h of the re-scaled PV

output representations we describe in Section 2.4. The time-resolution thus

specifies the granularity of the simulation: we cannot capture any phenomena

with durations shorter than the resolution. We define for each simulation

period w the subsets W(h)
w for each sub-period h = 1, 2, . . . , H, which are

the subsets of the indices in Ww that correspond to the sub-period h of the

midnight-to-midnight day. We also define H subsets L(h) of the set L, where

L = {lγ : γ ∈ W(h)
w } . (3.2)

The following properties hold for the sets W(h)
w and the set Ww:

W(h)
w ⊂ Ww, h = 1, 2, . . . , H ,

Ww =
H⋃
h=1

W(h)
w and

W(h)
w ∩W(h′)

w = ∅, h 6= h′ .

We approximate the CDF FL˜|h of the RV L˜ conditioned on the sub-period

h from the load samples in the subset L(h) and using conditional probability

we restate the CDF FL˜:
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FL˜(l) = Pr{L˜ ≤ l}

= Pr{L˜ ≤ l in every sub-period h}

=
H∑
h=1

Pr{L˜w ≤ l | sub-period h}Pr{sub-period h}

=
1

H

H∑
h=1

FL˜|h(l) . (3.3)

We approximate the joint CDF FP˜|k,h of the system PV output RV P˜ for

each simulation conditioned on pattern class k and sub-period h from the

elements of the super-vectors in sets P(d)
k corresponding to that sub-period.

We choose d to be the middle day of the simulation period (in the case of

two middle days, we arbitrarily choose one).

In the studies we present in this thesis, we assume the power system has

adequate and lossless transmission and thus perform single-node simulation.

Thus, in approximating the joint CDF FP˜|k,h, for sub-period h, we sum the

PV outputs ps,h at all the sites s = 1, 2, . . . , S sites to compute the total

PV output:

ph =
S∑
s=1

ps,h . (3.4)

However, the reader should note that multi-node analysis, with associated

multi-node load information and without applying (3.4), may be performed

by modeling the PV output and load in the same manner as we describe

above, conditioning on both the sub-periods h and sites s.

We capture the effects of the time-dependent PV resources, by computing

the load that the controllable resources must supply, i.e., the load minus

the PV output, with explicit recognition of the time-dependent nature of

the load and the PV output. In doing so, we assume that all PV resource

production will be used to serve the load, and thus we are able to incorporate

the PPVOM prior to the convolution with the available capacity RVs of the

controllable generation units. Through the convolution of L˜ conditioned on

sub-period h and the negative of P˜ conditioned on pattern class k and sub-

period h, we are able to approximate the CDF FC˜|k,h of the RV C˜ , the RV of
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the load that is demanded from the controllable generation units, conditioned

on pattern class k and the sub-period h. The expression of the “net-load”

RV C˜ for pattern class k and sub-period h results in an expression analogous

to (3.3):

FC˜|k(c) =
1

H

H∑
h=1

FC˜|k,h(c) . (3.5)

For each FC˜|k, where k = 1, 2, . . . , K we proceed with the conventional

simulation framework methods to find expected system metrics for the sim-

ulation period. We obtain seasonal metrics by summing the pattern-class

probability-weighted expected values computed in the simulation.

3.2 Application of the extended probabilistic

simulation framework

In general, the variation of load patterns from week to week is slight and, in

addition, there are periods of multiple weeks over which generation units are

not committed due to planned maintenance and/or their economics. Con-

sequently, we simulate representative weeks, each of which represents the

loads and the committed units for multiple weeks of the year. We weigh the

metrics evaluated in the simulation by the number of weeks represented.

As we discuss in Chapter 2, the magnitude and duration of daily PV

output depends significantly on the day of the year and, accordingly, the

re-scaling process we describe in Section 2.4 re-scales according to a day d

of the year. For each representative week we re-scale the class sets of scaled

daily PV output pattern characterizations according to the middle day of the

period being represented (not necessarily the middle day of the representative

week). Clearly, a representative week must represent a continuous period, i.e.,

the representative week may not represent two or more discontinuous periods

of time. The period must be limited in order to limit the error associated

with using the middle day instead of simulating each day individually. We

limit the representation sub-period to three weeks in the Spring and the Fall

seasons, during which the daily PV output duration changes faster, and five
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weeks in the Winter and the Summer seasons.

3.3 Summary

In this chapter, we discuss the extension of the probabilistic simulation frame-

work so as to extend its capability to explicitly represent PV resources. We

also describe the application of the framework using the concept of represen-

tative weeks and discuss the matter of selecting the appropriate day for the

re-scaling process. In doing so, we have completed the presentation of the

construction of our tool.
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CHAPTER 4

SIMULATION STUDIES OF SYSTEMS
WITH INTEGRATED PHOTOVOLTAIC

RESOURCES

In this chapter, we present a set of representative simulation results to demon-

strate the capability of the extended probabilistic simulation methodology

that incorporates the PPVOM we developed. We use a modified version of

the IEEE Reliability Test System (RTS) [27] to carry out the studies pre-

sented. We describe the test system characteristics, the simulation set-up

and provide simulation results and analysis.

4.1 Details of the system test cases

We use a modified version of the RTS to perform our simulations and the

modifications we introduce result in a system with a scaled version of the

controllable resource mix, by generation type, of the ERCOT system [28]. We

maintain the RTS-specified forced outage rates, heat rates and maintenance

requirements and use the most recent EIA fuel cost and emission rate data

[29], as summarized in Tables 4.1 and 4.2. We scale the 2007 ERCOT hourly

load data [6] to result in an annual peak load of 2,850 MW, the peak level

specified in the RTS [27]. We provide general characteristics of the modified

test case in Table 4.3.

We construct the seasonal PPVOMs given by (2.1) to (2.7) using atmo-

spheric measurement data for the five years from 1998 to 2002 collected at

five different sites (Abilene, Amarillo, Austin, Corpus Christi and Houston)

in Texas. The hourly-resolution (M = 24) atmospheric data consists of the

NREL solar radiation data [7] and the NOAA temperature and wind speed

data [8]. We partition the data according into the Winter, Spring, Summer

and Fall seasons defined in Table 4.4. In Table 4.5, we list the geographic

and installation configuration parameters used in the instantaneous output

modeling of the integrated PV plants. The PV installations are Kyocera
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Table 4.1: Characteristics of the controllable generator resource mix of the
modified RTS.

no. unit minimum forced scheduled heat fuel
of size capacity outage maintenance rate type

units (MW) (MW) rate (weeks/year) (Btu/kWh)

4 20 10 0.02 2 16,000 gas
4 20 10 0.10 2 12,000 gas
6 80 20 0.02 3 17,107 coal
6 100 30 0.04 3 11,000 gas
4 160 60 0.04 4 12,000 coal
3 200 70 0.05 4 11,000 gas
2 350 140 0.08 5 10,200 coal
1 400 200 0.12 6 12,751 nuclear

Table 4.2: Fuel data.

fuel type
cost CO2 emission rate

($/MMBtu) (lb/MMBtu)

gas 4.43 117
coal 1.88 208

nuclear 0.82 0

Table 4.3: General characteristics of the modified RTS.

.
total installed capacity 3,580 MW

annual peak load 2,850 MW
total annual energy demand 14.632× 106 MWh
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Table 4.4: Day indices for the season partitions of the PV output data.

season indices of days

Winter 1, 2, . . . , 60, 335, 336, . . . , 366
Spring 61, 62, . . . , 151

Summer 152, 153, . . . , 243
Fall 244, 245, . . . , 334

Table 4.5: Geographic and installation configuration parameters of the PV
plants.

parameter
PV plant site

Abilene Amarillo Austin C.Christi Houston

longitude (◦) −99.71 −101.90 −97.74 −97.63 −95.09
latitude (◦) 32.47 34.99 30.29 27.88 29.56
altitude (m) 530 1068 213 6 6
time zone (h) −6 −6 −6 −6 −6
slope angle (◦) 32.47 34.99 30.29 27.88 29.56

azimuth angle (◦) 0 0 0 0 0

KC200GT PV Solar Cell arrays with Fronius IG2000 inverters, where pa-

rameters are given in [30] and [31].

We report on a variety of test cases that serve to illustrate the capability

of the extended probabilistic simulation methodology for evaluating power

systems with integrated PV resources. In Case A (the base case), we simu-

late the system with no PV resources. In Case B, we simulate a single PV

resource integrated into the system: a 500 MW nameplate capacity plant at

Corpus Christi. In Case C, we simulate the modified RTS with multiple in-

tegrated PV resources: 100 MW nameplate capacity plants sited at Abilene,

Amarillo, Austin, Corpus Christi and Houston. In Case D, we simulate the

modified RTS with the largest coal plant (350 MW) de-committed and 345

MW nameplate capacity PV plants added at each of the five sites listed in

Case C. We summarize the list of test cases in Table 4.6
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Table 4.6: Key characteristics of the system test cases.

.

system case key characteristics

A (base case) existing resource mix without PV resources

B
existing resource mix with a 500 MW PV plant at

Corpus Christi

C
existing resource mix with a 100 MW PV plants at

Abilene, Amarillo, Austin, Corpus Christi and Houston

D
existing resource mix with a 350 MW coal plant

de-committed and 345 MW PV plants at
Abilene, Amarillo, Austin, Corpus Christi and Houston

4.2 Setup of the simulation studies

We run simulation studies for each test system case using a study period of

one year, so as to capture the various seasonal characteristics of the study. We

partition the year into the same four seasons that we use for the PV resource

output data and perform a number of representative week simulations for

each of the seasons. In Table 4.7, we summarize the sixteen representative

week simulations we perform.1 In line with the load data, and hence the PV

output representation data, we use a one-hour resolution for all simulations.

We assume adequate and lossless system transmission and thus perform a

single-node analysis as described in Section 3.1. We model each conventional

generator with a two-state, full or zero capacity model and, using a loading

list approach, we specify a unit commitment schedule that satisfies the main-

tenance requirements, maximum/minimum conventional generator available

capacity levels and a reserves margin equal to 15% of the peak load for the

representative period plus 10% of the total nameplate capacity of the system-

integrated PV resources. In Fig. 4.1, we provide a plot of the peak/minimum

loads, maximum/minimum committed availability and reserve margins used

for each of the representative week simulations for Case B.

For each season, we construct four (K = 4) PV output pattern clusters

Rk with 128 (J = 128) sub-periods used to characterize the daily output

pattern at a single site. We then construct PV output patterns with an

hourly resolution (H = 24), in line with the resolution of the load data, for

1We represent the effect of the extra day of a leap year (d = 366) by adding a quarter-
day (1/28 week) to the period represented in simulation number two.
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Table 4.7: Representative week simulation periods.

season
sim. week period represented middle

number simulated (weeks) day indices day

Winter

1 49 4.14 335, 336, . . . , 363 349

2 2 4.89
364, 365, 366,

15
1, 2, . . . , 32

3 7 4 33, 37, . . . , 60 46

Spring

4 10 3 61, 62, . . . , 81 71
5 13 2 82, 83, . . . , 95 88
6 16 2 96, 97, . . . , 109 102
7 17 3 110, 111, . . . , 130 120
8 20 3 131, 132, . . . , 151 141

Summer
9 24 4 152, 153, . . . , 179 165
10 28 5 180, 181, . . . , 214 197
11 33 4.14 215, 216, . . . , 243 229

Fall

12 36 3 244, 245, . . . , 264 254
13 40 2 265, 266, . . . , 278 271
14 41 2 279, 280, . . . , 292 285
15 45 3 293, 294, . . . , 313 303
16 47 3 314, 315, . . . , 334 324
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Figure 4.1: The peak/minimum loads, maximum/minimum committed avail-
able capacities and peak load plus reserve margin for the representative week
simulations of Case B.

29



1 64 128
0.0

0.5

1.0

1.5

2.0

j

sc
al

ed
 o

ut
pu

t (
p.

u.
)

R1

1 64 128
0.0

0.5

1.0

1.5

2.0

j

sc
al

ed
 o

ut
pu

t (
p.

u.
)

R2

1 64 128
0.0

0.5

1.0

1.5

2.0

j

sc
al

ed
 o

ut
pu

t (
p.

u.
)

R3

1 64 128
0.0

0.5

1.0

1.5

2.0

j

sc
al

ed
 o

ut
pu

t (
p.

u.
)

R4

Figure 4.2: Case B, Summer season, pattern classes Rk

the middle day d of the represented period specified for each representative

week simulation. In Fig. 4.2, we provide plots of the super-vectors of the

four output pattern classes Rk computed for the Summer season simulation

of Case B. We order the clusters from largest to smallest and using (2.5), for

each scaled-output cluster of each season, we compute the probability πk, as

listed in Table 4.8 for Case B.

We proceed with the representative week probabilistic simulations for

each test system as described in Chapter 3. We compute the various eco-

nomic, environmental and reliability metrics – the expected production costs,

the expected CO2 emissions, the loss of load probability (LOLP) and the ex-

pected unserved energy (EUE) – as described in Chapter 4 of [26].
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Table 4.8: PV pattern class probabilities for Case B.

pattern class season
probability Winter Spring Summer Fall

π1 0.376 0.297 0.465 0.308
π2 0.332 0.259 0.278 0.279
π3 0.152 0.242 0.207 0.240
π4 0.139 0.202 0.050 0.174

Table 4.9: Case B expected production cost simulation results for the Sum-
mer season.

expected weekly representative week
production costs (106 $) simulation no.
pattern class prob.

9 10 11
k πk

1 0.465 15.27 16.33 17.04
2 0.278 15.38 16.45 17.15
3 0.207 15.34 16.40 17.11
4 0.050 15.53 16.60 17.30

probability-weighted
15.33 16.39 17.10

totals

4.3 Simulation results and analysis

We begin our presentation of the test case system results with an overview

of the expected production cost calculation for Case B. In Table 4.9, we

summarize the probability weighting of the expected production costs for

Case B in the Summer season. In a similar fashion, we then compute the

seasonal averages shown in Table 4.10. Finally, through seasonal probability

weighting we determine an annual metric.

In Table 4.11, we summarize the various annual metrics we compute from

the simulation of the four system cases (Case A to Case D) and provide

the reduction in metrics relative to the simulation of the base case (Case

A). In Table 4.12, we provide a breakdown, for each system case, of the

expected energy computed, measured in the percentage of the total expected

demanded energy (14.632× 106 MWh).

Both Cases B and C have a 500 MW, 17.54% of peak load, integrated

PV resource capacity; and the simulated operation of the systems results in
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Table 4.10: Case B expected production cost simulation result summary.

expected weekly season
production costs (106 $) (season-probability)

simulation no. Winter Spring Summer Fall

1/4/9/12 12.33 12.23 15.33 15.85
2/5/10/13 14.33 12.48 16.39 15.75
3/6/11/14 12.62 11.85 17.10 14.55
-/7/-/15 - 10.50 - 12.62
-/8/-/16 - 11.85 - 13.07

probability-weighted
13.17 11.72 16.29 14.25

totals

Table 4.11: Annual metrics for Case A to Case D.

metric
system case

Case A Case B Case C Case D

LOLP 0.0337 0.0164 0.0163 0.0347
LOLP reduction (%) - 51.3 51.6 −2.9

EUE (103 MWh) 48.8 21.4 21.3 47.4
EUE reduction (%) - 56.2 56.4 2.9

expected production costs (106 $) 745.48 723.35 723.57 653.91
prod. cost reduction (%) - 3.0 2.9 12.3

expected CO2 emissions (106 ton) 12.21 11.83 11.84 11.37
CO2 emission reduction (%) - 3.1 3.1 6.9

Table 4.12: Annual expected energy breakdown for Case A to Case D as a
percentage of the 14.632× 106 MWh of expected demanded energy.

expected energy system case
(%) Case A Case B Case C Case D

unserved 0.33 0.15 0.15 0.31
supplied by controllable generation 99.67 95.74 95.77 84.67

supplied by PV resources - 4.12 4.08 15.02
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energy penetrations (percentage of total energy production) of 4.12% and

4.08%, respectively. These two systems have reliability significantly superior

to that of the base case, and we attribute this to the correlation of the daily

PV resource output to the daily system load. Because the probabilistic simu-

lation framework simulates the controllable generators with constant output

capabilities and constant outage rates over the entire simulation period, for a

system with only conventional generation resources, outages are most likely

to be computed for the higher load hours of the day. Therefore, when we

integrate PV resources that provide additional capacity at these higher load

hours, the improvement in reliability is greater than the percentage energy

provided by the PV resources. In a separate study of wind resources, multi-

ple widely dispersed wind resources resulted in smoother total wind resource

output patterns and reliability improvements superior to that of a single

large resource [22]. However, for Cases B and C, we observe little difference

in their reliability metrics, despite the dispersement of the PV resources in

Case C. From this observation, we conclude that the PV resource outputs at

the various sites in Case C are highly correlated. This issue is of significant

interest to system planners who might hope to improve the system reliability

through disperesed PV resources.

We note that for each of the three cases with integrated PV resources, the

reduction in both expected production costs and expected emissions are lower

than the energy penetration level. Although the simulated operation does

result in the displacement of the most expensive of the additional generation

blocks, the most expensive and polluting, minimum-capacity blocks of the

conventional generation units are not displaced by the PV resources, and the

higher reserves levels require a greater number of units to be committed.

In our simulation of Case D, the energy provided by one of the two largest

coal units in the base case is displaced by the energy provided by 1,725 MW

of PV resources at the five sites.2 The de-commitment of the 350 MW coal

unit reduces the average available capacity and, hence, the system reliability

over the study period. Conversely, the substantial PV resources help to raise

the reliability level by providing additional capacity during the higher diurnal

load hours. The simulation results indicate a slight net increase in LOLP and

a slight net decrease in EUE with respect to the base case.

2We take the Case A commitment schedule and de-commit the first (350 MW) coal
unit on the loading list.
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Figure 4.3: Sensitivity study of the system metrics to the nameplate capac-
ity of PV plants installed at Abilene, Amarillo, Austin, Corpus Christi and
Houston.

We study the sensitivity of various metrics to the installed PV capac-

ity by varying the nameplate capacity of the PV resources in Case C from

50 MW to 500 MW in 50 MW increments and simulating the various mod-

ified cases. In Fig. 4.3, we provide a plot of the reduction in simulation

metrics for the various modified cases. At the nameplate capacities studied,

we see a trend of diminishing returns for the reliability metrics and almost

linear production-cost and CO2 emission reduction. We see a similar trend

to that of the reliability metrics in Fig. 4.4, which shows the change in the

effective load carrying capability (ELCC). We define the ELCC as the load

increment that a system can support after a change in its resource mix while

maintaining the same reliability level [32]. These observations help to vali-

date our methodology because we expect diminishing returns with increased

uncontrollable and intermittent resources.

The representative simulation studies we have presented showcase only a

small subset of the key observations and metrics in which system planners,

investors and regulators may be interested. There is also room for the ex-

tension of the tool to model other solar resources as we discuss in the next

chapter.
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Figure 4.4: Sensitivity of the ELCC to the nameplate capacity of PV plants
installed at Abilene, Amarillo, Austin, Corpus Christi and Houston.
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CHAPTER 5

CONCLUSION

In this thesis, we present the development and testing of a planning tool

to quantify the variable effects of integrated, utility-scale PV resources on

power systems over the longer-term. Based on historical data and using a

scaled-output pattern-class approach, we construct the PPVOM in a manner

that captures the time-varying, intermittent and uncontrollable nature of the

resources in addition to capturing seasonal variation. We extend the widely

used probabilistic simulation framework so as to incorporate the output of the

PPVOM and through the application of conditional probability concepts, we

are able to maintain the time-dependence between the load and PV resource

random variables and thus obtain realistic results. The extended probabilistic

simulation framework gives us the capability to determine reliability indices

and expected economic and environmental costs. This capability, which we

demonstrate by way of a number of example case studies, is very useful in

many areas of power system planning, including investment decision-making

and policy analysis.

There is great potential to further the research we have undertaken. Be-

cause utility-scale PV resources are often located far from load centers, the

incorporation of transmission constraints, using multi-node analysis, is of

great interest. Another challenge is the modeling of concentrated solar power

(CSP) resources. CSP modeling includes the generally complex modeling of

the thermal storage that gives the operators a degree of control and thus

results in variable power output durations. Looking further ahead, as dis-

tributed PV resource data becomes available, an opportunity arises in the

development of distributed PV resource models.
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APPENDIX A

THE TIME-VARYING, INSTANTANEOUS
PHOTOVOLTAIC OUTPUT MODEL

We make use of a time-varying, instantaneous PV output model (TVIPVM)

to approximate the PV resource output at a specified site. The model is com-

prised of several components that we have combined for use as the TVIPVM

in our research. In this appendix we provide the detailed construction of the

model. We also provide details for the computation of the clear-sky radia-

tion values, which are integral to the computation of the benchmark output,

which we describe in Appendix B. The reader should note that the notation

we use in this appendix does not relate to the notation used in the rest of

the thesis.

The inputs to the TVIPVM are the set of atmospheric measurements, as

listed in Table A.1, measured at time t on day d of the year. In addition, we

also input the parameters associated with the site location, resource technol-

ogy and site installation configuration of the PV resource. The output Pac of

the TVIPVM is an estimate of the instantaneous power output to the grid.

A.1 Clear-sky radiation

This section describes the modeling of clear-sky beam solar radiation that is

used to create benchmark PV electricity production data. The reader should

note that the data produced can also be used in the modeling of solar thermal

Table A.1: Atmospheric measurement input to the TVIPVM.

.

symbol atmospheric measurement

Gh global-horizontal solar radiation
Gb beam direct solar radiation
Ta ambient air temperature
vw wind speed
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production.

It is assumed that the sun emits radiation at a constant rate. The solar

constant Gsc is the energy from the sun per unit time received on a unit area

of a surface perpendicular to the direction of propagation of the radiation

at mean earth-sun distance outside the atmosphere and is approximated at

1367 W/m2 [24]. As the earth-sun distance varies, we model the extraterres-

trial radiation incident on a plane normal to the radiation Gon, on day d of

the year by

Gon = Gsc(1 + 0.033 cos
360d

365
) . (A.1)

The zenith angle θz is the angle between vertical and the line to the sun.

The air mass ratio m is the ratio of the mass of the atmosphere through

which it passes to the mass it would pass through if the zenith angle was

zero. We approximate the relationship between these two variables by

m =
1

cos θz
. (A.2)

Direct beam radiation is the solar radiation received from the direction of

the sun. For an atmospheric transmittance τb, we approximate the clear-sky

beam radiation on a surface normal to the beam radiation Gb by

Gb = Gonτb , (A.3)

and the horizontal surface clear-sky beam radiation Gbh by

Gbh = Gon
τb
m

. (A.4)

We compute the atmospheric transmittance τb for beam radiation by

τb = a0 + a1 exp (−a2m) , (A.5)

where the constants a0, a1 and a2 are computed by

a0 = r0(0.4327− 0.00821(6− A)2) , (A.6)

a1 = r1(0.5055 + 0.00595(6.5− A)2) and (A.7)

a2 = r2(0.2711 + 0.01858(2.5− A)2) , (A.8)
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Table A.2: Atmospheric transmittance calculation constants for different
climate types.

climate type r0 r1 r2

default 1.00 1.00 1.00
tropical 0.95 0.98 1.02

mid-latitude summer 0.97 0.99 1.02
sub-arctic summer 0.99 0.99 1.01
mid-latitude winter 1.03 1.01 1.00

where A is the altitude of the collector in meters and the constants r0, r1

and r2 depend on the climate type, as listed in Table A.2.

Diffuse radiation is solar radiation that does not come directly from the

sun. This radiation is mostly that which is scattered by air molecules, dust

and water vapor.

A.2 Solar collector

Global collector radiation is the sum of the beam, diffuse and reflected ra-

diation on a collector. The global radiation on a solar collector is the most

significant input to a PV cell model. In this section, we present the model

we use to determine the global radiation on a flat panel solar collector and

describe the relationship between the model and time.

A.2.1 Radiation direction

To determine the direction of beam radiation on a surface, we must know

the various angles and their relationships to one another. Table A.3 lists and

defines the pertinent angles, as depicted in Figure A.1, for a flat plate solar

collector.

We approximate the declination angle δ, by

δ = 23.45 sin (360
284 + d

365
) . (A.9)

The relationship between various angles are well established [33]. We

determine the angle of incidence θ by
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Table A.3: Pertinent angles.

symbol name definition

φ latitude angular geographic location relative to the
equator; north positive

δ declination angular position of sun relative to the
equator at solar noon; north positive

β slope (tilt) angle between the collector plane and the
horizontal

γ surface angle angle between the local meridian and the
normal to the collector surface as measured
on a horizontal plane; west positive

ω hour angle angular displacement of the sun relative to
the local meridian due to the rotation of
the earth on its axis (15◦ per hour); after-
noon positive

θ incidence angle angle between beam radiation and normal
to the collector surface

θz zenith angle angle between vertical and the line to the
sun

αs solar altitude
angle

angle between the horizontal and the line
of the sun

γs solar azimuth
angle

angle between projection of sun on the hor-
izontal plane and south; west positive

Figure A.1: Pertinent angles for a flat plate solar collector [24].
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cos θ = sin δ sinφ cos β − sin δ cosφ sin β cos γ

+ cos δ cosφ cos β cosω + cos δ sinφ sin β cos γ cosω

+ cos δ sin β sin γ sinω . (A.10)

A.2.2 Solar time

The computation of θ using (A.10) depends on the hour angle ω, which is

the angular displacement of the sun relative to the local meridian due to the

rotation of the earth on its axis. This angle relates directly to solar time tso.

Solar noon is the time at which the sun crosses the meridian and ω equals

zero. We compute tso, in minutes, by

tso = 720 + 4ω . (A.11)

Standard time tst and solar time tso are offset due the difference in longitude

of the collector Lc, and the longitude of the standard time meridian Lst. An

additional correction E, which is a function of the day of the year, is required

to take into account perturbations in the earth’s rotation [33]. We compute

tst by

tst = tso − 4(Lst − Lc)− E , (A.12)

where E is given by

E = 229.2(0.000075 + 0.001868 cosB − 0.032077 sinB

− 0.014615 cos 2B − 0.04089 sin 2B) , (A.13)

and B is given by

B = (n− 1)
360

365
. (A.14)

Of particular interest are the times at sunset and sunrise. The sunset hour

angle ωs, which is equal to the negative of the sunrise hour angle, is a function
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Table A.4: Radiation measures.

symbol radiation name

Gsc solar constant
Gon normal extraterrestrial
Gb direct beam
Gbh beam horizontal
Gdh diffuse horizontal
Gh global horizontal
Gbc beam collector
Gdc diffuse collector
Grc reflected collector
Gc global collector

of the latitude and the declination angle. We compute ωs by

ωs = − tanφ tan δ , (A.15)

and then compute sunrise and sunset times by (A.11) and (A.12). We also

use (A.11) and (A.12) in reverse to find the hour angle ω for a specific time

tst.

A.2.3 Collector radiation

Given the global horizontal radiation, direct beam radiation, the time and

the day of the year, we are able to determine the total radiation incident

on the collector. Table A.4 lists the various radiation measures we use. We

determine the global (or total) collector radiation Gc by the following:

Gdh = Gh −Gb cos θz , (A.16)

Gbc = Gb cos θ , (A.17)

Gdc = Gdh(
1 + cos β

2
) , (A.18)

Grc = ρ(Gb sinαs +Gdh)(
1 + cos β

2
) and (A.19)
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Figure A.2: Single diode model circuit diagram [30].

Gc = Gbc +Gdc +Grc , (A.20)

where ρ is the ground reflectance coefficient. For collectors with the ability

to track the sun, modified versions of (A.17) to (A.19) exist, as described in

[34].

A.3 The photovoltaic array

There exist many models for the behavior of a PV array. The single diode

model has a balance of accuracy and simplicity and is widely used in output

estimation [24, 34]. Figure A.2 shows the circuit diagram of the single diode

model we use. In this section, we describe the use of the single diode model

to estimate PV array power output.

A.3.1 Radiation spectra

PV cells generate current by using the energy of a specific band of the solar

radiation spectrum to free electrons in a doped semiconductor material, such

as silicon. As a consequence, the magnitude of power output from a PV

array is dependent upon both the magnitude and spectrum of the incident

radiation.

The attenuation and scattering of radiation at different frequencies varies,

depending on the makeup of the atmosphere through which the radiation

travels. In this model, however, it is assumed that the distribution of the

spectrum of the solar beam radiation at earth level is constant, irrespective
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of its magnitude. This assumption allows the use of the single diode model,

which directly uses incident solar radiation magnitudes.

A.3.2 The power output curve

The power output curve, for different values of voltage V of an array at a

given collector radiation Gc and cell temperature Tc are determined by

I = Ipv − I0[exp (
V +RsI

VTa
)− 1]− V +RsI

Rp

and (A.21)

P = V I , (A.22)

using the parameters listed in Table A.5. These parameters, though not ex-

plicitly provided by array manufacturers, may be calculated from the data

sheet information normally provided [30]. Many of the parameters are func-

tions of collector radiation and cell temperature as per the following:

VT =
NskTc
q

, (A.23)

whereNs is the number of cells connected in series, k is the Boltzman constant

(1.3806503×10−23 J/K ) and q is the electron charge (1.60217646×10−19 C);

Ipv = (Ipv,n +KI(Tc − Tc,n))
Gc

Gc,n

, (A.24)

where Gc,n, Ipv,n and Tc,n are the nominal collector radiation, cell current and

cell temperatures and KI is the short circuit current/temperature coefficient;

I0 =
Isc,n +KI(Tc − Tc,n)

exp(Voc,n+KV (Tc−Tc,n)
aVT

)− 1
, (A.25)

where Isc,n and Voc,n are the short circuit current and open circuit voltage

at nominal conditions and KV is the open circuit voltage/temperature coef-

ficient; and

Rp =
Rp,nGc,n

Gc

, (A.26)

where Rp,n is the nominal parallel resistance.
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Table A.5: Parameters for the single diode model.

symbol parameter

Ipv PV current
I0 diode saturation current
a diode ideality factor
VT thermal voltage
Rs series resistance
Rp parallel resistance

A.3.3 Maximum power point tracking

Once the power output curve for an array is known, the operating point

needs to be determined. In our research we assume a maximum power point

tracking (MPPT) system is in place for the array. This system adjusts the

operating voltage V , such that the power output is maximized. In order

to determine this maximum power point, the derivative of the power with

respect to voltage is set to zero, i.e.,

dP

dV
= Ipv − I0[exp (

V +RsI

VTa
)− 1]

− V I0 exp (
V +RsI

VTa
)− 2V + IRs

Rp

= 0 , (A.27)

and solved simultaneously with (A.21) to find the maximum power point

voltage and current and the associated maximum dc power output Pdc. These

equations are nonlinear and require an iterative solution method.

A.3.4 Cell temperature

As described above, the temperature Tc of the cells within a PV array affects

the efficiency of the array. We use the ambient air temperature Ta and wind

speed vw at a site to calculate the back surface module temperature Tm by

Tm = Ta +Gc exp(b1 + b2vw) , (A.28)

where b1 and b2 are empirically determined constants. We then compute Tc
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by

Tc = Tm +
Gc

Gc,n

∆T , (A.29)

where ∆T is the empirically determined constant for the cell-to-back-surface-

module temperature difference.

A.4 Inverter

The final computation for the TVIPVM entails the modeling of the action

of the inverter. The inverter is used to convert the dc power produced by

the solar array into ac power so that it can be injected into the power grid.

We use the inverter model developed by Sandia National Laboratories [31]

to compute the output power Pac by

Pac =
Pac,n
c1 − c2

− c3(c1 − cb))(Pdc − c2) + c3(Pdc − c2)2 , (A.30)

where Pac,n, c1 , c2 and c3 are empirically determined constants that depend

on the properties of the inverter. The determination of these constants is

described in detail in [31].

A.5 Model summary

In this appendix, we present the TVIPVM, a model we use to approximate

the output power of a PV plant from time-stamped atmospheric measure-

ments. We also present the clear-sky radiation computation we use in the

development of benchmark PV output, which we discuss in Appendix B.
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APPENDIX B

COMPUTATION OF BENCHMARK
PHOTOVOLTAIC POWER OUTPUT

We make use of benchmark PV output patterns in both the scaling of PV

output patterns and the re-scaling of scaled PV output patterns. The initial

step in the computation of the benchmark output pattern is the determi-

nation of the benchmark atmospheric conditions for the site s. We then

use these conditions and the TVIPVM described in Appendix A to find the

benchmark output pattern bs for each day d of the year.

For the specified site s and day d, we first compute the sunrise time tr and

the sunset time tf , as described in Section A.2.2. We partition the radiation

period (tr to tf ) into N equal sub-periods. For the mid-point of each of the N

sub-periods, we compute the necessary benchmark atmospheric conditions:

Gb, Gh, Ta and vw. We compute the clear-sky beam direct radiation Gb and

global horizontal radiation Gh as described in Section A.1. We compute the

ambient air temperature Ta and the wind speed Vw by taking the 31-day

moving average, centered on day d, of the historical daily atmospheric data

we source from NOAA [8]. For the mid-point of each of the N sub-periods,

we compute the power output bs,n using the TVIPVM. We construct the

benchmark PV output vector bs , [bs,1, bs,2, . . . , bs,N ]T ∈ RN to represent

the output power over the N equal sub-periods from tr to tf .
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APPENDIX C

THE PHOTOVOLTAIC OUTPUT SCALING
AND RE-SCALING ALGORITHMS

In this appendix, we describe the scaling and re-scaling algorithms we have

developed to perform the scaling and re-scaling mapping functions described

below.

We apply the PV output scaling mapping αs(·, ·), for site s, to convert

the midnight-to-midnight, PV output pattern us into the sunrise-to-sunset,

scaled-output characterization y
s
. We apply the mapping to compute y

s
∈

RJ from us ∈ RM for a site s, where d is the day of the year upon which the

measurements of u were made, i.e.,

y
s

= αs(us, d) . (C.1)

In Section C.2, we detail the steps of the scaling algorithm we have developed

to perform the mapping described in (C.1). In the scaling algorithm, we use

the benchmark PV power output vector bs that describes the benchmark

output pattern at site s on day d of the year. We compute the sunrise-to-

sunset, benchmark PV output bs ∈ RN for day d, as described in Appendix

B, in addition to computing the sunrise time tr and sunset time tf (in hours),

as per the method described in Section A.2.2. It is against this benchmark

bs that we scale us.

We also apply the re-scaling mapping βs(·, ·), for site s, to convert a

sunrise-to-sunset, scaled-output characterization y
s

into a midnight-to-mid-

night, re-scaled power output representation p
s
. We apply the algorithm to

compute p
s
∈ RH from y

s
∈ RJ , where d is the day of the year for which p is

being created, i.e.,

p
s

= βs(ys, d) . (C.2)

In Section C.3, we detail the steps of the re-scaling algorithm we have de-

veloped to perform the mapping described in (C.2). For the re-scaling algo-
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rithm, we use the benchmark PV power output vector bs that describes the

benchmark output pattern at site s on day d of the year.

The scaling and re-scaling algorithms require care in the allocation of the

energy output over a sub-period on the input time-scale to one or more sub-

periods on the output time-scale. We allocate this energy according to the

shape of the benchmark output pattern. As a result, both the scaling and

re-scaling algorithms employ a benchmark integration algorithm, which we

detail in Section C.1.

C.1 Benchmark integration algorithm

We apply the benchmark integration algorithm to calculate the benchmark

energy output between the times τ1 and τ2. We use ∆4 to denote the time-

resolution of the benchmark output bs. The algorithm proceeds as follows.

Step B0: Define ∆4 = (tf − tr)/N , τr = max{tr, τ1}, τf = max{tf , τ2}.
Step B1: Set n = 1.

Step B2: If (tr + n∆4) < τr, continue; else, go to Step B4.

Step B3: n = n+ 1; return to Step B2.

Step B4: Set a = 0, τ = τr, τ4 = tr + n∆4.

Step B5: If τ4 ≤ τf , continue; else, go to Step B9.

Step B6: a = a+ bs,n(τ4 − τ)/∆4.

Step B7: n = n+ 1; set τ = τ4.

Step B8: Set τ4 = tr + n∆4.

Step B9: If τ4 ≤ τf , continue; else, go to Step B13.

Step B10: a = a+ bs,n.

Step B11: n = n+ 1; set τ = τ4.

Step B12: Set τ4 = tr + n∆4; return to Step B9.

Step B13: If n ≤ N , continue; else, go to Step B15.

Step B14: a = a+ bs,n(τf − τ)/∆4.

Step B15: a = a∆4, benchmark-integration complete.
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C.2 Scaling algorithm

We apply the scaling algorithm to perform the mapping described in (C.1).

We use ∆1 to denote the time-resolution of PV output pattern us and ∆2

to denote the time-resolution of the scaled-output characterization y
s
. The

algorithm proceeds as follows.

Step S0: Define ∆1 = 24/M , ∆2 = (tf − tr)/J ,

η = max{bn : n = 1, 2, . . . , N}.
Step S1: Set m = 1.

Step S2: If m∆1 < tr, continue; else, go to Step S4.

Step S3: m = m+ 1; return to Step S2.

Step S4: Set y
s

= 0, t = tr, t1 = m∆1, j = 1.

Step S5: If j ≤ J , continue; else, go to Step S25.

Step S6: Set t2 = tr + j∆2.

Step S7: If t1 ≤ t2, continue; else, go to Step S15.

Step S8: Set τ1 = t, τ2 = t1.

Step S9: Go to Step B0; set a1 = a.

Step S10: Set τ1 = (m− 1)∆1, τ2 = m∆1.

Step S11: Go to Step B0; set a2 = a.

Step S12: yj = yj + (a1/a2)um.

Step S13: m = m+ 1; set t = t1.

Step S14: Set t1 = m∆1.

Step S15: If t1 ≤ t2, continue; else, go to Step S19.

Step S16: ys,j = ys,j + um.

Step S17: Set t = t1, m = m+ 1.

Step S18: Set t1 = m∆1; return to Step S15.

Step S19: Set τ1 = t, τ2 = t2.

Step S20: Go to Step B0; set a1 = a.

Step S21: Set τ1 = (m− 1)∆1, τ2 = m∆1.

Step S22: Go to Step B0; set a2 = a.

Step S23: ys,j = ys,j + (a1/a2)um.

Step S24: Set t = t2, j = j + 1; return to Step S5.

Step S25: y
s

= y
s
(∆1/η∆2); scaling complete.
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C.3 Re-scaling algorithm

We apply the re-scaling algorithm to perform the mapping described in (C.2).

We use ∆2 to denote the time-resolution of the scaled-output characterization

y
s

and ∆3 to denote the time-resolution of the re-scaled output representation

p
s
. The algorithm proceeds as follows.

Step R0: Define ∆2 = (tf − tr)/J , ∆3 = 24/H,

η = max{bn : n = 1, 2, . . . , N}.
Step R1: Set h = 1.

Step R2: If h∆3 < tr, continue; else, go to Step R4.

Step R3: h = h+ 1; return to Step S2.

Step R4: Set p
s

= 0, t = tr, t3 = h∆3,j = 1.

Step R5: If j ≤ J , continue; else, go to Step R24.

Step R6: Set t2 = tr + j∆2.

Step R7: If t2 ≤ t3, continue; else, go to Step R10.

Step R8: ps,h = ps,h + yj.

Step R9: Set t = t2; j = j + 1; return to Step R5.

Step R10: If t3 ≤ t2, continue; else, go to Step R18.

Step R11: Set τ1 = t, τ2 = t3.

Step R12: Go to Step B0; set a1 = a.

Step R13: Set τ1 = (j − 1)∆2, τ2 = j∆2.

Step R14: Go to Step B0; set a2 = a.

Step R15: ps,h = ps,h + (a1/a2)yj.

Step R16: h = h+ 1; set t = t3.

Step R17: Set t3 = h∆3; return to Step R10.

Step R18: Set τ1 = t, τ2 = t2.

Step R19: Go to Step B0; set a1 = a.

Step R20: Set τ1 = (j − 1)∆2, τ2 = j∆2.

Step R21: Go to Step B0; set a2 = a.

Step R22: ps,h = ps,h + (a1/a2)yj.

Step R23: Set t = t2, j = j + 1; return to Step R5.

Step R24: p
s

= p
s
(η∆2/∆3); re-scaling complete.
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