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ABSTRACT 

In this thesis we present the latest developments in composite-order pairing based 

cryptography. We first develop the necessary mathematical background. We describe 

elliptic curves over finite fields, as well as rational functions and divisors on such curves. 

Bilinear pairings on elliptic curves are explained. We then introduce bilinear groups of 

composite order and how they are used to create pairing-based cryptosystems. We present 

two cryptosystems using composite-order groups. We conclude with a discussion of current 

research. 
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1 INTRODUCTION 

Elliptic curves were first suggested for use in cryptography independently by Koblitz [1]and 

Miller [2] over two decades ago and since then there has been an ever increasing amount of 

research into the development of cryptosystems based on elliptic curves. In particular, 

researchers have found it possible to use bilinear pairings of the groups formed by the 

points on an elliptic curve with point addition for the solution of many cryptographic 

primitives. For example, in 2001 Boneh and Franklin used bilinear pairings to implement 

the first practical and secure identity based encryption scheme [3], a possibility proposed 

by  Shamir in 1984 [4]. Due to the complexity of bilinear pairings, the elliptic curves used to 

generate groups for pairing-based protocols must possess certain properties that are not 

likely to be found in randomly generated elliptic curves [5]. This has led to the definition of 

pairing-friendly elliptic curves [6].  For the reader interested in the remarkable history and 

development of elliptic curve cryptography, A. Koblitz, N. Koblitz, and Menezes have a 

highly readable and interesting exposition [7]. 

The first applications of pairings focused primarily on pairings of groups with prime order 

but a powerful new idea has emerged in pairing-based cryptography which uses bilinear 

groups with composite order rather than prime. The idea was introduced by Boneh et al. [8] 

for partial homomorphic public key encryption and has since been used in many important 

applications including non-iterative zero-knowledge proofs, group and ring structures, 

searching encrypted data, and fully collusion resistant traitor tracing [9], [10], [11], [12], 

[13], [14], [15]. These works leverage convenient features of composite-order groups that 

are not shared with prime-order groups. Special consideration must be made when 

implementing protocols based on bilinear pairings of composite-order groups. The efficient 

implementation of such schemes is an active area of research.  

Our main goal with this thesis is to provide a comprehensive survey of the current research 

into bilinear groups of composite order and their application to pairing-based 

cryptography.  

Currently the only known groups which admit a bilinear pairing are those derived from the 

points on elliptic curves. Thus, we first develop the necessary background on elliptic curves, 
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and go over some topics from algebraic geometry such as divisors and rational functions, 

which we need when defining bilinear pairings. 

We then introduce the abstract definition of a bilinear pairing and then show how a pairing 

can be defined on elliptic curves. 

We then show how these concepts can be used in cryptography. The discrete log problem 

on elliptic curves and the mathematical problems arising from the bilinear pairing are 

discussed.  

Once we have the necessary background, we delve into a study of bilinear groups of 

composite order. We highlight the useful properties of these groups which are exploited to 

solve unique problems in cryptography as well as some of the drawbacks of these groups, 

compared to prime-order bilinear groups. We explain how elliptic curves are used to 

generate these groups and how to construct elliptic curves admitting the necessary group 

structure. 

We then demonstrate two representative cryptographic protocols using bilinear pairings of 

composite-order groups. 

We conclude with a discussion of the current research.  

Much has been written about the implementation of cryptographic protocols based on 

pairings of groups with prime order, but the same cannot be said for groups of composite 

order. It is hoped that this text will provide the reader with the necessary background to 

implement pairing based cryptosystems, in particular those based upon groups of 

composite order. The reader should also have the necessary background to conduct 

research in this area.  

This text is designed to be somewhat self-contained; however, the reader will need some 

background in algebra. 
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2 ELLIPTIC CURVES 

The theory of elliptic curves is rich, varied, and vast. Our goal here is not to present a 

thorough exposition to the theory, building up from the foundations of algebraic geometry.  

Rather, we prefer a pragmatic approach, by first developing an intuitive “feel” for what an 

elliptic curve is and then introducing the theory as we need it. In doing so, we will introduce 

topics from algebraic geometry, such as divisors and rational functions, which will come in 

handy later when we define bilinear pairings. We’ll save finding particular “pairing-friendly” 

curves for a later chapter. 

For cryptography we are mostly concerned with curves over finite field, however, in this 

chapter we will define curves over arbitrary (perfect) fields. We do this because later we 

will want to derive information about curves over finite fields; and to do so we make use of 

curves over ℂ and over extensions of the p –adic numbers ℚp. 

For the reader who wants a thorough study of elliptic curves, see Silverman’s classic [16]. 

2.1 THE BASIC DEFINITION 

 A plane curve 𝒳 is the set of zeros in the plane F2 of a bivariate polynomial, p(x,y). We write 

𝒳  *(   )      (   )   +  

We can define a plane curve to include points appended to but outside of the plane. Such 

points are called points at infinity or base points. We will denote a point at infinity by 𝒪. Now 

we can write a plane curve as 

𝒳  *(   )      (   )   +  *𝒪+  

We will only be concerned with plane curves defined by non-singular polynomials, known as 

non-singular plane curves. To understand what this means, we define a singular point of the 

bivariate polynomial p(x,y) as a point P = (x,y) such that 

  (   )

  
 

  (   )

  
  (   )   . 

The polynomial p(x,y) is called a non-singular polynomial if it has no singular points in F or 

any finite extension of F. A curve 𝒳 defined by the zeros of a non-singular polynomial is 

called a non-singular (projective) curve. The curve 𝒳 is called a smooth curve.  
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The genus of a plane curve is used to describe useful properties of the curve. For a 

nonsingular curve, the genus is given by   (   
 

). 

Definition 2.1.1. An elliptic curve, E, over the field F, is a plane curve with genus 1 given by 

the set of zeros of a nonsingular, smooth, bivariate polynomial of the form 

 (   )                    
         

together with the point at infinity, 𝒪, and where                 . 

The polynomial in the above definition is said to be in Weierstrauss form. We see that 

requiring E to be smooth is essentially requiring that the equations 

                                           

cannot be satisfied simultaneously by any (   )   ( ̅) (recall that  ̅ denotes the algebraic 

closure of  ). 

Whenever the field characteristic is greater than three, by an appropriate change of 

variables (specifically     
 

 
  ) we can express the elliptic curve E as 

            . 

This is known as the short Weierstrauss form for the elliptic curve. In this case, requiring the 

curve to be smooth is essentially requiring that the cubic on the right-hand side has no 

multiple roots. This holds if the discriminant of        , which is  (        ), is 

nonzero.  

2.2 POINT ADDITION 

We are able to use elliptic curves in cryptography because the points on the curve over   

form a group, denoted  ( ), under the operation of point addition. We now define this 

operation. 

We denote the operation of point addition by “+”. The operation is such that if P and Q are 

points on the curve E then so is P+Q. As mentioned previously, the points on an elliptic 

curve form a group under the operation of point addition. The identity of this group is the 

point at infinity, 𝒪, thus P+𝒪=P. The inverse of a point P, is denoted by –P so P+(-P)=𝒪. 

The operation of point addition is based on the fact that any straight line that intersects an 

elliptic curve at two points must intersect the curve at three points; a point of tangency is 
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regarded as a double intersection and a “vertical” line through a point and its negative is 

regarded to also intersect the point at infinity. 

We define point addition on the condition that the addition of any three collinear points P, 

Q, and R of E satisfies 

      𝒪. 

This means that       .  

Figure 2.1 shows a graphical depiction of this. 

 

Figure 2.1: Addition of points on an elliptic curve 

For the case when the characteristic of the field is neither two nor three, we can describe 

this process algebraically. Reflecting the point   (   ) is done by simply inverting the y 

coordinate:    (    ). Addition of two distinct points works as follows. Let   (     ) 

and   (     ) be distinct points such that    . The slope of the line through P and Q is 

given by   
     

     
. Now we can calculate the coordinates of       (     ) by 

reflecting the third point of intersection 
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           , 

        (     ). 

Adding   (     ) to itself, known as point doubling, is done as follows. If      then 

   𝒪. If      then we first need to calculate the slope of the tangent to P, which is given 

by   
   

   

   
  For the coordinates of      (     ), the reflected third point of 

intersection is given by 

            

        (     )  

These equations need to be modified for a  field of characteristic two or three. 

2.3 GROUP ORDER 

Consider a curve E defined over a finite field Fq, a field of characteristic q. We would like to 

know the number of points on the curve. The number of points on the curve E is called the 

order of E and is denoted   (  ). We see that for every      there are at most two values 

of      for which (x,y) is a point on the curve. Including the point at infinity we see that 

there can never be more than      points on the curve. We note that about half of the field 

elements are squares; thus, for each fixed     , half will have two solutions in y and the 

others will have no solution. Thus we reason that there are roughly       points on the 

curve, where   is really small. This is actually a pretty close approximation and is formalized 

by a famous theorem from Hasse. 

Theorem 2.3.1. (Hasse) Let E be an elliptic curve over a finite field Fq. Then the following 

holds: 

|  (  )  (   )|   √   

 

Definition 2.3.2. The trace of Frobenius of the elliptic curve  (  ) over the finite field Fq, is 

the integer 

        (  )  
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2.4 TORSION SUBGROUPS 

As in all additive groups, the addition of points on the curve induces a scalar multiplication 

of points. For     and a point,    (  ), we define  

   {

        (       )                                    
(  )  (  )    (  ) (       )              
𝒪                                                                                 

 

The order of a point P is the smallest positive integer n such that    𝒪. If the order of a 

point P divides n (i.e. if    𝒪), then P is called an n-torsion point. The set of F-Rational n-

torsion points forms a subgroup, the n-torsion group, denoted by   ( ), -. The following 

theorem gives us valuable information about the structure of the n-torsion group. 

Theorem 2.4.1. Let  (  )be an elliptic curve over a finite field Fq of prime characteristic p 

and let     be a prime coprime to p. Then the order of  (  ), - is n2 and  (  ), -  

           

For a special class of curves the n-torsion group is trivial when n is a power of the 

characteristic of the field over which the curve is defined. Let E(Fq) be an elliptic curve over 

the finite field Fq, where q = pm for prime p and    . If    , where t is the trace of 

Frobenius of E, then E is called supersingular. 

2.5 RATIONAL FUNCTIONS ON ELLIPTIC CURVES 

Suppose  ( )                   
         is an elliptic curve over an 

arbitrary field F. Observe that every polynomial  (   )   ( ̅) (where  ( ̅) denotes the set 

of all points on the curve E defined on the algebraic closure of F) can be written in the form 

 ( )   ( ) , by rearranging terms and replacing any occurrence of y2 by       
     

        . This form can be used to define the degree of f, which is needed for determining 

the orders of zeros and poles of f as well as the behavior of f  at 𝒪. 

Definition 2.5.1. Let  (   )   ( )   ( )    be a polynomial function in  ( ̅). Then the 

degree of f is defined to be 

   ( )      *    ( )        ( )+  

where     denotes the usual degree of a polynomial in x, with     ( )  𝒪  

We define the behavior of rational functions on E in the point at infinity as follows. 
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Definition 2.5.2. Let   
 

 
  ( ̅). If    ( )      ( ) then we define  (𝒪)     If 

   ( )      ( ) we say f is not defined at 𝒪. If    ( )      ( ), then  (𝒪) is defined to be 

the ratio of the leading coefficients of g and h. 

 

2.6 DIVISORS 

Here we discuss the notion of divisors from algebraic geometry. 

Let E be an curve over a field F. Consider the set of all points on the curve defined over the 

algebraic closure of F,  ( ̅).  

Definition 2.6.1. A divisor on E is a formal sum 

  ∑   ( )

   ( ̅)

  

where      and all but finitely many np are zero. 

If all np= 0, the divisor is denoted 0. The set of all divisors on E is denoted     ̅( ) and has a 

natural group structure under the operation of addition. 

Definition 2.6.2. The support of a divisor D is the set of all points P such that       

Definition 2.6.3. The degree of a divisor D is  

   ( )  ∑(  )

 

  

For      ( ̅  ) we define    ∑   ( ( )) , where    ( ̅  ) denotes the absolute 

Galois group over F. We say that a divisor is defined over F if           ( ̅  )  

If f is a non-zero function on E, then     ( ) counts the multiplicity of f at P. Note that 

    ( ) is positive at zeros of f and negative at poles of f. The divisor of f, written ( ), is the 

divisor ∑     ( )( )   ( ̅) . If follows that (  )  ( )  ( ) and .
 

 
/  ( )  ( ). 

Definition 2.6.4. A principal divisor on E is a divisor which is equal to ( ) for some f; i.e., a 

principal divisor is a divisor that corresponds to poles and zeros, counted with multiplicity, of a 

rational function on the curve E. 



9 

 

Theorem 2.6.5. A divisor of the elliptic curve E(F) is a principal divisor of E(F) iff the 

following conditions are satisfied: 

1. ∑         ( ̅)  

2. as a sum of points ∑ ,  -    ( ̅)  𝒪  
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3 PAIRINGS 

Here we begin our study of the central figure in pairing based cryptography, the bilinear 

map. First we look at the problems that motivate the use of pairings in cryptography. We 

will introduce the pairings abstractly and then introduce the original Weil pairing, the more 

efficient Tate pairings, and the optimized Omega pairing for composite-order groups. The 

bilinear map is generally the most computationally expensive action in pairing based 

cryptosystems hence there has been much research into optimizations of the map. We look 

at some of the latest optimized implementations with a focus on those over composite-

order groups. 

3.1 THE ABSTRACT DEFINITION 

There are two forms of maps, e, commonly used in cryptography [17]. The first are of the 

form 

          , 

where G1 and GT are cyclic groups of order l.  Pairings of this type are called Type 1 or 

symmetric pairings. The second form is 

          , 

where G1, G2, and GT are groups of order l. Pairings of this type are called asymmetric. Note 

that the first form can be considered a special case of the second, where G1 = G2. Also note 

that when G1≠G2, but there exists a computable homomorphism between the two groups in 

both directions, the situation can be reinterpreted as a Type 1 pairing, and so this situation 

is not considered separately. We call the situation where G1≠G2 and there exists no 

computable homomorphism between the two groups of a Type 3 pairing. 

The pairings used in cryptosystems also satisfy the following properties: 

1. Bilinearity:                  , we have 

 (      )   (   ) (    ) and  (      )   (   ) (    )   

2. Non-degeneracy:  

a.                       (   )     

b.                       (   )     

3. For practical purposes, e has to be efficiently computable. 

Following are some consequences of bilinearity, for a bilinear pairing e: 
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1.  (   )   (   )     

2.  (    )   (   )    (    )  

3.  (, -   )   (   )   (  , - )         

3.2 THE TATE PAIRING 

The Tate pairing is the most important pairing in elliptic curve cryptography [18]; it was 

introduced by Tate a general pairing on abelian varieties over local fields. Frey and Ruck 

[19]considered the pairing over finite fields, thus introducing the Tate pairing to the 

cryptographic community.  

First we consider the Tate pairing over an arbitrary field and then move to the case of a 

finite field. 

3.2.1 DEFINING THE TATE PAIRING 

Let E be an elliptic curve over a field F0 and let     be coprime to the characteristic of the 

field F0. The set of the nth-roots of unity is defined to be    *   ̅ 
      +. Define the 

field     (  ) to be the extension of F0 generated by the nth-roots of unity. Define 

 ( ), -  *   ( ) , -  𝒪+  

and 

  ( )  *, -     ( )+  

Then  ( ), - is a group of exponent n. Also,   ( ) is a subgroup of  ( ) and the quotient 

group  ( )   ( ) is a group of exponent n.  

Define 

(  )  *       +  

Then (  )  is a subgroup of F* and the quotient group    (  )  is a group of exponent n. 

The groups    (  )  and    are isomorphic. 

Note that while  ( ( ), -    ( )   ( ) it is not necessarily true that the points of 

 ( ), - may be used as representatives for the classes of the quotient group  ( )   ( ). 

Now we are ready to define the Tate pairing. Let    ( ), - and let    ( ). We think of 

Q as representing an equivalent class in  ( )   ( ). Since , -  𝒪, there is a function f 

such that ( )   ( )   (𝒪). Let D be any degree zero divisor equivalent to ( )  (𝒪) such 
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that D is defined over F and the support of D is disjoint from the support of ( ). Since f  and 

D are defined over F, the value  ( )     Since the supports of ( ) and D are disjoint, 

 ( )    and so  ( )    . 

Definition 3.2.1. The Tate pairing of P and Q is defined to be 

⌌   ⌍   ( ) 

interpreted as an element of    (  ) . 

Note that the values of the Tate pairing are equivalence classes. Thus, the symbol = is used 

under this equivalence relation. 

Now let us consider the Tate pairing over finite fields. 

Suppose that  (  ) is an elliptic curve over a finite field of characteristic p. Let     be 

coprime to q which divides   (  )  The field     (  ) is some finite extension       

Definition 3.2.2. The number k is called the embedding degree and is defined as the smallest 

number such that n divides (qk -1). 

Since E is defined over Fq, if P and Q are defined over a proper subfield of    , then the Tate 

pairing ⌌   ⌍  is also defined over the same proper subfield. Suppose n is a prime; since     

is the smallest field containing both    and Fq it follows that, for every intermediate 

field         with      , we have   . 
  
 /

 
. These observations lead us to the 

following result, which tells us when the values of the pairing are trivial. 

Lemma 3.2.3. Let E be an elliptic curve over   and let n be a prime. Suppose the embedding 

degree for E and n is k > 1. Let L be a proper subfield of     which contains   . If      ( )  

then ⌌   ⌍  . 
  
 /

 
. 

From the above definition of the Tate pairing, in a finite field Fq with embedding degree k, 

the value of the Tate pairing is an equivalence class in  
  
  . 

  
 /

 
. For practicality we 

would like a unique representative of this class. To achieve this we raise the value of the 

Tate pairing to the power (    )  . This leaves exactly the nth roots of unity in    . Thus, 

for finite groups, we have the bilinear pairing used by cryptographers 
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 (   )  ⌌   ⌍ 

    
  

which maps into the group     
  
  rather than the group  

  
  . 

  
 /

 
  

3.2.2 COMPUTING THE TATE PAIRING USING MILLER’S ALGORITHM 

Miller [20] gave an algorithm for computing the Weil pairing in polynomial time and this 

approach can also be applied to compute the Tate pairing. Miller uses the double-and-add 

method to construct a function f such that ( )   ( )   (𝒪). 

We define function fI such that (  )   ( )  (, - )  (   )(𝒪). Since P is an n-torsion 

point, it follows that 

(  )   ( )  (  )  (   )(𝒪)   ( )   (𝒪)  ( )  

Note that (  )  ( )  ( )   (𝒪)     which means that       

Lemma 3.2.4. Let    (   ), -, and let i and j be positive integers. Suppose that l is function 

such that  (   )    is the equation of the line between the points iP and jP and suppose v is a 

function such that  (   )    is the equation of the vertical line through the point (   ) . 

Then  

           
 

 
  

Proof. We have 

.
 

 
/  (  )  (  )  (,   - )  (𝒪). 

And so 

      
 

 
  ( )  (, - )  (   )(𝒪)   ( )  (, - )  (   )(𝒪)  (

 

 
) 

                  (   )( )  (,   - )  (     )(𝒪)  

Q.E.D. 

Miller’s algorithm uses an addition chain for nP to compute fn. We are interested in the value 

of   ( ), thus we evaluate all intermediate quantities at the divisor   (   )  ( )  
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Algorithm 3.2.5. Miller’s Algorithm 

INPUT:      ( )where P has order n. 

OUTPUT: ⌌   ⌍ . 

1. Choose a suitable point    ( ). 

2.       . 

3.    . 

4.   ⌊     ⌋       . 

5. While     do: 

6.         Calculate lines l and v for doubling T 

7.             . 

8.           
  . (  ) ( )/

 (  ) ( )
. 

9.         If the mth bit of n is one, then: 

10.                 Calculate lines l and v for addition of T and P. 

11.                      . 

12.                    
 . (  ) ( )/

 (  ) ( )
. 

13.               

14. Return f. 
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4 CRYPTOSYSTEMS BASED ON THE DISCRETE LOG PROBLEM 

In this chapter we focus on the discrete log problem and how it has been used to develop 

cryptosystems. We start out working in   
 , then move to elliptic curve groups. We also look 

at the most effective attack on these problems in both groups. The cryptosystems built from 

these problems form the foundation from which pairing-based cryptography grew. It is thus 

useful to examine how these systems are defined. 

 

4.1 THE DISCRETE LOG PROBLEM 

We use multiplicative notation simply because the discrete log problem was first defined for 

multiplicative groups. 

Definition 4.1.1. The discrete log problem (DLP)  

Given (     ) find the least positive integer a such that 

    . 

We denote this integer a as     ( ); it is called the discrete logarithm of  . 

This problem is believed to be computationally infeasible. Whenever we compute the 

discrete log problem with respect to a base    , we write     . When we compute the 

discrete log problem for any    , we write     . 

Definition 4.1.2.  Computational Diffie-Helman (CDH) 

Given an abelian group G, an element     with order n, and two elements     ⌌ ⌍  

find   ⌌ ⌍ such that                   (     ) 

(equivalently, given       find    ). 

Definition 4.1.3 Decisional Diffie-Hellman (DDH) 

Given an abelian group G, an element     with order n, and three elements       

⌌ ⌍  is it true that                    (     )? 

(Equivalently, given             , determine if      (     ).) 
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Note that if we can solve CDH, the DDH follows, and we denote this by      

      Specifically, if there exists an algorithm𝒜 that solves      in polynomial time, then 

it is possible to construct an algorithm utilizing 𝒜 that solves      in polynomial time. We 

say that CDH is a stronger problem than DDH.  

We also see that           holds. The converse is not known to be true, no one knows 

if it is possible to obtain     from    and    without first determining   or  . 

Diffie and Hellman [21] first used the these problems decades ago to demonstrate the 

security of their key agreement protocol. These problems hold for any cyclic group, e.g., the 

finite multiplicative group   
  where p is a prime, or the group formed by the elliptic curve 

E(Fq) over the field Fq with prime characteristic under the operation of point addition.  

4.2 THE ELGAMAL CRYPTOSYSTEM IN       

The ElGamal cryptosystem was the first and most well-known of the cryptographic 

protocols based on the discrete log problem. The protocol is as follows [22]. 

Let p be a prime such that the DLP in (       ) is infeasible, and let          be a 

primitive element. Let                      , and define 

  *(       )     (     )+  

The values           are the public key, and a is the private key. 

For   (       ), and for a secret random number      (   ) , define the ciphertext 

 (   )  (     )  

where 

     (     )      

      (     )  

For             , to decrypt define 

  (     )    (  
 )  (     )  

4.3 THE DISCRETE LOG PROBLEM ON ELLIPTIC CURVES 

The discrete log problem holds for any abelian group, including the group of points on an 

elliptic curve. We use additive notation. 
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Definition 4.3.1. Elliptic curve discrete log problem (ECDLP) 

Let E be an elliptic curve. For      , find     such that     if such   exists. 
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5 BILINEAR GROUPS OF COMPOSITE ORDER 

Bilinear groups of composite order are being used to solve many problems in cryptography. 

They were first introduced by Boneh, Goh, and Nissim [8] in 2005 to solve problems for 

private information retrieval, online voting, and universally verifiable computation. They 

have since found a wealth of applications throughout cryptography. These applications 

leverage properties of bilinear groups of composite order not shared with their prime-order 

counterparts. Most notably, composite-order groups contain orthogonal subgroups of 

coprime-order. Up to the notion of isomorphism, a composite-order group has the structure 

of the direct product of prime-order subgroups. Thus every group element can be 

decomposed as a product of elements from orthogonal subgroups; when the group order is 

hard to factor, this decomposition is also hard to compute. Orthogonality means the 

subgroups can act as separate entities, allowing the system designer to utilize the 

subgroups independently without the worry of any crossover interactions. Additionally, 

Freeman [23] and Seo and Cheon [24] have explicitly defined properties of bilinear 

composite-order groups not known to be shared with the prime-order variants (although 

there is current research into how to construct prime-order groups with the properties 

enjoyed by composite-order groups, we discuss this in greater detail later). 

The security of most of the protocols using bilinear composite-order groups is based upon 

the subgroup decision assumption defined by Boneh et al. in [8]. Essentially, the assumption 

is, given any element     where G is a bilinear composite-order group of order 

         , it is not possible to determine if   has order      ,     -. This 

assumption implies it is infeasible to factor   .The security of protocols being based on the 

infeasibility of factoring the order of the group leads to some disadvantages which will be 

discussed later. 

5.1 THE BILINEAR PAIRING ON COMPOSITE-ORDER GROUPS 

Let   be a bilinear group of composite with order          , where         are 

distinct primes. G admits a bilinear pairing, 

         

where    also has order N and e satisfies the conditions for a bilinear pairing defined in 

Chapter 3. 
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Note that for each   ,   has a subgroup with order   , denoted    
. We denote the 

generators of each    as                    . Thus, each element     can be 

represented as     
    

     
          . We say   

   is the    
 component of  . When 

     (     ) we say   has no    
 component. The subgroups are orthogonal under  , 

meaning that if      
 and      

      then  (   )   , where 1 is the identity element 

in   . 

5.2   THE SUBGROUP DECISION PROBLEM 

The problem of determining whether an element     belongs to a proper subgroup    has 

been used as a security assumption for cryptosystems since before Boneh, Goh, and Nissim 

defined their subgroup decision problem. Gjosteen presents a survey of such problems in 

[25].  Here we’ll present a general definition of the subgroup decision problem from 

Freeman’s work in [23] and later we will see how this is used in the development of 

cryptographic protocols. 

Definition 5.2.1. A bilinear group generator is an algorithm   that takes as input a security 

parameter   and outputs a description of five abelian groups               with      

and      . We assume that this description permits efficient (polynomial-time in  ) group 

operations and random sampling in each group. The algorithm also outputs and efficiently 

computable map 

          

where e is: 

 Bilinear:  (           )   (     ) (     ) (     ) (     ), for all      

          ; and 

 Nondegenerate: for any    , if  (   )    for all    , then     (and vice-

versa with H). 

Freeman’s generalized subgroup decision problem says that it is impossible to distinguish 

an element from    from a randomly chosen element from  , and vice-versa for  . This 

statement is made precise in the following definition. (The notation  
 
   means   is 

chosen at random from  .) 

Definition 5.5.2. Let   be a bilinear group generator. We define the following distribution: 
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  (              )
 
  ( )   

 
     

 
     

We define the advantage of an algorithm 𝒜 in solving the subgroup decision problem on the 

left to be 

        ,𝒜  -     ,𝒜(    )   -     ,𝒜(    )   -   

We say that   satisfies the subgroup decision assumption on the left if         ,𝒜  -( ) is 

a negligible function of   for any polynomial-time algorithm 𝒜. 

We define the subgroup decision problem on the right analogously, with   
 
     

 
     

We say   satisfies the subgroup decision assumption if it satisfies both the left and the right 

assumptions. 

5.3 PARING-FRIENDLY CURVES 

When we demonstrated the ElGamal encryption scheme earlier, we did not care what 

elliptic curve we used: any randomly generated elliptic curve would do. This is not the case 

for pairing-based cryptosystems. The elliptic curves used in pairing-based systems are 

required to have certain properties that randomly generated curves are unlikely to have. 

Fortunately there has been research into the elliptic curve requirements for pairing-based 

cryptosystems and recently Freeman et al. [26] published a comprehensive survey covering 

many of the known techniques for constructing pairing-friendly curves as well as 

recommendations on when and how to use them; however, their survey was lacking in 

methods for constructing curves of composite order.  

Early cryptosystems based on composite-order bilinear pairings focused on using 

supersingular curves; we will see later that under some circumstances this is insufficeint. 

More recently Boneh et al. [27] presented a method for finding composite-order ordinary 

elliptic curves of prescribed embedding degree. 

To understand these methods of curve construction we must first determine what a 

“pairing-friendly” elliptic curve is. We will follow Freeman et al.’s approach to this subject in 

[6]. Given an input k, our goal is to produce a “suitable” composite integer N and an elliptic 

curve over the finite field Fq such that the order | (  )|is a multiple of N and the embedding 

degree of E with respect to N is k. What do we mean by “suitable”? In order for a pairing-

based cryptosystem to be secure, the discrete log problem on the elliptic curve E and the 
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discrete log problem on the extension field     must be infeasible. The Pollard-Rho 

algorithm [28], [29] for computing the discrete log problem on  (  ) has a running time 

 (√ ). In the extension field     the index calculus attack [30] has subexponential running 

time. Thus the size of the extension field must be significantly larger than N. These  sizes are 

related by two parameters: the embedding degree k, which is the degree k of the extension 

field the pairing maps into, and the ratio of the sizes of the base field Fq and N given by 

  
    

     
   -values have been shown to be the most desirable in order to speed up 

arithmetic on the elliptic curve. Freeman et al. [26] presented the following definition for a 

“paring-friendly” curve of composite order. 

Definition 5.3.1 Suppose E is an elliptic curve defined over a finite field Fq. We say that E is 

paring-friendly if the following two conditions hold: 

1. there is a composite    √  dividing   (  )     

2. the embedding degree of E with respect to r is less than     ( )     

The bound in 1 comes from the findings of Luca and Shparlinski [31]. Essentially, they found 

that curves with small embedding degree with respect to r are common if   √  and are 

rare if   √   The bound in 2 is based on the rationale presented in [26], that embedding 

degrees of practical interest depend on the desired security level of the application, for 

which r has been shown to be a clear measure [32]. 

Elliptic curves satisfying this definition will be guaranteed to have a large enough 

embedding degree so that the discrete log problem on  . 
  
 / is computationally infeasible 

and yet is small enough so that the bilinear pairing is easy to compute.  

Menezes et al. [33] demonstrated that supersingular curves over prime fields    with     

have embedding degree 2 and embedding degree of at most 6 in any case. Moreover, 

supersingular curves may be insufficient for some cryptosystems. In order to achieve high 

levels of security, we want to be able to vary the embedding degree; thus we must be able to 

construct pairing-friendly curves. 

There has been a lot of research into this problem and several methods have been 

developed (although most methods are for curves with prime order). At a high level all 

these methods share a common structure [26]: 
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1. Fix  , and compute integers       such that there is an elliptic curve E over Fq that 

has trace t, a subgroup of order N, and embedding degree k. 

2. Use the complex multiplication method to find the equation of the curve E over Fq. 

We desire to construct elliptic curves which admit groups of composite order, thus the 

following conditions must hold: 

1. q is a prime or prime power. 

2. N is a composite number. 

3. t is relatively prime to q. 

4. N divides        

5. N divides     , and   is the smallest integer satisfying this condition. 

6.           for some sufficiently small positive integer D and some integer y. 

Condition (1) ensures that E is defined on a finite field with q elements. Condition (2) 

together with condition (4) ensures we have a group of composite order N. Condition (6) 

along with (3) ensure the order   (  )        from Theorem 4.1 in [34]. Recalling our 

definition of embedding degree, condition (5) tells us that k is the embedding degree with 

respect to r. 

The methods we will use to construct elliptic curves will make extensive use of the theory of 

cyclotomic polynomials and cyclotomic fields. We will introduce only what we need to know 

and the ambitious reader is referred to Lidl and Niederreiter’s book [35]. 

Denote by    the complex number  
   

 ; thus, the   roots of the polynomial      ℂ are 

the n distinct powers of   . Moreover, they form a cyclic subgroup of order n of the 

multiplicative group of ℂ, denoted by   . 

A primitive n-th root of 1 is a generator of   . Thus    is a primitive,    being a cyclic group 

implies that   
  is a primitive n-th root of 1 iff m is relatively prime to n. Specifically, there 

are  ( ) primitive roots of 1, where   is Euler’s totient function. Thus we define 

  ( )  ∏ (   )

                    

  ∏ (    
 )

         (   )  

 

and the degree of the polynomial is  ( ). 
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  ( ) is a monic polynomial and has rational (integer) coefficients and is irreducible over 

ℚ.   ( ) is called the n-th cyclotomic polynomial. 

Given this definition, for all positive integers n,  

      ∏   ( )

     

  

We are now ready to dive into actual algorithms for constructing elliptic curves. The 

methods we will use were presented by Boneh, Rubin, and Silverberg in [27] and are the 

most popular method found in the literature. 

5.3.1 BRS METHOD FOR CONSTRUCTING COMPOSITE-ORDER ELLIPTIC CURVES 

First we see how to construct a supersingular curve with composite-order group [8]. 

Constructing supersingular curve with embedding degree 2 and composite order N 

Step 1: Choose a square-free integer     that is not divisible by 3. 

Step 2: Find the smallest positive integer w such that         is a prime number. 

Step 3: The elliptic curve         over    has         points over    and 

embedding degree 2 with respect to N. 

Ordinary composite-order groups with embedding degree 1 [27] 

Input: a positive integer N 

Output: a prime q; 

  an elliptic curve E over Fq such that  , -   (  ). 

Step 1: Choose a positive integer D suitable for the CM method. 

Step 2: 

Let   

{
 
 

 
                             (     ) 

                           (    )

(   )                          (     ) 

 

(    )               (     ) 

 

Step 3: If q is prime, use the CM method to obtain an elliptic curve over Fq that has 

        points when       (     )         points when 

      (     )        (   )   points when     (     ), and 
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       (   )   points when     (    ). If q is not prime, start over 

with a new D. 

Notes: 

 Since   (   ), the embedding degree is 1. 

 The CM method produces a curve E such that  , -   (  ). Thus the pairing is 

computed entirely in the ground field, which is the optimal efficiency case. 

 Knowledge of  ’s factors was not used and thus no information about N’s 

factorization was leaked. 

 When N and D are odd, then       is even. When     (     ) and    , then 

      is divisible by 3, so it is not prime (unless             ). Hence the 

need to adjust q above. 

Ordinary composite oreder groups (version 2) 

Input: a positive integer k such that either 4|k or k has a prime divisor that is 

congruent to 3 modulo 4, 

distinct primes        congruent to 1 (mod k), and   

positive integers         

Let   ∏   
   

   . 

Output: a prime q; 

an elliptic curve E over Fq of embedding degree k with respect to N 

Step 1: Choose an integer X with order k in(    
   )    . 

Step 2: Choose a positive square-free divisor D of k such that if k is a multiple of 4 then 

D divides k/4, if k is not a multiple of 4 then     (     ). 
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Step 3: With . 
 

 
/ denoting the Jacobi symbol, let 

   

{
 
 

 
 ∑  

    

   
( 

 

 
) 

  
 (     )           (     ) 

 

 
∑ ( 

 

 
) 

  
  

    

   

(     )           

 

Step 4: Take an integer Y congruent to  (   )    (     ). 

Step 5: Let   
(   )     

 
 ℚ  

Step 6: If q is a prime number, use CM method to obtain an elliptic curve E over Fq with 

trace      , so 

| (  )|             

If q is not prime, start again with difference X and/or Y. 

5.3.2 CHOOSING WHICH CURVES TO IMPLEMENT 

Performance and security requirements vary amongst protocols. We provide 

recommendations for designers to aid with the selection of curves for a given protocol. 

Because we are using composite-order groups, the factorization of the order   (  ) must 

be infeasible. There exist sub-exponential time factorization techniques (the Number Field 

Sieve) but only exponential-time elliptic curve discrete log algorithms, thus the size of the 

elliptic group will depend on the required security level. To be secure against algorithms 

like the Number Field Sieve, we should choose parameters for curve construction such that 

  (  )     [26].   

In regards to security, Koblitz [36] showed that composite-order groups used in a pairing-

based cryptosystem with embedding degree     are vulnerable. Specifically, he proved 

that an attacker who observes two independent implementations of a protocol (with same 

N and     but different E and q) has a probability of at least    ( )          of 

factoring N, where     is the number of distinct prime factors of N and  is Euler’s totient 

function as described earlier. Thus, for protocols in which it is necessary to protect the 

factorization of N, it is best to use embedding degree 1 or 2. This would be severely limiting 
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if we were using prime-order groups however, because when using composite-order groups 

this is not a very restrictive. Indeed, we already have shown that we want   (  )      , 

so we would ideally choose embedding degree 1 or 2 anyway; this result only reinforces our 

decision. 

5.3.3 A NOTE ABOUT FAMILIES OF PAIRING-FRIENDLY CURVES 

It is shown in [6] that many of the curves constructed using this general framework can be 

classified into families, in which the parameters       can be represented as polynomials. 

This allows us to specify curves with certain bit sizes for applications. It also provides a 

framework for discovering previously unknown pairing-friendly curves. There has been 

extensive research to classify families of elliptic curves. Some of the more popular families 

were found by Miyaji, Nakabayashi, and Takano [37]; Barreto, Lynn, and Scott [38]; Scott 

and Barretto [39]; and Brezing and Weng [40]. 

The ability to classify families of elliptic curves is great; it allows us to generate curves 

optimized for the cryptosystem we would like to implement. Unfortunately, no such families 

exist for composite-order elliptic curves [27]. Classifying composite-order curves into 

families, as is done for prime-order curves, would involve making public  ( ), where 

specific values  (  ) correspond to the order composite-order groups. Thus it seems likely 

that this would lead to the factorization of the group order, thereby compromising security. 

It remains an open problem to obtain parametrized families in which the prime factors of 

the composite integer   will be random, unguessable primes of the desired size [27]. 

5.4 PROPERTIES OF COMPOSITE-ORDER GROUPS 

When we were looking for composite-order, pairing-friendly elliptic curves, we noted that it 

is important that   (  )    . This means that the pairing computation will be 

considerably slower for a given level of security than for a pairing-friendly prime-order 

curve. As we will see there is current research into how to address this issue. So, other than 

being slower to use at a given security level, what do composite-order curves offer to the 

designer of a cryptosystem? Freeman [23] recently presented two definitions for properties 

of pairings between composite-order groups used by designers, projecting and cancelling. 

Very recently Seo and Cheon [24] defined an addition structure, translating. 
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5.4.1 PROJECTING PAIRINGS 

Boneh, Goh, and Nissim’s cryptosystem [8] takes elements     and     , where g has 

order        and h has order p1, and encrypts a message   as       , r is a random 

number. In this system   is used as a “blinding” term which adds randomness to the 

ciphertext. Decrypting the message is performed by first computing    , thus getting rid of 

h; then it is just a matter of taking the discrete log with base     to get M. The functionality 

of the system requires that this operation can be performed either before or after the 

pairing is computed; in other words we must be able to construct and remove blinding 

terms in   . Freeman defines this concept as projecting. 

Definition 5.4.1 Let   be a bilinear generator. We say that   is projecting if it also outputs a 

group   
     and three group homomorphisms          mapping        to themselves, 

respectively, such that 

1.           are contained in the kernels of          respectively, and 

2.  (  ( )   ( ))    ( (   ))         . 

5.4.2 CANCELLING PAIRINGS 

In Boneh, Sahai, and Waters’ traitor-tracing scheme [10] and several others,  they use the 

fact that if two elements     have relatively prime order, then  (   )   . This essentially 

means that we could use the two subgroups generated by g and h to encode different 

information and they will remain distinct after the pairing operation. This was defined 

explicitly by Freeman as r-cancelling. 

Definition 5.4.2. Let   be a bilinear group generator. We say that   is r-cancelling if it also 

outputs groups           and          , such that  

1.           and          . 

2.  (     )    whenever              and    . 

5.4.3 TRANSLATING PAIRINGS 

Very recently, Seo and Cheon [41] formally presented a new property of bilinear composite-

order groups, which they called translating. Basically, the translating property says that 

given      
          , where    and    are distinct subgroups of  , there exists a map 

  outputting   
 .  
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Definition 5.4.3. A bilinear group generator   is (   )            if there exist efficiently 

computable (polynomial time in  ) maps        
        defined by (     

    )    
  and 

 ̃      
        defined by (     

    )    
  for an integer    . If   is a symmetric 

bilinear group generator, then set     ̃      . 
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6 IMPLEMENTATIONS 

It is useful to see how all these concepts are used to develop cryptosystems. In this chapter 

we’ll focus on a few of the major cryptosystems that have been developed using composite-

order groups. Boneh, Goh, and Nissim’s system [8] was the first system to use composite-

order groups and initiated this branch of research; therefore, we look at their system first. 

Boneh, Sahai, and Waters [10] used composite-order groups as the basis for a fully 

collusion-resistant traitor tracing system, the first of its kind. These two systems highlight 

the properties of composite-order groups that are not shared with their prime-order 

counter parts. 

6.1 HOMOMORPHIC PUBLIC-KEY SYSTEM 

Homomorphic encryption enables the computation of encrypted data. Specifically it allows 

one to compute additions and multiplications on encrypted data and obtain an encrypted 

result, which can then be decrypted by the intended receiver. Applications such as 

electronic voting schemes, computational private information retrieval, and private 

matching are all possible using homomorphic encryption.  Before Boneh, Goh, and Nissim’s 

scheme there was an open problem as to whether an encryption scheme were possible in 

which one may both add and multiply; their scheme proved it was possible. In particular, 

their scheme allows one to compute arbitrary additions and one multiplication. 

In their paper, they chose to use bilinear groups of composite order taken from 

supersingular elliptic curves generated as in Chapter 5. They also gave the first explicit 

definition of the subgroup decision problem for bilinear pairings. 

We describe the three algorithms,                       .  

      ( ): Given a security parameter     ,  ( ) to obtain a tuple 

(            ). Let        . Pick random generators     
 
   and 

set      . Then h is a random generator of the subgroup of   of 

order   . The public key is    (            ). The private key is 

     . 

       (    ): Assume the message space consists of integers in the set {0,1, … , T} 
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with     . To encrypt a message m using   , pick a random  

 
 
 *         + and compute 

        . 

Output C as the ciphertext. 

       (    )  Decrypt using   , observe that 

    (    )   (   ) . 

Let  ̂     . To recover m, it suffices to compute the discrete log of     

base  ̂  Because       this takes expected time  (√ ) using 

Pollard’s lamda method. 

The decryption takes polynomial time in T, and thus the system above can only be used to 

encrypt short messages. In [8], they note that it is possible to encrypt longer messages using 

any mode of operation that converts cipher on a short block into a cipher on an arbitrary 

long block. In order to speed up the decryption, one could compute a polynomial-sized table 

of powers of  ̂  allowing decryption in constant time. 

6.1.1 SECURITY 

We observe how this system is secure under the subgroup decision assumption. The 

general subgroup decision assumption presented earlier has been applied to this system as 

follows (note that the definitions are equivalent). 

Definition 6.1.1. The bilinear subgroup generator is an algorithm   that given a security 

parameter      outputs a tuple (            ) where      are groups of order        

and          is a bilinear map. On input    the algorithm works as follows: 

1. Generate two random   bit primes       and set                  

2. Generate a bilinear group   of order n using one of the methods in Chapter 5. Let g 

be a generator of   and         be the bilinear map. 

3. Output (            )  

Definition 6.1.2. The subgroup decision problem is stated as such. For an algorithm 𝒜  the 

advantage of 𝒜 in solving the subgroup decision problem       𝒜( ) is defined as: 
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      𝒜( )     ,𝒜(          )    (            )   ( )            )-

    ,𝒜(          
   )    (            )   ( )            )-   

Definition 6.1.3. We say that   satisfies the subgroup decision assumption if for any 

polynomial time algorithm 𝒜,       𝒜( ) is a negligible function in    

Theorem 6.1.4. The public key system in 6.1 is semantically secure assuming   satisfies the 

subgroup decision assumption. 

Proof. Suppose a polynomial time algorithm   breaks the semantic security of the system 

with advantage  ( ). We construct an algorithm 𝒜  hat breaks the subgroup decision 

assumption with the same advantage. Given (          ) as input, algorithm 𝒜 works as 

follows: 

1. A picks a random generator     and gives algorithm   the public key 

(            ). 

2. Algorithm   outputs two messages        *         + to which 𝒜 responds 

with the ciphertext            for a random  
 
 *   + and random  

 
 *         +  

3. Algorithm  outputs its guess    *   +. If       , algorithm 𝒜 outputs 1 

(meaning x is uniform in a subgroup of  ); otherwise 𝒜 outputs 0 (meaning x is uniform in 

 ). 

When x is uniform in    the challenge cipher text C is uniformly distributed in   and is 

independent of the bit b. In this case   ,    -       When x is uniform in the q1-

subgroup of  , then the public key and challenge C given in   are as in a real semantic 

security game. By definition of  , we know that   ,    -  
 

 
  ( ). If follows that 𝒜 

satisfies       𝒜( )   ( ) and hence 𝒜 breaks the subgroup decision assumption with 

advantage  ( )  

6.2 FULLY COLLUSION RESISTANT TRAITOR TRACING 

Traitor tracing systems are used primarily to help content distributors identify pirates. As 

an example, consider a broadcast system which sends encrypted data to N intended 

recipients, e.g. a satellite radio broadcast system (like SiriusXM) in which the broadcasted 

data is only to be played on certified receivers. Recipient i has secret key SKi. The broadcast 

is encrypted using a public key BK. Any certified receiver can decrypt the data using an 
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embedded secret key SKi. The certified player could also enforce restrictions such as “play 

once” or “do not copy”. 

A pirate could hack a certified player, extracting its secret key. The pirate could then build a 

pirate decoder that could ignore any of the restrictions intended by the distributor. Even 

more, the pirate could make the system widely available so anyone could have 

unauthorized access to the data. 

Enter traitor tracing. When a pirate decoder has been discovered, the distributor could run 

a tracing algorithm interacting with the pirate decoder which outputs the secret keys, SKi, 

used by the pirate to create the pirate decoder. This information could be used to identify 

the owner of the original systems. 

 A traitor tracing system consists of four algorithms, Setup, Encrypt, Decrypt, and Trace. At a 

high level, the setup algorithm generates the broadcaster’s key BK, tracing key TK, and the N 

recipient keys K1, … , KN. Encrypt encrypts using BK, and Decrypt decrypts with one of the Ki. 

Trace is more complicated, interesting. We detail the formal definitions and syntax in the 

Appendix, as what we are really concerned with is how they used bilinear composite-order 

groups. 

Boneh, Sahai, and Waters’ traitor tracing is fully collusion resistant, meaning even a pirate 

with only one secret key can be traced. The ciphertext length is  √  for N users. They built 

the system from a new primitive called private linear broadcast encryption (PBLE). Boneh et 

al. show that a traitor tracing scheme can be reduced to the construction of a PBLE scheme. 

They then devise a PBLE scheme and prove its security under three assumptions in bilinear 

groups. 

A PBLE system consists of four algorithms, Setup, Encrypt, TrEncrypt, and Decrypt [23]:

     (   )  Takes as input a security parameter   and a positive integer n that 

is the number of users in the system. The algorithm outputs a 

public key PK, a secret key SK, and private keys K1,…, Kn, where Ki 

is given to user i. 

       (    )  Takes input PK and a message M and outputs a ciphertext C. This 

algorithm is used to encrypt a message to all N users. 
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         (      )  Ta kes as input a SK, an integer i with        , and a message 

M, and outputs a ciphertext C. This algorithm encrypts a message 

to a set *     + and is primarily used for traitor tracing. 

       (         )  Takes input a private key Kj for user j, a ciphertext C, and the 

public key PK. The algorithm outputs a message M or the symbol 

   

The system must satisfy the following consistency property for all     *        +, with 

   , and all messages M:  

Let (      (       ))
 
      (   ), and let  

 
          (      ). 

If     then        (         )   .  

6.2.1 BONEH, SAHAI, WATERS PBLE 

The key algebraic fact that underlies the scheme presented in [10] is that if    is any 

element from the order   subgroup    and    is any element from the order   subgroup 

  , then we have:  (     )    . The four algorithms defined for Boneh et al.’s system are 

defined below. 

        (       )  

[
        

 
      

           
         

           
    

    (     )
           (     )

                    
] 

The setup algorithm takes as input the number of users N and a security parameter  . It first 

generates an integer      where     are random primes (whose size is determined by the 

security parameter). The algorithm creates a bilinear group   of composite order n. It next 

creates random generators          and          and sets                 . 

Next it chooses random exponents                          and     . 

The public key include the description of the group and the following: 

The private key for user (   ) is generated as              . The authorities secret key K 
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includes factors     along with exponents used to generate the public key. 

            (    (   ))  

                                         

This algorithm is a secret key algorithm used by the tracing authority. The algorithm encrypts 

a message M to the subset of receivers that have row values greater than i or both row value 

equal to i and column values greater than or equal to j. 

The encryption algorithm first chooses random 

and (              )   (                    )    
 . 

For each row x we create a four ciphertext components (     
̅̅̅̅       ) as follows: 

If           
       

̅̅̅̅    
           

          (    )
       

If          
       

̅̅̅̅   
          

          (   )       

If          
       

̅̅̅̅   
          

           (   )      

For each column y the algorithm creates values      
̅̅ ̅  as: 

If                   
̅̅ ̅      

If               

          
̅̅ ̅      

 

          (    )  

This algorithm is used by an encryptor to encrypt a message such that all the recipients can 

receive it. This algorithm is used during normal  (non-tracing) operation to distribute content 

to all receivers. 

The algorithm first chooses random                       . For each row x the 

algorithm creates the four ciphertext components (    ̅       ) as follows: 

     
    ̅    
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For each column y the algorithm creates      ̅ as: 

     
       ̅      

 

          .(   )       /  

  (
 (       ) ( ̅    ̅)

 (     )
)

  

    

User (   ) uses key      to decrypt by computing: 
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7 CONVERTING COMPOSITE-ORDER GROUPS TO PRIME-ORDER 

There is a current research thrust to identify the properties of composite-order groups 

which are used by cryptosystems and to create elliptic curves that generate prime-order 

groups with the same properties. Freeman [23] developed such a framework. In particular, 

he shows how it is possible that the subgroup decision problem is an analogue of the 

decision Diffie-Hellman assumption. He then shows how it is possible to generate product 

groups of prime-order curves to simulate the properties of composite-order curves, and 

how these can be used in existing cryptosystems. Freeman notes that his framework is not a 

black box and that the security proof of each cryptosystem would need to be checked to 

ensure that it is still valid in his framework. He gave the example of the Lewko-Waters ID-

based encryption scheme and how it uses in an essential way the fact that G has two 

subgroups of relatively prime order; his framework is thus not valid in this example. 

Lewko [42] furthered the work of Freeman by presenting a set of tools to convert 

composite-order bilinear systems relying on the cancelling property to prime-order 

systems. Using these tools she was able to expand the set of applicable cryptosystems.  

Meiklejohn, Shacham, and Freeman [43] presented limitations on converting pairing-based 

cyptosystems from composite- to  prime-order groups. In particular they proposed that it is 

not possible for prime-order groups to simultaneously obtain the cancelling and projecting 

properties. 

Recently Seo and Cheon [41] presented evidence that, despite the limitations suggested by 

Miekeljon et al., it is indeed possible to have prime-order groups simultaneously obtain the 

cancelling and projecting properties. They presented a new mathematical framework for 

the conversion, answering several open problems from [23] and [43]. Having successfully 

created a framework capable of converting known composite- to prime-order groups, they 

posed the question whether there exist cryptosystems that are based on composite-order 

groups that are not realizable using prime-order groups. 
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8 CONCLUSIONS 

We have defined elliptic curves over finite fields and shown how the set of points on elliptic 

curves form a group with point addition. 

The Tate pairing is an efficiently computable bilinear map defined on elliptic curves. We 

have shown how to compute the pairing using Miller’s algorithm. There are other variations 

of the Tate pairing that have a shorter Miller loop and are therefore more efficient from a 

computational standpoint. 

It is possible to define the discrete log problem on elliptic curves. We examined attacks that 

can be used to solve the DLP on elliptic curves. 

We studied pairings and how they can be used a basis for cryptosystems. We discussed 

finding pairing-friendly elliptic curves of composite order and the security concerns when 

using such curves. We discussed the properties which make composite-order groups 

desirable for creating unique cryptosystems. 

We examined two existing protocols to see how they use the properties of composite-order 

bilinear groups. 

We then presented the current research on attempting to convert cryptosystems which use 

composite-order groups to cryptosystems using prime-order groups. 

Two major problems remain open concerning composite-order groups. The first is whether 

it is possible to classify composite-order pairing-friendly curves into families as in the 

prime-order case. The second is whether there exist cryptosystems using composite-order 

groups which are not realizable using prime-order groups. 
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