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Abstract

In this thesis, we study Peskine and Szpiro’s Grade Conjecture and its con-

nection with asymptotic intersection multiplicity χ∞. Given an A-module M

of finite projective dimension and a system of parameters x1, . . . , xr for M ,

we show, under certain assumptions on M , that χ∞(M,A/x) > 0. We also

give a necessary and sufficient condition on M for the existence of a system of

parameters x with χ∞(M,A/x) > 0.

We then prove that if the Grade Conjecture holds for a given module M ,

then there is a system of parameters x such that χ∞(M,A/x) > 0. We also

prove the Grade Conjecture for complete equidimensional local rings in any

characteristic.

ii



Acknowledgments

I would like to thank my thesis advisor, Sankar Dutta. He is an exceptional

teacher, and his continued guidance and support have been vital in making

me the mathematician I am today. I would also like to thank Phil Griffith,

Hal Schenck, and Bill Haboush, who served on my thesis committee and have

helped me throughout my graduate career, both personally and mathematically.

Furthermore, I would like to thank Steven Bradlow, who served as graduate

director during my tenure and supported me throughout.

My parents have been significant figures in my mathematical career since

long before I can remember. From counting steps to counting dimension and

grade, they have ceaselessly encouraged me, taught me, and inspired me to

continue onwards. My father, in particular, has been an invaluable sounding

board for all of my mathematical ideas, and has spent countless hours reading

drafts of this thesis. Thank you.

Finally, I would like to thank Caroline for her continued love, support, and

encouragement.

iii



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Detailed Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Dimension and Multiplicity . . . . . . . . . . . . . . . . . . . . . 4
2.2 Depth and Grade . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Double Complexes and the Koszul Complex . . . . . . . . . . . . 10
2.4 Spectral Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Local Cohomology and Local Duality . . . . . . . . . . . . . . . . 13
2.6 Characteristic p . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Main Results: The Grade Conjecture . . . . . . . . . . . . . . 18
3.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 The Equidimensional Case . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Reduction to Characteristic p . . . . . . . . . . . . . . . . . . . . 23

4 Main Results: Asymptotic Intersection Multiplicity . . . . . 36
4.1 Asymptotic Intersection Multiplicity . . . . . . . . . . . . . . . . 36
4.2 Connection With The Grade Conjecture . . . . . . . . . . . . . . 41

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

iv



1 Introduction

Throughout this thesis, A will be a local noetherian ring, and all modules con-

sidered will be finitely generated.

Our main focus is Peskine and Szpiro’s Grade Conjecture. We will prove the

Grade Conjecture for complete equidimensional local rings in any characteris-

tic, and we will show how to reduce the conjecture from equicharacteristic to

characteristic p.

We will then explore the connection with the asymptotic intersection mul-

tiplicity χ∞(M,A/x), where M is an A-module of finite projective dimension

and x = x1, . . . , xr is a system of parameters for M . We will give a necessary

and sufficient condition on M for the existence of such a system of parameters

with χ∞ > 0. We will then prove that if the Grade Conjecture holds, then

there exists a system of parameters such that χ∞ > 0, and we will discuss some

corollaries.

1.1 Detailed Summary

In 1965, Serre [Ser65] proved the following theorem about intersection multi-

plicities:

Theorem 1.1.1 (Serre). Let A be a regular local ring either containing a field or

unramified over a discrete valuation ring, and let M and N be finitely generated

A-modules with `(M ⊗N) <∞. Letting

χ(M,N) =

dimA∑
i=0

(−1)i`(Tori(M,N))

be the intersection multiplicity, we then have

1. dimM + dimN ≤ dimA

2. χ(M,N) ≥ 0

3. χ(M,N) = 0 if and only if dimM + dimN < dimA.

He also proved (1) for an arbitrary regular local ring, and conjectured that

(2) and (3) hold as well. These statements can be further generalized to an

arbitrary local ring when one of the modules has finite projective dimension:

The Dimension Inequality. dimM + dimN ≤ dimA;
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Non-negativity. χ(M,N) ≥ 0;

Vanishing. χ(M,N) = 0 if dimM + dimN < dimA; and

Positivity. χ(M,N) > 0 if dimM + dimN = dimA.

When A is regular local, nonnegativity was proved by Gabber [Gab95], and

vanishing was proved by Roberts [Rob85] and Gillet-Soulé [GS85] independently;

positivity is still open when A is a ramified regular local ring.

When A is not regular, the Dimension Inequality is open, but nonnegativity,

vanishing, and positivity are false: Dutta, Hochster, and McLaughlin [DHM85]

gave an example of a hypersurface A and modules M and N , with pdM <∞,

where χ(M,N) < 0 even though dimM + dimN < dimA.

Since positivity is false in the general case, we consider instead the case

where N = A/x, where x1, . . . , xr is a system of parameters for M . Positivity

is even unknown in this case as well.

Note that due to Serre [Ser65] and Lichtenbaum [Lic66], if x1, . . . , xr form an

A-sequence, then χ(M,A/x) > 0; however, outside of this special case, positivity

is completely unknown.

In 1982, Dutta [Dut83] introduced the notion of asymptotic multiplicity χ∞,

which we will define in Section 2.6, to investigate vanishing and positivity over

a local ring of characteristic p. In particular, he proved the following:

1. χ∞(M,N) = 0 if dimM + dimN < dimA;

2. χ∞(M,N) > 0 if dimM + dimN = dimA and M is Cohen-Macaulay;

3. There exist modules M and N with χ∞(M,N) < 0.

Again, since positivity of χ∞ is false in this general case, we consider the case

where N = A/x, where x1, . . . , xr is a system of parameters for M . Positivity

of χ∞ is unknown in this case, even when x1, . . . , xr form an A-sequence, and

our motivating question is: when is χ∞(M,A/x) > 0?

In this thesis, we will consider χ∞(M,A/x) when x1, . . . , xr is a system of

parameters for M . We prove the following:

Theorem 4.1.5. Suppose pdM <∞, where d = dimA and r = dimM . Then

there is a system of parameters x1, . . . , xr for M , that is part of a system of

parameters for A, such that

χ∞(M,A/x) > 0 if and only if dim Extd−r(M,A) = r.

We will also show a special case of asymptotic positivity:

Theorem 4.1.7. Let d = dimA and r = dimM , and suppose that pdM =

d − r. Then any system of parameters x1, . . . , xr for M is part of a system of

parameters for A, and

χ∞(M,A/x) > 0.
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Next, we will study the following conjecture of Peskine and Szpiro [PS73,

Conjecture (f) of Chapter II]:

The Grade Conjecture. Suppose that pdM <∞. Then

gradeM + dimM = dimA.

The Grade Conjecture is known in some specific cases: when M is perfect or

A is Cohen-Macaulay (these are due to Peskine and Szpiro [PS73]); and in the

graded case, when M =
⊕
Mi is a graded module over a graded ring A =

⊕
Ai

with A0 artinian (this is also due to Peskine and Szpiro [PS74]). Foxby [Fox79]

showed that the Grade Conjecture holds if A is complete and equidimensional

in the equicharacteristic case. We will prove this result in any characteristic:

Theorem 3.2.4. Suppose that A is complete and equidimensional and pdM <

∞. Then

gradeM + dimM = dimA.

After proving the main results about the positivity of χ∞, we will also prove

the following connection between the Grade Conjecture and χ∞:

Theorem 4.2.1. Let A be a local ring in characteristic p, and suppose that

pdM <∞. Assume the Grade Conjecture holds for M . Then there is a system

of parameters x1, . . . , xr for M , that is part of a system of parameters for A,

such that

χ∞(M,A/x) > 0.

We will also show how to translate characteristic p results relating to the

Grade Conjecture to equicharacteristic zero. In particular, we will show:

Theorem 3.3.1. Suppose that the Grade Conjecture holds over every local ring

of characteristic p. Then it also holds for every local ring of equicharacteristic

zero.

Finally, as a consequence of the equivalence proved in Theorem 4.1.5, as well

as Theorems 4.1.7 and 4.2.1 on the positivity of χ∞, we can show several cases in

which dim Extd−r(M,A) = r. We can use the same reduction-to-characteristic-p

techniques as above to prove these results in any equicharacteristic local ring:

Theorem 4.2.3. Let A be a local ring of equal characteristic, M a finitely gener-

ated A-module of finite projective dimension and let d = dimA and r = dimM .

If pdM = d− r, then dim Extd−r(M,A) = r.

Corollary 4.2.4. Let A be a local ring of equal characteristic, M a finitely gen-

erated A-module of finite projective dimension, and let d = dimA. If dimM = 1 ,

then dim Extd−1(M,A) = 1.
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2 Background

We will begin by presenting background material that will be needed in this

thesis. More information and details can be found in Matsumura [Mat89] and

Serre [Ser65].

All rings are assumed to be commutative Noetherian rings with identity.

(A,m, k) will denote a local Noetherian ring, where m is the unique maximal

ideal and k = A/m. If x1, . . . , xn is a sequence of elements of a ring A, we

will often use x to denote either the sequence or the ideal generated by the

sequence. Usually there is no confusion; if there is ambiguity, we will specify

which we mean.

If (A,m, k) is a local ring, we write Â for the completion of A with respect

to m, and likewise M̂ for the completion of an A-module M . If p is a prime

ideal of A, we write Ap for the localization of A at p.

2.1 Dimension and Multiplicity

Definition 2.1.1. Let A be a ring. The spectrum of A, denoted Spec(A) is

the set of all prime ideals of A.

Definition 2.1.2. Let A be a ring and let M be an A-module. The annihilator

of M is

ann(M) = {a ∈ A | aM = 0} .

The support of M is

Supp(M) = {p ∈ SpecA | p ⊇ annM} .

The associated primes of M is

Ass(M) = {p ∈ SuppM | p = ann(x) for some x ∈M} .

If I is an ideal, then we write

V (I) = Supp(A/I).

Definition 2.1.3. If A is a ring, the Krull dimension of A, denoted by
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dim(A), is defined as

dim(A) = sup

{
d

∣∣∣∣ there exists p0 ( p1 ( · · · ( pd

where each pi is a prime ideal of A

}
.

The Krull dimension of a ring is simply referred to as the dimension of a ring.

If M is an A-module, then

dimM = dim(A/ ann(M)).

The codimension of a module M is

codimM = dimA− dimM.

If p ∈ SpecA, then the height of p is defined to be ht p = dimAp. If I is a

proper ideal of A, then we define

ht I = inf {ht p | p ∈ V (I)} .

We say that A is equidimensional if for all minimal primes p of A, dimA/p =

dimA.

Definition 2.1.4. Let A be a local ring and M be a finitely generated A-

module. Let

s(M) = inf

{
d

∣∣∣∣ there exists x1, . . . , xd ∈ m such

that `(M/(x1, . . . , xd)M) <∞

}
.

If s(M) = d, then any sequence x1, . . . , xd ∈ m such that

`(M/(x1, . . . , xd)M) <∞

is called a system of parameters of M .

Definition 2.1.5. Let A be a ring and let M be a finitely generated A-module.

Let I be an ideal of A such that `(M/IM) < ∞. The Hilbert-Samuel

polynomial of M with respect to I is defined to be the unique polynomial

PI(M,X) ∈ Q[X] such that

PI(M,n) = l(M/InM) for n� 0.

We write

PI(M,X) =
ad
d!
Xd + lower degree terms,

and we set

d(I;M) = d

and

e(I;M) = ad.
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We call e(I;M) the Hilbert-Samuel multiplicity of M with respect to I. If

(A,m) is local, we write d(M) for d(m;M) and e(M) for e(m;M).

The above three definitions are tied together by the Dimension Theorem.

Theorem 2.1.6 ([Mat89, Theorem 13.4]). Let A be a local ring and M a finitely

generated A-module. Then

dim(M) = s(M) = d(M).

Note that if `(M) <∞, then e(I;M) = `(M) for any proper ideal I. The fol-

lowing theorem describes a deeper connection between multiplicity and length.

Theorem 2.1.7 ([Mat89, Theorem 14.7]). Let A be a local ring and M a finitely

generated A-module, and let I be an ideal of A such that `(M/IM) < ∞. Let

{p1, . . . , pt} be the minimal primes of Ass(M) such that dimA/pi = dimM .

Then

e(I;M) =

t∑
i=1

e(I;A/pi)`(Mpi),

where I are the images of I modulo pi.

Next we will define intersection multiplicity as formulated by Serre.

Definition 2.1.8. Let A be a ring and M an A-module. A projective reso-

lution of M is an exact sequence

· · · → P2 → P1 → P0 →M → 0

where each Pi is a projective A-module. The projective dimension of M ,

denoted pdM , is defined to be the smallest h, if it exists, such that there is a

projective resolution

0→ Ph → Ph−1 → · · · → P1 → P0 →M → 0.

If no such h exists, we define pdM =∞.

Similarly, an injective resolution of M is an exact sequence

0→ E0 → E1 → E2 → · · · ,

where each Ei is an injective A-module. The injective dimension of M ,

denoted idM , is defined to be the smallest h, if it exists, such that there is an

injective resolution

0→M → E0 → E1 → · · · → Eh−1 → Eh → 0.

If no such h exists, we define idM =∞.

Lemma 2.1.9. Let A be a ring and let M and N be finitely generated A-

modules, and let I = annM and J = annN . Then I + J ⊆ ann Tori(M,N) for

6



all i ≥ 0.

Proof. Let P• be a projective resolution for M . Then Tori(M,N) is the homol-

ogy of the complex P• ⊗ N , and so it is annihilated by annN = J . Similarly,

by using a projective resolution for N , we see that Tori(M,N) is annihilated by

I. Therefore, it is annihilated by I + J , as desired.

Definition 2.1.10. Let A be a ring and let M and N be finitely generated

A-modules with `(M ⊗ N) < ∞, such that either M or N has finite projec-

tive dimension. Writing h = min(pdM, pdN), we define, following Serre, the

intersection multiplicity

χ(M,N) =

h∑
i=0

(−1)i`(Tori(M,N)).

The condition `(M ⊗N) <∞ implies that `(Tori(M,N)) <∞ for all i ≥ 0

by Lemma 2.1.9, so the definition of intersection multiplicity makes sense.

Definition 2.1.11. Let A be a ring, let C• be a complex of A-modules with

homology of finite length, and assume that Ci = 0 for i > h. We define the

Euler characteristic of the complex C• by

χ(C•) =

h∑
i=0

(−1)i`(Hi(C•)).

We note that using the above notation,

χ(M,N) = χ(M ⊗Q•) = χ(P• ⊗N),

where P• (resp., Q•) is a finite projective resolution of M (resp., N).

The following lemma follows immediately from the above definition.

Lemma 2.1.12. Let A be a ring, and let C• be a complex of A-modules of finite

length, and assume that Ci = 0 for i > h. Then

χ(C•) =

h∑
i=0

(−1)i`(Ci).

2.2 Depth and Grade

Definition 2.2.1. LetA be a ring andM anA-module. A sequence x1, . . . , xn ∈
A is called a regular sequence on M (or M -regular, or an M -sequence) if

1. (x1, . . . , xn)M 6= M

2. For each i, xi is a nonzerodivisor on M/(x1, . . . , xi−1)M ; equivalently,

7



the “multiplication by xi” map

M

(x1, . . . , xi−1)M

xi−→ M

(x1, . . . , xi−1)M

is injective.

The existence of a regular sequence can be detected by Ext modules as

follows.

Theorem 2.2.2 ([Mat89, Theorem 16.6]). Let A be a ring. Let M be a finitely

generated A-module, and let I be an ideal of A such that IM 6= M . Then the

following are equivalent:

1. Exti(N,M) = 0 for all i < n and all finitely generated A-modules N such

that Supp(N) ⊆ V (I).

2. Exti(A/I,M) = 0 for all i < n.

3. Exti(N,M) = 0 for all i < n and some finitely generated A-module N

such that Supp(N) = V (I).

4. There is an M -sequence of length n contained in I.

This allows us to make the following definition.

Definition 2.2.3. Let A be a ring. Let M be a finitely generated A-module,

and let I be an ideal of A such that IM 6= M . We define depth(I,M) to be

the length of the longest M -sequence contained in I. If (A,m) is local, then we

write depthM = depth(m,M).

Definition 2.2.4. Let A be a ring and let I be a proper ideal of A. We

define grade I = depth(I, A). If M is a finitely-generated A-module, we define

gradeM = grade annM . (For convenience, we sometimes define gradeA =∞.)

Remark 2.2.5. Since one can view an ideal I as an A-module, the notation

grade I could be ambiguous; in practice, whenever we write grade I, we will

always mean the grade as an ideal, not as a module.

Note that by Theorem 2.2.2, gradeM is the smallest integer i such that

Exti(M,A) 6= 0, and so gradeM ≤ pdM .

Definition 2.2.6. Let A be a ring and M a finitely generated A-module of

finite projective dimension. We say that M is perfect if gradeM = pdM .

Depth is related to projective dimension as follows.

Theorem 2.2.7 (Auslander-Buchsbaum Formula, [BH93, Theorem 1.3.3]). Let

A be a local ring and M a nonzero finitely-generated A-module of finite projective

dimension. Then

pdM + depthM = depthA.

One can show that, in general, depthM ≤ dimM for any finitely generated

A-module M . When equality holds, we say the module is Cohen-Macaulay.
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Definition 2.2.8. Let A be a local ring and M a finitely generated A-module.

We say M is Cohen-Macaulay if dimM = depthM . If A is Cohen-Macaulay

as a module over itself, then we say that A is Cohen-Macaulay.

Theorem 2.2.9 ([Mat89, Theorem 17.4]). Let (A,m) be a Cohen-Macaulay

local ring.

1. For a proper ideal I, ht I = depth(I, A) = grade I.

2. A is catenary; that is, given any primes p ⊆ q, every chain of primes

p = p0 ⊆ p1 ⊆ · · · ⊆ pn = q

has the same length.

3. For any sequence x1, . . . , xr ∈ m, the following conditions are equivalent:

a. x1, . . . , xr is an A-sequence;

b. ht(x1, . . . , xi) = i for every 1 ≤ i ≤ r;

c. ht(x1, . . . , xr) = r;

d. x1, . . . , xr is part of a system of parameters for A.

Definition 2.2.10. Let (A,m) be a local ring. If A has a system of parameters

x1, . . . , xn that generates m, then we say that A is a regular local ring. If

A is a (not necessarily local) ring, then we say that A is a regular ring if

dimA <∞ and Am is a regular local ring for each maximal ideal m.

Definition 2.2.11. A local ring is called a Gorenstein ring if it has finite

injective dimension as a module over itself.

We will make use of the following structure theorem of complete local rings

(that is, local rings where A ∼= Â) due to Cohen [Coh46].

Theorem 2.2.12 ([Mat89, Theorem 29.4]). Let A be a complete local ring.

Then there is a surjection V [[X1, . . . , Xn]] → A, where V is either a field or a

complete discrete valuation ring, and V [[X1, . . . , Xn]] denotes the power series

ring over V in n variables.

We will also use the following structure theorem of exact sequences due to

Buchsbaum and Eisenbud.

Theorem 2.2.13 ([BE73]). Let A be a ring and let

F• : 0 −→ Fh
dh−→ Fh−1 −→ · · · −→ F1

d1−→ F0

be a complex of free A-modules. For r ≥ 1 and k ≥ 1, define Ir(dk) to be the

ideal generated by the r × r minors of dk. Then F• is exact if and only if

1. The rank of the map dk (that is, the largest r such that Ir(dk) is nonzero)

is equal to

rk =

h∑
i=k

(−1)i rankFi;
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2. The grade of each ideal Irk(dk) is at least k.

2.3 Double Complexes and the Koszul

Complex

Definition 2.3.1. Let A be a ring. A double complex D•• is a doubly-

indexed set of A-modules Dij , together with two sets of boundary maps,

δij : Dij → Di−1,j

and

εij : Dij → Di,j−1,

such that the following diagram commutes:

Dij Di−1,j

Di,j−1 Di−1,j−1

δij

εij

δi,j−1

εi−1,j

We will refer to the differentials δij as horizontal differentials and εij as

vertical differentials.

The simplest example of a double complex is one formed by tensoring two

complexes. Given complexes F• and G• with differentials dFi and dGi , respec-

tively, we can form a double complex D•• by:

Dij = Fi ⊗Gj ,

with differentials

δij = dFi ⊗ idGj : Fi ⊗Gj → Fi−1 ⊗Gj

and

εij = idFi ⊗dGj : Fi ⊗Gj → Fi ⊗Gj−1,

where idFi and idGj represent the identity maps on Fi and Gj , respectively.

We will often write (F⊗G)•• for the double complex formed by tensoring

F• by G•, although we will always explicitly say that we mean this, since there

does not seem to be a standard notation.

Definition 2.3.2. Let D•• be a double complex with horizontal differentials

δij and vertical differentials εij . We define the total complex of D••, written

Tot(D••), as follows:

Fn =
⊕
i+j=n

Dij
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with differentials

dn =
∑
i+j=n

δij + (−1)iεij .

Definition 2.3.3. Let F• and G• be two complexes. We define the tensor

complex by

F• ⊗G• = Tot((F⊗G)••);

that is, the total complex of the double complex formed by tensoring F• by G•.

We now define the Koszul complex.

Definition 2.3.4. Let A be a ring and x ∈ A. We write K•(x) for the Koszul

complex of A generated by x, defined by

· · · −→ K2(x) −→ K1(x)
x−→ K0(x) −→ · · · ,

where K0(x) = A, K1(x) = A, and all other Ki(x) = 0; and the map x is given

by multiplication by x.

Definition 2.3.5. Let A be a ring, M a finitely generated A-module, and

x1, . . . , xn ∈ A. We define the Koszul complex K• by

K•(x1, . . . , xn) = K•(x1)⊗ · · · ⊗K•(xn),

and

K•(x1, . . . , xn;M) = K•(x1, . . . , xn)⊗M.

We write Hi(x1, . . . , xn) (respectively, Hi(x1, . . . , xn;M)) for the ith homology

of the complex K•(x1, . . . , xn) (respectively, K•(x1, . . . , xn;M)).

One can detect regular sequences using Koszul complexes as follows:

Theorem 2.3.6 ([Mat89, Theorem 16.8]). Let (A,m) be a local ring, M a

finitely generated A-module, and let x1, . . . , xn ∈ m. The following are equiva-

lent:

1. x1, . . . , xn form an M -sequence.

2. Hi(x;M) = 0 for all i > 0.

3. H1(x;M) = 0.

Koszul complexes are also connected with multiplicity in the following way:

Theorem 2.3.7 ([Ser65, Theorem 1 of Chapter IV]). Let A be a local ring, M

a finitely generated A-module, and let x!, . . . , xr ∈ A be a system of parameters

for M . Then for each i ≥ 0, Hi(x;M) has finite length, and

e(x;M) =

r∑
i=0

`(Hi(x;M)).

11



2.4 Spectral Sequences

More details on the contents of this section can be found in [Wei94].

Definition 2.4.1. Let A be a ring. A homology spectral sequence of A-

modules starting at an integer a consists of the following data:

1. A family {Erij} of A-modules, defined for all integers i, j, and r ≥ a.

2. Maps

drij : Erij → Eri−r,j+r−1

that are differentials in the sense that drdr = 0. This means that “lines

of slope −(r + 1)/r” in the lattice Er∗∗ form complexes.

3. Isomorphims between Er+1
ij and the homology of Er∗∗ at the spot Erij :

Er+1
ij
∼= ker(drij)/ im(dri+r,j−r+1).

The total degree of Erij is n = i+ j. A spectral sequence is bounded if there

are only finitely many nonzero terms of each total degree. A spectral sequence

is regular if for each i and j, the differentials drij are zero for sufficiently large r.

We note that a bounded spectral sequence is regular.

Definition 2.4.2. Let A be a ring, and let Erij be a homology spectral sequence

of A-modules. There is a nested family of submodules of Eaij

0 = Baij ⊆ · · · ⊆ Brij ⊆ Br+1
ij ⊆ · · · ⊆ Zr+1

ij ⊆ Zrij ⊆ · · · ⊆ Zaij = Eaij ,

where each Erij
∼= Zrij/B

r
ij . We define

B∞ij =

∞⋃
r=a

Brij

and

Z∞ij =

∞⋂
r=a

Zrij ,

and then define

E∞ij = Z∞ij /B
∞
ij .

We note that if a spectral sequence is bounded, then for sufficiently large r,

Erij = E∞ij .

We now will define convergence of spectral sequences.

Definition 2.4.3. Let A be a ring and let {Erij} be a homology spectral se-

quence of A-modules. We say that the spectral sequence weakly converges to

H∗, where H∗ is a set of A-modules Hn, if there is a filtration of each Hn:

· · · ⊆ FiHn ⊆ Fi+1Hn ⊆ · · ·Hn,

12



and isomorphisms

E∞ij
∼= FiHi+j/Fi−1Hi+j

for all i and j.

We say that the spectral sequence approaches H∗ if it weakly converges to

H∗ and for all n,

Hn =
⋃
i

FiHn and
⋂
i

FiHn = 0.

We say that the spectral sequence converges to H∗ if it approaches H∗, it

is regular, and

Hn = lim←−
i

Hn/FiHn.

If the spectral sequence converges to H∗, we write

Eaij ⇒ Hi+j .

The main example of a spectral sequence we need is induced from a double

complex.

Theorem 2.4.4 ([Wei94, Section 5.6]). Let A be a ring, and let D•• be a double

complex. Then there are two spectral sequences, IE2
ij and IIE2

ij, both converging

to the homology of Tot(D••), defined as follows:

IE2
ij = Hh

i H
v
j (D••)

and
IIE2

ij = Hv
i H

h
j (D••),

where Hv indicates taking vertical homology, and Hh indicates taking horizontal

homology. We say IE2
ij is induced by filtration by columns, and IIE2

ij is

induced by filtration by rows.

2.5 Local Cohomology and Local Duality

More details on the contents of this section can be found in [Har67] and [ILL+07].

Definition 2.5.1. Let A be a ring, let I ⊆ A be an ideal, and let M be an

A-module. The ith local cohomology of M with respect to the ideal I is

defined as

Hi
I(M) = lim−→

t

Exti(A/It,M).

The directed system Exti(A/It,M) is induced by the surjections A/It+1 →
A/It for all t > 0.

In a local ring, local cohomology is connected to depth and dimension.

13



Theorem 2.5.2 ([ILL+07, Theorems 9.1, 9.3]). Let (A,m) be a local ring. Then

depthA = inf
{
i
∣∣Hi

m(A) 6= 0
}

and

dimA = sup
{
i
∣∣Hi

m(A) 6= 0
}
.

Definition 2.5.3. Let (A,m, k) be a local ring. We define the injective hull of

k, denoted EA(k), to be the unique (up to isomorphism) module E containing

k such that

1. E is injective; and

2. For any submodule N ⊆ E, N ∩ k = k.

Definition 2.5.4. Let (A,m, k) be a local ring, and let M be an A-module. We

define the Matlis Dual of M as

M∨ = Hom(M,EA(k)).

Theorem 2.5.5 ([Mat89, Theorem 18.6]). Let (A,m, k) be a local ring, and let

E = EA(k) be the injective hull of k.

1. If M is an A-module and 0 6= x ∈M , then there exists φ ∈M∨ such that

φ(x) 6= 0. In other words, the canonical map θ : M → M∨∨ defined by

θ(x)(φ) = φ(x) for x ∈M and φ ∈M∨ is injective.

2. If M is an A-module of finite length, then `(M) = `(M∨), and the canon-

ical map M →M∨∨ is an isomorphism.

3. Let Â be the completion of A; then E is also an Â-module, and is an

injective hull of k as an Â-module.

4. HomA(E,E) = HomÂ(E,E) = Â. In other words, each endomorphism of

the A-module E is multiplication by a unique element of Â.

5. E is artinian as an A-module, and also as an Â-module. Assume now that

A is complete, and write N (respectively A) for the category of noetherian

(respectively, artinian) A-modules. Then if M ∈ N , we have M∨ ∈ A
and M ∼= M∨∨; if M ∈ A, we have M∨ ∈ N and M ∼= M∨∨.

The following theorem is known as Groethendieck’s Local Duality Theorem.

Theorem 2.5.6 ([ILL+07, Theorem 11.29]). Let (A,m, k) be a local Gorenstein

ring of dimension d, and let M be a finitely generated A-module. Then

Hi
m(M) ∼= Extd−iA (M,A)∨.
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Definition 2.5.7. Let (A,m) be a local ring. A finitely generated A-module ω

is called a canonical module for A if

ω̂ ∼= Hd
m(A)∨.

By Cohen’s structure theorem (Theorem 2.2.12), every complete local ring

has a canonical module. In particular, if R is a regular local ring surjecting onto

A, then we claim

ω = ExtdimR−dimA
R (A,R)

is a canonical module for A. By local duality over R, we have

ω ∼= ExtdimR−dimA
R (A,R)∨∨ ∼= HdimA

m (A)∨,

as required.

2.6 Characteristic p

This section describes features of rings of characteristic p. More information

and details can be found in [PS73].

Definition 2.6.1. Let p > 0 be a prime number. We say that a ring A has

characteristic p if there is an injective ring homomorphism Z/pZ → A. In this

case, the map f : A→ A defined by x 7→ xp is a ring homomorphism, which is

called the Frobenius homomorphism. We write fn for the nth iterate of the

Frobenius; that is, the map x 7→ xp
n

.

Definition 2.6.2. Let A be a ring of characteristic p. We write fA for bi-algebra

A with the action on the left by the Frobenius, and the action on the right by

the identity. That is, if a ∈ A and x ∈ fA,

a · x = apx and x · a = xa.

Definition 2.6.3. The Frobenius functor is a functor F from the category

of A-modules to itself defined by

F (M) = M ⊗ fA.

Example 2.6.4. Let A be a ring and I an ideal generated by x1, . . . , xt. Then

F (A/I) = A/I [p],

where

I [p] = (xp1, . . . , x
p
t ).
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Example 2.6.5. Let

L• : · · · −→ Lk
φk−→ Lk−1 −→ · · ·L1

φ1−→ L0 −→ 0

be a complex of free A-modules. Applying the Frobenius functor to L• gives an

induced complex

F (L•) : · · · −→ Lk
φ
[p]
k−→ Lk−1 −→ · · ·L1

φ
[p]
1−→ L0 −→ 0,

where, if φ is a map of free A-modules corresponding to a matrix (aij), then

φ[p] is defined to be the map corresponding to the matrix (apij).

Theorem 2.6.6 ([PS73, Proposition 1.4]). The Frobenius functor commutes

with localization. That is, if p ∈ SpecA, then

F (−)⊗A Ap = F (−⊗A Ap).

Theorem 2.6.7 ([PS73, Proposition 1.5 and Theorem 1.7]). If M is a finitely

generated A-module, then SuppF (M) = SuppM . If, moreover, M has finite

projective dimension, then F (M) also has finite projective dimension, Tori(M, fA) =

0 for all i ≥ 1, and pdF (M) = pdM .

Kunz [Kun69] investigated how the length of a module grows when the Frobe-

nius is applied. He proved:

Theorem 2.6.8. Let A be a local ring of dimension d, and let M be an A-

module of finite length. Then there is some constant L(M) such that, for all

n ≥ 0,

1 ≤ `(Fn(M))

pnd
≤ L(M).

In 1983, Dutta [Dut83] introduced the following asymptotic intersection

multiplicity:

Definition 2.6.9. Let A be a local ring, and letM andN be a finitely-generated

A-modules such that `(M ⊗N) <∞, and suppose that pdM <∞. We define

χ∞(M,N) = lim
n→∞

χ(Fn(M), N)

pn·codimM
.

Dutta showed that if dimN ≤ codimM (i.e., the Dimension Inequality holds

for M and N), then χ∞(M,N) exists. Seibert [Sei89, Proposition 1] generalized

this result as follows:

Lemma 2.6.10 (Seibert). Writing d = dimA, we let L• be a complex of finitely

generated free modules with homologies of finite length. For each i ≥ 0, the limit

lim
n→∞

`(Hi(F
n(L•)))

pnd
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exists and is rational, and if H0(L•) 6= 0, then

lim
n→∞

`(H0(Fn(L•)))

pnd
≥ 1.

We introduce the following notion of asymptotic Hilbert-Samuel mul-

tiplicity:

Definition 2.6.11. LetM be a finitely-generatedA-module and let x = x1, . . . , xr

be a system of parameters on M . We define

e∞(x;M) = lim
n→∞

e(x;Fn(M))

pn·codimM
.

We discuss various applications and properties of the above definition in

Chapter 4.
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3 Main Results: The Grade
Conjecture

3.1 History

We will begin with one result contained in Serre’s intersection theorem (Theorem

1.1.1):

Theorem 3.1.1 (Serre). Let A be a regular local ring, and let M and N be

finitely generated A-modules with `(M ⊗N) <∞. Then

dimM + dimN ≤ dimA.

Recall that if A is regular local, then dimA = depthA. Therefore, using

the Auslander-Buchsbaum Formula (Theorem 2.2.7) in the setting of Serre’s

theorem, we have

dimM + dimN ≤ depthM + pdM.

Since dimM ≤ depthM for any finitely generated module M , we conclude that

dimN ≤ pdM.

Recall that all modules over a regular local ring have finite projective di-

mension; in 1973, Peskine and Szpiro used the above formulation to generalize

Serre’s theorem, replacing the condition that A be regular local with the much

weaker condition that pdM <∞:

The Intersection Theorem (Peskine-Szpiro, Hochster, Roberts). Let A be a

local ring, and let M and N be finitely generated A-modules with `(M⊗N) <∞.

Assume that pdM <∞. Then

dimN ≤ pdM.

Peskine and Szpiro [PS73] proved the Intersection Theorem in the following

cases:

1. A has characteristic p > 0.

2. A is essentially of finite type over a field of characteristic 0.

3. A is ind-étale over a ring which is essentially of finite type over a field of

characteristic 0.
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Recall that A is ind-étale when A = lim−→Bα, where:

1. For each α, Bα is local and essentially finite type over a field.

2. Bα → Bα′ is the localization of an étale map.

In 1974, Hochster [Hoc74] proved the existence of Big Cohen-Macaulay mod-

ules in equicharacteristic, and used it to prove the Intersection Theorem for any

equicharacteristic local ring. In 1987, Roberts [Rob87] used the theory of local-

ized Chern characters of Baum, Fulton, and MacPherson [BFM75] to prove the

Intersection Theorem in mixed characteristic.

This suggests that many other results true for regular local rings can be

relaxed to arbitrary local rings if one adds the condition that one (or both)

modules have finite projective dimension. In particular, Peskine and Szpiro

posed the following:

Conjecture 3.1.2 (The Dimension Inequality). Let A be a local ring, and let

M and N be finitely generated A-modules with `(M ⊗ N) < ∞. Assume that

pdM <∞. Then

dimM + dimN ≤ dimA.

Peskine and Szpiro also proved:

Lemma 3.1.3 ([PS73, Lemma 4.8]). Let A be a local ring, and let M be a

finitely generated A-module. Then

depthA ≤ gradeM + dimM ≤ dimA.

When A is Cohen-Macaulay, this immediately implies:

Corollary 3.1.4. Suppose A is Cohen-Macaulay. Then

gradeM + dimM = dimA

for all finitely generated modules M .

The above result prompted them to introduce the following conjecture:

The Grade Conjecture. Let A be a local ring, and let M be a finitely generated

A-module with finite projective dimension. Then

gradeM + dimM = dimA.

This is sometimes also referred to as the Codimension Conjecture.

When combined with the Dimension Inequality (Conjecture 3.1.2), this sug-

gests the following statement:

The Strong Intersection Conjecture. Let A be a local ring, and let M and

N be finitely generated A-modules with `(M⊗N) <∞. Assume that pdM <∞.

Then

dimN ≤ gradeM.
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Peskine and Szpiro [PS73] proved the following relationship between the

above conjectures.

Proposition 3.1.5. The Strong Intersection Conjecture is equivalent to the

Grade Conjecture plus the Dimension Inequality.

The Dimension Inequality (and hence the Strong Intersection Conjecture) is

unknown in almost any case when A is not regular. The Grade Conjecture, as

asserted in Corollary 3.1.4, is true when A is Cohen-Macaulay, but unknown in

most other cases. We will show that the Grade Conjecture holds when A is a

complete, equidimensional local ring.

3.2 The Equidimensional Case

When M is perfect, the Grade Conjecture follows immediately from the Inter-

section Theorem:

Corollary 3.2.1 (Peskine-Szpiro). Let A be a local ring, M a finitely generated

A-module of finite projective dimension, and suppose that M is perfect. Then

gradeM + dimM = dimA.

Proof. Let x1, . . . , xr be a system of parameters for M . By the Intersection

Theorem (and since M is perfect),

dimA/x ≤ pdM = gradeM.

Using dimA/x ≥ dimA − dimM gives dimA ≤ gradeM + dimM ; and the

reverse inequality follows from Lemma 3.1.3.

Next, we have some basic results about the annihilator of modules with finite

projective dimension.

Lemma 3.2.2. Let A be a local ring. Suppose that there exists a finitely gen-

erated A-module M of finite projective dimension such that dimM = 0. Then

M is perfect and A is Cohen-Macaulay.

Proof. Since dimM = 0, it follows that I = annM is m-primary, so gradeM =

depthA. By Auslander-Buchsbaum,

pdM + depthM = depthA,

and so depthM = 0 implies pdM = gradeM , i.e., M is perfect; and by Corol-

lary 3.2.1, A is Cohen-Macaulay.

Lemma 3.2.3. Let A be a local ring and M a finitely generated A-module of

finite projective dimension. Then ht annM = gradeM .
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Proof. Let x1, . . . , xg be a maximal A-sequence contained in I = annM (so

g = gradeM). Then

Hom(M,A/x) = Extg(M,A) 6= 0.

Choose a minimal prime p in SuppM ∩Ass(A/x). Then

Hom(Mp, Ap/xAp) 6= 0,

so gradeMp = gradeM = g and ht p ≥ ht I.

Since p ∈ AssA/x, depthAp = g; by Auslander-Buchsbaum,

depthMp + pdMp = g;

and hence pdMp = g = gradeMp, i.e., Mp is perfect over Ap. Corollary 3.2.1

then implies that

gradeMp + dimMp = dimAp.

Now we choose a prime q with I ⊆ q ⊆ p, minimal over I, with dimAp/qAp =

dimMp. We also note that dimAq ≥ depthAq ≥ g.

We now have

dimAp ≥ dimAp/qAp + dimAq

= dimMp + dimAq

≥ dimMp + g

= dimAp,

which implies that the above inequalities are equalities; in particular, dimAq =

g, which means that ht I ≤ ht q = g = gradeM . Since the reverse inequality is

always true, we have equality.

From this, we get a special case of the Grade Conjecture. As stated earlier,

the equicharacteristic case of this result was proved by Foxby [Fox79].

Theorem 3.2.4. Suppose that A is a complete equidimensional local ring, and

let M be a finitely generated A-module of finite projective dimension. Then

gradeM + dimM = dimA.

Proof. We will show that gradeM+dimM ≥ dimA; equality then holds because

the reverse inequality is just Lemma 3.1.3.

We choose a prime p ∈ SuppM with ht p = ht annM , and then choose a
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minimal prime q ⊆ p with ht p/q = ht p. We then have

dimA = dimA/q

= dimA/p + ht p/q

= dimA/p + ht p

= dimA/p + gradeM

≤ dimM + gradeM

where the first equality follows because A is equidimensional; the second because

A is complete, and hence catenary; and the fourth from Lemma 3.2.3. Finally,

the inequality holds since dimA/p ≤ dimM always.

Next, we prove that the Grade Conjecture is connected with the dimension

of a particular Ext module. First, we prove a result that will be used several

times in the next chapter.

Lemma 3.2.5. Let A be a local ring, M a finitely generated A-module of finite

projective dimension, and let d = dimA and r = dimM . Then

dim Extd−r(M,A) = r

if and only if there is a prime p ∈ AssM with dimA/p = r and ht p = d− r.

Proof. If dim Extd−r(M,A) = r, then there is some prime

p ∈ Supp Extd−r(M,A) ⊆ SuppM

with dimA/p = r. Such a prime is necessarily minimal over annM , so it is in

AssM . Furthermore, pdMp ≥ d− r (since Extd−rAp
(Mp, Ap) 6= 0), so

ht p = dimAp ≥ depthAp ≥ pdMp ≥ d− r

by Auslander-Buchsbaum. Since ht p certainly cannot be larger, ht p = d− r.
Conversely, suppose that p ∈ AssM with dimA/p = r and ht p = d − r.

Then Mp is of finite length and finite projective dimension, so by Lemma 3.2.2,

Mp is perfect of projective dimension d− r over Ap, and hence

Extd−r(M,A)p 6= 0,

so dim Extd−r(M,A) = r (the dimension clearly cannot be larger than r).

This is connected with the Grade Conjecture as follows:

Proposition 3.2.6. Let A be a local ring, M a finitely generated A-module of

finite projective dimension, and assume that gradeM + dimM = dimA (i.e.,

22



the Grade Conjecture holds for M). Let d = dimA and r = dimM . Then

dim Extd−r(M,A) = r.

Proof. Let p ∈ SuppM with dimA/p = r. Then `(Mp) < ∞, so by Lemma

3.2.2, Mp is perfect over the Cohen-Macaulay ring Ap. We then have

d− r = gradeM ≤ gradeMp = dimAp = ht p,

so we are done by Lemma 3.2.5.

3.3 Reduction to Characteristic p

Peskine and Szpiro [PS73] introduced some techniques to reduce many homo-

logical statements from equicharacteristic zero to characteristic p. Hochster

[Hoc75] generalized these techniques into a “metatheorem” that is the standard

tool for this type of reduction. Here we will show how to reduce the Grade

Conjecture, as well as some auxiliary questions, from equicharacteristic zero to

characteristic p.

Our main goal is to prove:

Theorem 3.3.1. Suppose that the Grade Conjecture holds over every local ring

of characteristic p. Then it also holds for every local ring of equicharacteristic

zero.

In this section, if f1, . . . , fN ∈ Z[X1, . . . , Xm], and x1, . . . , xm are elements

of some ring R, then we say that x is a solution of f1, . . . , fN if

f1(x) = 0, . . . , fN (x) = 0.

Theorem 3.3.2 (Hochster). Let

f1, . . . , fN ∈ Z[X1, . . . , Xd,W1, . . . ,Wt],

where Xi and Wi are indeterminates. If f1, . . . , fN have a solution (x,w) in

a local ring A of equicharacteristic zero, with x1, . . . , xd forming a system of

parameters for A, then f1, . . . , fN have a solution (x′, w′) in a local ring A′ of

characteristic p, with x′1, . . . , x
′
d forming a system of parameters for A′.

We will use a more generalized version [Kur94]:

Theorem 3.3.3 (Kurano). Let

f1, . . . , fN ∈ Z[Y1, . . . , Yn, X1, . . . , Xd, G1, . . . , Gl,W1, . . . ,Wt],

where Xi, Yi, Gi, and Wi are indeterminates. If f1, . . . , fN have a solution

(y, x, g, w) in a regular local ring R of equicharacteristic zero, with y1, . . . , yn
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forming a regular system of parameters for R, and x1, . . . , xd forming a system

of parameters for R/g, then f1, . . . , fN have a solution (y′, x′, g′, w′) in a regular

local ring R′ of characteristic p, with y′1, . . . , y
′
n forming a regular system of

parameters for R′, and x′1, . . . , x
′
d forming a system of parameters for R′/g′.

The goal, then, is to find equations that preserve the particular properties

that we’re interested in. The main result we need, Lemma 3.3.10, asserts that

we can preserve the dimension of homology modules. First, we need some

preliminary results.

Lemma 3.3.4. Let R be a regular local ring, and let I = (g1, . . . , gl) be a proper

ideal with h = ht I. Then there are polynomials f1, . . . , fN with coefficients in

Z in indeterminates

1. Y1, . . . , Yn

2. G1, . . . , Gl

3. W1, . . . ,Wt (for some sufficiently large t)

such that

1. There are y and w in R such that (y, g, w) is a solution of f1, . . . , fN , and

y1, . . . , yn forms a regular system of parameters for R.

2. If (y′, g′, w′) is a solution of f1, . . . , fN in a regular local ring R′ with

y′1, . . . , y
′
n forming a regular system of parameters for R′, then

ht(g′1, . . . , g
′
l) ≥ h.

Proof. First we suppose that h = n; i.e., I is m-primary, so
√
I = m. Thus, for

each yi, there is some integer ei ≥ 0 such that yeii ∈ I, so we can write

yeii =

l∑
j=1

cijgj .

We use extra indeterminates Cij and set f1, . . . , fN to be the polynomials

Y eii −
l∑

j=1

CijGj

for 1 ≤ i ≤ n, which preserves the fact that I is m-primary.

Now we do the general case; that is, h < n. We write d = n − h, and

let x1, . . . , xd be a system of parameters for R/I, and choose polynomials to

preserve the fact that (g1, . . . , gl, x1, . . . , xd) is m-primary, as above.

If g′1, . . . , g
′
l, x
′
1, . . . , x

′
d are part of a solution to f1, . . . , fN in a regular local

ring R′, then, as before, (g′1, . . . , g
′
l, x
′
1, . . . , x

′
d) has height n. Removing the d

elements x′1, . . . , x
′
d, we conclude that (g′1, . . . , g

′
l) has height at least n − d =

h.
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Lemma 3.3.5. Let R be a regular local ring, and suppose that

Ra
φ−→ Rb

ψ−→ Rc

is an exact sequence of free R modules. We choose matrices (uij) and (vij)

that represent the maps φ and ψ. Then there are polynomials f1, . . . , fN with

coefficients in Z in indeterminates

1. Y1, . . . , Yn

2. Uij and Vij, corresponding to the matrices uij and vij

3. W1, . . . ,Wt (for some sufficiently large t)

such that

1. There are y and w in R such that (y, (uij), (vij), w) is a solution of f1, . . . , fN ,

and y1, . . . , yn forms a regular system of parameters for R.

2. If (y′, (u′ij), (v
′
ij), w

′) is a solution of f1, . . . , fN in a regular local ring R′

with y′1, . . . , y
′
n forming a regular system of parameters for R′, then, letting

φ′ and ψ′ be maps corresponding to the matrices (u′ij) and (v′ij),

(R′)a
φ−→ (R′)b

ψ−→ (R′)c

is an exact sequence.

Proof. Since R is regular local, we can extend the maps Ra → Rb → Rc to an

exact sequence of free R-modules

0 −→ Fh
δh−→ Fh−1 −→ · · · −→ F3

δ3−→ Ra
φ−→ Rb

ψ−→ Rc,

so to prove the lemma, we will construct polynomials to preserve the exactness

of this sequence.

First, we choose matrices (dkij) to represent the maps δk, and choose corre-

sponding variables Dk
ij . From each pairwise composition δk+1δk = 0, we get a

system of polynomial equations on the Dk
ij that preserves the property that F•

is a complex.

To preserve the property that F• is acyclic, we use the Buchsbaum-Eisenbud

criteria for exactness (Theorem 2.2.13). To ensure that the rank of each δk is

rk =

h∑
i=k

(−1)i rankFi,

we add polynomials so that each rk+1 minor of δk vanishes. To ensure that the

grade of each Irk(δk) is at least k, recall that since R is regular local, the grade

of an ideal coincides with its height. By Lemma 3.3.4, we can find polynomials

so that the height of each Irk(δk) does not decrease.
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Lemma 3.3.6. Let (R,m) be a regular local ring, and let x ∈ m. Then there

are polynomials f1, . . . , fN with coefficients in Z in indeterminates

1. Y1, . . . , Yn

2. X

3. W1, . . . ,Wt (for some sufficiently large t)

such that

1. There are y and w in R such that (y, x, w) is a solution of f1, . . . , fN , and

y1, . . . , yn forms a regular system of parameters for R.

2. If (y′, x′, w′) is a solution of f1, . . . , fN in a regular local ring (R′,m′) with

y′1, . . . , y
′
n forming a regular system of parameters for R′, then x′ ∈ m′.

Proof. We write x =
n∑
i=1

ciyi, and use extra indeterminates Ci and the one

polynomial

X −
n∑
i=1

CiYi.

Lemma 3.3.7. Let R be a regular local ring, and let I = (g1, . . . , gl) be an ideal

such that g1, . . . , gl minimally generate I. Then there are polynomials f1, . . . , fN

with coefficients in Z in indeterminates

1. Y1, . . . , Yn

2. G1, . . . , Gl

3. W1, . . . ,Wt (for some sufficiently large t)

such that

1. There are y and w in R such that (y, g, w) is a solution of f1, . . . , fN , and

y1, . . . , yn forms a regular system of parameters for R.

2. If (y′, g′, w′) is a solution of f1, . . . , fN in a regular local ring R′ with

y′1, . . . , y
′
n forming a regular system of parameters for R′, then g′1, . . . , g

′
l

minimally generate the ideal I ′ = (g′1, . . . , g
′
l).

Proof. Let

Ra
φ−→ Rl

(g1,...,gl)−→ R

be the end of a minimal finite free resolution for R/I. By Lemma 3.3.5, we

can find polynomials to preserve the exactness of this sequence. We can also

preserve the fact this is a minimal resolution; that is, that each gi and each entry

of a matrix corresponding to φ is in the maximal ideal m; by using Lemma 3.3.6

for each entry of each matrix.
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Lemma 3.3.8. Let R be a regular local ring, and let I = (g1, . . . , gl) be a proper

ideal with h = ht I. Then there are polynomials f1, . . . , fN with coefficients in

Z in indeterminates

1. Y1, . . . , Yn

2. G1, . . . , Gl

3. W1, . . . ,Wt (for some sufficiently large t)

such that

1. There are y and w in R such that (y, g, w) is a solution of f1, . . . , fN , and

y1, . . . , yn forms a regular system of parameters for R.

2. If (y′, g′, w′) is a solution of f1, . . . , fN in a regular local ring R′ with

y′1, . . . , y
′
n forming a regular system of parameters for R′, then

ht(g′1, . . . , g
′
l) = h.

Proof. First, we note that ht I = ht
√
I, so by adding polynomial equations from

the containments √
I
e
⊆ I ⊆

√
I,

we can reduce to the case where I =
√
I.

We now choose x1, . . . , xh ∈ I to be a maximal regular sequence in I that

forms part of a minimal generating set for I. (To do so, choose xi+1 ∈ I to

avoid both mI and all associated primes of R/(x1, . . . , xi).)

We let S be the complement of the union of the minimal primes containing

I and let A = S−1R. We have (since I is radical)√
(x1, . . . , xh)A = IA,

so there is some u ∈ S such that for some integer e ≥ 0,

uIe ⊆ (x1, . . . , xh), (3.1)

and so we add polynomials to ensure that equation (3.1) holds.

We now claim that either u is a unit or (x1, . . . , xh, u) is minimally generated

by all h + 1 elements. If neither holds, then u ∈ m, and one of the xi, say, x1,

can be written in terms of the others, as well as u:

x1 =

h∑
i=2

bixi + bu. (3.2)

Now, we observe that for each minimal prime p of I, each xi ∈ p but u /∈ p,

which implies that b ∈ p; in other words, b ∈
√
I = I. Now, reading equation
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(3.2) mod mI, we have (since b ∈ I and u ∈ m)

x1 ≡
h∑
i=2

bixi mod mI.

But this contradicts the fact that x1, . . . , xh are part of a minimal generating

set for I. Therefore either

1. u is a unit; or

2. (x1, . . . , xh, u) is minimally generated by all h+ 1 elements.

In case (1), then we write uv = 1 and add the polynomial UV − 1; in case

(2), we use Lemma 3.3.7 to get polynomials that preserve the minimal number

of generators of the ideal (x1, . . . , xh, u). Note that in either case, it will ensure

that

u /∈ (x1, . . . , xh). (3.3)

We then use Lemma 3.3.4 to add polynomials to ensure that the heights of

(g1, . . . , gl) and (x1, . . . , xh) do not decrease. Finally, we add conditions to show

that each xi ∈ (g1, . . . , gl).

To show that the height is preserved, we suppose that g′, x′, u′ are part of a

solution to f1, . . . , fN in a regular local ring R′. By Lemma 3.3.4, we have that

ht(g′1, . . . , g
′
l) ≥ h and ht(x′1, . . . , x

′
h) ≥ h.

The second condition implies that x′1, . . . , x
′
h is a regular sequence, and since

it’s contained in I ′ = (g′1, . . . , g
′
l), we just have to ensure that there are no

zerodivisors on (x′1, . . . , x
′
h) contained in I ′. (Recall again that since R′ is regular

local, the height of an ideal equals its grade.)

Suppose, instead, that r′ ∈ I ′ is a nonzerodivisor on (x′1, . . . , x
′
h). By the

polynomials (3.1), we have

u′(r′)e ∈ (x′1, . . . , x
′
h).

Since r′ is a nonzerodivisor on (x′1, . . . , x
′
h), so is (r′)e, and hence u′ ∈ (x′1, . . . , x

′
h).

But this contradicts the choice of u′ by equation (3.3).

Thus the height of I ′ exactly equals h, as desired.

Lemma 3.3.9. Let R be a regular local ring, and let M be a finitely generated

R-module with

Ra
φ−→ Rb −→ M −→ 0.

an exact sequence. We choose a matrix uij that represets the map φ. Then the

there are polynomials f1, . . . , fN with coefficients in Z in indeterminates

1. Y1, . . . , Yn
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2. Uij, corresponding to the matrix uij

3. W1, . . . ,Wt (for some sufficiently large t)

such that

1. There are y and w in R such that (y, (uij), w) is a solution of f1, . . . , fN ,

and y1, . . . , yn forms a regular system of parameters for R.

2. If (y′, u′ij , w
′) is a solution of f1, . . . , fN in a regular local ring R′ with

y′1, . . . , y
′
n forming a regular system of parameters for R′, then, letting φ′

be a map corresponding to the matrix u′ij and M ′ = cokerφ′, we have

dimM ′ = dimM.

Proof. If a < b, then dimM = dimR, so we don’t need any polynomials; thus,

we can assume without loss that b ≤ a.

Let I = Ib(φ) be the ideal of maximal minors of φ. Recall that

√
annM =

√
I,

so

dimM = dimR− ht annM = dimR− ht I.

By Lemma 3.3.8, we can find polynomials to preserve the height of I, whose

generators we can write as polynomials in the uij , and this will preserve the

dimension of M as well.

Now we come to the main lemma, that we can preserve the dimension of

homology modules in the following sense.

Lemma 3.3.10. Let R be a regular local ring, and let A = R/(g1, . . . , gl) be

a quotient such that g1, . . . gl minimally generate the ideal (g1, . . . , gl). Suppose

that

Aa
φ−→ Ab

ψ−→ Ac

is a complex of free A modules with homology of dimension h (where we set

h = −∞ if the complex is exact). We choose matrices (uij) and (vij) that

represent the maps φ and ψ, with uij , vij ∈ R. Then there are polynomials

f1, . . . , fN with coefficients in Z in indeterminates

1. Y1, . . . , Yn

2. G1, . . . , Gl

3. Uij and Vij, corresponding to the matrices uij and vij

4. W1, . . . ,Wt (for some sufficiently large t)

such that
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1. There are y and w in R such that (y, g, (uij), (vij), w) is a solution of

f1, . . . , fN , and y1, . . . , yn forms a regular system of parameters for R.

2. If (y′, g′, (u′ij), (v
′
ij), w

′) is a solution of f1, . . . , fN in a regular local ring

R′ with y′1, . . . , y
′
n forming a regular system of parameters for R′, then,

setting A′ = R′/g′, and letting φ′ and ψ′ be maps corresponding to the

matrices (u′ij) and (v′ij),

(A′)a
φ′−→ (A′)b

ψ′−→ (A′)c

is a complex of free A′ modules with homology of dimension h.

Proof. In the course of this proof, we will use the following notational conven-

tions.

If F• is a complex, then Fi will denote the ith module of the complex and

fi : Fi → Fi−1 will denote the ith differential (in general, for the differential, we

will use the lowercase of whichever uppercase letter denotes the complex).

If ε : F• → G• is a chain map of complexes, then εi : Fi → Gi will denote

the ith map.

Step 1: Construct free complexes over R, and some equations, that capture

the hypotheses of the lemma.

Let Kφ, Iφ, Cφ;Kψ, Iψ, Cψ be the kernel, image, and cokernel of φ and ψ, re-

spectively, and letH = Kψ/Iφ be the homology atAb. Let Kφ•, Iφ•,Cφ•,Kψ•, Iψ•,Cψ•

be minimal free resolutions for each over R. This gives us exact sequences of

acyclic complexes of free R-modules

0 −→ Kφ• −→ F0
•

αφ−→ Iφ• −→ 0 (3.4)

0 −→ Iφ•
βφ−→ F1

• −→ Cφ• −→ 0 (3.5)

0 −→ Kψ•
ιψ−→ F2

•
αψ−→ Iψ• −→ 0 (3.6)

0 −→ Iψ•
βψ−→ F3

• −→ Cψ• −→ 0 (3.7)

where F0
• is a finite free resolution of Aa over R, F1

• and F2
• of Ab, and F3

• of

Ac; and where H0(βφαφ) = φ and H0(βψαψ) = ψ.

Let L• be the minimal free resolution of A over R; we will write Ln• for the

nth direct sum of L•. Since F0
• and La• are both free resolutions of Aa over R

(and likewise for F1
• , and so on), we have short exact sequences of complexes

0 −→ La•
ε0−→ F0

• −→ E0
• −→ 0 (3.8)

0 −→ E1
• −→ F1

•
ε1−→ Lb• −→ 0 (3.9)

0 −→ E2
• −→ F2

•
ε2−→ Lb• −→ 0 (3.10)

0 −→ Lc•
ε3−→ F3

• −→ E3
• −→ 0 (3.11)
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where each Ei
•, is a split exact sequence of free R-modules, and where each

H0(εi) is the identity map.

Now we observe that H0(ε1βφαφε
0) = φ; so, writing φR : Ra → Rb as the

map corresponding to the “lifted” matrix (uij), we have

ε10βφ0αφ0ε
0
0 − φR

is a map from Ra to Rb that is zero on A. Therefore, there exists some map

δφ : La0 → Lb1 such that

ε10βφ0αφ0ε
0
0 − φR = lb1δφ. (3.12)

(Recall that lb1 denotes the 1st differential of the complex Lb•.)

Similarly, we have

H0(ε3)ψH0(ε2) = ψ = H0(βψαψ);

so writing ψR : Rb → Rc as the map corresponding to the lifted matrix (vij),

we have

ε30ψ
Rε20 − βψ0αψ0

is a map from Ra to Rb that is zero on A. Therefore, there exists some map

δψ : F 2
0 → F 3

1 such that

ε30ψ
Rε20 − βψ0αψ0 = f31 δψ. (3.13)

(Recall that f31 denotes the 1st differential of the complex F3
• .)

Finally, we lift the inclusion Iφ → Kψ to a chain map η : Iφ• → Kψ•. We

can construct the tail of a finite free resolution of the homology H by

Iφ0 ⊕Kψ1
η0⊕kψ1−→ Kψ0 −→ H −→ 0.

(Recall that kψ1 is the 1st differential of the complex Kψ•.)

Now we note that H0(ε1βφ) = H0(ε2ιψη) (both are just the inclusion Iφ →
Ab), so we have

ε10βφ0 − ε20ιψ0η0

is a map from Iφ0 to Rb that is zero on A. Therefore, there exists some map

δη : Iφ0 → Lb1 such that

ε10βφ0 − ε20ιψ0η0 = lb1δη. (3.14)

We now construct polynomials f1, . . . , fN that preserve the fact that

• Kφ•, Iφ•,Cφ•,Kψ•, Iψ•,Cψ•,F
0
• ,F

1
• ,F

2
• ,F

3
• ,L• are acyclic complexes (Lemma

3.3.5);

• E0
• ,E

1
• ,E

2
• ,E

3
• are split exact complexes (Lemma 3.3.5 also);
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• Equations (3.4), (3.5), (3.6), (3.7), (3.8), (3.9), (3.10), (3.11) are exact se-

quences of complexes (Lemmas 3.3.5 and equations so that the differentials

commute with the maps between the complexes);

• Equations (3.12), (3.13), (3.14) hold;

• L• is a minimal free resolution for A, and the last differential uses the

variables G1, . . . , Gl corresponding to g1, . . . , gl (Lemmas 3.3.7 and 3.3.6);

• η : Iφ• → Kψ• is a chain map (equations so that the differentials commute

with η), and h = dim coker(η0 ⊕ kψ1) (Lemma 3.3.9).

Step 2: Show that solutions of the complexes and equations in Step 1

actually preserve the data we want.

Let R′ be a regular local ring with solution (y′, g′, (u′ij), (v
′
ij), w

′) to the

equations f1, . . . , fN , such that y′1, . . . , y
′
n forms an R′-sequence. Let A′ =

R′/(g′1, . . . , g
′
l), and let φ′ and ψ′ be the maps corresponding to the matrices

(u′ij) and (v′ij), respectively. By construction, we have

• Acyclic complexes of free R′-modules:

K′φ•, I
′
φ•,C

′
φ•,K

′
ψ•, I

′
ψ•,C

′
ψ•,F

0
•
′
,F1
•
′
,F2
•
′
,F3
•
′
,L′•;

• Split exact complexes of free R′-modules: E0
•
′
,E1
•
′
,E2
•
′
,E3
•
′
;

• “Prime” versions of equations (3.4), (3.5), (3.6), (3.7), (3.8), (3.9), (3.10),

(3.11) are exact sequences of complexes;

• “Prime” versions of equations (3.12), (3.13), (3.14) hold;

• L′• is a minimal free resolution for A′;

• η′ : I′φ• → K′ψ• is a chain map, and h = dim coker(η′0 ⊕ k′ψ1).

First we note that, since each complex is either acyclic or split exact, each

short exact sequence of complexes gives rise to a short exact sequence on H0;

e.g., (3.4’) gives rise to

0 −→ H0(K′φ•) −→ H0(F0
•
′
)
H0(α

′
φ)−→ H0(I′φ•) −→ 0.

Also, since each complex Ei
•
′

is split exact, we have that each H0(Ei
•
′
) = 0.

Now, taking H0 of the exact sequences (3.4’), (3.5’), (3.8’), and (3.9’), and

using the fact that E0
•
′

and E1
•
′

are split exact, we have a composite map

H0(La•
′) H0(F0

•
′
) H0(I′•) H0(F1

•
′
) H0(Lb•

′
)

(A′)a (A′)b

H0(ε0
′
) H0(α′φ) H0(β′φ) H0(ε1

′
)
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By equation (3.12’), this composition equals φ′, and hence (since H0(α′φε
0′) is

surjective)

im(φ′) = im(H0(ε1
′
β′φ)). (3.15)

Next, taking H0 of the exact sequences (3.6’), (3.7’), (3.10’), and (3.11’),

and using the fact that E2
•
′

and E3
•
′

are split exact, we have a composite map

H0(F2
•)

H0(ε
2′)−→ H0(Lb•)

ψ′−→ H0(Lc•)
H0(ε

3′)−→ H0(F3
•)

By equation (3.13’), this composition equals H0(βψαψ). Now consider the com-

bination of exact sequences (3.6’) and (3.7’):

0 −→ K′ψ•
ιψ
′

−→ F2
•
′ β′ψα

′
ψ−→ F3
•
′ −→ C′ψ• −→ 0;

we have, because H0(ε3
′
) is an isomorphism,

im(H0(ι′ψ)) = ker(H0(β′ψα
′
ψ)) = ker(ψ′H0(ε2

′
))

Since H0(ε2
′
) is an isomorphism, we conclude that

im(H0(ε2
′
ι′ψ)) = ker(ψ′). (3.16)

Thus, letting H ′ be the homology of the complex

A′
a φ′−→ A′

b ψ′−→ A′
c
,

equations (3.15) and (3.16) imply that

H ′ =
im(H0(ε2

′
ι′ψ))

im(H0(ε1′β′φ))
.

By equation (3.14’), we have H0(ε1
′
β′φ) = H0(ε2

′
ι′ψη
′), so

H ′ =
im(H0(ε2

′
ι′ψ))

im(H0(ε2′ι′ψη
′))
.

Since H0(ε2
′
ι′ψ) is injective, we conclude that

H ′ = cokerH0(η′).

But this equals coker(η′0 ⊕ k′ψ1), which has dimension h, as desired.

This allows us to preserve many properties of modules. In particular:

Lemma 3.3.11. Let R be a regular local ring, let A = R/(g1, . . . , gl) be a

quotient, and let M be an A-module of finite projective dimension. We let
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d = dimA, r = dimM, g = gradeAM , and ei = dim ExtiA(M,A). Let

F• : 0 −→ Abh
φh−→ Abh−1 −→ · · · φ1

−→ Ab0

be a minimal free resolution for M . We choose matrices (ukij) that represent the

maps φk, for 1 ≤ k ≤ h. Then there are polynomials f1, . . . , fN with coefficients

in Z in indeterminates

1. Y1, . . . , Yn

2. X1, . . . , Xd

3. G1, . . . , Gl

4. Ukij, corresponding to the matrices ukij

5. W1, . . . ,Wt (for some sufficiently large t)

such that

1. There are y, x, w in R such that (y, x, g, (ukij), w) is a solution to f1, . . . , fN ,

with y1, . . . , yn a regular system of parameters for R and x1, . . . , xd a sys-

tem of parameters for A.

2. If (y′, x′, g′, (r′
k
ij), w

′) is a solution of f1, . . . , fN in a regular local ring

R′ with y′1, . . . , y
′
n forming a regular system of parameters for R′ and

x′1, . . . , x
′
d is a system of parameters for A′ = R′/g′, then letting φ′

k
be

maps corresponding to the matrices (u′
k

ij), we have

F ′• : 0 −→ (A′)bh
φ′h−→ (A′)bh−1 −→ · · · φ′1−→ (A′)b0

is exact; and, setting M ′ = coker(φ′
1
), we have r = dimM ′, g = gradeA′M

′,

and ei = dim ExtiA′(M
′, A′).

Proof. For each pair of maps in the free resolution for M ,

Abk+1
φk+1

−→ Abk
φk−→ Abk−1 ,

we choose equations as in Lemma 3.3.10, using the same variables Ukij for each

map φk. This preserves the projective resolution of M , as well as dimM .

Now taking Hom(−, A) of the free resolution for M , for each pair of maps

Abk−1
φk
∗

−→ Abk
φk+1∗

−→ Abk+1 ,

we choose equations as in Lemma 3.3.10, using the same variables for the dual of

a map as we used for the map itself. This preserves dim ExtkA(M,A) (including

whether ExtkA(M,A) = 0), and so it also preserves gradeM . Combining these

sets of equations, we can preserve all the numerical data, as desired.
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We can now reduce the Grade Conjecture to characteristic p as follows.

Theorem 3.3.1. Suppose that the Grade Conjecture holds over every local ring

of characteristic p. Then it also holds for every local ring of equicharacteristic

zero.

Proof. We let A be an equicharacteristic local ring and let M be a finitely

generated A-module of finite projective dimension, and we will show that

gradeM + dimM = dimA.

Without loss of generality, we can replace A and M by Â and M̂ , since comple-

tion does not change grade, dimension, or projective dimension. By the Cohen

Structure Theorem (Theorem 2.2.12), we can choose a regular local ring R of

which A is a quotient.

By Lemma 3.3.11, we can find a local ring A′ of characteristic p and a finitely

generated A′-module M ′ such that

1. dimA = dimA′;

2. M ′ has finite projective dimension over A′;

3. dimA′M
′ = dimAM and gradeA′M

′ = gradeAM .

Since A′ has characteristic p, M ′ satisfies the Grade Conjecture, and so M does

as well.
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4 Main Results: Asymptotic
Intersection Multiplicity

Throughout this chapter, unless otherwise specified, we suppose A is a complete

local ring of characteristic p.

4.1 Asymptotic Intersection Multiplicity

To begin, we recall the definition of e∞:

Definition 2.6.11. LetM be a finitely-generatedA-module and let x = x1, . . . , xr

be a system of parameters on M . We define

e∞(x;M) = lim
n→∞

e(x;Fn(M))

pn·codimM
.

We will relate the positivity of e∞ to the dimension of ExtcodimM (M,A)

using Lemma 3.2.5 as follows:

Theorem 4.1.1. Suppose pdM < ∞, and set d = dimA and r = dimM .

Then

dim Extd−r(M,A) = r

if and only if e∞(x;M) > 0 for some (= every) system of parameters x1, . . . , xr

for M that is part of a system of parameters for A.

Proof. We apply Theorem 2.1.7 to x and Fn(M), which says that

e(x;Fn(M)) =
∑
p

e(x;A/p)`(Fn(M)p),

where the sum is taken over all primes p ∈ SuppM with dimA/p = r. Now, we

recall that the Frobenius functor commutes with localization (Theorem 2.6.6),

i.e.,

`(FnA(M)p) = `(FnAp
(Mp)).

Dividing by pn(d−r) and taking the limit as n→∞, we have

e∞(x;Fn(M)) =
∑
p

e(x;A/p) lim
n→∞

`(FnAp
(Mp))

pn(d−r)
.
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For each prime p, consider

lim
n→∞

`(FnAp
(Mp))

pn(d−r)
;

by Lemma 2.6.10, this is positive if and only if dimAp = d − r (i.e., ht p =

d − r). Therefore, e∞(x;M) > 0 if and only if there is some prime p with

dimA/p = r and ht p = d − r; which, by Lemma 3.2.5, happens if and only if

dim Extd−r(M,A) = r.

Remark 4.1.2. If the Dimension Inequality is true, then it implies that any

system of parameters for M is part of a system of parameters for A, so the last

assumption in the above theorem would be superfluous.

In order to relate e∞ to χ∞, we need a lemma about the Euler characteristic

of a spectral sequence.

Lemma 4.1.3. Let A be a ring, and let {Erij} be a homology spectral sequence

of A-modules for r ≥ a converging to H∗. Assume that

1. There are only finitely many nonzero Eaij; and

2. Each Eaij has finite length.

Then

1. For every r ≥ a, there are only finitely many nonzero Erij, and each Erij
has finite length; and

2. There are only finitely many nonzero Hn, and each Hn has finite length.

Moreover, for r ≥ a, let

χ(Erij) =
∑
i,j

(−1)i+j`(Erij)

and

χ(H∗) =
∑
n

(−1)n`(Hn).

(These are known as Euler characteristics.) Then for all r ≥ a,

χ(Erij) = χ(H∗).

Proof. Since Er+1
ij is a subquotient of Erij , it follows by induction on r that

there are only finitely many nonzero entries, and each has finite length. Also,

the spectral sequence is bounded, so eventually it stabilizes, so there are only

finitely many nonzero E∞ij , and each has finite length. Therefore, since each Hn

is filtered by subquotients that equal the E∞ij , there are only finitely many of

them, and each has finite length.
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Next, we claim that for all r ≥ a,

χ(Erij) = χ(Er+1
ij ).

To see this, recall that Er+1
ij is the homology of the complex of “lines of slope

−(r + 1)/r” in the lattice Er∗∗. By Lemma 2.1.12, it follows that, for each pair

of integers a and b,∑
t

(−1)t`(Era−tr,b+t(r−1)) =
∑
t

(−1)t`(Er+1
a−tr,b+t(r−1)).

For fixed a and b, the points (a− tr, b+ t(r− 1)) form a line; for each such line

L, we choose a single representative point (aL, bL). Taking an alternate sum

over all lines L, we get∑
L,t

(−1)aL+bL+t`(EraL−tr,bL+t(r−1)) =
∑
L,t

(−1)a+bL+t`(Er+1
aL−tr,bL+t(r−1)).

We now make a change of variables i = aL − tr and j = bL + t(r − 1). Since

we’ve chosen a unique representative (aL, bL) for each line L, summing over all

lines L and all integers t is equivalent to summing over all integers i and j:

χ(Erij) =
∑
i,j

(−1)i+j`(Erij) =
∑
i,j

(−1)i+j`(Er+1
ij ) = χ(Er+1)ij),

as claimed.

Since the spectral sequence eventually stabilizes, it remains to show that

χ(E∞ij ) = χ(H∗).

Indeed, let FiHn be the filtration associated with H∗. Since the spectral se-

quences converges to H∗, we have

χ(H∗) =
∑
n

(−1)n`(Hn) =
∑
n,i

(−1)n`(Fi+1Hn/FiHn)

=
∑
n,i

(−1)n`(E∞i,n−i) = χ(E∞ij ),

as desired.

We will now relate e∞ to χ∞ for a suitably chosen system of parameters:

Proposition 4.1.4. Suppose pdM <∞ and dimM < dimA. Then there is a

system of parameters x1, . . . , xr for M , that is part of a system of parameters

for A, such that

e(x;M) = χ(M,A/x).

Proof. We first claim that we can choose a system of parameters x1, . . . , xr for

M that is part of a system of parameters for A, such that the higher Koszul
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homologies have finite length, i.e.,

`(Hi(x;A)) <∞ for all i ≥ 1.

To do so, choose xi+1 ∈ m

1. a parameter on M/(x1, . . . , xi)M

2. a parameter on A/(x1, . . . , xi)A

3. not in any prime p 6= m in Ass(A/(x1, . . . , xi)A)

Then, if we localize the Koszul complex K•(x;A) at any nonmaximal prime, all

the xi will be either units or nonzerodivisors mod x1, . . . , xi−1, so the higher

homologies will vanish, and hence they all have finite length.

Now, let D•• be the double complex from tensoring K•(x;A) with a free

resolution L• for M . By Theorem 2.4.4, there are two associated spectral se-

quences, both converging to H∗(Tot(D••)):

1. IE2
st = Ht(x;M) when s = 0, and zero otherwise

2. IIE2
st = Tors(M,Ht(x;A))

Since all the above E2 terms have finite length, and there are only finitely many

of them (they vanish for s > pdM and t > r), Lemma 4.1.3 implies that the

Euler characteristics of the two E2 terms are equal, so we have∑
t

(−1)t`(Ht(x;M)) =
∑
s,t

(−1)s+t`(Tors(M,Ht(x;A))).

By Theorem 2.3.7, the left-hand side is e(x;M); and the right side is just∑
t

(−1)tχ(M,Ht(x;A)).

For t ≥ 1, the Ht(x;A) have finite length, by the choice of x above; since

dimM < dimA, we have χ(M,Ht(x;A)) = 0 for t ≥ 1. Thus

e(x;M) = χ(M,H0(x;A)) = χ(M,A/x),

as desired.

Note that the choice of x1, . . . , xr in the proof of Proposition 4.1.4 depends

only on SuppM , so the same system of parameters can be used for Fn(M) for

all n. We can therefore use Proposition 4.1.4 to translate Theorem 4.1.1 to χ∞:

Theorem 4.1.5. Suppose pdM < ∞, and set d = dimA and r = dimM .

Then there is a system of parameters x1, . . . , xr for M , that is part of a system

of parameters for A, such that

χ∞(M,A/x) > 0 if and only if dim Extd−r(M,A) = r.
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For the proof of the next theorem, we need the following theorem due to

Dutta [Dut96]:

Theorem 4.1.6 (Dutta). Let F• be a complex of finitely-generated free modules

with homologies of finite length. Let N be a finitely generated module. Let Wjn

denote the jth homology of Hom(Fn(F•), N), and write

Ñ = Hom(Hd
m(N), E),

where E = E(k) is the injective hull of k.

We have the following:

1. If dimN < dimA, then lim `(Wjn)/pnd = 0.

2. If dimN = dimA, and

(a) j < d, then lim `(Wjn)/pnd = 0;

(b) j = d, then lim `(Wjn)/pnd = lim `(Fn(H0(F•)) ⊗ Ñ)/pnd, which is

positive;

(c) j > d, then lim `(Wjn)/pnd = lim `(Hj−d(F
n(F•))⊗ Ñ)/pnd.

We will now establish a special case of asymptotic positivity:

Theorem 4.1.7. Let d = dimA and r = dimM , and suppose that pdM =

d − r. Then any system of parameters x1, . . . , xr for M is part of a system of

parameters for A, and

χ∞(M,A/x) > 0.

Proof. We write B = A/x. By the Intersection Theorem,

dimB ≤ pdM = d− r,

and so we can choose y1, . . . , yd−r such that `(B/yB) < ∞. Since d = dimA,

it follows that x1, . . . , xr, y1, . . . , yd−r is a system of parameters for A, proving

the first claim.

Now we let L• be a free resolution for M over A, and let F• = Hom(L•, B).

We will apply Theorem 4.1.6 to F• over the ring B, with N = B. We note that

Wjn = Tord−r−j(F
n(M), B),

since the length of the complex L• is pdM = d− r (we are flipping the indices

for F•; that is, Fi = Hom(Ld−r−i, B)). By Theorem 4.1.6,

lim
n→∞

`(Wjn)

pn(d−r)
= 0,

for all j < d− r, which means that

χ∞(M,B) = lim
n→∞

`(Fn(M)⊗B)

pn(d−r)
> 0
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by Lemma 2.6.10, proving the theorem.

4.2 Connection With The Grade Conjecture

We will now prove a connection between the Grade Conjecture and χ∞. Recall

the following Proposition from Chapter 3.

Proposition 3.2.6. Let A be a local ring (of any characteristic), M a finitely

generated A-module of finite projective dimension, and assume that gradeM +

dimM = dimA (i.e., the Grade Conjecture holds for M). Let d = dimA and

r = dimM . Then dim Extd−r(M,A) = dimM .

By Theorem 4.1.5, this implies:

Theorem 4.2.1. Let A be a local ring in characteristic p, M a finitely generated

A-module of finite projective dimension, and assume that the Grade Conjecture

holds for M . Then there is a system of parameters x1, . . . , xr for M , that is

part of a system of parameters for A, such that

χ∞(M,A/x) > 0.

We also can use χ∞ to show special cases for which dim Extd−r(M,A) = r.

Theorem 4.2.2. Let A be a local ring in characteristic p, M a finitely generated

A-module of finite projective dimension and let d = dimA and r = dimM . If

pdM = d− r, then dim Extd−r(M,A) = r.

Proof. Choose x1, . . . , xr as in Proposition 4.1.4. We then have

e∞(x;M) = χ∞(M,A/x).

Since pdM = d−r, Theorem 4.1.7 implies that χ∞(M,a/x) > 0, so e∞(x;M) >

0 as well. Theorem 4.1.1 then implies that Extd−r(M,A) = r, as desired.

The statement of Theorem 4.2.2 can be translated to equicharacteristic zero

using the techniques of Section 3.3.

Theorem 4.2.3. Let A be a local ring of equal characteristic, M a finitely gener-

ated A-module of finite projective dimension and let d = dimA and r = dimM .

If pdM = d− r, then dim Extd−r(M,A) = r.

Proof. Suppose the hypotheses of the theorem hold in a ring A of equicharac-

teristic zero. By Lemma 3.3.11, we can find a local ring A′ of characteristic p

and a finitely generated A′-module M ′ such that

1. dimA′ = d;

2. dimA′M
′ = rM .

3. pdA′M
′ = d− r.
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4. dimA′ Extd−rA′ (M ′, A′) = dimA Extd−rA (M,A).

By Theorem 4.2.2, the conclusion of the theorem is true of A′; that is,

dimA′ Extd−rA′ (M ′, A′) = r,

which implies the same conclusion over the ring A as well.

Corollary 4.2.4. Let A be a local ring of equal characteristic, M a finitely gen-

erated A-module of finite projective dimension, and let d = dimA. If dimM = 1 ,

then dim Extd−1(M,A) = 1.

Proof. By the Intersection Theorem, either pdM = d− 1 or pdM = d.

In the former case, the result follows from Theorem 4.2.3. In the latter case,

A is Cohen-Macaulay, so the grade conjecture holds (Corollary 3.1.4) and the

result follows from Proposition 3.2.6.
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