
c© 2012 Christopher Thomas Co

ROOM RECONSTRUCTION AND NAVIGATION USING
ACOUSTICALLY OBTAINED ROOM IMPULSE RESPONSES AND A

MOBILE ROBOT PLATFORM

BY

CHRISTOPHER THOMAS CO

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2012

Urbana, Illinois

Adviser:

Professor Mark Hasegawa-Johnson

ABSTRACT

This work explores the design and effectiveness of a robot that uses a combi-

nation of active sonar and a pseudo-random acoustic signal to navigate and

reconstruct an unknown environment. The robot sends the pseudo-random

signal into the environment and records the resulting response. This response

is processed to gain information on the robot’s immediate surroundings. Pre-

vious work done in this area focused on the recording and processing aspect

to determine the location of a sound source or multiple sound sources. We

apply similar algorithms to localize what are known as virtual sound sources.

Virtual sound sources are created when sound from a sound source reflects

off of a surface, such as a wall or object, and are recorded by a receiver.

The recorded reflected sound is commonly known as an echo. A virtual

sound source is placed at the location where the sound incident to the re-

ceiver would have originated from had no reflection taken place. By placing

the real sound source and receivers on the same platform, if we can accu-

rately localize the generated virtual sound sources, we can compute the path

the sound wave took and localize the surfaces off of which the sound wave

reflected. We remember these surface locations to generate a map for the

robot to use when navigating through the unknown environment. Finally,

we present a method to improve the accuracy of the baseline virtual sound

source localization algorithm by using quadratic interpolation.

ii

To my parents, for their love and support.

iii

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor, Professor Mark

Hasegawa-Johnson. Aside from the vast technical knowledge he provided,

he also challenged me to pursue new areas and ideas, and was a great source

of inspiration and advice when I faced obstacles both in this work and in

my life. Without his guidance and unending patience, none of this would be

possible.

In addition, I want to extend my thanks to Lae-Hoon Kim. Lae-Hoon

first proposed the idea to use a tetrahedral microphone array on a mobile

platform to find walls and objects in a room. He was also a great resource

in the early stages of this work.

Finally, I would like to thank all of my friends and colleagues both in

undergraduate and graduate studies. They made my time here very enjoy-

able.

iv

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . viii

LIST OF ABBREVIATIONS . x

CHAPTER 1 INTRODUCTION . 1
1.1 Motivation . 1
1.2 Related Work . 3
1.3 Organization . 4

CHAPTER 2 BACKGROUND . 5
2.1 Room Impulse Response . 5
2.2 Maximum Length Sequence 8
2.3 Image-Source Model . 10
2.4 Tetrahedral Microphone Array 11

CHAPTER 3 METHODS . 13
3.1 Overall System . 13
3.2 Localizing Reflectors . 13
3.3 Navigation Algorithm . 17
3.4 Quadratic Interpolation . 19

CHAPTER 4 EXPERIMENTS AND RESULTS 21
4.1 Experimental Setup . 21
4.2 Room Mapping Simulation . 21
4.3 Results . 22
4.4 Quadratic Interpolation Simulation 28

CHAPTER 5 DISCUSSION AND CONCLUSIONS 32
5.1 Room Mapping . 32
5.2 Quadratic Interpolation . 33
5.3 Conclusion . 33
5.4 Future Work . 34

v

APPENDIX A ROOM SIMULATION CODE 35
A.1 Execute Script . 35
A.2 Room/RIR Creation Functions 40
A.3 Localize Reflectors Functions 48
A.4 MLS Functions . 58
A.5 Robot Mapping Function . 64
A.6 Robot Navigation Function 66
A.7 Error Calculation Function . 71

APPENDIX B QUADRATIC INTERPOLATION CODE 74
B.1 Execute Script . 74
B.2 Sinc Interpolation Function 79
B.3 Peak Picking Function . 81
B.4 Quadratic Interpolation Function 84
B.5 Error Calculation Function . 85

REFERENCES . 88

vi

LIST OF TABLES

4.1 Average root mean square (RMS) error of the measured
reflector location and the true location using ideal RIR. 25

4.2 Average root mean square (RMS) error of the measured
reflector location and the true location using RIRs recon-
structed with the MLS algorithm. 27

4.3 Average root mean square (RMS) error between the real
and calculated arrival time of RIR peaks gathered from an
ideal RIR in a simulated room. 29

4.4 Average root mean square (RMS) error between the real
and calculated arrival time of RIR peaks gathered from an
MLS-computed RIR in a simulated room. 29

5.1 Difference between average root mean square (RMS) error
of the measured reflector location and the true location
using ideal RIR, and ratio of the number of MLS reflector
samples to ideal reflector samples. 33

vii

LIST OF FIGURES

2.1 Ray-trace representation of sound paths traveling in a room
from sound source (blue) to receiver (red). 6

2.2 Ideal room impulse response for a 4 m by 4 m by 4 m room
where the sound source is located at (3 m, 2 m, 2 m) and
receiver at (2 m, 2 m, 2 m). 7

2.3 Example of MLS generation using a linear feedback shift
register of length 4. 9

2.4 Virtual sources generated from the image-source model of
the room in Fig 2.1. 11

2.5 Sample tetrahedral microphone array and sound source. 12

3.1 Block diagram of the overall process our robot used to nav-
igate through the room. 14

3.2 Tetrahedral microphone array with microphones labeled. . . . 15
3.3 The distance dv between the sound source (red) and virtual

source (blue) created by the reflector at a distance of dr. . . . 17
3.4 Basic example of a open-loop system. 19
3.5 Basic example of a closed-loop system. 19

4.1 Initial simulation configuration. Room is 10 m by 10 m by
10 m and the robot is placed at (1.5 m, 1.5 m, 5 m). The
blue circles represent the tetrahedral microphone locations
and the red circle represents the sound source location. 22

4.2 Robot’s map after 1 timestep using ideal RIR. 23
4.3 Robot’s map after 10 timesteps using ideal RIR. 23
4.4 Robot’s map after 50 timesteps using ideal RIR. 23
4.5 Robot’s map after 150 timesteps using ideal RIR. 23
4.6 Robot’s map after 300 timesteps using ideal RIR. 24
4.7 Robot’s map after 500 timesteps using ideal RIR. 24
4.8 Robot’s map after 1000 timesteps using ideal RIR. 25
4.9 Robot’s map after 1 timestep using RIR reconstructed from

MLS algorithm. 26
4.10 Robot’s map after 10 timesteps using RIR reconstructed

from MLS algorithm. 26

viii

4.11 Robot’s map after 50 timesteps using RIR reconstructed
from MLS algorithm. 26

4.12 Robot’s map after 150 timesteps using RIR reconstructed
from MLS algorithm. 26

4.13 Robot’s map after 300 timesteps using RIR reconstructed
from MLS algorithm. 26

4.14 Robot’s map after 500 timesteps using RIR reconstructed
from MLS algorithm. 26

4.15 Robot’s map after 1000 timesteps using RIR reconstructed
from MLS algorithm. 27

4.16 Graphical evaluation of the quadratic interpolation method
vs. the baseline peak-picking method on a simulated ideal
room impulse response peak. 28

4.17 Example of a measured room impulse response. The arrows
indicate the peaks explored in Fig. 4.18 and 4.19. 30

4.18 Graphical evaluation of the quadratic interpolation method
vs. the baseline peak-picking method on a measured im-
pulse response peak. 30

4.19 Graphical evaluation of the quadratic interpolation method
vs. the baseline peak-picking method on a measured im-
pulse response peak. 31

ix

LIST OF ABBREVIATIONS

IR Impulse response

RIR Room impulse response

MLS Maximum length sequence

RMS Root mean square

ISM Image-source method

D/A Digital-to-analog

A/D Analog-to-digital

DOA Direction of arrival

TDOA Time delay of arrival

GCC Generalized cross correlation

SLAM Simultaneous localization and mapping

x

CHAPTER 1

INTRODUCTION

In this work, we study the idea of reconstructing the physical shape of the

surrounding environment solely through the use of sound and investigate

how this reconstruction applies to robot mapping and navigation. In this

introductory chapter, we describe the motivation behind this work as well

as previous work done in this area. Finally, we outline the remainder of this

document.

1.1 Motivation

Humans use two main senses to perceive their surroundings: sight and hear-

ing. We focus our research on the sense of hearing. Our sense of hearing

can be used to help judge the general location of an object that creates a

sound, known as a sound source. If you were to close your eyes and focus on

the sounds you hear, you could discern the general direction and location of

each sound source in your immediate area. This is because the sound source

emits a sound wave that eventually reaches your ears (a type of sound re-

ceiver), and our brain processes what we hear to determine the origin of the

sound. This is the basic idea behind sound localization. Sound localization

can give the listener information one would not normally be able to obtain

in a visually noisy environment.

The process of using sound localization to obtain information on the sur-

rounding environment for navigation use is commonly known as sonar, which

is short for sound navigation and ranging. There are two types of sonar: ac-

tive sonar and passive sonar. Passive sonar involves localizing surrounding

objects that emit a sound. Active sonar involves emitting pulses of sounds

from a known location and listening for the sound pulse reflection off of the

surface of an object through receivers also in known locations. The distance

1

to the object is determined from the time delay between the sound source

emission and reception as well as the speed of sound in the medium the sound

traveled though. We focus on active sonar techniques for our robot, but we

acknowledge that efforts in passive sonar can be used to augment our robot’s

picture of its immediate environment.

One popular type of active sonar frequently studied is echolocation or

biosonar. Echolocation is used by animals with poor sight such as bats and

dolphins. These animals are able to navigate complex areas with only the

use of a sound source (mouth) and two receivers (ears). These animals emit a

sound and process the resulting sound reflections, called echoes, to determine

the distances to nearby objects. Plenty of research has gone into deciphering

how these animals process echoes [1, 2, 3].

We will apply this active sonar idea to a robotic platform in an effort to

produce a robot that can navigate through a visibly poor area. The robotic

platform will contain a sound source and multiple sound receivers, all placed

in a specific configuration to best obtain measurements of the surrounding

environment. We apply source localization algorithms to localize what are

known as virtual sound sources. Virtual sound sources are created when

sound from a sound source reflects off of a surface, such as a wall or object,

and are recorded by a receiver. The method places a virtual source at a

location beyond the reflective surface such that the amplitude, timing, and

direction of arrival of the reflection would be duplicated, if the reflective

surface were not present, by direct sound from the virtual source. By placing

the real sound source and receivers on the same platform, if we can accurately

localize the generated virtual sound sources, we can compute the path the

sound wave took and localize the surfaces the sound wave reflected off of.

We remember these surface locations to generate a map for the robot to use

when navigating through the unknown environment.

Autonomous navigation of a hazardous or complex area is a primary goal

of robotics because the robot could be sent into a dangerous situation in-

stead of risking a human life. Aside from the ability to operate in visibly

poor areas, environments reconstructed from acoustics can be sampled with

less information compared with vision. This is due to the sparse nature of

acoustical reflections. With sound, when the propagating sound wave hits

an object, its echo will only contain information about the closest surface or-

thogonal to the sound source/receiver combination. In the end, the intention

2

is not to replace visual navigation with acoustic navigation but to show just

how one can augment the perception of one’s environment through the use

of acoustics.

1.2 Related Work

A lot of robots today use ultrasonic sensors to detect walls directly in front of

the sensor. Ultrasound refers to sound with frequencies above 20 kHz, which

humans cannot naturally hear. In Kurz [4], a robot was outfitted with 24

ultrasonic range sensors in order to learn and navigate from a starting point

to defined end point. In Ohya et al. [5], a rotating ultrasonic sensor was used

to find the normals to the surrounding walls and construct a map using this

information.

We focus our efforts on audible sound, which has a frequency range of

20 Hz to 20 kHz. One reason for this choice is because this range is the

natural frequency range humans hear, so this work will investigate further

into how humans perceive their environment. In addition, work with audi-

ble sound could carry potential benefits for robots in urban environments.

Currently, robots that use ultrasonic sensors must have both an ultrasonic

emitter and receiver. Working with audible sound, which is very prevalent

in environments with humans, could lead to audible sound generators, like

human speech, to help augment the map constructed by the robot — passive

sonar. A better map could be constructed due to the abundance of audible

sound generators.

Sound source localization is a heavily researched topic. In Atmoko et

al. [6], an algorithm was developed which used three or more microphones

in a linear microphone array to find a sound source in 3D space. In Valin et

al. [7] and Hu et al. [8], the robots used in each work required eight micro-

phones to localize a sound source in 3D space. In Xu et al. [9], a robot with

a tetrahedral array, like the one we will use, was able to localize an exter-

nal sound source. While sound source localization is prominent in acoustics

literature, environment reconstruction using sound localization techniques is

sparse. Furthermore, there has been even less research done with robots tak-

ing acoustically reconstructed maps and using them to navigate. Gunel [10]

developed a robot that used a rotating acoustic sensing apparatus to obtain

3

directional impulse response measurements which were used to reconstruct

size and shape of the room, however, no navigation work was done.

For the rest of this work, when we discuss sound, we are specifically talking

about sound in the audible frequency range.

1.3 Organization

We targeted our work toward reconstructing enclosed indoor spaces or rooms.

As such, we investigate room impulse responses, room reconstruction meth-

ods, and rectangular room simulations. We begin this thesis with a back-

ground review of acoustics, room reconstruction methods, and basic naviga-

tion algorithms in Chapter 2. In Chapter 3, we formally propose the overall

robot system design that emits a sound and records the resulting echos which

are used to construct a map of the room from the robot’s view from which the

robot can use to navigate. In addition, we formulate methods to increase the

accuracy of current room reconstruction methods in this chapter. We present

the results of our simulations in Chapter 4, and in Chapter 5 we discuss the

implications of our results and conclude with remarks of our contributions

and potential future work.

4

CHAPTER 2

BACKGROUND

In order to understand the reconstruction method, we first introduce the

concept of a room impulse response and its relationship with sound wave

propagation.

2.1 Room Impulse Response

The impulse response (IR) is the output of a system when presented with

an impulse as an input to the system. One such system could be a room.

Information about the physical characteristics of a room can be derived from

the room’s impulse response (RIR). Rooms can be assumed to be a linear

time-invariant system given that there are no moving objects in the room.

The input to the system is a sound played inside the room from a sound source

and the output of the system is the recorded sound at a sound receiver.

2.1.1 Sound Propagation

Sound travels through a medium as a wave with a specific frequency and

amplitude. Many techniques have been made to model the propagation of

sound [11]. There are wave-based, ray-based, and statistical modeling meth-

ods. In this work, we focus on ray-based modeling and in particular the ray-

trace representation of sound propagation. Figure 2.1 shows this ray-trace

representation as sound travels through a room from a sound source to a

sound receiver. Ray-trace representation tracks the wavefront of the sound

and isolates specific sound paths the sound wave traveled along. So, al-

though sound travels in waves, since we are only interested in the path of the

wavefront of a sound originating from a source to a receiver, this ray-trace

representation is preferred.

5

Figure 2.1: Ray-trace representation of sound paths traveling in a room
from sound source (blue) to receiver (red).

2.1.2 Correlation of Sound Propagation to Room Impulse
Response

The ideal room impulse response consists of impulses which denote the arrival

of the sound from the sound source to the receiver. A sample ideal room

impulse response is shown in Fig 2.2. In a measured room impulse response,

the spikes or peaks in the impulse response represent the impulses in the

ideal impulse response.

Room impulse responses consist of three components — direct sound, early

reflections, and late reverberation. Direct sound is a single peak that corre-

sponds to the shortest travel path between sound source and receiver. Early

reflections are the set of discrete reflections whose individual reflections can

be separated or perceived. Early reflections are further separated into two

parts: first reflections and second/other reflections. First reflections pertain

to the first peaks seen after the direct sound and correspond to a single

sound reflection off a wall or surface. Second/other reflections correspond to

the later reflections after the first reflection but are still clearly distinguish-

able. Finally, late reverberation, also sometimes called the reverberation tail,

contains so many reflections that they are no longer able to be separated.

From the room impulse response, we can derive the orientation and dis-

6

Figure 2.2: Ideal room impulse response for a 4 m by 4 m by 4 m room
where the sound source is located at (3 m, 2 m, 2 m) and receiver at (2 m,
2 m, 2 m).

tance of the walls in relation to the listener. Early reflections represent sound

bouncing off a nearby object or wall before being recorded by the listener.

If we know the direction a reflection came from, the distance the sound sig-

nal has traveled, and the location of the sound source and receiver, we can

accurately predict the point(s) of reflection.

Looking closer at Fig. 2.2, the arrival of sound between a sound source and

receiver is a single impulse function in the ideal RIR. Each impulse function

is characterized by:

h(t) = aδ(t− τ) (2.1)

where δ is the unit impulse function, a is an amplitude coefficient, and τ is

the arrival time of the sound. The ideal RIR is a summation of these impulse

functions.

In an actual system, the sound source input, x[n], must first undergo

digital-to-analog (D/A) conversion to produce x(t) which is convolved with

h(t) to produce room response y(t). y(t) passes through an anti-aliasing

7

low-pass filter and is sampled to produce y[n]. The anti-aliasing filter as-

sumed in this thesis is an ideal lowpass filter:

g(t) = sinc(ωct) (2.2)

where ωc, the cutoff frequency of the lowpass filter, is set to 3
5
π as a simplified

model of a non-ideal A/D.

Each of the samples, n, corresponding to a peak in the sampled RIR is

characterized by

s(t) = h(t) ∗ g(t) = sinc(ωc(t− τ)) (2.3)

s[n] = s(nT) (2.4)

where T is the sampling period. The sampled RIR is the summation of s[n]

for all n samples of the RIR.

2.2 Maximum Length Sequence

A lot of work has gone into creating different methods to estimate or measure

a room’s impulse response. The applications of the methods range from echo

cancellation to fabrication of a virtual acoustic room [12, 13]. The most

common technique involves using an impulse-like sound, such as a gunshot

or pop of a balloon, and recording the resulting measured response. This

approach is the most direct method as the resulting measured response ideally

will be the room’s true impulse response. However, due to the physical nature

of gunshots or balloon pops, the measured responses come close but are not

exactly the ideal impulses responses. The fact that these inputs are not

ideal impulses leads to non-linearities in the resulting response and thus the

resulting measured response may not accurately represent the room’s true

impulse response.

There are other methods that use specific input signals and postprocessing

of the resulting measured response to extract the room impulse response. The

two most common methods for input signal are pseudo-random white noise

and time-varying frequency signals [14].

We chose to use the maximum length sequence (MLS) technique to obtain

8

Figure 2.3: Example of MLS generation using a linear feedback shift
register of length 4.

the room impulse response. The MLS technique was first introduced by

Schroeder in 1965 [15] and is based on exciting the room with a periodic

pseudo-random signal known as a maximum length sequence. This maximum

length sequence is produced using linear feedback shift registers. The order

of the MLS is determined by the shift register length (m) so the resulting

sequence length generated is N = 2m − 1. Figure 2.3 shows an example of a

linear feedback shift register of length 4. For a linear feedback shift register

system with length m, the bit values inside the registers can be computed

using:

ak[n+ 1] =

{
a0[n]⊕ a1[n] k = m− 1

ak+1[n] otherwise
(2.5)

where n is the time index, k is the bit register position, and ⊕ represents

addition modulo 2.

The circular autocorrelation of an MLS yields a 1 at time zero and −1/N

elsewhere so as N increases, the autocorrelation approaches the unit impulse

function. This property gives the MLS signal similar stochastic properties to

white noise, which is essential to the room impulse response reconstruction

process.

To obtain the room’s impulse response using the MLS technique, an analog

version of a predetermined MLS signal is applied to a room and the resulting

response is measured [16, 17]. The impulse response is obtained by perform-

ing a circular cross-correlation with the original sequence which produces a

periodic impulse response h′[n] which is related to the linear impulse response

h[n] by the following equation:

h′[n] =
+∞∑

i=−∞

h[n+ iN] (2.6)

9

Due to the periodic nature of the impulse response, it is important to

choose an MLS input with a length N that is larger than the impulse response

to be measured, otherwise time-aliasing occurs. The MLS technique has been

shown to present distortion artifacts or “distortion peaks” that are uniformly

distributed along the deconvolved impulse response when using real-world

loudspeakers and microphones [14]. In spite of this, we chose to use MLS

and have our localization algorithm deal with the distortion peaks.

In 1977, Cohn and Lempel [18] found a relationship between MLS and

Walsh-Hadamard matrices which led to a fast transform algorithm to obtain

the impulse response from the measured MLS response.

2.3 Image-Source Model

The image-source model is a technique used to generate a synthetic room

impulse response for a given sound source, sound receiver, and room. In this

work, we heavily used the image-source model (ISM) to simulate sound paths

taken between source and receiver in an enclosed space. Figure 2.4 shows

the overall ISM method using the same room from Fig. 2.1. The main idea

behind the image-source model is the generation of virtual sound sources.

The path a sound reflection takes can be represented as direct sound from a

virtual source. This virtual source is constructed by mirroring the location

of the actual source across the rigid surface that sound reflected off of. The

image-source model was first presented by Allen and Berkley in 1979 [19].

The image-source model provides a quick way to generate room impulse re-

sponses with different environmental characteristics. One drawback to Allen

and Berkley’s original method was that calculated time delays of impulses

were rounded to the nearest time sample or bin. In 1986, Peterson [20]

proposed using a sinc function at each reflection peak calculated from the

Allen-Berkley’s image-source model to allow exact representation of non-

integer time delays similar manner to how the actual system behaves. We

applied this optimization to our simulation for a more accurate room impulse

response.

10

Figure 2.4: Virtual sources generated from the image-source model of the
room in Fig 2.1.

2.4 Tetrahedral Microphone Array

Localization of sound sources using microphone arrays is an important and

heavily researched problem. In this work, we know where the sound source

and microphone array are and we want to determine the sound path the

sound must have taken to get to the array from the source.

A microphone array involves using multiple microphones configured in a

specific orientation operating in tandem. For our work, we assume that the

microphones in the array are omnidirectional. We were interested in obtain-

ing the locations of reflectors in 3D space so at least four microphones needed

to be used. We chose a tetrahedron configuration because we wanted a com-

pact setup and from the tetrahedral formation, we can derive the direction

of arrival (DOA) of the sound in 3D space. Figure 2.5 shows an example of a

tetrahedral microphone array. Let ~ri = [xi, yi, zi] denote the location of the

11

Figure 2.5: Sample tetrahedral microphone array and sound source.

ith sensor and let θ and φ denote the azimuth and elevation angles of the

sound source, respectively. The sound source DOA vector ~d is given by:

~d =

dxdy
dz

 =

cosφ cos θ

cosφ sin θ

sinφ

 (2.7)

12

CHAPTER 3

METHODS

3.1 Overall System

Figure 3.1 depicts the high-level overview of the room reconstruction process

using a mobile platform and acoustics. We simulated a robot that has a

loudspeaker and tetrahedral microphone array placed close together. The

first step is to generate an adequate MLS signal. The MLS signal serves as

the input to the room the robot will reconstruct. The resulting response is

captured with the tetrahedral microphone array. For each microphone, the

room impulse response is calculated through circular cross correlating the

response with the input signal. These four room impulse responses are then

used to localize virtual sources which are then used to compute wall/reflector

locations. This information is used to update the robot’s map of the room.

The robot decides the next location to move to and moves to that location.

This process is repeated with the new loudspeaker and microphone array

locations.

3.2 Localizing Reflectors

Our method for localizing reflectors can be broken down into three steps.

The first step is to determine which peaks in each RIR were caused by the

same reflected sound wave and group them together. Next, we estimate

the locations of the virtual sources using the grouped peak time of arrival

information. Finally, we estimate the location and orientation of reflectors

that produced this virtual source. In this section, we detail each component

and describe the methods we chose to use.

13

Figure 3.1: Block diagram of the overall process our robot used to navigate
through the room.

3.2.1 Identifying Peak Groups

The first step to localizing virtual sources is identifying which peaks correlate

with a specific virtual source. To simplify the problem, we assumed that

peak groups could be identified without ambiguity. Peak group ambiguity

can occur if there are two or more sound paths taken between the source and

microphone array such that the sound paths are incident on the microphone

array at the same time. Our assumption simplifies peak group identification

to locating groups of peaks within a specific time window based on the longest

path between any pair of microphones. This longest path in the tetrahedral

arrangement is simply the length of an edge a. Therefore, the time window

can be computed as:

∆ =
a

c
(3.1)

where c is the speed of sound in air.

Each sample index in each RIR is evaluated in lockstep until the first peak

is found in any of the RIRs. Then the remaining RIRs are searched for peaks

in the next ∆ ∗ f samples where f is the sampling frequency. If peaks are

found in each of the remaining RIRs, then a peak group is formed consisting

14

Figure 3.2: Tetrahedral microphone array with microphones labeled.

of the indexes of these four peaks. Because of our initial assumption that

peak groups can be identified without ambiguity, we can remove all four

peaks from the RIRs for the next peak grouping iteration. However, if there

is an RIR that does not contain a peak in the time window, the initial peak

is deemed spurious and removed from its respective RIR. Then the process

is started again.

In addition, we chose to limit our peak group search to a distance of 6

meters or 6 ∗ f/c samples.

3.2.2 Virtual Source Localization Using Spherical Wave
Model

Once we have identified a peak group, we use the spherical wave model to

localize the virtual source that caused these peaks. The spherical wave model

treats the virtual source as an ideal point source which propagates the sound

wave as a sphere [21, 22, 23]. Figure 3.2 depicts an equilateral tetrahedral

microphone array. M1, M2, M3, and M4 are the microphones positioned

at the vertices of the tetrahedron. Given that the center of the base of the

15

tetrahedron is located at (0, 0, 0), and a is the edge length of the tetrahedron,

the microphones are located at: M1 = (0, 0,
√
6
3
a), M2 = (−

√
3
3
a, 0, 0), M3 =

(
√
3
6
a, a

2
, 0), and M4 = (

√
3
6
a,−a

2
, 0).

For a virtual source located at (x, y, z), using the spherical wave propaga-

tion model, the following equations are satisfied for each of the microphones.

x2 + y2 + (z −
√

6

3
a)2 = r21 (3.2)

(x+

√
3

3
a)2 + y2 + z2 = r22 = (r1 + r2 − r1)2 (3.3)

(x−
√

3

6
a)2 + (y − a

2
)2 + z2 = r23 = (r1 + r3 − r1)2 (3.4)

(x−
√

3

6
a)2 + (y +

a

2
)2 + z2 = r24 = (r1 + r4 − r1)2 (3.5)

where ri is the distance the sound path traveled between the sound source

and the arrival at the ith microphone. ri is determined from the RIR index

ni from a given peak: ri = nic
f

.

We are only concerned about x and y so solving these equations for those

variables, we obtain:

y =
−2r1(d3,1 − d4,1) + d23,1 − d24,1

2a
(3.6)

x =
2r1(d4,1 − d2,1) + d24,1 − d22,1 − ay

−
√

3a
(3.7)

where di,j = ri − rj. When substituting in y, we obtain:

x =
2r1(d4,1 + d3,1 − 2d2,1) + d24,1 + d23,1 − 2d22,1

−2
√

3a
(3.8)

3.2.3 Reflector Localization from Virtual Source

For our robot, the sound source and microphone positions are known. In

addition, these two are placed very close to each other because they are on

the same robotic platform. We use this positioning to simplify the calculation

of reflector locations. This simplification makes two assumptions.

• The distance between the original sound source and microphone array is

16

Figure 3.3: The distance dv between the sound source (red) and virtual
source (blue) created by the reflector at a distance of dr.

very small in relation to the distance between the virtual source and the

original sound source/microphone array. This allows us to assume the

original sound source and microphone array are in the same location.

• The virtual source is created from only a single reflection. While this

assumption may not hold true for all virtual sources, our algorithm can

pick out if a second reflection occurs because the reflector location will

be outside the valid area.

Given these two assumptions, if dv is the distance between the virtual

source and the real source/microphone array, the distance between the real

source/microphone array and the reflector, dr, is dr = dv
2

. The reflector is

perpendicular to the line between the virtual source and source/microphone

array as shown in Fig. 3.3.

3.3 Navigation Algorithm

We chose to use the right-wall follow algorithm to map the room. We limited

our simulation to closed rectangular rooms so a wall following algorithm like

a right-wall follow algorithm will guarantee the walls of the room get fully

explored.

17

3.3.1 Right-Wall Follow Algorithm

At a high-level, the right-wall follow algorithm is:

if Opening on right then
Turn robot right

else if Opening on front then
Do nothing

else if Opening on left then
Turn robot left

else
Turn robot around

end
Move Robot Forward

More specifically, once a wall to the right has been detected, the right-wall

follow algorithm aims to keep the right wall at a specific distance to the

right of the robot as the robot travels along the wall. In order to maintain

this specific distance, a basic proportional feedback control system was used.

This control system is explained in Section 3.3.2.

Since we limit our simulation to closed rectangular rooms, our right-wall

follow algorithm can be simplified even further. First, if the robot ever comes

to a wall in front, the robot will make a left turn and continue moving. If

the robot loses the right wall, because we know the wall will always be there,

we can keep the robot moving in its current direction instead of turn right

and try to find the right wall.

3.3.2 Wall Distance Control System

A typical system is characterized as open-loop if the system comprises of a

system that has an input, x(t) and output y(t). This system is typically

known as a plant. A basic example of an open-loop system is shown in

Fig. 3.4.

The goal of control theory is to design a system such that the plant is

controlled to a desired value or trajectory. In order to control the system,

we need to create a closed-loop system by using the output y(t) to feedback

into the input of the plant, thereby allowing the output to influence the next

input. Figure 3.5 shows what a basic closed-loop system looks like.

18

Figure 3.4: Basic example of an open-loop system.

Figure 3.5: Basic example of a closed-loop system.

d(t) represents the desired value or trajectory we want our output y(t) to

become. e(t) is the error between the desired output and the actual output,

or d(t)− y(t). This error is the input to a custom controller we design such

that the output of the controller serves as the input to the plant in order to

move y(t) to d(t).

In our case, the plant is the distance to the right wall. We use a basic

proportional controller to stabilize our system:

x(t) = Kpe(t) (3.9)

where Kp is the proportional gain of the controller. Kp is essentially a tunable

parameter that determines how sensitive our next input is to the current

error. In our simulations, we set Kp = 0.1 and d(t) = 1.5 m.

3.4 Quadratic Interpolation

Measurement techniques to obtain the RIR typically represent the measured

RIR as a discrete-time signal sampled from the continuous-time RIR. The

baseline peak-picking method involves selecting the sample with the max-

imum value and associating that point with the peak of the signal. This

method is quick and accurate if the sampling rate is high enough such that

a potential half-sample discrepancy between true and measured peak times

19

is allowed. Another method uses discrete data interpolation to understand

the continuous behavior of the underlying signal. Lai and Torp [24] used

quadratic interpolation on the cross-correlation between multiple impulse re-

sponses to obtain more accurate peak times. We apply this idea to interpolate

early reflection peaks in a single room impulse response. We introduce two

methods for performing the quadratic peak interpolation.

Given a measured impulse response, the first step is to separate relevant

sample points from the rest of the signal. We used a static threshold of 0.05

to extract these relevant sample points from the impulse response.

Three or more consecutive relevant sample points define a time-window

where a reflection peak must exist. We fit the quadratic function:

y = c0x
2 + c1x+ c2

to the points in this window. For m consecutive points, this quadratic fit can

be represented in matrix form as

y = Ac

where y =


y1

y2
...

ym

, A =


x21 x1 1

x22 x2 1
...

...
...

x2m xm 1

, c =

c0c1
c2



We seek to find the coefficient vector ĉ of the interpolated quadratic func-

tion that minimizes the least-square error

‖y −Ac‖2

which, given three or more points, can be calculated explicitly as:

ĉ = (ATA)−1ATy

The interpolated peak can be derived from ĉ using

τi = −c1
2c0

for i = 1, ..., imax, where imax is the total number of peaks in the impulse

response.

The next time-window is obtained and this process repeats until all time-windows

have been exhausted. Because we are interested in early reflections, which are

distinguishable reflections, we can assume that time-windows do not overlap.

20

CHAPTER 4

EXPERIMENTS AND RESULTS

4.1 Experimental Setup

The experiments were simulated using MATLAB. We used Stephen McGov-

ern’s image-source model implementation [25] as the basis for the room sim-

ulations. McGovern’s model was based on Allen and Berkley’s image-source

model.

The overall robot simulator was designed to be modular. Each module of

the simulator can be directly mapped to blocks in the overall system block

diagram shown in Fig. 3.1. This way, each of the major components in the

overall system — input signal generation, room simulation, RIR reconstruc-

tion, reflector localization, mapping, and robot navigation/movement — can

easily be tweaked and tested without having to rewrite or change other mod-

ules.

4.2 Room Mapping Simulation

4.2.1 Setup

We simulated a robot inside a closed 10 m by 10 m by 10 m rectangular

room. The robot was represented as a point, which serves as the origin of

the robot’s local coordinate frame. The robot also has a heading to indicate

the direction the robot is facing. As mentioned before, the robot has a sound

source and tetrahedral microphone array. The sound source is located 0.15

m in the direction of the robot’s heading and indicated by the red circle in

Fig. 4.1. The tetrahedral microphone array’s edge length a was chosen to be

0.15 m and centered on the robot’s origin. Each of the microphones in the

21

Figure 4.1: Initial simulation configuration. Room is 10 m by 10 m by 10 m
and the robot is placed at (1.5 m, 1.5 m, 5 m). The blue circles represent
the tetrahedral microphone locations and the red circle represents the
sound source location.

microphone array are represented by blue circles in Fig. 4.1. The robot was

placed initially at (1.5 m, 1.5 m, 5 m) with a heading along the x-axis.

We performed two types of simulations which differ by the type of input

sound the robot uses. At the start of each timestep or iteration, the true

RIRs are computed for each source and microphone pair. For the ideal

case simulation, the robot receives the true RIRs as the measured response

to the room, since this is what would be returned had an ideal impulse

function been used as the input signal. For the MLS case simulation, the

true RIRs are convolved with the selected MLS input signal to compute

the measured response given to the robot. The robot computes the wall

information and moves to the new location and orientation according to the

navigation algorithm. Once the move is completed, the current timestep ends

and a new timestep begins.

4.3 Results

We simulated the 10 m by 10 m by 10 m room and had our robot simul-

taneously generate a map of the room and use the map to navigate around

the outer wall of the room. The robot started at location (1.5 m, 1.5 m, 5

m). The z-axis was set to 5 m to eliminate the effects of echoes from the

ground and ceiling. The robot was allowed to move at most 0.3 m between

timesteps. The direction was set by the navigation and control system used

22

to maintain the right-wall follow algorithm. We set the robot to turn if it

detected a wall 1.5 m in front of the robot.

For the first set of simulations, we wanted to see how well our overall system

performs in the ideal case. We assumed the input signal to the room is an

ideal impulse signal so the recorded response sent to the robot was simply

the true RIR computed using our modified image-source model. Figures 4.2,

4.3, 4.4, 4.5, 4.6, 4.7, and 4.8 show the map reconstructed by the robot for

1, 10, 50, 150, 300, 500, and 1000 iterations when using the ideal RIRs to

extract reflector information.

Figure 4.2: Robot’s map after 1
timestep using ideal RIR.

Figure 4.3: Robot’s map after 10
timesteps using ideal RIR.

Figure 4.4: Robot’s map after 50
timesteps using ideal RIR.

Figure 4.5: Robot’s map after 150
timesteps using ideal RIR.

As we can see, the robot starts off with no information about the room and

surroundings. At each timestep, information on the locations of the closest

23

Figure 4.6: Robot’s map after 300
timesteps using ideal RIR.

Figure 4.7: Robot’s map after 500
timesteps using ideal RIR.

reflective surfaces, or in this case walls, are recorded. This information is

processed to determine the next location the robot should move to.

As more timesteps occur, the robot map keeps getting updated with more

information about the position of the walls. When the robot gets close to a

wall in front, the robot turns 90 degrees and resumes the default right-wall

following algorithm. One very important, and easily overlooked, result is

the fact the overall system we designed without the acoustic reconstruction

component was able to map and navigate through the room. The average

root mean squared (RMS) error for each trial of 1, 10, 50, 150, 300, 500,

1000 timesteps are shown in Table 4.1. In addition, the number of data

points corresponding to detected reflectors is shown.

We can see that the average RMS error is below 0.05 m which is quite

accurate. In addition, once the robot has completed a circuit of the room

and begins remapping known areas (500 and 1000 timesteps), the overall

RMS error decreases.

Now that we obtained the ideal performance of our room reconstruction

system using the ideal RIRs, we then simulated using RIRs reconstructed

from sending an MLS signal through the room, recording the room response,

and reconstructing the RIR. Figures 4.9, 4.10, 4.11, 4.12, 4.13, 4.14, and

4.15 show the maps reconstructed by the robot when using the MLS RIR

reconstruction algorithm for the same number of timesteps as the ideal case.

The first point to note is that the robot was successful in navigating

24

Figure 4.8: Robot’s map after 1000 timesteps using ideal RIR.

Table 4.1: Average root mean square (RMS) error of the measured reflector
location and the true location using ideal RIR.

Timesteps Average RMS Error (m) Number of Reflector Samples
1 0.0294 3
10 0.0101 30
50 0.0053 92
150 0.0455 277
300 0.0498 595
500 0.0361 966
1000 0.0275 1973

through the room using our MLS-based room reconstruction system. Look-

ing at performance, the average root mean squared (RMS) error and number

of data points corresponding to detected reflectors were recorded in Table 4.2

for each simulation of 1, 10, 50, 150, 300, 500, and 1000 timesteps. When

comparing the average RMS error for the MLS reconstruction case against

the ideal case, we noted that the average RMS error for the MLS case was

25

Figure 4.9: Robot’s map after 1
timestep using RIR reconstructed
from MLS algorithm.

Figure 4.10: Robot’s map after 10
timesteps using RIR reconstructed
from MLS algorithm.

Figure 4.11: Robot’s map after 50
timesteps using RIR reconstructed
from MLS algorithm.

Figure 4.12: Robot’s map after 150
timesteps using RIR reconstructed
from MLS algorithm.

Figure 4.13: Robot’s map after 300
timesteps using RIR reconstructed
from MLS algorithm.

Figure 4.14: Robot’s map after 500
timesteps using RIR reconstructed
from MLS algorithm.

26

Figure 4.15: Robot’s map after 1000 timesteps using RIR reconstructed
from MLS algorithm.

Table 4.2: Average root mean square (RMS) error of the measured reflector
location and the true location using RIRs reconstructed with the MLS
algorithm.

Timesteps Average RMS Error (m) Number of Reflector Samples
1 0.0434 2
10 0.0127 20
50 0.0059 72
150 0.0543 216
300 0.0555 454
500 0.0410 743
1000 0.0311 1507

still below 0.06 m. It should be noted, however, that the different in the

number of reflector samples obtained from the MLS reconstruction versus

the ideal RIR case increased as the timesteps increased, however the end

result mapping looks very similar.

27

Figure 4.16: Graphical evaluation of the quadratic interpolation method vs.
the baseline peak-picking method on a simulated ideal room impulse
response peak.

4.4 Quadratic Interpolation Simulation

4.4.1 Setup

We simulated a 4 m by 4 m by 4 m room with the receiver placed at (2

m, 2 m, 2 m) and sound source at (3 m, 2 m, 2 m) using 9 and 127

virtual sources. Simulations were carried out using Stephen McGovern’s

image-source model implementation which was based on Allen and Berkley’s

image-source model [25]. We augmented McGovern’s simulation using Pe-

terson’s sinc function method [20] by using:

s[n] = sinc(3
5
π(nT − τi))

for τ − 2 < n < τ + 2.

4.4.2 Results

We simulated a 4 m by 4 m by 4 m room with the receiver placed at (2

m, 2 m, 2 m) and sound source at (3 m, 2 m, 2 m) using 9 and 729 virtual

28

Table 4.3: Average root mean square (RMS) error between the real and
calculated arrival time of RIR peaks gathered from an ideal RIR in a
simulated room.

Method Average RMS Error (sample) # of Virtual Sources
Baseline 0.3002 9

Quadratic 0.0281 9
Baseline 0.2990 729

Quadratic 0.0276 729

Table 4.4: Average root mean square (RMS) error between the real and
calculated arrival time of RIR peaks gathered from an MLS-computed RIR
in a simulated room.

Method Average RMS Error (sample) # of Virtual Sources
Baseline 0.2990 9

Quadratic 0.0344 9
Baseline 0.3199 729

Quadratic 0.0435 729

sources. The quadratic peak interpolation method was compared against the

baseline peak-picking method and the results are shown in Table 4.3. Fig-

ure 4.16 demonstrates both methods used on a single simulated impulse re-

sponse peak. The results show that the per-peak RMS error of our quadratic

interpolation method is about a factor of ten less than the baseline method.

We also obtained an estimate of the simulated impulse response using a

maximum length sequence of order 15 and applied both peak-picking meth-

ods. The results are shown in Table 4.4. Again, our quadratic interpolation

method performed better than the baseline method by an order of magnitude.

We also applied our quadratic interpolation method to measured RIR data.

Figure 4.17 shows the measured impulse response and Fig. 4.18 and 4.19

show the baseline method and our method applied to two different measured

impulse response peak data. Evaluating the quality of the interpolated peak

against the baseline method cannot be done because there is no ground-truth

data.

29

Figure 4.17: Example of a measured room impulse response. The arrows
indicate the peaks explored in Fig. 4.18 and 4.19.

Figure 4.18: Graphical evaluation of the quadratic interpolation method vs.
the baseline peak-picking method on a measured impulse response peak.

30

Figure 4.19: Graphical evaluation of the quadratic interpolation method vs.
the baseline peak-picking method on a measured impulse response peak.

31

CHAPTER 5

DISCUSSION AND CONCLUSIONS

5.1 Room Mapping

Important information about the validity of room reconstruction using room

impulse responses is gained from the results of these simulations. In addition,

these results show that room impulse responses obtained using active sonar

techniques and a unique sound input are accurate enough to be used for room

reconstruction. Table 5.1 shows a summary of our results.

The first point to note is the maximum average RMS error in the esti-

mated room reconstruction obtained using the ideal RIR was 0.0498 m. The

maximum average RMS error in the estimated room reconstruction obtained

using an RIR obtained from the MLS algorithm was 0.0555 m. In both

cases, the average RMS error was about 5 cm, which indicates RIR-based

reconstruction would be good for mapping bigger spaces.

The average difference between the error in the ideal RIR simulations and

the error in the reconstructed RIR via MLS algorithm was 0.57 cm. The

average difference is low which means the reflection points obtained from the

MLS reconstruction RIR are accurate with respect to the reflection points

obtained from the ideal RIR.

It is important to note, however, that while using MLS reconstruction,

about 74% was the average percent of the ideal RIR data points were recorded.

This percent was always above 66% for all the trials. These values were a

result of the threshold we set when segmenting echo samples from non-echo

samples in the reconstructed RIR. We chose a conservative threshold to avoid

spurious echo detection from noise. With fine-tuning, the percentage of MLS

reconstructed RIR echoes correlating with ideal RIR echoes should increase.

Even with our conservative threshold, we were able to obtain a recognition

rate of at least 66% and an average of 74%, both of which are more than

32

Table 5.1: Difference between average root mean square (RMS) error of the
measured reflector location and the true location using ideal RIR, and ratio
of the number of MLS reflector samples to ideal reflector samples.

Difference in Ratio of MLS reflector samples
Timesteps Average RMS Error (m) to ideal reflector samples

1 0.014 0.667
10 0.0026 0.667
50 0.0006 0.783
150 0.0088 0.780
300 0.0057 0.763
500 0.0049 0.769
1000 0.0036 0.764

Average 0.0057 0.742

enough to construct a viable map for the robot to use to navigate.

5.2 Quadratic Interpolation

The results show that our quadratic interpolation method for sampled room

impulse responses improves the peak-picking resolution by an order of mag-

nitude over the baseline peak-picking method. This allows our simulation

of the echo peak locations in the RIR to be even more accurate. The in-

creased accuracy of the RIR peak locations directly improves our reflector

localization algorithm, which improves our robot’s map of the room.

5.3 Conclusion

In this work, we created a simulation of a robot using MLS to estimate the

impulse response of the environment, which in turn was used to reconstruct

the environment around the robot and ultimately used as a map for robot

navigation. This simulation yielded a number of important results. First,

we demonstrated a method for a robot to estimate walls in the room it is

in with about 5 cm accuracy if the room impulse response is known. Sec-

ond, we showed that a robot can use sound to actively obtain this room

impulse response and only incur about a 0.57 cm difference from the ideal

case. In addition, we showed that the mappings generated from the room

33

can be used to navigate the robot through the room. Finally, we showed

that we can improve on the error in accuracy by an order of magnitude using

quadratic interpolation to obtain subsample accuracy on the echo peaks in

the RIR, which translates directly to more accurate reflector localization and

ultimately more accurate data points on our map.

5.4 Future Work

Due to the modularity of the simulation design, each component can be

addressed and improved on individually, which will improve the accuracy of

the simulation as a whole. First, further simulations of the different types of

RIR reconstruction methods could yield more accurate RIRs to work from.

Another area is improving the peak detection algorithm used in each RIR.

Improvements can also be done to increase the peak set recognition algorithm

which will increase the accuracy of virtual sources localization. There are

also a large number of source localization algorithms that could be applied

to localize the virtual source more accurately. Not only that, there are a

number of algorithms to increase the accuracy of reflector locations. The

mapping and navigation algorithm is another big area to explore.

Another direction for future work would be to outfit a real robot with a

loudspeaker and tetrahedral microphone array. This would enable us to see

the validity of the simulation work in the real world.

Finally, further work could go into merging multiple sensors in with this

data. The data obtained from the tetrahedral microphone array is by nature

sparse and acquired fairly quickly. Combining this sparse and rough outline

of the environment with other more computationally or data intensive sensors

can allow the robot to save computation time and data space by allowing the

robot to target only specific areas that need a more detailed view that the

acoustic reconstruction could not provide.

34

APPENDIX A

ROOM SIMULATION CODE

A.1 Execute Script

%EXECUTE Execute Simulation Script

% This Matlab script provides the main flow

% of the simulation. Edit general configuration

% settings in the file to specify the conditions

% under which the simulation should run.

%

% mls_flag = Flag for MLS reconstruction

% 1 is MLS, 0 is ideal.

% mls_normalize = Flag to normalize MLS

% reconstructed RIR - 1 is MLS,

% 0 is ideal.

% iterations = Number of timesteps or

% iterations the simulation

% will run for.

% g_robot_x = Starting x location of the

% robot (meters)

% g_robot_y = Starting y location of the

% robot (meters)

% g_robot_angle = Starting angle of the

% robot (degrees)

% fs = Sampling rate

% n = Determines number of virtual

% sound sources

% (2*n+1)^3 number of virtual

% sources generated

35

% r = Reflection coefficient

% (-1 < r < 1)

% rm = Room dimensions (meters)

%

% Note:

% 1.) All distances are in meters and all

% angles are in degrees.

%

% Created by: Christopher Co

%

% Copyright 2012 Christopher Co

% General Configuration Settings

mls_flag = 1; % Enable MLS RIR reconstruction

mls_normalize = 1; % Normalize MLS RIR

iterations = 10; % Number of timesteps in simulation

g_robot_x = 1; % Current robot x-position in

% world POV

g_robot_y = 1; % Current robot y-position in

% world POV

g_robot_angle = 0; % Current robot angle in world POV

fs = 44100; % Sampling frequency

n = 2; % (2*n+1)^3 virtual sources

r = 0.2; % Reflection coefficient

rm = [10 10 10]; % Room dimensions

% Variables

total_error = 0; % Total cumulative RMS error

total_count = 0; % Total number of data points

36

robot_x = 0; % Current robot x-position in

% robot’s POV

robot_y = 0; % Current robot y-position in

% robot’s POV

robot_angle = 0; % Current robot angle in robot’s

% POV

world_x = -1000; % X coordinates of all data

% points in world POV

world_y = -1000; % Y coordinates of all data

% points in world POV

turn_flag = 0; % Flag to track the number

% of robot turns

% Set Up Figures

fig3 = figure(3);

winsize3 = get(fig3,’Position’);

winsize3(1:2) = [0 0];

numframes = 9;

A3=moviein(numframes,fig3,winsize3);

set(fig3,’NextPlot’,’replacechildren’);

fig1 = figure(1);

winsize = get(fig1,’Position’);

winsize(1:2) = [0 0];

numframes = 9;

A=moviein(numframes,fig1,winsize);

set(fig1,’NextPlot’,’replacechildren’);

% Start Simulation Loop

37

for i = 1:iterations

% Compute the location of the sound source

% based on the actual robot angle

mic=[g_robot_x g_robot_y 5];

src = mic;

src_d = 0.15;

src(1) = src(1)+src_d*cos(g_robot_angle*pi/180);

src(2) = src(2)+src_d*sin(g_robot_angle*pi/180);

clf(fig1);

% Generate RIRs

[RIR1, RIR2, RIR3, RIR4]= generate_room(fs,

mic, n, r, rm, src, g_robot_angle,

mls_flag, mls_normalize);

A(:,i) = getframe(fig1,winsize);

% Localize Reflectors

[wall_x, wall_y] = localize_reflectors(RIR1,

RIR2, RIR3, RIR4, mls_flag);

% Calculate RMS error of data points

[error, count] = compute_error(wall_x,

wall_y, g_robot_x, g_robot_y);

total_error = total_error + error;

total_count = total_count + count;

% Update the robot’s current map

clf(fig3);

[world_x, world_y] = robot_map(wall_x, wall_y,

robot_x, robot_y, robot_angle,

world_x, world_y);

A3(:,i) = getframe(fig3,winsize3);

% Move robot

[robot_x, robot_y, robot_angle,

g_robot_x, g_robot_y, g_robot_angle,

38

turn_flag] = robot_update(world_x, world_y,

robot_x, robot_y,

robot_angle, wall_x,

wall_y, g_robot_x,

g_robot_y, g_robot_angle,

turn_flag);

end

% Compute Average RMS Error

avg_error = sqrt(total_error)/total_count;

39

A.2 Room/RIR Creation Functions

function [out1, out2,

out3, out4]=generate_room(fs, mic, n, r, rm,

src, angle, mls,

mls_normalize);

%GENERATE_ROOM Generates RIRs for the

% tetrahedral microphone array

% [out1, out2,

% out3, out4] = GENERATE_ROOM(fs, mic,

% n, r, rm, src,

% angle, mls,

% mls_normalize)

% creates four RIRs based on the

% location of the sound source and

% each of the microphones in the

% tetrahedral array. MLS

% reconstruction of these RIRs

% are done if the mls_flag is set.

%

% fs = Sampling rate

% mic = Origin of tetrahedral

% microphone array

% n = Number of virtual sources

% calculated (2*n+1)^3

% r = Reflection coefficient

% of the walls (-1 < r < 1)

% rm = Room dimensions (meters)

% src = Location of sound source

% angle = Robot angle in world

% POV (degrees)

% mls = Flag to enable MLS

% RIR reconstruction

% mls_normalize = Flag to enable MLS

% RIR normalization

%

40

% Created by: Christopher Co

%

% Copyright 2012 Christopher Co

% Variables

edge = 0.15; % Length of edge of

% tetrahedral microphone

% array

mic_d = sqrt(3)/3*edge;

% Show source location in room figure

figure(1);

plot3(src(1), src(2), src(3), ’ro’);

hold on;

% Create MLS input signal if MLS flag is set

if mls

mls_num = 15;

mls_input = mls_new(mls_num);

end

% Mic 1

% Compute Mic 1 location

temp = mic;

temp(3) = temp(3)+sqrt(6)/3*edge;

plot3(temp(1), temp(2), temp(3), ’ko’);

% Compute ideal RIR

out1 = rir(fs, temp, n, r, rm, src);

41

% Compute MLS reconstruction of RIR if

% MLS flag is set

if mls

out1 = do_mls_rir(mls_input,

out1, mls_normalize);

end

% Mic 2

% Compute Mic 2 location

temp = mic;

temp(1) = temp(1)+mic_d*cos((180+

angle)*pi/180);

temp(2) = temp(2)+mic_d*sin((180+

angle)*pi/180);

plot3(temp(1), temp(2), temp(3), ’ko’);

% Compute ideal RIR

out2 = rir(fs, temp, n, r, rm, src);

% Compute MLS reconstruction of RIR

% if MLS flag is set

if mls

out2 = do_mls_rir(mls_input,

out2, mls_normalize);

end

% Mic 3

% Compute Mic 3 location

temp = mic;

temp(1) = temp(1)+mic_d*cos((60+

angle)*pi/180);

temp(2) = temp(2)+mic_d*sin((60+

42

angle)*pi/180);

plot3(temp(1), temp(2), temp(3), ’ko’);

% Compute ideal RIR

out3 = rir(fs, temp, n, r, rm, src);

% Compute MLS reconstruction of RIR

% if MLS flag is set

if mls

out3 = do_mls_rir(mls_input,

out3, mls_normalize);

end

% Mic 4

% Compute Mic 4 location

temp = mic;

temp(1) = temp(1)+mic_d*cos((-60+

angle)*pi/180);

temp(2) = temp(2)+mic_d*sin((-60+

angle)*pi/180);

plot3(temp(1), temp(2), temp(3), ’ko’);

% Compute ideal RIR

out4 = rir(fs, temp, n, r, rm, src);

% Compute MLS reconstruction of RIR

% if MLS flag is set

if mls

out4 = do_mls_rir(mls_input,

out4, mls_normalize);

end

% Add axes and labels to room figure

43

axis equal;

axis([0 rm(1) 0 rm(2) 0 rm(3)]);

box on;

xlabel(’x’);

ylabel(’y’);

zlabel(’z’);

end

44

function [out, rounded]=rir(fs, mic, n, r, rm, src);

%RIR Room Impulse Response.

% [h] = RIR(FS, MIC, N, R, RM, SRC) performs a room

% impulse response calculation by means of

% the mirror image method.

%

% FS = sample rate.

% MIC = row vector giving the x,y,z coordinates

% of the microphone.

% N = The program will account for (2*N+1)^3

% virtual sources

% R = reflection coefficient for the walls,

% in general -1<R<1.

% RM = row vector giving the dimensions of

% the room.

% SRC = row vector giving the x,y,z coordinates

% of the sound source.

%

% EXAMPLE:

%

% >>fs=44100;

% >>mic=[19 18 1.6];

% >>n=12;

% >>r=0.3;

% >>rm=[20 19 21];

% >>src=[5 2 1];

% >>h=rir(fs, mic, n, r, rm, src);

%

% NOTES:

%

% 1) All distances are in meters.

% 2) The output is scaled such that the largest

% value of the absolute value of the output

% vector is equal to one.

% 3) To implement this filter, you will need to

% do a fast convolution. The program FCONV.m

45

% will do this. It can be found on the Mathworks

% File Exchange at www.mathworks.com/matlabcentral

% /fileexchange/. It can also be found at

% http://www.sgm-audio.com/research/rir/fconv.m

% 4) A paper has been written on this model. It is

% available at:

% http://www.sgm-audio.com/research/rir/rir.html

%

%

%Version 3.4.2

%Copyright 2003 Stephen G. McGovern

%Some of the following comments are references to

%equations the my paper.

nn=-n:1:n; % Index for

% the sequence

rms=nn+0.5-0.5*(-1).^nn; % Part of

% equations 2,3,& 4

srcs=(-1).^(nn); % part of

% equations 2,3,& 4

xi=srcs*src(1)+rms*rm(1)-mic(1); % Equation 2

yj=srcs*src(2)+rms*rm(2)-mic(2); % Equation 3

zk=srcs*src(3)+rms*rm(3)-mic(3); % Equation 4

[i,j,k]=meshgrid(xi,yj,zk); % convert vectors

% to 3D matrices

d=sqrt(i.^2+j.^2+k.^2); % Equation 5

time=round(fs*d/343)+1; % Similar to

% Equation 6

index = union(time(:),time(:));

rawtime = (fs*d/343)+1;

rawtime = sort(union(rawtime(:),rawtime(:)));

[e,f,g]=meshgrid(nn, nn, nn); % convert vectors

% to 3D matrices

46

c=r.^(abs(e)+abs(f)+abs(g)); % Equation 9

e=c./d; % Equivalent to

% Equation 10

h=full(sparse(time(:),1,e(:))); % Equivalent

% to equation 11

h=h/max(abs(h)); % Scale output

% -- START CHRIS EDIT -- %

% Output list of peaks instead of the impulse response h

%listh = h(index);

out = h;

%out = [listh rawtime];

% -- END CHRIS EDIT -- %

47

A.3 Localize Reflectors Functions

function [wall_x, wall_y] =

localize_reflectors(RIR1, RIR2, RIR3, RIR4, mls)

%LOCALIZE_REFLECTORS Determines the location of

% the walls the sound reflected off of

% before hitting the microphone array

%

% [wall_x, wall_y] = LOCALIZE_REFLECTORS(RIR1,

% RIR2, RIR3, RIR4, mls) computes the wall

% locations that the sound reflected off of.

% The function forms peak groups from the

% input RIRs and computes the location of

% the virtual sources that created the time

% delays of each peak in the peak group.

% The location of the reflector is then

% calculated from the location of the robot

% and the virtual source. The computed wall

% x and y locations are then saved in an array

% and returned.

%

% RIR1 = Input RIR from microphone 1

% RIR2 = Input RIR from microphone 2

% RIR3 = Input RIR from microphone 3

% RIR4 = Input RIR from microphone 4

%

% Created by: Christopher Co

%

% Copyright 2012 Christopher Co

% Initialize Variables

first = 0; % Flag to detect direct sound

num_wall = 1; % Number of walls (used as a

% counter/indexer into wall array)

48

tempRIR1 = RIR1;

tempRIR2 = RIR2;

tempRIR3 = RIR3;

tempRIR4 = RIR4;

% Set up figure 2 to plot computed locations of

% reflectors in robot’s POV

figure(2);

clf(2);

plot(0, 0, ’ro’);

hold on;

% Start loop

while 1

% Find peak group

[idx1, idx2, idx3, idx4, tempRIR1, tempRIR2,

tempRIR3, tempRIR4, done] = find_peak_group(tempRIR1,

tempRIR2, tempRIR3, tempRIR4, mls);

% Check if we’re done

if done == 1

break;

end

% Skip first peak group - this is direct sound

if first == 0

first = 1;

continue

end

% Compute virtual source location

[v_x, v_y] = compute_virtual_source(idx1,

idx2, idx3, idx4);

49

% Compute reflector location

[w_x, w_y] = compute_wall(v_x, v_y);

% Update plot and wall coordinates array

plot(w_x, w_y, ’o’);

wall_x(num_wall) = w_x;

wall_y(num_wall) = w_y;

num_wall = num_wall+1;

end

end

50

function [idx1, idx2, idx3, idx4, outRIR1, outRIR2,

outRIR3, outRIR4, done] = find_peak_group(RIR1,

RIR2, RIR3, RIR4, mls);

%FIND_PEAK_GROUP Parses the RIRs and groups

% peaks together

% [idx1, idx2, idx3, idx4, outRIR1,

% outRIR2, outRIR3, outRIR4,

% done] = FIND_PEAK_GROUP(RIR1, RIR2, RIR3,

% RIR4, mls) parses the RIRs and

% calculates the peak groups using the time

% delays of the peaks in the RIR. The

% function iterates through all four RIRs in

% lockstep. When a peak is identified in any

% of the RIRs, a time-window is started.

% The other RIRs are searched for peaks in

% that time-window. If all RIRs have a peak in

% the time-window, the peaks are grouped

% together and recorded. Otherwise, the grouping

% is thrown out and the first iterator starts

% again to find the beginning of a peak group.

%

% RIR1 = Input RIR from microphone 1

% RIR2 = Input RIR from microphone 2

% RIR3 = Input RIR from microphone 3

% RIR4 = Input RIR from microphone 4

% mls = Flag signifying whether MLS reconstructed

% RIRs were used

%

% Created by: Christopher Co

%

% Copyright 2012 Christopher Co

% Initialize Variables

done = 0; % Flag to indicate we

% are finished

51

idx = 1; % Starting index

finish_thresh = 771; % Threshold to signify

% the end of the search

% for peak

% groups (in samples)

array_thresh = 25; % Time-window (in samples)

thresh = 0; % Threshold used to de-noise

% ideal RIR

if mls % Set threshold to de-noise

% MLS reconstructed RIR

thresh = 0.002;

end

outRIR1 = RIR1;

outRIR2 = RIR2;

outRIR3 = RIR3;

outRIR4 = RIR4;

% Start loop

while 1

% End condition

if idx >= finish_thresh

idx1 = 0;

idx2 = 0;

idx3 = 0;

idx4 = 0;

done = 1;

break;

end

% Find first peak in peak-group

if ((outRIR1(idx) > thresh) ||

(outRIR2(idx) > thresh) ||

(outRIR3(idx) > thresh) ||

(outRIR4(idx) > thresh))

52

idx1 = idx;

idx2 = idx;

idx3 = idx;

idx4 = idx;

% Find individual peaks after first peak

while outRIR1(idx1) <= thresh

idx1 = idx1 + 1;

end

while outRIR2(idx2) <= thresh

idx2 = idx2 + 1;

end

while outRIR3(idx3) <= thresh

idx3 = idx3 + 1;

end

while outRIR4(idx4) <= thresh

idx4 = idx4 + 1;

end

% Check if these peaks are all valid

[min_v, min_idx] = min([idx1, idx2,

idx3, idx4]);

[max_v, max_idx] = max([idx1, idx2,

idx3, idx4]);

if max_v - min_v < array_thresh

% Valid - clear out peaks so

% we don’t see them later

outRIR1(idx1) = 0;

outRIR2(idx2) = 0;

outRIR3(idx3) = 0;

outRIR4(idx4) = 0;

break;

else

% Clear out starting peak to

% skip over it

switch min_idx

53

case 1

outRIR1(idx1) = 0;

case 2

outRIR2(idx2) = 0;

case 3

outRIR3(idx3) = 0;

case 4

outRIR4(idx4) = 0;

otherwise

warning(’find_peak_group

error’);

end

continue;

end

end

% Go to next index

idx = idx + 1;

end

end

54

function [v_x, v_y] = compute_virtual_source(idx1, idx2,

idx3, idx4);

%COMPUTE_VIRTUAL_SOURCE Computes the location of the

% virtual source using the time

% delays extracted from each

% microphone’s RIR of the

% tetrahedral microphone array

%

% [v_x, v_y] = COMPUTE_VIRTUAL_SOURCE(idx1, idx2,

% idx3, idx4) calculates the x and y

% coordinates of the virtual source using the

% time delays of a peak group extracted from

% each microphone’s RIR of the tetrahedral

% microphone array

%

% idx1 = time delay of a peak in the current peak

% group taken from microphone 1 (in samples)

% idx2 = time delay of a peak in the current peak

% group taken from microphone 2 (in samples)

% idx3 = time delay of a peak in the current peak

% group taken from microphone 3 (in samples)

% idx4 = time delay of a peak in the current peak

% group taken from microphone 4 (in samples)

%

% Created by: Christopher Co

%

% Copyright 2012 Christopher Co

% Initialize variables

c = 343; % Speed of sound

freq = 44100; % Sampling frequency

a = 0.1500; % Length of a side of a

% tetrahedral microphone array

55

% Convert from peak time delays to distances

r1 = (idx1/freq) * c;

r2 = (idx2/freq) * c;

r3 = (idx3/freq) * c;

r4 = (idx4/freq) * c;

% Spherical wave model equations

d21 = r2 - r1;

d31 = r3 - r1;

d41 = r4 - r1;

v_y = (-2*r1*(d31 - d41) + d31^2 - d41^2)/(2*a);

v_x = (2*r1*(d41 + d31 - 2*d21) + d41^2 + d31^2

- 2*d21^2)/(-2*sqrt(3)*a);

v_z = (2*d21*r1 + d21^2 - 2*sqrt(3)/3*a*v_x

+ 1/3*a^2)/(2*sqrt(6)/3*a);

end

56

function [w_x, w_y] = compute_wall(v_x, v_y);

% COMPUTE_WALL Computes the location of the

% wall/reflector from virtual

% source information

%

% [w_x, w_y] = COMPUTE_WALL(v_x, v_y)

% computes the x and y location of

% the reflector that created the

% given virtual source

%

% v_x = X location of virtual source

% v_y = Y location of virtual source

%

% Notes: 1.) Assumption is distance between

% source and microphone array is

% much smaller compared with

% distance to wall from array

%

% Created by: Christopher Co

%

% Copyright 2012 Christopher Co

% With the assumption, wall location is just

% half the distance between the robot and the

% virtual source location

w_x = v_x/2;

w_y = v_y/2;

end

57

A.4 MLS Functions

function out = do_mls_rir(input, rir, normalize)

%DO_MLS_RIR Reconstructs the RIR using the MLS

% Algorithm

% [out] = DO_MLS_RIR(input, rir, normalize)

% sends a periodic MLS signal through the

% room and circular-cross-correlates the

% output and periodic input to reconstruct

% the RIR

%

% input = Single MLS input (non-periodic)

% rir = Ideal RIR of the room

% normalize = Flag to do RIR normalization

%

% Created by: Christopher Co

%

% Copyright 2012 Christopher Co

% Create periodic MLS input

p_input=[input,input,input];

% Send periodic MLS input through the room

mls_resp = mls_send(p_input, rir);

% Circular cross-correlation of room response

% and periodic MLS input

p_len = size(p_input);

p_len = p_len(2);

p_h = fcxcorr(mls_resp(1,1:p_len),p_input);

% Extract a single period of the reconstructed

% periodic RIR

len = size(input);

len = len(2);

58

h = p_h(1,len+1:len+len);

out = h;

% Normalize RIR if necessary

if normalize

out = out/max(out);

end

end

59

function [sequence]=mls_new(N)

%MLS_NEW Generates an MLS sequence

% [sequence] = MLS_NEW(N) generates an MLS

% sequence of length 2^N - 1

%

% N = Shift register length

%

% Source: http://www.silcom.com/~aludwig/

% Signal_processing/Maximum_length_sequences.htm

if N == 18; taps=[0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1]; end;

if N == 17; taps=[0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1]; end;

if N == 16; taps=[0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1]; end;

if N == 15; taps=[0 0 0 0 0 0 0 0 0 0 0 0 0 1 1]; end;

if N == 14; taps=[0 0 0 1 0 0 0 1 0 0 0 0 1 1]; end;

if N == 13; taps=[0 0 0 0 0 0 0 0 1 1 0 1 1]; end;

if N == 12; taps=[0 0 0 0 0 1 0 1 0 0 1 1]; end;

if N == 11; taps=[0 0 0 0 0 0 0 0 1 0 1]; end;

if N == 10; taps=[0 0 0 0 0 0 1 0 0 1]; end;

if N == 9; taps=[0 0 0 0 1 0 0 0 1]; end;

if N == 8; taps=[0 0 0 1 1 1 0 1]; end;

if N == 7; taps=[0 0 0 1 0 0 1]; end;

if N == 6; taps=[0 0 0 0 1 1]; end;

60

if N == 5; taps=[0 0 1 0 1]; end;

if N == 4; taps=[0 0 1 1]; end;

if N == 3; taps=[0 1 1]; end;

M = 2^N-1;

m = ones(1,N);

regout = zeros(1,M);

for ind = 1:M

buf = mod(sum(taps.*m),2);

m(2:N) = m(1:N-1);

m(1)=buf;

regout(ind) = m(N);

end

comp = ~ regout;

sequence = regout - comp;

61

function [mls_out]=mls_send(mls_input, true_RIR)

%MLS_SEND Sends an MLS signal through a room

% [mls_out] = MLS_SEND(mls_input, true_RIR) sends

% mls_input through a room characterized by the

% true_RIR using convolution and returns the

% room response.

%

% mls_input = Input MLS signal

% true_RIR = Ideal RIR of the room

%

% Created by: Christopher Co

%

% Copyright 2012 Christopher Co

mls_out=conv(true_RIR,mls_input);

end

62

function [xc] = fcxcorr(u1,u2)

%[xc] = fcxcorr(u1,u2)

%Uses fft to calculate the circular cross

%correlation of two periodic

%signal vectors.This is equivalent to

%xc(k)=sum(u1.*circshift(u2,k)), but

%much faster, especially for large vectors.

%There is no input checking;

%vectors must be equally sized.

%The result is not normalized. You can get the

%normalized result using:

% xc_n=fcxcorr(u1,u2)/(norm(u1)*norm(u2));

%copyright Travis Wiens 2009

xc=ifft(fft(u1).*conj(fft(u2)));

63

A.5 Robot Mapping Function

function [world_x, world_y] = robot_map(wall_x, wall_y,

robot_x, robot_y, robot_angle,

old_world_x, old_world_y)

%ROBOT_MAP Updates the robot’s view of the world with new

% wall information.

%

% [world_x, world_y] = ROBOT_MAP(wall_x, wall_y, robot_x,

% robot_y, robot_angle, old_world_x, old_world_y)

% adds the wall information from wall coordinates into

% the robot’s known mapping of the world.

%

% wall_x = X coordinate of the new wall points (relative

% to robot position)

% wall_y = Y coordinate of the new wall points (relative

% to robot position)

% robot_x = X coordinate of the robot (from robot POV)

% robot_y = Y coordinate of the robot (from robot POV)

% robot_angle = Angle of the robot (from robot POV)

% old_world_x = X coordinates of the currently mapped walls

% in the room

% old_world_y = Y coordinates of the currently mapped walls

% in the room

%

% Created by: Christopher Co

%

% Copyright 2012 Christopher Co

% Figure 3 holds the map the robot uses

figure(3);

hold on;

% Calculate wall locations in relation to robot position

world_x = wall_x*cos(robot_angle*pi/180)-

64

wall_y*sin(robot_angle*pi/180) + robot_x;

world_y = wall_x*sin(robot_angle*pi/180)+

wall_y*cos(robot_angle*pi/180) + robot_y;

% Plot Robot

plot(robot_x, robot_y, ’ro’);

% Plot new walls

plot(world_x, world_y, ’o’);

% Plot old walls

if old_world_x == -1000 % -1000 signifies there

% are no walls to draw

% Do nothing

else

plot(old_world_x, old_world_y, ’ko’);

% Update world map

world_x = [old_world_x world_x];

world_y = [old_world_y world_y];

end

end

65

A.6 Robot Navigation Function

function [new_robot_x, new_robot_y, new_robot_angle,

new_g_robot_x, new_g_robot_y, new_g_robot_angle,

turn_flag] = robot_update(world_x, world_y, robot_x,

robot_y, robot_angle, wall_x, wall_y, g_robot_x,

g_robot_y, g_robot_angle, turn_flag)

%ROBOT_UPDATE Computes the next position the robot

% will move to

%

% [new_robot_x, new_robot_y, new_robot_angle,

% new_g_robot_x, new_g_robot_y, new_g_robot_angle,

% turn_flag] = ROBOT_UPDATE(world_x, world_y, robot_x,

% robot_y, robot_angle, wall_x, wall_y,

% g_robot_x, g_robot_y, g_robot_angle,

% turn_flag)

% computes the next robot locations based on the

% current wall information. The decision is based on

% the right-wall-follow algorithm where the robot finds

% a wall, follows along that wall on its right side,

% and turns as necessary.

%

% world_x = X coordinates of the robot’s current

% map of the walls in the room

% world_y = Y coordinates of the robot’s current

% map of the walls in the room

% robot_x = X coordinate of the robot’s current

% position (from robot’s POV)

% robot_y = Y coordinate of the robot’s current

% position (from robot’s POV)

% robot_angle = Angle of robot (from robot’s POV).

% In degrees.

% wall_x = X coordinates of the robot’s

% currently detected walls

% wall_y = Y coordinates of the robot’s

% currently detected walls

66

% g_robot_x = Global X coordinate of the robot’s

% current position (from world POV)

% g_robot_y = Global Y coordiante of the robot’s

% current position (from world POV)

% g_robot_angle = Global robot angle (from world POV)

% turn_flag = Flag to detect turns

%

% Created by: Christopher Co

%

% Copyright 2012 Christopher Co

% Initialize Variables

move = 0.2; % Maximum we are allowing the

% robot to move (in meters)

search_x_dist = 0.3; % Search window for walls

search_y_dist = 0.3;

desired_x_dist = 1; % Desired distances for walls

desired_y_dist = 1;

turn_thresh = 1.0; % Distance before turn (in meters)

turning_flag = 0; % Flag that signifies if we will

% need to turn in this iteration

K_p_x = 0.1; % Controller gains

K_p_y = 0.1;

num_walls = size(wall_x);

num_walls = num_walls(2);

% Current Assumption - only one data point for right

% wall.

for i = 1:num_walls

67

% Search for data points corresponding with

% right walls

if wall_y(i) < 0

if (wall_x(i) > -search_x_dist) &&

(wall_x(i) < search_x_dist)

right_wall_x = wall_x(i);

right_wall_y = -wall_y(i);

end

end

% Search for data points corresponding with

% front walls

if wall_x(i) > 0

if (wall_y(i) > -search_y_dist) &&

(wall_y(i) < search_y_dist)

front_wall_x = wall_x(i);

front_wall_y = wall_y(i);

end

end

end

% If we need to turn, set turning_flag

if exist(’front_wall_x’, ’var’) == 0

front_wall_x = desired_x_dist;

front_wall_y = desired_y_dist;

else

if front_wall_x < turn_thresh

turning_flag = 1;

end

end

front_wall_x = desired_x_dist;

front_wall_y = desired_y_dist;

if exist(’right_wall_x’, ’var’) == 0

right_wall_x = 0;

68

right_wall_y = desired_y_dist;

end

% Compute errors

error_x = right_wall_x - desired_x_dist;

error_y = right_wall_y - desired_y_dist;

% Apply P controller gains

force_p_x = -K_p_x * error_x;

force_p_y = -K_p_y * error_y;

% Compute overall force to apply to plant

force_x = force_p_x;

force_y = force_p_y;

% Compute new movement based on forces applied

new_robot_mag = sqrt((force_x)^2+(force_y)^2);

new_robot_angle = atan2(force_y,force_x)*180/pi;

if new_robot_mag > move

new_robot_mag = move;

end

if turning_flag == 1

turn_flag = turn_flag+1;

if turn_flag == 4

turn_flag = 0;

end

turning_flag = 0;

end

if turn_flag == 1

new_robot_angle = new_robot_angle + 90;

elseif turn_flag == 2

new_robot_angle = new_robot_angle + 180;

elseif turn_flag == 3

69

new_robot_angle = new_robot_angle + 270;

end

%Update all output values

new_robot_x = robot_x +

new_robot_mag*cos(new_robot_angle*pi/180);

new_robot_y = robot_y +

new_robot_mag*sin(new_robot_angle*pi/180);

new_g_robot_angle = g_robot_angle +

(new_robot_angle - robot_angle);

new_g_robot_x = g_robot_x +

new_robot_mag*cos(new_g_robot_angle*pi/180);

new_g_robot_y = g_robot_y +

new_robot_mag*sin(new_g_robot_angle*pi/180);

end

70

A.7 Error Calculation Function

function [sum_error, count] = compute_error(w_x, w_y, r_x, r_y)

%COMPUTE_ERROR Computes the total squared error of all sampled

% data points and their actual wall locations for

% calculation of average RMS error

%

% [sum_error, count] = COMPUTE_ERROR(w_x, w_y, r_x, r_y)

% computes the sum of the squared error of the sampled

% wall points and the actual locations of the wall.

% This function is used to aid in the calculation of

% the average RMS error. In addition, the total number

% of sampled data points is returned in count.

%

% The function computes the RMS error against all the

% walls and picks the lowest RMS error to correlate

% that specific data point to a specific wall.

%

% w_x = X coordinates of sampled wall location data

% w_y = Y coordinates of sampled wall location data

% r_x = X location of robot from world POV

% r_y = Y location of robot from world POV

%

% Notes: 1.) This function is hard-coded to evaluate

% sampled wall data against a 10m by 10m

% by 10m room.

% 2.) Walls are assumed to be either vertical

% or horizontal with respect to the world POV

%

% Created by: Christopher Co

%

% Copyright 2012 Christopher Co

% Initialize variables

num_wall = size(w_x);

71

num_wall = num_wall(2); % Number of wall points

sum_error = 0; % Sum of squared errors

x_min = 0; % Left wall location in world POV

x_max = 10; % Right wall location in world POV

y_min = 0; % Lower wall location in world POV

y_max = 10; % Upper wall location in world POV

% Compute difference between robot’s current position (in

% world POV) and the wall locations to translate the wall

% locations into the robot’s POV

trans_l = x_min - r_x;

trans_r = x_max - r_x;

trans_d = y_min - r_y;

trans_u = y_max - r_y;

% Loop over every sampled wall data point

for i = 1:num_wall

% Compute the squared difference between sampled data

% points and actual wall locations for each major

% direction

diff_l = (w_x(i) - trans_l)^2;

diff_r = (w_x(i) - trans_r)^2;

diff_u = (w_y(i) - trans_u)^2;

diff_d = (w_y(i) - trans_d)^2;

% Use the lowest squared difference and add to total

% squared error (Assumption: the wall direction with

% the lowest squared difference is the wall the

% sampled data point originated from)

diff = [diff_l, diff_r, diff_u, diff_d];

sum_error = sum_error + min(diff);

end

72

% Return total number of sampled data points (useful

% for calcualating average RMS error)

count = num_wall;

end

73

APPENDIX B

QUADRATIC INTERPOLATION CODE

B.1 Execute Script

%EXECUTE Execute Simulation Script

% This Matlab script executes the quadratic

% interpolation optimization simulation and

% computes the associated errors that are

% reported in the thesis.

%

% Created by: Christopher Co

%

% Copyright 2012 Christopher Co

% Create Room/RIRs

%% Base Room with 1 virtual source

% fs = 44100;

% mic=[2 2 2];

% n = 1;

% r = 0.2;

% rm = [4 4 4];

% src = [3 2 2];

% h_list = rir(fs, mic, n, r, rm, src);

% Advanced Room

fs = 44100;

mic=[2 2 2];

74

n = 4;

r = 0.2;

rm = [4 4 4];

src = [3 2 2];

h_list = rir(fs, mic, n, r, rm, src);

% Calculate the baseline error in the true RIR

% from rounding to the nearest sample

rounded = round(h_list(:,2));

rounderror = calc_error(h_list(:,2),rounded);

% Do Petersen sinc interpolation

samp_h = sinc_interp(h_list);

% Ideal RIR Quadratic Interpolation %

% Loop until we explore all of the peaks

currenth = samp_h;

indices = 0;

num_peak = 0;

while 1

% Find the next peak

[currenth, indices] = find_one_peak(currenth);

% Check if finished

if indices == -1

break;

end

% Apply quadratic fitting

fit_coeff = quad_fit(samp_h, indices);

num_peak = num_peak+1;

cur_peak = indices(1);

75

% Find the sample the peak of the

% quadratic fit curve and record that

% as our "peak" value

peaks(num_peak) = cur_peak -

fit_coeff(2)/(2*fit_coeff(1));

end

% Compute error between interpolated peak

% locations and the true peak locations

peaks = sort(peaks);

peaks = peaks’;

error = calc_error(h_list(:,2),peaks);

% MLS Reconstructed RIR Quadratic Interpolation %

% Generate MLS input signal

mls_num = 15;

mls_input = mls_new(mls_num);

% Simulate the sending of MLS input through room

mls_resp = mls_send(mls_input, samp_h);

% Compute the estimated impulse response

% from the MLS signal

mls_cross = xcorr(mls_resp,mls_input);

mls_cross_size = size(mls_cross);

mls_cross_size = mls_cross_size(2);

half_mls_cross_size = ceil(mls_cross_size/2);

mls_trunc_cross =

mls_cross(half_mls_cross_size:mls_cross_size);

out = mls_trunc_cross;

% Normalize reconstructed RIR

normout = out/max(out);

76

% Generate Robot’s RIR

thresh_mls = normout;

thresh_size = size(mls_input);

thresh_size = thresh_size(2);

thresh_mls = thresh_mls(1:thresh_size);

thresh_mls = thresh_mls’;

currenth = thresh_mls;

% Loop until we explore all RIR peaks

indices = 0;

num_peak = 0;

while 1

% Find the next peak

[currenth, indices] = find_one_peak(currenth);

% Check if we are done

if indices == -1

break;

end

% Apply quadratic fitting

fit_coeff = quad_fit(thresh_mls, indices);

num_peak = num_peak+1;

cur_peak = indices(1);

% Find the sample the peak of the

% quadratic fit curve and record that

% as our "peak" value

mls_peaks(num_peak) = cur_peak -

fit_coeff(2)/(2*fit_coeff(1));

end

% Compute error between interpolated peak

% locations and the true peak locations

mls_peaks = sort(mls_peaks);

mls_peaks = mls_peaks’;

77

mls_error = calc_error(h_list(:,2),mls_peaks);

% Compute error between interpolated peak

% locations rounded to the nearest sample

% and the true peak locations

mls_rounded = round(mls_peaks);

mls_rounderror = calc_error(h_list(:,2),

mls_rounded);

78

B.2 Sinc Interpolation Function

function [out] = sinc_interp(hlist)

%SINC_INTERP Apply Petersen sinc

% interpolation to RIR

%

% [out] = SINC_INTERP(hlist)

%

% hlist = List of true RIR peak indices

%

% Created by: Christopher Co

%

% Copyright 2012 Christopher Co

% Create output array

out = zeros(round(max(hlist(:,2)))+10,1);

num = size(hlist);

num = num(1);

% For each peak...

for i = 1:num

% Compute the values of the sinc

% whose peak is centered at the

% peak for a window of [-2,2]

% around the peak sample

for j = -2:2

current = round(hlist(i,2))+j;

temp = hlist(i,1)*sinc(3/5*

(current-hlist(i,2)));

if temp > 0

% Have to check if we get

% overlapping impulses.

% Check if sample value

79

% is non-zero

out(current) = temp;

end

end

end

end

80

B.3 Peak Picking Function

function [newh, indices] = find_one_peak(h)

%FIND_ONE_PEAK Finds the first peak in h

%

% [newh, indices] = FIND_ONE_PEAK(h)

% finds the first peak in h (RIR) that

% is above a specified threshold.

% When found, that index is returned

% to the calling function and a new

% RIR with that peak zeroed out is

% returned so that on subsequent

% calls to this function, the next

% peak will be obtained.

%

% h = RIR to search for first peak

%

% Created by: Christopher Co

%

% Copyright 2012 Christopher Co

% Initialize Variables

newh = h;

% Loop until we finish

while 1

[p_val, p_i] = max(newh);

threshold = 0.015;

samp_thresh = 0.002;

% Check if no samples are left...

if p_val < threshold

indices = -1;

return;

end

81

% Process argmax peak

size = 1;

cur_i = p_i;

% Search left

while 1

% Check if test sample is greater

% than sample threshold

if h(cur_i-1) < samp_thresh

break

end

% Check if test sample is lower

% than current sample

if h(cur_i) <= h(cur_i-1)

break

end

% Move window left and increment

% total size

newh(cur_i) = 0;

cur_i = cur_i - 1;

size = size + 1;

end

% Save left window and reload current

% sample with peak value

newh(cur_i)=0;

left_i = cur_i;

cur_i = p_i;

% Search right

while 1

% Check if test sample is greater

% than sample threshold

if h(cur_i+1) < samp_thresh

break

end

% Check if test sample is greater

82

% than current sample

if h(cur_i) <= h(cur_i+1)

break

end

% Move window right and increment

% total size

newh(cur_i) = 0;

cur_i = cur_i + 1;

size = size + 1;

end

newh(cur_i) = 0;

right_i = cur_i;

% Check size is good for quadratic

% fit...(>3)

if size >= 3

break

end

str = sprintf(’Not enough info at

Peak %d’,cur_i);

disp(str);

end

indices = left_i:1:right_i;

end

83

B.4 Quadratic Interpolation Function

function [out] = quad_fit(h, indices)

%QUAD_FIT Calculate quadratic fit

% curve coefficients

%

% [out] = QUAD_FIT(h, indices)

% obtains the points to apply

% the quadratic fit against,

% then computes the coefficients

% of the quadratic fit and

% returns those values. Those

% coefficients can then be used

% to find the peak value of

% the quadratic curve

%

% h = RIR

% indices = Sample numbers to apply

% quadratic fit to

%

% Created by: Christopher Co

%

% Copyright 2012 Christopher Co

% Get data points

y = h(indices);

x = (0:size(y)-1)’;

% Compute quadratic fit coefficients

A = [x.^2 x ones(size(x))];

out = (A’*A)\(A’*y);

end

84

B.5 Error Calculation Function

function error = calc_error(h_list, peaks)

%CALC_ERROR Calculates the error between

% the peaks in the first argument

% and the peaks in the second

% argument

%

% error = CALC_ERROR(h_list, peaks)

% walks through the peak arrays passed in

% both arguments, and does a pairwise

% comparison (assuming difference is within

% a specific threshold value), and computes

% the average RMS error between the two

% arrays

%

% h_list = List of RIR samples where true

% RIR peaks occur

% peaks = List of RIR samples where

% sampled/interpolated RIR peaks

% occur

%

% Created by: Christopher Co

%

% Copyright 2012 Christopher Co

% Initialize variables

error = 0;

thresh = 2;

num = size(h_list);

num_true = num(1);

num = size(peaks);

num_exp = num(1);

j = 1; % Index for walking through

85

% true RIR list

% Loop across all recorded peak samples

for i = 1:num_exp % Index for walking through

% interp RIR list

% Check if the current peaks correspond to

% each other

if abs(h_list(j)-peaks(i)) < thresh

% If so, add to total squared error and

% move to next peaks

error = error + (h_list(j) - peaks(i))^2;

j = j+1;

else

% Search for the corresponding peak

% (spurious or missing peak)

testj = j;

found = 0;

% Search until we reach the end of list

while testj ~= num_true

if abs(h_list(testj)-peaks(i)) < 2

% Found! Add to total squared error

found = 1;

j = testj;

error = error + (h_list(j) - peaks(i))^2;

j = j+1;

break;

else

% Missed true peak in interp RIR

str = sprintf(’Missed Peak at %d’, h_list(testj));

disp(str);

testj = testj+1;

end

86

end

% Check if we found the peak in our search

if found == 1

continue

else

% Spurious peak in interp RIR

str = sprintf(’Spurious Peak at %d’, peaks(i));

disp(str);

j = j+1;

continue

end

end

end

% After we exhaust interp RIR peak list, any

% remaining true RIR peaks in the list were

% missed in interp RIR peak list

while j <= num_true

str = sprintf(’Missed Peak at %d’, h_list(j));

disp(str);

j = j+1;

end

% Compute average RMS error

error = error/num_exp;

error = sqrt(error);

end

87

REFERENCES

[1] J. B. Kobler, B. S. Wilson, O. W. H. Jr., and A. L. Bishop, “Echo
intensity compensation by echolocating bats,” Hearing Research, vol. 20,
no. 2, pp. 99–108, 1985.

[2] G. Jones, “Echolocation,” Current Biology, vol. 15, no. 13, pp. R484–
R488, 2005.

[3] J. H. Lim, J. Leonard, and S. K. Kang, “Mobile robot relocation using
echolocation constraints,” in Proc. IEEE/RSJ International Conference
on Intelligent Robots and Systems, vol. 1, 1999, pp. 154–159.

[4] A. Kurz, “ALEF: An autonomous vehicle which learns basic skills and
constructs maps for navigation,” Robotics and Autonomous Systems,
vol. 14, no. 2-3, pp. 171–183, 1995.

[5] A. Ohya, Y. Nagashima, and S.-I. Yuta, “Exploring unknown environ-
ment and map construction using ultrasonic sensing of normal direction
of walls,” in IEEE Proc. International Conference on Robotics and Au-
tomation, May 1994, pp. 485–492.

[6] H. Atmoko, D. C. Tan, G. Y. Tian, and B. Fazenda, “Accurate sound
source localization in a reverberant environment using multiple acoustic
sensors,” Measurement Science and Technology, vol. 19, no. 2, pp. 1–10,
2008.

[7] J. Valin, F. Michaud, J. Rouat, and D. Letourneau, “Robust sound
source localization using a microphone array on a mobile robot,” in Proc.
IEEE Intelligent Robots and Systems (IROS’03), Las Vegas, Nevada,
2003, pp. 1228–1233.

[8] J.-S. Hu, C.-H. Yang, and C.-K. Wang, “Sound source localization by
microphone array on a mobile robot using eigen-structure based gener-
alized cross correlation,” in IEEE Workshop on Advanced Robotics and
Its Social Impacts, Aug. 2008, pp. 1–6.

[9] Q. Xu, P. Yang, J. Wang, and H. Sun, “Sound source localization system
based on mobile robot,” in 24th Chinese Control and Decision Confer-
ence (CCDC), May 2012, pp. 204–207.

88

[10] B. Gunel, “Room shape and size estimation using directional impulse
response measurements,” in Proc. Forum Acusticum, Sep. 2002.

[11] E. A. P. Habets, “Room impulse response generator,” Technische Uni-
versiteit Eindhoven, Tech. Rep., 2006.

[12] M. Sondhi, D. Morgan, and J. Hall, “Stereophonic acoustic echo can-
cellation — An overview of the fundamental problem,” IEEE Signal
Processing Letters, vol. 2, no. 8, pp. 148–151, Aug. 1995.

[13] W. G. Gardner, B. L. Vercoe, and S. A. Benton, “The virtual acoustic
room,” 1992.

[14] G.-B. Stan, J.-J. Embrechts, and D. Archambeau, “Comparison of dif-
ferent impulse response measurement techniques,” J. Audio Eng. Soc,
vol. 50, no. 4, pp. 249–262, 2002.

[15] M. R. Schroeder, “New method of measuring reverberation time,” The
Journal of the Acoustical Society of America, vol. 37, no. 6, pp. 1187–
1188, 1965.

[16] J. Vanderkooy, “Aspects of mls measuring systems,” J. Audio Eng. Soc,
vol. 42, no. 4, pp. 219–231, 1994.

[17] D. D. Rife and J. Vanderkooy, “Transfer-function measurement with
maximum-length sequences,” J. Audio Eng. Soc, vol. 37, no. 6, pp. 419–
444, 1989.

[18] M. Cohn and A. Lempel, “On fast m-sequence transforms,” IEEE Trans-
actions on Information Theory, vol. 23, no. 1, pp. 135–137, Jan. 1977.

[19] J. B. Allen and D. A. Berkley, “Image method for efficiently simulating
small-room acoustics,” The Journal of the Acoustical Society of America,
vol. 65, no. 4, pp. 943–950, 1979.

[20] P. Peterson, “Simulatng the response of multiple microphones to a single
acoustic source in a reverberant room,” J. Acoust. Soc. Am., vol. 80, pp.
1527–1529, 1986.

[21] A. Beck, P. Stoica, and J. Li, “Exact and approximate solutions of
source localization problems,” IEEE Transactions on Signal Processing,
vol. 56, no. 5, pp. 1770–1778, May 2008.

[22] Y. Huang, J. Benesty, G. Elko, and R. Mersereati, “Real-time pas-
sive source localization: A practical linear-correction least-squares ap-
proach,” IEEE Transactions on Speech and Audio Processing, vol. 9,
no. 8, pp. 943–956, Nov. 2001.

89

[23] H. Schau and A. Robinson, “Passive source localization employing inter-
secting spherical surfaces from time-of-arrival differences,” IEEE Trans-
actions on Acoustics, Speech and Signal Processing, vol. 35, no. 8, pp.
1223–1225, Aug. 1987.

[24] X. Lai and H. Torp, “Interpolation methods for time-delay estima-
tion using cross-correlation method for blood velocity measurement,”
IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Con-
trol, vol. 46, no. 2, pp. 277–290, Mar. 1999.

[25] S. McGovern, “A model for room acoustics,” 2004. [Online]. Available:
http://sgm-audio.com/research/rir/rir.html

90

