
c© 2012 Sangeetha Chandrasekaran

OBJECT-ORIENTED IMPLEMENTATION OF THE MINIMALLY RESTRICTIVE
LIVENESS ENFORCING SUPERVISORY POLICY IN A CLASS OF PETRI NETS

BY

SANGEETHA CHANDRASEKARAN

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Industrial Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2012

Urbana, Illinois

Adviser:

Associate Professor Ramavarapu S. Sreenivas

Abstract

Livelock avoidance is an essential requirement in Discrete-Event/Discrete-State (DEDS) systems. Every

event of a live DEDS system can be executed at some instant in the future, irrespective of its past activities.

When a DEDS system is in a livelock-state, some events will enter into a state of suspended animation

for perpetuity, while others proceed with no impediment. This report is about the automatic synthesis of

Liveness Enforcing Supervisory Policies (LESPs) for Petri net models of DEDS systems.

Past research has shown that the existence of an LESP in DEDS systems modeled by a class of general

Free-Choice Petri Nets (FCPNs) is decidable, and the minimally restrictive LESP is directly related to the

presence of a right-closed set of states that are control invariant with respect to the system. A minimally

restrictive LESP prevents the occurrence of events in a DEDS system only when it is absolutely necessary.

This study describes an object-oriented implementation of the minimally restrictive supervisory policy for a

class of Petri nets for which this policy is decidable.

ii

To my husband, for his patience

To my mom and dad, for believing in me

iii

Acknowledgements

I am extremely grateful to my adviser Professor R.S. Sreenivas without whose guidance and constant

support, this work would not have been possible. I sincerely thank him for giving me the opportunity to

work on this project. I am also thankful to the Illinois State Water Survey and my supervisor Dr.Elias G.

Bekele for providing me with funding in the form of a Research Assistantship.

I would like to specially thank Nisha Somnath, a friend and colleague for her support when most needed.

Without the continual encouragement, strength and selfless sacrifices of my parents, I could not have ac-

complished the little I did and I cannot thank them enough. Lastly but most dearly, I owe a great deal

of gratitude to my husband for patiently tolerating me. His love and support have been my pillars of

determination.

iv

Table of Contents

List of Figures . vi

Chapter 1 Introduction . 1
1.1 Liveness in Discrete-Event/Discrete-State Systems . 1
1.2 Notations, Definitions and Other Preliminaries . 3

Chapter 2 Liveness Enforcing Supervisory Policy . 6
2.1 Supervisory Control of Petri Nets . 6
2.2 Existence of an LESP . 9
2.3 LESP Synthesis Algorithm . 9

Chapter 3 Object-Oriented Implementation . 12
3.1 Class Diagram . 12
3.2 Class MarkingVector . 13
3.3 Class NodeTable . 14
3.4 Class MinimalElementsManager . 19
3.5 Class PetriNet . 23

Chapter 4 Examples . 29
4.1 Input File Format . 29
4.2 Illustrations . 29

Chapter 5 Future Work . 62

References . 64

v

List of Figures

1.1 (a) An all-too-familiar instance of applications in a livelocked-state (Mozilla Firefox, in this
case) in the Windows R© operating system. (b) The reporting of the extant-state back to the
code-developers for subsequent patches/updates through LiveUpdate. 3

2.1 The procedure for the construction of the Karp and Miller tree (KM-tree), Ĝ(N(m0),P), for
a partially controlled PN N = (Π, T,Φ) with an initial marking of m0 under the supervision
of a monotone supervisory policy P : Nn × T → {0, 1}. 8

2.2 The coverability graph G(N(m0),P) of a partially controlled FCPN N(m0) under the super-
vision of a monotone policy P that makes sure the total number of tokens in {p1, p2, p3, p4}
is never zero. This policy can be shown to enforce liveness for this FCPN. 8

3.1 Class Diagram . 13
3.2 Class structure of MarkingVector . 14
3.3 Class structure of NodeTable . 16
3.4 Hierarchical flowchart of NodeTable methods . 16
3.5 Class structure of MinimalElementsManager . 19
3.6 Class Structure of PetriNet . 24
3.7 Hierarchical flowchart of doesFullyControlledNetHaveLESP() method 25
3.8 Hierarchical flowchart of computeMinimalElementsOfFullyControlledNet() method 26
3.9 Hierarchical flowchart of computeMinimalElementsOfControlInvariantSet() method 27

4.1 Petri net 1 . 30
4.2 Petri net 2 . 32
4.3 Petri net 3 . 34
4.4 Petri net 4 . 36
4.5 Petri net 5 . 38
4.6 Petri net 6 . 40
4.7 Petri net 7 . 42
4.8 Petri net 8 . 44
4.9 Petri net 9 . 46
4.10 Petri net 10 . 50
4.11 Petri net 11 . 52
4.12 Petri net 12 . 56
4.13 Petri net 13 . 58
4.14 Petri net 14 . 60

5.1 Petri net N1 . 63
5.2 Petri net N1 transformed to a free-choice Petri net N2 . 63

vi

Chapter 1

Introduction

An incorrectly supervised manufacturing- or service-system can enter into a state where no activity progresses

towards completion. An anthropomorphic analogy could be the well-intentioned directive of waiting for the

other person to use the doorway when two persons arrive simultaneously at either end. While sensible, this

directive creates a deadlock when the individuals on either side apply the same directive and wait indefinitely

for the other to use the doorway. Analogous situations can occur with greater severity in service- and

manufacturing-systems. A more insidious situation could be a livelock, where some events continue to be

executed without impediment, while some others cannot be executed even once (i.e. these events enter into

a state of suspended animation for perpetuity).

There are sound design principles that avoid deadlocks, but the same cannot be said for livelock-avoidance.

Restarting a livelocked task after forcibly terminating it will not rectify the situation in most instances – as

only terminating other extant jobs can reset the contentions that originally caused the livelocks. Identifying

these jobs, and developing a fair termination policy is not easy even in the simplest of cases. Additionally,

job-termination can have dire implications in service-systems. It is therefore of utmost importance to have

supervisory policies that ensure none of the extant jobs ever enter into the state of suspended animation

alluded to above. This study provides an implementation of a supervisory policy that is minimally restrictive

for a certain class of Petri nets for the avoidance of livelocks.

1.1 Liveness in Discrete-Event/Discrete-State Systems

A Discrete-Event/Discrete-State (DEDS) system [1] is said to be live [2] if, irrespective of the events that

occurred in the past, every event that the model describes, can occur at some point in the future. A live

DEDS system does not experience deadlocks or livelocks. As any commuter waiting in gridlocked-traffic, or

a Windows R©-user who has had to forcibly terminate a livelocked application can testify, there are many

instances where livelock-freedom is highly desirable. There are numerous instances of livelock and deadlocks

in automated manufacturing systems, operations-management of multi-component organizations with event-

1

driven dynamics like shipyards, airports, hospitals, etc.

In this study, we concern ourselves with Petri net (PN) [3, 4] models of manufacturing- and service-

systems, where transitions in the PN represent activities. The liveness property we seek guarantees that

irrespective of the past transition firings, every transition is potentially fireable, although not necessary

immediately, in the future. A concurrent system with this property does not experience livelocks, which is

a property we desire.

We consider PN models that do not meet the aforementioned liveness specification, and we explore the

existence of supervisory policies that enforce this property. At a given marking of the PN, the supervisory

policy selectively disables a subset of controllable transitions to enforce the desired liveness property. A PN

is partially controlled if the set of controllable transitions is a strict subset of the set of transitions.

The existence of a liveness enforcing supervisory policy (LESP) in an arbitrary, partially controlled PN

is undecidable (cf. corollary 5.2 of [5]). Furthermore, neither the existence, nor the non-existence, of an

LESP in an arbitrary, partially controllable PN is semi-decidable (cf. theorems 3.1 and 3.2 of [6]).

There is no point in attempting to develop algorithms for the synthesis of LESPs for the class of ordinary

(or, general) PNs, as these problems are not even semi-decidable. We must therefore narrow our attention

to a smaller class of PNs if we wish to automate the process of LESP-synthesis. Consequently, in this report

we consider manufacturing- and service-systems that can be modeled by a class of general Free-Choice Petri

Nets (FCPNs), F , identified in subsequent text, where the existence of an LESP is decidable [7]. This class

strictly contains the class of ordinary FCPNs, another class for which the existence of an LESP is decidable

[6].

The class of ordinary FCPNs is capable of modeling the flow of control in manufacturing- and distributed-

computation systems [8, 9], and the same is true of the larger class of general FCPNs F . The implementation

details of an algorithm that generates the minimally restrictive LESP for PN models that belong to this

class of general PNs forms the primary focus of this report.

Every frequent user of the Windows R© operating system is familiar with the screen-shot shown in figure

1.1(a), where some unresponsive program (in this case, it is Mozilla Firefox) remains in a state of suspended

animation for perpetuity. The only recourse is to terminate the unresponsive program(s) by appropriate

action using the Windows Task Manager. A user that has met with this fate should be familiar with the

next-step, which involves the generation of a “report” that is sent back to the developers (cf. figure 1.1(b)),

which is ostensibly used to generate the next-generation of patches/fixes through a service like Windows

Update. Clearly, there are lacunae in our understanding of livelock-avoidance, otherwise instances like those

shown in figure 1.1 would be a historic artifact by now.

2

Furthermore, forced-shutdown of tasks is not an option for safety critical software applications in the

area of healthcare or avionics. A livelocked-application in these arenas would have disastrous consequences,

and does not need elaboration. These systems are currently over-designed and scheduled inefficiently (to

avoid any possibility of livelocks) – which leads to higher-costs and poor economies of scale.

Even if the paradigm permits the occasional livelock instance, which followed by a reset/reboot event,

there is no clear understanding of the process of learning/improvement based on evidentiary data in the

form of reports that are generated after each instance of livelock (cf. figure 1.1(b) for an illustration). If it

were otherwise, the frequency of updates1 should drop with time. Our experience does not bear this out. In

fact, the (seemingly unending) update process is so commonplace that it has become standard IT-practice

in organizations to insist that visitors have the latest patches installed before they are allowed to connect to

their network.

(a) Livelocked Mozilla Firefox (b) Reporting the termination of Firefox

Figure 1.1: (a) An all-too-familiar instance of applications in a livelocked-state (Mozilla Firefox, in this case)
in the Windows R© operating system. (b) The reporting of the extant-state back to the code-developers for
subsequent patches/updates through LiveUpdate.

1.2 Notations, Definitions and Other Preliminaries

An ordinary Petri net structure (PN structure) N = (Π, T,Φ) is an ordered 3-tuple, where Π = {p1, . . . , pn}

is a set of n places, T = {t1, . . . , tm} is a collection of m transitions, and Φ ⊆ (Π× T) ∪ (T × Π) is a set of

arcs. The initial marking function (or the initial marking) of a PN structure N is a function m0 : Π→ N ,

where N is the set of non-negative integers. We will use the term Petri net (PN) to denote a PN structure

1Assuming the updates/patches are generated in response to the reports of livelocks, which in turn result from a faulty
policy regarding the scheduling of extant tasks.

3

along with its initial marking m0, and is denoted by the symbol N(m0). We refer the reader to Peterson’s

text [3] for additional details.

The state of a PN N(m0) is given by the marking mi : Π → N which identifies the number of tokens

in each place. A marking m : Π → N is sometimes represented by an integer-valued vector m ∈ Nn,

where the i-th component mi represents the token load (m(pi)) of the i-th place. Extending this notation

to integer-valued vectors in general, the i-th component of any integer valued vector x is denoted by xi.

The function- and vector-interpretation of the marking is used interchangeably in this report. The context

should indicate the appropriate interpretation.

The unit vector whose i-th value is unity is represented as 1i. The vector of all ones (zeros) is denoted as

1 (0). Given two integer-valued vectors x,y ∈ N k, we use the notation x ≥ y if xi ≥ yi,∀i ∈ {1, 2, . . . , k}.

We use the term max{x,y} to denote the vector whose i-the entry is max{xi,yi}. A set of integer-valued

vectors ∆ ⊆ N k is said to be right-closed if ((x ∈ ∆)∧ (y ≥ x)⇒ (y ∈ ∆)). Every right-closed set of vectors

∆ ⊆ N k contains a finite set of minimal-elements min(∆) ⊂ ∆ such that (i) ∀x ∈ ∆,∃y ∈ min(∆), such that

x ≥ y, and (ii) if ∃x ∈ ∆,∃y ∈ min(∆) such that y ≥ x, then x = y. In general the (finite) set of minimal

elements min(∆) of a right-closed set ∆ might not be effectively computable. Valk and Jantzen [10] present

a necessary and sufficient condition that guarantees the effective computability of min(∆) for an arbitrary

right-closed set ∆ ⊆ N k. Specifically, min(∆) is effectively computable if and only if the non-emptiness of

reg(z) ∩ ∆ is decidable for every z ∈ (N ∪ ω)k, where reg(z) = {x ∈ N k | x ≤ z}, and ω is a very large

positive integer. A procedure for computing the size of min(∆) can be found in reference [11].

For a given marking mi, a transition t ∈ T is said to be enabled if ∀p ∈ •t,mi(p) ≥ 1, where •x :=

{y | (y, x) ∈ Φ}. The set of enabled transitions at marking mi is denoted by the symbol Te(N,m
i). An

enabled transition t ∈ Te(N,mi) can fire, which changes the marking mi to mi+1 according to the equation

mi+1(p) = mi(p)− card(p• ∩ {t}) + card(•p ∩ {t}), where x• := {y | (x, y) ∈ Φ} and the symbol card(•) is

used to denote the cardinality of the set argument. In this study we do not consider simultaneous firing of

multiple transitions.

We use the symbol T ∗ to denote the set of all possible strings that can be constructed from an alphabet

T . A string of transitions σ = t1t2 · · · tk ∈ T ∗, where tj ∈ T (j ∈ {1, 2, . . . , k}) is said to be a valid firing

string starting from the marking mi, if, (1) the transition t1 ∈ Te(N,mi), and (2) for j ∈ {1, 2, . . . , k−1} the

firing of the transition tj produces a marking mi+j and tj+1 ∈ Te(N,mi+j) is enabled. If mi+k results from

the firing of σ ∈ T ∗ starting from the initial marking mi, we represent it symbolically as mi → σ → mi+k.

In those contexts where the marking is interpreted as a nonnegative integer-valued vector, it is useful to

4

define the input matrix IN and output matrix OUT as two n×m matrices, where

INi,j =

 1 if pi ∈ •tj ,

0 otherwise,
and OUTi,j =

 1 if pi ∈ t•j ,

0 otherwise.

The incidence matrix C of the PN N is an n × m matrix, where C = OUT − IN. If x(σ) is an m-

dimensional vector whose i-th component corresponds to the number of occurrences of ti in a valid string

σ ∈ T ∗, and if mi → σ → mi+j , then mi+j = mi + Cx(σ). Given an initial marking m0 the set

of reachable markings for m0 denoted by <(N,m0), is defined as the set of markings generated by all

valid firing strings starting with marking m0 in the PN N . The reachability problem involves deciding if

mi ∈ <(N,m0), for an arbitrary mi ∈ Nn. This problem is decidable [12, 13]. A PN N(m0) is said to be

live if ∀t ∈ T, ∀mi ∈ <(N,m0),∃mj ∈ <(N,mi) such that t ∈ Te(N,mj).

A collection of places P ⊆ Π is said to be a siphon (trap) if •P ⊆ P • (P • ⊆ •P). A trap (siphon) P , is

said to be minimal if 6 ∃P̃ ⊂ P , such that P̃ • ⊆ •P̃ (•P̃ ⊆ P̃ •). A PN structure N = (Π, T,Φ) is Free-Choice

(FC) if ∀p ∈ Π, card(p•) > 1⇒ •(p•) = {p}. In other words, a PN structure is FC if and only if an arc from

a place to a transition is either the unique output arc from that place, or, is the unique input arc to the

transition. The PN structure shown in figure 2.2 is FC. A PN N(m0) where N = (Π, T,Φ) is FC, is said

to be a Free-Choice Petri net (FCPN). Commoner’s Liveness Theorem (cf. [8]) states an FCPN N(m0) is

live if and only if every minimal siphon in N contains a minimal trap that has a non-empty token load at

the initial marking m0. Testing the liveness of an FCPN is NP -hard (cf. Problem MS3, [14]). The next

chapter discusses about the supervisory policies that enforce liveness in PNs.

5

Chapter 2

Liveness Enforcing Supervisory Policy

2.1 Supervisory Control of Petri Nets

We assume a subset of transitions, called controllable transitions, Tc ⊆ T can be prevented from firing by an

external agent called the supervisor. The set of uncontrollable transitions, denoted by Tu ⊆ T , is given by

Tu = T − Tc. If Tc = T , then we say we have a fully-controlled PN, otherwise we have a partially controlled

PN. An FCPN is said to be choice-controlled if ∀t ∈ Tu, (•t)• = {t}. In the graphic representation of PNs

controllable (uncontrollable) transitions will be represented by filled (unfilled) rectangles (cf. the PN shown

in figure 2.2).

A supervisory policy P : Nn × T → {0, 1}, is a function that returns a 0 or 1 for each transition and

each reachable marking. The supervisory policy P permits the firing of transition tj at marking mi, only

if P(mi, tj) = 1. If tj ∈ Te(N,m
i) for some marking mi, we say the transition tj is state-enabled at

mi. If P(mi, tj) = 1, we say the transition tj is control-enabled at mi. A transition has to be state- and

control-enabled before it can fire. The fact that uncontrollable transitions cannot be prevented from firing

by the supervisory policy is captured by the requirement that ∀mi ∈ Nn,P(mi, tj) = 1, if tj ∈ Tu. This is

implicitly assumed of any supervisory policy in this study.

A string of transitions σ = t1t2 · · · tk, where tj ∈ T (j ∈ {1, 2, . . . , k}) is said to be a valid firing string

starting from the marking mi under the supervision of P, if, (1) t1 ∈ Te(N,mi), P(mi, t1) = 1, and (2) for

j ∈ {1, 2, . . . , k − 1} the firing of the transition tj produces a marking mi+j and tj+1 ∈ Te(N,mi+j) and

P(mi+j , tj+1) = 1. The set of reachable markings under the supervision of P in N from the initial marking

m0 is denoted by <(N,m0,P).

A supervisory policy P : Nn × T → {0, 1} is said to be marking monotone, if ∀t ∈ T, ∀{mj ,mi} ⊆

Nn, (mj ≥ mi) ⇒ (P(mj , t) ≥ P(mi, t)). That is, if a transition is control-enabled at some marking

by a marking monotone policy, it remains control-enabled for all larger markings. The Karp and Miller

tree (KM-tree) of a PN N(m0) under the supervision of a marking monotone policy P is a directed graph

Ĝ(N(m0),P) = (V̂ , Â, Ψ̂), where V̂ is the set of vertices, Â is the set of directed edges, and Ψ̂ : Â→ V̂ × V̂

6

is the incidence function. For each â ∈ Â, if Ψ(â) = (v̂i, v̂j), then the directed edge â is said to originate

(terminate) at v̂i (v̂j). Borrowing from the notation used for PNs, we define •â = {v̂i} and â• = {v̂j}. Each

vertex v̂ ∈ V̂ is associated with an extended marking µ(v̂) ∈ (N ∪ ω)n, where ω can be interpreted as a

very large positive integer. Each edge â ∈ Â is associated with a transition Γ(â) ∈ T . A marking monotone

supervisory policy P : Nn × T → {0, 1} can be naturally extended to µ(v) ∈ (N ∪ ω)n as

P(µ(v), t) =

 1 if ∃m ≤ µ(v) such that P(m, t) = 1,

0 otherwise.

Figure 2.1 contains the procedure for the construction of the KM-tree Ĝ(N(m0),P). We note that if the

(marking monotone) supervisory policy P control-enables all transitions in T for all markings, then this

procedure will yield the conventional KM-tree in the literature (cf. section 4.2.1, [3]). Theorem 4.1 of

reference [3] states that the KM-tree of an unsupervised PN is finite. The proof of this claim applies equally

to Ĝ(N(m0),P), which is finite too.

The coverability graph G(N(m0),P) = (V,A,Ψ) is essentially the KM-tree, where the duplicate nodes

are merged as one. Figure 2.2 presents a partially controlled PN N(m0) and its coverability graph un-

der the supervision of a marking monotone policy P that disables t5 ∈ Tc only at markings in the set

{(0 0 0 0)T , (0 0 0 1)T } . Each vertex in the coverability graph has at most one outgoing edge labeled by

each transition in T . Therefore, directed paths in the coverability graph can be unambiguously identified by

strings in T ∗. If there is a path from vi ∈ V to vj ∈ V with label σ∗ ∈ T ∗ in G(N(m0),P), we denote it as

vi → σ∗ → vj .

Theorem 4.2 of reference [15] states that when the KM-tree is constructed in the absence of supervision,

∀v ∈ V̂ , ∀k ∈ N , there exists a valid firing string σ starting from m0 such that m0 → σ →mi and

mi
j =

 µ(v)j if µ(v)j 6= ω,

≥ k otherwise.
(2.1)

That is, if µ(v) for some vertex v in the KM-tree has a collection of ω-symbols, and if we replaced the

ω-symbols with any integer k to obtain a marking m̂, then there is a valid firing string σ ∈ T ∗ such that

m0 → σ → mi such that mi ≥ m̂. This property is also true of Ĝ(N(m0),P) and G(N(m0),P) for a

marking monotone P.

A transition tk in a PN N(m0) is live under the supervision of P if

∀mi ∈ <(N,m0,P),∃mj ∈ <(N,mi,P) such that tk ∈ Te(N,mj) and P(mj , tk) = 1.

7

KM − tree − with − supervision Ĝ(N(m0),P), where N = (Π, T,Φ) is a partially controlled PN and P is a monotone
policy.

1: The root vertex of Ĝ(N) is v0. V ← {v0}, and µ(v0) = m0.
2: for vi ∈ V do
3: if µ(vi) is identical to µ(vj) for some vj ∈ V then

4: vi has no children in Ĝ(N) and is marked as the duplicate of vj .
5: end if
6: if Te(N,µ(vi)) ∩ {t ∈ T | P(µ(vi), t) = 1} = ∅ then
7: vi has no children in Ĝ(N) and is marked as a terminal vertex.
8: end if
9: for tj ∈ Te(N,µ(vi)) ∩ {t ∈ T | P(µ(vi), t) = 1} do

10: Create a new vertex vk. V ← V ∪ {vk}.
11: Create a new directed edge al, A← A ∪ {al}, •al = vi, a

•
l = vk and Γ(al) = tj .

12: if µ(vi)p = ω for some p ∈ {1, 2, . . . , n} then
13: µ(vk)p = ω.
14: end if
15: if (∃vq ∈ V on the directed path from v0 to vk in Ĝ(N) such that µ(vq) ≤ µ(vi) + C1j , where 1j is the unit-vector

that has a 1 at the j-th location) and (∃r ∈ {1, 2, . . . , n}, µ(vq)r < (µ(vi) + C1j)r) then
16: µ(vk)r = ω.
17: else
18: µ(vq)r = (µ(vi) + C1j)r, r ∈ {1, 2, . . . , n}.
19: end if
20: end for
21: end for=0

Figure 2.1: The procedure for the construction of the Karp and Miller tree (KM-tree), Ĝ(N(m0),P), for a
partially controlled PN N = (Π, T,Φ) with an initial marking of m0 under the supervision of a monotone
supervisory policy P : Nn × T → {0, 1}.

p
1

p
2

p
3

p
4

t
1

t
2

t
3

t
4

t
5

(a) N(m0)

1 0 0 0

0 1 1 0

t1

0 0 1 1

t2

0 1 0 1

t3

0 0 0 2

t3

1 0 W 0

t4

0 0 1 0

t5

1 0 0 W

t4

0 0 0 1

t5

0 W W W

t1

W 0 0 W

t4 t5

t5t2 t3

W W W W

t4

t3 t4 t5t1 t2

t1

t4 t5

t4

0 1 W 0

t1

W 0 W W

t3

t3

0 0 W 1

t2

t4

0 0 W W

t30 0 W 0

t5

t3 t5

t4

t1

t3 t4 t5

t3

t3

t2

1 W 0 0

t4

0 1 0 0

t5

0 W 1 0

t1

W W 0 W

t2

t2

0 W 0 1

t3

t4

0 W 0 W

t20 W 0 0

t5

t2 t5

t4

t1

t2 t4 t5

t2

t2

(b) G(N(m0),P)

Figure 2.2: The coverability graphG(N(m0),P) of a partially controlled FCPNN(m0) under the supervision
of a monotone policy P that makes sure the total number of tokens in {p1, p2, p3, p4} is never zero. This
policy can be shown to enforce liveness for this FCPN.

8

A supervisory policy P enforces liveness if all transitions in N are live under P. The policy P is said to

be minimally restrictive if for every supervisory policy P̂ : Nn × T → {0, 1} that enforces liveness in N ,

the following condition holds ∀mi ∈ Nn,∀t ∈ Te(N,mi),P(mi, t) ≥ P̂(mi, t). Alternately, if a minimally

restrictive supervisory policy P that enforces liveness inN prevents the occurrence of transition t ∈ Te(N,mi)

at some marking mi ∈ Nn, then every policy that enforces liveness in N should prevent the occurrence of

t ∈ T for the marking mi. There is a unique minimally restrictive policy that enforces liveness in every PN

N that has some policy that enforces liveness (cf. theorem 6.1, [5]).

2.2 Existence of an LESP

The existence of a supervisory policy that enforces liveness in an arbitrary, partially controlled PN is unde-

cidable (cf. theorem 5.3 and corollary 5.2, [5]). The existence of a supervisory policy that enforces liveness

is decidable when all transitions in a PN are controllable (i.e. T = Tc), or if the PN is bounded or if the

PN belongs to the family of general FCPNs F2, which strictly contains the class of ordinary FCPNs (cf.

references [5, 6, 7]). The procedure of deciding the existence of an LESP in any of these decidable classes is

NP-hard. The results in references [6, 7] forms the basis of the algorithm of LESP-synthesis and a survey of

the results are given below.

If there is an LESP for some N(m0), then there is an unique minimally restrictive LESP for PN N(m0)

(cf. theorem 6.1, [5]). The minimally restrictive LESP for a general FCPN that belongs to the class F is

marking monotone. That is, if a controllable transition is control-enabled at a marking by the minimally

restrictive LESP, then it is control-enabled at any larger marking. A transition t ∈ T in an FCPN is said

to be a non-choice transition, if (•t)• = t. The minimally restrictive LESP for an ordinary FCPN does not

control-disable any of the non-choice transitions [16].

2.3 LESP Synthesis Algorithm

The set of initial markings for which there is an LESP for a PN structure n , is defined as follows

∆(N) = {m0 | ∃ an LESP for N(m0)}

The set ∆(N) is em control invariant [17] with respect to the PN structure N . That is, if m1 ∈ ∆(N), tu

∈ Te(N,m1) ∩ Tu and m1 tu−→ m2 in N , then m2 ∈ ∆(N). In words, if an uncontrollable transition tu can

fire at a marking m1 in ∆(N), resulting in a marking m2, then m2 is also in ∆(N). Alternately, only the

9

firing of a controllable transition at an marking in ∆(N) can result in a new marking that is not in ∆(N).

This observation follows directly from the definition of ∆(N).

Suppose m0 ∈ ∆(N), then the supervisory policy that control-disables any (controllable) transition at a

marking in ∆(N) if its firing would result in a new marking that is not in ∆(N), is a minimally restrictive

LESP for N(m0)[6]. If the PN structure N is fully-controlled (i.e. Tu = ∅), or if N belongs to the class (F),

then the set ∆(N) is right-closed, and is characterized by its minimal elements min(∆(N)).

There is a procedure to test the control-invariance of a right-closed set of markings Ψ of a PN structure

N . If Ψ does not pass this test, then it is possible to find the largest subset of Ψ that is control invariant

with respect to N (cf. Lemma 5.10, [6]). If 1) Ψ is a right-closed set of markings that is control invariant

with respect to N , 2) N is a PN structure where ∆(N) is known to be right-closed, 3) PΨ is a supervisory

policy that control-disables any (controllable) transition at a marking in Ψ if its firing would result in a new

marking that is not in Ψ, and 4) m0 ∈ Ψ, we can construct the coverability graph, G(N(m0),PΨ), of N(m0)

under the supervision of PΨ, along the same lines as the coverability graph of a PN (cf. section 4.2.1, [3]).

The policy PΨ is an LESP for N(m0) if and only if

1. m0 ∈ Ψ, and

2. there is a closed path ν
σ−→ ν in G(N(mi),PΨ), for each mi ∈ min(Ψ) where

(a) all transitions appear at least once in σ (i.e. x(σ) ≥ 1), and

(b) the net-change in the token-load in each place after the firing of σ is non-negative (i.e. Cx(σ) ≥ 0)

The LESP synthesis algorithm for a PN structure N that belongs to a class where ∆(N) is known to be

right-closed essentially involves a search for a right-closed set of markings Ψ that is control invariant with

respect to N , where each member of min(Ψ) meets the path-requirement on its coverability graph. This is

done in an iterative manner starting with an initial set

Ψ0 = {m0 | ∃ an LESP for N(m0) if all transitions in N are controllable }

which is known to be right-closed (cf. [5, 6]). The LESP synthesis procedure is described below.

• If m0 /∈ Ψi, the procedure terminates with the conclusion that there is no LESP for N(m0).

• If m0 ∈ Ψi, and Ψi is not control invariant with respect to the PN structure N , it is replaced with its

largest control invariant subset, Ψi+1 where Ψi+1 ⊂ Ψi. Following this the process is repeated with

Ψi ← Ψi+1.

10

• If m0 ∈ Ψi, and Ψi is control invariant with respect to the PN structure N , each minimal element of

the control invariant, right-closed set Ψi is tested for the path-requirement on its coverability graph

described earlier.

• If all the minimal elements satisfy this requirement, then the members of min(Ψ) are presented as a

description of the LESP for N(m0).

• If there are minimal elements that do-not meet the path-requirement, then each minimal element mi

that fails the requirement is ”elevated” by card(Π) many unit-vectors as follows

mi ← {mi + 1i | i ∈ 1, 2, . . . card(Π)}

where 1i is the ith unit-vector, i.e., the above process replaces the minimal element mi with card(Π)-

many minimal elements, which in turn defines a right-closed set Ψi+1 ⊂ Ψi. After this, the process is

repeated with Ψi ← Ψi+1.

This procedure forms the corpus of the algorithm used to synthesize an LESP for N(m0), when it exists,

for a structure N for which it is known that ∆(N) is right-closed, and has been implemented as a command

line application on Mac and Windows platforms. The details of this implementation are given in the next

chapter.

11

Chapter 3

Object-Oriented Implementation

This chapter discusses the object-oriented implementation of the algorithms described in the chapters 1 and 2

to obtain the LESP for the class of PNs for which liveness is decidable. The implementation has been done in

C++ using the Microsoft Visual C++ compiler as a command-line application. The implementation makes

use of the object-oriented concepts like encapsulation and polymorphism. This implementation primarily uses

STL Containers viz. std::vector, a sequence container for object collections. To enhance the performance and

efficiency, the implementation also uses certain key features of Boost C++ Libraries (http://www.boost.

org/). BOOST FOREACH, one such feature, is a construct for C++ that iterates over sequences thereby

freeing us from having to deal directly with iterators or write predicates. It also makes use of the boost ::

shared ptr and boost :: unordered map, an associate container of the Boost library for object collections.

3.1 Class Diagram

Figure 3.1 shows the Object oriented representation of a minimally restrictive liveness enforcing supervisory

policy. The implementation is done within four major classes called PetriNet, NodeTable, MinimalElements-

Manager and MarkingVector.

PetriNet.h contains the declarations for Class PetriNet and its members. Pertrinet.cpp contains imple-

mentation for Class PetriNet and its members. Class PetriNet relates to Class MinimalElementManager

using a ‘Has-a’ relationship i.e., PetriNet contains one or more objects of Class MinimalElementManager.

MinimalElementManager.h contains declarations for Class MinimalElementManager and its members, Min-

imalElementManager.cpp implements all the members. Class MinimalElementManager holds a pointer to

Class PetriNet and hence is marked by a ‘Uses-a’ relationship. NodeTable.h contains the declarations for

the Class NodeTable and Class MarkingVector together with its members and NodeTable.cpp implements

these two classes and its members. Class NodeTable and PetriNet are tightly coupled with each other and

hence are declared as friends of each other, allowing both the classes to access each others private members.

PetriNet contains objects of NodeTable and hence is marked by a ‘Has-a’ relationship while NoteTable holds

12

http://www.boost.org/
http://www.boost.org/

<<header>>
NodeTable.h - class NodeTable

<<header>>
NodeTable.h - class MarkingVector

<<class>>
PetriNet.cpp

<<class>>
MinimalElementsManager.cpp

<<header>>
PetriNet.h

<<header>>
MinimalElementsManager.h

<<class>>
NodeTable.cpp - class NodeTable

<<class>>
NodeTable.cpp - class MarkingVector

A Implements B

C “Has-a” D

E “Uses-a” F

A B

C D

E F

Friend

Figure 3.1: Class Diagram

a pointer to Class PetriNet. The three classes PetriNet, NodeTable, MinimalElementManager are marked

by a ‘Has-a’ relationship with MarkingVector and hence contain one or more objects of Marking vector. The

sections below give a detailed description and functionality of each of these classes.

3.2 Class MarkingVector

The marking vector mi corresponds to a set containing the number of tokens in each place at any given state

of the Petri net. The MarkingVector class is used to represent this set which forms the basic building block

of the algorithms used to obtain the LESP for the net. The public members of this class are place, a vector

(STL container) of integers that stores the token count. The class exposes overloaded methods for some

basic arithmetic operations of addition (+), subtraction (-) and multiplication (×) by a constant ω and set

comparison operations such as ==, ≺, � and �. Every other class contains members which are objects of

the MarkingVector class. The method initialize() is used to assign unit vector markings 1j corresponding

to each place in the net. The figure 3.2 shows the structure of this class.

13

Figure 3.2: Class structure of MarkingVector

3.3 Class NodeTable

The NodeTable class implements the algorithm in figure 2.1 to obtain the coverability graph of the given PN

structure with an initial marking, m0.

processNode(), a recursive method is the primary method of this class which in turn invokes the other

member functions to compute the vertex and edge parameters of the reachability graph. This method is

initialized with the initial marking m0. Each vertex together with all its connecting edges forms a node in

the NodeTable and is characterized by the members fromNode, marking, byTransition, enabledTransitions,

nodeType, concurrent, conflicting, duplicateNode and index.

The function of each of the member variables in the figure 3.3 is given below

• marking is an object of the MarkingVector class and stores the marking corresponding to the node.

• The nodes are indexed by an integer value which is stored in index.

• Each vertex except for the root vertex has a corresponding parent vertex, the index of which is stored

in the integer member variable, fromNode.

• All new vertices in the coverability graph are obtained by traversing an edge that corresponds to the

firing of a transition. This edge corresponding to each node is represented in the node table by the

member byTransition.

14

• Nodes are classified into four categories as root, internal, duplicate and terminal using integer constants.

To obtain the coverability graph, it is important to identify the type of each node and nodeType, an

integer, stores this information. The constant integral values associated with the node types are

tabulated in Table 3.1.

• If a node is identified as a duplicate of another node, the index of the original node is stored in an

integer member, duplicateNode.

• The list of the transitions enabled at any node are stored as a vector of integers in enabledTransitions.

This depends on the state of the the net at that node which is defined by the marking, mi.

• Nodes can have concurrent/conflicting transitions which are identified by the integer flag concurrent

and conflicting.

Node type Constant

ROOT 0

INTERNAL 1

DUPLICATE 2

TERMINAL 3

Table 3.1: Node Classification

The nodes are stored as an unordered map of shared pointers to objects of class NodeTable. These are

declared in class PetriNet as nodeTableElements. A pointer to the object of PetriNet class which defines the

given net is used to access this map to insert an element as and when a new node is created. An unordered

map of shared pointers with integer keys is type-defined as NodeMap to provide flexibility in modifying the

data structure for further code development .

The first node in the coverability graph with the initial marking, m0 is initialized using the method

initialize(). Since this is the root node, its fromNode (parent node) and byTransition (traversed edge) are

nil and hence assigned to integer constants NIL NODE and NIL TRANSITION with a value of -1.

15

Figure 3.3: Class structure of NodeTable

The hierarchical flowchart of the member functions of NodeTable class is given in figure 3.4 and the Table

3.2 gives a short description, input parameters and the return type of all its methods.

Figure 3.4: Hierarchical flowchart of NodeTable methods

The method processNode() is then called with this initial node as its parameter. classifyNode() is

16

the first step within the processNode() and it invokes the member functions identifyEnabledTransitions(

) to compute the list of enabled transitions. Any transition is considered enabled if the number of tokens

corresponding to a place on the net is at least equal to or greater than the input arc weight from the

place to that transition. The enabled transitions are then classified to check for overlap for concurrency

using the functions doTransitionsOverlap() and areEnabledTransitionsConcurrent(). On classification, the

nodeTableElements is then pushed back with this current node. The node is then checked for duplicacy by

comparison with all the other nodes on the that have been traversed thus far in the coverability graph within

isNodeDuplicate(). If the node is not duplicate, the recursive iteration of processNode() begins for each

enabled transition for the node by firing the transition in fireTransition() and obtaining a new marking

which corresponds to the new node. An object of NodeTable for this newly generated node is created and

the recursive processNode() is called for this node. In this process, the generated marking could belong to

the right-closed set of the parent node and in such case the place is marked as ω, a large integer constant

value. This is done within findOmegaPlaces(). Since the number of tokens in each place is limited by ω,

any right-closed new marking that is generated from a parent node with ω tokens, with the increased token

number in the same place is marked as a duplicate node. At some node, when there are no further transitions

that can be fired, it is marked as a terminal node. When this process is recursively iterated over each node,

the entire coverability graph is generated with its parameters stored in nodeTableElements of the PetriNet ’s

object. isTransitionPermitted() is invoked when the coverability graph is required to be drawn for a net

which is partially controlled to obtain the minimal markings that form an LESP. This method is called

within the isTransitionEnabled() method. For each transition, this method invokes the fireTransition()

to obtain the marking that would result as a consequence of having traversed this edge. If this marking is

within the right-closed set of the minimal markings of the fully controlled Petri net, it is permitted to fire,

else the transition is not enabled.

17

Method Name Description Parameters Return Type

initialize() initialization for ROOT node (first node) int : parent Node
int : edge
MarkingVector : initial marking

void

processNode() obtain the elements of the coverability graph NodeTable : current node void

classifyNode() get the transitions that are enabled at any
node, classify if they are concurrent and/or
conflicting

NodeTable : current node void

identifyenabledTransitions() identify the transitions enabled at a given node NodeTable : current node void

isTransitionEnabled() Check if the given transition is enabled int : current transition
MarkingVector : current marking

bool

isTransitionPermitted() In partially controlled Petri net, checks if a
transition fire results in a right-closed mark-
ing of one of the minimal markings of a fully
controlled Petri net

int : enabled transition
transition : current marking

bool

doTransitionsOverlap() Check if the enabled transitions overlap vector<int> : enabled transitions bool

areEnabledTransitionsConcurrent() Check if enabled transitions can fire concur-
rently

vector<int> : enabled transitions bool

isNodeDuplicate() Check if current node is a duplicate of any
other node in the coverability graph

NodeTable : current node int

fireTransition() Traverse through the give edge (transition)
that is enabled to obtain the next vertex (node)

int : enabled transition
MarkingVector : current marking
MarkingVector : new Marking

void

findOmegaPlaces() Check if a new marking is in the right-closed
set of any other node in the graph

MarkingVector : new marking
int : current parent node

void

Table 3.2: Method definitions of Class NodeTable

18

3.4 Class MinimalElementsManager

The MinimalElementsManager is the class that implements the methods in the procedure explained in

the chapter 2 that details the LESP synthesis to obtain the minimal markings of a Petri net for a fully or

partially controlled Petri net. The class structure of MinimalElementsManager is given by figure 3.5 and Ta-

ble 3.3 gives a list of all the methods, a description of its functionality, the input parameters and return type.

Figure 3.5: Class structure of MinimalElementsManager

A vector of pointer to objects of type MarkingVector called minimalElements is used to store the com-

puted minimal markings for the net that characterize a LESP. The preliminary step in finding the minimal

markings involves the test for all the unit markings, 1j . For a given net that is fully controlled, the

method classifyUnitVectors() is used to ascertain if the unit markings 1j are an LESP. The member of

typeMarkingVector, unitMarking is initialized inside a for loop construct for each place in the net. A object

to NodeTable is created with unitMarking as the marking of the initial node and the processNode() method

19

is invoked to obtain the coverability graph of this net. The doTheLoopTest() method in PetriNet class is

then called to test the existence of an LESP for each of unit marking. When this test satisfies, a pointer

to a copy of unitMarking is pushed back into minimalElements. The copy of the unit markings for which

the LESP test fails are pushed back in the member markingsToBeChecked as a vector of pointer to objects

MarkingVector for further analysis.

The checkRemainingMarkings() method is used to identify the favourable directions along which there

exists a possible minimal marking and compute the same. The number of directions that need to be checked

is a power set of the total number of places in the net. The problem of obtaining the minimal markings

is nothing but the problem of identifying the set containing number of tokens in each place for which the

underlying net is live. Since any marking can be represented by a linear combination of the unit markings,

the member markingsToBeChecked forms the basis for the power set of markings to be analyzed. This is

done within the method called computeDirections(). The power set is generated using the methods next(

) and sizeOfmask() called within computeDirections(). For each marking within markingsToBeChecked,

the favourable directions are identified by adding it with marking mask which corresponds to each element

in the power set that is multiplied with a large constant ω (representing dumping infinite tokens) along the

directions of evaluation and checking the condition of LESP feasibility by computing the coverability graph

with the current marking as the initial node. The original basis directions corresponding to a positive test

are then pushed back in the member directions. The marking in markingsToBeChecked is then elevated

along each direction in directions and then checked for LESP condition again. If the test is satisfied then

this elevated marking is a minimal marking and is pushed back into minimalElements, else the marking

is added to the existing set of markingToBeChecked and this process is repeated until all the remaining

markings have been checked for. isMarkingAlreadyCovered() is a method used to identify markings which

are in the right-closet set of basis markings. This check is done every time before the new marking identified

as minimal is pushed back and also after the method checkRemainingMarkings() completes. This completes

the methods used in MinimalElementsManager to obtain the minimal elements for a fully controlled Petri

net.

The getControlInvariantSubset() method is used to obtain the the largest control invariant subset of

the set of markings that have been marking as minimal for the fully controlled net. The minimalElements

member is updated with this set when this method is executed i.e., any marking which is not control in-

variant is deleted from the original set. The method isLESP() is then used to test for the LESP condition

20

for each marking in the control invariant set. The markings for which the test satisfies are stored in the

member LESPElementsofControlInvariantSet and the ones that fail are stored in NonLESPElementsOfCon-

trolInvariantSet. Both these members are defined by a vector of pointers to MarkingVector. Each element

in NonLESPElementsOfControlInvariantSet is then elevated by unit vectors along the favourable direction

and the process is repeated until an LESP exists.

21

Method Name Description Parameters Return Type

classifyUnitVectors() Check if unit markings are minimal markings
for a fully controlled net

PetriNet * : current Petri net void

checkRemainingMarkings() Check for the minimal markings for a fully con-
trolled net in directions where the unit markings
are not minimal

void void

computeDirections() Compute feasible directions to obtain a minimal
marking

MarkingVector : marking void

sizeOfMask() Calculate the number of unit tokens in each
computed direction

MarkingVector : direction int

next() Successive marking denoting the direction to be
checked next

MarkingVector : direction bool

cleanUp() Obtain the smallest subset of the set of com-
puted minimal elements (basis elements)

void void

getControlInvariantSubset() Obtain the set of minimal markings that are
control invariant

void bool

isLESP() Check if LESP test is satisfied for the control
invariant marking of the partially controlled net

void bool

isMarkingAlreadyCovered() Check if a marking is covered by some minimal
element already computed

MarkingVector : marking bool

elevateElementsAndCheck() To elevate the number of tokens along a feasible
direction, If LESP test fails in that direction

void void

printMinimalElements() Write the set of minimal markings that charac-
terize an LESP to the console

void void

Table 3.3: Method definitions of Class MinimalElementsManager

22

3.5 Class PetriNet

The PetriNet class (figure 3.6) is the nerve centre of the entire code which encompasses objects of the

MarkingVector, NodeTable and MinimalElementsManager and exposes methods to the user to solve the

goal problem. The interface is written such that this forms the first layer of the code.

Inputs, Initialization & Validation

This section describes the member functions in this class that are used for obtaining the user inputs, initial-

izations and input validation.

To solve for the LESP for any FCPN, the inputs to the code are n, m, input matrix (IN) and output ma-

trix (OUT) and m0 are required to be provided by the user. These are stored in the members noOfPlaces,

noOfTransitions, inputWeightsToTransition, outputWeightsFromTransition and initialMarking respectively.

noOfPlaces and noOfTransitions are integer members and initialMarking is of type MarkingVector. For

a Controlled PN, there is an additional input which corresponds to the transitions that are controllable.

This input is given as a switch with 1 and 0 denoting controllable transitions and uncontrollable transitions

respectively. A global function getIOFile() is used to read the name of the input file from the command

line which initializes the inputFileName, noOfPlaces and noOfTransitions for the net with which an object

to PetriNet is assigned.

The members inputWeightsToTransition, outputWeightsFromTransition are defined as std::vector of

pointers to objects of type MarkingVector. The system model of any Petri net is characterized by it Incidence

Matrix, C which is represented by the member incidenceMatrix. Also, to analyze a partially controlled Petri

net, it is required to identify the net token load in each place corresponding to the firing of uncontrollable

incidence and this is stored in the member uncontrollableIncidence. These two members have been defined

as std::vector of pointers to objects of type MarkingVector.

The loadInputData() method initializes IN, OUT, m0, Tu and computes the incidence matrix C and

the uncontrollableIncidence of the net. Since these algorithms that obtain the minimally restrictive LESP

markings are applicable only to a specific class of Petri nets that include free-choice nets, a method isNet-

FreeChoice() has been included to validate the Petri net input to the code. If the net is not free choice, the

algorithm terminates with a message that there is no LESP for the net.

Two print methods printInputsToConsole() and printControllableTransitions() have been included with

overloads for std:out for printing the inputs to the code.

23

Figure 3.6: Class Structure of PetriNet

24

LESP Implementation

The LESP test for the class of Petri nets where ∆(N) is known to be right-closed are primarily implemented

into three modules

• LESP test for a given initial state (initial marking, m0) of the net

• Computing the minimal elements that characterize the LESP for a net where all the transitions are

assumed controllable

• Computing the minimal elements that characterize the LESP for a net where the controllable transi-

tions are specified

The member functions that are correspond to each of the above procedure are doesFullyControlled-

NetHaveLESP(), computeMinimalElementsOfFullyControlledNet() and computeMinimalElementsOfCon-

trolInvariantSet().

The member function doTheLoopTest is used to test for the existence of the closed path υ
σ−→ υ in

G(N(mi),PΨ) for any marking mi. This is implemented as a feasibility-test for an appropriately posed

Integer Linear Program. lp solve 5.5.2.0, a Mixed Integer Linear Programming Solver [18] based on revised

simplex methods and Branch-and - bound methods for integers has been integrated in the algorithm for this

purpose. Specifically, the ILP-instance is solved using a solve(lprec *lp) command where lp is a pointer to

the ILP-model, within the code. The existence of the path with the desirable property in G(N(mi),PΨ)

corresponds to solve returning a zero in the implementation.

In doesFullyControlledNetHaveLESP(), the node table corresponding to the net is initialized with m0

and the processNode() method is invoked to obtain the coverability graph of the net. All the informa-

tion corresponding to the coverability graph is stored within this member nodeTableElements. With the

nodeTableElements populated with the entire graph, the feasibility test doTheLoopTest() is invoked. There

is an LESP if the test returns a zero and no LESP if a one is returned. The code flow for this procedure is

represented by figure 3.7.

Figure 3.7: Hierarchical flowchart of doesFullyControlledNetHaveLESP() method

25

To obtain the minimal markings that characterize an LESP for both a fully Controlled PN and a partially

controlled PN, the object minimalElementsManager to the class MinimalElementsManager declared in this

class is used to invoke the appropriate methods. In computeMinimalElementsOfFullyControlledNet(), the

LESP test is checked for a sequence of markings evaluated iteratively first by checking for the individual to-

ken loads for each place of the net using clasifyUnitVectors() and then iterating over the remaining elements

in checkRemainingMarkings() for which the first condition was not satisfied. These functions populate the

minimalElements member of the class minimalElementsManager. The cleanUp() function class of is then

invoked for the minimalElementsManager object to obtain the min(Ψ).

Figure 3.8 and figure 3.9 show the hierarchical flow chart for the methods computeMinimalElementsOf-

FullyControlledNet() and computeMinimalElementsOfControlInvariantSet() respectively.

Figure 3.8: Hierarchical flowchart of computeMinimalElementsOfFullyControlledNet() method

For the partially controlled net, the algorithm requires the set of minimal markings with an LESP for the

fully controlled net to have been already computed and given either as input or this method is invoked in

sequence with computeMinimalElementsOfFullyControlledNet(). The method computeMinimalElementsOf-

ControlInvariantSet() invokes the getControlInvariantSubset() of the minimalElementsManager to first

obtain the largest control invariant subset of the minimal markings. This has been implemented through

a while control statement until no minimal marking violates the control invariance property. A constant,

MAX ITERATION limits it from getting into an infinite loop. To test for the LESP condition for each mark-

ing mi ∈ Ψi is checked using the member function isLESP of minimalElementsManager. If an LESP exists

for each of these markings,the list of markings is output with the message “There is an LESP”. If for some

marking, the LESP condition fails, that particular marking is elevated by the markings that correspond to

the favourable directions and the function is recursed until all the elements have an LESP. If none of the min-

imal markings of the fully controlled net satisfy the control invariance property, there is no LESP for the net.

26

Figure 3.9: Hierarchical flowchart of computeMinimalElementsOfControlInvariantSet() method

The procedure to draw the coverability graph for a fully controlled net and the partially controlled net

varies in this respect that the computation of enabled transitions involves a check to see if the transition if

enabled is permitted through isTransitionPermitted() method in NodeTable class that has been described

previously, i.e., this condition checks to see that the new marking stays within the right-closed control in-

variant subset for the partially controlled net and flagControllabilityCheck is used to switch between the two

cases.

An object of type MarkingVector, tempNewMarking has been included as a member of this class for

reusability purposes. This instance has been used whenever a new temporary object is required to be cre-

ated. It gives an advantage by reducing the overhead of calling the MarkingVector constructor for temporary

objects.

Since these algorithms involve obtaining the coverability graph each time the LESP condition is to be

checked, the member function clearNodeTableElements() has been provided so as to be able to reuse the

vector of objects nodeTableElements. This function calls the clear() method for vectors and deletes the

existing graph.

A graph visualization software tool ‘Graphviz’ [19] is used to obtain the actual graphic of the reachability

graph of the net. The PetriNet class also has a member functions getCoveribilityGraph() that writes the

coverability graph information into a (*.viz) file in a format that is readable by Graphviz. Along with

the nodeTableElements, this file also requires the count of the different node classifications and the struct

nodeTableCountStruct is used to keep track of this count. It holds three integer variables duplicateNode,

internalNode and terminalNode that represents the cardinality of each named type respectively. Table 3.4

gives a brief description of the methods discussed above together with their parameters and return type.

27

Method Name Description Parameters Return Type

loadInputData() Assigns the Petri net’s inputs to the corre-
sponding members

char * : input file name void

printInputsToConsole() Print method to write the inputs to the con-
sole

void void

printControllableTransitions() Print method to write the set of controllable
transitions to the console

void void

isNetFreeChoice() Condition to check if the given Petri net is
free-choice

void bool

doTheLoopTest() Feasibility test for existence of LESP
through an ILP implementation using
lp solve

void int

doesFullyControlledNetHaveLESP() LESP test for the fully controlled net for a
given initial marking

void bool

computeMinimalElementsOfFullyControlledNet() Get the minimal markings that characterize
the LESP for the fully controlled Petri net

void void

computeMinimalElementsOfControlInvariantSet() Get the minimal marking that characterize
the LESP for the partially controlled Petri
net

void void

clearNodeTableElements() Erase the previously computed
elements of the coverability graph

void void

getNodeTypeCount() Count the number nodes of each type
namely, internal, duplicate and terminal

NodeTypeCountStruct :
node type count

void

getCoverabilityGraph() Write an output file of the node table that
is recognized by Graphviz

char * : output file name void

Table 3.4: Method definitions of Class PetriNet

28

Chapter 4

Examples

This chapter gives some illustrations of the implemented algorithms on a few partially controlled Petri nets

to obtain the minimal markings that characterize the liveness-enforcing supervisory policy (LESP).

4.1 Input File Format

The format of the input file to this code is as below

INPUT FILE FORMAT

n m

IN

OUT

m0

Ci

where ,

Ci =

 1 if tj ∈ Tc

0 if tj ∈ Tu

4.2 Illustrations

The figure 4.1a - figure 4.14a are some examples of PN structures both free-choice and non free-choice that

belong to a class of PNs with a decidable LESP. The input files corresponding to these PNs are shown

in figure 4.1b - figure 4.14b and the LESP policy determined from executing the algorithm are shown in

figure 4.1c - figure 4.14c respectively. In the PN structure, the controllable transitions are shown as a filled

rectangle and the uncontrollable transitions are denoted by an unfilled rectangle. All self loops are denoted

by *S in the incidence matrix that is output. In these PNs, the basic assumption that non-choice transitions

29

are uncontrollable holds to obtain the minimally restrictive supervisory policy.

Petri net 9 in figure 4.9a has all the transitions except t7 controllable. However, the non-choice transitions

t5, t6, t8, t9 and t11 are also assumed uncontrollable in the input file in accordance to the minimally restrictive

supervisory policy. Petri net 12 in figure 4.12a and Petri net 14 in figure 4.14a show the existence of a

supervisory policy even on the account of having no controllable transitions.

p1

p3

p4

p2

t4

t1

t2

t3

(a) PN-1

pn1 Wed Dec 05 02:51:18 2012 1

4 4
1 1 0 0
0 0 1 1
0 0 1 1
0 1 1 0
1 0 0 1
0 1 1 0
1 0 0 0
1 1 0 0
0 1 0 0
1 1 1 1

(b) Input file for PN-1

Figure 4.1: Petri net 1

30

pn1.res Wed Dec 05 19:30:40 2012 1

 Input File = "pn1"

 Incidence Matrix :

 T 1 2 3 4
 P
 1 *S -1 . 1
 2 . 1 *S -1
 3 1 . -1 -1
 4 1 *S -1 .

 Initial Marking : (0 1 0 0)

 There is no LESP for this PN

 Minimal Elements of the fully controlled Net
 --

 1: (1 0 0 0)
 2: (0 1 1 0)

 List of Controllable Transitions

 t1 t2 t3 t4

 (Final) Minimal Elements of the control-invariant set

 1: (1 0 0 0)
 2: (0 1 1 0)

 This is An LESP

(c) Output file with LESP for PN-1

Figure 4.1 (cont.): Petri net 1

31

p1

p3

p4 p5

p2

t7

t6t4 t5

t1 t2

t3

(a) PN-2

pn2 Wed Dec 05 03:38:39 2012 1

5 7
1 1 0 0 0 0 0
0 0 1 1 0 0 0
0 0 0 0 1 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 1 0 0 0 0 1
1 1 0 0 0 0 1
0 1 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
1 0 0 0 0
1 0 0 0 0 0 0

(b) Input file for PN-2

Figure 4.2: Petri net 2

32

pn2.res Wed Dec 05 19:54:29 2012 1

 Input File = "pn2"

 Incidence Matrix :

 T 1 2 3 4 5 6 7
 P
 1 -1 *S 1
 2 1 1 -1 -1 . . 1
 3 . 1 1 . -1 -1 .
 4 . . . 1 . . -1
 5 1 . -1

 Initial Marking : (1 0 0 0 0)

 There is an LESP for this (fully controlled) PN

 Minimal Elements of the fully controlled Net
 --

 1: (1 0 0 0 0)
 2: (0 1 0 0 1)
 3: (0 0 0 1 1)
 4: (0 1 0 1 0)
 5: (0 0 1 1 0)
 6: (0 1 1 0 0)
 7: (0 2 0 0 0)

 List of Controllable Transitions

 t1

 (Final) Minimal Elements of the control-invariant set

 1: (1 0 0 0 0)
 2: (0 0 0 1 1)

 This is An LESP

(c) Output file with LESP for PN-2

Figure 4.2 (cont.): Petri net 2

33

p1

p3

p4 p5

p2

t7

t6t4 t5

t1 t2

t3

(a) PN-3

pn3 Thu Dec 06 21:44:48 2012 1

5 7
1 1 0 0 0 0 0
0 0 1 1 0 0 0
0 0 0 0 1 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 1 0 0 0 0 1
1 1 0 0 0 0 1
0 1 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 1 0
1 0 0 0 0 0 0

(b) Input file for PN-3

Figure 4.3: Petri net 3

34

pn3.res Wed Dec 05 19:59:01 2012 1

 Input File = "pn3"

 Incidence Matrix :

 T 1 2 3 4 5 6 7
 P
 1 -1 *S 1
 2 1 1 -1 -1 . . 1
 3 . 1 1 . -1 -1 .
 4 . . . 1 . . -1
 5 1 . -1

 Initial Marking : (0 0 0 1 0)

 There is no LESP for this PN

 Minimal Elements of the fully controlled Net
 --

 1: (1 0 0 0 0)
 2: (0 1 0 0 1)
 3: (0 0 0 1 1)
 4: (0 1 0 1 0)
 5: (0 0 1 1 0)
 6: (0 1 1 0 0)
 7: (0 2 0 0 0)

 List of Controllable Transitions

 t1

 (Final) Minimal Elements of the control-invariant set

 1: (1 0 0 0 0)
 2: (0 0 0 1 1)

 This is An LESP

(c) Output file with LESP for PN-3

Figure 4.3 (cont.): Petri net 3

35

p1

p3

p4 p5

p2

t7

t6t4 t5

t1 t2

t3

2

(a) PN-4

pn4 Wed Dec 05 20:05:50 2012 1

5 7
2 1 0 0 0 0 0
0 0 1 1 0 0 0
0 0 0 0 1 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 1 0 0 0 0 1
1 1 0 0 0 0 1
0 1 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
1 0 0 0 0
1 0 0 0 0 0 0

(b) Input file for PN-4

Figure 4.4: Petri net 4

36

pn4.res Wed Dec 05 20:06:06 2012 1

 Input File = "pn4"

 Incidence Matrix :

 T 1 2 3 4 5 6 7
 P
 1 -2 *S 1
 2 1 1 -1 -1 . . 1
 3 . 1 1 . -1 -1 .
 4 . . . 1 . . -1
 5 1 . -1

 Initial Marking : (1 0 0 0 0)

 There is an LESP for this (fully controlled) PN

 Minimal Elements of the fully controlled Net
 --

 1: (1 0 0 0 0)
 2: (0 1 0 0 1)
 3: (0 0 0 1 1)
 4: (0 1 0 1 0)
 5: (0 0 1 1 0)
 6: (0 1 1 0 0)
 7: (0 2 0 0 0)

 List of Controllable Transitions

 t1

 (Final) Minimal Elements of the control-invariant set

 1: (1 0 0 0 0)
 2: (0 0 0 1 1)

 This is An LESP

(c) Output file with LESP for PN-4

Figure 4.4 (cont.): Petri net 4

37

p1

p3

p4

p5 p6
p7

p8

p2

t7

t6

t4

t5

t1 t2

t8

t9

t3

(a) PN-5

pn5 Sun Dec 02 14:28:52 2012 1

8 9
1 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 1
1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 1 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0

(b) Input file for PN-5

Figure 4.5: Petri net 5

38

pn5.res Wed Dec 05 20:31:34 2012 1

 Input File = "pn5"

 Incidence Matrix :

 T 1 2 3 4 5 6 7 8 9
 P
 1 -1 -1 . . . 1 . . 1
 2 1 . -1
 3 . . -1 1
 4 . 1 . -1
 5 . . 1 . -1 -1 . . .
 6 . . . 1 . . -1 . .
 7 . . . 1 . . . -1 .
 8 1 1 -1

 Initial Marking : (1 0 0 0 0 0 0 0)

 There is an LESP for this (fully controlled) PN

 Minimal Elements of the fully controlled Net
 --

 1: (1 0 0 0 0 0 0 0)
 2: (0 0 0 1 0 0 0 0)
 3: (0 0 0 0 1 0 0 0)
 4: (0 0 0 0 0 1 0 0)
 5: (0 0 0 0 0 0 1 0)
 6: (0 0 0 0 0 0 0 1)
 7: (0 1 1 0 0 0 0 0)

 List of Controllable Transitions

 t1

 (Final) Minimal Elements of the control-invariant set

 1: (1 0 0 0 0 0 0 0)
 2: (0 0 0 1 0 0 0 0)
 3: (0 0 0 0 0 1 0 0)
 4: (0 0 0 0 0 0 1 0)
 5: (0 0 0 0 0 0 0 1)

 This is An LESP

(c) Output file with LESP for PN-5

Figure 4.5 (cont.): Petri net 5

39

p1

p3 p4 p5

p2

t4

t1

t2

t3

(a) PN-6

pn6 Wed Nov 21 22:51:55 2012 1

5 4
0 0 1 0
1 0 0 0
0 1 0 0
1 0 0 1
0 0 1 0
1 0 0 0
0 0 1 0
1 0 0 0
0 1 1 0
0 0 0 1
1 0 0 0 1
0 0 1 1

(b) Input file for PN-6

Figure 4.6: Petri net 6

40

pn6.res Wed Dec 05 20:33:54 2012 1

 Input File = "pn6"

 Incidence Matrix :

 T 1 2 3 4
 P
 1 1 . -1 .
 2 -1 . 1 .
 3 1 -1 . .
 4 -1 1 1 -1
 5 . . -1 1

 Initial Marking : (1 0 0 0 1)

 There is an LESP for this (fully controlled) PN

 Minimal Elements of the fully controlled Net
 --

 1: (1 0 0 0 1)
 2: (1 0 0 1 0)
 3: (0 1 0 1 0)
 4: (1 0 1 0 0)
 5: (0 1 1 0 0)

 List of Controllable Transitions

 t3 t4

 (Final) Minimal Elements of the control-invariant set

 1: (1 0 0 0 1)
 2: (1 0 0 1 0)
 3: (0 1 0 1 0)
 4: (1 0 1 0 0)
 5: (0 1 1 0 0)

 This is An LESP

(c) Output file with LESP for PN-6

Figure 4.6 (cont.): Petri net 6

41

p1

t2

p2

t1 t3

2

2

2
23

(a) PN-7

pn7 Wed Nov 21 23:51:12 2012 1

2 3
2 0 0
0 2 2
0 2 1
3 0 0
2 0
0 0 1

(b) Input file for PN-7

Figure 4.7: Petri net 7

42

pn7.res Wed Dec 05 20:39:43 2012 1

 Input File = "pn7"

 Incidence Matrix :

 T 1 2 3
 P
 1 -2 2 1
 2 3 -2 -2

 Initial Marking : (2 0)

 There is an LESP for this (fully controlled) PN

 Minimal Elements of the fully controlled Net
 --

 1: (0 2)
 2: (2 0)

 List of Controllable Transitions

 t3

 (Final) Minimal Elements of the control-invariant set

 1: (0 2)
 2: (2 0)

 This is An LESP

(c) Output file with LESP for PN-7

Figure 4.7 (cont.): Petri net 7

43

p1

t2

p2

t1

t3

2 3

3 2

2

2

2

p3 p4

t4

t6

t5

(a) PN-8

pn8 Thu Dec 06 00:04:55 2012 1

4 6
2 0 2 0 0 0
0 2 0 0 2 0
0 0 0 1 0 0
0 0 0 0 0 1
0 3 0 0 0 1
3 0 0 2 0 0
0 0 1 0 0 0
0 0 0 0 1 0
2 0 0 0
0 0 0 0 1 0

(b) Input file for PN-8

Figure 4.8: Petri net 8

44

pn8.res Wed Dec 05 21:23:47 2012 1

 Input File = "pn8"

 Incidence Matrix :

 T 1 2 3 4 5 6
 P
 1 -2 3 -2 . . 1
 2 3 -2 . 2 -2 .
 3 . . 1 -1 . .
 4 1 -1

 Initial Marking : (2 0 0 0)

 There is an LESP for this (fully controlled) PN

 Minimal Elements of the fully controlled Net
 --

 1: (0 0 1 0)
 2: (1 0 0 1)
 3: (0 0 0 2)
 4: (0 2 0 0)
 5: (2 0 0 0)

 List of Controllable Transitions

 t5

 (Final) Minimal Elements of the control-invariant set

 1: (0 0 1 0)
 2: (1 0 0 1)
 3: (0 0 0 2)
 4: (0 2 0 0)
 5: (2 0 0 0)

 This is An LESP

(c) Output file with LESP for PN-8

Figure 4.8 (cont.): Petri net 8

45

p1

p3
p4 p5

p6 p7 p8

p9

p2

t7

t6

t4

t5

t1
t2

t8

t9 t10

t11

t3

(a) PN-9

pn9 Wed Dec 12 00:17:27 2012 1

9 11
1 0 1 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 0
1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 1 0 0 0

(b) Input file for PN-9

Figure 4.9: Petri net 9

46

pn9.res Thu Dec 06 11:07:17 2012 1

 Input File = "pn9"

 Incidence Matrix :

 T 1 2 3 4 5 6 7 8 9 10 11
 P
 1 -1 . -1 1
 2 1 -1 . -1
 3 . . 1 . -1
 4 . . 1 . . -1
 5 . . . 1 . -1
 6 1 . -1 -1 . . .
 7 1 . . -1 . .
 8 1 . . . -1 .
 9 1 1 1 -1

 Initial Marking : (1 0 0 0 0 0 0 0 0)

 There is an LESP for this (fully controlled) PN

 Minimal Elements of the fully controlled Net
 --

 1: (1 0 0 0 0 0 0 0 0)
 2: (0 0 1 0 0 0 0 0 0)
 3: (0 0 0 0 0 1 0 0 0)
 4: (0 0 0 0 0 0 1 0 0)
 5: (0 0 0 0 0 0 0 1 0)
 6: (0 0 0 0 0 0 0 0 1)
 7: (0 0 0 1 1 0 0 0 0)
 8: (0 1 0 1 0 0 0 0 0)

 List of Controllable Transitions

 t1 t2 t3 t4 t8

 (Final) Minimal Elements of the control-invariant set

 1: (1 0 0 0 0 0 0 0 0)
 2: (0 0 0 0 0 0 1 0 0)
 3: (0 0 0 0 0 0 0 1 0)
 4: (0 0 0 0 0 0 0 0 1)
 5: (0 0 0 1 1 0 0 0 0)
 6: (0 1 0 1 0 0 0 0 0)

(c) Output file with LESP for PN-9

Figure 4.9 (cont.): Petri net 9

47

pn9.res Thu Dec 06 11:07:17 2012 2

The loop-test failed for the minimal_element: (1 0 0 0 0 0 0 0 0)

The loop-test failed for the minimal_element: (0 0 0 0 0 0 1 0 0)

The loop-test failed for the minimal_element: (0 0 0 0 0 0 0 1 0)

The loop-test failed for the minimal_element: (0 0 0 0 0 0 0 0 1)

 (Final) Minimal Elements of the control-invariant set

 1: (0 0 0 1 1 0 0 0 0)
 2: (0 1 0 1 0 0 0 0 0)
 3: (2 0 0 0 0 0 0 0 0)
 4: (1 1 0 0 0 0 0 0 0)
 5: (1 0 1 0 0 0 0 0 0)
 6: (1 0 0 1 0 0 0 0 0)
 7: (1 0 0 0 1 0 0 0 0)
 8: (1 0 0 0 0 1 0 0 0)
 9: (1 0 0 0 0 0 1 0 0)
 10: (1 0 0 0 0 0 0 1 0)
 11: (1 0 0 0 0 0 0 0 1)
 12: (1 0 0 0 0 0 1 0 0)
 13: (0 1 0 0 0 0 1 0 0)
 14: (0 0 1 0 0 0 1 0 0)
 15: (0 0 0 1 0 0 1 0 0)
 16: (0 0 0 0 1 0 1 0 0)
 17: (0 0 0 0 0 1 1 0 0)
 18: (0 0 0 0 0 0 2 0 0)
 19: (0 0 0 0 0 0 1 1 0)
 20: (0 0 0 0 0 0 1 0 1)
 21: (1 0 0 0 0 0 0 1 0)
 22: (0 1 0 0 0 0 0 1 0)
 23: (0 0 1 0 0 0 0 1 0)
 24: (0 0 0 1 0 0 0 1 0)
 25: (0 0 0 0 1 0 0 1 0)
 26: (0 0 0 0 0 1 0 1 0)
 27: (0 0 0 0 0 0 1 1 0)
 28: (0 0 0 0 0 0 0 2 0)
 29: (0 0 0 0 0 0 0 1 1)
 30: (1 0 0 0 0 0 0 0 1)
 31: (0 1 0 0 0 0 0 0 1)
 32: (0 0 1 0 0 0 0 0 1)
 33: (0 0 0 1 0 0 0 0 1)
 34: (0 0 0 0 1 0 0 0 1)
 35: (0 0 0 0 0 1 0 0 1)
 36: (0 0 0 0 0 0 1 0 1)
 37: (0 0 0 0 0 0 0 1 1)

(d) Output file with LESP for PN-9 (cont.)

Figure 4.9 (cont.): Petri net 9

48

pn9.res Thu Dec 06 11:07:17 2012 3

 38: (0 0 0 0 0 0 0 0 2)

 (Final) Minimal Elements of the control-invariant set

 1: (0 0 0 1 1 0 0 0 0)
 2: (0 1 0 1 0 0 0 0 0)
 3: (2 0 0 0 0 0 0 0 0)
 4: (1 1 0 0 0 0 0 0 0)
 5: (1 0 0 1 0 0 0 0 0)
 6: (1 0 0 0 1 0 0 0 0)
 7: (1 0 0 0 0 0 1 0 0)
 8: (1 0 0 0 0 0 0 1 0)
 9: (1 0 0 0 0 0 0 0 1)
 10: (0 1 0 0 0 0 1 0 0)
 11: (0 0 0 1 0 0 1 0 0)
 12: (0 0 0 0 1 0 1 0 0)
 13: (0 0 0 0 0 0 2 0 0)
 14: (0 0 0 0 0 0 1 1 0)
 15: (0 0 0 0 0 0 1 0 1)
 16: (0 1 0 0 0 0 0 1 0)
 17: (0 0 0 1 0 0 0 1 0)
 18: (0 0 0 0 1 0 0 1 0)
 19: (0 0 0 0 0 0 0 2 0)
 20: (0 0 0 0 0 0 0 1 1)
 21: (0 1 0 0 0 0 0 0 1)
 22: (0 0 0 1 0 0 0 0 1)
 23: (0 0 0 0 1 0 0 0 1)
 24: (0 0 0 0 0 0 0 0 2)

 This is An LESP

(e) Output file with LESP for PN-9 (cont.)

Figure 4.9 (cont.): Petri net 9

49

p1

p3

p4

p5

p2

t7

t6

t4 t5

t1

t2p6

p7

t3

t9

t8

(a) PN-10

pn10 Wed Nov 21 23:09:39 2012 1

7 9
1 0 0 0 0 1 0 0 0
0 1 0 1 0 0 1 0 0
0 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
1 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0

(b) Input file for PN-10

Figure 4.10: Petri net 10

50

pn10.res Wed Dec 05 21:09:27 2012 1

 Input File = "pn10"

 Incidence Matrix :

 T 1 2 3 4 5 6 7 8 9
 P
 1 *S . . . 1 -1 . . .
 2 1 -1 . -1 . . -1 . .
 3 . 1 -1 -1 .
 4 . . 1 1 -1
 5 1 . . -1
 6 1 . -1
 7 1 -1

 Initial Marking : (1 0 0 0 0 0 0)

 There is an LESP for this (fully controlled) PN

 Minimal Elements of the fully controlled Net
 --

 1: (1 0 0 0 0 0 0)
 2: (0 1 0 0 0 0 0)
 3: (0 0 1 0 0 0 0)
 4: (0 0 0 1 0 0 0)

 List of Controllable Transitions

 t1

 (Final) Minimal Elements of the control-invariant set

 The set of minimal markings is empty !
 Not an LESP !

(c) Output file with LESP for PN-10

Figure 4.10 (cont.): Petri net 10

51

p1

p3

p4 p5

p2

t6

t4

t5

t1

t2

t3

p6 p7

p8

t7 t8

t9
t10

p9

(a) PN-11

pn11 Wed Dec 05 22:39:04 2012 1

9 10
1 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 1 1 0 0
2 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0

(b) Input file for PN-11

Figure 4.11: Petri net 11

52

pn11.res Wed Dec 05 22:10:00 2012 1

 Input File = "pn11"

 Incidence Matrix :

 T 1 2 3 4 5 6 7 8 9 10
 P
 1 -1 1
 2 1 -1 -1
 3 . 1 . -1
 4 . . 1 . -1 -1
 5 . . . -1 1
 6 . . . 1 . . -1 . . .
 7 . . . 1 . . . -1 . .
 8 1 . . 1 -1
 9 1 1 -1 .

 Initial Marking : (2 0 0 0 0 0 0 0 0)

 There is an LESP for this (fully controlled) PN

 Minimal Elements of the fully controlled Net
 --

 1: (1 0 0 0 0 0 0 0 1)
 2: (0 1 0 0 0 0 0 0 1)
 3: (0 0 1 0 0 0 0 0 1)
 4: (0 0 0 1 0 0 0 0 1)
 5: (0 0 0 0 1 0 0 0 1)
 6: (0 0 0 0 0 1 0 0 1)
 7: (0 0 0 0 0 0 1 0 1)
 8: (0 0 0 0 0 0 0 1 1)
 9: (0 0 0 0 0 0 0 0 2)
 10: (1 0 0 0 0 0 0 1 0)
 11: (0 1 0 0 0 0 0 1 0)
 12: (0 0 1 0 0 0 0 1 0)
 13: (0 0 0 1 0 0 0 1 0)
 14: (0 0 0 0 1 0 0 1 0)
 15: (0 0 0 0 0 1 0 1 0)
 16: (0 0 0 0 0 0 1 1 0)
 17: (0 0 0 0 0 0 0 2 0)
 18: (1 0 0 0 0 0 1 0 0)
 19: (0 1 0 0 0 0 1 0 0)
 20: (0 0 1 0 0 0 1 0 0)
 21: (0 0 0 1 0 0 1 0 0)
 22: (0 0 0 0 1 0 1 0 0)
 23: (0 0 0 0 0 1 1 0 0)
 24: (0 0 0 0 0 0 2 0 0)

(c) Output file with LESP for PN-11

Figure 4.11 (cont.): Petri net 11

53

pn11.res Wed Dec 05 22:10:00 2012 2

 25: (1 0 0 0 0 1 0 0 0)
 26: (0 1 0 0 0 1 0 0 0)
 27: (0 0 1 0 0 1 0 0 0)
 28: (0 0 0 1 0 1 0 0 0)
 29: (0 0 0 0 1 1 0 0 0)
 30: (0 0 0 0 0 2 0 0 0)
 31: (1 0 0 0 1 0 0 0 0)
 32: (0 1 0 0 1 0 0 0 0)
 33: (0 0 1 0 1 0 0 0 0)
 34: (0 0 0 1 1 0 0 0 0)
 35: (1 0 0 1 0 0 0 0 0)
 36: (0 1 0 1 0 0 0 0 0)
 37: (0 0 1 1 0 0 0 0 0)
 38: (0 0 0 2 0 0 0 0 0)
 39: (1 0 1 0 0 0 0 0 0)
 40: (0 1 1 0 0 0 0 0 0)
 41: (1 1 0 0 0 0 0 0 0)
 42: (0 2 0 0 0 0 0 0 0)
 43: (2 0 0 0 0 0 0 0 0)

 List of Controllable Transitions

 t2 t3

 (Final) Minimal Elements of the control-invariant set

 1: (1 0 0 0 0 0 0 0 1)
 2: (0 1 0 0 0 0 0 0 1)
 3: (0 0 1 0 0 0 0 0 1)
 4: (0 0 0 1 0 0 0 0 1)
 5: (0 0 0 0 1 0 0 0 1)
 6: (0 0 0 0 0 1 0 0 1)
 7: (0 0 0 0 0 0 1 0 1)
 8: (0 0 0 0 0 0 0 1 1)
 9: (0 0 0 0 0 0 0 0 2)
 10: (1 0 0 0 0 0 0 1 0)
 11: (0 1 0 0 0 0 0 1 0)
 12: (0 0 1 0 0 0 0 1 0)
 13: (0 0 0 1 0 0 0 1 0)
 14: (0 0 0 0 1 0 0 1 0)
 15: (0 0 0 0 0 1 0 1 0)
 16: (0 0 0 0 0 0 1 1 0)
 17: (0 0 0 0 0 0 0 2 0)
 18: (1 0 0 0 0 0 1 0 0)
 19: (0 1 0 0 0 0 1 0 0)
 20: (0 0 1 0 0 0 1 0 0)
 21: (0 0 0 1 0 0 1 0 0)

(d) Output file with LESP for PN-11 (cont.)

Figure 4.11 (cont.): Petri net 11

54

pn11.res Wed Dec 05 22:10:00 2012 3

 22: (0 0 0 0 1 0 1 0 0)
 23: (0 0 0 0 0 1 1 0 0)
 24: (0 0 0 0 0 0 2 0 0)
 25: (1 0 0 0 0 1 0 0 0)
 26: (0 1 0 0 0 1 0 0 0)
 27: (0 0 1 0 0 1 0 0 0)
 28: (0 0 0 1 0 1 0 0 0)
 29: (0 0 0 0 1 1 0 0 0)
 30: (0 0 0 0 0 2 0 0 0)
 31: (1 0 0 0 1 0 0 0 0)
 32: (0 1 0 0 1 0 0 0 0)
 33: (0 0 1 0 1 0 0 0 0)
 34: (1 0 0 1 0 0 0 0 0)
 35: (0 1 0 1 0 0 0 0 0)
 36: (0 0 1 1 0 0 0 0 0)
 37: (1 0 1 0 0 0 0 0 0)
 38: (0 1 1 0 0 0 0 0 0)
 39: (1 1 0 0 0 0 0 0 0)
 40: (0 2 0 0 0 0 0 0 0)
 41: (2 0 0 0 0 0 0 0 0)

 This is An LESP

(e) Output file with LESP for PN-11 (cont.)

Figure 4.11 (cont.): Petri net 11

55

p1

p3

p4 p5

p2

t6

t4

t5

t1

t2

t3

p6 p7

p8

t7
t8

t9
t10

p9

(a) PN-12

pn12 Wed Dec 05 22:39:35 2012 1

9 10
1 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 1 1 0 0
2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

(b) Input file for PN-12

Figure 4.12: Petri net 12

56

pn12.res Wed Dec 05 22:39:42 2012 1

 Input File = "pn12"

 Incidence Matrix :

 T 1 2 3 4 5 6 7 8 9 10
 P
 1 -1 1
 2 1 -1 -1
 3 . 1 . -1
 4 . . 1 . -1 -1
 5 . . . -1 1
 6 . . . 1 . . -1 . . .
 7 . . . 1 . . . -1 . .
 8 1 . . . *S
 9 1 1 -1 .

 Initial Marking : (2 0 0 0 0 0 0 0 0)

 There is an LESP for this (fully controlled) PN

 Minimal Elements of the fully controlled Net
 --

 1: (1 0 0 0 0 0 0 0 0)
 2: (0 1 0 0 0 0 0 0 0)
 3: (0 0 0 1 0 0 0 0 0)
 4: (0 0 0 0 0 0 0 1 0)

 List of Controllable Transitions

 (Final) Minimal Elements of the control-invariant set

 1: (0 0 0 0 0 0 0 1 0)

 This is An LESP

(c) Output file with LESP for PN-12

Figure 4.12 (cont.): Petri net 12

57

p1

p3

p4 p5

p2

t6

t4

t5

t1

t2

t3

p6 p7

p8

t7 t8

t9

t10

p9

(a) PN-13

pn13 Wed Dec 05 22:37:19 2012 1

9 10
1 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 1 1 0 0
2 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0

(b) Input file for PN-13

Figure 4.13: Petri net 13

58

pn13.res Wed Dec 05 22:34:23 2012 1

 Input File = "pn13"

 Incidence Matrix :

 T 1 2 3 4 5 6 7 8 9 10
 P
 1 -1 1
 2 1 -1 -1
 3 . 1 . -1
 4 . . 1 . -1 -1
 5 1 -1
 6 . . . 1 . . -1 . . .
 7 . . . 1 . . . -1 . .
 8 1 . . . *S
 9 1 1 -1 .

 Initial Marking : (2 0 0 0 0 0 0 0 0)

 There is an LESP for this (fully controlled) PN

 Minimal Elements of the fully controlled Net
 --

 1: (0 0 0 0 0 0 0 1 0)
 2: (1 0 0 0 1 0 0 0 0)
 3: (0 1 0 0 1 0 0 0 0)
 4: (0 0 0 1 1 0 0 0 0)
 5: (1 0 0 1 0 0 0 0 0)
 6: (0 1 0 1 0 0 0 0 0)
 7: (0 0 0 2 0 0 0 0 0)
 8: (1 1 0 0 0 0 0 0 0)
 9: (0 2 0 0 0 0 0 0 0)
 10: (2 0 0 0 0 0 0 0 0)

 List of Controllable Transitions

 t5

 (Final) Minimal Elements of the control-invariant set

 1: (0 0 0 0 0 0 0 1 0)
 2: (0 0 0 1 1 0 0 0 0)
 3: (0 0 0 2 0 0 0 0 0)

 This is An LESP

(c) Output file with LESP for PN-13

Figure 4.13 (cont.): Petri net 13

59

p1

p3p4 p5

p2

t4

t5

t1

t2
t3

(a) PN-14

pn14 Wed Dec 05 22:42:01 2012 1

5 5
1 1 0 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 1
0 0 0 1 1
0 0 0 1 1
0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
1 1 0 0 0
0 0 0 0 0

(b) Input file for PN-14

Figure 4.14: Petri net 14

60

pn14.res Wed Dec 05 22:42:10 2012 1

 Input File = "pn14"

 Incidence Matrix :

 T 1 2 3 4 5
 P
 1 -1 -1 . 1 1
 2 . -1 -1 1 1
 3 . 1 . -1 .
 4 1 . . . -1
 5 . . 1 . -1

 Initial Marking : (1 1 0 0 0)

 There is an LESP for this (fully controlled) PN

 Minimal Elements of the fully controlled Net
 --

 1: (0 0 1 0 0)
 2: (1 0 0 0 1)
 3: (0 0 0 1 1)
 4: (0 1 0 1 0)
 5: (1 1 0 0 0)

 List of Controllable Transitions

 (Final) Minimal Elements of the control-invariant set

 1: (0 0 1 0 0)
 2: (1 0 0 0 1)
 3: (0 0 0 1 1)
 4: (0 1 0 1 0)
 5: (1 1 0 0 0)

 This is An LESP

(c) Output file with LESP for PN-14

Figure 4.14 (cont.): Petri net 14

61

Chapter 5

Future Work

The algorithms discussed in this report are applicable only to a class of Petri nets for which the structure

of the net conforms to a minimal marking set for the partially controlled net being right-closed and this

property, in general is true for free-choice nets. The net discussed in [20] given in figure 5.1 is not free-

choice as places card(p7) ≥ 1 and card(p8) ≥ 1 and (•(p•7)N1
)N1

= (•(p•8)N1
)N1

= {p7, p8} . This net

can be made free-choice using transformation/reduction techniques to the net shown in figure 5.2. Here,

(•(p•7)N2)N2 = {p7} and (•(p•8)N2)N2 = {p8}. On executing the algorithm to obtain the coverability graph for

this net, millions of nodes are generated and depending on the resource constraint of the computing device,

the algorithm can take very long to run. This is also attributed to number of concurrent transitions in this

net. Further, with the increase in complexity of the system with a large number of places and transitions

the computations become tedious.

Complex nets like this can be analyzed using techniques that can effectively reduce them into an equiva-

lent combination of smaller nets thereby reducing the computation time. Future work will involve extending

the algorithms for efficient computation of the LESP test for such complex nets. Furthermore, with the

increasing complexity of the PN, the time taken by the algorithm to compute the minimal markings increase

manifold. Currently the implementation is not optimized for performance. Future work will also involve the

improvements in performance of the algorithm with appropriate modifications in the procedure constructs

and data structures in the code.

62

p1

p3 p4 p5 p6

p7 p8

p9

p2

t7t6t4 t5

t1
t2

t8 t9 t10 t11

t3 t12

t13

t14 t15

Figure 5.1: Petri net N1

p1

p3 p4 p5 p6

p7
p8

p9

p2

t7t6t4 t5

t1
t2

t8 t9 t10 t11

t3 t12

t13

t14 t15

p10 p11

t16 t17

Figure 5.2: Petri net N1 transformed to a free-choice Petri net N2

63

References

[1] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems. Springer, 2007.

[2] B. Alpern and F. B. Schneider, “Defining liveness,” Information Processing Letters, vol. 21, no. 4,
pp. 181 – 185, 1985.

[3] J. L. Peterson, Petri Net Theory and the Modeling of Systems. Upper Saddle River, NJ, USA: Prentice
Hall PTR, 1981.

[4] T. Murata, “Petri Nets: Properties, Analysis and Applications,” in Proceedings of the IEEE, vol. 77,
pp. 541–580, Apr. 1989.

[5] R. Sreenivas, “On the existence of supervisory policies that enforce liveness in discrete-event dynamic
systems modeled by controlled petri nets,” Automatic Control, IEEE Transactions on, vol. 42, no. 7,
pp. 928–945, 1997.

[6] R. Sreenivas, “On the existence of supervisory policies that enforce liveness in partially controlled
free-choice petri nets,” IEEE Transactions on Automatic Control, vol. 57, no. 2, pp. 435–449, 2012.

[7] N. Somnath and R. Sreenivas, “On deciding the existence of a liveness enforcing supervisory policy in a
class of partially-controlled general free-choice petri nets,” IEEE Transactions on Automation Science
and Engineering, 2012. Submitted.

[8] M. Hack, “Analysis of production schemata by petri nets,” Master’s thesis, Massachusetts Institute of
Technology, Cambridge, MA, USA, 1972.

[9] J. Desel and J. Esparza, Free Choice Petri Nets. Cambridge, UK: Cambridge Tracts in Theoretical
Computer Science, Cambridge, UK, 1995.

[10] R. Valk and M. Jantzen, “The residue of vector sets with applications to decidability problems in petri
nets,” Acta Informatica, vol. 21, pp. 643–674, 1985.

[11] H.-C. Yen and C.-L. Chen, “On minimal elements of upward-closed sets,” Theor. Comput. Sci., vol. 410,
pp. 2442–2452, May 2009.

[12] S. R. Kosaraju, “Decidability of reachability in vector addition systems (preliminary version,” in In
STOC, pp. 267–281, ACM, 1982.

[13] E. W. Mayr, “An algorithm for the general petri net reachability problem,” in Proceedings of the
thirteenth annual ACM symposium on Theory of computing, STOC ’81, (New York, NY, USA), pp. 238–
246, ACM, 1981.

[14] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide to the Theory of NP-
Completeness. New York, NY, USA: W. H. Freeman & Co., 1979.

[15] C. Reutenauer, The mathematics of Petri nets. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1990.

[16] R. Sreenivas, “Some observations on supervisory policies that enforce liveness in partially controlled
free-choice petri nets,” Mathematics and Computers in Simulation, vol. 70, no. 5, pp. 266–274, 2006.

64

[17] P. J. Ramadge and W. M. Wonham, “Modular feedback logic for discrete event systems,” SIAM J.
Control Optim., vol. 25, pp. 1202–1218, Sept. 1987.

[18] M. Berkelaar, K. Eikland, and P. Notebaert, “lp solve, open source (mixed-integer) linear programming
system,” Version 5.0.0.0 dated 1 May 2004.

[19] E. R. Gansner and S. C. North, “An open graph visualization system and its applications to software
engineering,” Software - Practice and Experience, vol. 30, no. 11, pp. 1203–1233, 2000.

[20] R. Sreenivas, “On a decidable class of partially controlled petri nets with liveness enforcing supervisory
policies,” IEEE Transactions on Systems, Man and Cybernetics, 2012. To appear.

65

	List of Figures
	Chapter 1 Introduction
	Liveness in Discrete-Event/Discrete-State Systems
	Notations, Definitions and Other Preliminaries

	Chapter 2 Liveness Enforcing Supervisory Policy
	Supervisory Control of Petri Nets
	Existence of an LESP
	LESP Synthesis Algorithm

	Chapter 3 Object-Oriented Implementation
	Class Diagram
	Class MarkingVector
	Class NodeTable
	Class MinimalElementsManager
	Class PetriNet

	Chapter 4 Examples
	Input File Format
	Illustrations

	Chapter 5 Future Work
	References

