
c© 2012 Hernán Camilo Rocha Niño

SYMBOLIC REACHABILITY ANALYSIS
FOR REWRITE THEORIES

BY

HERNÁN CAMILO ROCHA NIÑO

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2012

Urbana, Illinois

Doctoral Committee:

Professor José Meseguer, Chair and Director of Research
Professor Kokichi Futatsugi, JAIST School of Information Science
Dr. César Muñoz, NASA Langley Research Center
Associate Professor Grigore Ros,u
Associate Professor Mahesh Viswanathan

ABSTRACT

This dissertation presents a significant step forward in automatic and semi-

automatic reasoning for reachability properties of rewriting logic specifica-

tions, a major research goal in the current state of the art. In particular, this

work develops deductive techniques for reasoning symbolically about speci-

fications with initial model semantics, including: (i) new constructor-based

notions for reachability analysis, (ii) a proof system for the task of proving

safety properties, and (iii) a novel method for symbolic reachability analysis

of rewrite theories with constrained built-ins. These three new techniques

are not just theoretical developments: each of them has been implemented

in freely available tools for the automated reasoning presented in this the-

sis and are validated through case studies. These case studies include: (i)

a reliable communication protocol, (ii) a secure-by-design browser system,

and (iii) a NASA language for robotic machines. One main characteristic of

the methods developed in this dissertation is that they are suitable for wide

classes of rewrite theories and are highly generic, so that they can be used

over many different instance languages and application domains.

ii

To Laura, for making it all worthwhile.

iii

ACKNOWLEDGMENTS

I would not have finished this dissertation without the advice, support,

friendship, and encouragement of many people.

It is an honor to record my personal debt to Professor José Meseguer,

whose sincere care and guidance made this work a reality. As an adviser, he

has shown me the value of deep thinking. His research maturity, knowledge

of the subject, and enthusiasm have been a source of inspiration for all the

work surveyed in this manuscript. I am also grateful for the resolute finan-

cial support that he has provided me through research assistantships and

conference travel. But above all, I wish to express my utmost admiration for

his research passion, sense of responsibility, and personal values, especially

in a society in which the ruthlessness of competition and greed has turned

such virtues into unaffordable luxuries.

I am deeply indebted to César Muñoz for being an unconditional friend

and a coauthor in many papers. He invited me to an exciting research

project that is a major part of this dissertation. He arranged and funded

many fruitful visits in Hampton at the National Institute of Aerospace where

I wrote papers and Maude code, and met many interesting researchers. Dur-

ing my recurrent visits, I thoroughly enjoyed from his company and that of

his wife Magda and two daughters, Laura Sofia and Isabela.

I thank the other members of my dissertation committee; they have all

eagerly provided me with advice on both my research and career. I have

learned from Kokichi Futatsugi the elegance of algebraic proofs; he also

invited me to visit the Japan Advanced Institute of Science and Technology

in Kanazawa for a week, where I gave the first talk about my approach for

proving invariants. Grigore Rosu has taught me from the very first semester

the practical importance of the algebraic method when formally studying

iv

the semantics of programming languages. Mahesh Viswanathan mentored

me on algorithmic verification methods, logic, and finite model theory.

I also thank my main research collaborators and other researchers who

influenced my work. Francisco Durán for his support and friendship, for

encouraging me to improve the state of the art in the Maude formal en-

vironment, for being a coauthor, and for inviting me to visit Málaga for

three weeks. I must also thank my other coauthors José M. Álvarez, Héctor

Cadavid, Gilles Dowek, Raúl Gutiérrez, and Radu Siminiceanu. I wish to

take the opportunity to thank Jaime Bohórquez for inspiring me, through

his teaching, to become a formal methods student in the first place. Many

thanks are due to Santiago Escobar and Peter Csaba Ölveczky for sharing

a friendship and many research ideas in years of visits and conversation.

Many thanks are due to Liza Mallozi Tapiero, manager of advising services

at LASPAU, for her kindness and distant company during this journey. I am

also grateful for the great staff at the University of Illinois and at the Escuela

Colombiana de Ingenieŕıa. Donna Coleman who has handled many differ-

ent travel arrangements and administrative tasks with impeccable efficiency,

and Mary Beth Kelly who has been extraordinarily helpful in meeting the

requirements for finishing the degree. Patricia Castañeda, Patricia Salazar,

and colleagues for their support from Colombia through the years.

I thank my office mates, fellow students, friends, and soccer buddies over

the years for great conversations and memories. I especially thank Ralf

Sasse whose friendship, support, and yearly taxation advise made my life

easier. In also thank Musab AlTurki, Kyungmin Bae, Raúl Gutiérrez, Joe

Hendrix, Mike Katelman, Andrew Cholewa, Si Liu, Stephen Skeirik, Fan

Yang, Pavithra Prabhakar, Sruthi Bandhakavi, Rajesh Karmani, Traian

Serbanuta, Andrei Stefanescu, Artur Boronat, Tanya Crenshaw, Azadeh

Farzan, Bardia Sadri, Beatriz Alarcón, Sonia Santiago, Narciso Mart́ı-Oliet,

Hebert Herencia, Timo Latvala, Emerson Escobar, Alexander Agudelo, Beat-

riz Guerrero, Vasilis Paschalidis, Maria Masouraki, Andrés Ortiz, Meredith

Hill, Álvaro Rojas, Victoria Flórez, Andrés Salas, Beatriz Mira, Manuel

Baum, Jorge Garzón, Santiago Gutiérrez, Miles Johnson, Kyle Mathewson,

Juan Medina, Camilo Quijano, Daniel Ribero, Sean Sivapalan, and Philip

Slater. I apologize for any of the inevitable omissions in the above list.

Finally, I thank my parents Gilberto and Elisa, and siblings Oscar, Car-

olina, and Diana for their support, advice, and consistent encouragement.

Most of all, I thank my wife Laura for her friendship, love, support, and

patience. She has been there, through thick and through thin. For all those

times, this thesis is dedicated to her.

v

TABLE OF CONTENTS

Page

CHAPTER 1 INTRODUCTION . 1
1.1 Summary of Chapters and Contributions 3

CHAPTER 2 PRELIMINARIES . 6
2.1 Order-Sorted Equational and Rewrite Theories 6

2.1.1 Equational Theories and Initial Algebras 7
2.1.2 Rewrite Theories and Initial Reachability Models 8

2.2 Admissible Modules in Maude . 8
2.2.1 Admissible Functional Modules 9
2.2.2 Admissible System Modules 10

2.3 Order-Sorted Equality Enrichments Modulo Axioms 10
2.4 The Illinois Browser Operating System (IBOS) 12
2.5 NASA’s PLEXIL Language . 12
2.6 The CETA Library . 13
2.7 The Maude ITP . 13

CHAPTER 3 CONSTRUCTORS AND DEADLOCK FREEDOM 14
3.1 Generalized Rewrite Theories . 16
3.2 Sufficient Completeness and Deadlock Freedom 17
3.3 Checking Canonical Sufficient Completeness 22
3.4 Decision Procedures with Propositional Tree Automata 25

3.4.1 Checking Sufficient Completeness 27
3.4.2 Checking E-free and R-terminal Constructors 27
3.4.3 The Extended Maude Sufficient Completeness Checker 28

3.5 Constructor-Based Reachability Analysis 30
3.5.1 Ground Reachability . 30
3.5.2 Ground Joinability . 32

3.6 Formal Properties of CHANNEL . 33
3.7 Related Work and Concluding Remarks 37

CHAPTER 4 DEDUCTIVE PROOFS FOR SAFETY PROPERTIES . . . 40
4.1 Temporal Semantics of TR . 43
4.2 Ground Safety Properties . 44

4.2.1 Ground Stability . 44
4.2.2 Ground Invariance . 49

4.3 Strengthenings for Ground Invariance 51

vi

4.4 InvA: The Maude Invariant Analyzer Tool 53
4.4.1 Commands Available to the User 54
4.4.2 Automatic Discharge of Proof Obligations 55

4.5 Related Work and Concluding Remarks 57

CHAPTER 5 INVA CASE STUDY I: RELIABLE COMMUNICATION
IN THE ALTERNATING BIT PROTOCOL 60
5.1 ABP . 61

5.1.1 Formal Modeling . 62
5.2 Reliable Communication . 65

5.2.1 Formal Specification of the Property 65
5.2.2 Strengthening the Invariant 68

5.3 Related Work and Concluding Remarks 74

CHAPTER 6 INVA CASE STUDY II: SOME SAFETY PROPERTIES
OF IBOS . 76
6.1 IBOS . 77

6.1.1 IBOS Architecture . 78
6.2 Formal Modeling Methodology . 80

6.2.1 IBOS Architecture Modeling 82
6.3 Address Bar Correctness and Some Auxiliary Invariants 86

6.3.1 Formal Specification of the Property and Limitations 86
6.3.2 Kernel Uniqueness . 91
6.3.3 Immutability of the Security Policy 93
6.3.4 Discussion on Some Limits of InvA 95

6.4 Related Work and Concluding Remarks 96

CHAPTER 7 REACHABILITY ANALYSIS WITH CONSTRAINED
BUILT-INS . 98
7.1 Terms with Constrained Built-ins . 99
7.2 Atomic Relations for Constrained Terms 100
7.3 Soundness and Completeness . 102
7.4 Symbolic Closures . 107
7.5 Related Work and Concluding Remarks 111

CHAPTER 8 A REWRITING LOGIC SEMANTICS FOR PLEXIL 112
8.1 PLEXIL Overview . 114
8.2 Formal Semantics . 116

8.2.1 Synchronous Simulation . 118
8.2.2 External Events . 119

8.3 Design Validation . 120
8.4 A Case Study . 121

8.4.1 Model Description . 122
8.4.2 Verification . 124

8.5 Related Work and Concluding Remarks 125

CHAPTER 9 SYMBOLIC REACHABILITY FOR PLEXIL MODULO
INTEGER CONSTRAINTS . 127
9.1 Symbolic States . 129
9.2 The Symbolic Atomic Relation . 131
9.3 Synchronous Symbolic Execution . 133
9.4 Symbolic LTL Model Checking . 134

vii

CHAPTER 10 CONCLUSIONS AND FUTURE WORK 137
10.1 Conclusions . 137
10.2 Future Work . 139

APPENDIX A MISSING PROOFS FOR CHAPTER 3 142
A.1 PTA Proofs . 142
A.2 Mechanical Proofs . 145

A.2.1 Proofs for BAG-CHOICE+CARD 145
A.2.2 Proofs for CHANNEL . 147

APPENDIX B MISSING PROOFS FOR CHAPTER 5 151
B.1 abp.maude . 151
B.2 ABP Admissibility and Free Constructors Modulo 155
B.3 abp.preds.maude . 156
B.4 ABP-PREDS is Admissible . 160
B.5 ABP-PREDS+LEMMATA is Admissible 160
B.6 ITP Proof Scripts for Proof Obligations 169
B.7 ITP Proof Scripts for Lemmata . 170

APPENDIX C MISSING PROOFS FOR CHAPTER 6 174
C.1 Module Structure of ibos.maude . 174
C.2 IBOS Admissibility and Free Constructors Modulo 175
C.3 ibos.preds.maude . 176
C.4 IBOS-PREDS is Admissible . 179

REFERENCES . 180

viii

CHAPTER 1

INTRODUCTION

Although this work expands many different areas, all of it relates to verifying

the model theoretic satisfaction relation

TR |= ϕ,

where TR is a transition system of some sort and ϕ is a reachability property.

The transition system can describe the behavior of a communication proto-

col, the interactive session of a user with a web browser, or the simulation of

a robotic machine. Then, the reachability property may refer to the fact that

the communication protocol achieves reliable communication across a lossy

channel and never deadlocks, or that the security policy in the web browser

(protecting the user from malicious attacks) cannot be compromised even

under the presence of such an attack, or that the robotic machine does not

‘freeze’ during a mission due to an unforeseen change of temperature in the

environment. Actually, some of these scenarios are part of the case studies

contained in this dissertation. But before entering into particular examples,

let us look at TR and ϕ from a formal and general perspective.

Computer systems have become more powerful, and many different appli-

cations and services have grown to depend on them. This includes essential

safety-critical systems such as communication networks and cyber-physical

systems. In the end, these systems depend on the correct operation of com-

puter hardware and the software controlling it. However, the software has

become extraordinarily complex in order to deal with the diverse require-

ments of these different applications. Handling this development complexity

while ensuring that the system satisfies all of its property requirements has

become one of the greatest challenges in software development.

Fundamental to any system development and validation is a clear and

1

precise semantics that can be given to the meaning of both programs and

properties. One prominent logical and semantic framework to doing this

is rewriting logic [70], where a specification R has both a deduction-based

operational semantics and an initial model semantics TR. In this approach,

programs are specified axiomatically by means of rewrite rules l → r, and

a state of a program is represented by a term t. Programs are executed by

replacing instances of l appearing in t with the corresponding instance r, for

each rule l → r, meaning that t transitions to another state. Operational

properties ϕ of a program R can then be expressed through modal logics

such as various temporal logics, or in standard mathematical logic such as

first-order logic.

A major research goal in the current state of the art and advanced in this

thesis is to develop deductive techniques for reasoning symbolically about

specifications with initial model semantics:

Deductive and symbolic verification methods for rewrite theo-

ries, including narrowing-based methods, their combination with

SMT solving, deductive temporal verification, and inductive proof

methods ... New proof techniques, new algorithms, and new tool

implementations are needed to make all this happen. The great

advantage of developing them for suitable classes of rewrite the-

ories is that they will be highly generic, so that they can be

amortized over many different instance languages and applica-

tion domains.

José Meseguer

On some future research directions

20 Years of Rewriting Logic [72].

Another important motivation for the deductive approach is that algo-

rithmic methods such as model checking, although very-widely used, are

not sufficient for all verification purposes. This is clear from the fact that

satisfaction of properties is in general undecidable, from the infinite-state

nature of many systems and, even when a system is finite-state for each

initial state, from the fact that in general there may be an infinite number

of initial states.

However, as the applications of rewriting logic have grown, it has been

quite useful to add advanced features to the specification language such as

reasoning modulo fundamental structural properties such as associativity

and commutativity. Of course, these extra features can allow complex sys-

tems to be specified in a significantly simpler and more elegant way, but

they poses a major challenge for reasoning about specifications. Both auto-

mated reasoning techniques and tools have to be built, or be extended, to

2

handle these more expressive features. A major point of this dissertation is

to answer this challenge.

In particular, this work presents a significant step forward in automatic

and semi-automatic reasoning for reachability properties of rewriting logic

specifications as follows:

1. New constructor-based notions for reachability analysis are developed

in Chapter 3.

2. A relatively complete proof system for the task of proving safety prop-

erties of rewrite theories is presented in Chapter 4.

3. A novel method for symbolic reachability analysis of rewrite theories

with constrained built-ins is introduced in Chapter 7.

These three new techniques are not just theoretical developments: each

of them has been implemented in freely available tools for the automated

reasoning presented in this thesis and are validated through case studies.

Specifically, this thesis presents the following case studies:

1. A reliable communication protocol in Chapter 5.

2. A secure-by-design browser system in Chapter 6.

3. A NASA language for robotic machines in Chapter 9.

Diagram 1.1 depicts the different topics in this dissertation and their log-

ical connections. The diagram breaks the topics covered into theoretical

results, tools, and case studies. The diagram also suggests a reading order

and a conceptual division among the three main techniques for deductive

and symbolic reasoning about reachability properties developed in this dis-

sertation:

1. Constructor-based reachability analysis and deadlock freedom.

2. A deductive approach for proving safety properties.

3. Symbolic reachability analysis for theories with constrained built-ins.

1.1 Summary of Chapters and Contributions

This dissertation contributes to several ongoing research efforts within the

areas of formal methods, algebraic specifications, deductive analysis, theo-

rem proving, and symbolic reachability analysis.

3

Theoretical results
Constructor-based

reachability analysis and
deadlock freedom

Reachability analysis for
rewrite theories with
constrained built-ins

Inference system for
proving safety properties

Tools

New decision procedures
in Maude's SCC

Maude's
Invariant Analyzer Tool

(InvA)

The Alternating Bit
Protocol (ABP)

Symbolic rewriting logic
semantics of PLEXIL

Illinois Browser
Operatin System (IBOS)

Case studies

Figure 1.1: Relationship between contributions.

Chapter 3. A new notion of constructor for rewrite theories that general-

izes the usual notion of constructor for equational specifications in the

algebraic method. This notion turns out to be intimately related with

the notion of deadlock freedom of a transition state system. It also

makes possible constructor-based inductive techniques for reachability

analysis. Decision procedures in the form of Propositional Tree Au-

tomata are exhibited for checking deadlock freedom and other notions,

all implemented as extension of the Maude Sufficient Completeness

Checker. The method of constructor-based inductive proof of reach-

ability properties is summarized and illustrated with examples. This

chapter is based on joint work with J. Meseguer [87, 86].

Chapter 4. A methodology and a proof system for proving safety proper-

ties of rewrite theories. The inference system is specialized to ground

stability and ground invariance, and has rules for the application of

strengthening techniques. The inference system has been implemented

in the Maude Invariant Analyzer Tool (InvA), which offers great degree

of automation for discharging proof obligations. This chapter is based

on joint work with J. Meseguer [89, 88].

Chapter 5. The Alternating Bit Protocol (ABP), a well-established bench-

mark in the area of mechanical reasoning for concurrent systems, is

4

mechanically proved correct with help of the methods of Chapter 4

and the InvA implementation. This chapter is based on joint work

with J. Meseguer

Chapter 6. The Illinois Browser Operating System (IBOS), a state-of-the-

art browsing system designed with the idea of security in mind, is

analyzed for safety properties with help of the InvA tool. It is proved

automatically that the web browser satisfies some security invariants

of interest by discharging thousands of proof obligations. The case

study served also as a stress test for InvA, given the large size of this

specification. Some areas that have room for improvement in the InvA

are identified and left for future work. This chapter is based on joint

work with J. Meseguer.

Chapter 7. A sound and complete approach for analyzing rewrite theories

with constrained built-in terms is presented. The main feature of this

symbolic method is that, with the help of SMT solving techniques, it

can be based on matching instead than on unification. This approach

is specially suitable for symbolically analyzing reachability properties

of rewrite theories modulo decision procedures such as those supported

by SMT solving. This chapter is based on joint work with C. Muñoz.

Chapter 8. A rewriting logic semantics of NASA’s Plan Execution Inter-

change Language (PLEXIL), a benchmark for the official interpreter

of the language. PLEXIL was designed by NASA to meet the require-

ments of flexible, efficient, and reliable plan execution in space mission

operations. This chapter is based on joint work with H. Cadavid, G.

Dowek, C. Muñoz, and R. Siminiceanu [31, 91, 84, 90].

Chapter 9. An implementation of the symbolic techniques introduced in

Chapter 7 for the symbolic analysis of PLEXIL plans, thus comple-

menting the more limited kinds of reachability and model checking

analysis possible using the semantics for ground plans in Chapter 8.

The non-determinism for the PLEXIL language is modeled by sym-

bolic variables that are left unspecified or are partially specified with

Boolean constraints. This chapter is based on joint work with C.

Muñoz.

Chapter 10. Concluding remarks and opened research directions.

5

CHAPTER 2

PRELIMINARIES

This thesis uses standard notation and terminology about terms, term alge-

bras, and order-sorted equational theories as employed, for example, by [5]

and [46].

2.1 Order-Sorted Equational and Rewrite Theories

An order-sorted signature Σ is a tuple Σ = (S,≤, F) with a finite poset of

sorts (S,≤) and set of function symbols F . The binary relation ≡≤ denotes

the equivalence relation generated by ≤ on S and its point-wise extension

to strings in S∗. The function symbols in F can be subsort-overloaded and

satisfy the condition that, for (w, s), (w′, s′) ∈ S∗ × S, if f ∈ Fw,s ∩ Fw′,s′ ,
then w ≡≤ w′ implies s ≡≤ s′. A top sort in Σ is a sort s ∈ S such that

if s′ ∈ S and s ≡≤ s′, then s′ ≤ s. For any sort s ∈ S, the expression

[s] denotes the connected component of s, that is, [s] = [s]≡≤ , called the

kind of the connected component. A signature Σ can be kind-completed by

adding to it: (i) a new top sort [s] above all sorts s ∈ S, and (ii) a new

subsort-overloaded f : [s1] · · · [sn] −→ [s] for each f : s1 · · · sn −→ s in Σ.

The collection of variables X is an S-indexed family X = {Xs}s∈S of

disjoint variable sets with each Xs countably infinite. The set of terms of

sort s is denoted TΣ(X)s and the set of ground terms of sort s is denoted

TΣ,s. The expressions TΣ(X) and TΣ denote the corresponding order-sorted

Σ-term algebras. It is assumed that all order-sorted signatures are preregu-

lar [46], i.e., each Σ-term has a least sort ls(t) ∈ S such that t ∈ TΣ(X)ls(t).

A term is called linear if no variable occurs in it twice. The set of variables

of a term t is written vars(t) and is extended to sets of terms in the natural

way.

6

A position in a term is denoted by strings of natural numbers, indicating

the sequences of branches from the root to each subterm. The expression

pos(t) denotes the collection of positions of t ∈ TΣ(X). Given a position

π ∈ pos(t), the expressions tπ and π(t) denote, respectively, the subterm

of t occurring at position π, and the topmost operator in tπ. For ε, the

empty position, tε denotes the whole term t. Given a set C of function

symbols, posC(t) denotes the set of positions of the subterms of t whose root

symbol is in C, that is, posC(t) = {π ∈ pos(t) |π(t) ∈ C}. By definition,

posΣ(t) = posF (t), for all t ∈ TΣ(X).

A substitution is an S-indexed mapping θ : X −→ TΣ(X) that maps

variables of sort s to terms of sort s and is different from the identity for

a finite subset of X. The identity substitution is denoted by id and the

expression θ|Y denotes the restriction of a substitution θ to a set of variables

Y ⊆ X. The expression ran(θ) denotes the set of variables introduced by

θ. Substitutions extend homomorphically to terms in the natural way. A

substitution θ is called ground if and only if ran(θ) = ∅. The application

of a substitution θ to a term t is denoted by tθ and the composition of

two substitutions θ1 and θ2 is denoted by θ1θ2. A context C is a λ-term

of the form C = λx1, . . . , xn.c with c ∈ TΣ(X) and {x1, . . . , xn} ⊆ vars(c).

A context C can be viewed as a n-ary function C(t1, . . . , tn) = cθ, where

θ(xi) = ti for 1 ≤ i ≤ n and θ(x) = id(x) otherwise. Given a sort s ∈ S, a

context C = λx1, . . . , xn.c is called an s-context if and only if {x1, . . . , xn} ⊆
Xs for s ∈ S.

2.1.1 Equational Theories and Initial Algebras

A Σ-equation is an unoriented pair t = u with t ∈ TΣ(X)st , u ∈ TΣ(X)su ,

and st ≡≤ su. A conditional Σ-equation is a triple t = u if γ, with t = u a Σ-

equation and γ a finite conjunction of Σ-equations; it is called unconditional

if γ is the empty conjunction. An equational theory is a tuple (Σ, E), with Σ

an order-sorted signature and E a finite collection of (possibly conditional)

Σ-equations. Throughout this thesis, it is assumed that TΣ,s 6= ∅ for each

s ∈ S, because this affords a simpler deduction system. An equational

theory E = (Σ, E) induces the congruence relation =E on TΣ(X) defined for

t, u ∈ TΣ(X) by t =E u if and only if E ` t = u by the deduction rules

for order-sorted equational logic in [71], if and only if, [71] t = u is valid

in all models of E . The E-subsumption ordering �E is the binary relation

on TΣ(X) defined for any t, u ∈ TΣ(X) by t �E u if and only if there is a

substitution θ : X −→ TΣ(X) such that t =E uθ. A set of equations E is

7

called collapse-free for a sort s ∈ S if and only if for any x ∈ Xs E does not

contain any equations of the form either t = x if γ or x = t if γ.

The expressions TE(X) and TE (or similarly TΣ/E(X) and TΣ/E) denote

the quotient algebras induced by =E on the term algebras TΣ(X) and TΣ,

respectively. The algebra TΣ/E is called the initial algebra of (Σ, E). A

theory inclusion (Σ, E) ⊆ (Σ′, E′), with Σ ⊆ Σ′ and E ⊆ E′, is called

protecting if the unique Σ-homomorphism TΣ/E −→ TΣ′/E′ |Σ to the Σ-reduct

of the initial algebra TΣ′/E′ is a Σ-isomorphism, written TΣ/E ' TΣ′/E′ |Σ.

A set of equations E is called regular if and only if vars(t) = vars(u) for

any equation t = u if γ ∈ E. For t, u ∈ TΣ(X), the expression GUE(t = u)

denotes the set of ground E-unifiers of t = u, i.e., GUE(t = u) = {σ : X −→
TΣ | tσ =E uσ}.

2.1.2 Rewrite Theories and Initial Reachability Models

A Σ-sequent is an oriented pair t→ u with t ∈ TΣ(X)st , u ∈ TΣ(X)su , and

st ≡≤ su. A conditional Σ-rule is a triple t→ u if γ, with t→ u Σ-sequent

satisfying vars(u) ⊆ vars(t) and γ a finite conjunction of Σ-equations; it is

called unconditional if γ is the empty conjunction. A rewrite theory is a

tuple R = (Σ, E,R) with equational theory ER = (Σ, E) and a finite set

of Σ-rules R. A topmost rewrite theory is a rewrite theory R = (Σ, E,R),

such that each rule t → u if γ ∈ R is such that l, r ∈ TΣ(X)s for some

top sort s = [s] in Σ, l /∈ X, and no operator in Σ has s as argument sort.

A rewrite theory R = (Σ, E,R) induces the rewrite relation →R on TΣ(X)

defined for t, u ∈ TΣ(X) by t→R u if and only if a one-step rewrite proof of

R ` t → u can be obtained by the deduction rules for order-sorted rewrite

theories in [18], if and only if, [18] t → u is valid in all models of R. For

t, u ∈ TΣ(X), R ` t = u if and only if ER ` t = u.

The expression TR = (TΣ/E ,→∗R) denotes the initial reachability model

of R = (Σ, E,R) [18], with →∗R expressing the reflexive-transitive closure

of →R. A Σ-sequent t → u is an inductive consequence of R, written

R
 t → u, if and only if R ` tσ → uσ for each ground substitution

σ : X −→ TΣ if and only if TR |= t→ u.

2.2 Admissible Modules in Maude

The Maude tool [23] is a high-performance implementation of rewriting logic.

It supports order-sorted equational specification in functional modules, cor-

8

responding to equational theories E , and order-sorted rewrite specification

in system modules, corresponding to full rewrite theories R. In functional

modules other functional modules can be included, sorts and subsorts can

be declared, and operator symbols can be defined, possibly with equational

attributes (called axioms). Sorts, subsorts, and conditional equations define

the computations that are possible. In system modules other functional and

system modules can be included, and the rewrite rules define the system

transitions that are possible.

2.2.1 Admissible Functional Modules

Reasonable executability requirements are needed to make a module admis-

sible (see [23], Sections 4.6 and 6.3). It is assumed that the set of Σ-equations

of an equational theory E can be decomposed into a disjoint union E∪B, with

B a collection of structural axioms (such as associativity, and/or commuta-

tivity, and/or identity) for which there exists a matching algorithm modulo

B producing a finite number of B-matching solutions, or failing otherwise.

It is also assumed that the equations E can be oriented into a set (of pos-

sibly conditional) sort-decreasing, operationally terminating, and confluent

conditional rewrite rules
−→
E modulo B. The set

−→
E is sort decreasing modulo

B if and only if for each t→ u if γ ∈ −→E and substitution θ, ls(tθ) ≥ ls(uθ)

if (Σ, B,
−→
E) ` γθ. The set

−→
E is operationally terminating modulo B if and

only if there is no infinite well-formed proof tree in (Σ, B,
−→
E) [32]. The set

−→
E is confluent modulo B if and only if for all t, t1, t2 ∈ TΣ(X), if t→∗E/B t1

and t →∗E/B t2, then there exists u ∈ TΣ(X) such that t1 →∗E/B u and

t2 →∗E/B u. The term t ↓E/B∈ TΣ(X) denotes the E-canonical form of t

modulo B (or E/B-canonical form) so that t →∗E/B t ↓E/B and t ↓E/B is

→E/B-irreducible, i.e., it cannot be further reduced by →E/B. Under the

above assumptions t ↓E/B is unique up to B-equality. Then, Maude can ex-

ecute an admissible functional module by equational simplification modulo

the axioms, where the equations in E are used as rules from left to right

and Maude’s built-in matching for the axioms B leads for each term t to

its canonical form with a least sort. In particular, this yields an operational

semantics defined by the algebra of canonical forms CanΣ/E∪B, which un-

der the above admissibility assumptions, is isomorphic to the initial algebra

TΣ/E∪B. Equational simplification modulo axioms is executed by the reduce

command in Maude.

9

2.2.2 Admissible System Modules

In order to be admissible, a system module corresponding to a rewrite theory

R = (Σ, E∪B,R) has to, in addition to its equational component being ad-

missible, satisfy the coherence requirement [34]. Coherence precisely means

that Maude can execute an admissible system module by adopting the strat-

egy of first simplifying a term t to its E/B-canonical form and then applying

a rule with R modulo B to achieve the effect of rewriting with R modulo

E ∪B. This is exactly the mathematical semantics of R. In particular, this

yields an operational semantics defined by the canonical reachability model

CanR isomorphic, under the above admissibility requirements, to the ini-

tial reachability model TR. Rewrites in a system module are performed

in Maude by the rewrite command. There is also a breadth-first search

command, and a built-in linear temporal logic (LTL) model checker to verify

safety and liveness properties.

2.3 Order-Sorted Equality Enrichments Modulo Axioms

The use of equality enrichments is pervasive throughout this thesis. This

section summarizes the main properties of equality enrichments; see [49, 48]

for more details about their properties and their effective implementation

for a wide class of order-sorted equational theories with free constructors

modulo axioms. Given an order-sorted signature Σ = (S,≤, F) and an

order-sorted equational theory E = (Σ, E) with initial algebra TE , an equality

enrichment [73] of E is an equational theory E∼ that extends E by defining a

Boolean-valued equality function symbol ‘∼’ that coincides with ‘=’ in TE .

Definition 1. An equational theory E∼ = (Σ∼, E∼) is called an equality

enrichment of E = (Σ, E), with Σ∼ = (S∼,≤∼, F∼) and Σ = (S,≤, F), if

and only if

• E∼ is a protecting extension of E;

• the poset of sorts of Σ∼ extends (S,≤) by adding a new sort Bool that

belongs to a new connected component, with constants > and ⊥ such

that TE∼,Bool = {[>], [⊥]}, with > 6=E∼ ⊥; and

• for each connected component in (S,≤) there is a top sort k ∈ S∼ and

a binary commutative operator ∼ : k k −→ Bool in Σ∼, such that

10

the following equivalences hold for any ground terms t, u ∈ TΣ,k:

E ` t = u ⇐⇒ E∼ ` (t ∼ u) = >, (2.1)

E 6` t = u ⇐⇒ E∼ ` (t ∼ u) = ⊥. (2.2)

An equality enrichment E∼ of E is called Boolean if and only if it

contains all the function symbols and equations making the elements

of TE∼,Bool a two-element Boolean algebra.

The equality predicate ‘∼’ in E∼ is sound for inferring equalities and

inequalities in the initial algebra TE , even for terms with variables. The

precise meaning of this claim is given by Proposition 1.

Proposition 1 (Equality Enrichment Properties). Let E∼ = (Σ∼, E∼) be

an equality enrichment of E = (Σ, E). If t, u ∈ TΣ(X), then the following

equivalences hold:

TE |= (∀X) t = u ⇐⇒ TE∼ |= (∀X) (t ∼ u) = >, (2.3)

TE |= (∃X) ¬(t = u) ⇐⇒ TE∼ |= (∃X) (t ∼ u) = ⊥, (2.4)

TE |= (∀X) ¬(t = u) ⇐⇒ TE∼ |= (∀X) (t ∼ u) = ⊥. (2.5)

By using an equality enrichment E∼ of E , the problem of reasoning in

TE about a universally quantified inequality ¬(t = u) (abbreviated t 6= u)

can be reduced to reasoning in TE∼ about the universally quantified equality

(t ∼ u) = ⊥. A considerably more general reduction, not just for inequalities

but for arbitrary quantifier-free first-order formulae, can be obtained with

Boolean equality enrichments.

Corollary 1. Let E∼ = (Σ∼, E∼) be a Boolean equality enrichment of E =

(Σ, E). Let ϕ = ϕ(t1 = u1, . . . , tn = un) be a quantifier-free Boolean formula

whose atoms are the Σ-equations ti = ui with variables in X, for 1 ≤ i ≤ n,

and with Boolean connectives in {¬,∨,∧}. Then, the following equivalence

holds:

TE |= (∀X)ϕ ⇐⇒ TE∼ |= (∀X) ϕ̂(t1 ∼ u1, . . . , tn ∼ un) = >,
(2.6)

where ϕ̂(t1 ∼ u1, . . . , tn ∼ un) is the Σ∼-term of sort Bool obtained from ϕ

by replacing each occurrence of the logical connectives ¬, ∨, and ∧ by, re-

spectively, the function symbols ¬ , t , and u in EBool , and each occurrence

of an atom ti = ui by the Bool term ti ∼ ui, for 1 ≤ i ≤ n.

11

In this thesis the Boolean theory EBool specified in [23, Subsection 9.1]

is used. The theory EBool has free constructors modulo BBool , it is sort-

decreasing, confluent, and operationally terminating modulo associativity-

commutativity axioms, and hence provides a Boolean decision procedure.

It has signature of free constructors ΩBool = {>,⊥}, set of defined symbols

ΣBool \ ΩBool = { ¬ , u , t , � , ⊃ }, and satisfies TEBool |= > 6= ⊥. The

choice of EBool is somewhat arbitrary: any equational theory implementing

an equational Boolean decision procedure should suffice for the purpose here

(for instance, see [85] for other equational Boolean decision procedures).

2.4 The Illinois Browser Operating System (IBOS)

The Illinois Browser Operating System (IBOS) [101] is a modern, security-

conscious web browser designed at the University of Illinois which could

be integrated into a secure operating system. The basic idea is to move

from the monolithic approach and modularize the different processes of the

browser. There is only one truly trusted process, the kernel. All other

process such as web page instances, network processes, storage, etc., are not

trusted. Security of all uncompromised components is desired, even when

there are some compromised components in the mix. For that reason, all

communication must go through the kernel, which will allow or disallow it

based on its specific policies. See Chapter 6 for more details.

2.5 NASA’s PLEXIL Language

The Plan Execution Interchange Language (PLEXIL) [39] is a language de-

veloped by NASA for representing plans for automation and a technology for

executing these plans on real or simulated systems. PLEXIL was designed

to meet the requirements of flexible, efficient and reliable plan execution

in space mission operations. It is compact, semantically clear, and deter-

ministic given the same sequence of events from the external world. At

the same time, the language is quite expressive and can represent branches,

loops, time- and event- driven activities, concurrent activities, sequences,

and temporal constraints. The core syntax of the language is simple and

uniform, making plan interpretation simple and efficient, while enabling the

application of validation and testing techniques. See chapters 8 and 9 for

more details.

12

2.6 The CETA Library

CETA [52] is a library for reasoning about Boolean combinations of equa-

tional tree languages. It supports emptiness testing of tree languages defin-

able by a Boolean combination of regular tree automata over an equational

theory containing operators that are associative and/or commutative and

maybe have identity symbols. CETA is based on propositional tree automata

(PTA) [52] and offers algorithms and data structures for representing tree

automata, combining tree automata using Boolean operations, and testing

emptiness. The decision procedures for checking deadlock freedom of rewrite

theories in this thesis are based on PTA and have been implemented using

the CETA library. See Chapter 3 for more details.

2.7 The Maude ITP

The Maude ITP [24, 52] is an experimental interactive tool for proving

properties of the initial algebra TE of an order-sorted equational theory E
written in Maude. The ITP has been written entirely in Maude and it is in

fact an executable specification in Membership Equational Logic (MEL) [71],

an equational super-logic of order-sorted equational logic, of the formal in-

ference system that it implements. It supports different induction principles

for terms including structural and coverset induction. Some equational in-

ductive obligations in this thesis have been proved using the ITP tool. See

Chapter 4 and Chapter 6 for more details.

13

CHAPTER 3

CONSTRUCTORS AND DEADLOCK FREEDOM

This chapter is concerned with the sufficient completeness and deadlock

freedom of rewrite theories, with automatic proof methods for checking these

properties, and with the closely related topic of constructor-based symbolic

reachability analysis.

Sufficient completeness has been thoroughly studied for equational speci-

fications, where function symbols are classified into constructors and defined

symbols. But what should sufficient completeness mean for a rewrite theory

R = (Σ, E,R) with equations E and non-equational rules R describing con-

current transitions in a system? Since a rewrite theory comprises deduction

with both equations E and rules R, this chapter argues that there are two

different notions of constructors for R and therefore two different notions

of sufficient completeness with quite different meanings:

• Equational constructors, or E-constructors, are specified by a subsig-

nature Ω ⊆ Σ, and then E-sufficient completeness is the usual require-

ment that for each sort s and each ground term t ∈ TΣ of that sort

there is a ground term u ∈ TΩ of sort s such that (Σ, E) ` t = u.

• Rewrite constructors, or R-constructors, are specified by a subsigna-

ture Υ ⊆ Σ, and then R-sufficient completeness is the different re-

quirement that for each sort s and each ground term t ∈ TΣ of that

sort there is a ground term v ∈ TΥ of sort s such that R ` t→ v.

Intuitively, E-sufficient completeness has the traditional meaning in which

function symbols in Σ \Ω are fully defined by means of the equations E, so

that any ground term can be proved equal by E to one where only operators

in Ω are used. But how should R-sufficient completeness be intuitively

understood?

14

First of all, because of rewriting logic’s equality rule (see [18]), whenever

there is a proof of (Σ, E) ` t = u there is also a (zero-step) proof of R `
t → u. That is, since the states of R are E-equivalence classes of terms

[t]E , there is already a representative term u ∈ [t]E with u ∈ TΩ, so that

E-constructors are trivially R-constructors. Therefore, for R-constructors

to have any teeth, a more restrictive subsignature Υ ⊆ Ω is needed, so that

each ground Σ-term of a given sort reaches nontrivially a ground Υ-term of

the same sort. R-sufficient completeness then provides an algebraic notion

of deadlock freedom, that is, of proper termination. A concurrent system

design often has an intended set P of goal states that any computation

should ultimately reach. A system is then called deadlock-free outside P if

and only if all terminal system states belong to P . Therefore, R-sufficient

completeness implies that R is deadlock free outside TΥ.

It is well-known that E-constructors are essential for inductive equational

reasoning, i.e., reasoning about the theorems satisfied by the initial algebra

TΣ/E . This chapter argues that R-constructors (and also E-constructors)

play a similarly crucial role in reasoning about inductive reachability proper-

ties of the initial model TR of the rewrite theory R, which intuitively models

the states and concurrent computations of the system defined by R.

This chapter also investigates automatic sufficient completeness proof meth-

ods based on equational tree automata under appropriate left-linearity as-

sumptions, and it reports on their implementation in an extension of Maude’s

Sufficient Completeness Checker (SCC) [52]. The need for equational tree

automata, as opposed to just standard tree automata, comes from the fact

that the equations E in many rewrite theories R = (Σ, E,R) naturally de-

compose as a union E = E0 ∪ B, where B is a set of structural axioms

such as associativity, and/or commutativity, and/or identity for some op-

erators in Σ, and the equations E0 are (ground) sort-decreasing, confluent,

and operationally terminating modulo B.

One last contribution of this chapter is to generalize the notions of con-

structors, sufficient completeness, deadlock freedom, the equational tree au-

tomata methods of checking sufficient completeness and deadlock freedom,

and the role of R constructors (and E-constructors) in reasoning about

inductive reachability and joinability properties to the case of generalized

rewrite theories of the form R = (Σ, E,R, ν) (see [18]). The additional com-

ponent ν maps each operator f or n arguments to a subset ν(f) ⊆ {1, . . . , n}
of its frozen argument positions, so that rewriting with R under such posi-

tions is forbidden. Note that a standard rewrite theory R = (Σ, E,R) can

now be seen as the special case R = (Σ, E,R,⊥), where ⊥(f) = ∅ for each

15

function symbol f . Such a frozenness map ν is very natural in various appli-

cations; therefore a more general theoretical treatment in this form is given.

This generalization achieves, for the sufficient completeness of rules R with

frozenness constraints ν, proof methods (and tool support in the extended

version of the Maude SCC presented here), which are similar to those devel-

oped in [52, 54] at the equational level for algebraic specifications where the

equations E are applied with a context-sensitive rewriting strategy map.

This chapter is organized as follows. Section 3.1 gathers preliminaries on

the more general case of generalized rewrite theories assumed in this sec-

tion. Section 3.2 gives the main definitions and theorems about sufficient

completeness and deadlock freedom. A class of generalized rewrite theo-

ries with simpler rewrite relation, and thus rendering the problem of finding

decision procedures for the properties of interest accessible in practice, are

characterized in Section 3.3. Section A.1 covers the tree automata founda-

tions of the automated checking of these properties for such theories in the

left-linear case and the extension of the Maude SCC tool supporting such

checking. Section 3.5 discusses the crucial relationship of constructors for

generalized rewrite theories to inductive reasoning for both ground reacha-

bility and ground joinability; the use of some of these inductive reachability

methods is illustrated with an example in Section 3.6. Section 3.7 discuses

related and future work. The proofs omitted in this chapter can be found

in Appendix A, including the mechanical proofs for the admissibility of the

Maude examples and ITP proof scripts for proving some inductive facts

about them.

3.1 Generalized Rewrite Theories

The development in this chapter assumes an order-sorted signature Σ =

(S,≤, F), the existence of a subset K ⊆ S of sorts, one per connected

component of (S,≤), and that each operator f : s1 · · · sn −→ s is also

declared at the level of its top sorts f : k1 · · · kn −→ k. The expression FK

denotes the set of overloaded function symbols at the level of top sorts. A Σ-

mapping χ is a K∗×K-indexed family of function symbols assigning to each

f : k1 · · · kn −→ k ∈ FK a finite set χ(f) ⊆ {1, . . . , n}. The complement χ

of a Σ-mapping χ is the K∗×K-indexed family of function symbols defined

for each f : k1 · · · kn −→ k ∈ FK by χ(f) = {1, . . . , n}\χ(f). The empty Σ-

mapping ⊥ is defined by ⊥(f) = ∅, for any f ∈ FK , and the full Σ-mapping

> is defined by > = ⊥.

16

An (unconditional) generalized rewrite theory is a tupleR = (Σ, E, µ,R, ν)

such that (Σ, E,R) is an order-sorted rewrite theory, with unconditional

equations E, unconditional rewrite rules R of the form l → r where l, r ∈
TΣ(X)k for some k ∈ K, µ is a Σ-mapping defining for each f ∈ FK the

positions µ(f) under which it is allowed to perform equational deduction

with the equations E, and ν is a Σ-mapping defining for each f ∈ FK the

positions ν(f) under which it is forbidden to perform rewriting deduction

with the rules R. The Σ-mappings µ and ν are called, respectively, the

evaluation strategy and the frozenness map of R. Given a term t ∈ TΣ(X),

the subterm tπ at position π is called frozen if and only if there are two

positions π1, π2 and a natural number n such that π = π1.n.π2 and n ∈
ν(π1(t)). The expression posν(t) denotes the set of frozen positions of term

t under the frozenness map ν. The occurrence of tπ is called unfrozen if and

only if it is not frozen.

Similar to ordinary rewrite theories, reasonable executability requirements

are needed to make a generalized rewrite theory admissible (see Section 2.2.1).

It is assumed that the set of Σ-equations of a generalized rewrite theory can

be decomposed into a disjoint union E∪B, with B a collection of structural

axioms (such as associativity, and/or commutativity, and/or identity) for

which there exists a matching algorithm modulo B producing a finite num-

ber of B-matching solutions, or failing otherwise. It is also assumed that

the equations E can be oriented into a set of rewrite rules
−→
E inducing a

rewrite relation →E/B that conforms to the evaluation strategy µ and that

is ground sort-decreasing, operationally terminating, and confluent modulo

B. The set of rewrite rules R is assumed to induce a rewrite relation →R/B

that conforms to the frozenness map ν and is coherent with respect to→E/B.

Table 3.1 introduces an inference system, borrowed from [32], that defines

the operational semantics of the rewrite relations →E/B and →R/B induced

by a generalized rewrite theory R = (Σ, E ∪B,µ,R, ν).

3.2 Sufficient Completeness and Deadlock Freedom

This section proposes two different notions of constructors and sufficient

completeness for a subclass of order-sorted generalized rewrite theories, and

further relates these notions to deadlock freedom. In order to focus on the

relationship between rewrite constructors and the notion of deadlock free-

dom, this section considers order-sorted generalized rewrite theories with

full strategy map. This assumption helps, mainly, in avoiding involved defi-

17

(R-Ref)
t→∗E/B u

t→∗R/B u

(R-Trans)
t→1

R/B t′ t′ →∗R/B u

t→∗R/B u

(R-Cong)
ti →1

R/B ui

f(t1, . . . , ti, . . . , tn)→1
R/B f(t1, . . . , ui, . . . , tn)

where i /∈ ν(f)

(R-Subs)
t→∗E/B t′ rθ →∗E/B u

t→1
R/B u

if t′ =B lθ

where l→ r ∈ R

(E-Ref)
.

t→∗E/B u
if t =A u

(E-Trans)
t→1

E/B t′ t′ →∗E/B u

t→∗E/B u

(E-Cong)
ti →1

E/B ui

f(t1, . . . , ui, . . . , tn)→1
E/B f(t1, . . . , ui, . . . , tn)

where i ∈ µ(f)

(E-Subs)
.

t→1
E/B rθ

if t =B lθ

where l = r ∈ E

Table 3.1: Operational semantics for a generalized rewrite theory R = (Σ, E ∪B,µ,R, ν).

18

nitions that in the end do not contribute considerably to the understanding

of the main idea. On the other hand, Section 3.3 discusses the case in which

the theories can have richer equational strategy information.

This section assumes a generalized rewrite theory R = (Σ, E,>, R, ν), or

simply (Σ, E,R, ν), with order-sorted signature Σ = (S,≤, F). The expres-

sion ER abbreviates the equational theory (Σ, E).

Definition 2 introduces the basic notion of constructor signature pair.

Definition 2. A constructor signature pair for R is a pair (Υ,Ω) of order-

sorted sub-signatures Υ = (S,≤, FΥ) ⊆ Ω = (S,≤, FΩ) ⊆ Σ.

• The S-sorted set TΩ = {TΩ,s}s∈S ⊆ TΣ is called the set of E-constructor

terms.

• The S-sorted set C Υ
R = {C Υ

R,s}s∈S ⊆ TΩ is called the set of R-con-

structor terms and is defined for any s ∈ S by:

t ∈ C Υ
R,s ⇐⇒ t ∈ TΩ,s ∧ posν(t) ⊆ posΥ(t). (3.1)

The intuition behind E-constructor terms is the traditional one, in that

any ground Σ-term should be provably equal to a term in TΩ. This is precisely

the notion of constructor subsignature already mentioned in Section 2.3. The

intuition about R-constructor terms is that any Σ-term should be rewritable

after a finite number of steps to a term in C Υ
R . Of course, these are claims

about R that need to be verified. In particular note that if ν = ⊥, then

C Υ
R = TΥ, that is, the R-constructor terms coincide with the Υ-terms. The

somewhat subtle point is that, because of frozen positions in some of the

operators in Ω, frozen subterms may not be rewritable at all with R, and

therefore they may still be Ω-terms and not Υ-terms.

The notion of sufficient completeness for R relative to a constructor sig-

nature pair (Υ,Ω) is the expected one, i.e., Ω are the constructors for the

equations and Υ the constructor for the rules.

Definition 3 (Sufficient Completeness). If (Υ,Ω) is a constructor signature

pair, then R is called:

• E-sufficiently complete relative to Ω if and only if

(∀s ∈ S)(∀t∈TΣ,s)(∃u∈ TΩ,s) ER ` t = u. (3.2)

• R-sufficiently complete relative to Υ if and only if

(∀s ∈ S)(∀t∈TΣ,s)(∃v∈ C Υ
R,s) R ` t→ v. (3.3)

19

• Sufficiently complete relative to (Υ,Ω) if and only if statements 3.2

and 3.3 hold.

The constructors Ω are called E-constructors and the constructors Υ are

called R-constructors.

Definition 3 makes explicit use of sort information by requiring the wit-

nesses u and v to have sort less or equal than the sort s of t. This sort

requirement can be crucial, for example, when inducting on a variable xs

of sort s. Also note that Definition 3 does not yet make any use of the

admissibility assumptions about R. Under such assumptions, the notion of

sufficient completeness for R = (Σ, E ∪ B,R, ν) can be further sharpened

by relating it to two fundamental sets, namely, the set of terms CanΣ,E/B of

the canonical term algebra CanΣ,E/B for (Σ, E ∪B) and the set NormR/B

of R-normal forms of TR.

Definition 4. Assume R = (Σ, E ∪ B,R, ν) is admissible. The S-sorted

family of sets NormR/A ⊆ CanΣ,E/A, called the family of R-terminal states

of CanR is defined for each s ∈ S by:

[t]B ∈ NormR/B,s ⇐⇒ [t]B ∈ CanΣ,E/B,s ∧ (∀u ∈ TΣ)R 6` t→1 u.

(3.4)

Moreover, R is called:

• Ground weakly-normalizing (modulo B) if and only if

(∀t ∈ TΣ)(∃[v]B ∈ NormR/B) R ` t→ v. (3.5)

• Ground sort-decreasing (modulo B) if and only if

(∀s ∈ S)(∀t ∈ TΣ,s)(∀u ∈ TΣ)R ` t→ u =⇒ u ∈ TΣ,s (3.6)

Note that the assumption ofR being admissible ensures that the canonical

algebra CanΣ,E/B exists and it is well-defined. Also note that notions of

ground weak-normalization and sort-decreasingness for R do not necessarily

imply the ground weak-operational termination or sort-decreasingness of the

orientable equations E modulo the axioms B.

Theorem 1 gives a sufficient condition for checking sufficient completeness

of R relative to a constructor signature pair under the above-mentioned

operational assumptions.

Theorem 1. Let (Υ,Ω) be a constructor signature pair for R. If:

20

• R = (Σ, E ∪B,R, ν) is admissible,

• CanΣ,E/B ⊆ TΩ,B, and

• R is ground weakly-normalizing and sort-decreasing,

• NormR/B ⊆ C Υ
R/B,

then R is sufficiently complete relative to (Υ,Ω).

Proof. Let s ∈ S and t ∈ TΣ,s. Let u = t ↓E/B and note that u is well-defined

because ER is admissible by the first assumption. Then [u]B ∈ CanΣ,E/B,

t =E/B u, and (by ground sort-decreasingness of ER) u has sort s. From

the second assumption it follows that u witnesses Statement 3.2, and thus

R is E-sufficiently complete relative to Ω. On the other hand, R being

ground weakly-normalizing and sort-decreasing (third assumption), implies

the existence of [v]B ∈ NormR/B, s such that R ` t → v. Then, by the

fourth assumption there is v′ ∈ C Υ
R,s satisfying [v]B = [v′]B and such that

R ` t → v′, that is, v′ is a witness for Statement 3.3. This implies R-

sufficient completeness relative to Υ. Therefore, R is sufficiently complete

relative to (Υ,Ω).

Definition 5. If (Υ,Ω) is a constructor signature pair for R = (Σ, E ∪
B,R, ν), then R is called canonically sufficiently complete relative to (Υ,Ω)

if and only if it satisfies the premises in Theorem 1. Furthermore,

• Ω is called a signature of E-free constructors modulo B if and only if

CanΩ,E/B = TΩ/B. (3.7)

• Υ is called a signature of R-terminal constructors if and only

NormR/B = C Υ
R/B. (3.8)

Condition 3.8 exactly means that R is deadlock free outside C Υ
R/B. There-

fore, if R is canonically sufficiently complete relative to (Υ,Ω), then it is

deadlock free outside C Υ
R/B. The S-sorted sets TΩ/B and C Υ

R/B provide re-

spective envelopes containing the key sets CanΣ,E/B (the set of states of

CanR) and NormR/B (the set of terminal states of CanR). Furthermore,

if Ω is a signature of E-free constructors modulo B, and Υ is a signature of

R-terminal constructors, these envelopes are tight, in the sense that TΩ/B

and TΥ/B exactly characterize CanΣ,E/B and NormR/B, respectively. Fig-

ure 3.1 depicts the containment relationships between these S-sorted sets of

terms.

21

TΣ/B

Figure 3.1: Containment relationships between some sets of terms related to general-
ized rewrite theory R = (Σ, E ∪ B,R, ν) with constructor signature pair (Υ,Ω) that is
canonically sufficiently complete.

3.3 Checking Canonical Sufficient Completeness

For purposes of checking sufficient completeness of a generalized rewrite the-

ory R = (Σ, E ∪B,R, ν), it is helpful to find simple conditions under which

the rewrite relations →E/B and →R/B can be jointly captured by a single

rewrite relation. This is not entirely straightforward, because evaluation

strategies apply to E but not necessarily to R and frozenness requirements

apply to R but not necessarily to E. The goal in this section is to prove that

for the purpose of checking the canonical sufficient completeness of R, it is

correct to reason about the rewrite relation →E∪R/B, which is simpler than

→R/B for this purpose. This section assumes an admissible order-sorted

rewrite theory R = (Σ, E ∪B,R, ν) with signature Σ = (S,≤, F).

The key insight is that the complement µ of the evaluation strategy µ

can sometimes be seen as a frozenness map without altering the overall

reachability properties of the original generalized rewrite theory R. As ex-

plained in [54], under appropriate admissibility conditions, the notion of

canonical term algebra CanΣ,E/B can be relativized to a map µ specifying

E-reducible positions, yielding an algebra CanµΣ,E/B. The way to combine

→E/B and →R/B into a single rewrite relation →E∪R/B without changing

the mathematical semantics of the given theory R is then, in essence: (i) to

require that µ = ν, so that →E/B and →R/B obey the same frozenness con-

straints, and (ii) to further require that the canonical term algebra remains

unchanged. This is captured by the notion of simple generalized rewrite

theories, a subclass of generalized rewrite theories for which is sound and

22

complete, relative to reachability analysis, to ignore the semantic distinction

between equations and rules at the operational level, even in the presence

of strategy and frozenness information for both equations and rules.

Definition 6 (Simple Generalized Rewrite Theory). The generalized rewrite

theory R is called simple if and only CanΣ,E/B ' CanµΣ,E/B, where µ = ν.

Example 1 illustrates the notion of simple generalized rewrite theories in

Definition 6.

Example 1. Consider the specification BAG-CHOICE+CARD, representing a

generalized rewrite theory

(ΣBCC, EBCC ∪BBCC, µBCC, RBCC, νBCC)

in the language of Maude, that models bags (or multisets) of natural numbers

in Peano notation:

mod BAG-CHOICE+CARD is

sorts Nat .

op 0 : -> Nat [ctor metadata "rctor"] .

op s_ : Nat -> Nat [ctor metadata "rctor"] .

sorts NeBag Bag .

subsort Nat < NeBag < Bag .

op mt : -> Bag [ctor metadata "rctor"] .

op __ : Bag Bag -> Bag [assoc comm id: mt ctor] .

op |_| : Bag -> Nat [strat(0) frozen(1)] .

eq [card0] :

| mt |

= 0 .

eq [card1] :

| N:Nat B:Bag |

= s | B:Bag | .

rl [choice] :

N:Nat NeB:NeBag

=> N:Nat .

endm

The equational constructor ctor and rewrite constructor metadata "rctor"

declarations define the constructor signature pair for BAG-CHOICE+CARD.

Equations [card0] and [card1] fully define the cardinality of any bag of

natural numbers. Rule [choice] non-deterministically chooses an element

of a non-empty bag of natural numbers. In Maude, an evaluation strategy

µ for the equations is declared with the attribute keyword strat, which al-

ways begins with a 0 and is followed by the numbers i1, . . . , im such that

23

µ(f) = {i1, . . . , im}. Instead, a frozenness mapping ν for the rewrite rules

is declared with the attribute keyword frozen (see [23] for details). In par-

ticular, for this specification, the evaluation strategy µBCC and the frozenness

map νBCC satisfy:

µBCC(| |) = ⊥ = νBCC(| |)
µBCC(f) = ⊥ = νBCC(f), for any f ∈ {0, s,mt, }.

The frozenness map νBCC prevents the rewrite rule [choice] from per-

forming any rewrites below any occurrence of the cardinality function sym-

bol | | in any ΣBCC-term, which is necessary to avoid the cardinality of a

bag itself to be rewritten to a smaller cardinality. Observe that µBCC = νBCC.

Furthermore, whether CanΣBCC,EBCC/BBCC and Canµ
BCC

ΣBCC,EBCC/BBCC coincide is a

decidable property [54] that can be automatically checked by Maude’s SCC

tool for this specification. Moreover, the admissibility of this specification can

also be checked automatically. See Appendix A for the mechanical proofs. In

this case, BAG-CHOICE+CARD is indeed a simple generalized rewrite theory.

As an important remark, observe that any generalized rewrite theory

(Σ, E ∪ B,µ,R, ν) is inherently a simple generalized rewrite theory when

ν and µ are ignored.

Definition 7. For any generalized rewrite theory R = (Σ, E ∪ B,R, ν),

define RE = (Σ, B,
−→
E , ν) and RE∪R = (Σ, B,

−→
E ∪R, ν).

Although RE and RE∪R ignore at the operational level the semantic dis-

tinction between the equations E and the rules R of R, these two simple

generalized rewrite theories are sound and complete relative to reachability

analysis with respect to R, even in the presence of strategy and frozenness

information for the equations E and the rules R, respectively (see Defi-

nition 6). The key observations are that under some conditions: (i) the

sets CanΣ,E/B and NormRE/B coincide, and (ii) the sets NormRE∪R/B and

NormR/B also coincide, even though RE∪R has a simpler rewrite relation

than R. These claims are verified in Theorem 2.

Theorem 2. If R is an admissible simple generalized rewrite theory, then

the following equalities hold:

1. NormRE/B = CanΣ,E/B.

2. NormRE∪R/B = NormR/B.

24

Proof. For (1) observe that since R is admissible and it is a simple gener-

alized rewrite theory, it follows that NormRE/B = CanνΣ,E/B = CanΣ,E/B.

For (2) first note that NormRE∪R/B ⊆ NormRE/B because
−→
E ⊆ −→E ∪R and

then, from (1), NormRE∪R/B ⊆ CanΣ,E/B. Let s ∈ S and t ∈ TΣ,s, and

observe:

[t]B ∈ NormRE∪R/B,s

⇐⇒ { by definition of NormRE∪R/B,s }
[t]B ∈ CanΣ,E/B,s ∧ (∀u ∈ TΣ)RE∪R 6` t→1 u

⇐⇒ { by ground coherence of R w.r.t. E modulo B }
[t]B ∈ CanΣ,E/B,s ∧ (∀u ∈ TΣ)R 6` t→1 u

⇐⇒ { by definition of NormR/B,s }
[t]B ∈ NormR/B,s.

3.4 Decision Procedures with Propositional Tree
Automata

Given a constructor signature pair (Υ,Ω) for an simple generalized rewrite

theory R = (Σ, E∪B,R, ν), this section presents sufficient conditions under

which the problems of deciding whether: (i) R is canonically sufficiently

complete relative to (Υ,Ω), (ii) Ω is a signature of E-free constructors mod-

ulo B, and (iii) Υ is signature of R-terminal constructors, can all be reduced

to emptiness checks of languages recognized by propositional tree automata.

The treatment here generalizes that of [54, 52], where such automata were

used to check E-sufficient completeness of order-sorted (equational) specifi-

cations.

Tree automata techniques have been used to check the sufficient com-

pleteness of equational specifications, e.g., [27, 54, 52]. Propositional Tree

Automata [55] (PTA) extend traditional equational tree automata by allow-

ing inputs to range over a many-kinded signature instead of over an unsorted

signature, recognition is done modulo axioms, and an input term is accepted

if its set of reachable states satisfies a given proposition.

Definition 8. A propositional tree automaton (PTA) is a tuple B of the

form (K,F,Q,Γ, B,∆) where

• (K,F) is a many-kinded signature, i.e., a set K of kinds and a K∗×K-

indexed set F of function symbols,

25

• Q = {Qk}k∈K is a K-indexed set of pairwise disjoint sets of states

such that Qk ∩ Fε,k′ = ∅ for each k, k′ ∈ K,

• Γ = {γk}k∈K is a K-indexed set of Boolean propositions where the

atoms in each γk are the states in Qk,

• B is a set of unconditional (K,F)-equational axioms, and

• ∆ is a set of transition rules of the form f(p1, . . . , pn)→ q, or p→ q,

for some k ∈ K, p, q ∈ Qk, f ∈ Fk1...kn,k, and each pi ∈ Qki.

A PTA B can be regarded as a rewrite theory RB, so that L(B), the

language accepted by B, can be defined in terms of reachability in RB.

Definition 9. Let B = (K,F,Q,Γ, B,∆) be a PTA and let Σ = (K,∅, F ∪
Q), where each q ∈ Qk is viewed as a constant of kind k ∈ K. Then,

RB = (Σ, B,∆) is the associated rewrite theory of B and the move relation

→B is the binary relation defined for t, u ∈ TΣ by:

t→B u ⇐⇒ t→1
RB u.

For each k ∈ K, let reachB,k : TΣ −→ P(Qk) be the map defined by:

t 7→ {q ∈ Qk | t→∗B q}.

Then, L(B) = {L(B)k}k∈K , where

L(B)k = {t ∈ TΣ,k | reachB,k(t) |= γk},

and |= denotes the satisfaction relation of propositional logic.

When the emptiness problem for PTA is decidable, other typical decision

problems, such as inclusion, universality and intersection-emptiness are all

decidable due to the Boolean closure properties of PTAs. As shown in [55],

when B is any combination of associativity, commutativity and identity

axioms, but excluding the case in which there is an associative but not

commutative symbol in B, the emptiness problem for PTA is decidable. In

the special case in which there are associative but not commutative symbols

in B, machine learning techniques can be applied to create a semi-decision

procedure which can always show non-emptiness, and can show emptiness

under certain regularity conditions [55].

Definition 10. A simple generalized rewrite theory R = (Σ, B,R, ν) is

PTA-checkable if and only if

26

• R is ground weakly-normalizing and ground sort-decreasing,

• Sk ∩ Fε,k = ∅ for each k ∈ K,

• the axioms B are any combination of associativity, commutativity and

identity axioms, except for the cases in which a symbol is associative

but not commutative, and

• every rule in R is of the form f(t1, . . . , tn) → t, with f(t1, . . . , tn)

linear.

3.4.1 Checking Sufficient Completeness

An executable simple generalized rewrite theory R = (Σ, E ∪B,R, ν), with

signature Σ = (S,≤, F), is not canonically sufficiently complete relative to

the constructor signature pair (Υ,Ω) if and only if there is a sort s ∈ S and

a term t ∈ TΣ,s such that either

(i) [t]B ∈ NormRE/B,s ∩
(
TΣ/B,s \ TΩ/B,s

)
or

(ii) [t]B ∈ NormRE∪R/B,s ∩
(
TΣ/B,s \ C Υ

R/B,s

)
.

Under PTA-checkability, canonical sufficient completeness can be reduced to

an emptiness problem of PTAs by constructing two automata that accept

precisely those terms t ∈ TΣ,s such that [t]B satisfies (i) or (ii).

Theorem 3. Let R = (Σ, E ∪ B,R, ν) be an admissible, ground weakly-

normalizing, and ground sort-decreasing simple generalized rewrite theory,

and let (Υ,Ω) be a constructor signature pair for R. If RE and RE∪R are

PTA-checkable, then there are PTAs BE and BE∪R such that R is canoni-

cally sufficiently complete relative to (Ω,Υ) if and only if L(BE)∪L(BE∪R) =

∅.

Proof. See Section A.1 in Appendix A.

3.4.2 Checking E-free and R-terminal Constructors

If a simple generalized rewrite theory R = (Σ, E ∪ B,R, ν), with signature

Σ = (S,≤, F), is canonically sufficiently complete relative to (Υ,Ω), then:

(i) Ω is an E-free constructor signature if and only if

(∀s ∈ S) TΩ/B,s \NormRE/B,s = ∅.

27

(ii) Υ is an R-terminal constructor signature if and only if

(∀s ∈ S) C Υ
R/B,s \NormR/B,s = ∅.

Theorem 4. Let R = (Σ, E∪B,R, ν) be a simple generalized rewrite theory

that canonically sufficiently complete relative to the constructor signature

pair (Ω,Υ). If RE and RE∪R are PTA-checkable, then there are PTAs FE
and DE∪R such that Ω is a signature of E-free constructors modulo B if and

only if L(FE) = ∅, and Υ is signature of R-deadlock constructors if and

only if L(DE∪R) = ∅.

Proof. See Section A.1 in Appendix A.

3.4.3 The Extended Maude Sufficient Completeness Checker

The Maude Sufficient Completeness Checker [54] (SCC) has been extended

to construct the automata defined in the proofs of Theorem 3 and The-

orem 4, so that sufficient completeness checks, and also checks for E-free

constructors and R-terminal constructors, can be automatically handled for

such generalized rewrite theories.

Given an admissible simple generalized rewrite theoryR = (Σ, E∪B,R, ν)

annotated with constructor signature pair (Υ,Ω) in the syntax of Maude and

satisfying the conditions in Theorem 3, the SCC’s command scc-df builds

the automata BE and BE∪R and checks for their emptiness. For the example

in Section 3.3, it works as expected:

Maude> (scc-df BAG-CHOICE+CARD .)

Checking sufficient completeness and deadlock freeness of BAG-CHOICE+CARD...

Success: The equational subtheory of BAG-CHOICE+CARD is sufficiently complete

under the assumption that it is ground weakly-normalizing, ground confluent,

and ground sort-decreasing.

Success: The rewrite theory BAG-CHOICE+CARD is deadlock-free outside rctor-terms

under the assumption that it is ground weakly-normalizing, ground sort-decreasing,

and ground coherent.

For R and (Υ,Ω) as above, and under the assumption of R being canon-

ically sufficiently complete relative to (Υ,Ω), the Sufficient Completeness

Checker commands free-terminal builds the automata FE and GE∪R and

checks for their emptiness.

Maude> (free-terminal BAG-CHOICE+CARD .)

Checking freeness of constructors of BAG-CHOICE+CARD...

Success: The equational subtheory of BAG-CHOICE+CARD has equational free

constructors under the assumption that it is sufficiently complete, ground

28

weakly-normalizing, ground confluent, and ground sort-decreasing.

Success: BAG-CHOICE+CARD has terminal constructors under the assumption that it

is deadlock-free outside rctor-terms, ground weakly-normalizing, ground

sort-decreasing, and ground coherent.

As an additional example, consider the one-sorted simple generalized

rewrite theory NAT-LIST adapted from [45]:

mod NAT-LIST is

sort List .

ops 0 nil err : -> List [ctor metadata "rctor"] .

ops nats zeros : -> List [ctor] .

op s : List -> List [ctor metadata "rctor"] .

ops incr adx head tail : List -> List [ctor] .

op cons : List List -> List [ctor metadata "rctor"] .

vars X L : List .

rl incr(nil) => nil .

rl incr(cons(X,L)) => cons(s(X),incr(L)) .

rl adx(nil) => nil .

rl adx(cons(X,L)) => incr(cons(X,adx(L))) .

rl nats => adx(zeros) .

rl zeros => cons(0,zeros) .

rl zeros => cons(0,nil) .

rl head(cons(X,L)) => X .

rl tail(cons(X,L)) => L .

rl adx(0) => err .

rl adx(s(X)) => err .

rl incr(0) => err .

rl incr(s(X)) => err .

rl tail(nil) => nil .

rl tail(0) => err .

rl tail(s(X)) => err .

rl head(nil) => nil .

rl head(0) => err .

rl head(s(X)) => err .

endm

Running the scc-df command on NAT-LIST yields and error:

Maude> (scc-df NAT-LIST .)

Checking sufficient completeness and deadlock freeness of NAT-LIST...

Success: The equational subtheory of NAT-LIST is sufficiently complete under

the assumption that it is ground weakly-normalizing, ground confluent,

and ground sort-decreasing.

Failure: The term adx(err) is a terminal term outside rctor-terms of sort List.

It turns out that the rewrite system given in [45] was missing rewrite

rules for defining adx, incr, tail, and head when the argument was the

error list err. By adding the rewrite rules “adx(err) => err”, “incr(err)

=> err”, “tail(err) => err”, and “head(err) => err” to complete the

above Maude specification to one called NAT-LIST-COMPLETE, the sufficient

completeness check succeeds.

29

Maude> (scc-df NAT-LIST-COMPLETE .)

Checking sufficient completeness and deadlock freeness of NAT-LIST-COMPLETE...

Success: The equational subtheory of NAT-LIST-COMPLETE is sufficiently complete

under the assumption that it is ground weakly-normalizing, ground confluent,

and ground sort-decreasing.

Success: The rewrite theory NAT-LIST-COMPLETE is deadlock-free outside rctor-terms

under the assumption that it is ground weakly-normalizing, ground sort-decreasing,

and ground coherent.

3.5 Constructor-Based Reachability Analysis

This section discusses the role that R-constructors and E-constructors can

play in inductive proofs of ground reachability and ground joinability prop-

erties for a rewrite theory R. The discussion here does not cover in detail

either the theoretical foundations for the soundness of the inductive argu-

ments given in the examples, or the alternative proof techniques that could

be used for proving ground reachability and ground joinability properties.

The aim here is more modest, namely, to characterize when it is sound to

use constructors in such inductive reachability proofs. A simple example in

Section 3.6 illustrates the key role constructors can play in such proofs.

3.5.1 Ground Reachability

Ground reachability is an inductive property of rewrite theories. In partic-

ular, it is important for establishing reachability properties of concurrent

systems specified by generalized rewrite theories, for instance, when algo-

rithmic model checking techniques are limited. This section clarifies the role

of constructors in ground reachability proofs.

Definition 11. Let R be a simple generalized rewrite theory with signature

Σ = (S,≤, F) and let t, u ∈ TΣ(X)s, for some s ∈ S. The term u is ground

R-reachable from t, written R
 t→ u, if and only if

(∀σ : X −→ TΣ) R ` tσ → uσ. (3.9)

In general, reasoning in R about an inductive property ϕ requires a de-

duction relation `ind with inductive inference support (and more powerful

than `) such that if R `ind ϕ then R
 ϕ. Note that there is no hope for

the converse in general to hold because of Gödel’s Incompleteness Theorem.

The relationship between these relations is made explicit by the following

30

chain of (meta) implications:

R ` ϕ =⇒ R `ind ϕ =⇒ R
 ϕ ⇐⇒ TR |= ϕ.

The notion of R = (Σ, E,R, ν) being sufficiently complete relative to a

constructor signature pair (Υ,Ω) is important for inductive reasoning at

both equational and rewrite levels because different explicit or implicit in-

ductive proof methods (including structural induction) become much more

effective when the inductions can be restricted to constructor terms.

Inductive reasoning about rewrite sequents for a rewrite theory R is some-

what subtle, particularly in the presence of frozenness information. The

first subtle point is that, because of frozen variables occurring in some of

the terms in the goal, it is wrong to assume that it is enough to “instanti-

ate” the induction variables with R-constructor terms. The problem is that

frozen subterms may be Ω-terms and not R-constructor terms, and so they

may not be rewritable at all with R into R-constructor terms. The solu-

tion is then to consider the possibility of frozen subterms being Ω-terms.

For ground reachability the reasoning is even subtler, because even if frozen

variables are handled as just explained, there is the hidden risk of the target

term in the reachability goal becoming a “moving” target. The problem

here is that rewrite sequents are not symmetric and the proofs obtained by

induction over R-constructor terms in general cannot be “lifted” to proofs

for Ω-terms. A solution for this problem is to require that the E-equivalence

class of the target term in the reachability goal be invariant under the sub-

stitutions used in the proof, by imposing a simple condition on the variables

occurring in the target term. As a direct consequence of these observations,

for a constructor-based structural induction proof of ground reachability to

be sound, it is mandatory to consider all E-constructor terms of the given

sort s not only when inducting on a frozen variable xs, but also when this

variable (even if not frozen) occurs in the target term of the reachability

goal.

Theorem 5. Let R be a simple generalized rewrite theory with signature

Σ = (S,≤, F) and frozenness map ν, let t, u ∈ TΣ(X)s for some s ∈ S, and

let θ : X −→ TΣ. If R is sufficiently complete relative to the constructor

signature pair (Υ,Ω), then there exists η : X −→ TΩ such that:

1. η(x) ∈ C Υ
R for x ∈ ν(t) \ vars(u), and ER ` θ(x) = η(x) for x ∈

vars(u),

2. R ` tθ → tη.

31

Furthermore, R
 t→ u if and only if R ` tη → uη for each η as above.

Proof. (Existence of η) Let θ : X −→ TΣ be as given. Since R is sufficiently

complete relative to (Υ,Ω), there are β : X −→ TΩ s.t. ER ` θ(xsi) = β(xsi),

and ρ : X −→ C Υ
R s.t. R ` β(xsi) → ρ(xsi), for each xsi ∈ X. Take

η : X −→ TΩ to be the map x 7→ ρ(x) if x ∈ ν(t) \ vars(u), and x 7→ β(x)

otherwise. Observe that η fulfills (1) and (2). (=⇒) Let η : X −→ TΩ

satisfy (1) and (2). Observe that C Υ
R ⊆ TΩ ⊆ TΣ, and hence R ` tη → uη

follows from the assumption. (⇐=) Let θ : X −→ TΣ. There exists η :

X −→ TΩ satisfying conditions (1) and (2), and such that R ` tη → uη

from the assumption. Then, R ` tθ → uη follows from the transitivity of

rewrite sequents. Observe that η is such that ER ` uη = uθ, and then

R ` tθ → uθ. Therefore R
 t→ u, as desired.

3.5.2 Ground Joinability

The notion of ground joinability is of great importance in the field of term

rewriting and also in theorem proving, see, e.g., [83, 6, 60, 69, 9, 2, 15]. In

particular, it is a key technique for proving ground confluence. This section

explains how R-constructors can be used to prove ground joinability and

illustrate the ideas by means of a simple example. A detailed discussion of

alternative proof techniques for ground reachability is outside the scope of

this paper: the focus here is in clarifying the role that R-constructors can

play in such proofs.

Definition 12. Let R be a simple generalized rewrite theory, with signature

Σ = (S,≤, F), and let t, u ∈ TΣ(X)s, for some s ∈ S. The terms t and u

are called ground R-joinable, written R
 t ↓ u, if and only if

(∀σ : X −→ TΣ) R ` tσ ↓ uσ. (3.10)

The notion of R = (Σ, E,R, ν) being sufficiently complete relative to

a constructor signature pair (Υ,Ω) is also important for ground joinability.

For inductive reasoning about ground joinability the only subtle point is that

of frozen variables occurring in some of the terms in the goal: it is wrong

to assume that it is enough to “instantiate” the induction variables with R-

constructor terms. As explained for ground reachability, the problem is that

frozen subterms may be Ω-terms and not R-constructor terms, and so they

may not be rewritable at all with R into R-constructor terms. As shown by

Theorem 6, it is sufficient to consider the possibility of frozen subterms being

32

Ω-terms for inductive proofs to be sound. That is, for a constructor-based

structural induction proof of ground joinability to be sound, it is sufficient

to consider all equational constructor terms of sort s when inducting on a

frozen variable xs.

Theorem 6. Let R be a simple generalized rewrite theory, with signature

Σ = (S,≤, F) and frozenness map ν, and let t, u ∈ TΣ(X)s, for some s ∈ S.

If R is sufficiently complete relative to the constructor signature pair (Υ,Ω),

then R
 t ↓ u if and only if R ` tη ↓ uη for each η : X −→ TΩ such that if

η(x) ∈ C Υ
R then x ∈ ν(t, u), for all x ∈ X.

Proof. (=⇒) Let η be such that if η(x) ∈ C Υ
R then x ∈ ν(t, u) for each

x ∈ X. Observe that C Υ
R ⊆ TΩ ⊆ TΣ, and hence R ` tη → uη follows from

the assumption. (⇐=) Let θ : X −→ TΣ. Since R is sufficiently complete

relative to (Υ,Ω), there are β : X −→ TΩ s.t. ER ` θ(xsi) = β(xsi), and

ρ : X −→ C Υ
R s.t. R ` β(xsi)→ ρ(xsi), for each xsi ∈ X. Take η : X −→ TΩ

to be the map x 7→ ρ(x) if x ∈ ν(t, u) and x 7→ β(x) otherwise. Observe

that R ` tθ → tη and R ` uθ → uη, and η is defined so that R ` tη ↓ uη
follows from the assumptions. Therefore R
 t ↓ u, as desired.

3.6 Formal Properties of CHANNEL

This section shows the use of the constructor-based inductive techniques

introduced in sections 3.5.1 and 3.5.2 for proving reachability properties

of rewrite theories based on constructors, with an example of a concurrent

system communicating through a channel. This example also illustrates how

the PTA-based decision procedures defined in Section A.1 can automatically

aid, not only in proving the sufficient completeness and deadlock freedom of

the specification, but also in obtaining proofs of other inductive reachability

properties. Some mechanical proofs are shown in the development of the

section; the remaining ones can be found in Appendix A.

Consider the specification CHANNEL representing a generalized rewrite the-

ory

(ΣCHANNEL, ECHANNEL ∪BCHANNEL, RCHANNEL)

in the language of Maude. It models a system comprising a sender of a list

of numbers, a receiver of such a list, and a communication channel through

which numbers are sent to the receiver, and acknowledgments are sent back

to the sender.

33

mod CHANNEL is

sorts Nat List NilList EmptyChannel Channel Terminal State .

subsorts NilList < List .

subsorts Nat EmptyChannel < Channel .

subsorts Terminal < State .

op 0 : -> Nat [ctor metadata "rctor"] .

op s_ : Nat -> Nat [ctor metadata "rctor"] .

op nil : -> NilList [ctor metadata "rctor"] .

op _;_ : Nat List -> List [ctor metadata "rctor"] .

op _@_ : List List -> List .

op mt : -> EmptyChannel [ctor metadata "rctor"] .

op ack : -> Channel [ctor metadata "rctor"] .

op <_:_:_> : List Channel List -> State [ctor] .

op <_:_:_> : NilList EmptyChannel List

-> Terminal [ctor metadata "rctor"] .

vars M N : Nat . vars L L’ : List .

eq [ap01] : nil @ L = L .

eq [ap02] : (N ; L) @ L’ = N ; (L @ L’) .

rl [send] : < N ; L : mt : L’ > => < L : N : L’ > .

rl [recv] : < L : N : L’ > => < L : ack : L’ @ (N ; nil) > .

rl [ack] : < L : ack : L’ > => < L : mt : L’ > .

endm

States of this systems are (ground) terms of sort State, that is, ground

terms of the form

< l : c : l’ >

where l is the list of numbers still to be sent by the sender, c is the current

contents of the channel, and l’ is the list of numbers already received by the

receiver. The contents c can be either a natural number built up with 0 and

the successor operator s, or the empty contents mt, or an acknowledgment

ack. Lists of natural numbers are defined with the function symbols nil,

; , and @ , with ; a list “cons” operator and @ a list append operator.

The equations ECHANNEL are labeled [ap0] and [ap1]. They define the ap-

pend function in the usual way. The rules RCHANNEL specifying the system’s

transitions are labeled [send], [recv], and [ack]. Rule [send] puts the

leftmost number of the sender’s list in the channel if the channel is empty,

rule [recv] appends the number in the channel to the receiver’s list and

sends back an ack, and rule [ack] consumes the ack message and clears the

channel so that a new number can be sent.

Sort Terminal is the subsort of State determined by those states in which

there are not numbers waiting to be sent through the channel and the chan-

34

nel is empty. The intention, of course, is to characterize the terminal or

final states of the system, for which no more transitions are possible. First

note that the only symbol not having the ctor declaration is the list append

operator @ . Therefore, ECHANNEL-sufficient completeness is the claim that

@ is fully defined by the equations [ap0] and [ap1]. Analogously, the only

symbol having the ctor declaration and not having the metadata "rctor"

declaration is

op <_:_:_> : NilList EmptyChannel List

-> Terminal [ctor metadata "rctor"] .

Since only terms of sort State can be rewritten by the rules RCHANNEL, this

means that every state is expected to be rewritable with RCHANNEL to one of

the form < nil : mt : l >.

Two key properties of CHANNEL are of particular interest:

1. In-order reception: every (ground) terminal state reachable from an

initial state of the form < l : mt : nil > preserves the order of

messages, i.e., for L and L’ variables of sort List:

CHANNEL
< L : mt : nil >→< nil : mt : L’ > =⇒ L = L’.

2. Proper termination: the protocol always terminates in a state of sort

Terminal.

Observe that, if CHANNEL is strongly-normalizing and the constructor sub-

signature ΥCHANNEL is a signature of terminal constructors, then (1) and (2)

together ensure that the protocol always terminates with successful in-order

communication. Note also that (1) cannot be checked by standard model-

checking algorithms because the number of ground instances of L is count-

ably infinite.

CHANNEL is executable (see Appendix A) and is sufficiently complete rel-

ative to its constructor signature pair, as shown below:

Maude> (scc-df CHANNEL .)

Checking sufficient completeness and deadlock freeness of CHANNEL...

Success: The equational subtheory of CHANNEL is sufficiently complete

under the assumption that it is ground weakly-normalizing, ground confluent,

and ground sort-decreasing.

Success: The rewrite theory CHANNEL is deadlock-free outside rctor-terms under

the assumption that it is ground weakly-normalizing, ground sort-decreasing,

and ground coherent.

This particularly implies that the reachability condition in (1) is satisfiable

and hence the property is not trivially true. Two complementary proofs are

35

required for establishing (1), namely, a proof of the existence of a reachable

terminal state preserving the order of messages for each initial state, and

a proof of the uniqueness of such a terminal state. Property (2) follows

directly from the strong-normalization of CHANNELE (see Appendix A), plus

the fact that ΥCHANNEL is a signature of terminal constructors as just shown.

The existence claim is a logical consequence of the following inductive

claim, for L and L’ variables of sort List:

CHANNEL `ind < L : mt : L’ >→< nil : mt : L′@ L > .

Using the sufficient completeness of CHANNEL relative to its constructor

signature pair (ΥCHANNEL,ΩCHANNEL), the steps of the constructor-based induc-

tive proof are a base case in which the property is proved for l = nil, and

an inductive case in which the property is proved for l = n ; l with the

hypothesis that there is a proof for n and l, where n is a fresh constant of

sort Nat and l is a fresh constant of sort List.

The soundness of the proof follows from the soundness of structural induc-

tion and from Theorem 5, where C⊥CHANNEL,List = TΥCHANNEL,List. As a remark

observe that the choice of induction variable for this proof does not increase

its complexity, because ΥCHANNEL,List = ΩCHANNEL,List.

• Base case. Let l = nil:

< nil : mt : L’ >

= { L’ @ nil = L’ is an inductive consequence of ECHANNEL }
< nil : mt : L’ @ nil >

• Inductive case. Assume the property holds for l = l, where l is a

“fresh” constant of sort List. Let l = n ; l, with n a fresh constant

of sort Nat:

< (n ; l) : mt : L’ >

→1 { by [send] }
< l : n : L’ >

→1 { by [recv] }
< l : ack : L’ @ (n ; nil) >

→1 { by [ack] }
< l : mt : L’ @ (n ; nil) >

→ { by induction hypothesis }
< nil : mt : (L’ @ (n ; nil)) @ l >

36

= { by associativity of @ is an inductive consequence of ECHANNEL }
< nil : mt : L’ @ ((n ; nil) @ l) >

= { by [ap01] }
< nil : mt : L’ @ (n ; (nil @ l)) >

= { by [ap02] }
< nil : mt : L’ @ (n ; l) >

The inductive claims about ECHANNEL can be discharged automatically with

the current version of Maude’s Inductive Theorem Prover [52] by constructor-

based equational induction over ECHANNEL-constructors (see Appendix A).

The uniqueness proof uses a ground joinability argument about CHANNEL.

As shown in Figure 3.2 for any simple generalized rewrite theory R that is

admissible, if the rewrite rules R ∪ −→E are ground sort-decreasing, ground

confluent, and ground weakly-normalizing modulo B, then the ground con-

fluence of R is a logical consequence of the ground confluence of RE∪R. The

key observation is that for rewrite proofs R ` t → u and R ` t → v, there

are analogous rewrite proofs RE∪R ` t→ u ↓E/B and RE∪R ` t→ v ↓E/B.

Since RE∪R is ground confluent, the (ground) RE∪R-joinability witness for

u ↓E/B and v ↓E/B is also a witness for the R-joinability of u and v: mem-

bership to E∪B-equivalence classes is invariant under sequent inference with

the oriented equations in RE . In this way R inherits the ground confluence

from RE∪R. Note that in Figure 3.2 there is no need to mention RE because

RE∪R subsumes deduction with RE . Its mention is made explicit for better

understanding of the proof. Also, note that RE is trivially ground sort-

decreasing, ground confluent, and ground operationally terminating modulo

B because of the assumptions on R.

CHANNEL is ground sort-decreasingness, ground confluence, and ground

operationally terminating as automatically shown in Appendix A. This then

entails the desired uniqueness proof of a reachable deadlock state preserving

the order of messages for each initial state, and hence, property (1) holds.

Property (2) follows directly from the strong-normalization of the rewrite

theory CHANNELECHANNEL∪RCHANNEL .

Therefore, as desired, the CHANNEL protocol always terminates in a state

of sort Terminal with successful in-order communication.

3.7 Related Work and Concluding Remarks

Sufficient completeness was first defined in Guttag’s thesis [50]; this prop-

erty is in general undecidable, even for unconditional equational specifica-

37

t

R

��

R

��

RE
��

t ↓E/B

RE∪R

��

RE∪R

��

u

RE
��

R

%%

v

RE
��

R

yy
u ↓E/B

RE∪R %%

∃w
RE
��

v ↓E/B

RE∪Rzz
w ↓E/B

Figure 3.2: If R = (Σ, E ∪B,R, ν) is an admissible simple generalized rewrite theory and
such that RE∪R is (ground) sort-decreasing, (ground) confluent and (ground) weakly-
normalizing, then the (ground) confluence of RE∪R implies the (ground) confluence of R.

In this figure, e.g., t
R→ u is a short hand for R ` t→ u.

tions [50, 51]. Sufficient completeness of equational specifications has been

widely studied, see, e.g., [56, 78, 25, 59, 14, 16, 15, 64], but some of the pro-

posed approaches are restricted to simple expressive formalisms, such as un-

sorted specifications or specifications without structural axioms, or assume

strong properties such as termination and confluence. For a good review of

the literature up to the 1980s and for important decidability/undecidability

results see [62, 61]. A closely connected concept is ground reducibility, see,

e.g., [83, 62, 26, 63, 28]. Tree automata methods have been used since the

late 1980s for both sufficient completeness and ground reducibility, see, e.g.,

[26, 28, 54, 16], and Chapter 4 of [27] and references there. In the context of

order-sorted and membership equational logic specifications, sufficient com-

pleteness has been studied in, e.g., [17, 53, 15], and for order-sorted specifi-

cations modulo axioms, including the context-sensitive case, in [54, 52].

The work presented here combines and generalizes two different research

strands. On the one hand, it can be seen as a natural generalization from

the case of equations E to that of both equations E and rules R, of the

work in [54, 52] on (propositional) equational tree automata methods for

checking sufficient completeness of left-linear equations modulo axioms for

context-sensitive order-sorted specifications. On the other hand, it also gen-

eralizes the work by I. Gnaedig and H. Kirchner [44] on constructors for

non-terminating rewrite systems in the following precise sense: the notion

of sufficient completeness proposed in [44] exactly corresponds to that of R-

sufficient completeness in this work for the special case of a rewrite theory

R = (Σ,∅, R), where Σ has a single sort and there are no equations. The

38

treatment of the more general case of rewrite theories R = (Σ, E ∪B,R, ν)

clarifies the important distinction between constructors for equations and

constructors for rules, extends the ideas to the more general order-sorted

case modulo axioms and with frozenness information, provides new tree

automata automated techniques that complement the deductive narrowing-

based techniques proposed in [44], and, to the best of the author’s knowledge,

investigates for the first time the use of R-constructors (and E-constructors)

for inductive proofs of ground reachability.

As usual, there is room for improvement. Since the goal in this work

has been to obtain automatic techniques for checking the sufficient com-

pleteness of a rewrite theory, some restrictions have been imposed, such as

treating only the order-sorted case (leaving out the case of membership equa-

tional theories), and also assuming that equations and rules are left-linear

and unconditional. The notion of a sufficiently complete rewrite theory is

equally meaningful and useful without these restrictions. Therefore, reason-

ing techniques that will allow such a property to be established for more

general rewrite theories should be investigated, even if such techniques are

no longer automatic. The related topic of constructor-based inductive tech-

niques for ground reachability and ground joinability has only been sketched

out; it deserves a much fuller development in future work, in which a de-

tailed comparison with alternative approaches to proving such properties

should also be given. Furthermore, these constructor-based induction tech-

niques should be supported by tools such as, for example, an extension of

the current Maude Inductive Theorem Prover (ITP).

39

CHAPTER 4

DEDUCTIVE PROOFS FOR SAFETY PROPERTIES

Safety properties of concurrent systems are among the most important prop-

erties to verify. They have received extensive attention in many different for-

mal approaches, both algorithmic and deductive. Algorithmic approaches

such as model checking are quite attractive because they are automatic.

However, they cannot always be applied as a system can be infinite-state, so

that no model checking algorithm which assumes a finite-state system can

directly be used.

Even if an abstraction can be found to make the system finite-state, an

additional difficulty may arise: although for each initial state the set of states

reachable from it is finite, the set of initial states may still be infinite, so

that model checking verification may not be possible. For example, a mutual

exclusion protocol should be verified for an arbitrary number of clients in

its initial state, even if the states have been abstracted away so that the set

of states reachable from each initial state is always finite.

This chapter is part of a broader effort to develop generic methods to

reason about safety properties of concurrent systems and more generally

about any property specifiable in temporal logic. It advances such an ef-

fort by developing generic deductive methods and tools for proving two key

safety properties, namely, stability and invariance, plus their combination

by means strengthening techniques. The expression “generic” means that

the verification methods and their associated tools are not tied to a spe-

cific programming language. By contrast, the UNITY logic is an elegant

temporal logic inference system tailored for the verification of concurrent

programs in the UNITY language [20], so that nontrivial changes would be

required to apply such a logic to, say, threaded Java programs. Similarly,

the deductive methods for verifying safety properties developed by Manna

40

and Pnueli in [68] are tailored to verify concurrent programs in the specific

imperative language described in [68].

The advantage of generic verification methods and tools is that the costly

tool development effort can be amortized across a much wider range of appli-

cations, whereas a language-specific verification tool can only be applied to

systems programmed in that specific language. Of course, any such generic

approach requires a logical framework general enough to encompass many

different models and languages. In this case, the use of the rewriting logic

framework [70] is justified by its ability to express very naturally many dif-

ferent models of concurrent computation and many concurrent languages.

The generic framework and its tools can then be easily specialized to spe-

cific languages. This is exactly the approach taken in the rewriting logic

semantics project [75], where the semantics of a wide variety of concurrent

programming languages is defined in rewriting logic, and then Maude [23]

and its LTL model checker can be used to verify programs in any of those

languages.

The goal of this chapter is to extend rewriting-logic-based generic verifi-

cation methods to support the deductive verification of concurrent systems,

beginning with safety properties. In the rewriting logic framework, a con-

current system, such as, for example, a network protocol or an entire con-

current programming language such as Java, is specified as a rewrite theory

R = (Σ, E,R), with (Σ, E) an equational theory specifying the system’s

states as elements of the initial algebra TΣ/E , and R a collection of (non-

equational) rewrite rules specifying the system’s concurrent transitions.

The generic approach presented here to safety property verification is

both transformational and reductionistic. Safety properties are a special

type of inductive properties. That is, they do not hold for just any model

of the given rewrite theory R, but for its initial reachability model TR (see

Chapter 2). Concretely, forR = (Σ, E,R), this means that the states of such

an initial model are precisely elements of the initial algebra TΣ/E , and that its

one-step transitions are provable rewrite steps between such states by means

of the rules R. Therefore, given any safety property ϕ, the interest here is

in the model-theoretic satisfaction relation TR |= ϕ, which is approximated

deductively by means of an inductive inference relation R
 ϕ. This relation

is proved sound, that is, R
 ϕ always implies TR |= ϕ.

This approach is transformational in the sense that the rules of inference

transform pairs of the form R
 ϕ into other such pairs R′
 ϕ′. It is

also reductionistic in the sense that: (i) all safety formulas in temporal logic

eventually disappear and are replaced by purely equational formulas, and (ii)

41

the rewrite theory R = (Σ, E,R) is eventually replaced by its underlying

equational theory (Σ, E). That is, in the end all formal reasoning about

safety properties is reduced to inductive reasoning about equational properties

in the underlying equational theory (Σ, E). This allows these generic safety

verification methods to take advantage of the existing wealth of equational

reasoning techniques and tools already available.

The Maude Invariant Analyzer (InvA) tool supporting the transforma-

tional inference system presented in this chapter, makes systematic use of

narrowing modulo axioms with the equations defining state predicates, spe-

cialized in this chapter to ground stability and invariance analysis to greatly

simplify the equational proof obligations to which all proofs of safety formu-

las are ultimately reduced. It also takes full advantage of other heuristics

for discharging automatically many proof obligations, all explained in what

follows.

The main contributions of this chapter can be summarized as follows:

• Proof of the inductive soundness of a transformational inference system

to prove stability and invariance properties about the initial reachabil-

ity model TR of a topmost rewrite theoryR, as well as the soundness of

additional inference rules supporting the strengthening of invariants.

• Systematic use of narrowing modulo axioms with the equations defin-

ing state predicates, specialized to ground stability and invariance

analysis, to greatly simplify the equational proof obligations to which

all proofs of safety formulas are ultimately reduced.

• Implementation of the above inference system in the InvA tool, which

provides a substantial degree of automation and can automatically

discharge many proof obligations without user intervention.

This chapter is organized as follows. A temporal semantics in the form

of a Kripke structure is associated to a rewrite theory’s initial reachabil-

ity model in Section 4.1. An inference system for the deductive analysis of

ground stability and ground invariance, including narrowing-based inference

rules, is introduced and proved sound in Section 4.2. Section 4.3 discusses

new inference rules that can be used to strengthen ground invariants. The

Invariant Analyzer tool (InvA) is presented in Section 4.4, including a de-

scription of the main commands available to the user and the strategies it

uses for discharging proof obligations. Related work and some final remarks

can be found in Section 4.5. Case studies for these methods and the InvA

tool are presented in chapters 5 and 6.

42

4.1 Temporal Semantics of TR
The models of temporal logic are Kripke structures. A Kripke structure can

be associated with the initial reachability model TR of a topmost rewrite

theory R = (Σ, E,R) by making explicit the intended set of states in TR
and the relevant state predicates to the verification task.

In general, the state predicates need not be part of the system specification

and therefore they need not be specified in R. They are typically part of the

property specification. This is mainly because state predicates need not be

related to the operational semantics of R, as they are just certain predicates

about the states of TR that are need to specify some of its properties.

Therefore, after choosing a top sort in Σ, say s, for the set of states,

the set of state predicates Π for R can be defined in an equational theory

EΠ = (ΣΠ, E ∪EΠ). Signature ΣΠ contains Σ and a sort Bool with constant

symbols > and ⊥ of sort Bool , predicate symbols

p : s s1 · · · sn −→ [Bool]

for each each predicate p ∈ Π parametric on the tuple of sorts s1, . . . , sn in

Σ, abbreviated p ∈ Πs1...sn , and optionally some auxiliary function symbols.

Equations EΠ define the predicate symbols in ΣΠ and the auxiliary function

symbols, if any. The theory EΠ protects (Σ, E) and also the equational

theory specifying Bool (see Chapter 2 for details).

Given a state predicate ps1,...,sn ∈ Π and ground terms ti ∈ TΣ,si , with

1 ≤ i ≤ n, EΠ then defines the semantics of p at state t ∈ TΣ,s in TR as

follows:

TR, t |= p(t1, . . . , tn) ⇐⇒ EΠ ` p(t, t1, . . . , tn) = >. (4.1)

This defines the Kripke structure:

KΠ
R = (TΣ/E,s,→R, LΠ), (4.2)

with labeling function LΠ defined for each t ∈ TΣ,s and ti ∈ TΣ,si , with

1 ≤ i ≤ n, by:

p(t1, . . . , tn) ∈ LΠ(t) ⇐⇒ EΠ ` p(t, t1, . . . , tn) = >. (4.3)

In this way, all of LTL can be interpreted in KΠ
R in the standard way [22],

including also the first-order version of LTL.

Note that only the positive case is needed to define p’s semantics. The

43

reason why p has codomain [Bool] instead of Bool , is to allow partial def-

initions of p with equations that only define the positive case by equations

p(t, t1, . . . , tn) = > if γ, and either leave the negative case implicit or may

only define some negative cases with equations p(t′, t′1, . . . , t
′
n) = ⊥ if γ′

without necessarily covering all the cases, i.e., without p’s definition having

to be sufficiently complete. This possibly partial specification of predicates

(yet, with full specification in the positive case) can be very convenient,

since the full definition of the negative cases can sometimes be quite in-

volved. However, the sort Bool is protected: only when a term p(t) can be

proved equal to either > or ⊥ can the term p(t) have sort Bool . Neverthe-

less, for proving purposes it is often useful to define some negative cases for

which a state predicate p does not hold, since this helps in discarding proof

obligations in the form of an implication whose antecedent is false.

It is also important to note that a state predicate p ∈ Π can act as

a definitional extension of a Boolean combination of other state predicates

{p1, . . . , pn} in ΣΠ, so that the choice of focusing on atomic state predicates is

mainly to simplify the exposition but does not limit the general applicability

of the results that follow. In a rewriting logic language implementation

such as Maude [23], definitional extensions can be conveniently obtained

by having EΠ protecting Maude’s predefined functional module BOOL-OPS,

which declares constants > and ⊥ of sort Bool along with Boolean function

symbols such as conjunction, disjunction, negation, etc.

4.2 Ground Safety Properties

The development in section assumes a topmost rewrite theoryR = (Σ, E,R),

with order-sorted signature Σ = (S,≤, F) and with top sort s ∈ S for the

set of states, and a set Π of state predicates for R equationally defined

in EΠ = (ΣΠ, E ∪ EΠ). Moreover, expressions of the form ~t are used to

abbreviate lists of terms t1, . . . , tn in TΣ(X), and thus simplify notation.

4.2.1 Ground Stability

The concept of ground stability for R is intimately related with the notion of

the set of states t ∈ TΣ/E,s of TR that satisfy a state predicate p being closed

under →R. More precisely, for p ∈ Πs1,...,sn and ~x = xs1 , . . . , xsn variables

44

in X, the property p being ground stable for R is the safety property:

KΠ
R |= p(~x) ⇒ �p(~x), (4.4)

meaning that for any ground substitution σ : X −→ TΣ if p(~xσ) holds in a

state t ∈ TΣ,s, then p(~xσ) holds in any state u ∈ TΣ,s that is reachable from

t.

Definition 13 (Ground Stability). Let p ∈ Πs1,...,sn and let ~x = xs1 , . . . , xsn

be variables in X. Then:

• R is ground p-stable under rules R0 ⊆ R if and only if for all t, u ∈
TΣ,s and ground substitution σ : X −→ TΣ the following implication

holds:

EΠ
 p(t, ~xσ)=> ∧ (Σ, E,R0)
 t→∗u =⇒ EΠ ` p(u, ~xσ) = >.
(4.5)

• R is ground p-stable, written R
 p(~x) ⇒ �p(~x), if and only if R is

ground p-stable under R.

Note that the deduction relation ‘
’ in Definition 13 shares the same

meaning as the notation in Section 3.5 introduced for constructor-based

reachability analysis. This relation refers to deduction, both at the equa-

tional and rewrite theory levels, in the initial models, that is, to deduction

where variables range over ground terms only.

The reachability condition in the Definition 13 can be reduced to a simpler

1-step rewrite condition, resulting in an equivalent notion of ground stability

that avoids arbitrary depth proof search. In the notation of Linear Time

Temporal Logic (LTL), this is captured by the inference rule St in Figure 4.1.

This rule greatly simplifies the LTL reasoning about the p-stability of the

Kripke structure KΠ
R = (TΣ/E,s,→R, LΠ) associated to R and Π. Symbol

“©” corresponds to the next operator in LTL and symbol “⇒” to strong

implication in LTL (see [67] for details). So, for KΠ
R |= p(~x) ⇒ �p(~x) to

hold, it is enough to show that KΠ
R |= p(~x)⇒©p(~x) holds.

Lemma 1 proves that the inference rule St is not only sound but also

complete.

Lemma 1. Inference rule G-st in Figure 4.1 is sound and complete.

Proof. Let t, u ∈ TΣ,s, R0 = (Σ, E,R0), σ : X −→ TΣ, and ~x = x1, . . . , xn ∈
X. (=⇒) By assumption, EΠ ` p(t, ~xσ) = > and R0 ` t → u. The

45

R
 p(~x)⇒©p(~x)

R
 p(~x)⇒ �p(~x)
St

∧
(l→r if γ)∈R

(θ,w,γ′,~v)∈Θ(l,r,γ)

EΠ
 p(rθ,~v) = > if γθ ∧ γ′θ ∧ wθ = >

R
 p(~x)⇒©p(~x)
Nr1

Figure 4.1: Ground p-stability for R = (Σ, E,R), with Θ defined as in Theorem 7.

latter fact implies that R0 ` t →∗ u. Then, from the hypothesis, it follows

that p(u, ~xσ) = >. (⇐=) By induction on the number m of rewrite steps

proving R0 ` t→m u. If m = 0, then R0 ` t = u and by definition t =E u.

Since EΠ ` p(t, ~xσ) = >, it must be the case that EΠ ` p(u, ~xσ) = >. If

R0 ` t →m+1 u, then there is u0 ∈ TΣ,s such that R0 ` t → u0 ∧ u0 →m u.

If EΠ ` p(t, ~xσ) = >, then EΠ ` p(u0, ~xσ) = >. Moreover, from assumption

and the induction hypothesis R0 ` u0 →m u, it follows that EΠ ` p(u, ~xσ) =

>.

The next question to ask is how to reduce the verification of the simpler

condition p⇒©p to inductive equational reasoning. For this purpose, the

idea of (one-step) narrowing with equations modulo axioms [58], a sound

and complete method for ground stability analysis, is used to reduce the

inductive reachability problem of p-stability for TR to equational inductive

properties of T(Σ,E).

Under admissibility assumptions, the equations in R are a disjoint union

E]B of ground sort-decreasing, ground operationally terminating, ground

confluent, and ground coherent (w.r.t. the rules R) equations E modulo

structural axioms B such as associativity, commutativity, and identity. For

a combination of free and associative and/or commutative and/or identity

axioms, except for symbols f that are associative but not commutative,

a finitary B-unification algorithm exists. Instead, in general there is no

finitary E ∪B-unification algorithm. However, for Ω ⊆ Σ a signature of free

equational constructors modulo B (see Chapter 3) and an Ω-equality t = u,

the ground instances of CSUB(t = u) exactly characterize as its ground

instances the set GUE∪B(t = u).

Lemma 2. Let E = (Σ, E ∪ B) be an admissible order-sorted equational

theory with finitary B-unification algorithm and with Ω ⊆ Σ a signature

of free equational constructors modulo B. Then, for any t, u ∈ TΩ, the

46

following equivalence holds:

α ∈ GUE∪B(t = u)

⇐⇒ (∃θ ∈ CSUB(t = u))(∃σ : X −→ TΩ) θσ =E∪B α.

(4.6)

Proof. Let t, u ∈ TΩ(X)s for some sort s in Σ. (=⇒) Assume α ∈
GUE∪B(t = u), i.e., α : X −→ TΣ is such that tα =E∪B uα. Since Ω

is a subsignature of E-free constructors, there is β : X −→ TΩ satisfying

α =E∪B β and such that α(x) ↓Σ,E/B=B β(x), for x ∈ X. Consequently

tβ =B uβ. Hence, there is θ ∈ CSUB(t = u) and σ : X −→ TΩ such that

θσ =B β =E∪B α. (⇐=) Suppose θ ∈ CSUB(t = u) and let σ : X −→ TΩ

be a ground substitution. Then, it follows that tθσ =B uθσ and, a fortiori,

tθσ =E∪B uθσ. Hence, θσ ∈ GUE∪B(t = u) as desired.

In order to show the ground p-stability of R the approach is to prove,

for each rule l → r if γ ∈ R, that if for a ground instance lσ of l the

predicate p and the condition γσ hold, then p(~xσ) must hold in state rσ.

Since by assumption l ∈ TΩ,s(X), the key observation here is that, if all left

hand-sides p(v,~v) of equations p(v,~v) = w if γ′ ∈ EΠ defining the state

predicate p ∈ Π are Ω-patterns in the state parameter v (i.e., v ∈ TΩ(X),s),

then CSUB(l = v) can be computed to obtain substitutions θ which, by

Lemma 2, exactly characterize any ground E ∪B-unifier in GUE∪B(l = v).

Each substitution θ ∈ CSUB(l = v) is such that p(lθ, ~v) = >, or at least

p(lθ, ~v) could be equal to >. Hence, all that is left is the task of inductively

proving p(rθ,~v) = > under the assumptions γθ, γ′θ, and wθ = >. In this

way, the inductive reachability problem of p-stability for TR is recast as the

problem of proving simpler equational inductive properties of TΣ/E∪B: TR
is ground p-stable if and only if TΣ/E∪B satisfies these inductive properties,

as stated by the narrowing inference rule Nr1 in Figure 4.1.

Theorem 7 proves soundness and completeness of the narrowing inference

rule Nr1 in Figure 4.1.

Theorem 7. Let R = (Σ, E ∪B,R) be admissible with signature Ω ⊆ Σ of

(equational) free constructors modulo B. Let p ∈ Πs1,...,sn and l → r if γ ∈
R. Without loss of generality, assume that the equations EpΠ ⊆ EΠ defining

p are all conditional, have no variables in common with the rewrite rule, and

have Ω-patterns as left-hand sides in the state parameter. If

Θ(l,r,γ) =
⋃

(p(v,~v)=w if γ′)∈EpΠ

{(θ, w, γ′, ~v) | θ ∈ CSUB(v = l)},

47

then inference rule Nr-1 in Figure 4.1 is sound and complete.

Proof. In the following proof, some equations and rules explicitly mention

the variables occurring in them, and also the domain of some substitutions

is restricted to subsets of X. Let R0 = {(∀Y) l → r if C} and R0 =

(Σ, E∪B,R0). In order to simplify the proof, and without loss of generality,

assume that p ∈ Π is such that it has no parameters.

R is ground p-stable under R0

⇐⇒ { by definition of ground p-stability and Lemma 1 }
(∀t, u ∈ TΣ,s)

EΠ ` p(t) = > ∧R0 ` t→ u =⇒ EΠ ` p(u) = >
⇐⇒ { by definition of rewriting and by ER0 = ER }

(∀α : Y −→ TΣ)

EΠ ` p(lα) = > ∧ ER ` γα =⇒ EΠ ` p(rα) = >
⇐⇒ { by EΠ protecting ER and γα a ground Σ-formula }

(∀α : Y −→ TΣ)

EΠ ` p(rα) = > if p(lα) = > ∧ γα
⇐⇒ { by EΠ ground confluent, with Zv = vars(v) }

(∀α : Y −→ TΣ)(∀(p(v) = w if γ) ∈ EpΠ)(∀β : Zv −→ TΣ)

EΠ ` p(rα) = > if lα = vβ ∧ γ′β ∧ wβ = > ∧ γα
⇐⇒ { by assumption Y ∩Zv=∅, with η=α∪β and Xv=Y ∪Zv }

(∀(p(v) = w if γ′) ∈ EpΠ)(∀η : Xv −→ TΣ)

EΠ ` p(rη) = > if lη = vη ∧ γ′η ∧ wη = > ∧ γη
⇐⇒ { by Lemma 2: l, v ∈ TΩ(X)s and EΠ protecting ER }

(∀(p(v) = w if γ′) ∈EpΠ)(∀θ∈CSUB(l = v)B)(∀σ : ran(θ) −→ TΣ)

EΠ ` p(rθσ) = > if γ′θσ ∧ wθσ = > ∧ γθσ
⇐⇒ { by definition of
 }

(∀(p(v) = w if γ′) ∈EpΠ)(∀θ∈CSUB(l = v))

EΠ
 p(rθ) = > if γθ ∧ γ′θ ∧ wθ = >
⇐⇒ { by definition of Θ(l,r,γ) }

(∀(θ, w, γ′) ∈ Θ(l,r,γ))

EΠ
 p(rθ) = > if γθ ∧ γ′θ ∧ wθ = >

Observe that obtaining a complete set of unifiers in the definition of Θ(l,r,γ)

in Theorem 7 only involves Σ-terms and not ΣΠ-terms. This is useful in

practice because the generation of proof obligations from Θ(l,r,γ) does not

depend on the state predicates defined in EΠ and therefore is not affected by

their equational definitions, no matter how involved these definitions may be.

48

Also observe that, since the complete set of B-unifiers is finite, the set Θ(l,r,γ)

is also finite for each l→ r if γ ∈ R. Therefore, the set of proof obligations

is finite because of the finiteness assumptions on E and R. As a final remark,

observe that when w is ⊥ in an equation p(v,~v) = w if γ′ ∈ EpΠ, each proof

obligation p(rθ,~v) = > if γθ∧γ′θ∧wθ = > can be soundly ignored, because

wθ = ⊥θ = ⊥ 6= > since EΠ protects the sort Bool .

4.2.2 Ground Invariance

Invariants are among the most important safety properties. Given a set of

initial states characterized by I ∈ Πs′1,...,s
′
m

, a state predicate p ∈ Πs1,...,sn

being ground invariant for R from the set of initial states I is the safety

property

KΠ
R |= I(xs′1 , . . . , xs′m)⇒ �p(xs1 , . . . , xsn), (4.7)

where the si and s′j (resp., the xsi and x′sj) need not be different, meaning

that for any ground substitution σ : X −→ TΣ, if I(xs′1 , . . . , xs′m)σ holds in

a state t ∈ TΣ,s, then p(xs1 , . . . , xsn)σ holds in any state u ∈ TΣ,s reachable

from t. In other words, the invariant p holds for all states reachable from

I. Since the set of initial states is defined in EΠ as a state predicate I ∈ Π,

an equational definition of I can of course capture an infinite set of initial

states, even in the case when I has no parameters.

In what follows, it is assumed that the states predicates in Π are paramet-

ric on the same tuple of sorts, say s1, . . . , sn. This does help in keeping the

syntax cleaner and the definitions simpler, without affecting the generality

of the approach.

Definition 14 (Ground Invariance). Let p, I ∈ Πs1,...,sn be state predicates

and ~x = xs1 , . . . , xsn ∈ X. Then:

• R is ground p-invariant from I under rules R0 ⊆ R if and only if for

all t, u ∈ TΣ,s and ground substitution σ : X −→ TΣ the following

implication holds:

EΠ ` I(t, ~xσ) = > ∧ (Σ, E,R0) ` t→∗ u =⇒ EΠ ` p(u, ~xσ) = >.
(4.8)

• R is ground p-invariant from I, written R
 I(~x) ⇒ �p(~x), if and

only if R is ground p-invariant from I under R.

49

Ground p-invariance for R is intimately related to its ground p-stability

in the sense that if every initial state defined by a predicate I satisfies p

and R is p-stable, then R is p-invariant from I. Of course, the converse

does not necessarily hold, because even if R is ground p-invariant from I,

the set of states of TR satisfying p need not be closed under →R. The key

observation is that in TR, when every initial state defined by I satisfies p,

the set of states satisfying p characterizes an over-approximation of the set

of reachable states from the set of initial states specified by I.

In LTL terms, Lemma 3 justifies the soundness of the inference rule Inv

in Figure 4.2 for proving that p is an invariant from I in the Kripke structure

KΠ
R.

Lemma 3. Inference rule Inv in Figure 4.2 is sound.

Proof. Let t, u ∈ TΣ,s, R0 = (Σ, E,R0), and σ : X −→ TΣ be a ground

substitution. Assume (i) EΠ ` I(t, ~xσ) = > and (ii) R0 ` t→∗ u. From (1)

and (i) it follows that EΠ ` p(t, ~xσ) = >, and then from (2) and (ii), and

the latter claim, follows that EΠ
 p(u, ~xσ) = >, as desired.

For any state predicates p, q ∈ Πs1,...,sn and ~x = x1, . . . , xn ∈ X, let

q(~x)⇒ p(~x)

be a shorthand for p(xs, ~x) = > if q(xs, ~x), where the xi are assumed differ-

ent from xs. Condition 1 in Lemma 3 states that every initial state specified

by I must satisfy property p, abbreviated R
 I(~x) ⇒ p(~x). Observe that

this condition does not depend on the dynamics of TR, but only on its set of

states TΣ/E,s. The premises in inference rule Inv are used in the literature

to cast the notion of inductive invariant, i.e., of a predicate holding in the

set of initial states and being maintained true by every transition.

The only remaining question is how to prove I(~x)⇒ p(~x). This question

is answered by Theorem 8, which gives a necessary and sufficient condition

for proving statements of this form. Theorem 8 justifies the soundness of

the the inference rule C⇒ in Figure 4.2.

Theorem 8. Inference rule C⇒ in Figure 4.2 is sound.

Proof. (=⇒) Let q(v, v1, . . . , vn) = w if γ′ ∈ EqΠ and assume EΠ ` γ′σ ∧
wσ = > for some ground substitution σ : X −→ TΣ. The goal is to show

EΠ ` p(v, v1, . . . , vn)σ = >. Note that EΠ ` γσ ∧ wσ = > implies EΠ `
q(v, v1, . . . , vn)σ = > witnessed by equation q(v, v1, . . . , vn) = w if γ′, and

therefore EΠ ` p(v, v1, . . . , vn)σ = > by hypothesis. (⇐=) Let t ∈ TΣ,s

50

R
 I(~x)⇒ p(~x) R
 p(~x)⇒ �p(~x)

R
 I(~x)⇒ �p(~x)
Inv

EΠ

∧

(q(v,~v)=w if γ′)∈EqΠ

p(v,~v) = > if γ′ ∧ w = >

R
 q(~x)⇒ p(~x)
C⇒

Figure 4.2: R ground p-invariance from I.

and σ : X −→ TΣ. Assume EΠ ` q(t, ~xσ) = >. The goal is to prove

EΠ ` q(t, ~xσ). Then, there is q(v, v1, . . . , vn) = w if γ′ ∈ EqΠ and ground

substitution ρ : X −→ TΣ such that EΠ ` γ′ρ ∧ wρ = >, t =E vρ, and

ρ(vi) =E σ(xi), for 1 ≤ i ≤ n. Then, it follows from the assumption that

EΠ ` p(v, v1, . . . , vn)ρ = >, that is, EΠ ` p(t, ~x)σ = > since E ⊆ EΠ.

4.3 Strengthenings for Ground Invariance

Strengthening of invariants is a key technique for verifying safety properties.

This section presents two strengthening techniques for ground invariance

and proves their correctness. In what follows, R = (Σ, E,R), Σ = (S,≤, F),

s ∈ S, and Π = (ΣΠ, E ∪ EΠ) are as assumed in Section 4.2. It is also

assumed that the states predicates in Π are parametric on the same tuple

of sorts, say s1, . . . , sn, xs ∈ Xs, and ~x = xs1 , . . . , xsn are variables in X

different from xs.

For state predicates p, I ∈ Πs1,...,sn , a strengthening for the ground p-

invariance from I of a topmost rewrite theory R is given by a state predicate

q ∈ Πs1,...,sn such that R is ground q-invariant from I and, moreover, q can

be used to prove R
 I(~x)⇒ �p(~x). Traditionally, state predicate q is the

result of a gradual refinement of a too-weakly defined p for which R being

ground p-invariant cannot be proved directly by means of inference rule Inv

in Figure 4.2.

Recall that inference rule Inv says that if I(~x) ⇒ p(~x) and R is ground

p-stable, then R is ground p-invariant from I. The first key observation for

an strengthening technique is the following: R may be ground p-invariant

from I and yet not be ground p-stable. For ground p-invariance from I

the only states from which p need not be falsified are precisely those states

reachable from a state in I. The idea is then to strengthen p as follows: if R
is ground q-invariant from I and every state satisfying q also satisfies p (i.e.,

51

q(~x) ⇒ p(~x)), then clearly R is ground p-invariant from I. This is because

any state in TR reachable from I satisfies p.

Theorem 9 states that for proving R
 I(~x) ⇒ �p(~x) by assuming R

J(~x) ⇒ �q(~x), it is sufficient to equationally check the inductive validity

of q(~x) ⇒ p(~x) and I(~x) ⇒ J(~x). In LTL terms, Theorem 9 proves the

soundness of inference rule Str1 in Figure 4.3.

Theorem 9. Inference rule Str1 in Figure 4.3 is sound.

Proof. Let t, u ∈ TΣ,s and σ : X −→ TΣ, assume that (i) EΠ ` I(t, ~xσ) = >
and (ii) R ` t→∗ u. The goal is to prove that EΠ ` p(u, ~xσ) = >. From (1)

and (i) follows EΠ ` J(t, ~xσ) = >. This, (2), and (ii) imply EΠ ` q(u, ~xσ) =

>, which together with (3) imply EΠ ` p(u, ~xσ) = >, as desired.

The second strengthening technique is inspired by the following inductive

observation. If R is ground q-invariant from I, then any state reachable

from an initial state in I satisfies q. In particular, if t is a state from which a

transition falsifies p’s stability, then q may be used to to prune those spurious

states by strengthening the condition of the stability proof obligation with

the additional information of q and t.

Rule Str2 in Figure 4.3 formalizes this strengthening, which is proved

sound in Theorem 10.

Theorem 10. Inference rule Str2 in Figure 4.3 is sound.

Proof. Let t, u ∈ TΣ,s and let σ : X −→ TΣ be a ground substitution.

Assume that: (i) I(~xσ) holds in state t and (ii) t →∗ u. The goal is to

prove that p(~xσ) holds in u. By induction on the number m of rewrite steps

proving R ` t→m u. If m = 0, then R ` t = u and since t, u ∈ TΣ,s and EΠ

protects E , it follows that t =E u. Then, from (i) and the first premise in

the inference rule, EΠ ` p(u, ~xσ) = >. If R ` t→m+1 u, then there is a state

u0 ∈ TΣ,s satisfying R ` t →m u0 ∧ u0 → u. By the induction hypothesis

EΠ ` p(u0, ~xσ) = > holds. From the second premise, EΠ ` q(u0, ~xσ) = >
holds. These two facts and the third premise in the rule, imply the goal

EΠ ` p(u, ~xσ) = >.

Theorem 11 proves the soundness of the narrowing inference rule Nr2 in

Figure 4.3.

Theorem 11. Let R = (Σ, E ∪ B,R) be admissible with signature Ω ⊆ Σ

of free constructors modulo B. Let p, q ∈ Πs1,...,sn and l → r if γ ∈ R.

Without loss of generality, assume that the equations EpΠ ⊆ EΠ defining p

52

R
 I(~x)⇒ J(~x) R
 J(~x)⇒ �q(~x)
R
 q(~x)⇒ p(~x)

R
 I ⇒ �p Str1

R
 I(~x)⇒ p(~x) R
 I(~x)⇒ �q(~x)
R
 q(~x) ∧ p(~x)⇒©p(~x)

R
 I(~x)⇒ �p(~x)
Str2

EΠ

∧

(l→r if γ)∈R
(θ,w,γ′,~v)∈Θ(l,r,γ)

p(r,~v)θ = > if γθ ∧ γ′θ ∧ wθ=> ∧ q(l, ~v)θ=>

R
 q(~x) ∧ p(~x)⇒©p(~x)
Nr2

Figure 4.3: Strengthenings for R = (Σ, E,R), with Θ as defined in Theorem 10.

strengthening

InvA

is a
na

lyz
ed

 by

Proof
Obligations

generates

ITP
Maude's Inductive
Theorem Prover

are

 ha
nd

led
 by

POs discharged Success !

Specification

EΠ
Predicates

System
R

Property

ϕ

Figure 4.4: Approach for checking ground invariance and ground stability of rewrite the-
ories.

are all conditional, have no variables in common with the rewrite rule, and

have Ω-patterns as left-hand sides in the state parameter. If

Θ(l,r,γ) =
⋃

(p(v,v1,...,vn)=w if γ′)∈Ep
Π

{(θ, w, γ′, v1, . . . , vn) | θ ∈ CSUB(v = l)}.

then, inference rule Nr2 in Figure 4.3 is sound.

Proof. Similar to the proof of Theorem 7.

4.4 InvA: The Maude Invariant Analyzer Tool

The approach for proving ground stability properties in the InvA tool is

depicted in Figure 4.4.

53

For a topmost rewrite theory R and of a set of state predicates Π specified

in Maude, the InvA tool mechanizes inference rules St, Inv, Str1, Str2,

Nr1, and Nr2. Given a ground stability or ground invariance property

ϕ, it generates equational proof obligations such that, if they hold, then

TR |= ϕ. It also supports proving properties of the form q ⇒ p. Thanks

to the availability since Maude 2.6 of unification modulo commutativity

(C), associativity and commutativity (AC), and modulo these theories plus

identities (U), and to the narrowing modulo infrastructure, the InvA tool

can handle modules with operators declared C, CU, AC, and ACU.

4.4.1 Commands Available to the User

The commands available in the InvA tool are the following:

(help .) shows the list of commands available in the tool.

(analyze-stable <pred> in <module> <module> .) generates the proof

obligations for proving the premise of inference St with inference Nr1,

for the given predicate and the given modules. The first module equa-

tionally specifies the state predicate and the second one the topmost

rewrite theory. This command tries to eagerly discharge the proof

obligations; those that cannot be discharged are shown to the user.

(analyze-stable <pred> in <module> <module> assuming <pred> .)

generates the proof obligations for proving the third premise of infer-

ence Str2 with inference Nr2, for the given predicate and the given

modules. The first module equationally specifies the state predicates

and the second one the topmost rewrite theory. This command tries

to eagerly discharge the proof obligations; those that cannot be dis-

charged are shown to the user.

(analyze <pred> implies <pred> in <module> .) generates the proof

obligations for proving the given implication in the given module, ac-

cording to inference C⇒. This command tries to eagerly discharge the

proof obligations; those that cannot be discharged are shown to the

user.

(show pos .) shows the proof obligations computed in the last analyze

command that could not be discharged; those that were discharged

are not shown.

54

(show-all pos .) shows all the proof obligations computed in the last

analyze command.

Observe that the analysis commands in InvA give direct tool support for

deductive reasoning with some of the inference rules presented in this chap-

ter, but not for all of them. For example, there is no command in InvA

directly supporting deduction with inference rule Inv. Nevertheless, de-

duction with all inference rules in this chapter is supported by InvA via

combination of commands. For example, deduction with inference rule Inv

can be achieved by combining the analyze and analyze-stable commands.

4.4.2 Automatic Discharge of Proof Obligations

After applying rules St, Inv, Str1, Str2, Nr1, and Nr2 according to the

user commands, the InvA tool uses rewriting-based reasoning and narrowing

procedures, and SMT decision procedures for automatically discharging as

many of the generated equational proof obligations as possible. For an

admissible equational specification E = (Σ, E ∪ B) and a conditional proof

obligation ϕ of the form

t = u if γ,

the InvA tool applies a proof-search strategy such that, if it succeeds, then

the Kripke structure associated to the initial reachability model satisfies ϕ.

Otherwise, if the proof-search fails, the proof obligation ϕ (or an equivalent

variant) is output to the user.

For the proof-search process, the InvA tool first tries to simplify Boolean

expressions in ϕ and assumes that any operator ‘∼’ is an equationally defined

equality predicate, i.e., an equality enrichment (see Section 2.3). Using this

information, a Boolean transformation can be applied recursively to ϕ with

the additional information of the equality enrichment, if any is defined.

The goal of the Boolean transformation process is to obtain, if possible, an

inductively equivalent proof obligation ϕ′ for which the of automatic search

techniques, explained below, have better chances of success.

The following is a description of the Boolean transformations applied re-

cursively by the tool:

• If t = u in ϕ is such that t is of the form t1 ∼ t2 and u of the form ⊥,

then ϕ is transformed into > = ⊥ if γ ∧ t1 = t2.

55

• If v1 = v2, with v1, v2 ∈ TΣ(X)Bool , is any of the Σ-equalities in the

condition γ of ϕ, then:

– If v1 is of the form v1
1 ∼ v2

1 and v2 of the form >, then v1 = v2 is

replaced by v1
1 = v2

1.

– If v1 is of the form v1
1 u · · · u vn1 and v2 of the form >, then

v1 = v2 is replaced by v1
1 = > ∧ · · · ∧ vn1 = >. Note that the vi1

have sort Bool .

– If v1 is of the form v1
1 t · · · t vn1 and v2 of the form ⊥, then

v1 = v2 is replaced by v1
1 = ⊥ ∧ · · · ∧ vn1 = ⊥. Note that the vi1

have sort Bool .

Recall that u and t are the conjunction and disjunction function symbols

used by the equality enrichment introduced in Section 2.3. Also note that Σ-

equalities are unoriented, and thus in the Boolean transformation the order

of terms in the equalities is immaterial.

After the Boolean transformation is completed, the following strategy

is applied to the resulting proof obligation. Assume ϕ has been already

simplified by the above transformation. Let t, u, γ be obtained by replacing

each variable x ∈ X by a new constant x ∈ X, with Σ ∩X = ∅.

Equational simplification. First, the strategy checks if ϕ holds trivially,

i.e., if t ↓Σ,E/B=B u ↓Σ,E/B or there is ti = ui in γ such that ti ↓Σ,E/B
, ui ↓Σ,E/B∈ TΣ but ti ↓Σ,E/B 6=B ui ↓Σ,E/B. Some simplifications in

the form of reduction to canonical forms can be made to ϕ, even if

they do not yield a trivial proof of ϕ. In some cases, such canonical

reductions are incorporated into ϕ and the Boolean transformation

used again.

Context joinability. Second, it checks whether ϕ is context-joinable [33].

The proof obligation ϕ is context-joinable if t and u are joinable in the

rewrite theory RϕE = (Σ(X), B,
−→
E ∪−→γ), obtained by making variables

into constants and by orienting the equations E as rewrite rules
−→
E and

heuristically orienting each equality ti = ui in γ as a sequent ti → ui

in −→γ .

Unfeasability. Third, it checks if the proof obligation is unfeasible [33].

The proof obligation ϕ is unfeasible if there is a conjunct ti → ui in −→γ
and v, w ∈ TΣ(X) such that RϕE ` ti → v∧ti → w, CSUB(v = w) = ∅,

and v and w are strongly irreducible with
−→
E modulo B.

56

SMT Solving. Last, it checks if the proof obligation can be proved by

an SMT decision procedure. The condition γ of the proof obligation

ϕ is analyzed and, if possible, a subformula consisting only of arith-

metic subexpressions is extracted. This subformula has the following

property: if it is a contradiction, then γ is unsatisfiable. Therefore,

if the SMT decision procedure answers that the input subformula is

unsatisfiable, then, as in the previous test, ϕ is unfeasible.

Because of the admissibility assumptions on (Σ, E ∪ B), the first test of

the strategy either succeeds or fails in finitely many equational rewrite steps.

For the second and third tests, the strategy is not guaranteed to succeed or

fail in finitely many rewrite steps because the oriented sequents −→γ can falsify

the termination assumption. So, for these last two checks, InvA uses a bound

on the depth of the proof-search.

4.5 Related Work and Concluding Remarks

Chandy and Misra [20] and Manna and Pnueli [68] pursued the idea of using

a deductive methodology to prove the invariance properties of concurrent

systems specified in imperative languages. The notion of stability was in-

spired by the definition of the stable predicate in [76]. A comprehensive

account of the vast literature on deductive approaches for verifying invari-

ants of concurrent systems is beyond the scope of the present work; the aim

here is more modest, namely, the focus is on related work using rewriting

techniques for the deductive verification of invariants.

Rusu [94] proposes an approach for verifying invariant properties of a

(possibly infinite-state) concurrent system specified by an unconditional top-

most rewrite theory, following the ideas of Bruni and Meseguer [18]. That

approach consists in casting an invariance problem of the form R
 I ⇒ �p
as an inductive problem of an equational theory M(R, I) in membership

equational logic, an equational sublogic of rewriting logic, as follows: R

I ⇒ �p if and only if M(R, I)
 p(t) = > for every ground term t of sort

Reachable, and t has sort Reachable inM(R, I) if and only if t isR-reachable

from I. The approach in [94] is complemented by bounded symbolic execu-

tion, achieved by narrowing modulo, so that a property can be symbolically

tested before trying to prove it invariant. The key difference between this

approach and the one in this chapter is that the proof obligations generated

for proving M(R, I)
 p(t) = > do not take advantage of p’s equational

definition, in contrast to the narrowing-based reasoning incorporated in the

57

inference system here. The approach in this section can benefit from us-

ing narrowing for the symbolic testing of state predicates, although more

research is required for handling conditional rewrite theories.

Proof scores in the OTS/CafeOBJ method are used to prove invariant

properties of concurrent systems specified by observational transition sys-

tems (OTS) [80]. This approach has been applied for verifying safety prop-

erties of large specifications, including communication protocols. The ap-

proach is to divide a formula stating an invariant property into reasonably

smaller ones by exploiting properties of the Boolean operators, each of which

is proved by writing proof scores (or proof obligations) to be discharged indi-

vidually by equational rewriting. The main difference between the approach

presented here and the OTS one is that proof scores are constructed and

manipulated manually by the user, which adds considerable time to the veri-

fication process. The interesting idea of exploiting the properties of Boolean

operators needs to be further studied and considered within the inference

framework here.

Combinations of deductive and algorithmic techniques have also been pro-

posed for proving temporal logic properties ϕ of a (possibly infinite-state)

concurrent system specified by a rewrite theory R = (Σ, E,R). Equational

abstraction [74] reduces the problem of whetherR satisfies ϕ to model check-

ing ϕ on a finite state abstract version R/∆ = (Σ, E∪E∆, R∪R∆). Invisible

transitions [42] approach the problem of whether R satisfies ϕ by identifying

a subset S ⊆ R of rewrite rules that are ϕ-invisible (i.e., rewriting with S

does not change the truth value of the predicate ϕ) to model checking that

property on a finite state simplified version R/S = (Σ, E ∪ S,R \ S). Both

equational abstractions and invisible transition techniques tackle the veri-

fication problem of infinite-state systems by making finite the state space

explosion, so that model checking methods are decidable. These two ap-

proaches, as it is also the case in the approach discussed here, require user-

intervention for defining, respectively, the abstraction predicates and the

invisible rewrite rules, and for discharging the inductive proof obligations

resulting from the corresponding transformations (i.e., admissibility con-

ditions plus the proof obligations specific to each method). In particular,

the checking algorithms based on narrowing presented in this chapter can be

used to generate proof obligations for checking the rewrite rules S ⊆ R of R,

p-invisible for a state predicate p. These approaches can complement each

other and can be combined, resulting in a powerful and versatile framework

for proving temporal properties of rewrite theories. The mechanization of

these three approaches in order to reduce user intervention is an exciting

58

topic for further research.

Narrowing-based symbolic model checking techniques for topmost rewrite

theories R have been previously studied in [38], where the idea is to “fold”

the narrowing tree forR that can in practice result in finite-state system that

symbolically simulates R. It is worth pursuing an extension of these nar-

rowing symbolic model checking techniques for conditional rewrite theories,

so that the two approaches can be combined for symbolic model checking

and for symbolic simulation (following the idea of Rusu in [94]).

59

CHAPTER 5

INVA CASE STUDY I: RELIABLE COMMUNICATION

IN THE ALTERNATING BIT PROTOCOL

This chapter presents the first case study about the deductive analysis of

inductive safety properties using the methodology, the proof system, and the

Maude Invariant Analyzer tool (InvA) introduced in Chapter 4. The subject

of study is a highly concurrent protocol for reliable data communication

across a lossy channel. As a result, this chapter reports on the successful

and full mechanical verification in the InvA tool of a main invariant for the

communication protocol.

Implementations of the message-passing model, such as TCP/IP, provide

the programmer with an abstraction of a stream of data messages that

communicate two parties such that each message is delivered in the order

sent. However, the physical communication between these two parties is

not necessarily reliable. Due to congestion in the network (other traffic),

transient noise, buffer overflows, or other problems, some of the messages

sent out over the network may not actually arrive to the other end, or

they may arrive incomplete or corrupted (usually detected with some sort

of checksum). Furthermore, messages may arrive out of order. Therefore, it

is necessary to include in these message-passing implementations a protocol

that ensures that when a message is lost, it is retransmitted by the sender.

At the same time, the protocol must guarantee that duplicate messages are

not delivered to the receiver and that the delivery order is consistent with

the sending order.

The Alternating Bit Protocol (ABP) [8], is a simple, yet effective, pro-

tocol for managing the retransmission of lost or corrupted messages. The

protocol works by identifying two processes, the sender and receiver, each

with a control bit called the alternating bit, using a lossy channel. Both

60

sender and receiver can send messages across the channel and every mes-

sage sent is signed with the current bit. By using the alternating bits, the

protocol can successfully identify message loss or corruption. In the proof

technologies that address distributed concurrent non-deterministic systems,

ABP is a well-established benchmark and it is perhaps the simplest non-

trivial example of such a system. This chapter uses ABP as the basis of the

analysis.

The invariant in this case study is about reliable communication in ABP,

which is the main safety property of the protocol. As a result of the case

study, a fully mechanized proof for the correctness of the protocol is ob-

tained with the InvA tool, and with help of Maude’s ITP that was useful

for discharging some equational proof obligations and auxiliary lemmata.

The proof relies heavily on the specification and verification methods of

Chapter 4, and their implementation in the InvA tool.

This chapter is organized as follows. A summary of ABP and the mod-

eling methodology in Maude are explained in Section 5.1. The discussion

on the verification task for the reliability property of ABP is documented in

Section 5.2. Related work and a comparison with other formal verification

case studies regarding the protocol are collected in Section 5.3. The formal

specification of ABP and a proof of its admissibility, including the specifi-

cation of state predicates, auxiliary functions, auxiliary lemmata, and ITP

proof scripts can be found in Appendix B.

5.1 ABP

The Alternating Bit Protocol (ABP) [8] is a data layer protocol. It was

designed to achieve reliable full-duplex data transfer between two processes

over an unreliable half-duplex transmission line in which messages can be

lost or corrupted in a detectable way. The data link layer, the second lowest

layer in the OSI seven layer model, splits data into frames for sending on

the physical layer and receives acknowledgment frames. It performs error

checking and re-transmits frames not received correctly. It provides an error-

free virtual channel to the network layer, the third lowest layer in the OSI

layer model.

The overall structure of ABP is illustrated in Figure 5.1. The protocol

comprises an input stream of data to be transmitted, a sender and a receiver

process, each having a data buffer and a one bit state, a data channel for

data-bit pairs called bit-packets, an acknowledgment channel for bit-packets

61

data bit data bit
output streamack channelinput stream

data channel

Figure 5.1: The Alternating Bit Protocol.

consisting of a single bit, and an output data stream. Here is how the

protocol works:

• The sender process starts by repeatedly sending bit-packets (b, d1) into

the data channel, where b is the sender’s bit and d1 is the first element

of the input stream.

• The receiver process starts by waiting until it receives the bit-packet

(b, d1), and then it repeatedly sends b over the acknowledgment chan-

nel.

• When the source process receives b, it begins repeatedly sending the

bit-packet (flip(b), d2), where d2 is the second element of the input

stream, which is what the receiver process is now waiting for.

• When the target receives (flip(b), d2), it begins sending packets con-

taining flip(b).

• At any moment either channel can duplicate or lose its oldest packet,

if any.

• And so on ...

The protocol is highly concurrent and non-deterministic because, for in-

stance, it is unknown how long will it take before a bit-packet gets through.

To guarantee progress, it must be assumed that the channels are fair, in the

sense that if the sender persists, eventually a bit-packet will get through.

The reason is that without this assumption the algorithm is not correct

because data transmission might fail forever. However, this is a fairness

assumption that is not needed for analyzing the reliable communication

enforced by the protocol. Remember that a safety property assures that

“nothing bad happens”, even when nothing ever happens.

5.1.1 Formal Modeling

The ABP specification in Maude has 9 modules. This section should be read

in connection with Appendix B, which contains the full formal specification.

62

At the top level, the state space is represented by the top sort Sys defined

in module ABP-STATE, which is a 6-tuple:

sort Sys .

op _:_>_|_<_:_ : iNat Bit BitPacketQueue BitQueue Bit iNatList

-> Sys [ctor] .

The arguments of a state are the data from the input stream currently

being transmitted by the sender (as iNat), the bit of the sender (as Bit),

the data channel (as BitPacketQueue), the acknowledgment channel (as

BitQueue), the bit of the receiver (as Bit), and the output stream (as

iNatList).

The sort iNat is that of natural numbers in Peano notation, together with

an equality enrichment. Natural numbers are used to represent packets in

the potentially infinite input stream.

sort iNat .

op 0 : -> iNat [ctor] .

op s_ : iNat -> iNat [ctor] .

op _~_ : iNat iNat -> Bool [comm] .

Bits are defined in module BIT by sort Bit with two constructor constants,

a ‘flipping’ operator, and an equality enrichment:

sort Bit .

ops on off : -> Bit [ctor] .

op flip : Bit -> Bit .

op _~_ : Bit Bit -> Bool [comm] .

eq flip(on)

= off .

eq flip(off)

= on .

Sort BitPacketQueue represents lists of bit-packets, sort BitQueue rep-

resents lists of bits, and sort iNatList represents lists of natural numbers.

They are all lists defined in the usual way: an empty list is identified by the

constructor constant nil, “cons” is a constructor binary symbol denoted by

juxtaposition, and append is a defined binary symbol denoted by ‘;’. For

instance, sort BitQueue defined in module BIT-QUEUE is specified as follows:

sort BitQueue .

op nil : -> BitQueue [ctor] .

op __ : Bit BitQueue -> BitQueue [ctor prec 61] .

op _;_ : BitQueue BitQueue -> BitQueue [prec 65] .

eq nil ; BQ:BitQueue

= BQ:BitQueue .

eq B1:Bit BQ1:BitQueue ; BQ2:BitQueue

63

= B:Bit (BQ1:BitQueue ; BQ2:BitQueue) .

Having covered the basic notation, consider the following ground term of

sort Sys representing a state in the system:

s(0) : on > (off,0) nil | nil < off : (0 nil)

In this state, the packet from the input stream currently being sent in s(0),

the sender’s bit is on, the data channel contains only the bit-packet (off,0),

the acknowledgment channel is empty, the receiver’s bit is off, and the

output stream consists only of the packet 0.

Finally, module ABP specifies the operation of the protocol with 15 rewrite

rules. These rewrite rules model the transmission of the bit-packets through

the data channel, the reception of acknowledgments from the receiver, data

duplication and loss, among other behaviors of the system. For instance,

consider the following five rewrite rules:

rl [send-1] :

N:iNat : B1:Bit > BPQ:BitPacketQueue

| BQ:BitQueue < B2:Bit : NL:iNatList

=> N:iNat : B1:Bit > BPQ:BitPacketQueue ; ((B1:Bit, N:iNat) nil)

| BQ:BitQueue < B2:Bit : NL:iNatList .

rl [recv-1b] :

N:iNat : on > BPQ:BitPacketQueue

| off BQ:BitQueue < B2:Bit : NL:iNatList

=> s(N:iNat) : off > BPQ:BitPacketQueue

| BQ:BitQueue < B2:Bit : NL:iNatList .

rl [recv-1c] :

N:iNat : off > BPQ:BitPacketQueue

| on BQ:BitQueue < B2:Bit : NL:iNatList

=> s(N:iNat) : on > BPQ:BitPacketQueue

| BQ:BitQueue < B2:Bit : NL:iNatList .

rl [recv-2a] :

N:iNat : B1:Bit > (on,N2:iNat) BPQ:BitPacketQueue

| BQ:BitQueue < on : NL:iNatList

=> N:iNat : B1:Bit > BPQ:BitPacketQueue

| BQ:BitQueue < off : (N2:iNat NL:iNatList) .

rl [dup-1] :

N:iNat : B1:Bit > BP:BitPacket BPQ:BitPacketQueue

| BQ:BitQueue < B2:Bit : NL:iNatList

=> N:iNat : B1:Bit > BP:BitPacket (BP:BitPacket BPQ:BitPacketQueue)

| BQ:BitQueue < B2:Bit : NL:iNatList .

The effects of these rules in a state can be summarized as follows:

[send-1] models the “fifo” placement of the current bit-packet in the data

channel (the acknowledgment channel behaves in the same way).

64

[recv-1b] models the reception of the acknowledgment the sender was

waiting for and thus the sender process immediately updates the packet

to be transmitted with the next available packet from the input stream

and flips its communication bit.

[recv-1c] models the reception of an acknowledgment the sender was not

waiting for and thus the acknowledgment is ignored.

[recv-2a] models the reception of a bit-packet whose contents are put in

the output stream.

[dup-1] duplicates the first message in the data channel.

Note that because of rule [recv-1c], for instance, the formal model of the

ABP has potentially infinitely many reachable states: every time a packet is

successfully transmitted, the sender’s counter modeling the input stream is

increased by one and then the whole sending process starts over again but

the next packet.

5.2 Reliable Communication

The analysis that follows is based on the formal model explained in Sec-

tion 5.1.1.

One of the main properties the ABP should enjoy is the reliable commu-

nication property. This means that the protocol makes possible to reliably

communicate and deliver information from a source to a destination, even

in the presence of unreliable channels of communication. The goal in this

section is to report on the experience of using the InvA tool in the successful

and mechanical verification of this property.

5.2.1 Formal Specification of the Property

Reliable communication in ABP means that whenever n packets have been

delivered, these were the first n packets sent in that particular order. Note

that this is a property that must hold for each natural number n and that

cannot be effectively checked by means of direct algorithmic techniques, such

as model checking the ABP specification, even if the set of initial states is

finite.

The reliable communication property is expressed by the state predicate

inv-main and is defined as follows:

65

op inv-main : Sys -> Bool .

eq [inv-main-1] :

inv-main(N:iNat : B:Bit > BPQ:BitPacketQueue

| BQ:BitQueue < B:Bit : NL:iNatList)

= (N:iNat NL:iNatList) ~ gen-list(N:iNat) .

ceq [inv-main-2] :

inv-main(N:iNat : B1:Bit > BPQ:BitPacketQueue

| BQ:BitQueue < B2:Bit : NL:iNatList)

= NL:iNatList ~ gen-list(N:iNat)

if B1:Bit ~ B2:Bit = false .

op gen-list : iNat -> iNatList .

eq gen-list(0)

= (0 nil) .

eq gen-list(s N)

= (s N) gen-list(N) .

State predicate inv-main is fully defined by two equations and uses the

auxiliary function gen-list. Equation [inv-main-1] considers the case in

which the parity of the sender and receiver bits coincides. In this case, the

reliable communication property holds if and only if the delivered packets

correspond to all but the last packet sent and they are all in order. Equation

[inv-main-2] considers the case in which the parity of the sender and

receiver bits does not coincide. In this case, the reliable communication

property holds if and only if the delivered packets correspond to all packets

sent and they are all in order. Given a natural number n, function gen-list

generates the list of the first n natural numbers in decreasing order.

Consider the rule [recv-2b] that models packet reception in ABP in order

to motivate the correctness of the reliable communication property:

rl [recv-2b] :

N:iNat : B:Bit > (off,N1:iNat) BPQ:BitPacketQueue

| BQ:BitQueue < off : NL:iNatList

=> N:iNat : B:Bit > BPQ:BitPacketQueue

| BQ:BitQueue < on : (N1:iNat NL:iNatList) .

Note that when a packet N1:iNat is received, there is no assumption made

on the relationship between N1:iNat and the current packet from the input

stream N:iNat or the already delivered packets NL:iNatList. In this case,

there is no obvious reason for the reliable communication property to hold,

even if a state initially satisfies this property.

The goal is to prove the ABP inv-main-invariant from init. State predi-

cate init defines the set of initial states as follows:

op init : Sys -> [Bool] .

66

eq [init-1] :

init(0 : on > nil | nil < on : nil)

= true .

eq [init-2] :

init(0 : off > nil | nil < off : nil)

= true .

The set of initial states for the verification task at hand, as defined by init,

consists of exactly two states. Namely, those states where the packet to be

transmitted is 0, the sender and receiver bits coincide, the communication

channels are empty, and no packet has been delivered.

The following verification commands can be given to the InvA tool in order

to check if state predicate inv-main is an inductive invariant from init:

(analyze init(S:Sys) implies inv-main(S:Sys) in ABP-PREDS .)

(analyze-stable inv-main(S:Sys) in ABP-PREDS ABP .)

It is assumed that module ABP-PREDS contains the state predicates and

their corresponding auxiliary function symbols, and module ABP contains

the specification of ABP, as explained in Section 5.1.1 and documented in

Appendix B.

When issuing the above-mentioned commands, the InvA tool generates

the following output:

Checking ABP-PREDS ||- init(S:Sys) => inv-main(S:Sys) ...

Proof obligations generated: 2

Proof obligations discharged: 2

Success!

Checking ABP-PREDS ||- inv-main(S:Sys) => O inv-main(S:Sys) ...

Proof obligations generated: 30

Proof obligations discharged: 22

The following proof obligations need to be discharged:

8. from inv-main-2 & recv-2b : pending

inv-main(#7:iNat : #8:Bit > #10:BitPacketQueue

| #11:BitQueue < on :(#9:iNat #12:iNatList)) = true

if off ~ #8:Bit = false

/\ #12:iNatList = gen-list(#7:iNat).

...

The tool generates 32 proof obligations and automatically discharges 24

of them. The remaining 8 proof obligations are returned to the user; in

the snapshot, only one proof obligation for ground stability that was not

automatically discharged is shown and it is identified by label 8.

Upon inspection of the InvA’s output, it is relatively easy to observe

that inv-main is not an inductive invariant for ABP. Indeed, consider the

proof obligation identified by label 8, as show in the snapshot above, and

67

a ground interpretation where #8:Bit is on, #7:iNat and #9:iNat are 0,

and #12:iNatList is the singleton list 0 nil. For this particular ground

instantiation, the condition in the proof obligation is satisfied because on ~

off reduces to false and the value returned by gen-list on input 0 is the

ground list 0 nil. However, by equation [inv-main-2] in the definition of

predicate inv-main, this proof obligation is false because the lefthand side

of the conclusion reduces to the Boolean term 0 nil ~ 0 0 nil, which

ultimately reduces to false. This is evidence of the fact that a stronger

predicate is needed, that is, inv-main needs to be strengthened.

5.2.2 Strengthening the Invariant

The first observation to make is that the InvA tool would be able to automat-

ically discharge more proof obligations and also return simpler ones, if there

was some mechanism for achieving case analysis on the sort Bit. Since the

InvA internals do not offer this feature yet, a practical approach is to include

the case splitting as part of the predicate’s equational definition (similarly

to what was done in the definition of state predicate init). For instance,

state predicate inv is a finer-grained version of inv-main that exhibits the

idea of case splitting on the sort Bit for the case of the bits in the sender

and receiver.

op inv : Sys -> Bool .

eq [inv-1a] :

inv(N:iNat : on > BPQ:BitPacketQueue

| BQ:BitQueue < on : NL:iNatList)

= (N:iNat NL:iNatList) ~ gen-list(N:iNat) .

eq [inv-1a] :

inv(N:iNat : off > BPQ:BitPacketQueue

| BQ:BitQueue < off : NL:iNatList)

= (N:iNat NL:iNatList) ~ gen-list(N:iNat) .

eq [inv-2a] :

inv(N:iNat : on > BPQ:BitPacketQueue

| BQ:BitQueue < off : NL:iNatList)

= NL:iNatList ~ gen-list(N:iNat) .

eq [inv-2a] :

inv(N:iNat : off > BPQ:BitPacketQueue

| BQ:BitQueue < on : NL:iNatList)

= NL:iNatList ~ gen-list(N:iNat) .

Since the case analysis on the sort Bit is already implemented in predi-

cate inv, and this is potentially useful for automation in the overall proof,

this predicate is preferred over predicate inv-main. The idea is then to

strengthen inv instead of inv-main. Within the overall context of the ver-

68

ification task, the change of predicate inv-main for inv requires a formal

proof of the following implications:

ABP
 init⇒ inv and ABP
 inv⇒ inv-main.

These two proof obligations can be analyzed with the help of inference rule

C⇒ in Section 4.4. The InvA’s mechanization of this inference rule can

automatically discharge the implications:

Checking ABP-PREDS ||- init(S:Sys) => inv(S:Sys) ...

Proof obligations generated: 2

Proof obligations discharged: 2

Success!

Checking ABP-PREDS ||- inv(S:Sys) => inv-main(S:Sys) ...

Proof obligations generated: 4

Proof obligations discharged: 4

Success!

Finding a strengthening for inv is not an easy task at first sight. The non-

obvious relationships between the channels and the alternating bits, and the

many rules that can concurrently apply to a state make this harder. But it

is the deep understanding of these relationships that guides the proof effort

for obtaining a useful, yet succinct and elegant, strengthening for inv.

The key to it all is that the channels behave under some sort of uniformity

that is parametric on the sender and receiver bits. This notion of uniformity

can be precisely captured with the help of some auxiliary predicates for

the two communication channels. Indeed, consider the following auxiliary

predicates all-packets and good-packet-queue:

op all-packets : BitPacketQueue Bit iNat -> Bool .

eq [ap-1] :

all-packets(nil,B:Bit,N:iNat)

= true .

eq [ap-2] :

all-packets(BP:BitPacket BPQ:BitPacketQueue,B:Bit,N:iNat)

= BP:BitPacket ~ (B:Bit,N:iNat) and

all-packets(BPQ:BitPacketQueue,B:Bit,N:iNat) .

op good-packet-queue : BitPacketQueue Bit iNat -> Bool .

eq [gpq-1] :

good-packet-queue(nil,B:Bit,N:iNat)

= true .

ceq [gpq-2] :

good-packet-queue((B1:Bit,N1:iNat) BPQ:BitPacketQueue,

B:Bit,N:iNat)

69

= N:iNat ~ s(N1:iNat) and

good-packet-queue(BPQ:BitPacketQueue,B:Bit,N:iNat)

if B1:Bit = flip(B:Bit) .

eq [gpq-3] :

good-packet-queue((B:Bit,N1:iNat) BPQ:BitPacketQueue,

B:Bit,N:iNat)

= N:iNat ~ N1:iNat and

all-packets(BPQ:BitPacketQueue,B:Bit,N:Nat) .

Predicate all-packets on input BPQ:BitPacketQueue and (B:Bit,N:iNat)

is true if and only if all bit-packets in BPQ have the form (B,N). Predicate

good-packet-queue on input BPQ:BitPacketQueue and (B:Bit,N:iNat)

is true if and only if BPQ can be split into two parts, one of them possibly

empty, where in the initial part of the channel all packets are of the form

(flip(B),N-1) and in the second part of the form (B,N). For example:

good-packet-queue((on,3) (off,4) (off,4) nil, off, 4) = true

good-packet-queue((on,3) (on,3) nil, off, 4) = true

good-packet-queue((off,4) nil, off, 4) = true

good-packet-queue((off,4) (on,4) nil, off, 4) = false

Auxiliary predicates all-bits and good-bit-queue are similar to the

auxiliary predicates just discussed for channels of bit-packets, but they are

about channels of bits.

op all-bits : BitQueue Bit -> Bool .

eq [ab-1] :

all-bits(nil,B:Bit)

= true .

eq [ab-2] :

all-bits(B1:Bit BQ:BitQueue,B:Bit)

= B1:Bit ~ B:Bit and all-bits(BQ:BitQueue,B:Bit) .

op good-bit-queue : BitQueue Bit -> Bool .

eq [gbq-1] :

good-bit-queue(nil,B:Bit)

= true .

ceq [gbq-2] :

good-bit-queue(B1:Bit BQ:BitQueue, B:Bit)

= good-bit-queue(BQ:BitQueue,B:Bit)

if B1:Bit = flip(B:Bit) .

eq [gbq-3] :

good-bit-queue(B:Bit BQ:BitQueue, B:Bit)

= all-bits(BQ:BitQueue,B:Bit) .

The strengthening for inv is the state predicate good-queues that uses

the auxiliary predicates above-mentioned:

op good-queues : Sys -> Bool .

70

2/2

init⇒ inv
C⇒

2/2

init⇒ gq
C⇒

28/48
(48/48)

gq⇒©gq
Nr1

gq⇒ �gq
St

init⇒ �gq
Inv

46/48
(48/48)

gq ∧ inv⇒©inv
Nr2

init⇒ �inv
Str2

4/4

inv⇒ inv-main
C⇒

init⇒ �inv-main
Str1

Figure 5.2: Correctness proof of the Alternating Bit Protocol (gq stands for good-queues).
The expression d/g denotes the number g of proof obligations generated and the number
d of proof obligations automatically discharged by the InvA tool; the same expression in
parenthesis has the same meaning but includes the use of the ITP and/or some auxiliary
lemmata. Some trivial inferences have been omitted.

eq [good-queues-1a] :

good-queues(N:iNat : on > BPQ:BitPacketQueue |

BQ:BitQueue < on : NL:iNatList)

= all-bits(BQ:BitQueue,on) and

good-packet-queue(BPQ:BitPacketQueue,on,N:iNat) .

eq [good-queues-1b] :

good-queues(N:iNat : off > BPQ:BitPacketQueue |

BQ:BitQueue < off : NL:iNatList)

= all-bits(BQ:BitQueue,off) and

good-packet-queue(BPQ:BitPacketQueue,off,N:iNat) .

eq [good-queues-2a] :

good-queues(N:iNat : on > BPQ:BitPacketQueue |

BQ:BitQueue < off : NL:iNatList)

= good-bit-queue(BQ:BitQueue,off) and

all-packets(BPQ:BitPacketQueue,on,N:iNat) .

eq [good-queues-2b] :

good-queues(N:iNat : off > BPQ:BitPacketQueue |

BQ:BitQueue < on : NL:iNatList)

= good-bit-queue(BQ:BitQueue,on) and

all-packets(BPQ:BitPacketQueue,off,N:iNat) .

State predicate good-queues is fully defined by 4 equations. It characterizes

the patterns observed on the communication channels, and their relationship

with the alternating bits.

As it will be shown, the strengthening good-queues of inv is enough to

prove the correctness of ABP. Figure 5.2 depicts the full proof-tree for the

ground invariance of inv-main from init that uses state predicates inv and

good-queues.

The next step in the prove is to check

ABP
 good-queues ∧ inv⇒©inv and

ABP
 init⇒ �good-queues,

71

since the following two properties have been already proved:

ABP
 init⇒ inv and ABP
 inv⇒ inv-main.

When checking good-queues ∧ inv⇒©inv, the following is the output

given by the InvA tool:

rewrites: 97315 in 348ms cpu (346ms real) (279623 rewrites/second)

Checking ABP-PREDS ||- inv(S:Sys) => O inv(S:Sys)

assuming good-queues(S:Sys) ...

Proof obligations generated: 48

Proof obligations discharged: 46

The following proof obligations could not be discharged:

8. from inv-1a & recv-2b : pending

gen-list(#5:iNat)~(#6:iNat #9:iNatList) = true

if #5:iNat = #6:iNat

/\ all-bits(#8:BitQueue,off) = true

/\ all-packets(#7:BitPacketQueue,off,#5:iNat) = true

/\ gen-list(#5:iNat) = #5:iNat #9:iNatList .

46. from inv-1a & recv-2a : pending

gen-list(#5:iNat)~(#6:iNat #9:iNatList) = true

if #5:iNat = #6:iNat

/\ all-bits(#8:BitQueue,on) = true

/\ all-packets(#7:BitPacketQueue,on,#5:iNat) = true

/\ gen-list(#5:iNat) = #5:iNat #9:iNatList .

The tool generates 48 proof obligations and automatically discharges 46 of

them. The remaining 2 proof obligations are about properties of lists of nat-

ural numbers. Note that the Boolean transformation internally implemented

by the InvA tool (explained in Section 4.4) splits the Boolean conjunctions in

the specification of good-queues into conditions and the equality predicate

‘∼’ into ‘=’, whenever it was possible. A proof script for proof obligations 8

and 46, that automatically discharges these proof obligations, can be given

to the ITP as follows:

(goal po8 : ABP-PREDS |- A{ #5:iNat ; #6:iNat ; #9:iNatList ;

#8:BitQueue ; #7:BitPacketQueue }

(

(#5:iNat) = (#6:iNat) &

(all-bits(#8:BitQueue,off)) = (true) &

(all-packets(#7:BitPacketQueue,off,#5:iNat)) = (true) &

(gen-list(#5:iNat)) = (#5:iNat #9:iNatList)

=>

(gen-list(#5:iNat) ~ (#6:iNat #9:iNatList)) = (true)

)

.)

(auto .)

(goal po46 : ABP-PREDS |- A{ #5:iNat ; #6:iNat ; #9:iNatList ;

#8:BitQueue ; #7:BitPacketQueue }

72

(

(#5:iNat) = (#6:iNat) &

(all-bits(#8:BitQueue,on)) = (true) &

(all-packets(#7:BitPacketQueue,on,#5:iNat)) = (true) &

(gen-list(#5:iNat)) = (#5:iNat #9:iNatList)

=>

(gen-list(#5:iNat) ~ (#6:iNat #9:iNatList)) = (true)

)

.)

(auto .)

The following is the output of the ITP:

=================================

label-sel: po8#0@0

=================================

A{#5:iNat ; #6:iNat ; #7:BitPacketQueue ; #8:BitQueue ; #9:iNatList}

gen-list(#5:iNat) = #5:iNat #9:iNatList

& all-packets(#7:BitPacketQueue,off,#5:iNat) = true

& all-bits(#8:BitQueue,off) = true & #5:iNat = #6:iNat

==> gen-list(#5:iNat)~(#6:iNat #9:iNatList) = true

+++++++++++++++++++++++++++++++++

rewrites: 10751 in 173ms cpu (181ms real) (61990 rewrites/second)

Eliminated current goal.

q.e.d

+++++++++++++++++++++++++++++++++

rewrites: 9172 in 51ms cpu (51ms real) (177962 rewrites/second)

=================================

label-sel: po46#1@0

=================================

A{#5:iNat ; #6:iNat ; #7:BitPacketQueue ; #8:BitQueue ; #9:iNatList}

gen-list(#5:iNat) = #5:iNat #9:iNatList

& all-packets(#7:BitPacketQueue,on,#5:iNat) = true

& all-bits(#8:BitQueue,on) = true & #5:iNat = #6:iNat

==> gen-list(#5:iNat)~(#6:iNat #9:iNatList) = true

+++++++++++++++++++++++++++++++++

rewrites: 10751 in 179ms cpu (182ms real) (59745 rewrites/second)

Eliminated current goal.

q.e.d

+++++++++++++++++++++++++++++++++

This completes the proof of:

ABP
 good-queues ∧ inv⇒©inv.

73

For the proof of init⇒ �good-queues the InvA tool gives the following

output:

rewrites: 10072 in 32ms cpu (35ms real) (314730 rewrites/second)

Checking ABP-PREDS ||- init(S:Sys) => good-queues(S:Sys) ...

Proof obligations generated: 2

Proof obligations discharged: 2

Success!

rewrites: 57223 in 284ms cpu (283ms real) (201476 rewrites/second)

Checking

ABP-PREDS+LEMMATA ||- good-queues(S:Sys) => O good-queues(S:Sys) ...

Proof obligations generated: 48

Proof obligations discharged: 48

Success!

Note that in the proof of ground stability, module ABP-PREDS+LEMMATA is

used instead of ABP-PREDS. The former module contains 10 lemmata about

the auxiliary predicates used by state predicate good-queues. Without

these lemmata, the InvA tool discharges automatically only 26 of the 48 proof

obligations. See Appendix B for a complete explanation of these lemmata

and their mechanical proof in the ITP. This concludes the proof of the

ground invariance of good-queues from init for ABP.

The main result about the correctness of the ABP is then established me-

chanically in the InvA with help of the ITP. Namely, the following inductive

property holds:

ABP
 init⇒ �inv-main.

See Appendix B for mechanical proofs of the admissibility of modules ABP,

ABP-PREDS, ABP-PREDS+LEMMATA, and also for the ITP proof scripts used as

part of the main result in this chapter.

5.3 Related Work and Concluding Remarks

The Alternating Bit Protocol (ABP) is a well-established benchmark in the

proof technologies that address concurrent, non-deterministic systems. As

such, it has been formally studied from different viewpoints using a wealth

of formal techniques. They include process algebra [10, 12], temporal Petri

nets [100], the Calculus of Constructions [43], and timed rewriting logic [98],

among many others.

In the framework of observational transition systems (OTS), ABP has

been formally studied independently by K. Ogata and K. Futatsugi [81],

74

Measure [81] This chapter

Model LOC 286 208
Model + Predicates LOC 286 + 63 208 + 200

State predicates # 11 3
Lemmata # 7 10

Proof scripts LOC 5189 213
Proof scripts / # predicates LOC 471.8 71

Figure 5.3: Comparison of the ABP case study for the reliable communication property
with a similar case study using proof scores in [81].

and by K. Lin and J. Goguen [65]. In the former, the focus is on proving

the same invariant property about reliable communication based on simul-

taneous induction. In the latter, the focus is on verifying liveness properties

using conditional circular coinductive rewriting.

Figure 5.3 presents a comparison between the proof of the reliable com-

munication property for ABP presented in [81], that uses proof scores, and

the one presented here. This comparison is possible thanks to the authors

of [81] who kindly shared the source code of their case study.

Note that the human proof effort in [81] is significantly higher than the

one in proving the same property using the approach and tools of Chapter 4,

as presented in this chapter. However, this comparison needs to be taken

with a grain of salt, because many proof obligations in [81] are basic base

cases and there is no tool support for discharging them. In contrast, the

ITP was of great help, not only because it automatically took care of many

simple proof obligations, but also because of some of its equational inductive

techniques such as cover-set induction.

75

CHAPTER 6

INVA CASE STUDY II: SOME SAFETY PROPERTIES

OF IBOS

From Chapter 4 it is known that a safety property of a software system

asserts that “something bad should never happen”. This chapter presents

a case study on the mechanical verification of invariants for a browsing sys-

tem designed to satisfy explicit security requirements. The main invariant

studied here is of prime interest in its own right, but it is also intended as

challenging benchmark for the inference system and its implementation in

the InvA tool from Chapter 4. As a result, this chapter reports on the suc-

cessful mechanical verification of some auxiliary invariants for the browsing

system, that help in the verification task for the main invariant. It also re-

ports on some limitations, in both the current methods and tool, that have

restricted the degree of success in obtaining a full mechanical verification

for the main invariant.

The notion of a browser that is to be secure by design is exemplified in the

work on the Illinois Browser Operating System (IBOS) [101]. In contrast

to current web browsers that have enormous trusted computing bases that

commonly provide attackers with easy access to computer systems, IBOS

drastically reduces the trusted computing base for web browsers. This chap-

ter uses IBOS as the basis of the analysis and builds upon an updated version

of a Maude specification previously developed by R. Sasse [95, 96] that is

amenable for analysis in the InvA tool.

The main invariant is about the address bar being correct at all times,

which is an important safety property for a browser. In contrast to the

successful treatment of this similar property in [95, 96], in which reduction

techniques were used to obtain a finitary and tractable search space, the

specification in this chapter is used as it is for the purpose of the verifica-

76

tion task. As a result of the case study, low-level specification invariants,

each literally generating thousands of proof obligations, are automatically

handled by the tool. However, the same methods and techniques are par-

tially limited when it comes to proving the address bar being correct. All in

all, the IBOS specification is to date, and by far, the most challenging case

study analyzed with the InvA tool.

A summary of IBOS and the modeling methodology in Maude are ex-

plained, respectively, in Section 6.1 and Section 6.2. The discussion on the

verification task for the correctness of the address bar is documented in Sec-

tion 6.3, as well as the mechanical verification of two auxiliary invariants.

A summary of the limitations identified during the development of the case

study are collected in Section 6.3.4.

6.1 IBOS

This section closely follows and adapts the introductory treatment of IBOS

by R. Sasse [95], Section 4.1.

The Illinois Browser Operating System (IBOS) [101] is a web browsing

system developed at the University of Illinois that reduces the trusted com-

puting base required by web browsers. The trusted computing base is the

subset of the software in which any exploitable error would lead to the system

being potentially compromised. The problem with modern web browsers is

that they have a huge trusted computing base and are integrated tightly into

the actual operating system, and thus provide a convenient environment for

malicious attackers to gain access to computer systems. By having a re-

duced trusted computing base, IBOS offers increased security with respect

to modern web browsers.

IBOS is a combination of web browser and operating system. The trusted

computing base is reduced by utilizing a microkernel and exposing browser-

level abstractions at the lowest software layer. This approach allows for re-

moval of almost all traditional OS components and services from the trusted

computing base by directly mapping those browser abstractions to hardware

abstractions. The resulting design turns out to be flexible enough to enable

browser security policies while supporting traditional applications. In IBOS,

for instance, device drivers, network protocol implementation, the storage

stack, and window management software, among other system services, are

outside of the trusted computing base. They all run on top of the trusted

kernel of IBOS, which can enforce security policies. Also, the overhead added

77

to the browsing experience is small. See [101] for more details on IBOS.

Web-based applications (web apps) and the browser itself have become

quite popular targets for attacks on computer systems. The vulnerabilities

in web apps are ever increasing, so isolation of the web apps is highly desir-

able. Vulnerabilities in the actual web browsers are not as common as web

app vulnerabilities, but occur often enough to be troubling. Further vulner-

abilities are possible in the operating system, its services, and libraries.

Not all attacks are created equal. Attacks at the top of the software

stack will only give the attacker access to the browser’s current vulnerable

web app. Further down the stack, attacks on the browser would give the

attacker access to all web apps, their data, and system resources the browser

can access. At the bottom of that stack, attacks on the operating system

itself can be the most devastating, as the attacker can gain full control of

the system. Vulnerabilities higher in the stack turn out to be more common,

but are less damaging. Attacks lower in the stack have a much higher threat

potential, and that is what IBOS is trying to address.

IBOS is designed to compartmentalize all the different processes as much

as possible, and all communication is being forcibly routed through the

trusted kernel. The IBOS kernel decides, based on the policies, which com-

munication between processes is allowed, and thus possible. As will be seen

in Section 6.2, the communication between different web page instances, net-

work processes, the network card, the display memory, and the central kernel

is modeled. In Section 6.3, safety properties referring to the immutability

of the security policy are automatically obtained with help of the InvA tool.

The formal analysis in this chapter is done under the assumption of a correct

underlying microkernel. See [95] for a discussion about the features of the

L4Ka::Pistachio microkernel and the fully verified seL4 microkernel.

6.1.1 IBOS Architecture

Figure 6.1, borrowed from [95], depicts a simplified view of IBOS architec-

ture, in which the hardware is at the bottom of the stack, and the IBOS

kernel and part of the trusted computing base (TCB) are on top of that.

Everything on top of the kernel is not part of the TCB. Specifically, all web

apps, network processes and the network interface card (NIC) driver do not

need to be trusted. The following are observations about three important

components of the IBOS architecture:

The IBOS kernel. The IBOS kernel builds upon the L4Ka microkernel

78

Figure 6.1: IBOS Architecture.

and is the central component of the IBOS web browser. It takes care

of traditional OS tasks, e.g., process creation and application memory

management. Message passing is based on the L4Ka::Pistachio message

passing implementation, forcing all messages through the kernel, and

specifically allows the checking of the security policies.

Network process. The network process is responsible for HTTP requests.

It transforms HTTP data into a TCP stream and in turn into a series

of Ethernet frames which are passed to the NIC driver.

Web apps. A new web app is created for each individual page visit of the

user; specifically, whenever a link is clicked or a new URL is entered

into the address bar. A web app sends out the HTTP request to the

network process, parses HTML and runs JavaScript and renders web

content to a tab. Each web app is labeled with the origin of the HTTP

request used at creation.

A key property of the IBOS browser is that all communication, i.e., all

messages sent or received, get transmitted through the IBOS kernel. This is

because the message passing is implemented as system calls, which of course

go to the microkernel operating system, which is tightly integrated with the

IBOS kernel. The following are two key goals of IBOS:

• Security decisions happen at the lowest possible level: small TCB.

79

• Enough browser states and events are exposed, so as to allow for se-

curity policy checking; this makes IBOS flexible to allow new browser

security policies.

See [101] for all IBOS goals and more detail.

6.2 Formal Modeling Methodology

The verification of some IBOS properties in this chapter uses a new Maude

specification derived from the Maude specification of IBOS previously pre-

sented in [95, 96]. The new specification was obtained by source code inspec-

tion and from clarifications by R. Sasse when needed. It preserves reachabil-

ity and at the same time satisfies the conditions required by the techniques

in Chapter 4 for proving safety properties, and thus is amenable to me-

chanical analysis in the InvA tool. The documented source code of the new

specification is available from http://camilorocha.info/thesis.

The Maude specification models the architecture of IBOS and includes:

(i) the kernel, (ii) general message passing, (iii) web apps, (iv) network

processes, and (v) network interface card access. The main component, the

kernel, includes the policy checking mechanism for messages, an address bar,

the content currently displayed on the screen, etc. The user interface (UI)

is also part of the kernel.

All messages are forced to go through the kernel and they are thus subject

to the policies it wants to enforce. This is already a design decision in IBOS,

which the browser enforces, and it is reflected in the formal model in the

way messages are passed. Each process can only directly send messages to

the kernel, and the message will include the actual final destination in some

way; but only the kernel is able to send messages to any of the processes.

In the model, this is ensured by having two one-way pipes for messages

for each process and the kernel, i.e., one incoming and one outgoing pipe.

Thus, the kernel is the only connecting point and the policy checking is

easily centralized.

As mentioned earlier, the Maude specification of IBOS presented in this

section is amenable to mechanical verification in the InvA system, in contrast

to the original specification [95]. This new version of the specification is a

topmost rewrite theory which uses equality enrichments instead of built-in

equality predicates. Rewrite rules for checking the security policy enforced

by the system are preferred over auxiliary function symbols equationally de-

fined, and the list datatype modeling the communication pipes does not use

80

http://camilorocha.info/thesis

any associativity axioms, since they are problematic for unification purposes.

It is important to note that the new specification preserves reachability with

respect to the original specification, but some clarifications are in order:

• The function symbol removed from the original specification in [95],

appeared in the right-hand side of the rewrite rule that enforced the

security policy of the browser. Such an auxiliary function symbol

was originally defined by a collection of 10 equations that have been

upgraded to equivalent topmost rewrite rules in the newer specifica-

tion. The observation here is that one of the equations used Maude’s

owise programming feature for specifying that a message to the ker-

nel should be dropped whenever none of the other 9 equations applied,

i.e., whenever the security policy does not allow the kernel to handle

the message. In the new specification a message to the kernel can be

handled by the kernel if the security policy allows it or be dropped,

even if the security policy allows the kernel to handle such a message.

• In the case of pipes, all but one rewrite rule in the original specifi-

cation used the common “first-rest” matching for syntactic lists, thus

making the use of any associativity axioms unnecessary in these cases.

The remaining rewrite rule relied on the associativity axiom for non-

deterministically choosing an element in a nonempty pipe. This rule is

replaced by two rewrite rules in the new specification: one for moving

the first element in a nonempty pipe to the end of the pipe, and an-

other for choosing the top element in a nonempty pipe. Some of these

changes are detailed in Section 6.2.1.

It can be argued that the success in proving safety properties for the

Alternate Bit Protocol in Chapter 4 is a good indication that a formal

modeling approach, as the one taken here, can provide assurance about a

design if safety properties can be proved for the formal model. However, the

formal modeling process is done completely by hand. This raises two issues:

one being that a counterexample found in the model might not actually be

a counterexample in the original specification. That is checkable and no

actual false positive counterexamples have been identified. The second issue

is that the formal model is an abstraction of the actual browser, as well as a

translation of its code. Therefore, all security guarantees based on the this

model are given with respect to the design and cannot guarantee the total

absence of bugs introduced in the browser implementation.

The verification task in this chapter is different from the one in Chapter 4,

in the sense that the IBOS specification is a novel and more challenging

81

benchmark, even though the verification techniques in both cases are the

same. Also, this chapter is different from Chapter 4 in [95] in that the safety

properties here are mechanically obtained and do not rely on boundedness

arguments making the reachable state space finite, among other things.

6.2.1 IBOS Architecture Modeling

This section points out key properties and gives a general flavor of the model.

Figure 6.2, borrowed from [95], depicts the IBOS model state. At the top

level, the state space is represented by the top sort Sys, which is made up

of configurations of objects, all wrapped by curly brackets:

op {_} : Configuration -> Sys [ctor] .

Objects are formed by an object identifier, a type, and a set of attributes.

Each network process, web app, and the kernel is modeled as a single object.

In Figure 6.2, all objects outside the kernel are shown as rectangles. Pipes

are a special kind of object connecting the objects at their left and right

ends. Other than that, arrows show connectivity. The ellipses inside the

kernel contain relevant pieces of the kernel, that are not objects themselves.

There will be multiple copies of most objects, except for the NIC, display

and web app manager. The uniqueness of the kernel process is verified in

Section 6.3.2.

The Kernel and Message Passing.

All messages in the state are passed as system calls, where the browser-

specific part of the message is encapsulated in the system call. First, the

message part specific to the browser has the following format, called the

payload of the encapsulating system call:

op payload : Oid Oid MsgType MsgVal Label

typed untyped -> Payload [ctor] .

The arguments of payload are the sender (as Oid), the receiver (as Oid),

the message type (as MsgType), some auxiliary message info (as MsgVal),

an argument commonly containing the URL that is requested or sent (as

Label), and two more arguments (typed and untyped) that could transport

more data (and which are ignored here). The sort Oid is that of object or

process identifiers. Each web app, network process, etc., has an Oid. The

correct sender Oid is enforced by the kernel, as it knows which process sent

the system call encapsulating this payload.

82

Figure 6.2: IBOS Model State.

The actual message is built using the payload and system call type:

op msg : SyscallType Payload -> Message [ctor] .

op OPOS-SYSCALL-FD-SEND-MESSAGE : -> SyscallType .

where OPOS-SYSCALL-FD-SEND-MESSAGE is the most commonly used type of

system call for sending browser messages.

To model the fact that the kernel knows which process actually sent a

message (as a system call) and to make sure that in the model no two

processes can send messages directly to each other, but are forced to send

messages via the kernel, the model defines one pipe object per process (using

the same Oid as the associated process), which contains two one-way pipes,

going to the kernel from the process and going to the process from the kernel:

op pipe : -> Cid [ctor] .

op fromKernel : MessageList -> Attribute [ctor] .

op toKernel : MessageList -> Attribute [ctor] .

For instance, a pipe object for the process with object identifier 1050,

which currently holds no message going either way, is represented as follows:

< 1050 : pipe | fromKernel(mt), toKernel(mt) >

Also consider the following message that is going to be sent by process 1050:

83

msg(OPOS-SYSCALL-FD-SEND-MESSAGE,

payload(1050, 256, MSG-FETCH-URL, 0,

l(http,dom("test"),port(81)),

mtTyped, mtUntyped))

This message comes from web app 1050 and is addressed to network process

256. It requests an URL (MSG-FETCH-URL) from domain http://test:81.

In order to send the message, this is appended to the list of messages in

toKernel in the pipe object.

The kernel, with object identifier id(1), is only handling one thing at a

time, which is stored in handledCurrently. Once the current instruction

has been dealt with, any of the currently incoming messages can become the

next message to be executed. The following rule enforces the policy checking

when two process are allowed to exchange messages of a given type:

rl [kernelReceivesOPMessage-pa1] :

{ < id(1) : kernel |

handledCurrently(none),

msgPolicy(policy(ID:ProcId,ID2:ProcId,M:MsgType),

PS:PolicySet),

Att:AttributeSet >

< ID:ProcId : pipe |

toKernel(msg(ST:SyscallType,

payload(ID1:ProcId, ID2:ProcId, M:MsgType,

V:MsgVal, L:Label, T:typed, U:untyped)),

ML:MessageList),

Att2:AttributeSet >

Cnf:Configuration }

=> { < id(1) : kernel |

handledCurrently(

msg(ST:SyscallType,

payload(ID:ProcId, ID2:ProcId, M:MsgType,

V:MsgVal, L:Label, T:typed, U:untyped))),

msgPolicy(policy(ID:ProcId,ID2:ProcId,M:MsgType),

PS:PolicySet),

Att:AttributeSet >

< ID : pipe |

toKernel(ML:MessageList) ,

Att2:AttributeSet >

Cnf:Configuration } .

The policy checking is enforced by the matching condition on attributes

msgPolicy of the kernel and payload in attribute toKernel of the commu-

nicating process pipe. More precisely, the property being checked here is

that the message policy in msgPolicy allows the process ID:ProcId to send

messages of type M:MsgType to process ID2:ProcId. Then the message is

passed on to the kernel to become the next message to be executed. Note

that the sender identifier ID1:ProcId of the incoming message is changed

84

to the actual sender identifier ID:ProcId, which is the process identifier of

the pipe (and thus the associated process).

For the network processes, identifiers 256 through 1023 are being used, as

does IBOS. The attribute names of a network process are:

op returnTo : ProcId -> Attribute [ctor] .

op in : LabelList -> Attribute [ctor] .

op out : LabelList -> Attribute [ctor] .

Attribute returnTo stores the process identifier of the web app that this

network process will return data to, while attributes in and out hold the

lists (or queues) of labels representing URLs that the network process will

ask data from and has received data from already. As a simplification, a

given URL label is used to represent the data from that URL instead of

using the actual HTML code from the URL.

Process identifiers 1024 through 1055 are used for web apps. Their at-

tributes names are:

op rendered : Label -> Attribute [ctor] .

op URL : Label -> Attribute [ctor] .

op loading : Nat -> Attribute [ctor] .

The label inside rendered is the URL for which the web app has put the

data on the screen, provided it is the active web app. The label inside

URL is the location where this web app wants to load data from. Attribute

loading is just a binary flag indicating whether the web app has already

sent a request to load data. Initially, the rendered attribute for a new web

app will be empty, and loading is 0, meaning that it has not yet started to

load. The following topmost rule sends the message to start loading:

crl [fetch] :

{ < ID:ProcId : proc |

rendered(L1:Label), URL(L2:Label), loading(0),

Att:AttributeSet >

< ID:ProcId : pipe |

toKernel(ML:MessageList), Att2:AttributeSet >

Cnf:Configuration }

=> { < ID:ProcId : proc |

rendered(L1:Label), URL(L2:Label), loading(1),

Att:AttributeSet >

< ID:ProcId : pipe |

toKernel(ML:MessageList ;

(msg(OPOS-SYSCALL-FD-SEND-MESSAGE,

payload(ID:ProcId, id(4), MSG-FETCH-URL,

0, L2:Label, mtTyped, mtUntyped)),

mt)),

Att2:AttributeSet >

Cnf:Configuration }

85

if isWebapp(ID:ProcId) .

The message is sent to the network process manager, which is identified

with id(4), for fetching the data from URL L2 and the loading attribute

changes to 1. On return of the requested data, L2 will be the new content

of attribute rendered.

The hardware pieces of Figure 6.2, video card, NIC, etc., are not modeled

in any detail. Only the NIC is modeled, and it receives target URLs from

the memory set aside for this purpose through the kernel, and then, after a

potential delay, returns the representation of the resulting data.

6.3 Address Bar Correctness and Some Auxiliary
Invariants

The analysis to follow is based on the formal model explained in Section 6.2.

An important property for a web browser is the trustworthiness of user

interface elements. This is crucial, for instance, to counter spoofing attacks.

Particularly, the address bar needs to be trustworthy, so that the user always

knows which site is currently being visited: it is important to know whether

the currently visited site is really the banking web site or is instead a phishing

site, where risk is imminent. It is simple for malicious attackers to create

phishing web sites that are indistinguishable on their looks from the real

web sites. A user should be able to trust the address bar and be guaranteed

that address bar spoofing attacks will not succeed. The goal of this section

is to stress test the capabilities and limits of the InvA tool when trying to

prove that address bar spoofing attacks are not possible in IBOS.

6.3.1 Formal Specification of the Property and Limitations

Address bar correctness in the browsing system model means that the con-

tent of the displayed page is always from the address displayed in the address

bar. In the IBOS model, the kernel keeps track of the address bar by means

of the data stored in the displayedTopBar attribute. The source of the

content being displayed is stored in the display process abstraction, which

has the displayedContent attribute to store this information. The content

of both fields needs to be the same at all times, except when there currently

is no content in one of the two fields. The empty content is modeled by the

about-blank label.

86

The property being checked is modeled by the state predicate inv, where

the kernel process has identifier id(1) and the display process abstraction

has identifier id(15):

op inv : Sys -> [Bool] .

eq inv({ < id(1) : kernel |

displayedTopBar(about-blank), Att1:AttributeSet >

< id(15) : proc |

displayedContent(L1:Label), Att2:AttributeSet >

Cnf:Configuration })

= true .

eq inv({ < id(1) : kernel |

displayedTopBar(L1:Label), Att1:AttributeSet >

< id(15) : proc |

displayedContent(about-blank), Att2:AttributeSet >

Cnf:Configuration })

= true .

ceq inv({ < id(1) : kernel |

displayedTopBar(L1:Label), Att1:AttributeSet >

< id(15) : proc |

displayedContent(L2:Label), Att2:AttributeSet >

Cnf:Configuration

})

= L1:Label ~ L2:Label

if L1:Label ~ about-blank = false

/\ L2:Label ~ about-blank = false .

The first equation in the definition of inv defines the case where the kernel’s

displayed top bar is empty. Similarly, the second equation defines the case

where the display’s displayed content is empty. The last case, as defined by

the third equation, is the most interesting one. In this third case, the invari-

ant is defined to hold if the two aforementioned contents coincide whenever

they both are nonempty. As a special remark, note that the operator ~ in

the third equation is an equality enrichment for sort Label (see Section 2.3).

To motivate the property of address bar correctness, note that the address

bar and the content as stored in the display process, are both stateless

objects as they have no memory, but only what is currently stored.

Both the address bar and the display content are only changed due to the

current web app interacting with the kernel when created or when the tab is

switched to it. These two separate behaviors are modeled in the system by

the rules [new-url], [tab-change], and [change-display]. The following

is the rewrite rule [change-display] as modeled in IBOS:

crl [change-display] :

{ < id(15) : proc |

activeWebapp(P:ProcId), displayedContent(L1:Label),

Att1:AttributeSet >

87

< P:ProcId : proc |

rendered(L2:Label), Att2:AttributeSet >

Cnf:Configuration }

=> { < id(15) : proc |

activeWebapp(P:ProcId), displayedContent(L2:Label),

Att1:AttributeSet >

< P:ProcId : proc |

rendered(L2:Label), Att2:AttributeSet >

Cnf:Configuration }

if L1:Label ~ L2:Label = false

/\ isWebapp(P:ProcId) .

In summary, attribute displayedContent in the kernel process is changed

by this rule to the content of attribute rendered in the active web app,

whenever the two contents are different. This intuitively means that a con-

tent is displayed once the requested URL has been fetched by the system.

The goal is to obtain an automatic proof of the invariant:

IBOS
 init⇒ inv.

The following verification commands can be given to the InvA tool to

check the above-mentioned invariant, as indicated by the inference rule Inv

in Section 4.4 and its implementation in the InvA tool:

(analyze init(S:Sys) implies inv(S:Sys) in IBOS-PREDS .)

(analyze-stable inv(S:Sys) in IBOS-PREDS KERNEL .)

Before showing the output given by the tool, it is assumed that module

IBOS-PREDS contains the state predicates and their corresponding auxil-

iary functions, and module KERNEL contains the specification of IBOS. State

predicate init defines the initial state of the system.

When issuing the above commands, the InvA tool generates and tries to

discharge more that 18000 proof obligations in less than 3 minutes:

Checking IBOS-PREDS ||- init(S:Sys) => inv(S:Sys) ...

rewrites: 28502 in 18ms cpu (18ms real) (1500342 rewrites/second)

Proof obligations generated: 1

Proof obligations discharged: 1

Success!

Checking IBOS-PREDS ||- inv(S:Sys) => O inv(S:Sys) ...

rewrites: 15810839 in 179525ms cpu (179557ms real)

(88070 rewrites/second)

Proof obligations generated: 18120

Proof obligations discharged: 18072

The following proof obligations need to be discharged:

1808. from inv-2 & webapp-change-display : pending

inv({ < #8:ProcId : proc | #10:AttributeSet,rendered(#9:Label)>

88

< id(1): kernel | displayedTopBar(#6:Label)>

< id(15): proc | activeWebapp(#8:ProcId),

displayedContent(#9:Label)>})

= true

if about-blank ~ #6:Label = false

/\ about-blank ~ #7:Label = false

/\ #6:Label = #7:Label

/\ #7:Label ~ #9:Label = false

/\ isWebapp(#8:ProcId) = true .

...

There are 48 proof obligations returned to the user. That is, less than 0.2% of

the verification task is left for the user. Upon inspection of the InvA’s output,

in this case all proof obligations shown to the user are generated from the

rewrite rule [change-display]. This situation softens the burden for the

user in the quest for a proof or a counterexample. A key observation about

this rule, is that it updates the value of attribute displayedContent in the

display process, regardless of the contents of attribute displayedTopBar in

the kernel process. Therefore, a pattern is observed in which there is no

inductive assumption on the relation of these two values that the inference

system can use to discharge the pending proof obligations.

To illustrate the process, consider the proof obligation identified by la-

bel 1808 and shown above. It is perfectly possible to have a situation

in where labels #6 and #7 represent the (fictitious but trusted) web site

mylifesavings.com, and where label #9 represents the (fictitious but dis-

trusted) web site danger.com. Assuming that #8 is a web app identifier, it

is straightforward to see that an actual attack could happen and that the

proof obligation in this case is false. In conclusion, state predicate inv is not

an inductive invariant of IBOS in the sense of the inference system in Chap-

ter 4. Therefore, a stronger property is required to imply the correctness of

the address bar.

In order to come up with a strengthening of the invariant, it is key to

understand the internal behavior of the system prior to changing the display.

To illustrate a specific situation, consider the following flow of events from

the moment when a new web app is created to display a given web page, say

L, to the moment when the actual web page L is displayed in the content

area of the browser:

1. Initially, the new web app is created with a new web app identifier

P, attribute URL with content L, and attribute rendered with content

about-blank. It becomes the active web app, which is represented in

the system by updating the value of attribute activeWebapp to P in

89

the kernel. Also, attribute displayedTopBar in the kernel is updated

to L and the new web app is associated to L in the kernel storage for

web app connections weblabels. Attribute displayedContent in the

display process is updated to about-blank.

2. Eventually, web app P will start loading, which is modeled by rewrite

rule [fetch], previously introduced in this section. This is achieved by

sending a MSG-FETCH-URL message to the network processes requesting

to fetch L. This message is placed in the process’s pipe to later be

checked by the kernel, which enforces the security policy on every

message in the model. In the meantime, the new process waits for the

requested data.

3. The URL fetch request from P for the resource L will eventually be

checked by the kernel. The security policy enforced by the kernel will

trigger one of three possible actions in the system:

• If the security policy does not allow communication between web

apps and network processes, then the message is dropped and

ignored. In this case, the new web app will never get an answer

and the empty content will remain displayed, which is fine for the

purpose of proving the address bar correct.

• If the security policy allows communication between web apps

and network processes, then there are two cases: (i) if the resource

L was previously requested by another web app, then the cached

value in the network process connection storage networklabels

attribute is returned (this is done by placing a message in the

input pipe of the requesting web app with the cached value for

L); (ii) if the resource has not been previously requested, then a

memory process and an associated pipe are created. If the secu-

rity policy allows it, the new memory process will communicate

with the NIC driver process and ultimately will obtain the re-

quested resource. As a net effect of the overall transaction, the

network process connection storage networklabels attribute in

the kernel will be updated with the cached value, and the mes-

sage with this value will be forwarded to the web app initially

created as a response.

Presumably, the returned value, cached or not, will correspond to L.

4. In the event of receiving a MSG-RETURN-URL from a network process in

90

its input pipe with URL L1, attribute rendered is updated to L1 and

this process stops waiting for the requested resource. Since presumably

the fetched value coincides with the requested one, then it must be the

case that L and L1 are the same. Therefore, at this point attributes

URL and rendered in the newly created web app are the same.

5. Finally, the content stored in the display process displayedContent is

updated to L and the safety property of interest is true at any point of

execution. This is because if attribute displayedContent in the dis-

play process has initially the empty content, then it will eventually be

updated to L, the value initially stored in attribute displayedTopBar

of the kernel when P was created.

Note that there is a lot going on behind the scenes and important assump-

tions are being made. Basically, each item in the list above is part of a

strengthening for inv, and thus needs to be formally verified. In the case

study experiments, the goal of proving the address bar correct was temporar-

ily abandoned because mechanically proving some of these strengthenings

turned out to be quite challenging. The difficulty was mainly due to the large

number of proof obligations that could not be automatically discharged by

the tool, even though the tool did discard many other ones. At first glance,

the tool was able to discharge more that 95% of tens of thousands of proof

obligations it generated.

However, there are specific results in the verification task of inv that are

promising in the light of the overall mechanical proof effort. In sections 6.3.2

and 6.3.3 the focus is on documenting automatic proofs obtained with InvA of

two auxiliary invariants that are stepping stones in a future mechanical proof

for the correctness of the address bar. Section 6.3.4 presents a discussion

about current limitations of the InvA tool that were identified during the

experiments with this case study.

6.3.2 Kernel Uniqueness

The kernel process plays a central role in the design of IBOS. This process

is responsible for enforcing the security policy in the entire browsing system

and does the bookkeeping for network process in the connection storage

networklabels, among other things. Uniqueness of the kernel is a trivial

property that the system should satisfy, but it needs to be formally proved.

One first reason is that almost all interesting properties in IBOS have to do

with message passing that is supervised by the kernel. Therefore a kernel

91

must exist and be unique. A second reason is that having this property can

help in obtaining a simpler property specifications for IBOS because then

this requirement does not need to be explicitly stated.

Kernel uniqueness (and existence) in the IBOS system is modeled by state

predicate unique-kernel as follows:

op unique-kernel : Sys -> Bool .

ceq unique-kernel({ Cnf })

= false

if no-kernel(Cnf) .

eq unique-kernel({ < P:ProcId : kernel | Att:AttributeSet >

Cnf:Configuration })

= no-kernel(Cnf:Configuration) .

eq unique-kernel({ < P1:ProcId : kernel | Att1:AttributeSet >

< P2:ProcId : kernel | Att2:AttributeSet >

Cnf:Configuration })

= false .

op no-kernel : Configuration -> Bool .

eq no-kernel(none)

= true .

eq no-kernel(< P:ProcId : C:Cid | Att:AttributeSet >

Cnf:Configuration)

= not(C:Cid ~ kernel) and no-kernel(Cnf:Configuration) .

The equational definition of no-kernel fully defines the predicate and con-

siders three cases: the first when no kernel exists, the second when exactly

one kernel exists, and a third in which at least two kernels exist. Obvi-

ously, the second case is the only one in which the predicate should hold.

On input Cnf:Configuration, auxiliary function no-kernel holds if and

only if there is no kernel process in Cnf. Also note that no-kernel uses

the Boolean equality enrichment defined for the sort Cid of class identifiers.

As an additional remark, observe that both unique-kernel and no-kernel

preserve ground confluence, termination, and sort-decreasingness.

The goal with this predicate is to prove:

IBOS
 init⇒ �unique-kernel.

The outcome of the verification task in the InvA tool for this invariant is

shown below:

rewrites: 33699 in 84ms cpu (84ms real) (401154 rewrites/second)

Checking IBOS-PREDS ||- init(S:Sys) => unique-kernel(S:Sys) ...

Proof obligations generated: 1

Proof obligations discharged: 1

rewrites: 944276 in 8724ms cpu (8762ms real) (108232 rewrites/second)

92

Checking

IBOS-PREDS ||- unique-kernel(S:Sys) => O unique-kernel(S:Sys) ...

Proof obligations generated: 2592

Proof obligations discharged: 2592

Success!

A total of 2593 proof obligations are generated and discharged by the InvA

tool, thus providing an automatic mechanical proof of the invariance of

unique-kernel for IBOS. As a side margin note, from the experience with

this specification, in some cases it is convenient to prove uniqueness and

existence for other processes in the model besides the kernel. In such a case,

the approach presented here can be used as a template for obtaining easy

automatic proofs.

6.3.3 Immutability of the Security Policy

One important goal is to ensure that the IBOS kernel upholds the security

policy, even if one or more of the subsystems have been compromised. Note

that the security policy is trusted, for instance, at any point of execution in

the list of events in Section 6.3.1. This property turns out to be important,

not only as a stepping stone for proving other invariants, but also in its own

right.

For instance, consider a threat model, initially proposed in [101], in which

an attacker controls a web site and can feed arbitrary data to the browser.

Indeed, it can be assumed that this malicious data or application can com-

promise one or more of the components in the system, such as the drivers

and processes. Once the attacker gains control of these components, arbi-

trary instructions can be executed as a result of the attack. The aim, then,

is to maintain the integrity and confidentiality of the data in the browser.

More specifically, the goal is to guarantee that if a user opens a web page in

a trusted web server, then this user can interact with this page securely, even

if everything on the client system outside the TCB has been compromised.

The layers upon which IBOS is built are trusted. These layers include the

underlying hardware. IBOS enforces security decisions based on its security

policy, so it is important to establish safety properties about the integrity

of its security policy. More specifically, even if the system is subjected to

a threat model such as the one just described, one would like to have the

guarantee that the security policy can not be altered by the attacker. Of

course, compromising any of the underlying layers trusted by the kernel

could compromise the security of IBOS.

93

The immutability of the security policy for IBOS is modeled by state

predicate immutable-policy as follows:

op immutable-policy : Sys PolicySet -> [Bool] .

eq immutable-policy(

{ < id(1) : kernel | msgPolicy(PS:PolicySet), Att:AttributeSet >

Cnf:Configuration }, PS:PolicySet)

= true .

State predicate immutable-policy is parametric on security policy sets. It

holds if the policy set used by the kernel coincides with the given policy set.

Note that this predicate is only defined for the positive case, which is fine

for mechanical analysis in InvA, as explained in Chapter 4. Also, in order for

the analysis to be consistent, it is assumed that there is exactly one kernel

in the configuration, which has been established as an inductive invariant of

IBOS in Section 6.3.2.

The initial policy set is specified by means of constant init-policy:

op init-policy : -> PolicySet .

eq init-policy

= (...) .

The goal with this predicate is to prove:

IBOS
 init⇒ �immutable-policy(init-policy).

By using the proof system for proving safety properties implemented in

the InvA tool (see Chapter 4 for details), the following results are obtained

when analyzing the invariance of immutable-policy with respect to the

security policy initially defined for IBOS:

rewrites: 28501 in 72ms cpu (72ms real) (395819 rewrites/second)

Checking

IBOS-PREDS ||- init(S:Sys)

=> immutable-policy(S:Sys,init-policy) ...

Proof obligations generated: 1

Proof obligations discharged: 1

Success!

rewrites: 444761 in 3260ms cpu (3258ms real)

(136421 rewrites/second)

Checking

IBOS-PREDS ||- immutable-policy(S:Sys,PS:PolicySet)

=> O immutable-policy(S:Sys,PS:PolicySet) ...

Proof obligations generated: 2088

Proof obligations discharged: 2088

Success!

The InvA tool generates more than 2000 proof obligations and mechani-

94

cally proofs that the security policy is immutable in any reachable state by

automatically discharging all these proof obligations in less than 4 seconds.

In particular, this result asserts that the security policy, once defined will

never change even if everything outside the TCB has been compromised. It

is important to note that the inductive stability proof just shown has been

obtained for any policy set PS:PolicySet, and not only for the particular

case of init-policy. More precisely, the stability proof is actually a more

general proof of the form:

IBOS
 immutable-policy(PS:PolicySet)⇒ �immutable-policy(PS:PolicySet).

This ultimately means that any security policy defined as part of IBOS’s

initial state is immutable.

6.3.4 Discussion on Some Limits of InvA

The IBOS case study is the most challenging specification analyzed in the

InvA tool so far. The new IBOS specification used in this proof effort com-

prises more than 1150 lines of source code, 47 equations, and 26 rewrite rules,

which results in thousands of proof obligations for most verification tasks

performed with help of the InvA tool. As a point of comparison, the ABP

specification studied in Chapter 4 comprises 208 lines of code, 20 equations,

and has half the rewrite rules of IBOS. The largest number of proof obliga-

tions for a particular invariant in the ABP case study was about 100. As

previously seen, InvA was successful in discharging thousands of proof obli-

gations and automatically proving some invariants. However, the IBOS case

study has unveiled limitations of the InvA tool which, from the perspective

of stress testing the limits of the tool, is also a positive experience.

The following paragraphs identify and summarize some limitations of the

InvA tool. They also propose possible solutions that should make the me-

chanical verification of invariants in InvA effective for large specifications,

including the correctness of the address bar for IBOS:

User Support. There should be better management of proof obligations,

specially when analyzing large specifications: it is very complicated, time

consuming, and error-prone to analyze a list of almost 400 proof obligations!

For instance, consider the following header output by the tool:

Checking

IBOS-PREDS ||- good-webapps(S:Sys) => O good-webapps(S:Sys) ...

95

Proof obligations generated: 2000

Proof obligations discharged: 1608

The following proof obligations need to be discharged:

...

In the worst case, the user needs to go through all of the 392 proof obligations

in order to understand what the situation is, and whether or not the state

predicate good-webapps is a promising inductive invariant. In this example,

it was easy to find a proof obligation indicating that good-webapps is not

an inductive invariant, but this may not be the case in general.

New Heuristics. There is a need for improving the proof heuristics used

by the tool. As explained in Chapter 4, a series of heuristics are employed by

the InvA for discharging proof obligations. However, it should be possible to

improve some of them and implement some new ones. For example, the InvA

tool implements some basic heuristic for checking unsatisfiability of numeric

conditions modulo SMT. This could perhaps be combined with equational

narrowing, which is already available in Maude. This should increase the

number of proof obligations automatically discharged by the tool, and thus

lessen the proof effort of the user.

Inductive Techniques. There is also the need for improving the tech-

niques available to the user in tools such as the ITP. These could help in

obtaining easy interactive proofs in many cases where the proof obligations

cannot be discharged automatically. As it was the case with the IBOS

specification, many data types in the state are actually sets or multisets.

Inductive techniques such as cover-set induction modulo AC should be in-

vestigated, implemented, and offered to the user. The current ITP version

supports cover-set induction [52] but for the moment not modulo AC.

6.4 Related Work and Concluding Remarks

Formal verification of the IBOS system in Maude has been done recently

by R. Sasse [95, 96]. The correctness of the address bar was obtained with

bounded model checking in Maude and reduction techniques that resulted

in a finitary and tractable state space that could then be inspected with

Maude’s search command. One difference between R. Sasse’s approach

and the one followed here is the ultimate goal of the verification task: in

the latter, the goal was to obtain mechanical proofs without user interaction

and, at the same time, stress test the InvA tool implementation.

96

Important earlier work on Internet Explorer was done in Maude [21],

where graphical user interface security has been addressed and previously

unknown attack types (for each of which an actual malicious web page could

succeed in an attack) were uncovered. Formal modeling has been done before

for the OP2 [47] browser. IBOS is based on some of the ideas of OP2 but

takes them further by, among other things, reducing the trusted computing

base.

The IBOS case study is the most challenging specification analyzed in the

InvA tool so far, which was successful in discharging thousands of proof obli-

gations and automatically proving some invariants. However, the IBOS case

study has unveiled limitations of the InvA tool which, from the perspective of

stress testing the limits of the tool, is also a positive experience. This chap-

ter identifies and summarizes these limitations, and also proposes possible

solutions that should make the mechanical verification of invariants in InvA

effective for large specifications, including the correctness of the address bar

for IBOS.

97

CHAPTER 7

REACHABILITY ANALYSIS WITH CONSTRAINED

BUILT-INS

Rewriting logic theories have been successfully used for modeling and exe-

cuting concurrent systems with rich data structures and very general forms

of transitions. It would not be misleading to say that one of the most

attractive features for day-to-day verification purposes of a rewrite the-

ory R = (Σ, E,R) in Maude, is the implementation of general on-the-fly

algorithms for model checking properties of the initial reachability model

TR. These techniques include Maude’s search command and Maude’s LTL

model checker. However, the use of such tools often assumes that the set of

terms representing the state search space of R are indeed ground. Could it

be possible to have a more general rewrite relation that operates on terms

that are not necessarily ground and is at the same time amenable to verifi-

cation with the same Maude tools?

A direct but naive answer to the above question is yes: just do what is

often done in first order logic by means of the theorem of constants and treat

the variables in the state terms as constants by enlarging the signature of

R with new constants. However, this approach has a major drawback: the

“blind” codification of non-ground terms as ground terms with new con-

stants will in general not be complete with respect to the initial semantics

of TR. The reason for this is that the matching performed when computing

the rewrite relation for the extended rewrite theory uses constructor pat-

terns and therefore can miss substitutions on terms that contain the new

constants. An alternative solution would be to use the narrowing-based ap-

proach; but then the main objective of using Maude’s convenient on-the-fly

verification mechanisms could directly be impacted since new narrowing-

based model checking tools (such as, for example, the Maude-NPA tool for

98

model checking cryptographic protocol [37]) are needed. In practice, the

main limitation of the narrowing-based methods is that their symbolic deci-

sion procedures are often difficult to find and, in some cases when available,

special purpose decision procedures such as those implemented by SMT

solvers can be more efficient.

The goal of this chapter is to introduce the notion of a constrained rewrite

theory, an extension of rewriting logic theories in which the rewrite rules can

be used to rewrite terms with constrained built-ins. That is, terms involving

user-definable data structures but whose only variables range over decidable

domains. The main advantage of these theories is that, under some mild

syntactic conditions and the availability of an oracle for the constraints (such

as an SMT solver), they can be directly encoded in Maude and thus induce

a symbolic rewrite relation that is amenable, for example, to model checking

verification using Maude’s search command and LTL model checker.

This chapter is organized as follows. Section 7.1 presents the notion of

constrained built-in term. Section 7.2 introduces the notion of constrained

rewrite theory, symbolic atomic relation, and explains the relationship be-

tween the symbolic reachability semantics associated to the symbolic atomic

relation on constrained terms and its initial reachability semantics. The

soundness and completeness of the symbolic simulation with constrained

built-ins, under appropriate assumptions, is presented in Section 7.3. Sec-

tion 7.4 extends the symbolic atomic relation associated to a constrained

rewrite theory to more general cases of rewriting such as asynchronous and

parallel closures. Section 7.5 presents some related work. A case study on

a symbolic rewriting logic semantics for PLEXIL based on these methods is

presented in Chapter 9. The symbolic semantics complements the ground

rewriting logic semantics of PLEXIL, presented in Chapter 8, with sym-

bolic detection of reachability violations on input plans where the values of

external variables can be left unspecified.

7.1 Terms with Constrained Built-ins

The notion of built-ins for the order-sorted equational theory E = (Σ, E) is

modeled with a many-sorted equational theory EΛ = (Λ, EΛ) such that the

inclusion EΛ ⊆ E is protecting. The intuition is that TEΛ is the subalgebra

of built-in terms of TE . It is assumed that the built-in function symbols FΛ

of Λ are disjoint from any other symbols in Σ. Then Σ = (S,≤, F) can

be decomposed into Λ = (SΛ, FΛ) and Σ′ = (S,≤, F \ FΛ). The collection

99

XΛ ⊆ X denotes the SΛ-indexed set of variables XΛ = {Xs}s∈SΛ
.

A constraint is a Boolean combination of Λ-equalities. Constraints are

interpreted in a EΛ-algebra M = (M, M), with domain M = {Ms}s∈SΛ

and interpretation function M = { M,s}s∈SΛ
, satisfying TEΛ ' M. The

collection of constraints is denoted by Λ(XΛ). The distinction between the

isomorphic algebras TEΛ and M is stressed to emphasize the fact that the

approach presented here can use an ‘oracle’ for solving constraints (using

term rewriting, SMT solving, theorem proving, etc.). Note that E is a

protecting extension of EΛ and therefore TE |Λ ' TEΛ 'M.

A constrained term is a pair 〈t ;ϕt〉 in TΣ(XΛ)×Λ(XΛ) and its denotation

〈t ;ϕt〉M is the set:

〈t ;ϕt〉M = {t′ | (∃σ : XΛ −→ TΛ) t′ = tσ ∧ M |= ϕtσ}. (7.1)

The domain of σ in the definition above ranges over all built-in variables XΛ

and consequently 〈t ;ϕt〉M ⊆ TΣ,s for any sort s ∈ S and term t ∈ TΣ(XΛ)s,

even if vars(t) 6⊆ vars(ϕt). Given s ∈ S, a constrained term 〈t ;ϕt〉 is

said to be an s-constrained term if and only if t ∈ TΣ(XΛ)s. Σ-terms not

containing any built-in variables will not be considered as first components

of constrained terms.

7.2 Atomic Relations for Constrained Terms

This section introduces a symbolic term rewrite relation on terms with

constrained built-in subterms and assumes the notation introduced in Sec-

tion 7.1.

The symbolic term rewrite relation on terms with constrained built-ins is

called the symbolic atomic relation and is defined by a constrained rewrite

theory. The symbolic atomic relation is intended to be a building block for

more general symbolic relations, such as the asynchronous and/or parallel

closures that are commonly used for specifying the semantics of program-

ming languages.

A constrained rewrite theory assumes the choice of a top sort s in one of

the connected components of Σ.

Definition 15 (Constrained Rewrite Theory). AM-constrained Σ-rule (or

constrained rule) is a triple l→ r JϕK where:

a. l and r are terms in TΣ(X)s with l /∈ X and vars(r) \ vars(l, ϕ) ⊆ XΛ,

b. ϕ ∈ Λ(XΛ) is satisfiable in M, and

100

c. l is linear and if t ∈ TΛ(XΛ) is a proper subterm of l, then t ∈ XΛ.

Terms l and r are called, respectively, the lefthand and righthand side, and

ϕ the constraint of the constrained rule. An M-constrained rewrite theory

(or constrained rewrite theory) is a tuple (Σ, E,R), where R is a finite

collection of M-constrained Σ-rules.

A constrained rule can contain extra built-in variables in its righthand

side and excludes the case of an unsatisfiable constraint. The lefthand side

of a constrained rule is linear and does not refer to the operator structure

of the built-ins, not even to constants. These restrictions are key to the

completeness result proved in this section. On the other hand, they are not

overly restrictive for many practical applications. For example, consider a

rule

a(x1 + (x2 − x1))→ b(x2) JϕK ,

where a and b are non built-in unary function symbols in F \ FΛ, + and −
are built-in function symbols in FΛ, x1 and x2 are built-in variables in XΛ,

and ϕ is constraint in Λ(XΛ). This rule does not conform to Condition (c)

in Definition 15 because x1 occurs more than once in the lefthand side and

x1 + (x2 − x1) is a proper built-in subterm of the lefthand side that is not

a built-in variable. However, this rule can be transformed by applying the

technique of variable abstraction into the following constrained rule with an

extra built-in variable y1 in XΛ:

a(y1)→ b(x2) Jϕ ∧ y1 = x1 + (x2 − x1)K .

The relation induced by a constrained rewrite theory on s-constrained

terms is called the symbolic atomic relation and is introduced in Defini-

tion 16.

Definition 16 (Symbolic Atomic Relation). Let R = (Σ, E,R) be a con-

strained rewrite theory such that the variables in E and R are in the finite

set Y ⊆ X. The symbolic atomic relation R induced by R on con-

strained terms denotes the set of pairs in (TΣ(XΛ \ Y)s × Λ(XΛ \ Y))2

such that 〈t ;ϕt〉 R 〈u ;ϕu〉 if and only if there are l → r JϕK ∈ R and

θ : X −→ TΣ(X) satisfying

a. t =E lθ and u =E rθ,

b. M |= (ϕu ≡ ϕt ∧ ϕθ), and

101

c. ϕu is satisfiable in M.

Intuitively, the symbolic atomic relation R on constrained terms is de-

fined as the topmost rewrite relation induced by R modulo E on TΣ(XΛ)

with extra bookkeeping of constraints. Note that ϕu in 〈t ;ϕt〉 R 〈u ;ϕu〉,
when witnessed by l→ r JϕK and θ, is semantically equivalent to ϕt ∧ ϕθ in

M, in contrast to being syntactically equal. This freedom allows for sim-

plification of constraints if desired. Also, such a constraint ϕu is satisfiable

in M, implying that ϕt and ϕθ are both satisfiable in M, and therefore

〈t ;ϕt〉M 6= ∅ 6= 〈u ;ϕu〉M. The assumption that the variables occurring in

E and R are disjoint from the ones occurring in the constrained terms is

a well-known technical requirement, so that matching a term t ∈ TΣ(XΛ)

with the lefthand of a rule does not wrongly capture variables. Without this

requirement in Definition 16, it would be problematic to have a variable in

vars(t) \ vars(l) that occurs in ϕ.

The binary relation induced by a constrained rewrite theory on TΣ,s is

called the atomic relation.

Definition 17 (Atomic Relation). Let R = (Σ, E,R) be a constrained

rewrite theory. The atomic relation →R induced by R denotes the set of

pairs in T 2
Σ,s such that t′ →R u′ if and only if there are l → r JϕK ∈ R and

ground substitution σ : X −→ TΣ satisfying

a. t′ =E lσ and u′ =E rσ, and

b. M |= ϕσ.

The atomic relation →R is the topmost rewrite relation induced by R

modulo E on TΣ,s. This relation is defined even when a rule in R has

extra variables in its righthand side: such extra variables are assumed to

be arbitrarily instantiated. Also, note that non built-in variables can occur

in l, but the constraint ϕσ is a variable-free sentence in Λ(XΛ), so that the

expression M |= ϕσ is well defined.

7.3 Soundness and Completeness

This section assumes the notation introduced in Section 7.1.

The first question to ask is whether the symbolic atomic relation R
soundly and completely simulates the atomic relation →R. It is important

to highlight that the notions of soundness and completeness discussed here

102

are relative to the model M and should not be understood as the tradi-

tional notions in first-order logic. Soundness can be proved directly from

the definitions. For completeness the idea is that, assuming the admissi-

bility conditions for E , matching modulo axioms for TΣ(XΛ) is enough for

characterizing the complete set of ground unifiers (i.e., solutions) for a sub-

class of TΣ(XΛ).

The soundness of R w.r.t. →R is stated and proved in Lemma 4. In-

tuitively, soundness means that a pair 〈t ;ϕt〉 R 〈u ;ϕu〉 is a symbolic

underapproximation of all pairs such that t′ →R u′ with t′ ∈ 〈t ;ϕt〉M and

u′ ∈ 〈u ;ϕu〉M.

Lemma 4 (Soundness). Let R = (Σ, E,R) be a constrained rewrite theory,

t, u ∈ TΣ(XΛ)s, and ϕt, ϕu ∈ Λ(XΛ). If 〈t ;ϕt〉 R 〈u ;ϕu〉, then tρ→R uρ
for all ρ : XΛ −→ TΛ satisfying M |= ϕuρ.

Proof. Let ρ : XΛ −→ TΛ be such that M |= ϕuρ. The goal is to show that

tρ →R uρ, i.e., that there exists a ground substitution σ : XΛ −→ TΛ such

that tρ =E lσ, uρ =E rσ, and M |= ϕσ. Let l → r JϕK and θ : XΛ −→
TΛ(XΛ) witness 〈t ;ϕt〉 R 〈u ;ϕu〉, with vars(t, ϕt)∩vars(l, r, ϕ) = ∅. Then

t =E lθ, u =E rθ,M |= (ϕu ≡ ϕt∧ϕθ), and ϕu is satisfiable inM. Without

loss of generality assume that θ|vars(t,ϕt) is the identity and let σ = θρ.

Then note that tρ =E (lθ)ρ = l(θρ) = lσ and uρ =E (rθ)ρ = r(θρ) = rσ.

Moreover, M |= (ϕu ≡ ϕt ∧ ϕθ) and M |= ϕuρ imply M |= ϕθρ, i.e.,

M |= ϕσ. Therefore, tρ→R uρ, as desired.

Under the admissibility assumptions, R has a disjoint union E] B of

equations, with B a collection of structural axioms for which there exists

a decidable and finitary matching algorithm modulo B, and E a set of

orientable sort-decreasing, operationally terminating, confluent rewrite rules

modulo B. Moreover, if the axioms B are such that they are regular and

collapse-free for built-in sorts, then matching modulo B can capture the

ground solutions of equalities modulo B for a subset of TΣ(XΛ). More

specifically, the ground instances of the set of B-matching substitutions of

a term t ∈ TΣ(XΛ)s to a term l ∈ TΣ(XΛ)s that satisfies Condition (c) in

Definition 15 exactly characterize the set GUB(t = l). This observation is

made precise and proved in Lemma 5.

Lemma 5 (Lifting Lemma). Let t ∈ TΣ(XΛ)s and l ∈ TΣ(X)s. If vars(t) ∩
vars(l) = ∅, B is regular and collapse-free for all sorts in SΛ, and l satisfies

Condition (c) in Definition 15, then

t�B l ⇐⇒ GUB(t = l) 6= ∅.

103

Proof. (=⇒) If t �B l, then t =B lθ′ for some θ′ : X −→ TΣ(X). Let

θ : X −→ TΣ(X) be defined by θ = θ′|vars(l) ∪ id|X\vars(l). Since θ|vars(t) =

id|vars(t), it follows that tθ =B t =B lθ. Hence, tθσ =B lθσ for any σ : X −→
TΛ, and then GUB(t = l) 6= ∅. (⇐=) Without loss of generality assume l ∈
TΣ(XΛ), since otherwise, because vars(t) ⊆ XΛ, any variable x ∈ vars(l) ∩
(X\XΛ) can be substituted by a ground subterm of t obtaining a term l such

that GUB(t = l) = ∅ if and only if GUB(t = l) = ∅. Recall that Σ can be

decomposed into Λ and Σ′ = (S,≤, F \FΛ). If the axioms B are collapse-free

for any sort in SΛ, then B = BΛ ∪B′ for some sets of Σ-equations BΛ, with

B′ such that BΛ operates on TΛ(XΛ) and B′ on TΣ′(X). Then l ∈ TΣ′(XΛ),

since it satisfies Condition (c) in Definition 15 and by the assumption above.

Moreover, l can be viewed as the n-ary function L(x1, . . . , xn) with s-context

L = λx1, . . . , xn.l, where {x1, . . . , xn} = vars(l). Note that, by l linear, there

is a 1-to-1 correspondence between the xi’s and the built-in subterms of l.

Similarly, t can be viewed as them-ary function C(t1, . . . , tm), with s-context

C = λy1, . . . , ym.c and c ∈ TΣ′({y1, . . . , ym})s. Without loss of generality

assume {y1, . . . , ym} ∩ {x1, . . . , xn} = ∅. If σ ∈ GUB(t = l), then

C(t1σ, . . . , tmσ) = C(t1, . . . , tm)σ

= tσ

=B l(x1, . . . , xn)σ

= l(x1σ, . . . , xnσ).

Moreover, C(y1, . . . , ym) and l(x1, . . . , xn) must be B′-equal up to renaming

of variables. Since B′ is regular, it follows that m = n. Then, there exists a

permutation ϕ : {1, ..., n} −→ {1, ..., n} satisfying

C(xϕ(1), . . . , xϕ(n)) =B′ l(x1, . . . , xn) and tϕ(i)σ =BΛ
xiσ for 1 ≤ i ≤ n.

Let θ : X −→ TΛ(XΛ) be defined by θ(xi) = tϕ(i) for 1 ≤ i ≤ n, and be the

identity id elsewhere. Note that θ is well-defined because Λ is many-sorted.

Also note that vars(t) ∩ vars(l) = ∅ imply

t = C(tϕ(1), . . . , tϕ(n)) =B′ l(tϕ(1), . . . , tϕ(n)) =BΛ
l(x1, . . . , xn)θ.

Therefore t�B l, as desired.

The requirement of being collapse-free for built-in sorts is key in the proof

of Lemma 5: it allows viewing B-matching for TΣ(XΛ) as a modular combi-

nation of BΛ-matching for TΛ(XΛ) and B′-matching for TΣ′(X). This idea

104

was adopted and adapted from the development in [77]. Any combination

of associativity, commutativity, and identity axioms is regular and has a

decidable and finitary matching algorithm. However, only combinations of

associativity and commutativity are collapse free for any sort since these ax-

ioms are sort-preserving. For identity axioms there is a special treatment as

they are allowed in B as long as they are collapse-free for any built-in sort.

The restriction on identity axioms collapsing non built-in terms into built-in

terms can be handled by a theory transformation that eliminates the need

for identity axioms, such as the one described in [32]. As a final remark,

note that there is a finitary matching algorithm for associativity axioms in

contrast to a nonexistent general and finitary unification algorithm. This

means that the symbolic reachability method developed here based on the

symbolic atomic relation can be applied to specifications with lists, queues,

and stacks that often use associativity axioms, and that are outside the

scope of general-purpose unification-based methods such as narrowing.

As a side margin note, observe that Lemma 5 uses the same motivation

as Lemma 2 in Section 4.2.1. The main difference is that the former uses

matching instead of unification for computing a complete set of solutions for

ground equalities.

The completeness of R w.r.t. →R is stated and proved in Lemma 6.

Intuitively, completeness states that R is a symbolic overaproximation of

→R. In Lemma 6 it is assumed that the lefthand side of each constrained

rewrite rule in R is →E/B-irreducible. Such an assumption is easily met

in practice because if l is a lefthand side in R that is →E/B-reducible, by

confluence and operational termination it has an unique E/B-canonical form

to which variable abstraction can be applied, thus obtaining an equivalent

constrained rule.

Lemma 6 (Completeness). Let R = (Σ, E ∪B,R) be a constrained rewrite

theory, t ∈ TΣ(XΛ)s, u
′ ∈ TΣ,s, and ϕt ∈ Λ(XΛ). Assume that (Σ, E ∪ B)

is admissible, the axioms in B are regular and are collapse-free for any

sort in SΛ, and the lefthand side of the rules in R are in E-canonical form

modulo B. For any ρ : XΛ −→ TΛ such that tρ ∈ 〈t ;ϕt〉M and tρ →R u′,

there exist u ∈ TΣ(XΛ)s and ϕu ∈ Λ(XΛ) such that 〈t ;ϕt〉 R 〈u ;ϕu〉 and

u′ ∈ 〈u ;ϕu〉M.

Proof. Let ρ be as given, and let l → r JϕK ∈ R and σ : XΛ −→ TΛ witness

tρ →R u′, i.e., tρ =E∪B lσ, u′ =E∪B rσ, and M |= ϕρ, with vars(t, ϕt) ∩
vars(l, r, ϕ) = ∅. The goal is to show the existence of u ∈ TΣ(XΛ)s and

ϕu ∈ Λ(XΛ) s.t. (i) 〈t ;ϕt〉 R 〈u ;ϕu〉 and (ii) u′ ∈ 〈u ;ϕu〉M. Without

105

loss of generality assume ρ = σ. Under the admissibility conditions for

(Σ, E∪B), the term t = t ↓E/B is well-defined and satisfies t ∈ TΣ(XΛ)s and

vars(t) ⊆ vars(t). Then tσ =E∪B tσ =E∪B lσ. Since l is in E/B-canonical

form by assumption and t is in E/B-canonical form, it follows that tσ =B lσ.

Therefore GUB(t = l) 6= ∅ and, with the given assumptions, Lemma 5

yields the existence of θ : X −→ TΣ(X) such that t =B lθ; a fortiori,

t =E∪B lθ. Without loss of generality assume θ|X\vars(l) = σ|X\vars(l). Take

u = rθ and ϕu = ϕt ∧ ϕθ. First note that if x ∈ vars(r), then x ∈ vars(l)

or x ∈ X \ vars(l). If x ∈ vars(l), then θ(x) ∈ TΣ(XΛ) because θ(x) is

a subterm of t ∈ TΣ(XΛ); if x ∈ X \ vars(l), then θ(x) = σ(x) ∈ TΣ.

That is, u = rθ ∈ TΣ(XΛ)s. On the other hand, tσ = tρ ∈ 〈t ;ϕt〉M by

assumption and then M |= ϕtσ. Also tσ = tρ =E∪B= lσ and t =E∪B lθ,

imply θσ =E∪B σ. Then M |= ϕθσ, because M |= ϕρ by assumption and

ρ = σ. That is, M |= ϕtσ ∧ ϕθσ and therefore M |= ϕuσ by definition of

ϕu. Summarizing: t =E∪B lθ, u = rθ, ϕu = ϕt ∧ ϕθ, and ϕu is satisfiable

in M. Therefore (i) follows. For (ii) note that the already proven facts

u′ =E∪B rσ, σ =E∪B θσ, and M |= ϕuσ imply u′ =E∪B rσ ∈ 〈rθ ;ϕu〉M
with witness σ.

Under the admissibility assumptions for E = (Σ, E∪B), each t ∈ TΣ(XΛ)s

has an E/B-canonical form t with sort s and is unique modulo B. Also, the

canonical form t is such that vars(t) ⊆ vars(t).

Theorem 12 collects the soundness and completeness statements of R
w.r.t. →R.

Theorem 12. Let R = (Σ, E ∪ B,R) be a constrained rewrite theory, t ∈
TΣ(XΛ)s, and ϕt ∈ Λ(XΛ).

(Soundness) If u ∈ TΣ(XΛ)s, ϕu ∈ Λ(XΛ), and 〈t ;ϕt〉 R 〈u ;ϕu〉, then

(∀ρ : XΛ −→ TΛ) M |= ϕuρ =⇒ tρ→R uρ.

(Completeness) If (Σ, E∪B) is admissible, B is regular and collapse-free

for SΛ, and the lefthand sides of the rules in R are in E/B-canonical

form, and if u′ ∈ TΣ,s and ρ : XΛ −→ TΛ are such that tρ→R u′ and

tρ ∈ 〈t ;ϕt〉M, then

(∃u ∈ TΣ(XΛ)s, ϕu ∈ Λ(XΛ)) 〈t ;ϕt〉 R 〈u ;ϕu〉 ∧ u′ ∈ 〈u ;ϕu〉.

Proof. By Lemma 4 and Lemma 6.

106

It remains to be shown when Theorem 12 is effective, i.e., when R and

→R can be computed.

Lemma 7. Let R = (Σ, E ∪B,R) be a constrained rewrite theory. Assume

(Σ, E ∪B) is admissible. Then:

a. if there is a decision procedure for satisfiability of equalities and inequal-

ities in M, →R and R are computable;

b. if each constrained rule l → r JϕK ∈ R is such that vars(ϕ) ⊆ vars(l),

→R is decidable.

The existence of unique E/B-canonical forms for terms in TΣ(XΛ)s is not

enough for computing→R or R, even when solving Boolean combinations

of equalities with variables modulo B is decidable. The explanation for

this is that membership in →R or R depends on inductive satisfiability

of constraints, i.e., on satisfiability in the initial algebra TΣ/E of constraints

that can have variables. For example, it is easy to devise an admissible

equational theory for specifying integer arithmetic, but it is well-known that

non-linear integer arithmetic is undecidable.

7.4 Symbolic Closures

This section provides an account of symbolic relations induced by a symbolic

atomic relation, such as the reflexive-transitive closure and the asynchronous

closure among others. Soundness and completeness for each symbolic rela-

tion w.r.t. to its ground counterpart are corollaries of Theorem 12. In the

development of this section, statements about soundness and completeness

are to be understood as in the statement of Theorem 12, including the as-

sumptions.

In the sequel it is assumed that the equational theories E = (Σ, E) and

EΛ = (Λ, EΛ), and the EΛ-algebraM are as defined in Section 7.2. It is also

assumed that the atomic relations induced by a constrained rewrite theory

R = (Σ, E,R) are sort-decreasing. The symbolic atomic relation R is

sort-decreasing if and only if for any t, u ∈ TΣ(XΛ)s and ϕt, ϕu ∈ Λ(XΛ)

if 〈t ;ϕt〉 R 〈u ;ϕu〉 then ls(t) ≥ ls(u). The atomic relation →R is sort-

decreasing if and only if for any t′, u′ ∈ TΣ,s if t′ →R u′ then ls(t′) ≥ ls(u′).

Let → be a binary relation on a given set. The identity relation, n-fold

composition, and reflexive-transitive closure of → are defined as usual and

denoted, respectively, by (→)0, (→)n, and (→)∗ (or simply →0, →n, and

→∗). Note that → and →1 denote the same binary relation.

107

Corollaries 2 and 3 show, respectively, that the n-fold composition n
R

and reflexive-transitive closure ∗R of the symbolic atomic relation R are

sound and complete w.r.t. to →n
R and →∗R, respectively.

Corollary 2 (Fold Composition). For each n ∈ N, n
R is sound and com-

plete w.r.t. →n
R.

Proof. Let t ∈ TΣ(X)s and ϕt ∈ Λ(XΛ).

(Soundness). Let u ∈ TΣ(XΛ)s, ϕu ∈ Λ(XΛ), and ρ : XΛ −→ TΛ. The goal

is to prove for any n ∈ N that if 〈t ;ϕt〉 n
R 〈u ;ϕu〉 and M |= ϕuρ,

then tρ→n
R uρ.

n = 0 : then t = u, ϕt = ϕu, and then tρ→0
R tρ.

n > 0 : then there are v ∈ TΣ(XΛ)s and ϕv ∈ Λ(XΛ) such that

〈t ;ϕt〉 n−1
R 〈v ;ϕv〉 R 〈u ;ϕu〉.

Since M |= ϕuρ, by the soundness of R w.r.t. →R it follows

that vρ →R uρ. By definition of R, ϕu implies ϕv in M and

thenM |= ϕvρ. By the induction hypothesis tρ→n−1
R vρ. There-

fore,

tρ→n−1
R vρ→1

R uρ , i.e., tρ→n
R uρ.

(Completeness). Let u′ ∈ TΣ,s and ρ : XΛ −→ TΛ satisfy tρ →n
R u′ and

tρ ∈ 〈t ;ϕt〉. For each n ∈ N, the goal is to prove the existence of

u ∈ TΣ(XΛ)s and ϕu ∈ Λ(XΛ) such that 〈t ;ϕt〉 n
R 〈u ;ϕu〉 and

u′ ∈ 〈u ;ϕu〉M.

n = 0 : then u = t and ϕu = ϕt witness 〈t ;ϕt〉 0
R 〈u ;ϕu〉 = 〈t ;ϕt〉

and u′ = tρ ∈ 〈t ;ϕt〉M = 〈u ;ϕu〉M.

n > 0 : then there is v′ ∈ TΣ,s such that tρ→n−1
R v′ →R u′. By the in-

duction hypothesis, there are v ∈ TΣ(XΛ)s and ϕv ∈ Λ(XΛ) such

that 〈t ;ϕt〉 n−1
R 〈v ;ϕv〉 and v′ ∈ 〈v ;ϕv〉M. Let σ : XΛ −→ TΛ

witness v′ ∈ 〈v ;ϕ〉M. Then v′ =E vσ →R t′. By the complete-

ness of R w.r.t. →R there are u ∈ TΣ(XΛ)s and ϕu ∈ Λ(XΛ)

such that 〈v ;ϕv〉 R 〈u ;ϕu〉 and u′ ∈ 〈u ;ϕu〉M. Therefore

〈t ;ϕt〉 n
R 〈u ;ϕu〉 and u′ ∈ 〈u ;ϕu〉M, as desired.

108

Corollary 3 (Reflexive-Transitive Closure). ∗R is sound and complete

w.r.t. →∗R.

Proof. Follows by Corollary 2.

The symbolic asynchronous relation
M
 R is the binary relation on pairs

in TΣ(XΛ) × Λ(XΛ) defined by 〈t ;ϕt〉 M R 〈u ;ϕu〉 if and only if there is

an s-context C = λx.c and terms t1, u1 ∈ TΣ(XΛ)s such that t = C(t1),

u = C(u1), and 〈t1 ;ϕt〉 R 〈u1 ;ϕu〉. The asynchronous relation
M→R is the

binary relation on TΣ defined by t′
M→R u′ if and only if there is an s-context

C = λx.c and terms t′1, u
′
1 ∈ TΣ,s such that t′ = C(t′1), u′ = C(u′1), and

t′1 →R u′1. Note that the relations
M
 R and

M→R are well-defined because

 R and →R are sort-decreasing.

Corollary 4 (Asynchronous Closure). The following statements hold:

a.
M
 R is sound and complete w.r.t.

M→R.

b. For each n ∈ N, (
M
 R)n is sound and complete w.r.t. (

M→R)n.

c. (
M
 R)∗ is sound and complete w.r.t. (

M→R)∗.

Proof. a. Let t ∈ TΣ(XΛ) and ϕt ∈ Λ(XΛ).

(Soundness). Let u ∈ TΣ(XΛ), ϕu ∈ Λ(XΛ), and ρ : XΛ −→ TΛ. The

goal is to show that if 〈t ;ϕt〉 M R 〈u ;ϕu〉 and M |= ϕuρ, then

tρ
M→R uρ. By definition of

M
 R, there is an s-context C = λx.c

and terms t1, u1 ∈ TΣ(XΛ)s such that t = C(t1), u = C(t2), and

〈t1 ;ϕt〉 R 〈u1 ;ϕu〉. Then, t1ρ →R u1ρ by M |= ϕuρ and the

soundness of R w.r.t. →R. Let θ : XΛ −→ TΛ(XΛ) be defined by

θ(x) = x and θ(x′) = σ(x′) otherwise, and define C ′ = λx.c′, where

c′ = cθ. Observe that C ′ is an s-context and that vars(c′) = {x}.
Moreover tρ = C ′(t1)ρ = C ′(t1ρ) and uρ = C ′(u1)ρ = C ′(u1ρ)

imply tρ
M→R uρ because t1ρ→R u1ρ.

(Completeness). Let u′ ∈ TΣ and ρ : XΛ −→ TΛ satisfy tρ
M→R u′ and

tρ ∈ 〈t ;ϕt〉. The goal is to prove the existence of u ∈ TΣ(XΛ) and

ϕu ∈ Λ(XΛ) such that 〈t ;ϕt〉 M R 〈u ;ϕu〉 and u′ ∈ 〈u ;ϕu〉M. By

definition of
M→R, there are s-context C = λx.c and terms tρ1, u

ρ
1 ∈

TΣ,s such that tρ = C(tρ1), u′ = C(uρ1), and tρ1 →R uρ1. Without

loss of generality assume vars(c) = {x}. Note then that there is

t1 ∈ TΣ(XΛ)s subterm of t such that tρ1 = t1ρ. Note also that

tρ ∈ 〈t ;ϕt〉M implies t1ρ ∈ 〈t1 ;ϕt〉M. Then, by completeness of

 R w.r.t. →R, there are u1 ∈ TΣ(XΛ)s and ϕu ∈ Λ(XΛ) satisfying

109

〈t1 ;ϕt〉 R 〈u1 ;ϕu〉 and uρ1 ∈ 〈u1 ;ϕu〉M. In particular, uρ1 =E u1ρ

(see the proof of Theorem 12). Let u = C(u1), which is well-defined

because R is sort-decreasing. Then it follows that t = C(t1)
M
 R

C(u1) = u, and u′ = C(uρ1) = C(u1ρ) = C(u1)ρ = uρ ∈ 〈u ;ϕu〉, as

desired.

b. Follows by part (a) and by mimicking the proof of Corollary 2.

c. Follows by part (b).

Note that Corollary 4 is of special interest for declarative specification and

programming languages such as Maude [23] that implement equational and

non-equational deduction via the asynchronous closure of the respective term

rewriting relations. Corollary 4 also makes explicit a significant difference

between
M
 R and the asynchronous closure of any reasonable unification-

based symbolic atomic relation. In the former, a deduction step within a

context would require the propagation of the witnessing unifier to the entire

context. However, this is not the case for R, because there is no variable

renaming or specialization on the subject term when it is matched with the

lefthand side of a constrained rule.

The symbolic parallel relation
q
 R is the binary relation on TΣ(XΛ) ×

Λ(XΛ) defined by 〈t ;ϕt〉 q
 R 〈u ;ϕu〉 if and only if there is an s-context C =

λx1, . . . , xm.c, terms t1, . . . , tm and u1, . . . , um in TΣ(XΛ)s, and constraints

ϕ1, . . . , ϕm in Λ(XΛ) satisfying t = C(t1, . . . , tm), u = C(u1, . . . , um), 〈ti ;ϕt〉
 R 〈ui ;ϕi〉 for 1 ≤ i ≤ m,M |= (ϕu ≡ ∧mi=1ϕi), and ϕu is satisfiable inM.

The parallel relation
q→R is the binary relation on TΣ defined by t′

q→R u′

if and only if there is an s-context C = λx1, . . . , xm.c and terms t′1, . . . , t
′
m

and u′1, . . . , u
′
m in TΣ,s satisfying t′ = C(t′1, . . . , t

′
m), u′ = C(u′1, . . . , u

′
m),

and t′i →R u′i for 1 ≤ i ≤ m. Note that the relations
q
 R and

q→R are

well-defined because R and →R are sort-decreasing.

Corollary 5 (Parallel Closure). The following statements hold:

a.
q
 R is sound and complete w.r.t.

q→R.

b. For each n ∈ N, (
q
 R)n is sound and complete w.r.t. (

q→R)n.

c. (
q
 R)∗ is sound and complete w.r.t. (

q→R)∗.

Proof.

a. Follows by an easy generalization of the proof for Corollary 5 part (a).

110

b. Follows by part (a) and by mimicking the proof of Corollary 2.

c. Follows by part (b).

The symbolic parallel closure generalizes the asynchronous closure of a

symbolic atomic relation to several redexes and, like the latter, does not need

to propagate the witnessing substitutions to the context. On the other hand,

the symbolic parallel relations in Corollary 5 are useful in obtaining formal

and executable semantics of synchronous languages by term rewriting. Such

an approach is taken, for instance in [91] and [92], where an equational

serialization procedure is used to simulate the parallel closure of an atomic

relation via an asynchronous term rewriting relation.

7.5 Related Work and Concluding Remarks

The idea of combining term-rewriting techniques and constraint data struc-

tures is a hot topic of research nowadays, specially since the raise of modern

theorem provers with highly efficient decision procedures in the form of SMT

solvers. The overall aim is to advance applicability of rewriting techniques

in verification by focusing on rewriting with constraints expressed in some

logic that has an efficient decision procedure (see [79] for an overview).

M. Ayala-Rincón [3] investigates, in the setting of many-sorted equational

logic, the expressiveness of conditional equational systems whose conditions

may use built-in predicates. This class of equational theories is important

because the combination of equational and built-in premises yield a type of

clauses which is more expressive than purely conditional equations. Rewrit-

ing notions like confluence, termination, and critical pairs are investigated.

In the context of rewriting logic, S. Falke and D. Kapur [40] have studied the

problem of termination with constrained built-ins. In particular, they have

extended the dependency pairs framework to handle termination of equa-

tional specifications with semantic data structures and evaluation strategies

(as explained in Chapter 3) in the Maude language. The same authors have

used the idea of combining rewriting induction and linear arithmetic over

constrained terms [41]. Their aim is to obtain equational decision proce-

dures that can handle semantic data types represented by the constrained

built-ins.

111

CHAPTER 8

A REWRITING LOGIC SEMANTICS FOR PLEXIL

Synchronous languages were introduced in the 1980s to program reactive

systems, i.e., systems whose behavior is determined by their continuous re-

action to the environment where they are deployed. They are often used to

program embedded applications and automatic control software. The fam-

ily of synchronous languages is characterized by the synchronous hypothesis,

which states that a reactive system is arbitrarily fast and able to react imme-

diately in no time to stimuli from the external environment. One of the main

consequences of the synchronous hypothesis is that components running in

parallel are perfectly synchronized and cannot arbitrarily interleave. The

implementation of a synchronous language usually requires the simulation

of the synchronous semantics within an asynchronous computation model.

This simulation must ensure the validity of the synchronous hypothesis in

the target asynchronous model.

The Plan Execution Interchange Language (PLEXIL) [39] is a synchronous

language developed by NASA to support autonomous spacecraft operations.

Space mission operations require flexible, efficient and reliable plan execu-

tion. The computer system on board the spacecraft that executes plans is

called the executive and is a safety-critical component of the space mission.

The Universal Executive (UE) [103] is an open source PLEXIL executive

developed by NASA. PLEXIL and the UE have been used on mid-size ap-

plications such as robotic rovers and a prototype of a Mars drill. It has also

been used to demonstrate automation for the International Space Station.

Given the safety-critical nature of spacecraft operations, PLEXIL’s opera-

tional semantics has been formally defined [30] and several properties of the

language, such as determinism and compositionality, have been mechanically

verified [29] in the Prototype Verification System (PVS) [82]. The formal

112

small-step semantics is defined using a compositional layer of five reduction

relations on sets of nodes. These nodes are the building blocks of a PLEXIL

plan and represent the hierarchical decomposition of tasks. From an oper-

ational point of view, PLEXIL is more complex, and more high-level, than

general-purpose synchronous languages such as Esterel [11] or Lustre [19].

PLEXIL is designed specifically for flexible and reliable command execution

in autonomous applications.

This chapter presents a rewriting logic semantics of PLEXIL specified

in Maude. This semantics complements the small-step structural opera-

tional semantics written in PVS but, in contrast to the PVS higher-order

logic specification, the rewriting logic semantics of PLEXIL is executable

and therefore provides an interpreter for the language. This interpreter is

used at NASA as an oracle and semantic standard for validating the imple-

mentation of PLEXIL executives, such as the UE, and as a language design

infrastructure for designers of the language to study new features or possible

variants of the language. Additionally, by using a graphical interface [84],

PLEXIL developers are able to more easily and conveniently exploit the for-

mal analysis tools provided by Maude to verify properties of actual plans.

A fruitful collaboration with the PLEXIL development team at NASA

Ames has been established by using the rewriting logic semantics of PLEXIL

to validate the intended semantics of the language against a wide variety of

plan examples. Two problematic issues about PLEXIL’s original semantics

were discovered with the help of the rewriting logic semantics of PLEXIL

presented in this chapter. The first was found at the level of the atomic re-

lation, for which undesired interleaving semantics were introduced in some

computations. The second was found at the level of the micro relation,

for which spurious infinite loops were present in some computations. Solu-

tions to both issues have been provided and validated using the rewriting

logic semantics, and have been adopted in the latest version of the PLEXIL

semantics.

This chapter is organized as follows. Section 8.1 presents an overview

of the PLEXIL language. Section 8.2 introduces PLX, the rewriting logic

semantics of PLEXIL, and illustrates its main design features. Section 8.3

summarizes some of the main contributions made possible by the rewriting

logic semantics PLX, such as the finding of some defects in the PLEXIL’s

initial design and the development of new features for the language. Sec-

tion 8.4 presents a case study about a cruise control system that is specified

and formally verified in PLX. Some related work is discussed in Section 8.5.

The source code of the rewriting logic semantics in Maude is available at

113

http://camilorocha.info/thesis.

8.1 PLEXIL Overview

This section presents an overview of PLEXIL, a synchronous language for

automation developed by NASA. The reader is referred to [39] for a detailed

description of the language.

A PLEXIL program, called a plan, is a tree of nodes representing a hi-

erarchical decomposition of tasks. Interior nodes, called list nodes, provide

control structure and naming scope for local variables. The primitive ac-

tions of a plan are specified in the leaf nodes. Leaf nodes can be assignment

nodes, which assign values to local variables, command nodes, which call

external commands, or empty nodes, which do nothing. PLEXIL plans in-

teract with a functional layer that provides the interface with the external

environment. This functional layer executes the external commands and

communicates the status and result of their execution to the plan through

external variables.

Nodes have an execution state, which can be inactive, waiting , executing ,

iterationend , failing , finishing , or finished , and an execution outcome, which

can be unknown, skipped , success, or failure. They can declare local vari-

ables that are accessible to the node in which they are declared and all its

descendants. In contrast to local variables, the execution state and outcome

of a node are visible to all nodes in the plan. Assignment nodes also have a

priority that is used to solve race conditions. The internal state of a node

consists of the current values of its execution state, execution outcome, and

local variables.

Each node is equipped with a set of gate conditions and check conditions

that govern the execution of a plan. Gate conditions provide control flow

mechanisms that react to external events. In particular, the start condition

specifies when a node starts its execution, the end condition specifies when a

node ends its execution, the repeat condition specifies when a node can repeat

its execution, and the skip condition specifies when the execution of a node

can be skipped. Check conditions are used to signal abnormal execution

states of a node and they can be either pre-condition, post-condition, or

invariant conditions. The language includes Boolean, integer and floating-

point arithmetic, and string expressions. It also includes lookup expressions

that read the value of external variables provided to the plan through the

executive. Expressions appear in conditions, assignments, and arguments of

114

http://camilorocha.info/thesis

commands. Each of the basic types is extended by a special value unknown

that can result, for example, when a lookup fails.

The execution of a plan in PLEXIL is driven by external events that

trigger changes in the gate conditions. All nodes affected by a change in

a gate condition synchronously respond to the event by modifying their

internal state. These internal modifications may trigger more changes in

gate conditions that in turn are synchronously processed until quiescence is

reached for all nodes involved. External events are considered in the order

in which they are received. An external event and all its cascading effects

are processed before the next event is considered. This behavior is known

as run-to-completion semantics.

Henceforth, the notation (Γ, π) is used to represent the execution state

of a plan, where Γ is a set of external variables and their current values,

and π is a set of nodes and their internal states. Formally, the semantics of

PLEXIL is defined on states (Γ, π) by a compositional layer of five reduction

relations [39]. The atomic relation describes the execution of an individual

node in terms of state transitions triggered by changes in the environment.

The micro relation describes the synchronous reduction of the atomic re-

lation with respect to the maximal redexes strategy, i.e., the synchronous

application of the atomic relation to the maximal set of nodes of a plan.

The remaining three relations are the quiescence relation, the macro rela-

tion, and the execution relation that describe, respectively, the reduction of

the micro relation until normalization, the interaction of a plan with the

external environment upon one external event, and the n-iteration of the

macro relation corresponding to n time steps.

Consider the PLEXIL plan in Figure 8.1. The plan consists of a root

node Exchange of type list, and leaf nodes SetX and SetY of type assign-

ment. The node Exchange declares two local variables x and y. The values

of these variables are exchanged by the synchronous execution of the node

assignments SetX and SetY. The node Exchange also declares a start con-

dition and an invariant condition. The start condition states that the node

can start executing whenever the value of an external variable T is greater

than 10. The invariant condition states that at any state of execution the

values of x and y add up to 3.

115

Exchange: {

Integer x = 1;

Integer y = 2;

StartCondition: Lookup(T) > 10;

Invariant: x+y == 3;

NodeList:

SetX: { Assignment: x = y; }

SetY: { Assignment: y = x; }

}

Figure 8.1: A PLEXIL plan that reads the value of an external variable T and syn-
chronously exchanges the values of internal variables x and y.

8.2 Formal Semantics

The PLEXIL rewriting logic semantics PLX is defined in Maude and has

several modules comprising more than 2000 lines of code. A complete review

of its implementation is out of the scope of this section. Instead, this section

highlights some of the main features of the formal semantics and provides a

high-level overview of the PLX source code available with the thesis at http:

//camilorocha.info/thesis. Some syntax details have been omitted or

changed intentionally to favor a cleaner notation and a clearer explanation.

At the top level, the state space is represented by the top sort Sys, which is

made up of sequences of collections of external variables and configurations

of objects:

sort Sys .

op _|-_ : EnvList Configuration -> Sys [ctor] .

Sequences of collections of external variables correspond to sequences of

events in the external environment; more than one event can be recorded

in each collection which results in more than one external variable being

updated. Similar to the IBOS formal semantics in Chapter 6, objects are

made up out of an object identifier, a type an a set of attributes.

Object identifiers are nonempty lists of sort NeQualified made up of

simple identifiers of sort Identifier, and obtained by instantiating Maude’s

parametric list sort LIST:

protecting LIST{Identifier}

* (op nil to nilq ,

sort List{Identifier} to Qualified,

sort NeList{Identifier} to NeQualified,

op __ to _._) .

For each plan, the names of the nodes are used to populate the sort

Identifier with constants. The elements in the list represent the hierarchy

of a node in a plan. For example, the actual name of node SetX in Figure 8.1

116

http://camilorocha.info/thesis
http://camilorocha.info/thesis

is defined by two constants SetX and Exchange of sort Identifier, and is

represented by the ground term SetX.Exchange. The semantics assumes

that the qualified names in an input plan are unique.

The type of an object identifies the type of node or local memory:

op list : -> Cid .

op command : -> Cid .

op assignment : -> Cid .

op empty : -> Cid .

op memory : -> Cid .

op extvar : -> Cid .

The execution state of nodes and local memories is represented by the

attributes in its object representation. The following are some attribute

names:

--- internal state

op status:_ : Status -> Attribute [ctor] .

--- execution outcome

op outcome:_ : Outcome -> Attribute [ctor] .

--- assignment

op _:=_ : NeQualified Expression -> Attribute [ctor] .

--- initial value of a local memory

op initVal:_ : Value -> Attribute [ctor] .

--- current value of a local memory

op actVal:_ : Value -> Attribute [ctor] .

--- priority for assignments

op priority:_ : Rat -> Attribute [ctor] .

--- Conditions

op repeatc:_ : Expression -> Attribute [ctor] .

op startc:_ : Expression -> Attribute [ctor] .

op endc:_ : Expression -> Attribute [ctor] .

op post:_ : Expression -> Attribute [ctor] .

op skip:_ : Expression -> Attribute [ctor] .

op pre:_ : Expression -> Attribute [ctor] .

op inv:_ : Expression -> Attribute [ctor] .

op exit:_ : Expression -> Attribute [ctor] .

The most basic expressions in PLX are constant values with sort Value,

which are formed from Boolean, integer, float, and string Maude values.

Additional constants such as unknown and aborted are introduced, respec-

tively, to model the special information about unknown information and

aborted execution.

sort Value .

op v : Int -> Value .

op v : Bool -> Value .

op v : Float -> Value .

op v : String -> Value .

ops unknown aborted : -> Value .

117

More general expressions are formed from constant values with construc-

tor const, from local memory names with constructor var, and from exter-

nal variable access with constructor lookups.

sort Expression .

op const : Value -> Expression [ctor] .

op var : NeQualified -> Expression [ctor] .

op lookup : NeQualified -> Expression [ctor] .

Expressions can also be formed from the Boolean, integer, and float op-

erators in the usual way.

As an illustration, the following is an initial state for the Exchange PLEXIL

plan in Figure 8.1:

nil |-

< Exchange : list |

status: inactive,

outcome: none,

startc: (lookupOnChange(T, v(0)) > const(v(10))),

inv: (var(x . Exchange) + var(y . Exchange) equ const(v(3))), ... >

< SetX . Exchange : assignment |

status: inactive,

outcome: none,

(x . Exchange) := var(y . Exchange), ... >

< SetY . Exchange : assignment |

status: inactive,

outcome: none,

(y . Exchange) := var(x . Exchange), ... >

< x . Exchange : memory | initVal: v(1),actVal: v(1) >

< y . Exchange : memory | initVal: v(2),actVal: v(2) >

< T : extvar | actVal: v(15) >

In this state, the value of the external variable T is the constant integer

value 15. Constant nil with sort environment list indicates that there are

not external events besides the one for initially updating T.

8.2.1 Synchronous Simulation

PLEXIL’s atomic relation is defined by 42 rules, indexed by the type and

the execution status of nodes into a dozen groups. Each group associates a

priority to its set of rules, which defines a linear order on the set of rules.

Atomic transitions are modeled by a collection of equations implementing

the serialization procedure [91, 31]. These serialization equations are all

triggered by the micro function:

op micro : Configuration -> Configuration .

The argument of micro is a configuration of objects representing the ex-

ecution state of a plan. The output is a configuration representing the

118

synchronous application of all possible one-step atomic reductions on the

input configuration under the maximal redexes strategy. Note that since

PLEXIL is deterministic, it is assumed that the output of micro is at most

one state on any given input. If a synchronous reduction is not possible,

function micro returns the input configuration.

PLEXIL’s micro relation is specified by the rewrite rule [micro], which

uses the function micro:

crl [micro] :

EL:EnvList |- Cnf:Configuration

=> EL:EnvList |- Cnf’:Configuration

if Cnf’:Configuration := micro(Cnf:Configuration)

/\ Cnf:Configuration =/= Cnf’:Configuration .

A micro reduction is possible only when the outcome of micro is different

to its input. Function symbol ‘=/=’ is Maude’s built-in inequality operator.

See [31] for more details on the implementation of the serialization procedure

by function micro.

8.2.2 External Events

PLEXIL execution is driven by external events. The set of such events

includes events related to lookup in conditions, e.g., changes in the value

of an external state that affects a gate condition, acknowledgments that a

command has been initialized, reception of a value returned by a command,

etc.

PLEXIL’s interaction with the external environment is defined by the

macro relation. In the rewriting logic semantics PLX, rewrite rule [macro]

models the interaction of a plan with the external events:

crl [macro] :

Env:Environment . EL:EnvList |- Cnf:Configuration

=> EL:EnvList |- updateConf(Cnf’:Configuration,Env:Environment)

if Cnf’:Configuration := micro(Cnf:Configuration)

/\ Cnf:Configuration == Cnf’:Configuration .

A rewrite step with rule macro is possible whenever there is at least an

external event (modeled by Env:Environment) and no micro steps are possi-

ble, which corresponds to the formal definition of PLEXIL’s macro relation.

Auxiliary function updateEnv updates the value associated to the exter-

nal variables in the execution state with that from the next event of the

environment.

As an illustration on how rules [micro] and [macro] interact in the

rewriting logic semantics PLX, consider the following output given by Maude’s

119

search command:

search in EXCHANGE : compile(ExchangeEnv, Exchange) =>! X:Sys .

Solution 1 (state 9)

states: 10 rewrites: 1217 in 4ms cpu (4ms real) (304250 rewrites/second)

X:Sys -->

nil |-

< Exchange : list |

status: finished,

outcome: success,

startc: (lookupOnChange(T, v(0)) > const(v(10))),

inv: (var(x . Exchange) + var(y . Exchange) equ const(v(3))), ... >

< SetX . Exchange : assignment |

status: finished,

outcome: success,

(x . Exchange) := var(y . Exchange), ... >

< SetY . Exchange : assignment |

status: finished,

outcome: success,

(y . Exchange) := var(x . Exchange), ... >

< x . Exchange : memory | initVal: v(1),actVal: v(2) >

< y . Exchange : memory | initVal: v(2),actVal: v(1) >

< T : extvar | actVal: v(15) >

In this case, plan Exchange is executed from an initial state, represented

by compile(ExchangeEnv, Exchange) and that corresponds to the initial

state presented before in this section (where the value of T is 15). The result

of the search is exactly one state in which the values of x . Exchange and

y . Exchange have been exchanged, the internal state of execution of the

nodes is finished, and the outcome of their execution is success.

8.3 Design Validation

The rewriting logic semantics PLX has been used to validate the design of

PLEXIL against a wide variety of plan examples. Thanks to the formal

semantics two problematic issues about the original PLEXIL semantics were

discovered:

Non-atomicity of the atomic relation. A prior version of the atomic

rules for executing assignment nodes introduced an undesired inter-

leaving semantics for variable assignments, which invalidated the syn-

chronous nature of the language.

Spurious non-termination of plans. Due to lack of detail in the original

specification of some predicates, there were cases in which some tran-

120

sitions for list nodes ending iteration would lead to spurious infinite

loops.

Although the formal operational semantics of PLEXIL in [30] had been

previously used to prove several properties of PLEXIL, neither one of these

issues was uncovered. As as matter of fact, these issues do not compro-

mise any of the proven properties of the language. Solutions to both issues

were provided using the executable rewriting logic semantics and have been

adopted in the latest version of the formal PLEXIL semantics.

The rewriting logic semantics PLX has also been used to study variations

and extensions of the PLEXIL language design.

PLEXIL’s macro relation is especially important because it is the seman-

tic relation defining the interaction of a plan with the external environment.

On the one hand, it is reasonable to have access to the external state as

often as possible so that lookups in each atomic reduction can use the latest

information available. On the other hand, it can be computationally ex-

pensive to implement such a policy because sensors or similar artifacts can

significantly delay the execution of a plan. Another dimension of the prob-

lem arises when a guard of an internal loop depends on external variables:

should the loop run-to-completion regardless of the possible updates to the

value of the variable in its guard, or should it stop at each iteration so that

the value of the external variable can be updated?

The rewriting logic semantics PLX has been modified to accommodate

alternative specifications of PLEXIL’s semantics with different definitions of

the macro relation. These semantic variants of PLEXIL have been studied

and have been exercised with a significant number of examples.

Another concrete example that illustrates the use of PLEXIL’s rewriting

logic semantics by the designers of the language is the addition of a gate

condition called exit condition. The exit condition provides a mechanism

for a clean interruption of execution. In order to support this feature, the

PLX specification of the atomic relation was modified to include the intended

semantics. Given the modular definition of the formal semantics none of the

other rewriting relations need to be modified.

8.4 A Case Study

A cruise control system adapted from [13] is presented to showcase the

model checking capabilities made possible by the PLX executable semantics.

Originally, the cruise control model was designed for the Enhanced Oper-

121

ator Function Model (EOFM) formalism, which is intended for the study

of human behavior in a human-computer interaction framework. However,

PLEXIL shares many characteristics with EOFM, including the hierarchical

structure of tasks decomposed into sub-tasks and the execution governed by

conditions (pre, post , repeat , invariant).

adjust speed
increase

set desired
cruise speed

maintain
cruise speed

no
traffic

let ahead
(slowdown)

let behind
(speed up)

roll to stop break

seq xor xor

Drive to ramp Avoid traffic on ramp Stop at red light

speed = fast
acceleration > 0

cruise = on/moderate

roll cruise on break

seq

Figure 8.2: Cruise control model with task hierarchy.

8.4.1 Model Description

The cruise control model consists of three main components: car, driver,

and stoplight, which execute synchronously. The operator drives the car

on a street, approaching the stoplight. Other cars may merge into the lane

from a side ramp, roughly midway through. The car has three controls

represented in the model: the gas and break pedals to manage speed and

acceleration, and a cruise button to switch the cruise mode on/off and set

the cruise speed. The human operator’s plan is to safely operate the controls

of the car to achieve three sub-goals: (i) drive at a desired cruise speed, (ii)

avoid the possible merging traffic from the ramp, and (iii) obey the traffic

light at the intersection, i.e., stop the car in time if the light turns red. All

three properties can be represented in PLEXIL. Here the focus is on the

third, which is a safety property.

The model parameters are: the geometry of the intersection, i.e., the

length of each street segment; the location of the ramp along the street, in

distance units; the stoplight cycle length, in time units, for each color; and

the speed range, in distance per time units.

122

Model variables. The model variables and their range are selected ac-

cording to an abstraction scheme that discretizes the values to allow finite

state model checking, yet leaves sufficient information to make the study

relevant.

• distance ∈ [0 . . . 55], the distance of the car to the intersection;

• time ∈ [0 . . . 28];

• speed ∈ {stopped = 0, slow = 1, moderate = 2, fast = 3};

• acceleration ∈ {−1, 0, 1};

• cruise enabled ∈ {true, false};

• cruise speed ∈ {0, 1, 2, 3};

Transitions. The car advances according to its speed until it reaches the

intersection. It updates

distance := distance− speed∗timestep

while the condition speed > 0∧ distance > 0 holds. The discretized speed

can change by at most one unit at a time, hence the possible values for

acceleration are only {−1, 0, 1}. The stoplight counts down the time units

until the end of the green-yellow-red cycle by assigning

stoplight := stoplight− timestep.

The light is red in the time interval [0 . . . 8], yellow in [9 . . . 12], and green

in [13 . . . 28].

The complexity resides in capturing the decision making of the driver.

In the first segment, the driver wants to set the cruise control to a desired

speed (e.g., moderate). The driver has the choice of accelerating from slow

or decelerating from fast, and then enable the cruise control which will

maintain the desired speed. On the second segment, the driver needs to

react to merging traffic from the ramp. If any car is on the ramp, the driver

may choose to let the other car go in front by slowing down, or to leave it

behind by speeding up. On the last segment, the driver has to react to the

stoplight turning red. The driver may choose to maintain the speed and

then break before reaching the stoplight, or may roll to a stop by releasing

the gas pedal.

123

Comparison with the EOFM model.

• The original abstraction has been refined in PLEXIL to allow more

distance and time divisions, making it more realistic; in the EOFM

model the distance is heavily discretized (abstract locations 0 to 7)

and not coordinated with the time to travel each segment.

• Non-determinism is introduced by lookups of environment variables.

The script plays out a sequence of random choices for three Boolean

environment variables: MergingTraffic, LetBehind, RollStop.

• Some of the concepts are essentially cognitive in nature, as they depend

on the subjective (sometimes erroneous) perceptions and assessments

of the situation by the human operator, hence they cannot be as nat-

urally captured in the formal model. However, both normative and

erroneous behaviors are captured in the PLEXIL model, and it is the

job of the model checker to discover violations.

• The synchronous behavior is natural in PLEXIL, no further instru-

mentation is necessary, while in EOFM synchrony has to be expressly

specified, using appropriate decomposition operators.

8.4.2 Verification

The property of interest can be expressed either as a global invariant in the

PLEXIL model itself and checked with the generic “check invariants” button,

or entered in the LTL Model Checking dialog window. The safety property

is specified in the top level task node Main as the invariant condition:

¬(stoplight ≤ red ∧ distance = 0 ∧ speed > 0),

stating that it is not the case that the vehicle is moving at the intersection

when the light is red.

The PLEXIL semantics shows that the execution of the plan ends with

the outcome invariantFail for the root node (and parentFail for the suc-

cessor nodes) when the environment variables MergingTraffic, LetBehind,

and RollStop are all true. The result of model checking the safety property

is an execution trace where the formula is violated.

The counterexample can be described as follows:

1. the car enters at low speed at distance = 55 and time = 28;

124

2. the driver accelerates to the desired moderate speed and sets the cruise

on at time = 20 and distance = 42;

3. at the ramp, with distance = 33, the driver decides to let the merging

car behind by accelerating to fast at time = 12 and distance = 25;

4. the stoplight light turns yellow, the driver chooses to roll to a stop

(assessing there is sufficient distance to the intersection to do so, by

releasing the gas pedal);

5. with the acceleration negative, the driver does not disengage the cruise

mode, the cruise control kicks in and maintains the cruise speed to

moderate for one execution cycle at time = 6 and distance = 10;

6. the effect of the automation is that the (now necessary) breaking is

too late to decrease the speed from moderate to low at time = 2 and

distance = 2, and then stopped in two execution cycles; and

7. when time expires, the car is moving in the intersection on the red

light.

To correct the problem, the node corresponding to the “roll to stop” ac-

tion has to be rectified, in order to include a check on the status of the cruise

control. The driver either has to make sure it is disabled before initiating

the “roll to stop” option or should manually disable it. In PLEXIL, this can

be instrumented via a start condition or, by duality, with the correspond-

ing negated skip condition. No other combination of environment lookup

variables leads to violations in this model.

The full model of the cruise control system consists of 929 lines of code.

8.5 Related Work and Concluding Remarks

Rewriting logic has been used previously as a testbed for specifying and

animating the semantics of synchronous languages. M. AlTurki and J.

Meseguer [1] have studied the rewriting logic semantics of the language Orc,

which includes a synchronous reduction relation. T. Serbanuta et al. [97]

define the execution of P -systems with structured data with continuations.

The focus of the former is to use rewriting logic to study the (mainly) non-

deterministic behavior of Orc programs, while the focus of the latter is

to study the relationship between P -systems and the existing continuation

125

framework for enriching each with the strong features of the other. The ap-

proach here is instead based on exploiting the determinism of a synchronous

relation to tackle the problem associated with the interleaving semantics

of concurrency in rewriting logic. P. Lucanu [66] studies the problem of

the interleaving semantics of concurrency in rewriting logic for synchronous

systems from the perspective of P -systems. The determinism property of

the synchronous language Esterel [11] was formally proven by O. Tardieu

in [102]. C. Rocha and C. Muñoz [92] have implemented a framework for

the simulation of synchronous systems in Maude, following the main ideas

presented in this chapter for the rewriting logic semantics of PLEXIL.

An executable semantics of PLEXIL has been developed by P. J. Strauss in

the Haskell language [99] with the aim of analyzing features of the language

regarding the plan interaction with the environment. As a result, new data

types representing the external world have been proposed for more dynamic

runtime behavior of PLEXIL plans. More recently, D. Balasubramanian et

al. have proposed Polyglot, a framework for modeling and analyzing mul-

tiple Statechart formalisms, and have initiated research towards the formal

analysis of a Statechart-based semantics of PLEXIL [7].

126

CHAPTER 9

SYMBOLIC REACHABILITY FOR PLEXIL MODULO

INTEGER CONSTRAINTS

In Chapter 8 it was explained that the execution of a plan in PLEXIL

is driven by external events that trigger changes in the gate conditions.

This chapter presents a case study on the symbolic analysis of reachability

properties for PLEXIL with the main goal of complementing the formal

verification capabilities already available to PLEXIL with the rewriting logic

semantics PLX presented in Chapter 8. As a result, this chapter reports on

the implementation of a symbolic rewriting logic semantics for a large subset

of the PLEXIL language that is able to automatically detect reachability

violations on input plans where the values of external variables can be left

unspecified.

The notion of an invariant violation or a race condition is important in

PLEXIL. In particular, as a safety property of the language, a plan is consid-

ered invalid if there is an execution that leads to a race condition. In other

words, a plan can be considered safe if none of its possible executions leads

to a race condition. Of course, detecting a race condition when knowing in

advance what the values of the external variables is not very difficult. But

what is required is to ensure that the non-determinism introduced by the

external environment can never lead to a race condition.

In order to motivate the discussion, consider the plan AssignWithConflig

in Figure 9.1. This plan has one list node and two assignment nodes, NonNeg

and NonPos. It declares a local integer memory x and interacts with the

external environment via the integer variable S. Note that depending on the

value of S, the assignment nodes NonNeg and NonPos may or may not start

execution, and a race condition can happen on x when the value of S is 0.

With the symbolic semantics presented in this chapter, the race condition on

127

AssignWithConflict: {

Integer x = 0;

Invariant: x >= 0;

NodeList:

NonNeg: {

Start: Lookup(S) >= 0;

Assignment: x := 1;

}

NonPos: {

Start: Lookup(S) <= 0;

Assignment: x := 2;

}

}

Figure 9.1: A parallel assignment with a potential race condition.

x can be automatically detected. In contrast, such an automatic checking is

not possible with the rewriting logic semantics PLX because of the inherently

symbolic interpretation of S.

This chapter uses the techniques developed in Chapter 7 to study the for-

mal verification of symbolic reachability properties for PLEXIL. The verifi-

cation task focuses on analyzing the non-determinism introduced in the lan-

guage by lookups of the external environment with help of Maude’s search

command and the LTL model checker. The symbolic semantics is given in

the form of a constrained rewrite theory that specifies the symbolic atomic

behavior of the language, which is encoded and executed in the Maude sys-

tem extended with CVC3 (available from the Matching Logic Project [93]).

The external variables of the environment are modeled as Boolean and inte-

ger constrained built-in terms and CVC3’s decision procedure for quantifier-

free linear integer arithmetic is used as an oracle for solving constraints on

them.

Given the asynchronous nature of the rewriting relations directly exe-

cutable in Maude, the synchronous execution of the symbolic atomic relation

is obtained by exploiting rewriting logic’s reflective capabilities available in

Maude. It is important to mention that the symbolic semantics of PLEXIL

uses data structures based on lists, sets, and multisets. Hence the insistence

in Chapter 7 on supporting any combination of associativity, commutativity,

and identity axioms in the specifications.

This chapter is organized as follows. Section 9.1 explains how symbolic

states are modeled in the symbolic semantics. Section 9.2 presents an

summary on how the symbolic atomic relation of PLEXIL is encoded as

128

a rewrite theory in Maude and Section 9.3 explains how its synchronous ex-

ecution is obtained. Section 9.4 shows how the symbolic semantics can

be used to detect the race condition in the running example, and also

find an automatic proof of its absence in other cases. The source code

of the symbolic rewriting logic semantics in Maude is available at http:

//camilorocha.info/thesis.

9.1 Symbolic States

At the top level, a state is represented by the top sort Sys, whose terms are

made up of a Boolean constraint and a configuration of objects:

sort Sys .

op {_,_} : iBool Configuration -> Sys [ctor frozen(2)] .

With respect to the development in Section 7.1, sort Sys instantiates the

abstract top sort s of constrained terms. Objects in the symbolic semantics

obey the syntax of objects already introduced in chapters 6 and 8.

Sort iBool represents built-in Boolean terms that are used as Boolean

constraints. Similarly, sort iInt represents built-in integer terms that can

be part of the configuration. Note that in contrast to the ground semantics

of PLEXIL presented in Section 8.2, the external environment is assumed

to be completely encoded in the configuration of objects in the symbolic

semantics. Also note that the second argument in a constrained state has

a frozenness constraint (see Chapter 3 for details). This is to prevent any

direct rewrite with the rewrite rules defining PLEXIL’s symbolic atomic

relation. As it will be explained, these rules are not executed directly but

by means of Maude’s reflective capabilities.

Terms of sort iBool and iInt represent symbolic built-in expressions.

They include the following definitions:

sort iBool iInt .

op c : Bool -> iBool [ctor] .

op c : Int -> iInt [ctor] .

op b : Nat -> iBool [ctor] .

op i : Nat -> iInt [ctor] .

Constructor function symbol c is a wrapper for Boolean and integer val-

ues. Constructor function symbols b and i play a key role in the symbolic

semantics: their goal is to encode, respectively, PLEXIL’s Boolean and in-

teger variables. In this way, a Boolean variable x1 in PLEXIL could be

129

http://camilorocha.info/thesis
http://camilorocha.info/thesis

expressed as the ground term b(1) of sort iBool. The overall picture is

the following: the set XΛ in Chapter 7, for the case of PLEXIL’s Boolean

and integer variables, is actually being encoded in the symbolic semantics

by ground terms of sort iBool and iInt, respectively.

The Boolean and integer sorts iBool and iInt include more operators.

For instance, they include memory binding operators with the function sym-

bols bmem and imem, lookup expressions with the function symbols blookup

and ilookup, and the usual operators with self-explanatory syntax:

op bmem : NeQualName -> iBool .

op blookup : NeQualName -> iBool .

op imem : NeQualName -> iInt .

op ilookup : NeQualName -> iInt .

op -_ : iInt -> iInt .

ops _+_ _*_ : iInt iInt -> iInt [assoc comm] .

op _-_ : iInt iInt -> iInt .

ops _<=_ _<_ _>=_ _>_ : iInt iInt -> iBool .

ops _===_ _=//=_ : iInt iInt -> iBool [comm] .

It is important to note that the operators ‘===’ and ‘=//=’ shown above are

actually equality enrichments for the sort iInt. There are similar operators

for the sort iBool.

Boolean and integer expressions can be evaluated ‘symbolically’ by means

of function eval:

op eval : Configuration iBool -> iBool .

op eval : Configuration iInt -> iInt .

The evaluation of an expression by eval is given w.r.t. an object con-

figuration and it is equationally defined recursively on the complexity of

expressions.

For instance, the following is an equation evaluating a Boolean lookup of

an external variable:

eq eval((< NeQN:NeQualified : extvar |

type: boolean,

values: (iB:iBool ; iEL:iBoolList),

AtS:AttributeSet > Cnf:Configuration),

blookup(NeQN:NeQualified))

= iB:iBool .

Attribute name type is used to identify the type (either boolean or int)

of an external variable. Attribute name values is used as a placeholder for

lists of expressions (either of sort iBoolList or iIntList) that represent

the future values of lookups.

130

9.2 The Symbolic Atomic Relation

The symbolic atomic relation of PLEXIL is specified by a set of constrained

rewrite rules encoded as rewrite rules in an ordinary rewrite theory. The

notion of guarded actions is useful for this purpose, as explained below.

A symbolic atomic transition can update the status and the outcome of

a node, update the value of a memory, and reset the value of a memory to

its initial value. These actions are modeled by sort Action as follows:

sort Action .

op set-status : NeQualName Status -> Action [ctor] .

op set-outcome : NeQualName Outcome -> Action [ctor] .

op set-value : NeQualName iBool -> Action [ctor] .

op set-value : NeQualName iInt -> Action [ctor] .

op reset : NeQualName -> Action [ctor] .

Sets of actions are modeled by sort ActionSet that is defined by instan-

tiating Maude’s parametric module SET:

pr SET{Action} * (sort NeSet{Action} to NeActionSet,

sort Set{Action} to ActionSet,

op empty to mtas,

op _,_ to _;_) .

A guarded set of actions represents actions constrained by a Boolean con-

straint. They are a convenient representation for the purpose of encoding

the constrained rules:

pr 4TUPLE{String,Nat,iBool,ActionSet}

* (sort Tuple{String,Nat,iBool,ActionSet} to 4GuardedActionSet) .

In order to motivate the usefulness of guarded actions, consider the fol-

lowing rewrite rules encoding PLEXIL’s atomic transitions for lists in state

executing corresponding to the transition diagram depicted in Figure 9.2:

rl [exec-list-1] :

< O:NeQualified : list | status: executing,

AtS:AttributeSet >

=> ("exec-list",

1,

anc-inv(O:NeQualified) === c(false),

(set-outcome(O:NeQualified,fail(parent)) ;

set-status(O:NeQualified,failing))) .

rl [exec-list-2] :

< O:NeQualified : list | status: executing,

inv: iB:iBool,

AtS:AttributeSet >

=> ("exec-list",

2,

131

executing

ancestor inv inv condition end condition finishing

OUTCOME=fail failing

true

false

true

false

true

Figure 9.2: Atomic transitions for list nodes in state executing.

iB === c(false),

(set-outcome(O:NeQualified,fail(inv)) ;

set-status(O:NeQualified,failing))) .

rl [exec-list-3] :

< O:NeQualified : list | status: executing,

end: iB:iBool,

AtS:AttributeSet >

=> ("exec-list",

3,

iB:iBool,

set-status(O:NeQualified,finishing)) .

First note that all terms representing guarded actions occur in the right-

hand side of the rewrite rules. Second, the string argument is the same in all

four tuples and the second argument records the order in which the condi-

tions appear is the diagram. This two values are used by the instrumentation

of the serialization procedure, presented in the next section, to compute the

set of maximal redexes. Actions with higher priority (indicated here by a

smaller value) have precedence over actions with lower priority (indicated

here by a larger value). The third argument is the actual guard of the set

of actions that appear in the fourth argument.

In order to understand how the symbolic atomic semantics works based

on this encoding, consider a ground state {B,Cnf} of sort Sys having the

following objects as part of its object configuration:

< bar : list |

inv: b(0), ... >

< foo . bar : list |

status: executing,

inv: b(0) == false,

end: b(0), ... >

Nodes bar and foo.bar are list nodes; the former is the parent of the

132

latter. The invariant of node bar holds whenever the value (of the Boolean

variable represented) by b(0) is true. The invariant of foo.bar holds when-

ever b(0) is false. The end condition of foo.bar holds whenever b(0)

is true. Then, no matter what Boolean condition the constraint B repre-

sents, node foo.bar can never transition with rule [exec-list-3] because

[exec-list-1] has higher priority. However, there may be cases when

both rules [exec-list-1] and [exec-list-2] can be applied but not in

conjunction because they are mutually exclusive.

9.3 Synchronous Symbolic Execution

The problem of simulating PLEXIL’s symbolic synchronous relation can be

decomposed into a combination of smaller problems. The approach has three

phases: matching, parallel maximization, and action application.

In the matching phase, all possible guarded actions asynchronously in-

duced by the encoding of the symbolic atomic rules on a symbolic state are

collected. This phase is performed using a mapping:

op match : Sys -> PreSysSet .

The sort PreSysSet is introduced to represent multisets of constrained ac-

tions. On input {B,Cnf}, every constrained set of actions in match({B,Cnf})
is such that its constraint is satisfiable in conjunction with the constraint

B. The implementation of match uses Maude metalevel facilities to compute

the guarded actions by applying meta-rewrites on Cnf with each atomic rule.

The parallel maximization phase computes a collection of constrained ac-

tions from the collection of constrained actions returned by match. Each

of the constrained actions returned in this phase represents a maximal par-

allel reduction of atomic transitions whose constraints are all satisfiable in

conjunction with the input constraint. This phase is performed using a

mapping:

op maxp : iBool PreSysSet -> PreSysSet .

In the action application phase, constrained actions are applied to the

input constrained term, representing a symbolic maximal parallel atomic

reduction. This is done for each constrained action obtained from the par-

allel maximization phase on the initial input, thus capturing the (possible)

non-deterministic behavior of the symbolic parallel reduction. This phase is

performed using a mapping:

op apply : Sys PreSys -> Sys .

133

The call to functions match, maxp, and apply, is triggered by function

bgc:

op bgc : Sys -> SysSet .

Given a ground term {B,Cnf} of sort Sys, function bgc computes a set of

ground terms of sort Sys, namely, those states reachable from {B,Cnf} in

one symbolic micro step.

The following are the rewrite rules that specify the symbolic micro and

macro relations in the symbolic semantics of PLEXIL:

crl [micro] :

St => { iB, Cnf }

if (iB,Cnf),GCS := bgc(St) .

crl [macro] :

St => { coll-constr(pop-env(conf(St))), pop-env(conf(St)) }

if mt := bgc(St)

/\ has-future?(conf(St)) = true .

Term mt is a constant with sort SysSet denoting the empty set of states.

Function has-future? checks if there is an event waiting to be processed.

Functions coll-constr and pop-env are auxiliary functions that update

the values of the external variables in the object configuration.

9.4 Symbolic LTL Model Checking

Detection of race conditions on local memories and violation of node invari-

ants are important in PLEXIL. As such, predicates for checking them are

already available from the symbolic semantics. In particular, states predi-

cates inv and race-free, which take an argument of sort NeQualified, are

offered to the user.

The intended semantics of the state predicates is with respect to the initial

semantics of PLEXIL. For example, consider the following definition of inv

in the syntax of Maude model checker:

eq ({ iB:Bool,

< O:NeQualified : C:Cid | inv: iB’:iBool, AtS:AttributeSet >

Cnf:Configuration }) |= inv(O:NeQualified)

= check-unsat(iB:iBool and

not(eval(< O:NeQualified : C:Cid |

inv: iB’:iBool, AtS:AttributeSet > Cnf,

iB’:iBool))) .

The invariant condition of node O represented by the Boolean expression iB’

yields an invariant violation for O whenever the conjunction of the state’s

134

constraint iB and the negation of iB’ is unsatisfiable. This precisely means

that there is a ground counter-example state for the invariance of the node.

Function check-unsat implements the call to CVC3:

op check-unsat : iBool -> Bool .

Recall the plan AssignWithConflict in Figure 9.1, which has a potential

race condition for the local memory x. Assume that SPLX represents the sym-

bolic rewriting logic semantics of PLEXIL, and let init be a configuration

of objects representing an initial configuration for AssignWithConflict.

Consider the following safety verification requirements:

TSPLX, {c(true), init} |= �race-free(x.AssignWithConflict),
(9.1)

TSPLX, {i(0) >= c(1), init} |= �race-free(x.AssignWithConflict),
(9.2)

TSPLX, {i(0) >= c(1), init} |= �inv(AssignWithConflict). (9.3)

The external variable S in AssignWithConflict is represented by the

Boolean term i(0). Property (9.1) states that there is no race condition on

memory x if i(0) has no initial constraints. Property (9.2) states that there

is no race condition on memory x if i(0) is assumed to be at least 1. Prop-

erty (9.3) states that the invariant condition of node AssignWithConflict

holds if i(0) is assumed to be at least 1. Note that these properties are

symbolic reachability requirements because of the nature of the external

variable S. Also, the constrained terms defining the initial states in these

properties represent, in each case, infinitely many initial states.

By directly using Maude’s LTL Model Checker, property (9.1) can be

disproved, and properties (9.2) and (9.3) can be proved automatically.

==

reduce in ASSIGNWITHCONFLICT :

verify-lite({c(true), init}, [] race-free(x . AssignWithConflict)) .

rewrites: 2590 in 525ms cpu (1629ms real) (4929 rewrites/second)

result Bool: false

==

reduce in ASSIGNWITHCONFLICT :

verify-lite({ i(0) >= c(1), init}, [] race-free(x . AssignWithConflict)) .

rewrites: 2846 in 575ms cpu (614ms real) (4947 rewrites/second)

result Bool: true

==

reduce in ASSIGNWITHCONFLICT :

verify-lite({i(0) >= c(1), init}, [] inv(AssignWithConflict) .

rewrites: 3191 in 576ms cpu (702ms real) (5534 rewrites/second)

result Bool: true

Function verify-lite is a wrapper to Maude’s LTL Model Checker func-

135

tion modelCheck. This mapping outputs either true or false depending

on the output of the model checker function, omitting a counterexample if

any.

136

CHAPTER 10

CONCLUSIONS AND FUTURE WORK

This chapter presents the conclusions of this dissertation, followed by a

discussion on research directions opened by it.

10.1 Conclusions

The focus of this dissertation has been on developing three deductive tech-

niques, with corresponding tool support, for symbolically reasoning about

the model theoretic satisfaction relation

TR |= ϕ,

where TR is the initial reachability model associated to an order-sorted

rewrite theory R, and ϕ is a reachability property. These deductive tech-

niques for reasoning symbolically about specifications with initial model

semantics include: (i) new constructor-based notions for inductive reason-

ing about reachability properties, (ii) a proof system for the task of proving

safety properties, and (iii) a novel method for symbolic reachability analysis

of rewrite theories with constrained built-ins.

The development on constructor-based notions for reachability analysis

combines and generalizes two different research strands. On the one hand,

it can be seen as a natural generalization from the case of equations E to that

of both equations E and rules R, of the work in [54, 52] on (propositional)

equational tree automata methods for checking sufficient completeness of

left-linear equations modulo axioms for context-sensitive order-sorted spec-

ifications. On the other hand, it also generalizes the work by I. Gnaedig

and H. Kirchner [44] on constructors for non-terminating rewrite systems in

137

the following precise sense: the notion of sufficient completeness proposed

in [44] exactly corresponds to that of R-sufficient completeness in this work

for the special case of a rewrite theory R = (Σ,∅, R), where Σ has a single

sort and there are no equations. The treatment of the more general case of

rewrite theories R = (Σ, E ∪B,R, ν) clarifies the important distinction be-

tween constructors for equations and constructors for rules, extends the ideas

to the more general order-sorted case modulo axioms and with frozenness

information, provides new tree automata automated techniques that com-

plement the deductive narrowing-based techniques proposed in [44], and, to

the best of the author’s knowledge, investigates for the first time the use of

R-constructors (and E-constructors) for inductive proofs of ground reacha-

bility. All these new sufficient completeness methods have been automated

in a new version of the Maude Sufficient Completeness Checker (SCC).

The generic approach for the task of proving inductive safety properties,

namely ground stability and ground invariance, is both transformational and

reductionistic. The approach is transformational in the sense that the rules

of inference transform pairs of the form R
 ϕ into other such pairs R′
 ϕ′.
It is also reductionistic in the sense that: (i) all safety formulas in temporal

logic eventually disappear and are replaced by purely equational formulas,

and (ii) the rewrite theory R = (Σ, E,R) is eventually replaced by its under-

lying equational theory (Σ, E). That is, in the end all formal reasoning about

safety properties is reduced to inductive reasoning about equational properties

in the underlying equational theory (Σ, E). This allows these generic safety

verification methods to take advantage of the existing wealth of equational

reasoning techniques and tools already available. The Maude Invariant An-

alyzer (InvA) tool supporting the inference system, makes systematic use of

narrowing modulo axioms with the equations defining state predicates, to

greatly simplify the equational proof obligations to which all proofs of safety

formulas are ultimately reduced. It also takes full advantage of other heuris-

tics for discharging automatically many proof obligations. The advantage

of generic verification methods and tools is that the costly tool develop-

ment effort can be amortized across a much wider range of applications,

whereas a language-specific verification tool can only be applied to systems

programmed in that specific language; two case studies on the mechanical

verification of safety properties for a communication protocol and for a web

browsing system are visible evidence of this fact.

The method for symbolic reachability analysis of rewrite theories with

constrained built-ins is an extension of rewriting logic theories in which the

rewrite rules can be used to rewrite terms with constrained built-ins. That

138

is, terms involving user-definable data structures, but whose only variables

range over decidable domains, and constraints over these variables. The

main advantage of this approach is that, under some mild syntactic condi-

tions and the availability of an oracle for the constraints such as an SMT

solver, rewrite theories with constrained built-ins can symbolically be exe-

cuted by using matching instead of unification, and thus induce a rewrite

relation that is amenable, for example, to model checking verification using

Maude’s search command and LTL model checker. This method can be

used to address symbolic reachability problems for a broad class of speci-

fications: its applicability is only restricted in practice by the availability

of decision procedures available from the SMT solver of choice. Also, this

method can be applied to solve symbolic reachability problems where the

narrowing-based approach may not be applicable (e.g., associativity axioms

may prove problematic because of the possible non-finiteness of a complete

set of unifiers). As a case study, a rewrite theory with constrained built-

ins is used to address the formal verification of some symbolic reachability

properties for the Plan Execution Interchange Language (PLEXIL), a NASA

language for robotic machines. The verification task focuses on analyzing

the non-determinism introduced in the language by lookups of the external

environment with help of Maude’s search command and the LTL model

checker. The symbolic semantics is executed in the Maude system extended

with CVC3 (available from the Matching Logic Project [93]). The external

variables of the environment are modeled as Boolean and integer constrained

built-in terms and CVC3’s decision procedure for quantifier-free linear inte-

ger arithmetic is used as an oracle for solving constraints on them.

Together, the three above-mentioned techniques, their implementation in

the Maude system, and the case studies comprise a significant step forward

in automatic and semi-automatic reasoning for reachability properties of

rewriting logic specifications, a major research goal in the current frontier

of rewriting logic research (see, e.g., [72, p. 49]).

10.2 Future Work

Rewrite theories are formal specifications of concurrent systems [70]. This

dissertation suggests new open problems in the development of new deduc-

tive techniques, with tool support, for symbolically reasoning about reach-

ability properties of rewrite theories with initial semantics. Specifically, it

suggests the advancement of the following research directions.

139

First, since the main goal of the constructor-based notions for reachability

analysis was to obtain automatic techniques for checking the sufficient com-

pleteness of a rewrite theory, some restrictions have been imposed, such as

treating only the order-sorted case (leaving out the case of membership equa-

tional theories), and also assuming that equations and rules are left-linear

and unconditional. The notion of a sufficiently complete rewrite theory is

equally meaningful and useful without these restrictions. Therefore, reason-

ing techniques that will allow establishing such a property for more general

rewrite theories should be investigated, even if such techniques are no longer

automatic. The related topic of constructor-based inductive techniques for

ground reachability and ground joinability has only been sketched out; it

deserves a much fuller development in future work, in which a detailed com-

parison with alternative approaches to proving such properties should also be

given. Furthermore, these constructor-based induction techniques should be

supported by tools such as, for example, an extension of the current Maude

Inductive Theorem Prover (ITP) and adopted to enhance the effectiveness

of Maude’s Church-Rosser Checker (CRC) tool.

Second, the generic approach for the task of proving inductive safety prop-

erties can be complemented by bounded symbolic execution, achieved by

narrowing modulo, so that a property can be symbolically tested before

trying to prove it invariant [94, 38]. In general, it is worth pursuing exten-

sions of narrowing-based symbolic model checking techniques for conditional

rewrite theories, so that these approaches can be combined for symbolic

model checking and for symbolic simulation for the task of proving/disprov-

ing inductive safety properties. The mechanical verification of invariants can

be more effective in InvA by adding automatic support for the discovery of

invariants, improving proof heuristics and adding subsumption checks, en-

hancing the management of proof obligations, and extending the techniques

available to the user in tools such as cover-set induction modulo axioms in

the ITP.

Third, the symbolic reachability analysis with constrained built-ins should

be complemented with narrowing-based techniques enhanced with SMT

solving capabilities such as those recently developed by S. Escobar, V.

Ganesh, and J. Meseguer. Foundations and efficient implementations are

needed to handle more general and larger case studies. The symbolic fold-

ing techniques in [38] should be investigated for the case of rewrite theories

with constrained built-ins. One major technical challenge is to develop a

rich interaction interface from Maude to different SMT solvers. This inter-

face should include support for obtaining models and proofs at the level of

140

Maude, in addition to satisfiability/unsatisfiability queries. Another inter-

esting research question is that of how to deal generically and automatically

with order-sorted built-in specifications when using decision procedures that

are only many sorted. This will be useful for many Maude specifications

where, for example, the use of natural numbers may in some cases be pre-

ferred and may facilitate easier expression of some problems than the use

of the entire integer domain, or both naturals and integers may be used for

different subproblems.

The advancement of the above-mentioned research directions seems to be

an exciting topic for further research.

141

APPENDIX A

MISSING PROOFS FOR CHAPTER 3

This appendix presents proofs that have been omitted in Chapter 3. It in-

cludes the existence and correctness proofs of the PTA in theorems 3 and 4,

and the mechanical proofs supporting the claims about the BAG-CHOICE+CARD

and CHANNEL specifications.

A.1 PTA Proofs

Theorem 3. Let R = (Σ, E ∪ A,R, ν) be an admissible, ground weakly-

terminating, and ground sort-decreasing simple generalized rewrite theory,

and let (Υ,Ω) be a constructor signature pair for R. If RE and RE∪R are

PTA-checkable, then there are PTAs BE and BE∪R such that R is canoni-

cally sufficiently complete relative to (Ω,Υ) if and only if L(BE)∪L(BE∪R) =

∅.

Proof. First, the construction of BE∪R is shown in detail. A s-context is a

term C in which a subterm t of sort s has been replaced by a s-hole, here

signified by �s. The symbol � is the simplest context. If C is a s-context

and t is a term of sort s, then C[t] indicates C with �s replaced by t. At

the same time, C[t] indicates that the term C contains an occurrence of the

subterm t. Let Σ = (S,≤, F), and define ΣK = (K,FK) and IE∪R = {t |
C[t] ∈ lhs(

−→
E ∪R) ∧ t /∈ X ∧ C 6= �}, where lhs(R′) denotes the left-hand

sides of the rules R′. Construct BE∪R = (ΣK , Q,ΓCSC,∆E∪R) as follows:

• Q = {Qk}k∈K with Qk = {rk} ∪ {cs | s ∈ S} ∪ {ps | s ∈ S} ∪ {pu |u ∈
IE∪R ∩ TΣ,k},

• ΓCSC = {γk}k∈K with γk = ¬rk ∧
∨
s∈[k]≤

ps ∧ ¬cs, and

142

• ∆E∪R = {f(ps1 , . . . , psn)→ ps | f ∈ Fs1...sn,s}
∪ {c(rep1

c(s1), . . . , repnc (sn))→ cs | c ∈ Υs1...sn,s}
∪ {ps → ps′ | s, s′ ∈ S ∧ s < s′}
∪ {cs → cs′ | s, s′ ∈ S ∧ s < s′}
∪ {f(pt1 , . . . , ptn)→pf(t1,...,tn) | f(t1, . . . , tn)∈IE∪R}
∪ {f(pt1 , . . . , ptn)→ rk | f(t1, . . . , tn) ∈ TΣ,k ∩ lhs(

−→
E ∪R)}

∪ {f(pk1 , . . . , rki , . . . , pkn)→ rk | f ∈ FKk1...kn,k
∧ i ∈ ν(f)},

where repic(s) equals cs if i ∈ ν(c), and ps otherwise.

Let t ∈ TΣ. By structural induction on t, it follows that t →BE∪R ps if

and only if t ∈ TΣ,s. A similar inductive argument shows that t →BE∪R pu
if and only if there is a substitution θ such that t = uθ. This implies that

t→BE∪R rk if and only if there is an unfrozen context C, ground substitution

θ, and rule l→ r ∈ −→E ∪R such that t = C[lθ]. From an inductive argument,

it also follows that t→BE∪R cs if and only if t ∈ TΣ,s and posν(t) ⊆ posΥ(t).

Hence, t ∈ L(BE∪R)k if and only if [t]B ∈ NormRE∪R/B,k and [t]B /∈ C Υ
R/B,k.

The construction and proof for BE are entirely similar to those for BE∪R,

with BE = (ΣK , Q,ΓCSC ,∆E), where ∆E is defined as ∆E∪R but omitting

the rules R (with the appropriate E-constructors Ω and IE). By mimicking

the argument above, it is straightforward to show that t ∈ L(BE)k if and

only if [t]B ∈ NormRE/B,k and [t]B /∈ TΩ/B,k.

Theorem 4. Let R = (Σ, E∪B,R,ϕ) be a simple generalized rewrite the-

ory that canonically sufficiently complete relative to the constructor signa-

ture pair (Ω,Υ). If RE and RE∪R are PTA-checkable, then there are PTAs

FE and DE∪R such that Ω is a signature of E-free constructors modulo V

if and only if L(FE) = ∅, and Υ is signature of R-deadlock constructors if

and only if L(DE∪R) = ∅.

Proof. Let Σ = (S,≤, F), and let ΣK = (K,FK). Define IE = {t | C[t] ∈
lhs(
−→
E)∧ t /∈ X ∧C 6= �}, and IE∪R = {t | C[t] ∈ lhs(

−→
E ∪R)∧ t /∈ X ∧C 6=

�}. The construction of FE = (ΣK , QE ,ΓE ,∆E) is as follows:

• QE = {QE,k}k∈K with QE,k = {rEk } ∪ {cs | s ∈ S} ∪ {ps | s ∈ S} ∪
{pu |u ∈ IE ∩ TΣ,k},

• ΓE = {γE,k}k∈K with γE,k = rEk ∧
∨
s∈[k]≤

ps ∧ cs, and

• ∆E = {f(ps1 , . . . , psn)→ ps | f ∈ Fs1...sn,s}

143

∪ {c(cs1 , . . . , csn)→ cs | c ∈ Ωs1...sn,s}
∪ {ps → ps′ | s, s′ ∈ S ∧ s < s′}
∪ {cs → cs′ | s, s′ ∈ S ∧ s < s′}
∪ {f(pt1 , . . . , ptn)→pf(t1,...,tn) | f(t1, . . . , tn)∈IE}
∪ {f(pt1 , . . . , ptn)→ rEk | f(t1, . . . , tn) ∈ TΣ,k ∩ lhs(

−→
E)}

∪ {f(pk1 , . . . , r
E
ki
, . . . , pkn)→ rEk | f ∈ FKk1...kn,k

}.

The construction of DE∪R = (ΣK , QE∪R,ΓE∪R,∆E∪R) is as follows:

• QE∪R = {QE∪R,k}k∈K with QE∪R,k = {rEk , rRk }∪{cs | s ∈ S}∪{ps | s ∈
S} ∪ {pu |u ∈ IE∪R ∩ TΣ,k},

• ΓE∪R = {γE∪R,k}k∈K with γE∪R,k = rRk ∧ ¬rEk ∧
∨
s∈[k]≤

ps ∧ cs, and

• ∆E∪R = {f(OBps1 , . . . , psn)→ ps | f ∈ Fs1...sn,s}
∪ {c(rep1

c(s1), . . . , repnc (sn))→ cs | c ∈ Υs1...sn,s}
∪ {ps → ps′ | s, s′ ∈ S ∧ s < s′}
∪ {cs → cs′ | s, s′ ∈ S ∧ s < s′}
∪ {f(pt1 , . . . , ptn)→pf(t1,...,tn) | f(t1, . . . , tn)∈IE∪R}
∪ {f(pt1 , . . . , ptn)→ rEk | f(t1, . . . , tn) ∈ TΣ,k ∩ lhs(

−→
E)}

∪ {f(pt1 , . . . , ptn)→ rRk | f(t1, . . . , tn) ∈ TΣ,k ∩ lhs(R)}
∪ {f(pk1 , . . . , r

E
ki
, . . . , pkn)→ rEk | f ∈ FKk1...kn,k

}
∪ {f(pk1 , . . . , r

R
ki
, . . . , pkn)→ rRk | f ∈ FKk1...kn,k

∧ i ∈ ϕ(f)},
where repic(s) equals cs if i ∈ ϕ(c), and ps otherwise.

Let t ∈ TΣ. By structural induction on t, it follows that t →FE ps (resp.

t→DE∪R ps) if and only if t ∈ TΣ,s. A similar inductive argument shows that

t →FE pu (resp. t →DE∪R pu) if and only if there is a substitution θ such

that t = uθ. This implies that: (i) t→FE rEk (resp. t→DE∪R rEk) if and only

if there is a context C, ground substitution θ, and rule l→ r ∈ −→E such that

t = C[lθ], and (ii) t →DE∪R rRk if and only if there is an unfrozen context

C, ground substitution θ, and rule l → r ∈ R such that t = C[lθ]. From an

inductive argument, it also follows that t→FE cs (resp. t→DE∪R cs) if and

only if t ∈ TΩ,s (resp. t ∈ TΣ,s and posϕ(t) ⊆ posΥ(t)). Hence, t ∈ L(FE)k if

and only if [t]B ∈ TΩ,E/B,k and [t]B /∈ NormRE/B,k, and t ∈ L(DE∪R)k if and

only if [t]B ∈ C Υ
R/B,k and [t]B /∈ NormRE∪R/B,k. Observe that because R is

a simple generalized rewrite theory, it is correct to ignore frozen contexts in

the automata FE and DE∪R when only considering equations.

144

A.2 Mechanical Proofs

In this section, the mechanical proofs of ground sort-decreasingness, conflu-

ence, and coherence are obtained with the Maude Church-Rosser Checker

and the Maude Coherence Checker tools [34]. The proofs of ground op-

erational termination are obtained with the Maude Termination Tool [32].

Inductive claims about initial algebras are proved using the current version

of Maude’s Inductive Theorem Prover [52].

A.2.1 Proofs for BAG-CHOICE+CARD

The input specification is

(ΣBCC, EBCC ∪BBCC, µBCC, RBCC, νBCC)

as in Section 3.3. In order to simplify notation, the expression BCC denotes

BAG-CHOICE+CARD, BCCE denotes BCCEBCC , and BCCE∪R denotes BCCEBCC∪RBCC .

Lemma 8. BCC is admissible.

Proof.

• The rewrite rules in BCCE are ground sort-decreasing and confluent

modulo BBCC:

Maude> (check Church-Rosser .)

rewrites: 26197 in 76ms cpu (83ms real) (341226 rewrites/second)

Church-Rosser checking of BAG-CHOICE+CARD

Checking solution:

The following critical pairs cannot be joined:

cp s | #4:Bag |

= s | mt #4:Bag | .

The specification is sort-decreasing.

Despite the fact that this critical pair is not joinable automatically by

the CRC tool, it is easy to see that it is indeed joinable because mt

is the identity operator for and the structural axioms BBCC are not

affected by the strategy map µBCC.

• The rewrite rules in BCCE are ground operationally terminating mod-

ulo BBCC: this proof is obtained with the MTT using AProVE as the

backend. The proof is rather long, so a reduced snapshot of it is pre-

sented.

145

START Maude C;Uk;B false false

SUCCESSFULLY 4 Maude seconds 3

(VAR B N V1 V2 V X X@@@)

(THEORY

(AC ---osb-Bag-csb-osb-Bag-csb)

)

...

Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.

Duration:

0:00 minutes

• RBCC and EBCC are ground-coherent modulo BBCC:

Maude> (check coherence .)

rewrites: 24006 in 71ms cpu (75ms real) (336378 rewrites/second)

Coherence checking of BAG-CHOICE+CARD

Coherence checking solution:

All critical pairs have been rewritten and all equations are non-constructor.

The specification is ground coherent.

Lemma 9. CanΣBCC,EBCC/BBCC
∼= Canµ

BCC

ΣBCC,EBCC/BBCC.

Proof. The isomorphism is checked with the SCC’s command “ccc” (see [54]

for details):

Maude> (ccc BAG-CHOICE+CARD .)

Checking canonical completeness of BAG-CHOICE+CARD ...

Success: BAG-CHOICE+CARD is canonically complete.

Lemma 10. The rewrite rules in BCCE∪R are ground sort-decreasing and

ground weakly-normalizing modulo BBCC.

Proof.

• The rewrite rules in BCCE∪R are ground sort-decreasing modulo BBCC:

Maude> (check Church-Rosser .)

rewrites: 26197 in 76ms cpu (83ms real) (341226 rewrites/second)

Church-Rosser checking of hatBAG-CHOICE+CARD

Checking solution:

...

The specification is sort-decreasing.

146

• The rewrite rules in BCC are ground weakly-normalizing modulo BBCC:

this proof is obtained with the MTT using AProVE as the backend.

The proof is rather long, so a reduced snapshot of it is presented.

START Maude C;Uk;B false false

SUCCESSFULLY 5 Maude seconds 3

(VAR B N NeB V1 V2 V X X@@@)

(THEORY

(AC ---osb-Bag-csb-osb-Bag-csb)

)

...

Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.

Duration:

0:00 minutes

A.2.2 Proofs for CHANNEL

The input specification is

(ΣCHANNEL, ECHANNEL ∪BCHANNEL, RCHANNEL)

as in Section 3.6. In order to simplify notation, the expression CHANNELE

denotes CHANNELECHANNEL and CHANNELE∪R denotes CHANNELECHANNEL∪RCHANNEL .

Lemma 11. CHANNEL is admissible.

Proof.

• The rewrite rules in CHANNELE are ground local confluent and sort-

decreasing modulo BCHANNEL.

Maude> (check Church-Rosser .)

rewrites: 9474 in 34ms cpu (37ms real) (278606 rewrites/second)

Church-Rosser checking of CHANNEL

Checking solution:

All critical pairs have been joined.

The specification is locally-confluent.

The specification is sort-decreasing.

• The rewrite rules in CHANNELE are ground operationally-terminating:

this proof is obtained with the MTT using µ-Term as the backend:

YES

147

Problem 1:

(VAR M N L L’)

(RULES

@(_;_(N,L),L’) -> _;_(N,_@_(L,L’))

@(nil,L) -> L

)

Problem 1:

Order-Sorted Dependency Pairs Processor:

-> Pairs:

@#(_;_(N,L),L’) -> _@_#(L,L’)

-> Rules:

@(_;_(N,L),L’) -> _;_(N,_@_(L,L’))

@(nil,L) -> L

Problem 1:

SCC Processor:

-> Pairs:

@#(_;_(N,L),L’) -> _@_#(L,L’)

-> Rules:

@(_;_(N,L),L’) -> _;_(N,_@_(L,L’))

@(nil,L) -> L

->Strongly Connected Components:

->->Cycle:

->->-> Pairs:

@#(_;_(N,L),L’) -> _@_#(L,L’)

->->-> Rules:

@(_;_(N,L),L’) -> _;_(N,_@_(L,L’))

@(nil,L) -> L

Problem 1:

SubNColl Processor:

-> Pairs:

@#(_;_(N,L),L’) -> _@_#(L,L’)

-> Rules:

@(_;_(N,L),L’) -> _;_(N,_@_(L,L’))

@(nil,L) -> L

->Projection:

pi(_@_#) = 1

Problem 1:

SCC Processor:

-> Pairs:

Empty

-> Rules:

@(_;_(N,L),L’) -> _;_(N,_@_(L,L’))

@(nil,L) -> L

->Strongly Connected Components:

There is no strongly connected component

148

The problem is finite.

• RCHANNEL and ECHANNEL are ground-coherent modulo BCHANNEL:

Maude> (check coherence .)

rewrites: 11760 in 37ms cpu (43ms real) (315408 rewrites/second)

Coherence checking of CHANNEL

Coherence checking solution:

All critical pairs have been rewritten and all equations are non-constructor.

The specification is coherent.

Lemma 12. The rewrite rules in CHANNELE∪R are ground sort-decreasing,

confluent, and operationally terminating modulo BCHANNEL.

Proof.

• The rewrite rules in CHANNELE∪R are ground sort-decreasing and local

confluent modulo BCHANNEL:

Maude> (check Church-Rosser hatCHANNEL .)

rewrites: 51279 in 141ms cpu (157ms real) (361845 rewrites/second)

Church-Rosser checking of hatCHANNEL

Checking solution:

All critical pairs have been joined.

The specification is locally-confluent.

The specification is sort-decreasing.

• The rewrite rules in CHANNELE∪R are ground strongly-normalizing: this

proof is obtained with the MTT using AProVE as the backend. The

proof is rather long, so a reduced snapshot of it is presented. Observe

that this proof implies the ground strong-normalization of CHANNELE .

START AProVE

SUCCESSFULLY AProVE seconds: 3

...

R ->Dependency Pair Analysis

...

->DP Problem 1

->SCP

->DP Problem 2

->SCP

->DP Problem 3

->SCP

->DP Problem 4

->Polo

->DP Problem 5

->DGraph

...

->DP Problem 6

->Polynomial Ordering

...

149

Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.

Duration:

0:01 minutes

Lemma 13. The following are inductive consequences of ECHANNEL:

1. nil is the right identity of @ , and

2. @ is associative.

Proof. In order to avoid name clashes between the names in Maude’s pre-

lude, such as Nat and List, the sorts Nat and List in CHANNEL are renamed

to Nat2 and List2, respectively. Both goals are discharged automatically

by structural induction on the equational constructors ΩCHANNEL,List2 via the

ITP’s command ind* which creates constructor-based structural induction

goals and tries to discharge them automatically. For a detailed explanation

of the ITP’s commands see [52].

1. ECHANNEL |= (∀l : List) l @ nil = l

=================================

label-sel: id@0

=================================

A{l:List2} l:List2 @ nil = l:List2

+++++++++++++++++++++++++++++++++

(ind* on l:List2 .)

rewrites: 625 in 4ms cpu (4ms real) (141019 rewrites/second)

Eliminated current goal.

q.e.d

2. ECHANNEL |= (∀l, l′, l′′ : List) l @ (l′ @ l′′) = (l @ l′) @ l′′

=================================

label-sel: assoc@0

=================================

A{l’’:List2 ; l’:List2 ; l:List2}

l:List2 @(l’:List2 @ l’’:List2) = (l:List2 @ l’:List2)@ l’’:List2

+++++++++++++++++++++++++++++++++

(ind* on l:List2 .)

rewrites: 1126 in 5ms cpu (5ms real) (211098 rewrites/second)

Eliminated current goal.

q.e.d

150

APPENDIX B

MISSING PROOFS FOR CHAPTER 5

This appendix includes the ABP specification and predicates in Maude,

proofs of admissibility, and the missing proofs in the formal verification of

the protocol in Section 5.2.

The ABP specification can be found in abp.maude and the predicate spec-

ification in abp.preds.maude, both available for download with this disser-

tation. The mechanical proofs were obtained with the tools integrated in

the current version of the Maude Formal Environment (MFE) [36, 35].

B.1 abp.maude

This file contains the Maude specification of the ABP.

--- Booleans

fmod IBOOL is

--- use Maude built-in Booleans

pr BOOL-OPS .

endfm

---- Natural numbers

fmod INAT is

pr IBOOL .

sort iNat .

op 0 : -> iNat [ctor] .

op s_ : iNat -> iNat [ctor] .

vars N N’ : iNat .

--- equality enrichment

op _~_ : iNat iNat -> Bool [comm] .

eq N ~ N

= true .

151

eq s N ~ s N’

= N ~ N’ .

eq 0 ~ s N

= false .

eq N ~ s N

= false .

endfm

--- bits

fmod BIT is

pr IBOOL .

sort Bit .

ops on off : -> Bit [ctor] .

op flip : Bit -> Bit .

eq flip(on) = off .

eq flip(off) = on .

--- equality enrichment

op _~_ : Bit Bit -> Bool [comm] .

eq B:Bit ~ B:Bit

= true .

eq on ~ off

= false .

eq B:Bit ~ flip(B:Bit)

= false .

endfm

--- list of naturals

fmod INAT-LIST is

pr INAT .

sort iNatList .

op nil : -> iNatList [ctor] .

op __ : iNat iNatList -> iNatList [ctor prec 61] .

vars N N’ : iNat .

vars NL NL’ : iNatList .

op _;_ : iNatList iNatList -> iNatList [prec 65] .

eq nil ; NL = NL .

eq N NL ; NL’ = N (NL ; NL’) .

--- equality enrichment

op _~_ : iNatList iNatList -> Bool [comm] .

eq nil ~ (N NL)

= false .

eq NL ~ NL

= true .

eq (N NL) ~ (N’ NL’)

= (N ~ N’) and (NL ~ NL’) .

endfm

--- queue of bits

152

fmod BIT-QUEUE is

pr BIT .

sort BitQueue .

op nil : -> BitQueue [ctor] .

op __ : Bit BitQueue -> BitQueue [ctor prec 61] .

vars B B’ : Bit .

vars BQ BQ’ : BitQueue .

op _;_ : BitQueue BitQueue -> BitQueue [prec 65] .

eq nil ; BQ = BQ .

eq B BQ ; BQ’ = B (BQ ; BQ’) .

endfm

--- packets: pair of bit and nat

fmod BIT-PACKET is

pr BIT .

pr INAT .

sort BitPacket .

op ‘(_,_‘) : Bit iNat -> BitPacket [ctor] .

vars B B’ : Bit .

var BP : BitPacket .

vars N N’ : iNat .

--- equality enrichment

op _~_ : BitPacket BitPacket -> Bool [comm] .

eq BP ~ BP

= true .

eq (B,N) ~ (B’,N’)

= B ~ B’ and N ~ N’ .

endfm

--- queue of pairs of bits and nats

fmod BIT-PACKET-QUEUE is

pr BIT-PACKET .

sort BitPacketQueue .

op nil : -> BitPacketQueue [ctor] .

op __ : BitPacket BitPacketQueue -> BitPacketQueue [ctor prec 61] .

vars B B’ : Bit .

vars BP BP’ : BitPacket .

vars BPQ BPQ’ : BitPacketQueue .

var N : iNat .

op _;_ : BitPacketQueue BitPacketQueue -> BitPacketQueue [prec 65] .

eq nil ; BPQ = BPQ .

eq BP BPQ ; BPQ’ = BP (BPQ ; BPQ’) .

endfm

--- state syntax

fmod ABP-STATE is

pr BIT-PACKET-QUEUE .

153

pr BIT-QUEUE .

pr INAT-LIST .

sort Sys .

op _:_>_|_<_:_ : iNat Bit BitPacketQueue

BitQueue Bit iNatList -> Sys [ctor] .

endfm

--- transitions

mod ABP is

pr ABP-STATE .

vars B B’ B’’ : Bit .

var BP : BitPacket .

vars BQ BQ’ : BitQueue .

vars BPQ BPQ’ : BitPacketQueue .

vars N N’ : iNat .

vars NL NL’ : iNatList .

rl [send-1] :

N : B > BPQ | BQ < B’ : NL

=> N : B > BPQ ; ((B, N) nil) | BQ < B’ : NL .

rl [recv-1a] :

N : B > BPQ | B BQ < B’ : NL

=> N : B > BPQ | BQ < B’ : NL .

rl [recv-1b] :

N : on > BPQ | off BQ < B’ : NL

=> s(N) : off > BPQ | BQ < B’ : NL .

rl [recv-1c] :

N : off > BPQ | on BQ < B’ : NL

=> s(N) : on > BPQ | BQ < B’ : NL .

rl [send-2] :

N : B > BPQ | BQ < B’ : NL

=> N : B > BPQ | BQ ; (B’ nil) < B’ : NL .

rl [recv-2a] :

N : B > (on,N’) BPQ | BQ < on : NL

=> N : B > BPQ | BQ < off : (N’ NL) .

rl [recv-2b] :

N : B > (off,N’) BPQ | BQ < off : NL

=> N : B > BPQ | BQ < on : (N’ NL) .

rl [recv-2c] :

N : B > (off,N’) BPQ | BQ < on : NL

=> N : B > BPQ | BQ < on : NL .

rl [recv-2d] :

N : B > (on,N’) BPQ | BQ < off : NL

154

=> N : B > BPQ | BQ < off : NL .

rl [drop-1a] :

N : B > (off,N’) BPQ | BQ < B’ : NL

=> N : B > BPQ | BQ < B’ : NL .

rl [drop-1b] :

N : B > (on,N’) BPQ | BQ < B’ : NL

=> N : B > BPQ | BQ < B’ : NL .

rl [dup-1] :

N : B > BP BPQ | BQ < B’ : NL

=> N : B > BP (BP BPQ) | BQ < B’ : NL .

rl [drop-2a] :

N : B > BPQ | off BQ < B’ : NL

=> N : B > BPQ | BQ < B’ : NL .

rl [drop-2b] :

N : B > BPQ | on BQ < B’ : NL

=> N : B > BPQ | BQ < B’ : NL .

rl [dup-2] :

N : B > BPQ | B’’ BQ < B’ : NL

=> N : B > BPQ | B’’ (B’’ BQ) < B’ : NL .

endm

B.2 ABP Admissibility and Free Constructors Modulo

This section presents the mechanical proofs for the admissibility of module

ABP and for the equational freeness of its subsignature of constructors.

For ground sort-decreasingness, operational termination, confluence, and

coherence, the following is the output of the mechanical proof:

Maude> (ccr ABP .)

rewrites: 8114680 in 5145ms cpu (5146ms real) (1577130 rewrites/second)

Church-Rosser check for ABP

All critical pairs have been joined.

The specification is locally-confluent.

The module is sort-decreasing.

Maude> (ctf ABP .)

rewrites: 95604 in 141ms cpu (2796ms real) (673371 rewrites/second)

Success: The functional part of module ABP is terminating.

Maude> (cch ABP .)

rewrites: 2188028 in 1470ms cpu (1470ms real) (1487669 rewrites/second)

Coherence checking of ABP

All critical pairs have been rewritten and no rewrite with rules can

happen at non-overlapping positions of equations left-hand sides.

155

For sufficient completeness and equational freeness of constructors mod-

ulo, the following is the output of the mechanical proof:

Maude> (scc ABP-STATE .)

rewrites: 3285 in 7ms cpu (8ms real) (410676 rewrites/second)

Sufficient completeness check for ABP-STATE

Completeness counter-examples: none were found

Freeness counter-examples: none were found

B.3 abp.preds.maude

This section contains the Maude specification of the state predicates, with

the additional lemmata.

----- predicate defining initial states

fmod ABP-PRED-INIT is

pr ABP-STATE .

--- initial states

op init : Sys -> [Bool] .

eq [init-1] :

init(0 : on > nil | nil < on : nil)

= true .

eq [init-2] :

init(0 : off > nil | nil < off : nil)

= true .

endfm

---- strengthening

fmod ABP-PRED-GOOD-QUEUES is

pr ABP-STATE .

vars B1 B2 B : Bit .

var BP : BitPacket .

var BPQ : BitPacketQueue .

var BQ : BitQueue .

vars N N’ : iNat .

var NL : iNatList .

op good-queues : Sys -> Bool .

eq [good-queues-1a] :

good-queues(N : on > BPQ | BQ < on : NL)

= all-bits(BQ,on) and good-packet-queue(BPQ,on,N) .

eq [good-queues-1b] :

good-queues(N : off > BPQ | BQ < off : NL)

= all-bits(BQ,off) and good-packet-queue(BPQ,off,N) .

eq [good-queues-2a] :

good-queues(N : on > BPQ | BQ < off : NL)

= good-bit-queue(BQ,off) and all-packets(BPQ,on,N) .

eq [good-queues-2b] :

good-queues(N : off > BPQ | BQ < on : NL)

156

= good-bit-queue(BQ,on) and all-packets(BPQ,off,N) .

--- auxiliary functions for the queue of bits ---

op good-bit-queue : BitQueue Bit -> Bool .

eq [gbq-1] :

good-bit-queue(nil,B)

= true .

ceq [gbq-2] :

good-bit-queue(B1 BQ, B)

= good-bit-queue(BQ,B)

if B1 = flip(B) .

eq [gbq-3] :

good-bit-queue(B BQ, B)

= all-bits(BQ,B) .

op all-bits : BitQueue Bit -> Bool .

eq [ab-1] :

all-bits((nil).BitQueue,B)

= true .

eq [ab-2] :

all-bits(B1 BQ,B)

= B1 ~ B and all-bits(BQ,B) .

--

--- auxiliary functions for the queue of packets ---

--

op good-packet-queue : BitPacketQueue Bit iNat -> Bool .

eq [gpq-1] :

good-packet-queue(nil,B,N)

= true .

ceq [gpq-2] :

good-packet-queue((B1,N’) BPQ,B,N)

= N ~ s(N’) and good-packet-queue(BPQ,B,N)

if B1 = flip(B) .

eq [gpq-3] :

good-packet-queue((B,N’) BPQ,B,N)

= N ~ N’ and all-packets(BPQ,B,N) .

op all-packets : BitPacketQueue Bit iNat -> Bool .

eq [ap-1] :

all-packets((nil).BitPacketQueue,B,N)

= true .

eq [ap-2] :

all-packets(BP BPQ,B,N)

= BP ~ (B,N) and all-packets(BPQ,B,N) .

endfm

---- lemmata for strengthening

fmod ABP-PRED-GOOD-QUEUES-LEMMATA is

pr ABP-PRED-GOOD-QUEUES .

157

vars B1 B2 B : Bit .

var BP : BitPacket .

var BPQ : BitPacketQueue .

var BQ : BitQueue .

vars N N’ : iNat .

var NL : iNatList .

--- auxiliary lemmas ---

--- queues of bits

eq [lem-bq1] :

good-bit-queue(B B BQ,B1)

= good-bit-queue(B BQ,B1) .

eq [lem-bq2] :

all-bits(BQ ; (B nil),B)

= all-bits(BQ,B) .

eq [lem-bq3] :

good-bit-queue(BQ ; (B nil),B)

= good-bit-queue(BQ,B) .

ceq [lem-bq4] :

good-bit-queue(BQ,B)

= true

if all-bits(BQ,B) = true .

ceq [lem-bq5] :

good-bit-queue(BQ,B)

= true

if all-bits(BQ,flip(B)) = true .

--- queues of packets

eq [lem-pq1] :

good-packet-queue(BP BP BPQ,B,N)

= good-packet-queue(BP BPQ,B,N) .

eq [lem-pq2] :

all-packets(BPQ ; (B,N) nil,B,N)

= all-packets(BPQ,B,N) .

eq [lem-pq3] :

good-packet-queue(BPQ ; (B,N) nil,B,N)

= good-packet-queue(BPQ,B,N) .

ceq [lem-pq4] :

good-packet-queue(BPQ,B,N)

= true

if all-packets(BPQ,B,N) .

ceq [lem-pq5] :

good-packet-queue(BPQ,B,s(N))

= true

if all-packets(BPQ,flip(B),N) = true .

endfm

---- main invariant

fmod ABP-PRED-INV is

pr ABP-STATE .

158

vars B1 B2 B : Bit .

var BPQ : BitPacketQueue .

var BQ : BitQueue .

vars N N’ : iNat .

var NL : iNatList .

--- main invariant

op inv : Sys -> Bool .

eq [inv-1a] :

inv(N : on > BPQ | BQ < on : NL)

= (N NL) ~ gen-list(N) .

eq [inv-1a] :

inv(N : off > BPQ | BQ < off : NL)

= (N NL) ~ gen-list(N) .

eq [inv-2a] :

inv(N : on > BPQ | BQ < off : NL)

= NL ~ gen-list(N) .

eq [inv-2a] :

inv(N : off > BPQ | BQ < on : NL)

= NL ~ gen-list(N) .

--- less fine-grained invariant

op inv-main : Sys -> Bool .

eq [inv-main-1] :

inv-main(N : B > BPQ | BQ < B : NL)

= (N NL) ~ gen-list(N) .

ceq [inv-main-2] :

inv-main(N : B1 > BPQ | BQ < B2 : NL)

= NL ~ gen-list(N)

if B1 ~ B2 = false .

--- auxiliary generation of lists ---

op gen-list : iNat -> iNatList .

eq gen-list(0)

= (0 nil) .

eq gen-list(s N)

= (s N) gen-list(N) .

endfm

---- all predicates

fmod ABP-PREDS is

pr ABP-PRED-INIT .

pr ABP-PRED-GOOD-QUEUES .

pr ABP-PRED-INV .

endfm

---- all predicates and lemmata

fmod ABP-PREDS+LEMMATA is

pr ABP-PREDS .

pr ABP-PRED-GOOD-QUEUES-LEMMATA .

endfm

159

B.4 ABP-PREDS is Admissible

This section presents the mechanical proofs for the admissibility of module

ABP-PREDS.

For ground sort-decreasingness, operational termination, confluence, and

coherence, the following is the output of the mechanical proofs:

Maude> (ccr ABP-PREDS .)

rewrites: 13992680 in 9647ms cpu (9649ms real) (1450389 rewrites/second)

Church-Rosser check for ABP-PREDS

The following critical pairs must be proved joinable:

ccp ABP-PREDS1614 for gbq-3 and gbq-2

all-bits(BQ:BitQueue,B1:Bit)

= good-bit-queue(BQ:BitQueue,B1:Bit)

if B1:Bit = flip(B1:Bit).

ccp ABP-PREDS1617 for gpq-3 and gpq-2

N:iNat ~ N’:iNat and all-packets(BPQ:BitPacketQueue,B1:Bit,N:iNat)

= N:iNat ~ s N’:iNat and

good-packet-queue(BPQ:BitPacketQueue,B1:Bit,N:iNat)

if B1:Bit = flip(B1:Bit).

The module is sort-decreasing.

Maude> (ctf ABP-PREDS .)

rewrites: 209594 in 378ms cpu (3363ms real) (553101 rewrites/second)

Success: The functional part of module ABP-PREDS is terminating.

Maude> (cch ABP-PREDS .)

rewrites: 157674 in 227ms cpu (227ms real) (691658 rewrites/second)

Coherence checking of ABP-PREDS

All critical pairs have been rewritten and no rewrite with rules can happen

at non-overlapping positions of equations left-hand sides.

The ground confluence check for ABP-PREDS returns two critical pairs.

These critical pairs are joinable because their conditions are trivially unfea-

sible. Therefore ABP-PREDS is admissible.

B.5 ABP-PREDS+LEMMATA is Admissible

This section presents the mechanical proofs for the admissibility of module

ABP-PREDS+LEMMATA.

For ground sort-decreasingness, operational termination, confluence, and

coherence, the following is the output of the mechanical proofs:

Maude> (ccr ABP-PREDS+LEMMATA .)

rewrites: 19037580 in 40313ms cpu (42315ms real) (472234 rewrites/second)

Church-Rosser check for ABP-PREDS+LEMMATA

The following critical pairs must be proved joinable:

cp ABP-PREDS+LEMMATA12

good-packet-queue(#1:BitPacket(#2:BitPacketQueue ;

160

(B:Bit,N:iNat)nil),B:Bit,N:iNat)

= good-packet-queue(#1:BitPacket #2:BitPacketQueue,B:Bit,N:iNat).

cp ABP-PREDS+LEMMATA9

good-bit-queue(#1:Bit(#2:BitQueue ; B:Bit nil),B:Bit)

= good-bit-queue(#1:Bit #2:BitQueue,B:Bit).

ccp ABP-PREDS+LEMMATA1632 for lem-bq3 and lem-bq4

good-bit-queue(#1:BitQueue,B:Bit)

= true

if all-bits(#1:BitQueue ; B:Bit nil,B:Bit)= true .

ccp ABP-PREDS+LEMMATA1633 for lem-bq3 and lem-bq5

good-bit-queue(#1:BitQueue,B:Bit)

= true

if all-bits(#1:BitQueue ; B:Bit nil,flip(B:Bit))= true .

ccp ABP-PREDS+LEMMATA1636 for gbq-3 and lem-bq4

all-bits(#2:BitQueue,B:Bit)

= true

if all-bits(B:Bit #2:BitQueue,B:Bit)= true .

ccp ABP-PREDS+LEMMATA1638 for gbq-3 and gbq-2

all-bits(BQ:BitQueue,B1:Bit)

= good-bit-queue(BQ:BitQueue,B1:Bit)

if B1:Bit = flip(B1:Bit).

ccp ABP-PREDS+LEMMATA1641 for lem-bq1 and lem-bq4

good-bit-queue(#1:Bit #2:BitQueue,B:Bit)

= true

if all-bits(#1:Bit #1:Bit #2:BitQueue,B:Bit)= true .

ccp ABP-PREDS+LEMMATA1648 for lem-pq3 and lem-pq4

good-packet-queue(#1:BitPacketQueue,B:Bit,N:iNat)

= true

if all-packets(#1:BitPacketQueue ;(B:Bit,N:iNat)nil,B:Bit,N:iNat)= true .

ccp ABP-PREDS+LEMMATA1649 for lem-pq3 and lem-pq5

good-packet-queue(#1:BitPacketQueue,B:Bit,s N:iNat)

= true

if all-packets(#1:BitPacketQueue ;

(B:Bit,s N:iNat)nil,flip(B:Bit),N:iNat)

= true .

ccp ABP-PREDS+LEMMATA1652 for lem-pq1 and lem-pq4

good-packet-queue(#1:BitPacket #2:BitPacketQueue,B:Bit,N:iNat)

= true

if all-packets(#1:BitPacket #1:BitPacket #2:BitPacketQueue,B:Bit,N:iNat)

= true .

ccp ABP-PREDS+LEMMATA1657 for gpq-3 and lem-pq4

N:iNat ~ #2:iNat and all-packets(#3:BitPacketQueue,B:Bit,N:iNat)

= true

if all-packets((B:Bit,#2:iNat)#3:BitPacketQueue,B:Bit,N:iNat)= true .

ccp ABP-PREDS+LEMMATA1659 for gpq-3 and gpq-2

N:iNat ~ N’:iNat and all-packets(BPQ:BitPacketQueue,B1:Bit,N:iNat)

= N:iNat ~ s N’:iNat and good-packet-queue(BPQ:BitPacketQueue,B1:Bit,N:iNat)

if B1:Bit = flip(B1:Bit).

ccp ABP-PREDS+LEMMATA1679 for lem-bq4 and gbq-2

true

= good-bit-queue(BQ:BitQueue,B:Bit)

if B1:Bit = flip(B:Bit)/\ all-bits(B1:Bit BQ:BitQueue,B:Bit)= true .

ccp ABP-PREDS+LEMMATA1689 for gbq-2 and lem-bq4

good-bit-queue(#2:BitQueue,B:Bit)

= true

161

if all-bits(#1:Bit #2:BitQueue,B:Bit)= true /\ #1:Bit = flip(B:Bit).

ccp ABP-PREDS+LEMMATA1698 for lem-pq4 and gpq-2

true

= N:iNat ~ s N’:iNat and good-packet-queue(BPQ:BitPacketQueue,B:Bit,N:iNat)

if B1:Bit = flip(B:Bit)

/\ all-packets((B1:Bit,N’:iNat)BPQ:BitPacketQueue,B:Bit,N:iNat)= true .

ccp ABP-PREDS+LEMMATA1705 for lem-pq5 and gpq-2

true

= N’:iNat ~ #3:iNat and good-packet-queue(BPQ:BitPacketQueue,B:Bit,s #3:iNat)

if B1:Bit = flip(B:Bit)

/\ all-packets((B1:Bit,N’:iNat)BPQ:BitPacketQueue,flip(B:Bit),#3:iNat)= true .

ccp ABP-PREDS+LEMMATA1708 for gpq-2 and lem-pq4

N:iNat ~ s #2:iNat and good-packet-queue(#3:BitPacketQueue,B:Bit,N:iNat)

= true

if all-packets((#1:Bit,#2:iNat)#3:BitPacketQueue,B:Bit,N:iNat)= true

/\ #1:Bit = flip(B:Bit).

ccp ABP-PREDS+LEMMATA1709 for gpq-2 and lem-pq5

N:iNat ~ #2:iNat and good-packet-queue(#3:BitPacketQueue,B:Bit,s N:iNat)

= true

if all-packets((#1:Bit,#2:iNat)#3:BitPacketQueue,flip(B:Bit),N:iNat)= true

/\ #1:Bit = flip(B:Bit).

The module is sort-decreasing.

Maude> (ctf ABP-PREDS+LEMMATA .)

rewrites: 258798 in 493ms cpu (3631ms real) (523962 rewrites/second)

Success: The functional part of module ABP-PREDS+LEMMATA is terminating.

Maude> (cch ABP-PREDS+LEMMATA .)

rewrites: 205927 in 291ms cpu (291ms real) (705335 rewrites/second)

Coherence checking of ABP-PREDS+LEMMATA

All critical pairs have been rewritten and no rewrite with rules can happen

at non-overlapping positions of equations left-hand sides.

The ground confluence check returns 18 critical pairs. These critical pairs

can be shown joinable by the admissible ABP-PREDS module, that is, these

proof obligations are inductive equational properties of ABP-PREDS. The cor-

responding ITP proof script is shown below:

---(

cp ABP-PREDS+LEMMATA12

good-packet-queue(#1:BitPacket(#2:BitPacketQueue ;(B:Bit,N:iNat)nil),B:Bit,N:iNat)

= good-packet-queue(#1:BitPacket #2:BitPacketQueue,B:Bit,N:iNat).

)

---- assume lemmas lem-pq2 and lem-pq3 previously proved in abp.lemmata.itp

(goal ABP-PREDS+LEMMATA12 : ABP-PREDS |-

A{ #1:BitPacket ; #2:BitPacketQueue ; B:Bit ; N:iNat }

(

(A{ BPQ:BitPacketQueue ; B:Bit ; N:iNat }

((all-packets(BPQ ; (B,N) nil,B,N)) = (all-packets(BPQ,B,N)))) &

(A{ BPQ:BitPacketQueue ; B:Bit ; N:iNat }

(((good-packet-queue(BPQ ; (B,N) nil,B,N)) = (good-packet-queue(BPQ,B,N)))))

=>

(good-packet-queue(

#1:BitPacket(#2:BitPacketQueue ;(B:Bit,N:iNat)nil),B:Bit,N:iNat))

162

= (good-packet-queue(#1:BitPacket #2:BitPacketQueue,B:Bit,N:iNat))

)

.)

(cov on good-packet-queue(#1:BitPacket #2:BitPacketQueue,B:Bit,N:iNat) .)

(ind on V0#1:Bit .)

(ind* on V0#3:Bit .)

(ind* on V0#3:Bit .)

---(

cp ABP-PREDS+LEMMATA9

good-bit-queue(#1:Bit(#2:BitQueue ; B:Bit nil),B:Bit)

= good-bit-queue(#1:Bit #2:BitQueue,B:Bit).

)

---- assume lemmas lem-bq2 and lem-bq3 previously proved in abp.lemmata.itp

(goal ABP-PREDS+LEMMATA9 : ABP-PREDS |-

A{ #1:Bit ; #2:BitQueue ; B:Bit }

(

(A{ BQ:BitQueue ; B:Bit } ((all-bits(BQ ; (B nil),B)) = (all-bits(BQ,B)))) &

(A{ BQ:BitQueue ; B:Bit }

(((good-bit-queue(BQ ; (B nil),B)) = (good-bit-queue(BQ,B)))))

=>

(good-bit-queue(#1:Bit(#2:BitQueue ; B:Bit nil),B:Bit))

= (good-bit-queue(#1:Bit #2:BitQueue,B:Bit))

)

.)

(ind on B:Bit .)

(ind* on #1:Bit .)

(ind* on #1:Bit .)

---(

ccp ABP-PREDS+LEMMATA1632 for lem-bq3 and lem-bq4

good-bit-queue(#1:BitQueue,B:Bit)

= true

if all-bits(#1:BitQueue ; B:Bit nil,B:Bit)= true .

)

---- assume lemmas lem-bq2 previously proved in abp.lemmata.itp

(goal ABP-PREDS+LEMMATA1632 : ABP-PREDS |-

A{ #1:BitQueue ; B:Bit }

(

(A{ BQ:BitQueue ; B:Bit } ((all-bits(BQ ; (B nil),B)) = (all-bits(BQ,B)))) &

(all-bits(#1:BitQueue ; B:Bit nil,B:Bit)) = (true)

=>

(good-bit-queue(#1:BitQueue,B:Bit)) = (true)

)

.)

(cov on good-bit-queue(#1:BitQueue,B:Bit) .)

(auto .)

(ind on V0#0:Bit .)

(ind* on V0#1:Bit .)

(ind* on V0#1:Bit .)

---(

ccp ABP-PREDS+LEMMATA1633 for lem-bq3 and lem-bq5

good-bit-queue(#1:BitQueue,B:Bit)

= true

163

if all-bits(#1:BitQueue ; B:Bit nil,flip(B:Bit))= true .

)

---- assume lemmas lem-bq2 previously proved in abp.lemmata.itp

(goal ABP-PREDS+LEMMATA1633 : ABP-PREDS |-

A{ #1:BitQueue ; B:Bit }

(

(A{ BQ:BitQueue ; B:Bit } ((all-bits(BQ ; (B nil),B)) = (all-bits(BQ,B)))) &

(all-bits(#1:BitQueue ; B:Bit nil,flip(B:Bit))) = (true)

=>

(good-bit-queue(#1:BitQueue,B:Bit)) = (true)

)

.)

(lem aux : (A{ BQ:BitQueue } ((all-bits(BQ ; (on nil),off)) = (false))) .)

(ind on BQ:BitQueue .)

(auto .)

(ind* on V0#0:Bit .)

(lem aux : (A{ BQ:BitQueue } ((all-bits(BQ ; (off nil),on)) = (false))) .)

(ind on BQ:BitQueue .)

(auto .)

(ind* on V0#0:Bit .)

(cov on good-bit-queue(#1:BitQueue,B:Bit) .)

(auto .)

(ind on V0#0:Bit .)

(ind* on V0#1:Bit .)

(ind* on V0#1:Bit .)

---(

ccp ABP-PREDS+LEMMATA1636 for gbq-3 and lem-bq4

all-bits(#2:BitQueue,B:Bit)

= true

if all-bits(B:Bit #2:BitQueue,B:Bit)= true .

)

(goal ABP-PREDS+LEMMATA1636 : ABP-PREDS |-

A{ #2:BitQueue ; B:Bit }

(

(all-bits(B:Bit #2:BitQueue,B:Bit)) = (true)

=>

(all-bits(#2:BitQueue,B:Bit)) = (true)

)

.)

(auto .)

---(

ccp ABP-PREDS+LEMMATA1638 for gbq-3 and gbq-2

all-bits(BQ:BitQueue,B1:Bit)

= good-bit-queue(BQ:BitQueue,B1:Bit)

if B1:Bit = flip(B1:Bit).

)

--- the equality enrichment predicate is used instead of equality;

--- the use of equality induces a loop in the rewriting process

(goal ABP-PREDS+LEMMATA1638 : ABP-PREDS |-

A{ BQ:BitQueue ; B1:Bit }

(

(B1:Bit ~ flip(B1:Bit)) = (true)

=>

164

(good-bit-queue(BQ:BitQueue,B1:Bit)) = (all-bits(BQ:BitQueue,B1:Bit))

)

.)

(ind* on B1:Bit .)

---(

ccp ABP-PREDS+LEMMATA1641 for lem-bq1 and lem-bq4

good-bit-queue(#1:Bit #2:BitQueue,B:Bit)

= true

if all-bits(#1:Bit #1:Bit #2:BitQueue,B:Bit)= true .

)

(goal ABP-PREDS+LEMMATA1641 : ABP-PREDS |-

A{ #2:BitQueue ; #1:Bit ; B:Bit }

(

(all-bits(#1:Bit #1:Bit #2:BitQueue,B:Bit)) = (true)

=>

(good-bit-queue(#1:Bit #2:BitQueue,B:Bit)) = (true)

)

.)

(ind on B:Bit .)

(ind* on #1:Bit .)

(ind* on #1:Bit .)

---(

ccp ABP-PREDS+LEMMATA1648 for lem-pq3 and lem-pq4

good-packet-queue(#1:BitPacketQueue,B:Bit,N:iNat)

= true

if all-packets(#1:BitPacketQueue ;(B:Bit,N:iNat)nil,B:Bit,N:iNat)= true .

)

(goal ABP-PREDS+LEMMATA1648 : ABP-PREDS |-

A{ #1:BitPacketQueue ; B:Bit ; N:iNat }

(

(A{ BPQ:BitPacketQueue ; B:Bit ; N:iNat }

((all-packets(BPQ ; (B,N) nil,B,N)) = (all-packets(BPQ,B,N)))) &

(all-packets(#1:BitPacketQueue ;(B:Bit,N:iNat)nil,B:Bit,N:iNat)) = (true)

=>

(good-packet-queue(#1:BitPacketQueue,B:Bit,N:iNat)) = (true)

)

.)

---- assume lemma lem-pq2 previously proved in abp.lemmata.itp

(cov on good-packet-queue(#1:BitPacketQueue,B:Bit,N:iNat) .)

(auto .)

(ind on V0#0:Bit .)

(ind* on V0#2:Bit .)

(ind* on V0#2:Bit .)

---(

ccp ABP-PREDS+LEMMATA1649 for lem-pq3 and lem-pq5

good-packet-queue(#1:BitPacketQueue,B:Bit,s N:iNat)

= true

if all-packets(#1:BitPacketQueue ;(B:Bit,s N:iNat)nil,flip(B:Bit),N:iNat)= true .

)

(goal ABP-PREDS+LEMMATA1649 : ABP-PREDS |-

A{ #1:BitPacketQueue ; B:Bit ; N:iNat }

(

165

(A{ BPQ:BitPacketQueue ; B:Bit ; N:iNat }

((all-packets(BPQ ; (B,N) nil,B,N)) = (all-packets(BPQ,B,N)))) &

(all-packets(#1:BitPacketQueue ;(B:Bit,s N:iNat)nil,flip(B:Bit),N:iNat)) = (true)

=>

(good-packet-queue(#1:BitPacketQueue,B:Bit,s N:iNat)) = (true)

)

.)

(lem aux : (A{ BPQ:BitPacketQueue ; N:iNat ; N’:iNat }

((all-packets(BPQ ; ((on,N’) nil),off,N)) = (false))) .)

(ind on BPQ:BitPacketQueue .)

(auto .)

(ind on V0#0:BitPacket .)

(ind* on V1#0:Bit .)

(lem aux : (A{ BPQ:BitPacketQueue ; N:iNat ; N’:iNat }

((all-packets(BPQ ; ((off,N’) nil),on,N)) = (false))) .)

(ind on BPQ:BitPacketQueue .)

(auto .)

(ind on V0#0:BitPacket .)

(ind* on V1#0:Bit .)

(cov on good-packet-queue(#1:BitPacketQueue,B:Bit,s N:iNat) .)

(auto .)

(ind on V0#0:Bit .)

(ind* on V0#2:Bit .)

(ind* on V0#2:Bit .)

---(

ccp ABP-PREDS+LEMMATA1652 for lem-pq1 and lem-pq4

good-packet-queue(#1:BitPacket #2:BitPacketQueue,B:Bit,N:iNat)

= true

if all-packets(#1:BitPacket #1:BitPacket #2:BitPacketQueue,B:Bit,N:iNat)= true .

)

(goal ABP-PREDS+LEMMATA1652 : ABP-PREDS |-

A{ #1:BitPacket ; #2:BitPacketQueue ; B:Bit ; N:iNat }

(

(all-packets(#1:BitPacket #1:BitPacket #2:BitPacketQueue,B:Bit,N:iNat)) = (true)

=>

(good-packet-queue(#1:BitPacket #2:BitPacketQueue,B:Bit,N:iNat)) = (true)

)

.)

(cov on good-packet-queue(#1:BitPacket #2:BitPacketQueue,B:Bit,N:iNat) .)

(ind on V0#1:Bit .)

(ind* on V0#3:Bit .)

(ind* on V0#3:Bit .)

---(

ccp ABP-PREDS+LEMMATA1657 for gpq-3 and lem-pq4

N:iNat ~ #2:iNat and all-packets(#3:BitPacketQueue,B:Bit,N:iNat)

= true

if all-packets((B:Bit,#2:iNat)#3:BitPacketQueue,B:Bit,N:iNat)= true .

)

(goal ABP-PREDS+LEMMATA1657 : ABP-PREDS |-

A{ #2:iNat ; #3:BitPacketQueue ; B:Bit ; N:iNat }

(

(all-packets((B:Bit,#2:iNat)#3:BitPacketQueue,B:Bit,N:iNat)) = (true)

=>

166

(N:iNat ~ #2:iNat and all-packets(#3:BitPacketQueue,B:Bit,N:iNat)) = (true)

)

.)

(auto .)

---(

ccp ABP-PREDS+LEMMATA1659 for gpq-3 and gpq-2

N:iNat ~ N’:iNat and all-packets(BPQ:BitPacketQueue,B1:Bit,N:iNat)

= N:iNat ~ s N’:iNat and good-packet-queue(BPQ:BitPacketQueue,B1:Bit,N:iNat)

if B1:Bit = flip(B1:Bit).

)

--- the equality enrichment predicate is used instead of equality;

--- the use of equality induces a loop in the rewriting process

(goal ABP-PREDS+LEMMATA1659 : ABP-PREDS |-

A{ N’:iNat ; BPQ:BitPacketQueue ; B1:Bit ; N:iNat }

(

(B1:Bit ~ flip(B1:Bit)) = (true)

=>

(N:iNat ~ N’:iNat and all-packets(BPQ:BitPacketQueue,B1:Bit,N:iNat))

= (N:iNat ~ s N’:iNat and good-packet-queue(BPQ:BitPacketQueue,B1:Bit,N:iNat))

)

.)

(ind* on B1:Bit .)

---(

ccp ABP-PREDS+LEMMATA1679 for lem-bq4 and gbq-2

true

= good-bit-queue(BQ:BitQueue,B:Bit)

if B1:Bit = flip(B:Bit)/\ all-bits(B1:Bit BQ:BitQueue,B:Bit)= true .

)

--- the equality enrichment predicate is used instead of equality;

--- the use of equality induces a loop in the rewriting process

(goal ABP-PREDS+LEMMATA1679 : ABP-PREDS |-

A{ BQ:BitQueue ; B:Bit ; B1:Bit }

(

(B1:Bit ~ flip(B:Bit)) = (true) &

(all-bits(B1:Bit BQ:BitQueue,B:Bit)) = (true)

=>

(good-bit-queue(BQ:BitQueue,B:Bit)) = (true)

)

.)

(ind on B:Bit .)

(ind* on B1:Bit .)

(ind* on B1:Bit .)

---(

ccp ABP-PREDS+LEMMATA1689 for gbq-2 and lem-bq4

good-bit-queue(#2:BitQueue,B:Bit)

= true

if all-bits(#1:Bit #2:BitQueue,B:Bit)= true /\ #1:Bit = flip(B:Bit).

)

(goal ABP-PREDS+LEMMATA1689 : ABP-PREDS |-

A{ #2:BitQueue ; B:Bit ; #1:Bit }

(

(#1:Bit ~ flip(B:Bit)) = (true) &

167

(all-bits(#1:Bit #2:BitQueue,B:Bit)) = (true)

=>

(good-bit-queue(#2:BitQueue,B:Bit)) = (true)

)

.)

(ind on B:Bit .)

(ind* on #1:Bit .)

(ind* on #1:Bit .)

---(

ccp ABP-PREDS+LEMMATA1698 for lem-pq4 and gpq-2

true

= N:iNat ~ s N’:iNat and

good-packet-queue(BPQ:BitPacketQueue,B:Bit,N:iNat)

if B1:Bit = flip(B:Bit)

/\ all-packets((B1:Bit,N’:iNat)BPQ:BitPacketQueue,B:Bit,N:iNat)= true .

)

--- the equality enrichment predicate is used instead of equality;

--- the use of equality induces a loop in the rewriting process

(goal ABP-PREDS+LEMMATA1698 : ABP-PREDS |-

A{ BPQ:BitPacketQueue ; B:Bit ; B1:Bit ; N:iNat ; N’:iNat }

(

(B1:Bit ~ flip(B:Bit)) = (true) &

(all-packets((B1:Bit,N’:iNat)BPQ:BitPacketQueue,B:Bit,N:iNat)) = (true)

=>

(N:iNat ~ s N’:iNat and

good-packet-queue(BPQ:BitPacketQueue,B:Bit,N:iNat)) = (true)

)

.)

(ind on B:Bit .)

(ind* on B1:Bit .)

(ind* on B1:Bit .)

---(

ccp ABP-PREDS+LEMMATA1705 for lem-pq5 and gpq-2

true

= N’:iNat ~ #3:iNat and good-packet-queue(BPQ:BitPacketQueue,B:Bit,s #3:iNat)

if B1:Bit = flip(B:Bit)

/\ all-packets((B1:Bit,N’:iNat)BPQ:BitPacketQueue,flip(B:Bit),#3:iNat)= true .

)

--- the equality enrichment predicate is used instead of equality;

--- the use of equality induces a loop in the rewriting process

---- assume lemma lem-pq5 previously proved in abp.lemmata.itp

(goal ABP-PREDS+LEMMATA1705 : ABP-PREDS |-

A{ BPQ:BitPacketQueue ; B:Bit ; B1:Bit ; #3:iNat ; N’:iNat }

(

(B1:Bit ~ flip(B:Bit)) = (true) &

(all-packets((B1:Bit,N’:iNat)BPQ:BitPacketQueue,flip(B:Bit),#3:iNat)) = (true) &

(A{ BPQ:BitPacketQueue ; B:Bit ; N:iNat }

((all-packets(BPQ,flip(B),N)) = (true) => (good-packet-queue(BPQ,B,s(N)))

= (true)))

=>

(N’:iNat ~ #3:iNat and good-packet-queue(BPQ:BitPacketQueue,B:Bit,s #3:iNat))

= (true)

168

)

.)

(auto .)

---(

ccp ABP-PREDS+LEMMATA1708 for gpq-2 and lem-pq4

N:iNat ~ s #2:iNat and good-packet-queue(#3:BitPacketQueue,B:Bit,N:iNat)

= true

if all-packets((#1:Bit,#2:iNat)#3:BitPacketQueue,B:Bit,N:iNat)= true

/\ #1:Bit = flip(B:Bit).

)

(goal ABP-PREDS+LEMMATA1708 : ABP-PREDS |-

A{ #3:BitPacketQueue ; B:Bit ; #1:Bit ; #2:iNat ; N:iNat }

(

(#1:Bit ~ flip(B:Bit)) = (true) &

(all-packets((#1:Bit,#2:iNat)#3:BitPacketQueue,B:Bit,N:iNat)) = (true)

=>

(N:iNat ~ s #2:iNat and

good-packet-queue(#3:BitPacketQueue,B:Bit,N:iNat)) = (true)

)

.)

(ind on B:Bit .)

(ind* on #1:Bit .)

(ind* on #1:Bit .)

---(

ccp ABP-PREDS+LEMMATA1709 for gpq-2 and lem-pq5

N:iNat ~ #2:iNat and good-packet-queue(#3:BitPacketQueue,B:Bit,s N:iNat)

= true

if all-packets((#1:Bit,#2:iNat)#3:BitPacketQueue,flip(B:Bit),N:iNat)= true

/\ #1:Bit = flip(B:Bit).

)

(goal ABP-PREDS+LEMMATA1709 : ABP-PREDS |-

A{ #3:BitPacketQueue ; B:Bit ; #1:Bit ; #2:iNat ; N:iNat }

(

(#1:Bit ~ flip(B:Bit)) = (true) &

(all-packets((#1:Bit,#2:iNat)#3:BitPacketQueue,flip(B:Bit),N:iNat)) = (true) &

(A{ BPQ:BitPacketQueue ; B:Bit ; N:iNat } ((all-packets(BPQ,flip(B),N)) = (true)

=> (good-packet-queue(BPQ,B,s(N))) = (true)))

=>

(N:iNat ~ #2:iNat and

good-packet-queue(#3:BitPacketQueue,B:Bit,s N:iNat)) = (true)

)

.)

(auto .)

Therefore ABP-PREDS+LEMMATA is admissible.

B.6 ITP Proof Scripts for Proof Obligations

This section contains the ITP proof scripts for completing the proof of

good-queues ∧ inv ⇒ ©inv. This script and the output are available

169

in the abp.itp file.

---(

8. from inv-1a & recv-2b : pending

gen-list(#5:iNat)~(#6:iNat #9:iNatList) = true

if #5:iNat = #6:iNat

/\ all-bits(#8:BitQueue,off) = true

/\ all-packets(#7:BitPacketQueue,off,#5:iNat) = true

/\ gen-list(#5:iNat) = #5:iNat #9:iNatList .

)

(goal po8 : ABP-PREDS |- A{ #5:iNat ; #6:iNat ; #9:iNatList ;

#8:BitQueue ; #7:BitPacketQueue }

(

(#5:iNat) = (#6:iNat) &

(all-bits(#8:BitQueue,off)) = (true) &

(all-packets(#7:BitPacketQueue,off,#5:iNat)) = (true) &

(gen-list(#5:iNat)) = (#5:iNat #9:iNatList)

=>

(gen-list(#5:iNat) ~ (#6:iNat #9:iNatList)) = (true)

)

.)

(auto .)

---(

46. from inv-1a & recv-2a : pending

gen-list(#5:iNat)~(#6:iNat #9:iNatList) = true

if #5:iNat = #6:iNat

/\ all-bits(#8:BitQueue,on) = true

/\ all-packets(#7:BitPacketQueue,on,#5:iNat) = true

/\ gen-list(#5:iNat) = #5:iNat #9:iNatList .

)

(goal po46 : ABP-PREDS |- A{ #5:iNat ; #6:iNat ; #9:iNatList ;

#8:BitQueue ; #7:BitPacketQueue }

(

(#5:iNat) = (#6:iNat) &

(all-bits(#8:BitQueue,on)) = (true) &

(all-packets(#7:BitPacketQueue,on,#5:iNat)) = (true) &

(gen-list(#5:iNat)) = (#5:iNat #9:iNatList)

=>

(gen-list(#5:iNat) ~ (#6:iNat #9:iNatList)) = (true)

)

.)

(auto .)

B.7 ITP Proof Scripts for Lemmata

This section contains the ITP proof scripts for inductively proving in ABP-PREDS

that the lemmata used in the ground stability proof of good-queues is in-

deed true. This script and the output are available in the abp.lemmata.itp

file.

---(

eq [lem-bq1] :

170

good-bit-queue(B B BQ,B1)

= good-bit-queue(B BQ,B1) .

)

(goal lem-bq1 : ABP-PREDS |- A{ B:Bit ; BQ:BitQueue ; B1:Bit }

(

(good-bit-queue(B B BQ,B1)) = (good-bit-queue(B BQ,B1))

)

.)

(ind on B1:Bit .)

(ind* on B:Bit .)

(ind* on B:Bit .)

---(

eq [lem-bq2] :

all-bits(BQ ; (B nil),B)

= all-bits(BQ,B) .

)

(goal lem-bq2 : ABP-PREDS |- A{ BQ:BitQueue ; B:Bit }

(

(all-bits(BQ ; (B nil),B)) = (all-bits(BQ,B))

)

.)

(ind* on BQ:BitQueue .)

---(

eq [lem-bq3] :

good-bit-queue(BQ ; (B nil),B)

= good-bit-queue(BQ,B) .

)

(goal lem-bq3 : ABP-PREDS |- A{ BQ:BitQueue ; B:Bit }

(

(good-bit-queue(BQ ; (B nil),B)) = (good-bit-queue(BQ,B))

)

.)

(lem aux : (A{ BQ:BitQueue ; B:Bit }

((all-bits(BQ ; (B nil),B)) = (all-bits(BQ,B)))) .)

(ind* on BQ:BitQueue .)

(cov on good-bit-queue(BQ:BitQueue,B:Bit) .)

(auto .)

(ind on V0#0:Bit .)

(ind* on V0#1:Bit .)

(ind* on V0#1:Bit .)

---(

ceq [lem-bq4] :

good-bit-queue(BQ,B)

= true

if all-bits(BQ,B) = true .

)

(goal lem-bq4 : ABP-PREDS |- A{ BQ:BitQueue ; B:Bit }

(

(all-bits(BQ,B)) = (true)

=>

(good-bit-queue(BQ,B)) = (true)

)

171

.)

(eq-split on good-bit-queue(BQ:BitQueue,B:Bit) .)

(auto .)

(ind on V0#0:Bit .)

(ind* on V0#1:Bit .)

(ind* on V0#1:Bit .)

---(

ceq [lem-bq5] :

good-bit-queue(BQ,B)

= true

if all-bits(BQ,flip(B)) = true .

)

(goal lem-bq5 : ABP-PREDS |- A{ BQ:BitQueue ; B:Bit }

(

(all-bits(BQ,flip(B))) = (true)

=>

(good-bit-queue(BQ,B)) = (true)

)

.)

(cov on good-bit-queue(BQ:BitQueue,B:Bit) .)

(auto .)

(ind on V0#0:Bit .)

(ind* on V0#1:Bit .)

(ind* on V0#1:Bit .)

---(

eq [lem-pq1] :

good-packet-queue(BP BP BPQ,B,N)

= good-packet-queue(BP BPQ,B,N) .

)

(goal lem-pq1 : ABP-PREDS |- A{ BPQ:BitPacketQueue ; B:Bit ;

BP:BitPacket ; N:iNat }

(

(good-packet-queue(BP BP BPQ,B,N)) = (good-packet-queue(BP BPQ,B,N))

)

.)

(eq-split on good-packet-queue(BP:BitPacket BPQ:BitPacketQueue,B:Bit,N:iNat) .)

(ind on V0#0:Bit .)

(ind* on V0#3:Bit .)

(ind* on V0#3:Bit .)

---(

eq [lem-pq2] :

all-packets(BPQ ; (B,N) nil,B,N)

= all-packets(BPQ,B,N) .

)

(goal lem-pq2 : ABP-PREDS |- A{ BPQ:BitPacketQueue ; B:Bit ; N:iNat }

(

(all-packets(BPQ ; (B,N) nil,B,N)) = (all-packets(BPQ,B,N))

)

.)

(cov* on all-packets(BPQ:BitPacketQueue,B:Bit,N:iNat) .)

---(

172

eq [lem-pq3] :

good-packet-queue(BPQ ; (B,N) nil,B,N)

= good-packet-queue(BPQ,B,N) .

)

(goal lem-pq3 : ABP-PREDS |- A{ BPQ:BitPacketQueue ; B:Bit ; N:iNat }

(

(good-packet-queue(BPQ ; (B,N) nil,B,N)) = (good-packet-queue(BPQ,B,N))

)

.)

(lem aux : (A{ BPQ:BitPacketQueue ; B:Bit ; N:iNat }

((all-packets(BPQ ; (B,N) nil,B,N)) = (all-packets(BPQ,B,N)))) .)

(cov* on all-packets(BPQ:BitPacketQueue,B:Bit,N:iNat) .)

(cov on good-packet-queue(BPQ:BitPacketQueue,B:Bit,N:iNat) .)

(auto .)

(ind on V0#0:Bit .)

(ind* on V0#2:Bit .)

(ind* on V0#2:Bit .)

---(

ceq [lem-pq4] :

good-packet-queue(BPQ,B,N)

= true

if all-packets(BPQ,B,N) .

)

(goal lem-pq4 : ABP-PREDS |- A{ BPQ:BitPacketQueue ; B:Bit ; N:iNat }

(

(all-packets(BPQ,B,N)) = (true)

=>

(good-packet-queue(BPQ,B,N)) = (true)

)

.)

(cov on good-packet-queue(BPQ:BitPacketQueue,B:Bit,N:iNat) .)

(auto .)

(ind on V0#0:Bit .)

(ind* on V0#2:Bit .)

(ind* on V0#2:Bit .)

---(

ceq [lem-pq5] :

good-packet-queue(BPQ,B,s(N))

= true

if all-packets(BPQ,flip(B),N) = true .

)

(goal lem-pq5 : ABP-PREDS |- A{ BPQ:BitPacketQueue ; B:Bit ; N:iNat }

(

(all-packets(BPQ,flip(B),N)) = (true)

=>

(good-packet-queue(BPQ,B,s(N))) = (true)

)

.)

(cov on good-packet-queue(BPQ:BitPacketQueue,B:Bit,s N:iNat) .)

(auto .)

(ind on V0#0:Bit .)

(ind* on V0#2:Bit .)

(ind* on V0#2:Bit .)

173

APPENDIX C

MISSING PROOFS FOR CHAPTER 6

This appendix documents the module structure of the IBOS specification

and that of its predicates in Section 6; it also includes a proof of their

admissibility.

The IBOS specification can be found in ibos.maude and the predicate

specification in ibos.preds.maude, both available for download with this

dissertation. The mechanical proofs were obtained with the tools integrated

in the current version of the Maude Formal Environment (MFE) [36, 35].

C.1 Module Structure of ibos.maude

File ibos.maude comprises the Maude specification of the IBOS containing

more than 1000 lines of code. This section describes the module structure

of the specification, which is depicted in Figure C.1.

Modules BOOL-OPS and CONFIGURATION come from Maude’s prelude. Nat-

ural numbers with their equality enrichment are defined in module INAT.

Module SYSCALL-TYPE defines the constants modeling the different types

of system calls available in the model. Labels, defined in module LABEL

comprise constants such as about-blank and url(iN:iNat) for identify-

ing web site labels. Module MSG-TYPE defines different types of messages

such as MSG-NEW-URL or MSG-RETURN-URL, but not all of them are necessary

for the formal verification. Module PROC-ID defines the infrastructure used

for identifying processes either with a natural number N:iNat or a tuple

id(N:iNat). The top sort Sys of the specification is defined in module

SYS. The payload associated to messages resulting from process interac-

tion is modeled in module PAYLOAD. Module MSG-PIPE-BASICS defines the

attributes for pipe objects, while modules WEBAPPMGR and NETWORK define

174

KERNEL

KERNEL-POLICY

OO

WEBAPPMGR

77

NETWORK

ff

MSG-PIPE-BASICS

gg 88

PAYLOAD

OO

LABEL

77

MSG-TYPE

OO

PROC-ID

ff

SYS

XX

SYSCALL-TYPE

<<

INAT

gg OO 88

CONFIGURATION

ee OO

BOOL-OPS

kk OO 44

Figure C.1: Module inclusion in ibos.maude.

predicates for checking if a process is a web application or a network pro-

cess, respectively. The object attributes for the kernel object are specified

in module KERNEL-POLICY, together with auxiliary data types such as the

policy multiset. All rewrite rules of the IBOS specification are contained in

module KERNEL, which is the main module of the specification.

C.2 IBOS Admissibility and Free Constructors Modulo

This section presents the mechanical proofs for the admissibility of module

IBOS and for the equational freeness of its subsignature of constructors.

A mechanical proof for ground operational termination could not be ob-

tained automatically because of current limitations of the MTT tool. How-

ever, it is easy to see by inspection on the equations that the specification

is ground operationally terminating. For ground sort-decreasingness, con-

fluence, and coherence, the following is the output of the mechanical proof:

Maude> (ccr KERNEL .)

rewrites: 15472344 in 45954ms cpu (45950ms real) (336685 rewrites/second)

Church-Rosser check for KERNEL

All critical pairs have been joined.

The specification is locally-confluent.

The module is sort-decreasing.

175

Maude> (cch KERNEL .)

rewrites: 2188028 in 1470ms cpu (1470ms real) (1487669 rewrites/second)

Coherence checking of KERNEL

All critical pairs have been rewritten and no rewrite with rules can

happen at non-overlapping positions of equations left-hand sides.

For sufficient completeness and equational freeness of constructors mod-

ulo, the following is the output of the mechanical proof:

Maude> (scc KERNEL .)

rewrites: 1027061 in 1048ms cpu (1046ms real) (979958 rewrites/second)

Sufficient completeness check for KERNEL

Completeness counter-examples: none were found

Freeness counter-examples: none were found

C.3 ibos.preds.maude

This section contains the Maude specification of the state predicates.

---- predicate defining initial states

mod IBOS-PRED-INIT is

pr KERNEL .

op init : Sys -> [Bool] .

--- initial state

eq [init]:

init(

{ < 0 : nic | in(mtLL),out(mtLL) >

< id(1) : kernel |

msgPolicy(

policy(id(3), id(4), MSG-FETCH-URL),

policy(id(3), id(4), MSG-FETCH-URL-ABORT),

policy(id(3), id(6), MSG-DOM-COOKIE-SET),

policy(id(3), id(6), MSG-DOM-COOKIE-GET),

policy(id(3), id(11), MSG-UI-MSG),

policy(id(3), id(14), MSG-WRITE-FILE),

policy(id(3), id(14), MSG-READ-FILE),

policy(id(4), id(3), MSG-RETURN-URL),

policy(id(4), id(3), MSG-RETURN-URL-METADATA),

policy(id(4), id(6), MSG-COOKIE-SET),

policy(id(4), id(6), MSG-COOKIE-GET),

policy(id(6), id(3), MSG-DOM-COOKIE-GET-RETURN),

policy(id(6), id(4), MSG-COOKIE-GET-RETURN),

policy(id(11), id(3), MSG-NEW-URL),

policy(id(11), id(3), MSG-SWITCH-TAB),

policy(id(11), id(3), MSG-WEBAPP-MSG),

policy(id(14), id(3), MSG-READ-FILE-RETURN),

policy(id(14), id(11), MSG-DOWNLOAD-INFO)),

nextNetworkProc(256),

handledCurrently(none),

176

weblabels(mtWPIS),

networklabels(mtNPIS),

displayedTopBar(about-blank) >

< id(2) : proc | nextWAN(1024) >

< id(2) : pipe | fromKernel(mt),toKernel(mt) >

< id(5) : proc | none >

< id(5) : pipe | fromKernel(mt),toKernel(mt) >

< id(6) : proc | none >

< id(6) : pipe | fromKernel(mt),toKernel(mt) >

< id(7) : proc | none >

< id(7) : pipe | fromKernel(mt), toKernel(mt) >

< id(8) : proc | none >

< id(8) : pipe | fromKernel(mt),toKernel(mt) >

< id(9) : proc | none >

< id(9) : pipe | fromKernel(mt),toKernel(mt) >

< id(10) : proc | none >

< id(10) : pipe | fromKernel(mt),toKernel(mt) >

< id(11) : proc | none >

< id(11) : pipe | fromKernel(mt),toKernel(mt) >

< id(12) : proc | none >

< id(12) : pipe | fromKernel(mt),toKernel(mt) >

< id(13) : proc | none >

< id(13) : pipe | fromKernel(mt),toKernel(mt) >

< id(15) : proc | activeWebapp(id(0)),

displayedContent(about-blank) > })

= true .

endm

---- unique kernel

mod IBOS-PRED-UNIQUE-KERNEL is

pr KERNEL .

var Att : AttributeSet .

vars Att1 Att2 : AttributeSet .

var C : Cid .

var Cnf : Configuration .

vars P P1 P2 : ProcId .

op unique-kernel : Sys -> [Bool] .

ceq [unique-kernel-0] :

unique-kernel({ Cnf })

= false

if no-kernel(Cnf) .

eq [unique-kernel-1] :

unique-kernel({ < P : kernel | Att > Cnf })

= no-kernel(Cnf) .

eq [unique-kernel-2] :

unique-kernel({ < P1 : kernel | Att1 >

< P2 : kernel | Att2 > Cnf })

= false .

--- auxiliary function symbol

op no-kernel : Configuration -> Bool .

177

eq no-kernel(none)

= true .

eq no-kernel(<> Cnf)

= no-kernel(Cnf) .

eq no-kernel(< P : C | Att > Cnf)

= not(C ~ kernel) and no-kernel(Cnf) .

endm

---- policy immutability

mod IBOS-PRED-IMMUTABLE-POLICY is

pr KERNEL .

op immutable-policy : Sys PolicySet -> [Bool] .

op init-policy : -> PolicySet .

eq init-policy

= (policy(id(3), id(4), MSG-FETCH-URL),

policy(id(3), id(4), MSG-FETCH-URL-ABORT),

policy(id(3), id(6), MSG-DOM-COOKIE-SET),

policy(id(3), id(6), MSG-DOM-COOKIE-GET),

policy(id(3), id(11), MSG-UI-MSG),

policy(id(3), id(14), MSG-WRITE-FILE),

policy(id(3), id(14), MSG-READ-FILE),

policy(id(4), id(3), MSG-RETURN-URL),

policy(id(4), id(3), MSG-RETURN-URL-METADATA),

policy(id(4), id(6), MSG-COOKIE-SET),

policy(id(4), id(6), MSG-COOKIE-GET),

policy(id(6), id(3), MSG-DOM-COOKIE-GET-RETURN),

policy(id(6), id(4), MSG-COOKIE-GET-RETURN),

policy(id(11), id(3), MSG-NEW-URL),

policy(id(11), id(3), MSG-SWITCH-TAB),

policy(id(11), id(3), MSG-WEBAPP-MSG),

policy(id(14), id(3), MSG-READ-FILE-RETURN),

policy(id(14), id(11), MSG-DOWNLOAD-INFO)) .

var Att : AttributeSet .

var Cnf : Configuration .

var PS : PolicySet .

eq [immutable-policy]:

immutable-policy({ < id(1) : kernel | msgPolicy(PS), Att >

Cnf }, PS)

= unique-kernel({ < id(1) : kernel | msgPolicy(PS), Att >

Cnf }) .

endm

---- all predicates

mod IBOS-PREDS is

pr IBOS-PRED-INIT .

pr IBOS-PRED-UNIQUE-KERNEL .

pr IBOS-PRED-IMMUTABLE-POLICY .

endm

178

C.4 IBOS-PREDS is Admissible

This section presents the mechanical proofs for the admissibility of module

IBOS-PREDS.

A mechanical proof for ground operational termination could not be ob-

tained automatically because of current limitations of the MTT tool. How-

ever, it is easy to see by inspection on the equations that the specification

is ground operationally terminating. For ground sort-decreasingness, con-

fluence, and coherence, the following is the output of the mechanical proof:

Maude> (ccr IBOS-PREDS .)

rewrites: 17325456 in 198165253ms cpu (198213314ms real) (87 rewrites/second)

Church-Rosser check for IBOS-PREDS

All critical pairs have been joined.

The specification is locally-confluent.

The module is sort-decreasing.

Maude> (cch IBOS-PREDS .)

rewrites: 18767431 in 220183279ms cpu (230455430ms real) (85 rewrites/second)

Coherence checking of IBOS-PREDS

All critical pairs have been rewritten and no rewrite with rules can happen

at non-overlapping positions of equations left-hand sides.

179

REFERENCES

[1] M. AlTurki and J. Meseguer. Reduction semantics and formal analysis
of Orc programs. Electronic Notes in Theoretical Computer Science,
200(3):25–41, 2008.

[2] J. Avenhaus, T. Hillenbrand, and B. Löchner. On using ground join-
able equations in equational theorem proving. Journal of Symbolic
Computation, 36(1-2):217–233, 2003.

[3] M. Ayala-Rincón. Expressiveness of Conditional Equational Systems
with Built-in Predicates. PhD thesis, Universität Kaiserslauten, 1993.

[4] F. Baader, editor. Term Rewriting and Applications, 18th Interna-
tional Conference, RTA 2007, Paris, France, June 26-28, 2007, Pro-
ceedings, volume 4533 of Lecture Notes in Computer Science. Springer,
2007.

[5] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

[6] L. Bachmair, N. Dershowitz, and D. A. Plaisted. Completion without
failure. In A. H. Kaci and M. Nivat, editors, Resolution of Equations
in Algebraic Structures, volume 2: Rewriting Techniques, pages 1–30.
Academic Press, New York, 1989.

[7] D. Balasubramanian, C. Păsăreanu, M. W. Whalen, G. Karsai, and
M. R. Lowry. Polyglot: modeling and analysis for multiple Statechart
formalisms. In M. B. Dwyer and F. Tip, editors, ISSTA, pages 45–55.
ACM, 2011.

[8] K. A. Bartlett, R. A. Scantlebury, and P. T. Wilkinson. A note on
reliable full-duplex transmission over half-duplex links. Commununi-
cations of the ACM, 12(5):260–261, May 1969.

[9] K. Becker. Proving ground confluence and inductive validity in con-
structor based equational specifications. In M.-C. Gaudel and J.-P.
Jouannaud, editors, TAPSOFT, volume 668 of Lecture Notes in Com-
puter Science, pages 46–60. Springer, 1993.

180

[10] J. Bergstra and J. Klop. Verification of an alternating bit protocol by
means of process algebra protocol. In W. Bibel and K. Jantke, edi-
tors, Mathematical Methods of Specification and Synthesis of Software
Systems ’85, volume 215 of Lecture Notes in Computer Science, pages
9–23. Springer Berlin / Heidelberg, 1986.

[11] G. Berry. The foundations of Esterel. In Proof, Language and Interac-
tion: Essays in Honour of Robin Milner, pages 425–454, Cambridge,
MA, USA, 2000. MIT Press.

[12] M. Bezem and J. F. Groote. Invariants in process algebra with data.
In B. Jonsson and J. Parrow, editors, CONCUR, volume 836 of Lecture
Notes in Computer Science, pages 401–416. Springer, 1994.

[13] M. L. Bolton, E. J. Bass, and R. I. Siminiceanu. A systematic approach
to model checking human-automation interaction using task analytic
models. IEEE Transactions on Systems, Man, and Cybernetics–Part
A: Systems and Humans, 41(5):961–976, 2011.

[14] A. Bouhoula. Using induction and rewriting to verify and complete
parameterized specifications. Theoretical Computer Science, 170(1-
2):245–276, 1996.

[15] A. Bouhoula. Simultaneous checking of completeness and ground con-
fluence for algebraic specifications. ACM Transactions on Computa-
tional Logic, 10(3), 2009.

[16] A. Bouhoula and F. Jacquemard. Automated induction with con-
strained tree automata. In A. Armando, P. Baumgartner, and
G. Dowek, editors, IJCAR, volume 5195 of Lecture Notes in Com-
puter Science, pages 539–554. Springer, 2008.

[17] A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and
proof in membership equational logic. Theoretical Computer Science,
236(1-2):35–132, 2000.

[18] R. Bruni and J. Meseguer. Semantic foundations for generalized
rewrite theories. Theoretical Computer Science, 360(1-3):386–414,
2006.

[19] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. Lustre: a declar-
ative language for real-time programming. In POPL ’87: Proceedings
of the 14th ACM SIGACT-SIGPLAN symposium on Principles of pro-
gramming languages, pages 178–188. ACM, 1987.

[20] K. M. Chandy and J. Misra. Parallel Program Design, A foundation.
Addison Wesley 1988, 1988.

[21] S. Chen, J. Meseguer, R. Sasse, H. J. Wang, and Y.-M. Wang. A
systematic approach to uncover security flaws in GUI logic. In IEEE
Symposium on Security and Privacy, pages 71–85. IEEE Computer
Society, 2007.

181

[22] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The
MIT Press, Cambridge, Massachusetts, 1999.

[23] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer,
and C. L. Talcott, editors. All About Maude - A High-Performance
Logical Framework, How to Specify, Program and Verify Systems in
Rewriting Logic, volume 4350 of Lecture Notes in Computer Science.
Springer, 2007.

[24] M. Clavel and M. Egea. Itp/ocl: A rewriting-based validation tool
for uml+ocl static class diagrams. In Johnson and Vene [57], pages
368–373.

[25] H. Comon. Sufficient completness, term rewriting systems and “anti-
unification”. In J. H. Siekmann, editor, CADE, volume 230 of Lecture
Notes in Computer Science, pages 128–140. Springer, 1986.

[26] H. Comon. An effective method for handling initial algebras. In
J. Grabowski, P. Lescanne, and W. Wechler, editors, ALP, volume
343 of Lecture Notes in Computer Science, pages 108–118. Springer,
1988.

[27] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard,
D. Lugiez, S. Tison, and M. Tommasi. Tree automata techniques
and applications, 2007.

[28] H. Comon and F. Jacquemard. Ground reducibility is EXPTIME-
complete. Information and Computation, 187(1):123–153, 2003.

[29] G. Dowek, C. Muñoz, and C. Păsăreanu. A formal analysis framework
for PLEXIL. In Proceedings of 3rd Workshop on Planning and Plan
Execution for Real-World Systems, pages 45–51, September 2007.

[30] G. Dowek, C. Muñoz, and C. Păsăreanu. A small-step semantics of
PLEXIL. Technical Report 2008-11, National Institute of Aerospace,
Hampton, VA, 2008.

[31] G. Dowek, C. Muñoz, and C. Rocha. Rewriting logic semantics of a
plan execution language. CoRR, abs/1002.2872, 2010.

[32] F. Durán, S. Lucas, and J. Meseguer. Termination modulo combina-
tions of equational theories. In S. Ghilardi and R. Sebastiani, editors,
FroCos, volume 5749 of Lecture Notes in Computer Science, pages
246–262. Springer, 2009.

[33] F. Durán and J. Meseguer. A Church-Rosser checker tool for condi-
tional order-sorted equational maude specifications. In P. C. Ölveczky,
editor, WRLA, volume 6381 of Lecture Notes in Computer Science,
pages 69–85. Springer, 2010.

182

[34] F. Durán and J. Meseguer. On the Church-Rosser and coherence prop-
erties of conditional order-sorted rewrite theories. Journal of Logic and
Algebraic Programming, to appear, 2011.

[35] F. Durán, C. Rocha, and J. M. Álvarez. Tool interoperability in the
maude formal environment. In Algebra and Coalgebra in Computer
Science, volume 6859 of Lecture Notes in Computer Science, pages
400–406, 2011.

[36] F. Durán, C. Rocha, and J. M. Álvarez. Towards a maude formal
environment. In Formal Modeling: Actors, Open Systems, Biological
Systems, volume 7000 of Lecture Notes in Computer Science, pages
329–351, 2011.

[37] S. Escobar, C. Meadows, and J. Meseguer. State space reduction in
the maude-nrl protocol analyzer. CoRR, abs/1105.5282, 2011.

[38] S. Escobar and J. Meseguer. Symbolic model checking of infinite-state
systems using narrowing. In Baader [4], pages 153–168.

[39] T. Estlin, A. Jónsson, C. Păsăreanu, R. Simmons, K. Tso, and
V. Verma. Plan Execution Interchange Language (PLEXIL). Techni-
cal Memorandum TM-2006-213483, NASA, 2006.

[40] S. Falke and D. Kapur. Operational termination of conditional rewrit-
ing with built-in numbers and semantic data structures. Electronic
Notes in Theoretical Computer Science, 237:75–90, 2009.

[41] S. Falke and D. Kapur. Rewriting induction + linear arithmetic =
decision procedure. In B. Gramlich, D. Miller, and U. Sattler, editors,
IJCAR, volume 7364 of Lecture Notes in Computer Science, pages
241–255. Springer, 2012.

[42] A. Farzan and J. Meseguer. State space reduction of rewrite theories
using invisible transitions. In Johnson and Vene [57], pages 142–157.

[43] E. Giménez. An application of co-inductive types in coq: Verification
of the alternating bit protocol. In S. Berardi and M. Coppo, editors,
Types for Proofs and Programs, volume 1158 of Lecture Notes in Com-
puter Science, pages 135–152. Springer Berlin / Heidelberg, 1996.

[44] I. Gnaedig and H. Kirchner. Computing constructor forms with non
terminating rewrite programs. In A. Bossi and M. J. Maher, editors,
PPDP, pages 121–132. ACM, 2006.

[45] I. Gnaedig and H. Kirchner. Computing Constructor Forms with Non
Terminating Rewrite Programs -Extended version-. Research Report,
PROTHEO - INRIA Lorraine - LORIA - INRIA - CNRS : UMR7503
- Université Henri Poincaré - Nancy I - Université Nancy II - Institut
National Polytechnique de Lorraine, 2006.

183

[46] J. A. Goguen and J. Meseguer. Order-sorted algebra I: Equational
deduction for multiple inheritance, overloading, exceptions and partial
operations. Theoretical Computer Science, 105(2):217–273, 1992.

[47] C. Grier, S. Tang, and S. T. King. Designing and implementing the
OP and OP2 web browsers. TWEB, 5(2):11, 2011.

[48] R. Gutiérrez, J. Meseguer, and C. Rocha. Order-sorted equality en-
richments modulo axioms (extended version). Technical report, Uni-
versity of Illinois at Urbana-Champaing, December 2011. Available at
http://hdl.handle.net/2142/28597.

[49] R. Gutiérrez, J. Meseguer, and C. Rocha. Order-sorted equality en-
richments modulo axioms. In F. Durán, editor, Rewriting Logic and
Its Applications, volume 7571 of Lecture Notes in Computer Science,
pages 162–181. Springer Berlin Heidelberg, 2012.

[50] J. Guttag. The Specification and Application to Programming of Ab-
stract Data Types. PhD thesis, University of Toronto, Computer Sci-
ence Department, 1975.

[51] J. V. Guttag and J. J. Horning. The algebraic specification of abstract
data types. Acta Informatica, 10:27–52, 1978.

[52] J. Hendrix. Decision Procedures for Equationally Based Reasoning.
PhD thesis, University of Illinois at Urbana-Champaign, April 2008.

[53] J. Hendrix, M. Clavel, and J. Meseguer. A sufficient completeness rea-
soning tool for partial specifications. In J. Giesl, editor, RTA, volume
3467 of Lecture Notes in Computer Science, pages 165–174. Springer,
2005.

[54] J. Hendrix and J. Meseguer. On the completeness of context-sensitive
order-sorted specifications. In Baader [4], pages 229–245.

[55] J. Hendrix, H. Ohsaki, and M. Viswanathan. Propositional tree au-
tomata. In F. Pfenning, editor, RTA, volume 4098 of Lecture Notes in
Computer Science, pages 50–65. Springer, 2006.

[56] G. P. Huet and J.-M. Hullot. Proofs by induction in equational theories
with constructors. In FOCS, pages 96–107. IEEE, 1980.

[57] M. Johnson and V. Vene, editors. Algebraic Methodology and Software
Technology, 11th International Conference, AMAST 2006, Kures-
saare, Estonia, July 5-8, 2006, Proceedings, volume 4019 of Lecture
Notes in Computer Science. Springer, 2006.

[58] J.-P. Jouannaud, C. Kirchner, and H. Kirchner. Incremental construc-
tion of unification algorithms in equational theories. In J. Dı́az, editor,
ICALP, volume 154 of Lecture Notes in Computer Science, pages 361–
373. Springer, 1983.

184

http://hdl.handle.net/2142/28597

[59] J.-P. Jouannaud and E. Kounalis. Automatic proofs by induction in
theories without constructors. Information and Computation, 82(1):1–
33, 1989.

[60] D. Kapur, P. Narendran, and F. Otto. On ground-confluence of term
rewriting systems. Information and Computation, 86(1):14–31, 1990.

[61] D. Kapur, P. Narendran, D. J. Rosenkrantz, and H. Zhang. Sufficient-
completeness, ground-reducibility and their complexity. Acta Infor-
matica, 28(4):311–350, 1991.

[62] D. Kapur, P. Narendran, and H. Zhang. On sufficient-completeness
and related properties of term rewriting systems. Acta Informatica,
24(4):395–415, 1987.

[63] E. Kounalis. Testing for the ground (co-)reducibility property in term-
rewriting systems. Theoretical Computer Science, 106(1):87–117, 1992.

[64] A. Lazrek, P. Lescanne, and J.-J. Thiel. Tools for proving inductive
equalities, relative completeness, and omega-completeness. Informa-
tion and Computation, 84(1):47–70, 1990.

[65] K. Lin and J. Goguen. A hidden proof of the alternating bit protocol.
Available at http://cseweb.ucsd.edu/~goguen/pps/abp.ps.

[66] D. Lucanu. Strategy-based rewrite semantics for membrane systems
preserves maximal concurrency of evolution rule actions. Electronic
Notes in Theoretical Computer Science, 237:107–125, 2009.

[67] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Con-
current Systems. Springer-Verlag, New York, 1992.

[68] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems.
Springer-Verlag, New York, 1995.

[69] U. Martin and T. Nipkow. Ordered rewriting and confluence. In
M. E. Stickel, editor, CADE, volume 449 of Lecture Notes in Computer
Science, pages 366–380. Springer, 1990.

[70] J. Meseguer. Conditional rewriting logic as a unified model of concur-
rency. Theoretical Computer Science, 96(1):73–155, 1992.

[71] J. Meseguer. Membership algebra as a logical framework for equational
specification. In F. Parisi-Presicce, editor, WADT, volume 1376 of
Lecture Notes in Computer Science, pages 18–61. Springer, 1997.

[72] J. Meseguer. Twenty years of rewriting logic. The Journal of Logic
and Algebraic Programming, (to appear), 2012.

[73] J. Meseguer and J. A. Goguen. Initially, induction and computability.
Algebraic Methods in Semantics, 1986.

185

http://cseweb.ucsd.edu/~goguen/pps/abp.ps

[74] J. Meseguer, M. Palomino, and N. Mart́ı-Oliet. Equational abstrac-
tions. Theoretical Computer Science, 403(2-3):239–264, 2008.

[75] J. Meseguer and G. Rosu. The rewriting logic semantics project. The-
oretical Computer Science, 373(3):213–237, 2007.

[76] J. Misra. A Discipline of Multiprogramming: Programming Theory for
Distributed Applications. Monographs in Computer Science. Springer-
Verlag, New York, 2001.

[77] T. Nipkow. Combining matching algorithms: The regular case. Jour-
nal of Symbolic Computation, 12(6):633–654, 1991.

[78] T. Nipkow and G. Weikum. A decidability result about sufficient-
completeness of axiomatically specified abstract data types. In A. B.
Cremers and H.-P. Kriegel, editors, Theoretical Computer Science,
volume 145 of Lecture Notes in Computer Science, pages 257–268.
Springer, 1983.

[79] I. of Computer Science University of Innsbruck. Constrained
rewriting and smt: Emerging trends in rewriting. Avail-
able at http://cl-informatik.uibk.ac.at/research/projects/

constrained-rewriting-and-smt-emerging-trends-in.

[80] K. Ogata and K. Futatsugi. Proof scores in the OTS/CafeOBJ
Method. In E. Najm, U. Nestmann, and P. Stevens, editors, FMOODS,
volume 2884 of Lecture Notes in Computer Science, pages 170–184.
Springer, 2003.

[81] K. Ogata and K. Futatsugi. Simulation-based verification for invariant
properties in the ots/cafeobj method. Electronic Notes in Theorethical
Computer Science, 201:127–154, 2008.

[82] S. Owre, J. Rushby, and N. Shankar. PVS: A prototype verifica-
tion system. In D. Kapur, editor, 11th International Conference on
Automated Deduction (CADE), volume 607 of Lecture Notes in Arti-
ficial Intelligence, pages 748–752, Saratoga, NY, June 1992. Springer-
Verlag.

[83] D. Plaisted. Semantic confluence tests and completion methods. In-
formation and Control, 65:182–215, 1985.

[84] C. Rocha, H. Cadavid, C. A. Muñoz, and R. Siminiceanu. A formal
interactive verification environment for the plan execution interchange
language. In J. Derrick, S. Gnesi, D. Latella, and H. Treharne, editors,
IFM, volume 7321 of Lecture Notes in Computer Science, pages 343–
357. Springer, 2012.

[85] C. Rocha and J. Meseguer. Theorem proving modulo based on boolean
equational procedures. In R. Berghammer, B. Möller, and G. Struth,
editors, RelMiCS, volume 4988 of Lecture Notes in Computer Science,
pages 337–351. Springer, 2008.

186

http://cl-informatik.uibk.ac.at/research/projects/constrained-rewriting-and-smt-emerging-trends-in
http://cl-informatik.uibk.ac.at/research/projects/constrained-rewriting-and-smt-emerging-trends-in

[86] C. Rocha and J. Meseguer. Constructors, sufficient completeness and
deadlock freedom of generalized rewrite theories. Technical report,
University of Illinois at Urbana-Champaign, 2010. Available at http:
//hdl.handle.net/2142/15474.

[87] C. Rocha and J. Meseguer. Constructors, sufficient completeness,
and deadlock freedom of rewrite theories. In C. G. Fermüller and
A. Voronkov, editors, LPAR (Yogyakarta), volume 6397 of Lecture
Notes in Computer Science, pages 594–609. Springer, 2010.

[88] C. Rocha and J. Meseguer. Proving safety properties of rewrite the-
ories. Technical report, University of Illinois at Urbana-Champaign,
2010. Available at http://hdl.handle.net/2142/17407.

[89] C. Rocha and J. Meseguer. Proving safety properties of rewrite theo-
ries. In A. Corradini, B. Klin, and C. Ĉırstea, editors, CALCO, volume
6859 of Lecture Notes in Computer Science, pages 314–328. Springer,
2011.

[90] C. Rocha, C. Munoz, and H. Cadavid. A graphical environment for the
semantic validation of a plan execution language. In Space Mission
Challenges for Information Technology, 2009. SMC-IT 2009. Third
IEEE International Conference on, pages 201 –207, july 2009.

[91] C. Rocha, C. Muñoz, and G. Dowek. A formal library of set relations
and its application to synchronous languages. Theoretical Computer
Science, 412(37):4853 – 4866, 2011.

[92] C. Rocha and C. A. Muñoz. Simulation and verification of synchronous
set relations in rewriting logic. In A. da Silva Simão and C. Morgan,
editors, SBMF, volume 7021 of Lecture Notes in Computer Science,
pages 60–75. Springer, 2011.

[93] G. Roşu and A. Ştefănescu. Matching Logic: A New Program Ver-
ification Approach (NIER Track). In ICSE’11: Proceedings of the
30th International Conference on Software Engineering, pages 868–
871. ACM, 2011.

[94] V. Rusu. Combining theorem proving and narrowing for rewriting-
logic specifications. In G. Fraser and A. Gargantini, editors, TAP,
volume 6143 of Lecture Notes in Computer Science, pages 135–150.
Springer, 2010.

[95] R. Sasse. Security Models in Rewriting Logic for Cryptographic Pro-
tocols and Browsers. PhD thesis, University of Illinois at Urbana-
Champaign, 2012.

[96] R. Sasse, S. T. King, J. Meseguer, and S. Tang. IBOS: A correct-
by-construction modular browser. In C. Păsăreanu and G. Salaün,
editors, FACS, volume 7684 of Lecture Notes in Computer Science,
pages 224–241. Springer, 2012.

187

http://hdl.handle.net/2142/15474
http://hdl.handle.net/2142/15474
http://hdl.handle.net/2142/17407

[97] T. Serbanuta, G. Stefanescu, and G. Rosu. Defining and executing
P systems with structured data in K. In D. W. Corne, P. Frisco,
G. Paun, G. Rozenberg, and A. Salomaa, editors, Workshop on Mem-
brane Computing, volume 5391 of Lecture Notes in Computer Science,
pages 374–393. Springer, 2008.

[98] L. Steggles and P. Kosiuczenko. A timed rewriting logic semantics for
sdl: A case study of the alternating bit protocol. Electronic Notes in
Theoretical Computer Science, 15(0):83 – 104, 1998.

[99] P. J. Strauss. Executable semantics for PLEXIL: simulating a task-
scheduling language in Haskell. Master’s thesis, Oregon State Univer-
sity, 2009.

[100] I. Suzuki. Formal analysis of the alternating bit protocol by temporal
petri nets. IEEE Transactions on Software Engineering, 16(11):1273–
1281, 1990.

[101] S. Tang, H. Mai, and S. T. King. Trust and protection in the illinois
browser operating system. In R. H. Arpaci-Dusseau and B. Chen,
editors, OSDI, pages 17–32. USENIX Association, 2010.

[102] O. Tardieu. A deterministic logical semantics for pure esterel. ACM
Transactions On Programming Languages and Systems, 29(2):8, 2007.

[103] V. Verma, A. Jónsson, C. Păsăreanu, and M. Iatauro. Universal Exec-
utive and PLEXIL: Engine and language for robust spacecraft control
and operations. In Proceedings of the American Institute of Aeronau-
tics and Astronautics Space Conference, 2006.

188

	CHAPTER 1 Introduction
	Summary of Chapters and Contributions
	CHAPTER 2 Preliminaries
	Order-Sorted Equational and Rewrite Theories
	Equational Theories and Initial Algebras
	Rewrite Theories and Initial Reachability Models

	Admissible Modules in Maude
	Admissible Functional Modules
	Admissible System Modules

	Order-Sorted Equality Enrichments Modulo Axioms
	The Illinois Browser Operating System (IBOS)
	NASA's PLEXIL Language
	The CETA Library
	The Maude ITP
	CHAPTER 3 Constructors and Deadlock Freedom
	Generalized Rewrite Theories
	Sufficient Completeness and Deadlock Freedom
	Checking Canonical Sufficient Completeness
	Decision Procedures with Propositional Tree Automata
	Checking Sufficient Completeness
	Checking E-free and R-terminal Constructors
	The Extended Maude Sufficient Completeness Checker

	Constructor-Based Reachability Analysis
	Ground Reachability
	Ground Joinability

	Formal Properties of CHANNEL
	Related Work and Concluding Remarks
	CHAPTER 4 Deductive Proofs For Safety Properties
	Temporal Semantics of TR
	Ground Safety Properties
	Ground Stability
	Ground Invariance

	Strengthenings for Ground Invariance
	InvA: The Maude Invariant Analyzer Tool
	Commands Available to the User
	Automatic Discharge of Proof Obligations

	Related Work and Concluding Remarks

	CHAPTER 5 InvA Case Study I: Reliable Communication in the Alternating Bit Protocol
	ABP
	Formal Modeling

	Reliable Communication
	Formal Specification of the Property
	Strengthening the Invariant

	Related Work and Concluding Remarks

	CHAPTER 6 InvA Case Study II: Some Safety Properties of IBOS
	IBOS
	IBOS Architecture

	Formal Modeling Methodology
	IBOS Architecture Modeling

	Address Bar Correctness and Some Auxiliary Invariants
	Formal Specification of the Property and Limitations
	Kernel Uniqueness
	Immutability of the Security Policy
	Discussion on Some Limits of InvA

	Related Work and Concluding Remarks

	CHAPTER 7 Reachability Analysis with Constrained Built-ins
	Terms with Constrained Built-ins
	Atomic Relations for Constrained Terms
	Soundness and Completeness
	Symbolic Closures
	Related Work and Concluding Remarks

	CHAPTER 8 A Rewriting Logic Semantics for PLEXIL
	PLEXIL Overview
	Formal Semantics
	Synchronous Simulation
	External Events

	Design Validation
	A Case Study
	Model Description
	Verification

	Related Work and Concluding Remarks

	CHAPTER 9 Symbolic Reachability for PLEXIL Modulo Integer Constraints
	Symbolic States
	The Symbolic Atomic Relation
	Synchronous Symbolic Execution
	Symbolic LTL Model Checking

	CHAPTER 10 Conclusions and Future Work
	Conclusions
	Future Work

	APPENDIX A Missing Proofs for Chapter 3
	PTA Proofs
	Mechanical Proofs
	Proofs for BAG-CHOICE+CARD
	Proofs for CHANNEL

	APPENDIX B Missing Proofs for Chapter 5
	abp.maude
	ABP Admissibility and Free Constructors Modulo
	abp.preds.maude
	ABP-PREDS is Admissible

	ABP-PREDS+LEMMATA is Admissible

	ITP Proof Scripts for Proof Obligations
	ITP Proof Scripts for Lemmata
	APPENDIX C Missing Proofs for Chapter 6
	Module Structure of ibos.maude
	IBOS Admissibility and Free Constructors Modulo
	ibos.preds.maude
	IBOS-PREDS is Admissible
	REFERENCES

