
c© 2012 by Xiao Ma. All rights reserved.

DIAGNOSING AND DEBUGGING ABNORMAL BATTERY

DRAIN ON SMARTPHONES

BY

XIAO MA

DISSERTATION

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the

University of Illinois at Urbana-Champaign, 2012

Urbana, Illinois

Doctoral Committee:

Professor Chengxiang Zhai, Chair

Professor Yuanyuan Zhou, Director of Research

Professor Samuel T. King

Professor Geoffrey M. Voelker, University of California at San Diego

Abstract

The past few years have witnessed an evolutionary change in the smartphone

ecosystem. Smartphones have gone from closed platforms containing only pre-

installed applications to open platforms hosting a variety of third-party appli-

cations. Unfortunately, this change has also led to a rapid increase in Abnormal

Battery Drain (ABD) problems that can be caused by software defects, mis-

configuration, or environmental changes. Such issues can drain a fully-charged

battery within a couple of hours, and can potentially affect a significant number

of users.

The goal of this thesis is to understand ABD issues, assist smartphone users

to diagnose ABD issues and help developers prevent software bugs that may

lead to ABD issues. We make three major contributions in different phases of

smartphone application development and usage. At the beginning, we study

user-reported battery drain issues from major smartphone forums. From this

study, we find abnormal battery drain issues dominate user-reported issues,

which are presumably more troublesome to users and more difficult for users

themselves to diagnose and fix.

The dominance of software energy problems highlights the need for helping

app developers to avoid these mistakes. We thus conducted a more thorough

analysis on common mistakes programmers make that can introduce software

energy problems (e.g., bugs, defects, and inefficient designs). Specifically, we

manually examined 117 energy-related software problems in open-source smart-

phone applications and the Android system. We present common patterns of

such mistakes and inefficiencies in the real world, and provide practical implica-

tions for developers and researchers. In particular, we discuss the opportunity of

using model checking approaches and profiling energy-intensive APIs to detect

energy bugs, and present preliminary results.

Motivated by the result, we propose eDoctor, a practical tool that helps reg-

ular users troubleshoot abnormal battery drain issues on smartphones. eDoctor

leverages the concept of execution phases to capture an app’s time-varying be-

havior, which can then be used to identify an abnormal app. Based on the result

of a diagnosis, eDoctor suggests the most appropriate repair solution to users.

To evaluate eDoctor’s effectiveness, we conducted both in-lab experiments and

a controlled user study with 31 participants and 17 real-world ABD issues to-

gether with 4 injected issues in 19 apps. The experimental results show that

eDoctor can successfully diagnose 47 out of the 50 use cases while imposing lit-

ii

tle power overhead. Although eDoctor is designed to directly help smartphone

users, the information collected by eDoctor can also be leveraged by developers

to diagnose ABD issues.

iii

To Wanmin, Matt (Sicheng) and Ethan (Sibo)

iv

Acknowledgments

First and foremost, I would like to express my deep gratitude to my advisor,

Professor Yuanyuan (YY) Zhou, for initially giving me the opportunity to join

the OPERA research group, for pushing me forward while giving me the freedom

to go for things that excited me, for all the valuable discussions and countless

comments on my drafts, for the willing advice whenever needed, and for the

continuing support, belief, and encouragement. I will be forever grateful for

having YY as my advisor.

I also consider myself lucky to work with many outstanding collaborators in

various research projects, particularly Zhenmin Li, Peng (Ryan) Huang, Xinxin

Jin, Soyeon Park, Lin Yan, Ding Yuan and Weiwei Xiong. I wouldn’t have

been able to finish the research work without their generous assistance in my

experiments, discussion on research ideas and encouragement.

I also sincerely thank my other committee members, Professor Chengxiang

Zhai, Professor Sam King, and Professor Geoff Voelker, for offering insightful

feedback and constructive suggestions on my thesis. My special thanks go to

Professor Voelker who has gave me a great deal of help to my paper writing and

presentation skills.

The completion of this thesis marks the end of my many years as a student.

Among many outstanding teachers I would like to especially thank Guixiang Du

and Fenchan Zhang from Wuyi Road Elementary School, Lingxiang Jia from

Shanxi Experimental High School and Dr. Fei Wu and Dr. Yueting Zhuang

from Zhejiang University, for mentoring me, believing in me, and encouraging

me to always aim high.

I am grateful for all the friends with whom I spent my time at UIUC and

UCSD, who made the Ph.D. life fun and memorable. In particular, I would

like to thank the present and past members of OPERA group, including Wei-

wei Xiong, Ding Yuan, Yoann Padioleau, Zuoning Yin, Chongfeng Hu, Soyeon

Park, Spiros Xanthos, Lin Tan, Shan Lu, Joe Tucek, Weihang Jiang, Qingbo

Zhu, Zhenmin Li, Feng Qin, Pin Zhou, Zhifeng Chen, Jiaqi Zhang, Jing Zheng,

Peng (Ryan) Huang, Yang (Robert) Liu, Mihn-jong (Michael) Lee, Xinxin Jin,

Tianyin Xu, Dongcai Shen, Rishen Chen and Xiaoming Tang. Sincere appreci-

ation is extended to Mary Beth Kelley, Sheila D. Clark, and Virginia McIlwain

(UCSD) who helped me in administrative matters.

I would like to express my earnest gratitude to my parents for their support,

without which none of my achievements would have been possible. Being the

only child of them, and the only child in our extended family who came abroad

to study, I feel deeply indebted for their understanding, unconditional support,

and countless sacrifices to give me the best possible education. I also thank my

parents and parents-in-law for devotedly taking care of my sons while I complete

my thesis.
Last, but certainly not least, I dedicate this thesis to my dear wife Wanmin

v

and my beloved sons Matthew (Sicheng) and Ethan (Sibo). They have enlight-
ened my life in so many ways. Words can hardly express how grateful I am for
having them in my life.

vi

Table of Contents

List of Tables . ix

List of Figures . x

1 Introduction . 1
1.1 Abnormal Battery Drain Issues 1
1.2 A Paradigm Shift in Smartphone Industry 4
1.3 Contribution . 5

1.3.1 Characteristic Study of Battery Issues on Smartphones . 5
1.3.2 Characteristic Study of Software Bugs That Cause Ab-

normal Battery Drain . 6
1.3.3 eDoctor: Automatically Diagnosing Abnormal Battery

Drain Issues on Smartphones 7

2 Characteristic Study on Smartphone Battery Issues 9
2.1 Methodology . 9

2.1.1 Data Sources . 9
2.1.2 Sampling Method . 9
2.1.3 Determining Sample Size (K) 9
2.1.4 Issue Analysis . 10
2.1.5 Threats to Validity and Limitations 10

2.2 What Causes Battery Drain on Smartphones? 12
2.2.1 Software Problems . 13
2.2.2 Configuration Changes . 14
2.2.3 Other Causes . 14

2.3 Triggering Events . 15
2.4 Multitasking in Android and iOS 15

3 Characteristic Study on Software Bugs That Cause Battery
Issues . 18
3.1 Methodology . 18

3.1.1 Limitations . 18
3.2 Overview . 19

3.2.1 Resource Leaks (40.2%) 20
3.2.2 Resource Overuse (59.8%) 25

3.3 Implications for Development and Future Research 27
3.3.1 Automatically Detecting Energy Defects 27
3.3.2 Identifying Resource Overuse by Profiling 30
3.3.3 Profiling Energy-intensive API Calls on Android 31
3.3.4 Energy-cautious Development 36

vii

4 eDoctor: Automatically Diagnosing Abnormal Battery Drain
Issues on Smartphones . 37
4.1 Are Existing Tools Sufficient? . 37
4.2 Execution Phases in Smartphone Apps 38

4.2.1 Identify Phases in Smartphone Apps 40
4.3 eDoctor: Design and Implementation 43

4.3.1 Information Collector . 44
4.3.2 Data Analyzer . 48
4.3.3 Diagnosis Engine . 50
4.3.4 Repair Advisor . 52
4.3.5 Automatic Fixes . 53

4.4 Evaluation . 54
4.4.1 Effectiveness (User Study) 54
4.4.2 Performance Evaluation 60
4.4.3 Overhead Evaluation . 61

4.5 Limitations and Discussions . 63
4.5.1 What Cases eDoctor Cannot Diagnose? 63
4.5.2 Is eDoctor Limited to Android? 63
4.5.3 Alternative Approaches 63

5 Related Work . 67
5.1 Energy Consumption Modeling and Measurement 67
5.2 Abnormal Energy Usage Detection 68
5.3 Energy-efficient System Design 68
5.4 Abnormal Battery Drain Studies 70

6 Conclusion . 71
6.1 Thesis Achievements . 71
6.2 Future Work . 72

References . 73

viii

List of Tables

1.1 Representative ABD examples collected from Android forums. . . 2

2.1 User-reported battery issues dataset. 11
2.2 Root causes of user-reported battery drain issues. 12
2.3 Triggering events and ideal solution of ABD issues. 16

3.1 System and apps we collected energy bugs from. 19
3.2 Common energy mistakes programmers make. 20
3.3 Information needed for resource leak detection. 30
3.4 Components needed to profile for resource overuse detection. . . 31
3.5 Modified APIs and recorded information. 33

4.1 Mapping for pinpointing system wide culprit events. 52
4.2 Apps used in the evaluation user study of eDoctor. 55
4.3 ABD issues used in the evaluation user study of eDoctor. 56
4.4 Storage used by eDoctor. 63

ix

List of Figures

1.1 The diagnosis process of the Facebook app bug. 3

2.1 Triggering event of ABD issues. 15

3.1 A “Forgetting to release” resource leak bug [24] from Android
system . 21

3.2 A resource leak bug in the OpenStreetMap app where the GPS
is used in the wrong call-back functions. 22

3.3 A “Resource Leak” bug caused by ThreadLocal variables. 23
3.4 A “Resource Leak” bug caused by conditional errors. 23
3.5 A “Resource Leak” bug caused by mis-using resource manage-

ment primitives. 24
3.6 A patch that fixes a bug that may hold a wakelock for unneces-

sarily long. 26
3.7 High-level design of running Android apps on the Java Pathfinder

model checker. 29
3.8 Three ways to port native implementation of Android Framework. 29
3.9 Cumulative Distribution Function (CDF) of WakeLock holding

times. 33
3.10 Cumulative Distribution Function (CDF) of number of acquisi-

tions of WakeLock. 34
3.11 Cumulative Distribution Function (CDF) of GPS holding times. 34
3.12 A potential wakelock leak bug in Google Plus app on Android. . 35
3.13 A potential wakelock leak bug in Fruit Ninja app on Android. . . 35

4.1 Battery consumption rank of the Android Gallery app running
on a real user’s phone. 39

4.2 Phase behavior of the “gzip” app. 40
4.3 Battery consumption rank of the Android Gallery app running

on a real user’s phone. 40
4.4 The phase behavior of the Facebook App in a real user’s smart-

phone. 42
4.5 Overall architecture of eDoctor. 43
4.6 Phase analysis illustration. 49
4.7 Diagnosis results. 57
4.8 Energy consumption rank of the culript app. 58
4.9 Distribution of the number of apps. 58
4.10 Distribution of the number of events. 59
4.11 The cumulative distribution of number of phases across 1,890

apps we monitored on real user phones during the user study. . . 60
4.12 Anomaly detection (on-line) time breakdown per app. 61
4.13 Data analysis (off-line) time breakdown per app. 61
4.14 eDoctor’s battery consumption overhead for data collection. . . . 62
4.15 Applying PCA-based approach on the bug in the Facebook App. 65

x

1 Introduction

Smartphones have become pervasive. Gartner reports [56] that smartphones

accounted for 297 million (19%) of the 1.6 billion mobile phones sold in 2010

worldwide, a 72.1% growth compared to 2009. The momentum continued, as

Canalys reported [40] that 487.7 million smartphones were shipped in 2011

— marking the first time that smartphone sales overtook traditional personal

computers (including desktops, laptops and tablets).

Configured with more powerful hardware and more complex software, smart-

phones consume much more energy compared to feature phones (low-end cell

phones that provide limited functionality). Unfortunately, due to limited energy

density and battery size, the improvement pace of battery technology is much

slower compared to Moore’s Law in the silicon industry [90]. Thus, improving

battery utilization and extending battery life has become one of the foremost

challenges in the smartphone industry.

Fruitful work has been done to reduce energy consumption on smartphones

and other general mobile devices, such as energy consumption measurement [51,

54, 89, 98], modeling and profiling [61, 84, 98, 104], energy efficient hardware [67,

76], operating systems [50, 53, 57, 75, 93, 100, 101, 103], location services [55,

65, 72, 77], displays [48, 60] and networking [47, 49, 78, 92, 95]. Previous work

has achieved notable improvements in smartphone battery life, yet the focus

has primarily been on normal usage, i.e., where the energy used is needed for

normal operation.

In this thesis, we address an under-explored, yet emerging type of battery

problem on smartphones that complements existing work: Abnormal Battery

Drain (ABD).

1.1 Abnormal Battery Drain Issues

ABD refers to the abnormally fast draining of a smartphone’s battery that is

not caused by normal resource usage. From a user’s point of view, the device

previously had reasonable battery life under typical usage, but at some point the

battery unexpectedly started to drain faster than usual. As a result, whereas

users might comfortably and reliably use their phones for an entire day, with an

ABD problem their phones might unexpectedly exhaust their batteries within

hours.

ABD has become a real, emerging problem. When we randomly sampled

1

ID Category App/Sys Root Cause Resolution

(a)
App
Bugs

Facebook
The 1.3.0 release (Aug. 3rd,
2010) of this app contained a bug
that kept the phone awake.

Downgrade to the
previous version.

(b)
App
Bugs

Gallery

The user opened a corrupted
picture file in “Gallery”, which
caused the “mediaserver” pro-
cess to run into an abnormal
state and hog the processor.

Automatically ter-
minate the “medi-
aserver” the user uses
for the “Gallery”
app.

(c)
App
Config

WeatherBug

A configuration change made
“WeatherBug” check locations
and update weather information
more frequently. Heavier usage
of GPS causes the battery to
drain quickly.

Roll back the config-
uration changes.

(d)
App
Config

Android
Browser

The GPS was continually turned
on because the browser was
trying to find the location
of the user, as requested by
“google.com”.

Go to “google.com”
and disable “Allow
use of device loca-
tion”.

(e)
System
Bugs

Android
System

A bug in the Wi-Fi device driver
on Nexus One caused the phone
to repeatedly enter its suspend
state and immediately wake up,
resulting in severe battery drain.

The driver developer
has to modify their
code to fix the prob-
lem.

(f)
System
Config

Android
System

The user configured the CPU to
run at an unnecessarily high fre-
quency.

Roll back the config-
uration change.

(g)
Environ-
ment

Android
System

Containing several radiology de-
vices, the office building inter-
fered with cell signals.

Turn on Airplane
mode when in the
office.

Table 1.1: Representative ABD examples collected from Android forums.

537 real-world cases of user-reported battery-related issues on major Android

and iOS forums, we found that more than 90% of them were revealed to be

ABD, while only less than 10% were due to normal, heavier usage of resources

(for more specifics, refer to Section 2). Further, rather than being isolated cases,

many ABD incidents affected a significant number of users. For instance, the

“Facebook for Android” application (Table 1.1-a) had a bug that prevented

the phone from entering sleep mode, thus draining the battery in as rapidly as

2.5 hours. The estimated number of users for this application was more than

12,000,000 at that time [10], among whom a large portion were likely to have

been affected by this “battery bug”.

To make it even worse, ABD issues are difficult for regular smartphone users

to diagnose and resolve. The root causes are mysterious to most users. For

example, Figure 1.1 depicts the diagnosis process of the Facebook App bug

(Table 1.1-a).

When the users observe rapid battery drain, they first need to use some

2

Observe
battery drain

Use "Battery Usage" to find
out the "Facebook" app
consumes energy

Do I use
"Facebook" app

often?

Confused

Use "Spare Parts" to find
that "Facebook" app
misuses "wakelock"

Fix: Manually
terminate

"Facebook" app after
using it every time

Can I find the
package of the
previous version?

Can I stop using
"Facebook" app?

Stop using
"Facebook"

app

Install Android
debugger "adb" on

a computer

Fix: Install the
previous version

via "adb"

Yes No

Yes

No

No

Yes

Figure 1.1: The diagnosis process of the Facebook app bug.

tools to figure out which app causes the drain. “Battery Usage” is an utility

that comes with the Android system. It provides high-level information about

which app uses more battery. Once the users find the Facebook app is the

biggest energy consumer, there could be two scenarios: (1) if the user uses the

Facebook app very often, it is normal that the Facebook is the biggest energy

consumer; or (2) if the user does not use the Facebook app very often, this

information is useful for further diagnosis.

In the next step, users need to understand why the Facebook become a

big battery consumer. There are several ways of doing it, but they all require

relatively deep knowledge about smartphone systems. For example, users could

use a development tool, called “Spare Parts” to further zoom into the battery

consuming information. From there, they can find out the reason is that the

3

Facebook app keeps the phone awake for a long time. In the meantime, the user

needs to have the upgrade history in order to decide this symptom only appears

with the version 1.3.0. All these information adds up, the user can decide there

could probably be a bug in 1.3.0.

As the last step, the user needs to figure out how to fix it. If the user already

knows the problem is caused by an upgrade to 1.3.0, she could try to revert it

to a previous version, Unfortunately, reverting an app to its previous versions

is not supported on Android. However, if the user somehow has access to the

old version of the Facebook app, she can use a development tool, called “adb”,

to install an old version.

Of course the user could also just delete the Facebook app, if she does not

need it. However, most users still want to use the app. If they cannot revert

it to a non-buggy version, they will have to manually terminate the Facebook

app every time they use it, which is very tedious and troublesome for most

smartphone users.

To sum up, in order to diagnose and resolve the Facebook app’s issue of

draining battery, the user will need to use three tools, understand how battery

works and how Android manages battery, and have access to an old version of

the Facebook app. Apparently this is not feasible to regular smartphone users.

1.2 A Paradigm Shift in Smartphone Industry

The emerging pervasiveness of ABD issues is a collateral consequence of an

evolutionary change in the smartphone industry. In the last few years, a new

ecosystem has emerged among device manufacturers, system software archi-

tects, application developers, and wireless service carriers. This paradigm shift

includes three aspects:

(1) The number of third-party smartphone applications (or “apps” for short)

has grown tremendously, but their developers can lack sufficient training to be

battery-conscious.

A few years ago, smartphones such as BlackBerry ran only applications

developed by the smartphone manufacturers themselves, whose developers typ-

ically have the appropriate training as well as development and testing infras-

tructures specifically for mobile devices. In contrast, today’s smartphone apps

are often developed by third-party or individual developers, and thus the num-

ber of apps has grown rapidly: the Android app store has more than 500,000

apps [20] and more than 20 billion downloads [13], and the iOS app store has

more than 650,000 apps and more than 30 billion downloads [46]. However,

many of these developers tend to focus on features and interfaces, on which app

download/purchase decisions are often made. Moreover, most apps are sold for

low prices or given away for free, so developers usually cannot afford comprehen-

sive mobile testing utilities and infrastructure. As third-party apps proliferate,

battery issues are therefore bound to become more pervasive.

4

(2) The hardware/software configurations and external environments of smart-

phones have become diverse.

A modern smartphone involves various hardware manufactures, software

vendors, wireless network carriers and a lot of app developers, making it diffi-

cult to effectively test battery usage under all circumstances. As a result, many

battery-related software bugs escape testing. A real-world example is given in

Table 1.1-e, in which an Android upgrade caused serious battery drain on Nexus

One phones. Users reported battery drain in as little as four hours. It took the

Android team 40 days to find the culprit — a bug in the Wi-Fi device driver.

It manifests only on certain devices.

(3) Smartphone users become diverse and most users are not technique savvy

usres.

More and more consumers adopt smartphones, however, most users are not

good at manage such complex devices. Battery issues are especially difficult, as

they often require deep knowledge of smartphone systems to diagnse.

(4) In addition to software defects (real-world examples shown as Table 1.1-

a,b,d,e), ABD issues can also be caused by configuration changes (e.g., Table 1.1-

c, f) or environmental conditions (e.g., Table 1.1-g). In many of such cases, their

root causes are not obvious to ordinary users. Therefore it would be beneficial

if the smartphone system itself could automatically diagnose ABD issues for

users.

Different from laptops, whose software may also have battery-related bugs,

smartphones need to be on continuously to receive incoming phone calls or text

messages until they are recharged at the end of the day. This characteristic

makes the impact of ABD issues much more pronounced for smartphones than

for laptops. In addition, users may be more careless when downloading and

using smartphone apps because smartphone apps have broader use scenarios

but each has limited functionality.

1.3 Contribution

In this thesis, we made three major contributions to solve abnormal battery

drain issues on smartphones.

1.3.1 Characteristic Study of Battery Issues on

Smartphones

To address this emerging problem, it is important to first understand the char-

acteristics of ABD defects in the real world. Although we have seen anecdotal

examples, there are many questions left unanswered. What types of defects

are there? How are they distributed in terms of root causes? What are good

practices to avoid such defects?

5

To answer these questions, we first conducted an empirical study of 537 real-

world user-reported battery drain issues sampled from five major smartphone

forums (Section 2.1). They covered the two most popular mobile platforms,

Android and iOS. We developed a taxonomy for these battery drain issues, and

identified their distribtuion in the real world. We found that software problems

accounted for a significant portion of the battery drain issues (39.2% on Android,

35.1% on iOS) compared to other root causes.

1.3.2 Characteristic Study of Software Bugs That Cause

Abnormal Battery Drain

As software problems accounted for a significant portion of the battery drain

issues (39.2% on Android, 35.1% on iOS) compared to other root causes, it would

thus be beneficial to more thoroughly understand software problems that could

cause battery drain. This motivated us to study 117 battery-related software

problems in the Android operating system (with about four years of development

history) and 29 popular open source Android apps. From them, we characterized

common mistakes programmers make that could lead to battery drain.

We found that the examined energy problems can be classified into two

simple patterns: resource leaks (40.2%) and resource overuse (59.8%). Resource

leaks represent failures in releasing energy-consuming resources (e.g., wakelock,

display, GPS, sensor, etc). However, we found that only a relatively small

portion of them (11.1%) followed the traditional pattern of missing release calls

in certain code paths. Many mistakes were made because of the event-driven

programming model on smartphones, which makes automatic bug detection a

challenge.

To provide implications for future research in this direction, we further ex-

amined what extra information (in addition to the static source code itself)

would be required for possible detection. We found that over half (55.3%) of

resource leaks need call patterns of event handlers to identify. Furthermore, a

large portion (40%) requires call patterns of app-specific event handlers.

Besides resource leaks, 59.8% of the studied cases were mistakes of overus-

ing resources. These mistakes are even more difficult to detect automatically

because most of them are specific to certain apps. Resource usage profiling may

be of great help in this regard, so we examined what kind of profiling infor-

mation would be needed for automatic detection and what their distribution

was. Based on the results, we provide practical implications for system and app

developers.

6

1.3.3 eDoctor: Automatically Diagnosing Abnormal

Battery Drain Issues on Smartphones

We designed and implemented eDoctor, a practical tool to help users trou-

bleshoot ABD issues on smartphones. eDoctor runs as a light-weight service on

a smartphone to record resource usage and relevant events. It then uses this

information to diagnose ABD issues and suggest resolutions. To be practical,

eDoctor meets several objectives, including (1) low monitoring overhead (in-

cluding both performance and battery usage), (2) high diagnosis accuracy and

(3) little human involvement.

In order to identify abnormal app behavior, eDoctor borrows a concept,

called “phases”, from previous work in the architecture community for reducing

hardware simulation time [59, 62, 68, 88, 96, 97]. eDoctor uses phases to capture

an app’s time-varying behavior in terms of resource usage. It then identifies apps

that have significant phase behavior changes, and these apps become suspects

for the ABD issue being diagnosed.

Unlike prior simulation work that uses the heavy-weight instruction-level

methods, e.g., basic block vector (BBV), to classify phases, eDoctor leverages

the unique multi-resource (GPS, display, sensors, network, etc.) characteristic

of smartphones and proposes two new methods to identify phases, Resource

Type Vector (RTV) and Resource Usage Vector (RUV). These methods are

better than BBV at capturing phases in terms of resource usage, and they keep

eDoctor’s power and performance overhead low.

Our experimental results with real smartphone apps and real users show that

our captured phases are stable across time and different users. Interestingly,

most smartphone apps have only a limited number of common phases (details

in Section 4.4.1), further aiding ABD diagnosis.

In addition to using app resource usage to capture phases, eDoctor also

records events such as installing new apps, app upgrades, configuration changes,

etc. eDoctor uses this information in combination with anomaly detection to

pinpoint the culprit app and the causing event, as well as to suggest the best

repair solution.

To evaluate eDoctor, we conducted a relatively comprehensive set of exper-

iments including both a controlled user study and in-lab experiments.

User Study

We solicited 31 Android device users with various vendors, hardware and soft-

ware configurations, and usage patterns, and randomly installed on their own

smartphones some popular Android apps with real-world ABD issues. These

issues were introduced by the original developers, not by us. They cover a

wide spectrum of possible ABD issues and various categories of apps, including

apps from 12 out of 27 categories on Google Play (previously known as Android

Market). Participants ran eDoctor for 7–10 days. From the study, we collected

7

6,274 hours of resource usage data in total, mixed with normal and abnormal

battery usage. eDoctor could successfully diagnose 47 out of 50 cases (94%).

In-lab Experiments

We also measured the overhead of eDoctor in terms of its energy consumption,

storage consumption and memory footprint. We used a high-precision power

measurement board to measure the overall power consumption of a Nexus One

smartphone with and without running eDoctor. The result shows that running

eDoctor adds only 1.24 mW of power overhead.

8

2 Characteristic Study on
Smartphone Battery Issues

To gain a better understanding of battery issues that bothered smartphone

users, we manually examined user complaints about battery drain and their

threaded discussions on major smartphone forums. The reason we chose to

study user-reported issues is that these issues are troublesome to users and

users cannot resolve them so they had to ask for help on forums.

The goal of this study is to understand what smartphone users complain

about battery life. Do users mostly complain about smartphones battery life is

shorter compared to feature phones (cell phones that are primarily for making

calls and sending SMS messages)? How short battery life could be until it starts

bothering users? What are the root causes of battery drain? How do users solve

battery drain issues?

2.1 Methodology

2.1.1 Data Sources

According to ComScore’s report (August 2011) [8], Android and iOS are the

most widely adopted platforms for smartphones, altogether taking about 70%

of the market share. Therefore, we chose to study issues from these two plat-

forms. Specifically, we collected issues from three major forums for Android: the

Android Central forum [5], the Droid Forum [9], and the Android Forum [6].

For iOS, we studied issues from two major forums: Apple’s official support

forum [7], and the MacRumor forum [19].

2.1.2 Sampling Method

Each of these forums contained thousands of battery drain issues; manually

going through every issue is prohibitively expensive. Thus, we used a sampling

methodology as follows for each forum.

2.1.3 Determining Sample Size (K)

In statistics, sample size directly depends on total population. Due to the

unstructured textual format in our data sources, the total population of battery

drain issues could not be exactly measured. We thus estimated it as follows.

We first crawled the subjects and URLs of all threads in the forum (about

9

hundreds of thousands). Then we randomly selected 500 threads to manually

digest in order to determine how many of them were actually about battery drain

problems. Based on the obtained ratio, we could estimate the total population

of battery drain issues in each forum. We then determined the appropriate

sampling size to ensure the statistical significance [63] of the overall results for

each plaltform.

Selecting Samples

We used Google’s site-restricted search to find threads with relevant keywords

(e.g., “battery”, “drain”, etc.) for each forum. We then sifted through the re-

sults to find the top K threads (K was the sample size) that were truly about

battery drain. More often than not, we found that threads containing the key-

word “battery” involved various other matters, e.g., repliers suggesting pulling

out battery to resolve certain software misbehavior, or users describing that

their battery becoming too warm. Google’s search was used here rather than

random sampling because it priortized issues/threads that were more relevant,

more recent, and likely more searched (pervasive).

For each selected thread, we checked whether it was a resolved case based

on the follow-up messages of the victim user. This helped us in conducting root

cause analysis (Section 2.2).

Table 2.1 shows the sampling details. The second column shows the number

of battery related issues on each forum. This number is estimated by samping.

The third column shows the number of issues we randomly sampled from each

forum. These issues are battery drain related. The last column shows the

number of resolved issues from each forum. The statistic data in the rest of the

this chapter are calculated based on resolved issues.

2.1.4 Issue Analysis

We finally identified a total of 537 battery drain issues from the five forums.

For each issue, we carefully examined its threaded discussions, corresponding

app/system, similar problems reported by other users, and related news reports

about the issue if any, all of which together provide us a relatively thorough

understanding of its root cause and solution.

We have released the complete dataset at [21]. For each case, it includes the

basic information (e.g., post URL, symptoms, successful solutions found, phone

model, etc.) as well as our analysis result (e.g., type of solutions and root causes

if any).

2.1.5 Threats to Validity and Limitations

Real-world characteristic studies are all subject to a validity problem. Potential

threats to the validity of our characteristic study are follows.

10

Numb of Number of Number of

Forums Battery Sampled Resolved

Issues Issues Issues

Android

Android Central 2051 90 71

Android Forum 2856 74 71

Droid Forum 2231 75 72

iOS

Apple Support 2840 198 101

MacRumor Forum 1442 106 62

Total 11420 543 377

Table 2.1: User-reported battery issues dataset.

Limitations in Data Sources

First, we were not able to investigate battery drain issues on all existing mobile

platforms. We chose to focus on two most widely used smartphone platforms

that altogether had about 70% market share in 2011. Second, for the two

platforms we selected five largest public forums as our data sources. Users may

have reported issues elsewhere, but we considered our sources to be generally

representative because of their size and popularity. Another limitation of our

data sources is that they only contained user-reported cases. Clearly, not all

battery drain issues were reported. However, we considered the reported issues

to be potentially more severe, bothersome, and challenging for users, which

arguably demand more research.

Limitations in Data Samples

We did not exhaustively examine all issues that existed. There were approxi-

mately over 11,000 battery drain issues on the five selected forums. Therefore,

we used a sampling approach. As shown in Table 2.1, our sample ratios were

statistically significant, and our datasets were large enough to be statistically

meaningful [64].

Limitations in Manual Classification

Due to the unstructured textual format of battery drain reports, we performed

all analysis manually. Almost all manual classification suffers from different

degrees of subjective bias. But we made our best efforts to minimize such

bias by using cross verification of at least two researchers who had previous

experience in studying system defects.

We believe that these limitations do not invalidate our results. At the same

time, we urge the reader to focus on overall trends and not on precise numbers.

11

Root Causes Android iOS

Software Defects
System 22.2% 32.8%

Apps 17.0% 2.3%

Misconfigurations
System 11.8% 7.5%

Apps 5.2% 4.0%

Environmental Conditions 6.1% 4.6%

Normal Use 6.6% 4.0%

Hardware Defects 3.3% 5.8%

Other 2.4% 2.9%

Unknown Cause 25.5% 35.1%

Total 100% 100%

Table 2.2: Root causes of user-reported battery drain issues.

We hope that the limitations of our methodology would inspire techniques and

processes that can be used to record user reported battery issues more rigorously

and with more detailed information.

2.2 What Causes Battery Drain on

Smartphones?

Sifting through the 537 sampled issues, we found that 387 of them had an

indication that the issue was eventually resolved. For the remaining 150 issues,

either the user did not come back to report the end result, or no solution was

ever found. We categorized the root causes of the resolved 387 issues into seven

categories as shown in Table 2.2.

Finding 1: Only a small number of user reported issues (4.0% on Android,

6.6% on iOS) are caused by normal yet heavy usage of the phone, e.g., users

running energy-consuming apps as intended for a long period of time.

We found that smartphone users rarely complained about battery drain

caused by normal usage. We speculate the reason is that users accept the

fact that smartphones offer a rich set of features at the price of shorter battery

life compared to feature phones.

Over 90% of battery complaints were revealed to be abnormal battery drain

issues that were unexpected, severe (e.g., emptying battery in a couple of hours),

and mysterious. They significantly affected user experience. Most such abnor-

mal battery drain cases were related to software problems.

12

2.2.1 Software Problems

We use “software problems” to refer to bugs, defects, or simply energy-inefficient

designs in smartphone apps and systems that cause abnormal battery drain.

App problems are attributed to a particular app, while system problems can

occur in the OS, frameworks (e.g., the Android framework), and system services

(e.g., data synchronization and notification push).

Finding 2: Software problems are a significant cause for battery drain (39.2%

on Android, 35.1% on iOS). In particular, system software problems account

for the most significant portion of the complaints (22.2% on Android, 32.8% on

iOS).

One may think that system software are often well developed, tested, and

maintained. But unfortunately, they still cause battery issues. Several recent

major updates to Android and iOS have severe energy drain: the Gingerbread

upgrade [14], the HTC EVO 4G firmware bug [41], and the iOS 5.0 upgrade [15].

The prominence of system energy problems highlights the challenges in

avoiding and testing energy problems in software development. Once shipped,

system problems could significantly degrade user experience and affect vendor

reputation. This is because (1) with a system-wide impact on all involved apps,

system problems often cause severe battery drain, and (2) unlike app-specific

problems for which users can kill or replace the problematic app with alterna-

tives, system problems are difficult if not impossible to avoid.

Finding 3: App problems are more prominent on Android (17.0%) than on

iOS (2.3%).

Android and iOS differ in many ways, but one of the most noteworthy differ-

ence, energy-wise, is their distinguishing policies on background-running apps.

Android offers great flexibility as it allows apps to run in the background in-

definitely with the acquisition of “wakelocks”, while accessing all resources as

foreground apps do [1]. In comparison, iOS is much more restricted, as it only

allows certain kinds of apps to run indefinitely in the background such as audio

playing and Voice-over-IP [16]. Further, it only allows a background-running

app to access arbitrary resources in a given short period of time. Clearly, the

flexibility offered by Android comes at a price of increased vulnerability to re-

source leak and overuse defects.

Overall, the dominance of energy-related software problems underscores the

need to investigate their patterns in greater detail in order to provide useful

implications for prevention and detection techniques. This motivated us to

conduct a more thorough study specifically on software energy problems. We

present our results in Chapter 3.

13

2.2.2 Configuration Changes

Without sufficient knowledge of how a configuration can impact battery life,

users may unknowingly make improper changes that lead to high battery drain.

In our study, we found that such lack of awareness was high.

Finding 4: Configuration changes account for many battery drain complaints

(17.0% on Android, 11.5% on iOS), including both system-level (11.8% on An-

droid, 7.5% on iOS) and app-level configurations (5.2% on Android, 4.0% on

iOS).

System-wide configuration changes usually have a higher impact than app-

specific configuration changes, because they may affect multiple apps at the

same time. Common examples include using high speed networks (e.g., 4G

network [2]), enabling background data transmission [42], turning on GPS [45] or

bluetooth [44], extending screen time-out, increasing LCD brightness, increasing

CPU frequency, etc.

App-specific configuration changes involving energy consumption are more

diverse. Common types include enabling data sync or background updates

(e.g., Facebook [17], Gallery [12]), increasing frequency of periodic updates (e.g.,

email [11]), adding workload (e.g., more email accounts [3]), demanding better

performance (e.g., faster execution or high accuracy of results), etc.

This indicates that developers, especially system developers, should be cau-

tious when providing configuration flexibility that could possibly compromise

battery life. When such configuration parameters are being modified, the system

should explicitly inform the user about possible consequences.

2.2.3 Other Causes

Hardware defects (including failed batteries, defective sensors, and malfunction-

ing chargers, etc.) account for less than 6% of battery drain issues on both

Android and iOS, indicating that most issues can be resolved or at least al-

leviated in software. Environmental conditions: Besides internal triggers on

the phone itself, external environments (e.g., weak radio, Wi-Fi, GPS signal,

network type [89], handover oscillation) cause battery drain as well (6.1% on

Android, 4.6% on iOS). Uncommon: A small number of issues have less common

causes (2.4% on Android, 2.9% on iOS). For example, a power user accidentally

terminated a critical system process that managed battery charging. Unkonwn:

A large number of the issues have undetermined causes (25.5% on Android,

35.1% on iOS). Mostly, the battery drain stopped after system reboot or reset,

but the exact cause remained unknown. This highlights the unique challenges

as well as opportunities for automatic diagnosis tools that can pinpoint the root

cause of battery drain and possibly resolve the issue for users.

This characteristic study reveals that software problems are the dominant

cause of user complaints about battery life (39.2% on Android, 35.1% on iOS).

14

It would be beneficial to dig deeper and understand their characteristics. Unfor-

tunately, discussions posted by smartphone users do not contain enough details

on the exact bug or inefficiency defect in the code. Thus, we conducted another

empirical study to specifically characterize common mistakes programmers make

regarding energy use (we refer to them as “energy mistakes”).

2.3 Triggering Events

From the study, we find that ABD issues happen after certain events by the

user, e.g., installing a buggy app, upgrading an existing app to a buggy version,

changing configurations to be more energy-consuming, entering a weak signal

area, etc. Figure 2.1 illustrates the time line of an ABD issue taking place.

Trigger Event
Take Place

Battery
Drains Fast

Time

Battery
Is Normal

Figure 2.1: Triggering event of ABD issues.

Different triggering events requires different solutions. Simply removing an

app is not always ideal. Interestingly, we also find that in more than 60% of

the cases, users do not even know the triggering event when the battery drain

takes place. In those cases, diagnosing and fixing battery drain becomes even

more difficult. Keep in mind that most users who post questions on forums

are already tech-savvy users, but they are still puzzled with the root cause of

battery drain. It is critical yet challenging for eDoctor to accurately identify the

events that cause the battery drain from many other irrelevant events. Only if

eDoctor finds the culprit event, it can suggest suitable solutions to users.

Table 2.3 lists the triggering events of the ABD issues in our study. We also

calcuate the percentage of each event and the ideal resolution.

Notice that the percentage is calculated based on cases where users know

about the events that trigger battery drain, which are only 40% of the total

cases we examined. We speculate the remaining 60% of the cases have similar

distribution of triggering events.

2.4 Multitasking in Android and iOS

Root causes of battery drain issues have some different characteristics between

the two platform we study, Android and iOS. The most significant difference is

that iOS has lower ratio of app defects 4.0%, compared to Android where 16.5%

15

Events Percentage Ideal Solution

App Installation 32.5% Remove app

App Upgrade 13.3% Revert to previous version

Configuration change 18.1% Adjust configuration

Environmental change 14.4% Adjust configuration

Other 21.7% Other

Table 2.3: Triggering events and ideal solution of ABD issues.

of the issues are caused by app defects. The reason is that these two platforms

have different strategies of running applications in background.

Allowing applications to run in the background provides great flexibility on

functionalities, but if many applications run in the background, they may keep

the device busy for a long period of time and thus drain battery fast. The

situation could become even worse if background applications perform energy

intensive tasks, such as querying location information. Android and iOS take

different strategies to handle background tasks.

Android

Android gives great flexibility to applications running in the background.

They can access all the resources that the foreground application have access to

and they can run for long period of time by acquiring wakelocks.

iOS

iOS also allows applications to run in background, but it puts restritions on

what they can do. Applications can only do five types of tasks in the background

for long period of time:

• Play audio content

• Keep users informed of their location

• Voice over IP - receive phone calls via Internet

• Download newspaper or magazine as a Newsstand app

• Receive periodical updates from external accessories, such as a heartbeat

monitor

Apps that implement any these services should explicitly declare the services

they support, so the system will prevent apps from being suspended. As we can

see, there are many things that background apps cannot do, such as reading

data from sensors.

Applications can also execute arbitrary code in background, but they only

have a short period of time (e.g., 10 minutes) to finish the work. Developers

also need to explicitly implement the code running in background in a special

16

way. The system provides API for developers to query how much time left to

execute this code and provides a callback function to be called when the time

is close to be used up.

Finding 5: Allowing apps to run in background brings a trade-off between

flexibility and vulnerability of battery drain issues.Android allows background

apps to have access to most resources, which provides flexibility on what an app

can do; but in the meanwhile, it puts high pressure on battery if many apps run

in background and it is more vulnerable to resource leak bugs. On the other hand,

iOS has restritions on what an app can do in background. It is less flexible, but

it prevents some types of battery related issues.

17

3 Characteristic Study on
Software Bugs That Cause
Battery Issues
To gain a better understanding of battery issues that bothered smartphone

users, we manually examined user complaints about battery drain and their

threaded discussions on major smartphone forums.

3.1 Methodology

Specifically, we studied the Android Open Source Project (with about four years

of development history) and 29 open-source Android apps. Table 3.1 lists our

data sources. As shown, we selected apps that covered a variety of categories

(e.g., gallery, email client, route tracking), because different types of apps may

involve different patterns of energy use. Additionally, we considered only mature

apps that had a massive number of users so as to avoid unrepresentative defects

in toy programs. For each selected project, we looked into its source code control

systems and used keyword search to find commits about energy problems. Since

these projects contained thousands of commits, in order to effectively collect en-

ergy problems from them, we used a large set of keywords such as “battery”,

“warm”, “energy”, “power”, “wakelock(s)”, “GPS”, “sensor(s)”, “drain”, “ac-

celerometer”, “background”, “screen”, and their variations. We then manually

examined the search results, and identified 117 true energy problems to further

study.

3.1.1 Limitations

Similar to the previous study, this study has several limitations as well: (1) Data

sources. We were unable to cover all open-source apps and systems; however,

we believe that our sources are representative because the projects we selected

covered most of the categories of Android apps, and we only selected mature

apps that had a significant number of users. (2) Data types. The bugs we

selected were the ones that had been found and fixed by developers, so we

missed issues that were unidentified. We chose to focus on fixed defects for their

reliability, because open bugs reported by users may not necessarily be actual

energy defects, and may generally be of less priority. Further, we examined 117

issues from 29 apps and the Android operating system, which we believe have

covered most representative patterns of common mistakes.

18

Sources Category Description Users

System

Android System Android system 400M+

Apps

Android Mail Communication Email client Stock

K9Mail Communication Email client 1M+

CSipSimple Communication VoIP app 500K+

Linphone Communication SoIP phone 100K+

Talking Dialer Communication Easy dialer 50K+

Ushahidi Communication Information map 5K+

ConnectBot Communication SSH client 1M+

Anki-Android Education Flash card 100K+

OpenSudoku Game Puzzle 1M+

MyTracks Health Route tracking 5M+

Gallery Media 3D gallery Stock

VLC Remote Media Remote control 10K+

MythDroid Media MyTV remote 3K+

SongBook Music Music management 1K+

Standup Timer Productivity Timer 1K+

NanoTweet Social Twitter client 10K+

Desk Clock Tools Default clock Stock

Torch Tools Torch tool Stock

SMS Popup Tools Messaging 1M+

Marine Compass Tools Compass 100K+

Wifi Fixer Tools System ultility 100K+

Eyes-Free Shell Tools Assistive access 10k+

Mixare Tools Argumented reality 10K+

Nice Compass Tools Compass 1K+

OpenGPS Tracker Travel Route tracking 100K+

BostonBusMap Travel Bus tracking 50K+

OpenStreetMap Travel Map viewer 5K+

GPSMid Travel Vector-based map 150K

funf Open Sensing Research Sensor framework 500

Table 3.1: System and apps we collected energy bugs from.

3.2 Overview

The examined energy problems can be classified into two simple patterns: re-

source leak (40.2%) and resource overuse (59.8%). Resource leak characterizes

mistakes that programmers make in releasing a resource (e.g., missing code

paths, mis-using resource management primitives). Resource overuse, on the

other hand, characterizes mistakes in using a resource.

19

Type Percentage

Resource Leak 40.2%

Forgetting to release completely or partially 11.1%

Releasing at wrong places 6.0%

Misreleasing in multi-threaded processes 4.3%

Misusing resource management primitives 5.1%

Condition(s) for release unsatisfied 7.7%

Miscellaneous 10.3%

Resource Overuse 59.8%

Holding resources longer than needed 29.9%

Using high- instead of low-power abstractions or modes 11.1%

Running jobs more frequently than needed 5.1%

Waking up the phone when not needed 7.7%

Miscellaneous 5.1%

Total 100.00%

Table 3.2: Common energy mistakes programmers make.

3.2.1 Resource Leaks (40.2%)

Resource leaks, i.e., failure to release resources (such as wakelock, GPS, and

sensors), account for 40.2% of energy defects. When programmers forget to

release resources, the device will keep consuming energy without committing

meaningful work. The reason why resource leak mistakes are pervasive is two-

fold.

First, the current programming model for resource use on smartphones is

error-prone. Programmers have to explicitly release resources after use, while

acquisition and release could be far away from each other. This is further

complicated by the event-driven programming model on smartphones, where

resource management is implemented in call-back functions.

Second, resource leak defects do not have immediate symptoms, making

them more difficult to test and debug. In order to capture them during devel-

opment process, developers need to pay significant amount of time to monitor

battery usage in various scenarios. Moreover, as we mentioned before, because

app purchase is determined by functionality and user interface, developers have

little incentive to pay such amount of manual effort to avoid resource leak de-

fects.

We found several common patterns of resource leak mistakes on smart-

phones.

Forgetting to release (11.1%). Programmers may acquire a resource but

completely forget to release it throughout the code. This type of bugs accounts

for only 3.4% of all energy mistakes. In other cases, developers remember to

20

release a resource in certain code paths but miss other paths (e.g., error condi-

tions, exceptions). [24] (Figure 3.1) is an example of such type of bugs from the

Android system. This type of bugs accounts for 7.7% of all energy mistakes.

In the buggy code, there are places where exceptional situation takes place and

the system exits the function immediately. However, the correct behavior is

to release wakelock first. So the fix is to add error handling code to release

wakelock.

 int msm_rpc_call_reply(struct msm_rpc_endpoint *ept, ...) {
 wake_lock(&ept->read_q_wake_lock);
 rc = msm_rpc_write(ept, ...);
 if (rc < 0)
- return rc;
+ goto error;
 for (;;) {
 rc = msm_rpc_read(ept, ...);
 if (rc < 0)
- return rc;
+ goto error;
 ...
 }
 ...
+error:
+ ept->flags &= ~MSM_RPC_ENABLE_RECEIVE;
+ wake_unlock(&ept->read_q_wake_lock);
 return rc;
 }

When errors take place,

i.e. rc is less than 0,

direct return will cause

wakelock not to be

released

Figure 3.1: A “Forgetting to release” resource leak bug [24] from Android system

Releasing at wrong places (6.0%). Because of the event-driven program-

ming model, smartphone frameworks let developers implement call-back func-

tions to handle user interaction and system events. It is not uncommon for pro-

grammers to place resource management into wrong call-back functions, which

may cause battery issues. The bug in Figure 3.2 from the OpenStreetMap app

is such an example.

The left-hand-side part of Figure 3.2 shows the life cycles of actitivies in An-

droid. When an activiy starts, three functions are called, onCreate(), onStart()

(omitted for simplicity) and onResume(). When the user closes this acitivty,

onPause() is called. When the user opens this acitivity again, onResume() is

called to continue this acitivty. So the right places to start and end GPS is

onResume() and onPause() respectively. By doing that, the GPS will not con-

tinue working even when the user closes the acitivity. However, the buggy code

starts GPS in onCreate() and closes GPS in onDestroy(), which will not be

invoked until the system runs out of memory and the system starts killing back-

ground processes. Obviously, this leads to unneccessary GPS usage even if the

user closes the app. Since GPS is very energy intensive, leaving it on for a

couple hours will drain a battery completely.

21

Simplified Android App

Life Cycle

 public class MapActivity {

 public void onCreate(...) {
 ...
- registerLocationListener();
 }

 public void onResume(...) {
 ...
+ registerLocationListener();
 }

 public void onPause(...) {
 ...
+ registerLocationListener();
 }

 public void onDestroy(...) {
 ...
- removeLocationListener();
 }

 }

Start

Stop

onCreate()

onResume()

onPause()

Running

onDestroy()

Paused

User Closes App

User

Starts

App

Again

System Kills App

Figure 3.2: A resource leak bug in the OpenStreetMap app where the GPS is
used in the wrong call-back functions.

Mis-releasing in multi-threaded processes (4.3%). Concurrency pro-

gramming mistakes also lead to resource leak problems. For example, Figure 3.3

shows a concurrency programming bug [70] in K9Mail (one of the most popu-

lar email clients on Android) that causes energy issues. In the buggy version,

class PullReceiver uses a wakelock to keep the phone awake, but it is declared

as a ThreadLocal object, which means that a thread will always see the same

instance of a wakelock in the same instance of the class PullReceiver. When

class ImapFolderPuller uses receivers, its handleAsyncResponse() callback

function may acquire or release a wakelock through a PullReceiver instance.

However, they could occur in different threads, depending on which thread is

scheduled to handle asynchronized responses. If the thread that releases the

wakelock is different from the one that acquires it, it will not release the cor-

rect wakelock, causing energy drain. Concurrency bugs such as data races and

deadlocks also account for battery drain problems.

Condition(s) for release unsatisfied (7.7%). In some cases, programmers

invoke resource-releasing functions under certain conditions, while such condi-

tion may never be satisfied. An example is the bug [94] (Figure 3.4). The

process acquires a wakelock when the remaining battery capacity (raw soc)

drops below a threshold, and it only releases this wakelock when the capacity

grows back to the exact threshold. However, in reality, the capacity may skip

the threshold, which will cause the wakelock to not be released. The fix is to

change the condition “==” on line 4 to “>=”, i.e. to release the wakelock when

22

 public class PullReceiver {
- ThreadLocal<WakeLock> tWakeLock =
- new ThreadLocal<WakeLock>();
+ Wakelock wakelock;
 public void aquire () {
- wakelock = tWakeLock.get();
 wakelock.aquire();
 }
 public void release () {
- wakeLock = tWakeLock.get();
 wakelock.release();
 }
 }

 public class ImapFolderPuller {
 PullReceiver mReceiver;
 public void handleAsyncResponse() {
 if (response is type A) {
 mReceiver.acquire();
 } else if (response is type B) {
 mReceiver.release();
 }
 }
 }

 These two calls could be made in
different threads. Since
PullReceiver makes wakelock as

thread-local, some wakelocks will be
hold for long time.

Figure 3.3: A “Resource Leak” bug caused by ThreadLocal variables.

the capacity is equivalent or greater than the threshold.

 static void max17042_work(...) {
 if (raw_soc < alert_soc) {
 wake_lock(&alert_wake_lock);
- } else if (raw_soc == alert_soc) {
+ } else if (raw_soc >= alert_soc) {
 wake_unlock(&alert_wake_lock);
 }
 }

 It only releases the wakelock when
the capacity grows back to exactly
the threshold, so if the capacity skips
the threshold the wakelock won't be
released.

Figure 3.4: A “Resource Leak” bug caused by conditional errors.

Mis-using resource management primitives (5.1%). Some resource man-

agement primitives have deep-level details. If developers are not well aware

of them, mistakes are prone to ensue. E.g., wakelock is by default reference-

counted in the Android system, and Figure 3.5 shows a bug [58] from the Torch

23

app that acquires a wakelock for multiple times but only releases it once, re-

sulting in a resource leak.

 public class FlashDevice {
 private WakeLock mWakeLock;
 public void setFlashMode() {
 if (value == OFF) {
 if (mWakeLock.isHeld()) {
 mWakeLock.release();
 }
 } else {
- mWakeLock.acquire();
+ if (!mWakeLock.isHeld()){
+ mWakeLock.acquire();
+ }
 }
 }
 }

acquire() could be called in a
loop and it will cause the wakelock
not being released, because
wakelock is implemented with a
reference-based approach.

Figure 3.5: A “Resource Leak” bug caused by mis-using resource management
primitives.

Miscellaneous (10.3%) There are also other miscellaneous mistakes of re-

source leaks, e.g., the reference to resource objects being overwritten, thus caus-

ing a memory leak.

Discussions. The above types of mistakes lead to bugs that are similar to tra-

ditional memory leaks. While existing analysis techniques may be leveraged

for detection, the event-driven programming model on smartphones makes it a

challenge. Under the event-driven model, the execution order of functions de-

pends on external events (e.g. user touch). Pathak et al. [87] studied “no-sleep

bugs” and attempted to use data flow analysis for detection. They tried to

overcome the challenge of event-driven programming model by manually spec-

ifying the calling order of call-back functions in Android framework. However,

the coverage was limited because developers often implement their own app-

specific call-back functions. Concurrency programming and event-driven nature

of smartphone apps introduces challenges to both developers and tool makers.

Being familiar with the framework is critical to manage resource in the right

call-back functions. Developers should also understand resource management

primitives well and use them with caution.

24

3.2.2 Resource Overuse (59.8%)

In some sense, resource leak represents mistakes in releasing a resource. Re-

source overuse, on the other hand, represents mistakes in using a resource. The

latter accounts for 59.8% of energy mistakes examined.

Resource Overuse bugs cause devices to keep running for longer than nec-

essary. Similar to resource leak bugs, this type of bugs do not have immediate

symptoms, so they often escape from testing. Different from resource leak bugs,

this type of bugs have very diverse patterns, which makes it more difficult to

detect or debug. Usually fix of these bugs is to release acquired resources more

aggressively to preserve battery. We summarized common patterns of this type

of bugs.

Holding resources longer than needed (29.9%). This is the most common

type of energy mistakes programmers make. There are several cases of such

overuse mistakes.

The first case is that resources are held after tasks are finished or interrupted.

E.g., the Android system had a bug [35] that keeps sockets alive after commu-

nication finishes. Another bug [38] keeps Wi-Fi on when no Wi-Fi connection

exists. Normally WiFi will be on for a certain amount of time (e.g., 15 minutes)

after the screen is turned off, but if there is no connection, WiFi can be turned

immediately to save power. Bug [32] wastes energy by not releasing a wakelock

after exceptions occur.

The second case is that a task continues to run after user stops interacting

with the phone. E.g., when a user turns off screen, there may be some tasks

that are not finished yet. If the result of these tasks will not be delivered to the

user, the system or app should preemptively pause or cancel these tasks. For

example, a bug [27] in the Android browser keeps rendering web pages even if

the browser is switched off. It wastes energy in rendering large web pages or

running problematic javascripts.

In the third case, resources are held wastefully during a long wait, such as

in synchronization or completion of tasks. Figure 3.6 shows a bug that holds a

wakelock while waiting for a synchronization lock which may take a long time.

The fixed code grabs NFC Service lock before the wakelock. So even if some

process holds the NFC Service lock, at least it does not keep the phone awake

while waiting for it. Notice that the snippets are significantly simplified to

highlight the important code.

Bug [29] is an example where the Mail app holds a wakelock while waiting for

connection to a remove server. It could drain battery if the network connection

is slow or the remote mail server has issues.

In the fourth case, resources are held for a long period of time even if the

actual resource use is scattered during this period. For example, the bug [28]

from MyTrack (a GPS app) holds a wakelock as long as the app is running. This

drains battery because the user may record multiple tracks and rest between

25

 protected Void doInBackground(Boolean... enable) {
 if (enable != null && enable.length > 0 && ...) {
 ...
 } else {
- mWakeLock.acquire();
 synchronized (NfcService.this) {
+ mWakeLock.acquire();
 ...
+ mWakeLock.release();
 }
- mWakeLock.release();
 }
 return null;
 }

synchronized is Java primitive
for synchronization lock. If it
spends long time waiting for lock,
it should not hold wakelock to
keep the device awake.

Figure 3.6: A patch that fixes a bug that may hold a wakelock for unnecessarily
long.

them. The correct approach is to only hold wakelock when the user is actually

tracking his/her route.

Using high- instead of low-power abstractions or modes (11.1%). Due

to unfamiliarity about lower-level details, programmers often unnecessarily use

high- instead of low-power APIs, protocols, or modes that waste energy. E.g.,

the email app [26] contained a mistake where high-power replying and forward-

ing protocols were used where not needed.

For example, the EMail app [26] in the EMail app does not take advantage

of the Smart-Reply and Smart-Forward protocols in ActiveSync to save energy.

Both of these two protocols downloads and sends less data. With Smart-Reply,

only the reply text is sent to the server and the server merges it with original

content and compile the final reply text. With Smart-Forward, the user can

forward attachments without first downloading to their devices.

Another example is about the usage of the more energy efficient

setInexactRepeating() function instead of setRepeating(). Both functions are

used to schedule repeating jobs, but the first one indicates the system can sched-

ule the job at inexact interval time. So the system can group multiple different

jobs from different apps and process them all at once. This is especially energy

efficient when these jobs need to wake up the device or use network. For exam-

ple, patch [37] from a Tweeter app on Android adopts setInexactRepeating()

to save energy.

In system-level code, programmers make the mistake of configuring hardware

to run in high- rather than low-power mode when not needed. E.g., [36] sets

the brightness of the notification LED light to be overly high, and uses an

energy-consuming color. It drains battery when the user does not pay attention

to the notification yet leaves it on for a long time. [34] configures the CPU

to run at the full speed even when the screen is off. [30] does not enable the

26

lower-power polling feature in the Near Field Communication (NFC) device.

[23] configures bluetooth chips to run in the high-power mode while low-power

mode is sufficient.

Running jobs more frequently than needed (5.1%). For apps that need

to periodically update a status or download information, too frequent updates

may quickly drain battery. For example, a defect [31] in Anki-Android updates

its widgets at a very high frequency and thus drains battery fast.

Waking up the phone when not needed (7.7%). Sometimes peirodic jobs

do not need to run all the time. In particular, for jobs that need to wake up

the whole device, it is more appropriate to run repeated instances only when

it is necessary. For example, a bug [22] in Android’s media library schedules

a thread to process time events every 10 ms even if there are no timed events

waiting.

Miscellaneous (13.7%). The remaining problems have diverse patterns. E.g.,

over-optimization on performance causes high energy consumption. Sometimes

developers optimize apps to run faster or produce better results, but they are

not well aware of the impact on energy consumption. For example, the GPS

manager used to need at least 10 calculated positions before disabling GPS,

which provides more accurate location information but also consumes more

energy [25]. [39] has a data structure intended to optimize performance but

makes execution slower on real-world sized datasets and thus drains more energy.

3.3 Implications for Development and Future

Research

3.3.1 Automatically Detecting Energy Defects

Effective automatic tools can significantly help developers find defects. We now

provide some implications for the future research and development of program

analysis tools on smartphone energy problems.

The most promising opportunity is to detect resource leak bugs that have

similar patterns as traditional memory leak bugs. Resource leak bugs account

for more than a third of all studied energy problems. Although memory leak

detection is well studied in the past, the event-driven programming model on

smartphone brings unique challenges for resource leak detection. Smartphone

apps are primarily implemented as event handler functions, which respond to

user interaction and other external events. It is difficult, if not impossible,

to construct complete call graphs, which are required by most static analysis

techniques.

We will discuss two static analysis approaches that may appliable to detect

resource leak bugs.

27

Dataflow Analysis

Pathak et al. [87] made the first attempt to use data flow analysis to detect

resource leak bugs. They tried to overcome the challenges of the event-driven

programming model by manually specifying some call patterns of event handlers

in the Android framework. However, the coverage was limited because develop-

ers often implement their own app-specific event handlers. In that case, it allows

developers to provide some hints on how their event handlers will be called. An

alternative approach is to collect dynamic execution traces and automatically

extract the call patterns of event handlers.

Model Checking

Model checking can systematically test and detect resource leak errors in smart-

phone apps. It enumerates possible states of the app under test by exploring

non-deterministic events. Because the explored states are realistic, model check-

ing does not report false alarms. It also have high coverage since it explores as

many states as possible. Moreover, it is efficient because it runs automatically

without developers to manually drive the checking process. However, there are

three major challenges that make model checking smartphone apps difficult.

The first challenge is the cost of abstracting models from apps, which is

required by traditional model checking. This process of manual abstraction is

not only time consuming, but also error prone. It is very difficult to convince

smartphone app developers to do so. To eliminate the cost of model abstrac-

tion, a realistic model checking tool should directly apply model checking to the

implementation of the app under test. Similar approaches have been proved to

be effective in previous work [79] [102] [80]. One could utilize a model checking

framework for Java programs, Java Pathfinder [18]. It runs unmodified Android

apps in situ and models system states with actual runtime status of the system.

Running Android apps in a model checker is challenging because Android apps

highly depend on the Android Framework and native libraries on Android de-

vices. We need to model all the low-level compnent, to give an illution to apps

under test as they run on real Android devices. Figure 3.7 depicts the idea of

running Android on JPF.

Part of the Android framework is implemented as native libraries (written

in C or C++), which cannot be directly ported to run on JPF. We divide native

libraries into three categories and port them in different ways.

For native libraries that we need to intercept their execution, for either mod-

eling the system or checking the properties, we write the same implementation

in Java so they can run in JPF VM (Figure 3.8 a).

For native libraries that do not affect the system model, we keep using the

original implementation. To do that, we need to convert Android style JNI

code into JPF style JNI. In JPF, the system under test needs to go to two Java

virtual machine to get to native code. So we create Proxies in the host JVM.

28

Java

Pathfinder

JVM Native Peers

Java Core

Host Java Virtual Machine

Android Framework

Apps

lib/kernel/hw

Models

Event

Generator

Property

Checker

Native Libraries

JNI

MJI

Figure 3.7: High-level design of running Android apps on the Java Pathfinder
model checker.

JPF VM first delegates the calls to the proxy and then the host JVM further

delegates the class to the native code (Figure 3.8 b).

For native libraries that are mainly for user interaction, we create Java stub

to intercept them (Figure 3.8 c). For output to the user, such as rendering

the screen or playing sound, we don’t need to model., because they are not

relevant to the checking. For input from the user, we use the “event generator”

to enumerate possible events that drive the execution of the app.

Android

Framework

Native

Libraries

JNI

Android

Framework

Native

Libraries

Java

Implementation

Android

Framework

Native

Libraries

MJI

Proxy

in Host JVM

JNI

Android

Framework

Native

Libraries

Java Stub

(a) (b) (c)(original)

MJI

Figure 3.8: Three ways to port native implementation of Android Framework.

The second challenge is how to model user-interactive event-driven systems.

The way of modeling a system, i.e., defining states and transitions, has signifi-

cant impact on the size of the state space. If the states are too fine-grained, it

will make the checking unrealistic in terms of both time and memory consump-

tion; on the other hand, if the states are too coarse-grained, the checking may

miss mistakes.

The third challenge is the problem of state explosion, i.e., the states of the

29

system becomes too many to be explored completely. This is an inherited issue

of model checking. A variaty of optimizations can apply, for example, it should

group different components into component groups and make sure interactions

between different groups do not affect the properties under check. So it can check

groups separately thus eliminate unnecessary states generated by uninteresting

interactions.

Static Analysis Feasibility

To facilitate future research and tool development, we analyzed the patterns of

resource leak bugs in terms of what extra information is required for possible

detection in addition to the static source code itself. The result is presented in

Table 3.3.

Information Required Percentage

Call patterns of app-specific event handlers 40.4%

Call patterns of system/framework event handlers 14.9%

Thread scheduling 10.4%

Runtime external input 19.2%

Table 3.3: Information needed for resource leak detection.

As one can see in the table, most resource leak bugs require runtime infor-

mation to be identified, which indicates that static analysis on code paths itself

is not enough. Some bugs even require information in multiple categories.

In particular, 55.3% of the resource leak bugs need call patterns of event

handlers. Interestingly, we found that most bug-related event handlers are app-

specific, instead of general event handlers whose behaviors are pre-defined by

the system framework. Manually specifying behaviors of all app-specific event

handlers as in [87] may be troublesome for developers.

3.3.2 Identifying Resource Overuse by Profiling

Different from resource leaks, where resources are not released correctly, re-

source overuse is more difficult to identify by automatic tools. This is because

the judgement on whether an app overuses resources highly depends on the se-

mantics of the app, i.e., what it intends to do. In this case, resource profiling

information may be greatly helpful for developers to detect resource overuse.

We examined 70 resource overuse defects to understand what kind of profil-

ing information will be useful for automatic detection. The result is presented

in Table 3.4.

As one can see in the table, profiling wakelock usage is required by 35.7%

of the cases. Wakelock-related issues are often more severe because it keeps the

whole phone or most energy-consuming components (e.g. display or Wi-Fi) on.

30

Required Profiling Percentage

Wakelock 35.7%

CPU 17.1%

Network 14.3%

GPS 10.0%

Sensor 2.9%

Other Hardware Components 20.0%

Table 3.4: Components needed to profile for resource overuse detection.

It is also important to profile usage of other commonly consumed hardware

components (such as CPU, network, and GPS), which contribute to 10.0% -

17.1% of the cases.

Besides commonly used hardware components, 20% of the resource overuse

cases are related to other devices, including audio device, digital-to-analog con-

verter (DAC), NFC devices, bluetooth, etc. These devices are usually not di-

rectly programmed by app developers; instead, they are managed by lower-level

system software. So profiling usage of these hardware components may be crit-

ical to system software developers in smartphone manufacturers, but not as

critical to regular app developers.

There are already profiling tools that can analyze execution traces to opti-

mize energy usage. For example, Application Resource Optimizer (ARO) from

AT&T and Instruments from Apple

ARO is an open source tool developed by AT&T. ARO records various usage

information on a smartphone and a desktop tool analyzes the log. It is especially

good at profiling network usage and reduce energy used for data transmission.

It analyzes app behavior against 12 best practices and gives developers sugges-

tions to optimize network usage. For example, it detects duplicated content

downloaded through network and suggests better caching mechanism. It iden-

tifies scattered data transmission and suggests to transfer data with multiple

connections simultaneously. ARO also finds small periodical data bursts that

keep the device awake and suggest to group them together or transfer data less

frequently. Instruments is a tool from Apple developers can use to analyze bat-

tery usage on iOS devices. Once enabled, iOS devices log data about battery

usage, including network traffic, processor utilization, GPS usage etc. Devel-

opers can import the logs to Instruments and analyze to see if energy is used

inefficiently.

3.3.3 Profiling Energy-intensive API Calls on Android

ARO mainly focuses on profiling networking operations to optimize energy us-

age. Besides networking, other application behaviors may also be energy con-

suming, and it is important to optimize in other aspects to save energy, for

31

example, GPS and sensors are both energy consuming. Some platforms sup-

port keeping the device awake (e.g., wakelocks on Android), which could drain

energy fast.

One of approaches is to profiling other intensive battery usage is to track

API calls that may use a lot of energy. Directly tracking API usage have several

benefits. First, it is hidden from developers, as developers can use those API as

usual. Second, it provide a great deal of semantic information about how these

APIs are used and why they are used in that way. This information is useful

for developers to reason inefficient usage.

In this section, we will discuss an attempt of profiling energy intensive API

usage on Android. Similar approaches could be applied to other platforms as

well.

There are various ways to profile API usage:

• Asking developers to annotate energy-consuming API calls. The problem

of this approach is that it requires a great deal of human effort.

• Instrumenting source code or binary to track API usages.

• Logging usage of APIs in their own implementation. The advantage of of

this approach is that it does not require to change either source code and

binaries. Even if the developers implement their own primitives to manage

these resources, they will call the low-level APIs in the framework. So it

gives us the biggest flexibility and compatibility.

In our case, we choose the third approach, thanks to the fact that Android

is open source. Android’s core application framework is also open sourced, we

can directly modify the API implementation, add logging to track their usages,

build the modified framework into an image, which can be used by either the

emulator or on a real Android device.

For each API, we record the time when it is called, from which process and

thread it is called and the hashcode of the object if this API is called by a

user-created object (e.g., a method of an WakeLock object). Some APIs also

have their own specific information to log. Table 3.5 lists all the modified and

tracked APIs and additional information we log for each API.

Useful Information Provided by Profiling

To evaluate the prototype of our profiler, we downloaded 26 free apps from

Google Play, sampled from 25 ranked apps across 7 categories: Business, Music

& Audio, Social, Games, Media & Video, Books & Reference, and Tools. We

install the modified framework on an Nexus One device and run each app and

enumerate its popular features. Then we analyze and visualize the logged data.

Figure 3.9 shows the CDF of all observed wakelock usage. As we can see,

most of the wakelock usage holds wakelock for a short period of time. In 60% of

32

Modified API Logged Information

PowerManager.WakeLock.Constructor() Wakelock tag, type

PowerManager.WakeLock.acquire() -

PowerManager.WakeLock.release() -

ocationManager. requestLocationUpdates() -

LocationManager.removeUpdates() -

SensorManager.registerListener() Sensor type, parameters

SensorManager.unregisterListener() Sensor type

Activity.onCreate() Activity ID

Activity.onStart() Activity ID

Activity.onResume() Activity ID

Activity.onPause() Activity ID

Activity.onStop() Activity ID

Activity.onDestroy() Activity ID

Table 3.5: Modified APIs and recorded information.

the logged usage wakelock is held for less than 4 seconds. In 80% of the logged

usage wakelock is held for less than 40 seconds. Only in rare cases wakelock is

held for more than two minutes. The maximum holding time we observed is

less than three minutes. This indicates that very long wakelock holding periods

are likely to be a wakelock leak.

Figure 3.9: Cumulative Distribution Function (CDF) of WakeLock holding
times.

Figure 3.10 shows the CDF of number of times an app acquires a wakelock,

from all observed wakelock usage. As we can see, most apps do use wakelocks.

40% of the apps only use wakelocks more than 5 times. 20% of the apps only use

wakelocks more than 10 times. This indicates that wakelock usage is pervasive

although it is prone to energy bugs.

Figure 3.11 shows the CDF of all observed GPS usage. As we can see, most

33

Figure 3.10: Cumulative Distribution Function (CDF) of number of acquisitions
of WakeLock.

of the wakelock usage holds wakelock for a short period of time. In 60% of the

logged usage wakelock is held for less than 5 seconds. The maximum holding

time we observed is less than 50 seconds. This indicates that in most cases, an

app uses GPS to get location and shuts it down immediately. The exact usage

time period of GPS depends on many other factors in addition to developers’

intension, e.g., the strength of GPS signals. There might be cases where GPS

is held for a long time, such as GPS tracking apps.

Figure 3.11: Cumulative Distribution Function (CDF) of GPS holding times.

Potential Energy Bugs Detected by Profiling

Besides providing useful debugging information, profiling can also detect poten-

tial energy bugs.

Figure 3.12 shows a potential wakelock leak bug in the Google Plus app on

Android. As it shows, after we close the app completely, activities are shut

34

down but the wakelock is not released. Also notice in the middle of the testing,

there are several periods of time where no activities are active but the wakelock

is holding. These time periods may waste wakelock, or they may use wakelock

for legitimate reasons. We need further investigation to understand it, but it is

out of the scope of this study.

Figure 3.12: A potential wakelock leak bug in Google Plus app on Android.

Figure 3.13 shows a potential wakelock leak bug in the Fruit Ninja app on

Android. Similar to the potential bug shown in Figure 3.12, after we close

the app completely, activities are shut down but the wakelock is not released.

Different from the Google Plus app, the Fruit Ninja app does not have wasted

wakelock holding time when it runs.

Figure 3.13: A potential wakelock leak bug in Fruit Ninja app on Android.

35

3.3.4 Energy-cautious Development

Based on the characteristics of energy bugs, we summarize good practices for

smartphone app developers as practical guidelines to avoid energy problems.

Rule 1: Make sure to release resources in all possible code paths. Pay special

attention to cold code paths, such as error handling code (e.g., Figure 3.1).

Rule 2: Understand application frameworks and APIs. Event-driven frame-

works could be complicated with hidden details. For example, the lack of

knowledge of the Android’s activity life cycle [66] may result in incorrect re-

source management (e.g., the bug in Figure 3.2); without knowing the reference-

counter implementation of wakelock may cause wakelock not being release (e.g.,

the bug in Figure 3.5).

Rule 3: Be cautious of general programming mistakes when using resources,

such as concurrency bugs (e.g., Figure 3.3), missing conditions (e.g., Figure 3.4),

object leaks, etc.

Rule 4: Release energy-intensive resources as soon as they are not needed.

Sometimes tasks can finish earlier than expected or get interrupted by excep-

tions. In these cases, resources should be released as early as possible. For

example, close network sockets once communication finishes [35], put Wi-Fi

component to idle mode if there is no connection [38], and release wakelock

once exceptions take place [32].

Rule 5: Manage resource usage in fine granularity if possible. Take advantage

of short “no-use” time periods to release resources for preserving energy. For

example, do not hold resources while waiting for synchronization locks (e.g.,

Figure 3.6); do not hold resources while waiting for potentially slow or prob-

lematic operations (e.g., [29]); and release resources during breaks in work-flows

(e.g., MyTrack [28]).

Rule 6:: Be context-aware and apply different power consumption strategies

accordingly. When the device is connected to power supply, an app can take

advantage and provide better performance; otherwise, be more conservative

(e.g., [33]).

Rule 7:: Execute periodical tasks as infrequently as possible. This is especially

important for tasks that needs to wake up certain component of the device or

sometimes the whole device, because once a component is turned on, it may

take time to go back to sleep even after the task is finished (known as the long

tail effect [91]). Reduce frequency, or avoid unnecessary execution if possible.

36

4 eDoctor: Automatically
Diagnosing Abnormal
Battery Drain Issues on
Smartphones

As the characteristic study on smartphone battery issues shows, ABD issues sig-

inificantly affect user experience. ABD issues can be caused by various reasons,

including software defects, configuration changes and environmental conditions.

They are usually difficult for smartphone users directly diagnose even if they

are tech-savvy users, let along the most smartphone users who do not have the

technology background.

So we present eDoctor, a practical tool to help users troubleshoot ABD is-

sues on smartphones. eDoctor runs as a light-weight service on a smartphone

to record resource usage and relevant events. It then uses this information to

diagnose ABD issues and suggest resolutions. To be practical, eDoctor meets

several objectives, including (1) low monitoring overhead (including both per-

formance and battery usage), (2) high diagnosis accuracy and (3) little human

involvement.

Before introducing eDoctor, we first investigate the state-of-the-art technolo-

gies and find they are not sufficient to diagnose ABD issues for users.

4.1 Are Existing Tools Sufficient?

Existing tools (known as energy profilers) such as Android’s “Battery Usage”

utility, PowerTutor [104] and Eprof [84, 83] can monitor energy consumption of

smartphones. While these tools can provide some level of assistance to develop-

ers or an elite fraction of tech-savvy users in troubleshooting ABD issues, they

are still insufficient for broadly addressing ABD issues due to four main reasons:

(1) The profilers cannot differentiate normal and abnormal energy consump-

tion. Even if an application consumes a significant amount of energy, it may

not be the root cause of ABD. It may simply be one of the apps most frequently

used by the user. To determine whether an app’s battery consumption as shown

by a profiler is “normal” or “abnormal”, a user needs to know the app’s resource

usage pattern. However, it is unlikely that a typical user would know how much

battery an app is supposed to consume, especially since an app’s battery usage

can fluctuate day-to-day even with normal usage.

37

(2) The information provided by these tools requires technical background

to understand. Some profilers may provide detailed information that helps

diagnose abnormal battery drain, but technical terms like “cell standby”, “phone

idle”, “wakelock” or “CPU” are confusing for average users to understand. Thus

it is still difficult for them to find the root cause.

(3) Even for tech-savvy users, these tools provide only limited clues that are

far from sufficient for identifying the causing event (e.g., a configuration change,

an app upgrade, etc.) that caused an ABD issue. Information about causing

events is critical to determine the best possible resolution, such as rolling back

to a previous configuration value, uninstalling the offending app, etc. Although

uninstalling or stopping a culprit app may fix some ABD problems, doing so

is probably not desirable for users. For instance, in the example shown in

Table 1.1-a, many users may still want to continue using the Facebook app, so

a better alternative is to temporarily revert the Facebook app to a previous

version until its developers fix the ABD bug.

(4) As mentioned in Section 1.1, sometimes an ABD issue may be caused by

the underlying OS, thereby affecting all apps. In this case, these profiling tools

may not be able to shed much light on the root cause, much less be helpful to

identify a resolution to an ongoing ABD issue.

There are also tools (e.g., JuiceDefender [73]) that help users make configu-

ration changes to extend battery life, such as offering different energy consump-

tion profiles or location-aware Wi-Fi control. They help preserve energy during

normal usage, but they cannot prevent ABD issues or help troubleshoot ABD

issues.

Pathak et al. [85, 86] proposed a static analysis tool that helps developers

detect non-sleep bugs in source code. Chapter 5 discusses their work in details.

Our work is different but complementary, as we focus on helping users directly

to diagnose ABD issues caused by various reasons, including software bugs and

configuration changes.

From a user’s point of view, a highly desirable solution is to have the smart-

phone itself troubleshoot ABD issues as automatically as possible, i.e., perform

self-diagnosis and suggest solutions with minimum user intervention. Besides

helping end users, such systems can also collect helpful clues for developers to

easily debug their software and fix ABD-related defects in their code.

4.2 Execution Phases in Smartphone Apps

To identify the problematic app or system for an ABD issue, it is important to

differentiate abnormal from normal battery usage. It is natural to immediately

focus on the app that is the top battery consumer as reported by an energy

profiler. Unfortunately, as shown in Figure 4.3 from a real case, the situation is

often not so straightforward because an app’s rank in the battery consumption

report can fluctuate over time. We recorded the battery consumption rank of

38

this app reported by the Android “Battery Usage” utility, once every hour. The

first 15 hours is the time period when the app does not have the battery bug,

whereas the second 15 hours is the period when the bug manifested.

The challenge is that there is no clear difference between normal and ab-

normal periods. Thus, energy profile and rank are not reliable indicators for

troubleshooting ABD issues. Additionally, Figure 4.3 shows that changes in

battery consumption or rank of an app are also not accurate indicators for

abnormal behaviors for similar reasons.

w/o Battery Drain w/ Battery Drain

Figure 4.1: Battery consumption rank of the Android Gallery app running on
a real user’s phone.

In order to identify abnormal app behaviors, eDoctor borrows a concept,

called “phases”, from previous work for reducing hardware simulation time [59,

62, 68, 74, 88, 96, 97]. This work has shown that many programs execute as a

series of phases, where each phase is very different from the others while still hav-

ing a fairly homogeneous behavior between different execution intervals within

the same phase. Hardware researchers simulate those representative phases to

evaluate their design instead of the entire execution [97]. Figure 4.2 illustrates

the phase behavior of the gzip app. Different color shaded areas present dif-

ferent phases. As it shows, within the same phase, although not consecutive

execution, various matrices show similar patterns. In contrast, across different

phases, matrices shows different patterns.

Since hardware can observe many execution details efficiently, the above

work can use a fine-grained monitoring such as Basic Block Vectors (BBV) to

identify phases. For example, BBV is based upon using profiler of a program’s

code structure (basic blocks) to identify different phases of execution of the

program [96].

39

Figure 4.2: Phase behavior of the “gzip” app.

w/o Battery Drain w/ Battery Drain

Figure 4.3: Battery consumption rank of the Android Gallery app running on
a real user’s phone.

4.2.1 Identify Phases in Smartphone Apps

The phase behavior is inspiring for our work because eDoctor can use phases

to capture an app’s behavior changes in terms of energy usage. When an app

starts to consume energy in an abnormal way, its behavior usually manifests as

new major phases that do not appear during normal execution. Combining such

phase information together with recent events, such as a configuration change,

eDoctor can identify both the culprit app and triggering event with relatively

40

high accuracy.

Prior hardware simulation work studied architecture related behavior (e.g.,

pipeline usage or cache miss ratio). They captured phases based on instruction-

level information, such as basic block vector (BBV). However, such fine-grained

information is not suitable for identifying phases related to resource usage be-

cause instruction-level information does not directly correlate to resource usage.

Smartphone apps are different from most desktop/server applications. They are

usually relatively simple and not computationally intensive, but rather I/O in-

tensive, interacting with multiple resources (devices) such as the display, GPS,

various sensors, Wi-Fi, etc. These resources are energy consuming, so mis-using

or over-using these resources leads to battery issues. Therefore, we can capture

phases by observing how these resources are used by an app during different

execution intervals.

Our first approach starts from a fairly coarse-grain level by monitoring only

resource types used during an execution interval, and ignoring the amount of

resource usage. We refer to this method as Resource Type Vector (RTV). It

is based on a simple rationale that different execution phases use different re-

sources. For example, an email client app uses the network when it receives or

sends emails. But when the user is composing an email, it uses the processor

and display. The RTV scheme uses a bit vector to capture what resources are

used in a given interval. Each bit indicates whether a certain resource type is

used in this interval. If two intervals have different RTVs, we identify them as

two different phases.

As shown in Figure 4.4(a) with data collected from the Facebook app used in

a real user’s smartphone, RTV clearly shows some patterns and phase behaviors:

during different phases, different types of resources are used, and phases appear

multiple times during different intervals. As the figure shows, the most common

phase is that only the CPU is running. In this phase, most of the time the app is

idle. The second most frequent phase has both CPU and network active, which

indicates the app transfers and processes data during these phases.

Although the RTV scheme is simple, it turns out to be too coarse-grained

since it may merge two distinct phases into one simply because they use the

same types of resources. Therefore, we explore a second scheme we call Resource

Usage Vector (RUV).

Each element in a RUV, represented with a floating point number, is the

amount of usage of the corresponding resource. The intuition behind RUV is

that an app may use the same types of resources in two different phases, but

their resource usage rates differ. For example, for an email app, while both

the email updating phase and email reading phase use the display, CPU and

network, the resource usage rates are different. The former typically has more

network traffic.

We represent the usage of a resource by the usage amount of the resource

normalized by the CPU time. The execution interval for measurement cannot

41

0 20 40 60 80 100

Execution Time

Network

Wakelock

CPU

Phase #1
Phase #2
Phase #3
Phase #4

(a) Phase pattern based on RTV. In the top part, the shaded bars indicate
which phase the app is in; in the bottom part, shaded bars indicate the

resource is in use.

0 20 40 60 80 100

Execution Time

Network

Wakelock

CPU

Phase #1
Phase #2
Phase #3
Phase #4
Phase #5

(b) Phase pattern based on RUV. In the top part, the shaded bars indicate
which phase the app is in; in the bottom part, the curves indicate the amount

of resource usage.

Figure 4.4: The phase behavior of the Facebook App in a real user’s smartphone.

be too small to avoid measurement overhead, so an app may run for only a

fraction of one interval. In that case, absolute usage numbers cannot precisely

represent the usage behavior. CPU time is a good approximation of the amount

of time an app actually runs. Normalizing to CPU time allows us to correlate

two intervals even if the app runs for different amounts of time in each interval.

If two intervals have similar RUVs, we consider them as one phase. Similar

to previous work [97], we use the k-means algorithm to cluster intervals into

phases. To find the most suitable k (i.e., the number of clusters to generate),

eDoctor tries different k from 1 to 10 at runtime, and for each k, we evaluate the

quality of the clusters. We calculate the average inter-cluster distance divided

by the average intra-cluster distance as a score; the higher the score is, the

better the clusters fit the data. Since the best k is likely to be the largest k it

tries, we pick the smallest k whose score is as high as the 90% of the best score.

Figure 4.4(b) shows the RUV phase behavior using the same data. As it

42

Information Collector Data Analyzer

Diagnosis Engine

?

Resource

Usage
User

Changes

Phase Identification
Per-application usage patterns

Configuration patterns

System wide usage patterns

Suspicious

Events

Report

Battery Drain

♫Automatic Fixes

and/or Suggestions

Issue Resolver

Anomaly
Detection

Delete

Apps

Revert

Apps

Terminate

Apps

Revert

Configs

Suspicious

Resource Usage

Figure 4.5: Overall architecture of eDoctor.

shows, RUV captures one more phase compared to the phases divided by RTV,

enabling RUV to further differentiate between low and high network usage. In

other words, it provides more fine-grained information regarding an application’s

phase behavior.

4.3 eDoctor: Design and Implementation

The objective of eDoctor is to help users diagnose and resolve battery drain

issues. Even though the information offered by eDoctor can also be used for

app developers, our goal is to help users troubleshoot and/or bypass ABD issues

before developers fix their code which as shown may take months. Therefore,

instead of locating root causes (e.g., bugs) in source code, eDoctor’s diagnosis

focuses on identifying (1) which app causes an ABD issue and (2) within the

identified app, which event is responsible, e.g., user installed a buggy app, up-

dated to a buggy version, or made an improper configuration chanage. Based on

such diagnosis result, eDoctor can then suggest appropriate repair solutions to

users, such as uninstalling the buggy app, reverting the buggy app to a previous

version, or reverting a configuration change to its previous setting.

There are two major challenges involved in achieving these objectives. First,

it is non-trivial to accurately pinpoint which event accounts for the ABD issue.

The causing event may not be the most recent one; instead, it can be followed by

many other irrelevant events, e.g., the case where the user installed a buggy app

and then made multiple configuration settings for this app. Second, eDoctor

itself should not incur high battery overhead by collecting too much information

too frequently. It needs to balance the overhead and the amount of information

needed for accurate diagnosis.

This section presents our design of eDoctor in addressing the above chal-

lenges. Figure 4.5 shows the high-level system architecture. First, eDoctor

continuously collects system-level and app-level resource usage data, as well as

events that may affect battery usage (“Information Collector”, Sec. 4.3.1). An

event can be of various types, such as configuration change and app mainte-

43

nance (update, new install). When the phone is idle and connected to a power

supply, eDoctor analyzes historical data to learn patterns of resource usage

and configuration exhibited when battery consumption is normal (“Data An-

alyzer”, Sec. 4.3.3). When users notice ABD symptoms (i.e., battery draining

abnormally fast), they can invoke eDoctor for troubleshooting1. eDoctor diag-

noses the issues by comparing the recent usage to regularly derived patterns for

anomaly detection, and identifying the responsible event (“Diagnosis Engine”,

Sec. 4.3.3). If applicable, eDoctor provides provides the most relevant repair

suggestion to users (“Repair Advisor”, Sec. 4.3.4).

4.3.1 Information Collector

Information Collector records three main types of raw data in the background:

(1) each app’s resource usage, (2) each app’s energy consumption, and (3) rele-

vant events such as app installation, configuration, and updates.

The design of information collection faces two major challenges:

• To minimize the overhead - Since the information collection runs on smart-

phones with limited resource, it should minimize the overhead in all as-

pects, including storage, memory, CPU utilization and most importantly,

energy consumption.

• To collect enough information but avoid over-collecting – The information

collection should be able to collect complete information we need to diag-

nose battery drains. However, it should also avoid collecting redundant or

unnecessary information, which brings overhead.

Our design of information collection is largely guided by real world battery

drain issues and the understanding of smartphone systems. It is implemented

with minimizing overhead as the first priority.

Resource Usage

eDoctor monitors the following resources for each app: CPU, GPS, sensors (e.g.,

accelerometer and compass), wakelock (a resource that apps hold to keep the

device on), audio, Wi-Fi, and network. To facilitate diagnosis, eDoctor records

resource usage in relatively small time periods (called recording interval). The

default recording interval is five minutes in our implementation.

More specifically, eDoctor periodically collects per-app and system-wide re-

source usage data at the same time with the same frequency (e.g., 5 minutes),

so that they can be correlated in analysis later.

(1) Per-app resource usage data collected by eDoctor includes 10 variables:

time periods when (the app) holding wakelock (in milliseconds), when running

1Currently, eDoctor relies on users to report ABD problems. We leave automatic detection
of ABD to future work.

44

in foreground, when using CPU, when using Wi-Fi, when using GPS, and when

using sensors; the amount of sent data (in bytes), of received data; the number

of times being launched, and the number of inputs from users.

(2) System-wide resource usage data collected by eDoctor includes 13 vari-

ables: time periods when the phone is awake (in milliseconds), when Wi- Fi is

turned on, when Wi-Fi is in use (actively transmitting data), when CPU is run-

ning, when GPS is working, when the screen is on, when Bluetooth is on, when

no radio signal is detected, when radio signal is scanned, and when the phone

is charging; the amount of sent data (in bytes), of received data (in bytes), and

of remaining battery (in percentage).

What resource usage information to store depends on the phase identification

method (Section 4.2). RTV uses a bit vector to record whether the resources

have been used in the past recording interval (e.g., whether Wi-Fi is on, whether

accelerometer is used, whether any data are transmitted through the network).

RUV, on the other hand, records the usage amount of each individual resource,

e.g., time in microseconds, amount of network data in bytes.

In our implementation, eDoctor takes advantage of the battery usage track-

ing mechanism in the Android framework. This mechanism keeps a set of data

structures in memory to track resource usage of each app. However, the values

recorded are accumulated amounts since the last time the phone is unplugged

from its charger. At the end of each recording interval, eDoctor reads these

values and calculates the resource usage amounts in the past recording interval.

Figure 4.6 shows a simplified example of a resource usage table for an app.

Energy Consumption

It is also important to record battery consumption of each app in every record-

ing interval. eDoctor uses this information for two main purposes: (1) to prune

apps with small energy footprints which are unlikely a cause for ABD, and (2) to

rank suspicious apps according to the energy consumed. As we use the battery

consumption information only for such comparative purposes, it is less critical

to have high fidelity measurement. Further, simple models provide superior

performance benefits that are essential to reduce overhead of eDoctor. There-

fore, we employ the efficient profile-based energy model instead of expensive

state-based energy models [98, 104]. This energy model has been used in both

industry (e.g., Android’s Battery Usage utility [4]) and academic research (e.g.,

ECOSystem [103]).

More specifically, the model is based on resource usage (collected by eDoctor)

and average energy consumption profile of hardware components (measured

and provided by device manufacturers). Based on the nature of the resource

type, resource usage(and the energy consumption profiling) can be expressed in

two forms: time-based and quantity-based. The former means how long has a

certain type of resource been used, examples include the usage time of CPU,

45

GPS, Wakelock, etc. The latter indicates how much of that type of resource has

been used. The usage of Wi-Fi and Mobile data is expressed in this form.

For time-based resource, we take estimation of processor power usage as an

example. A processor may work at different frequencies, so energy consumption

of processors are profiled on different frequencies. Processor usage data is also

collected based on different frequencies. To estimate the power consumption,

the model simply multiplies the usage time by the average power consumption

of each frequency, and then sum them up:

Powercpu =

n
∑

f=1

T f
cpu × AvePowerf

cpu (4.1)

Where n is the number of different frequencies this processor can work on;

T f
cpu is the amount of time the processor works on the fth frequency; and

AvePowerf
cpu is the profiled average power consumption when the processor

works on the fth frequency.

We briefly explain the case of Wi-Fi as an example of how quantity-based re-

source power consumption is estimated. The energy estimation for Wi-Fi in the

profile from the platform is given in unit time. To convert it to quantity-based

result, we first extract or estimate the device’s Wi-Fi data rate in Bps(Bytes

per second). Then the energy estimation is divided by the data rate to get the

power consumption per byte. Given the data in bytes received or sent from

Wi-Fi, we multiply them as an estimation of the total power consumed by this

amount of data transfer.

Every Android-based device has power consumption profile information,

which is required to be provided by device manufacturers. This profile pro-

vides average power consumption for various hardware components, such as the

average energy consumption when Wi-Fi device is turned or when Wi-Fi device

is sending/receiving data. These data are measured by high-precision power

meters when the phone is made. Each Android system provides a template

XML file to store these information (List 4.1 is an example). As seen in the

list, the profiling information is relatively complete. For example, it provides

the energy consumption of the processor when the processor is running at four

different clock speed. The Wi-Fi device energy consumption also has breakdown

information for different state of the Wi-Fi device.

Listing 4.1: An example of a device power profile XML file.

<dev ice name=”Android”>

< !−− Al l v a l u e s are in mA excep t as noted −−>

<item name=”none”>0</ item>

< !−− min b r i g h t n e s s −−>

<item name=” screen . on”>200</ item>

<item name=”bluetooth . a c t i v e ”>150</ item>

<item name=”bluetooth . on”>1</ item>

<item name=”bluetooth . at ”>1</ item>

46

< !−− 360 max on ca lendar −−>

<item name=” screen . f u l l ”>160</ item>

<item name=” w i f i . on”>1</ item>

<item name=” w i f i . a c t i v e ”>150</ item>

<item name=” w i f i . scan”>200</ item>

<item name=”dsp . audio”>150</ item>

<item name=”dsp . v ideo ”>200</ item>

<item name=” rad io . a c t i v e ”>150</ item>

<item name=”gps . on”>55</ item>

<item name=”bat t e ry . capac i ty ”>1750</ item>

<item name=” rad io . scann ing”>90</ item> < !−− TBD −−>

< !−− Current consumed by the radio at d i f f e r e n t

s i g n a l s t r eng th s , when paging −−>

< !−− 1 entry per s i g n a l s t r eng th bin , TBD −−>

<array name=” rad io . on”>

<value>3 .0</ value>

<value>3 .0</ value>

</ array>

<array name=”cpu . speeds ”>

<value>350000</ value>

<value>700000</ value>

<value>920000</ value>

<value>1200000</ value>

</ array>

< !−− Power consumption in suspend −−>

<item name=”cpu . i d l e ”>7</ item>

< !−− Power consumption due to wake l o c k he l d −−>

<item name=”cpu . awake”>20</ item>

< !−− Power consumption at d i f f e r e n t speeds −−>

<array name=”cpu . a c t i v e ”>

<value>120</ value>

<value>228</ value>

<value>299</ value>

<value>397</ value>

</ array>

</ dev i ce>

Events

Events are important for both diagnosis and repair advisory. eDoctor records

two types of events: (1) configuration changes, and (2) maintenance events

(installation, updates). It is worth noting that such events may be initiated

not only by the users, but also by the underlying system automatically. App

and system configuration entries and their new values are recorded as key-value

pairs.

Most apps use Android’s facility components (e.g., PeferenceActivity and

47

SharedPreferences) to manage configurations. These components provide in-

terfaces such as radio buttons, text input boxes, multi-selection checkboxes,

and allow apps to store new configuration values specified by users. They also

manage storing configuration values in a centralized location in each app. By

placing hooks in these common components, eDoctor track app configurations

by modifying these common components.

For system-wide configurations, eDoctor records changes that may affect

battery usage, including changing CPU frequency, changing display brightness,

changing display timeout, toggling Bluetooth connection, toggling GPS receiver,

changing network type (2G/3G/4G), toggling Wi-Fi connection, toggling Air-

plane mode (which turns off wireless communications), toggling the background

data setting, upgrading system, and switching firmware. In the implementa-

tion, eDoctor records events by capturing broadcast messages by the Android

system. For example, when the Wi-Fi connection status changes, the system

sends a broadcast message, WIFI STATE CHANGED ACTION.

Location and Environmental Conditions

eDoctor records location change events, i.e., when the user moves from one

geographical location to another. For each location, eDoctor also records the

associated environmental conditions, including 5 variables: geographical cen-

ter (in degree), number of appearances, average radio signal strength (in dB),

accessible Wi-Fi access point(s), and average Wi-Fi signal strength (in dB).

Naturally, such environmental conditions are very similar among close-by ge-

ographical positions. To make information collection more efficient, eDoctor

merges geographical positions that are close enough as one location.

To protect user privacy, eDoctor stores the above information in its app-

specific storage that other apps cannot access. In addition, it does not transfer

the information outside of the phone; all analysis is done locally.

4.3.2 Data Analyzer

eDoctor’s Data Analyzer is responsible for parsing all resource usage data col-

lected by Information Collector, generating phase information (Section 4.2) for

each app, and storing it in a per-app phase table. The phase information is

useful for speeding up the diagnosis process (Section 4.3.3). Since such phase

analysis incurs overhead, it is only performed when the phone is being charged

and the user is not interacting with the phone. Figure 4.6 provides a simplified

example of how phase analysis is done.

In Figure 4.6, the resource usage table shows seven resource usage records

collected by using the RUV method (before normalizing to CPU time). Based

on k-means clustering computation (Section 4.2), entries with timestamp 5, 10

and 25 belong to the same phase (Phase #1 in the Phase Table below), because

they have similar usage patterns even though the absolute values of their entries

48

differ largely. In addition, the entries at time 15 and 20 belong to the same phase

(Phase #2), as the app only uses CPU for data processing (in this simplified

example, we assume the values in the other columns on these rows are all zero).

The entry at time 30 indicates that the app is not running, so it is not inserted

in the Phase Table. The last entry at time 35 is another new phase (Phase #3)

where only wakelock is held for a long time but the app does not use much other

resources. It is the typical symptom when the app forgets to release wakelock.

Time CPU GPS ...

Resource Usage Table

(with RUVs before normalization)

5 1400 1410 ...

10 100 102 ...

15 400 0 ...

30 0 0 ...

ID

Phase Table

Phase #1

Phase #2

Phase #3

First Time

Appearence

5

15

35

#

3 7416

2 1145

1 1300

Interval #1

Energy #

... ...

... ...

... ...

Interval #...

Energy

Wake

1350

105

380

0

20 350 0 ...320

25 300 370 ...390

Energy

5630

406

600

0

545

1380

35 25 0 ...400 1300

...

Phase #1

Phase #1

Phase #2

Not Run

Phase #2

Phase #1

Phase #3

Phase

Analysis

Figure 4.6: Phase analysis illustration.

Every time when invoked, the Data Analyzer processes all the analysis in-

tervals that haven’t been analyzed. In our implementation, an analysis interval

is one charging cycle, i.e., the time period between two phone charges.

For each analysis interval, eDoctor identifies execution phases by using ei-

ther RTV or RUV as explained in Section 4.2. To reduce noise and speed up

diagnosis, it only records major phases - phases that account for more than 5%

of the app’s total execution time during the last analysis interval. Phases that

appear occasionally are likely to be noises.

Each entry in a phase table represents a major phase. Each major phase is

identified by a unique phase signature. We use phase signatures to determine

which phase a given new resource vector belongs to. For RTV, we use the

RTV vector directly as the phase signature; for RUV, we use the combination

of center radius of the corresponding cluster as the phase signature (refer to

Section 4.2).

49

For each major phase, Data Analyzer keeps track of its birth timestamp, and

its number of appearances and energy consupmtion during each analysis interval.

The birth timestamp helps diagnosis by indicating how recently a suspicious

phase is first observed. The Diagnosis Engine also uses this information to

correlate suspicious phases with triggering events (Section 4.3.3). For the last

two variables (appearance count and energy consumed), only the most recent

K intervals of data are maintained. Clearly, a large K allows for detection of

issues that are introduced earlier, but it incurs larger storage overhead. We find

K = 5 (about one week in time) strikes a good balance in the trade-off.

4.3.3 Diagnosis Engine

When users notice ABD issues, they invoke the Diagnosis Engine in eDoctor,

which pinpoints the culprit app and the causing event. It does so by analyz-

ing all historical phase tables (populated by the Data Analyzer, Section 4.3.2)

and event records (collected by the Information Collector, Section 4.3.1), and

correlating them to identify the culprits.

Diagnosing Culprit Apps

Identifying the culprit app and the causing event is not trivial. Our approach

is based on a key general observation: most ABD issues involve a new, energy-

heavy execution phase emerging in a particular app. For example, in the Face-

book bug mentioned in Section 1, such new phase is characterized by the wake-

lock being held for a long time while other resources are used little in the

meantime. This phase rarely exhibited before the buggy upgrade of the app.

Thus, it is critical for eDoctor to look for such energy-heavy, new phase where

ABD is most likely occurring. We refer to such phase as suspicious new phase

(SN-Phase), and any app that contains an SN-Phase as a suspicious app. Es-

sentially, the diagnosis process has two major steps: (1) identifying suspicious

apps, and then (2) identifying suspicious causing events.

Step 1: Identifying suspicious apps. eDoctor first prunes out apps that

consume low energy, because they are unlikely the root cause of noticeable

ABD. In our implementation, Diagnosis Engine only considers the top apps

that, combined, consumed 90% of the energy. It then checks whether there is any

recent new phase with high energy consumption, i.e., SN-Phase. Determining

whether a phase is energy-heavy or not is straightforward (e.g., by computing

its energy consumption percentile in the app). But how to define new? Users

may not start diagnosis immediately after an ABD issue happens. In other

words, ABD may start well before the moment of diagnosis. In consideration of

this, Diagnosis Engine uses a progressive strategy to search for suspicious apps

as follows.

Recall that within an app, each major phase’s information is recorded for

the K most recent analysis intervals (i.e., charging cycles), which we notate as

50

τ1, τ2, ..., τK , where τ1 is the most recent interval and τK is the oldest interval.

The Diagnosis Engine first assumes that the noticed ABD originally happened

in τ1. It thus treats those phases with birth timestamps falling in τ2 to τK as

normal ones where no ABD occurred. It then checks if τ1 has any new energy-

heavy phase appearing compared to the previous K − 1 intervals. If it does

not find any, it then assumes the ABD started in τ2 (and may continue in τ1),

thus it checks whether any SN-Phase exists in the most recent two intervals

compared to the previous K − 2 intervals. The process goes on until it finally

identifies an SN-Phase within the app or it has exhausted all data in the phase

table. For apps that are recently installed, they may not have much information

in previous intervals. In such cases, any phase that consumes a high level of

energy in recent analysis intervals is still considered to be an SN-Phase (when

there is no previous intervals to compare). As mentioned before, all apps that

contain SN-Phases are then regarded as suspicious apps. Based on our extensive

empirical experiments (Section 4.4), there are usually at most 2–3 suspects after

this step.

Step 2: Identifying suspicious causing events. For each suspicious

app, the event that immediately precedes its SN-Phase is considered the most

suspicious in causing the ABD. Diagnosis Engine finds it by comparing the

timestamp of the SN-Phase and the timestamps in the event logs.

Finally, the Diagnosis Engine ranks all suspicious apps based on the total en-

ergy consumed in their SN-Phase(s). For user convenience, eDoctor reports only

the top ranked suspicious app and causing event for repair advisor. Certainly,

it could also report all suspicious apps to experienced users if necessary.

Diagnosing System Configurations

Different from per-app resource usages, it is intuitively difficult to find regu-

lar patterns on system-wide resource usages (e.g., screen-on time) since they

aggregate the usages across different apps. Therefore, Diagnosis Engine does

the following diagnosis steps by scanning system-wide configuration event logs

backward from the current interval. For each event log, it first identifies the

resource type related to the event. For example, for the change of background

data setting, it will particularly investigate the “amount of sent/received data”

among the usage history of 3 system-wide resources (section 4.3.1). Second,

regarding the resource, it finds a common range of the resource usage (in terms

of usage time or amount of data transferred) by using an Empirical Rule [81].

Finally, it checks the data after the event to see if most (¿80%) data falls out of

the common range found above. If so, the resource highly likely has been ab-

normally used due to the system-wide configuration, and thus the configuration

event is reported to the Repair Advisor.

51

Suspicious Suspicious

Resource Usage Event

CPU Increased CPU frequency

Display Increased LCD brightness

Display Increased timeout

Bluetooth Toggled Bluetooth on

GPS Toggled GPS receiver on

Network Type (2G/3G/4G) upgraded

Network Toggled Wi-Fi connection on

Network Toggled Airplane mode off

Network Toggled the background data setting on

Any Upgraded system

Any Switched firmware

Table 4.1: Mapping for pinpointing system wide culprit events.

4.3.4 Repair Advisor

In addition to providing a diagnosis report about the suspicious apps and trig-

gering events, eDoctor also suggests the most suitable repair solutions based

on the symptom and triggering events. This section explains how eDoctor de-

termines the repair suggestions, and potential ways of repairing ABD issues

automatically without user actions. We leave the implementation and evalua-

tion of automatic repair to future work.

Reverting Problematic Apps

If a recent update contains an ABD issue, eDoctor suggests to revert the prob-

lematic app back to the previous version or uninstall the app. Unfortunately,

Android does not allow reverting apps directly. A tech-savvy user can revert an

app with command line tools if a previous version is accessible. A better solu-

tion is to revert apps automatically by backing up prior installation packages.

When Android installs an app, it stores the installation package on the phone

temporarily, but it keeps only the last installed version of the package. If we

back up prior versions, we can allow users to install prior versions. eDoctor has

implemented a prototype and proved the feasibility of this approach.

Terminating Apps After Use

If the user wants to keep using the problematic version of the culprit app,

eDoctor suggests temporary repair solutions in certain scenarios. One of the

most common symptoms of energy bugs is that an app continues to consume

resources even after the user stops using the app. In this case, eDoctor suggests

users to manually terminate the problematic app every time after closing it, so

52

it will not run in the background. As this can be troublesome, a better solution

is to have eDoctor automatically terminate the problematic app.

Reverting Configuration Changes

If a recent configuration change causes an ABD issue, eDoctor presents users the

identified configuration entry, together with its current and old values. It relies

on the user to revert the configuration back to the old setting. User level apps

do not have the permission of directly changing configuration values. However,

if implemented in the Android framework, it is possible to automatically fix

configuration issues.

4.3.5 Automatic Fixes

Although the Repair Advisor suggests the resolution to users, sometimes it is

still difficult for regular users to apply them. In addition to giving user advise, we

also implemented several proof-of-concept features in eDoctor to automatically

fix some of the issues.

App Terminator

If the root cause is related to a particular app overusing resources in background,

eDoctor uses its App Terminator to kill the app if the user no longer interacts

with it but it is still running in background consuming resource. App Terminator

maintains a blacklist of problematic apps diagnosed by eDoctor. Every time

after the screen is turned off (i.e., after the user stops interacting with the

phone), the App Terminator allows apps in the blacklist to run for a certain

amount of time. If they keep consuming resource after that, it will terminates

the apps. Apps are automatically removed from the blacklist once they are

upgraded, in case a new version has fixed the problem.

App Reverter

If a problematic app start draining battery fast only after recent upgrades,

eDoctor can reverting them back to the previous version upon users’ permission.

To achieve this, eDoctor backs up installation packages of previous versions

whenever apps are upgraded. But due to the storage constraint on smartphones,

we do not back all versions of all apps. First, only the version immediately prior

to the current version is backed up. Second, we do not back up apps that are

larger than 20MB. Third, we set a maximum space that is allowed to store

backups. When the maximum space is reached, we remove the oldest backup.

If there is no available backup of previous versions, eDoctor suggests to uninstall

the problematic app.

53

Environment Adaptor

When eDoctor detects any suspicious environmental changes that may drain

battery, it automatically configures the phone to minimize the impact of those

changes. (1) When the phone is in a location where the user does not have usable

(in terms of connectivity) Wi-Fi access points, eDoctor automatically turns off

the Wi-Fi interface (of course, users have the option of manually turning it on

if needed). (2) When the radio signal is weak, eDoctor reminds users to turn on

Airplane mode. (3) When the phone is in an area where 3G/4G signal is weak,

eDoctor automatically switches to 2G to save energy.

Configuration Reverter

If there are any suspicious configuration changes, eDoctor presents users the

configuration entry, problematic values and unproblematic values. Users can

decide if they want to revert to previous values. For some system configuration

entries, eDoctor can automatically change it upon users’ permission.

4.4 Evaluation

To assess the effectiveness and performance overhead of eDoctor, We used real-

world ABD issues to conduct both in-lab experiments and a controlled user

study.

4.4.1 Effectiveness (User Study)

We believed that it is important to evaluate eDoctor on real user phones, where

the triggering ABD issue is mixed with other healthy apps and normal uses

of the phone. Thus, we recruited 31 Android users via campus-wide mailing

lists in two major universities - University of California at San Diego (USA)

and Peking University (China). The phones they used consisted of 26 different

devices with 11 different Android versions and various configurations and usage

patterns.

Since a real user study that asks the user to use eDoctor to troubleshoot a

naturally occurred ABD issue may take months and a large number of partici-

pates to have sufficient data points, we conducted a more controlled experiment.

We emulated real-world scenarios where a user performed an ABD-triggering

event (e.g., installing a buggy app or misconfiguring a setting), used the phone

for some time, noticed rapid battery drain, and then started diagnosis. The

whole study took 7-10 days for each participant.

ABD issues were notoriously hard to reproduce due to their dependency on

specific phone hardware/software setup and the unavailability of buggy versions.

We finally reproduced 17 real-world ABD issues and generated 4 injected issues

(Table 4.3) by modifying open-sourced Android apps.

54

App Name Category Description Downloads

Anki-Android Education A flash card app 100K+

BostonBusMap Travel Bus tracking in Boston 50K+

Cool Reader∗ Book An eBook reader 1M+

Eyes-Free Shell Tools Eyes free access to apps 10K+

Facebook Social Official Facebook app 100M+

Gallery Media A 3D gallery app built-in

K9Mail Communication An popular email client 1M+

Marine Compass Tools A compass app 100K+

MyTracks Health Route tracking 5M+

Nice Compass Tools A compass app 1K+

NPR News∗ News NPR News client 1M+

OpenGPS Tracker Travel Route tracking 100K+

OpenStreetMap Productivity OpenStreetMap viewer 5K+

Replica Island∗ Game An Android game 1M+

Standup Timer Productivity A timer app 1K+

Talking Dialer Communication A dialer app 50K+

Vanilla∗ Music A music player 50K+

Weather Bug Weather A weather reporter 10M+

WHERE Travel Location discovery 1M+

Table 4.2: Apps used in the evaluation user study of eDoctor.

We selected only popular apps that have a significant number of users, each

of which has different characteristics on resource usage: dominant resources

and usage patterns (e.g., frequency and time duration of use). Therefore, we

believe the data we collected from the user study were relatively diverse and

representative. Table 4.2 lists information about the selected apps. The numbers

in the “Downloads” column of Table 4.2 indicate the number of downloads of

app from Google Play (as of May 2012). To save space, we use“K” to present

1,000 and “M” for 1,000,000. “build-in” means this app is bundled with some

phones. To cover a wider spectrum of resources and usage patterns, we injected

four real-world ABD bugs into apps in popular categories. They are marked

with the “∗” symbol.

For ABD issues caused by software bugs, we prepared two versions of a

target app: one with a real-world ABD issue and the other without (i.e., either

already fixed or not yet defective). We took similar steps with ABD-triggering

configuration changes. Next, we randomly assigned each ABD issue to 1–5

participants, giving us 50 cases in total. In each case, we asked the user to

follow three steps: (1) Use the given app (normal version) for at least 5 days.

Meanwhile, participants should feel free to use their own apps as usual. (2)

Switch the app to the other version (defective) or changing the configuration

(to be the incorrect one). To make it easy for participants, we made two packages

to perform the switch with a single click. (3) Use the app (defective version) for

55

App Name Issue Type Issue Description

Anki-Android
Bug Resource leak (Accelerometer)

Config Frequent widget refreshing

BostonBusMap
Bug Resource leak (GPS)

Config Enable continuous updates

Cool Reader∗ Bug Resource leak (Wakelock)

Eyes-Free Shell Bug Resource leak (GPS)

Facebook Bug Resource leak (Wakelock)

Gallery Bug Resource leak (Accelerometer)

K9Mail Bug Too many trials

Marine Compass Bug Resource leak (Magnetic field sensor)

MyTracks Bug Resource leak (Wakelock and GPS)

Nice Compass Bug Resource leak (Magnetic field sensor)

NPR News∗ Bug Resource leak (GPS)

OpenGPS Tracker
Bug Resource leak (GPS)

Config GPS precision

OpenStreetMap Bug Resource leak (GPS)

Replica Island∗ Bug Resource leak (Orientation sensor)

Standup Timer Bug Resource leak (Orientation sensor)

Talking Dialer Bug Resource leak (Accelerometer)

Vanilla∗ Bug Resource leak (Wakelock)

Weather Bug Config Frequent update

WHERE Bug Resource leak (GPS)

Table 4.3: ABD issues used in the evaluation user study of eDoctor.

some time until noticeable battery drain, then invoke eDoctor to diagnose it.

In total, we collected 6,274 hours of real-world resource usage data, on which

we evaluated eDoctor’s effectiveness with the diagnosis results. We also mea-

sured its energy, storage, and memory overhead based on the collected data

from real users.

Similar to other user studies, there is always an issue with representativeness.

In our study, the ABD issues, the apps, the participants, the usage patterns,

the interference with other apps, etc., are little different from real usage scenar-

ios. The primary difference with a real usage scenario is the occurrence of the

ABD issue. In our study, it is not the participants who accidentally triggered

ABD issues; instead, we asked them to do it. However, we did not indicate

to eDoctor which changes are the causing events, i.e., eDoctor diagnosed these

issues independently.

Diagnosis Result

Figure 4.7 shows the effectiveness results. Overall, eDoctor (with RUV) ac-

curately diagnosed 47 of the 50 ABD cases (94%). “Overall Case” shows the

diagnosed cases among all 50 ABD cases. “Resource Leak” and “Other” shows

56

breakdown of two types of ABD cases.

Overall Case Resource Leak Other
0

10

20

30

40

50

60

N
u
m

b
e
r
o
f
C
a
se

s 50

41

9

47
40

7

36
33

3

Total
eDoctor w/ RUV
eDoctor w/ RTV

Figure 4.7: Diagnosis results.

eDoctor (with RUV) failed to diagnose 3 cases, although it was able to suc-

cessfully diagnose the same ABD issues when they took place on some other

users’ phones. We further analyzed these cases and found that the main reason

is that they were caused by more frequent execution of phases that were also

common in the past. The first mis-diagnosed case is regarding the Weather Bug

app. The user changed a configuration entry to update weather information

more frequently in the background. In the mis-diagnosed case, this particular

user may have already configured the Weather Bug app to check weather fre-

quently, so changing to the highest update frequency did not introduce a new

phase. The second mis-diagnosed case, related to the K9Mail app, is caused by

the similar reason.

The third mis-diagnosed case is related to the Vanilla Player app. eDoctor

found the app had long period of wakelock-leak like pattern (i.e., wakelock is

held but no other resource usage) even when the users was using the version

without the bug. It’s probably because the user frequently paused the player. In

addition, the user did not spend much time using this app, so this wakelock-leak

like pattern was common. When the user upgraded to the version that indeed

has the wakelock-leak bug, its behavior doesn’t show up as a new phase.

In order to reliably diagnose these mis-diagnosed cases, eDoctor needs to

conduct more detailed analysis on phases’ timing patterns, in addition to their

frequency. In other words, even for previously-seen major phases, if the timing

patterns change dramatically, it may also indicate abnormal use of resource. We

leave it for future work.

RTV vs. RUV. As expected, RUV is more accurate than RTV, where the

former diagnosed 47 (94%) while the latter diagnosed only 36 (72%) out of the

50 cases. RUV captures phase characteristics better than RTV, and can detect

abnormal phases that use the same resources as their normal counterparts but

in abnormal amounts. We also broke down the 50 cases into two high-level

categories: resource leaks and other cases. RUV performs better than RTV

in both categories. Interestingly, among the two categories RTV is better at

57

resource leaks (80.5%) than others (33.3%). The reason is that resource leaks

often involve an app intensively using only one type of resource.

#1 #2 #3 #>=40

5

10

15

20

25

N
u
m

b
e
r

o
f

C
a
se

s

16

7 6

21

Figure 4.8: Energy consumption rank of the culript app.

Is the culprit app always the biggest energy consumer? As discussed

in Section 4.1, one may wonder if existing energy-profiling tools would suffice

by simply showing users the top energy consuming app in times of ABD. Our

data collected in the user study suggest otherwise. As illustrated in Figure 4.8
2, only 32% (16) of the cases have a culprit app that ranked #1 in energy use.

In almost half (21) of the ABD cases, the rank of the culprit app was actually

greater than three. This indicates that existing energy-profiling tools fall short

in helping users diagnosing most ABD issues.

0 20 40 60 80 100120140160180

Number of Apps

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti

o
n

Figure 4.9: Distribution of the number of apps.

How many apps were monitored and how many events happened? One

may wonder in the user study how large the pools of apps and events were for

eDoctor to identify the culprits. Note that apps that eDoctor needs to monitor

may also include background apps/services that the user was not aware of. As

2The number at the top indicates the number of ABD cases, e.g., in 21 cases the rank is
equal to or greater than 4.

58

Figure 4.9 shows, for at least 60% of the users, more than 120 apps were run,

including those pre-installed apps on the phone.

0 50 100 150 200 250 300 350

Number of Events

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti

o
n

Figure 4.10: Distribution of the number of events.

We also found that many energy-related events happened on the phone dur-

ing the user study time period (7–10 days). As Figure 4.10 shows, 60% of the

users had at least 50 events taking place. This brings a big challenges to users to

diagnose, especially many of the events take place without the users’ awareness,

e.g., automatic app upgrade.

As shown before, eDoctor could diagnose culprits among all these events and

monitored apps with high accuracy.

Phase Distribution

To further understand the phase behavior of smartphone apps, we also examined

how many normal phases smartphone apps may have. Figure 4.11 shows the

cumulative distribution of all 1,890 apps we monitored during the user study.

The most important observation is that most apps have a small number of major

phases in normal cases. For example, if using RTV (i.e., identifying phases based

on resource type), about 80% of the apps have only 1 major phase in normal

use and another 13% have only 2. If using RUV (i.e., considering resource usage

amount), apps have more major phases but still limited — 80% of the apps have

4 different phases.

Section 4.2 described RUV’s normalization method to CPU time. The blue

dashed line in Figure 4.11 3 compares the number of phases with and without

normalization. As shown, normalization reduces the number of phases. Nearly

75% of the apps after normalization have only 1 normal phase, making eDoctorś

SN-Phase based diagnosis easier.

3We only consider the major phases that account for 80% of the total execution time.

59

0 2 4 6 8 10 12 14
Number of Phases (Top 80%)

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 D

is
tr
ib

u
ti
o
n

Resource Type
Resource Usage
Resource Usage (Normalized)

Figure 4.11: The cumulative distribution of number of phases across 1,890 apps
we monitored on real user phones during the user study.

4.4.2 Performance Evaluation

We measure the performance of both the online Diagnosis Engine and the offline

Data Analyzer, because both of then involve heavy computation.

In online diagnosis, the most time-consuming step is detecting abnormal

resource usage in apps. The processing time depends on the number of apps, so

we measure the time of analyzing each app. As Figure 4.12 shows, the Diagnosis

Engine spends about 30 ms in de-serializing phase table data and about 75 ms

in computation for each app. Each bar presents the mean and standard error

of the time of diagnosing 25 apps respectively. According to our experiments,

eDoctor selects the top suspicious apps (top apps that consume 90% of the

energy among all apps) to further analyze, so the app diagnosis can be done

within 2 seconds. The total diagnosis is within 2.5 seconds.

During offline data analysis, processing app resource usage data costs most

of the time. Processing time is affected by the number of apps and the amount

of collected data. Figure 4.13 shows the per-app processing time breakdown by

three steps: (a) loading and pre-processing raw data; (b) applying phase analysis

and update the phase table; and (c) serializing results. As the data show (Y-

axis is in log-scale), step (a) dominates the time due to the large amount of

data that need to be processed. The SQLite database engine on Android also

has limited performance for large data [99]. This step can be further optimized

(e.g., compressing data or ignoring rarely used apps) in the future. We believe

that relatively long processing time is not a critical issue because offline analysis

is done when the phone is connected to power supply and not being used by the

60

1 7 14 21
0

10

20

30

40

50

60

70

80

90

Size (# of days) of Training Dataset Used
P

er
−

ap
p

D
ia

gn
os

is
 T

im
e

(in
 m

s)

De−serialization
Detection

Figure 4.12: Anomaly detection (on-line) time breakdown per app.

user.

1 7 14 21
10

0

10
1

10
2

10
3

10
4

Size (# of days) of Dataset Being Analyzed

P
er

−
ap

p
A

na
ly

si
s

T
im

e
(in

 m
s)

Pre−Processing
Phase Analysis
Serializing Result

Figure 4.13: Data analysis (off-line) time breakdown per app.

4.4.3 Overhead Evaluation

Since eDoctor’s Information Collector runs in the background on a phone from

time to time (once per 5 minutes by default when the phone is inactive), the

overhead can be a concern. In this section, we report measurements of the

energy, storage, and memory overhead of eDoctor on a Nexus One device with

60 apps installed.

Battery Consumption Overhead

We directly measured eDoctor’s battery consumption on the Nexus One device.

We used a National Instruments NI USB-6210 DAQ to measure the voltage and

current on the battery and calculate the power consumption of the entire device.

61

As shown in Figure 4.14, running eDoctor added only 1.5% power overhead to

an idle Nexus One (82.5mW) which had no user interaction but only ran built-in

system software with Wi-Fi and radio signal enabled. In the figure, baseline (the

first three bars): idle Nexus One phone with Wi-Fi and radio signal enabled.

eDoctor collects all 60 apps’ resource usage on this phone (the fourth bar).

In practice, eDoctor’s percentage overhead should be even lower since the

user’s ordinary use of a phone and additional apps running in the background

would wake up the phone. In this case, eDoctor can simply piggyback to collect

the resource usage information. The low overhead of eDoctor is not surprising.

Instead of monitoring resource usage by itself, eDoctor leverages the low-level

resource usage information that is already collected by the Android OS and used

for Android’s built-in “Battery Usage” utility.

Idle +WiFi +Radio +eDoctor (60)
0
10
20
30
40
50
60
70
80
90

Po
w
e
r
(m

W
)

Base Line
Overhead

Figure 4.14: eDoctor’s battery consumption overhead for data collection.

Storage Overhead

Storage is limited on smartphones, so it is also important for eDoctor to use

a small amount of internal flash storage. The main storage consumption by

eDoctor is (1) the periodically collected resource data and (2) the table that

contains phase information. We measured the storage overhead by running a

phone with a default setting of eDoctor for 24 hours. Since the number of

apps affects storage overhead, we ran the experiments with 50, 70 and 100 apps

installed respectively. Table 4.4 shows that eDoctor used about 2MB per day

at most (with even 100 apps). Since eDoctor only keeps information in the

past week (configurable), it would use around 15MB storage — an acceptable

amount, especially considering that modern smartphones now provide several

gigabytes of storage.

Memory Overhead

We used TrepnTM Profiler [43] to measure eDoctor’s memory overhead. di-

agnostic tool that lets you profile the performance and power consumption of

Android applications running on devices featuring Qualcomm Snapdragon pro-

62

Number of apps 50 75 100

Data size (24 hours) 920 KB 1426 KB 1915 KB

Phase information 108 KB 162 KB 216 KB

Total 1028 KB 1588 KB 2131 KB

Table 4.4: Storage used by eDoctor.

cessors. eDoctor’s memory footprint was small, 23.3 – 25.2MB, when it ran for

data collection. Memory usage did not increase much over time since the data

collected were written to flash storage.

4.5 Limitations and Discussions

4.5.1 What Cases eDoctor Cannot Diagnose?

As shown, eDoctor falls short if the abnormal phase where ABD occurs also

occurs frequently in the past. However, we find that such cases are relatively

rare (e.g., 6%). Another difficult case for eDoctor is that the user happens to

install or upgrade two apps at similar times, one normal but energy-savvy, and

the other abnormal with an ABD-causing bug. In this case (even though it never

happened in our user study with 31 participants for 7–10 days), eDoctor regards

both as suspects. Since it reports only the top ranked app to the user, it may

result in mis-diagnosis. It may be useful to report both apps, or even better, try

to fix one first, and if not resolving ABD, roll back and fix the other. Finally,

eDoctor cannot diagnose cases where the causing event happened sufficiently far

in the past where eDoctor does not have the event or resource usage information

any more (due to storage constraints). In this case, eDoctor could instead flush

the history to a remote server.

4.5.2 Is eDoctor Limited to Android?

Although we implemented eDoctor on Android, its approach is not limited to

any particular platform. We chose Android because of its openness that allowed

us to take advantage of the battery usage information without users having

to jailbreak their phones. For other platforms, similar ideas can certainly be

implemented by the original platform builder.

4.5.3 Alternative Approaches

While eDoctor leverages the phase behavior of programs to identify abnormal

apps, there can be other approaches. For example, one alternative is to analyze

the energy consumption history and use signal processing techniques to detect

abnormal energy consumption in a way similar to network traffic monitoring for

63

intrusion detection [52]. But such techniques may have large false positives as

reported in previous studies, e.g., network monitoring. Another approach is to

use a dynamic bug detector to catch battery bugs dynamically. It may have an

overhead problem since it needs to monitor at the instruction-level. It may not

work for cases caused by unknown bug patterns or misconfiguration.

Using Statistic Approaches Detecting Abnormal Usage

We have also tried several different statistic approaches to detect abnormal

usage.

eDoctor periodically collects a set of variables regarding per-app resource

usage. A key observation is that when an app behaves normally, its usage of

underlying resources likely follows certain patterns. Such patterns can be of

two main types: (1) the variable values are mostly within a certain range, and

(2) across variables, their values conform to linear relationships. If later any

patterns are found to be broken, it is a good indicator of abnormal behaviors.

For instance, in the Facebook bug (Table 1.1-a), the variable “periods of time

when running in foreground” and the variable “periods of time when holding

wakelock” are usually closely correlated, exhibiting an inter-variable pattern.

But after the bug is introduced, the pattern breaks because the app holds wake-

lock even when it is not being actively used. Another example is a “Rhapsody”

bug. Since this popular music streaming app needs to download and play music

data, normally the ratio between variable “amount of received data” and “when

(app) using CPU” is relatively stable. Due to a bug, however, this pattern

breaks because the app continues occupying CPU even if the user has turned

on Airplane mode (a mode that closes all radio and networking connections).

The goal is to derive patterns about both per-variable ranges and inter-

variable relationships from the collected raw data. There are two major chal-

lenges: (1) How to accurately capture inter-variable relationship? The analysis

technique needs to characterize the most important correlations (if any) among

any numbers of variables. Further, this should be achieved without having se-

mantic knowledge about app functions or configurations. (2) How to filter out

noise? Apps occasionally use some resources without clear patterns. Such usage

does not differentiate normal and abnormal states, thus should be filtered out.

To address these challenges, we use a statistical method known as principal

component analysis (PCA) [69]. The goal of PCA is to identify the most signifi-

cant components of variability in high dimensional data. The method works by

computing the low dimensional subspace in which the data exhibits the most

variance; the basis vectors of this subspace are found from the top eigenvectors

of the data’s covariance matrix. PCA can be used for anomaly detection by

computing the components of each pattern that lie inside and orthogonal to

this subspace. If a pattern contains a large orthogonal component, then it is

labeled an anomaly.

64

Here we apply PCA to the resource usage data of each app. We use PCA to

determine the typical variabilities in such data as occur during normal usage.

Once these variabilities are identified, we then monitor subsequent resource us-

age for significantly different components of variability. When such components

are present in the data, it indicates that an app is behaving abnormally.

More specifically, we treat each record of an app’s resource usage as a p-

dimensional vector ~v ∈ ℜp. The p elements of these vectors measure the usage

of different types of resources during a small time period. We apply PCA to

the usage record vectors collected during each app’s normal execution without

battery drain symptoms. We compute the covariance matrix of this data and

identify its top k eigenvectors (~e1, ~e2, . . . , ~ek) as the k principal components of

variability during normal execution.

Online Diagnosis. We detect anomalies in new resource usage vectors by

computing the distance that they lie from the subspace spanned by the top k

principal components (as derived from Data Analyzer, Section 4.3.2). For a

vector ~v, this distance is given by d =

√

∑p

i=1 v2
i −

∑k

i=1(~v · ~ei)2 (Eq. 2), where

the eigenvectors ~ei are assumed to be normalized to unit length. We label

the resource usage as abnormal if this distance exceeds a particular threshold

d > dthresh.

0 20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Index

c[1
:1

05
]

Figure 4.15: Applying PCA-based approach on the bug in the Facebook App.

Figure 4.15 illustrates the idea with the bug in the Facebook App. The

white circles are data points collected from a version without the bug, and the

red circles are the data points collected from the version with the bug. The Y-

axis value is the distance of the resource usage vector from the subspace spanned

by the top k principal components. As it shows, these abnormal data points are

obviously farthur away from the subspace comparing to the normal ones.

65

There are two free parameters in the above framework that must be deter-

mined heuristically. The first is the number of principal components, k, used

to represent the variability during normal usage of each app. We select this

value so that the top k principal components capture at least 95% of the data’s

variance. (Put another way, we choose k such that the top k eigenvalues of the

covariance matrix sum to over 95% of its trace.) This heuristic is recommended

for many applications of PCA.

The second free parameter in this framework is the threshold dthresh. We

choose this threshold heuristically by examining histograms of distances from

Eq. 2 during normal and abnormal resource usage. In practice, an effective

threshold is one that covers about 90% of the distances observed during normal

usage.

We have test PCA-based approaches in some in-lab experiements. It works

well for many ABD issues, but it has some inherited disadvantages. When an

app has two relatively different usage scenarios, which may have two relatively

different multi-variable patrerns among its usage data. This will confused PCA

to make wrong decision. It is not uncommon to complex apps like the Facebook

app.

66

5 Related Work

5.1 Energy Consumption Modeling and

Measurement

Work has been done to model and measure energy consumption on smartphones,

providing guidance on energy-efficient software development.

Shye et al. [98] study mobile architectures in their natural environment –

in the hands of the end user. Specifically, it develops a logger application for

Android G1 mobile phones and releases the logger into the wild to collect traces

of real user activity. It then shows how the traces can be used to characterize

power consumption, and guide the development of power optimizations. To

quantitivly measure power consumption, it presents a regression-based power

estimation model that only relies on easily-accessible measurements collected by

our logger. The model accurately estimates power consumption and provides

insights about the power breakdown among hardware components.

Solid energy management requires a good understanding of where and how

the energy is used. Carroll and Gernot [54] present a detailed analysis of the

power consumption of a recent mobile phone, the Openmoko Neo Freerunner.

They measure not only overall system power, but the exact breakdown of power

consumption by the devices main hardware components. They present this

power breakdown for micro-benchmarks as well as for a number of realistic usage

scenarios. In addition, they also validate these results by two other devices: the

HTC Dream and Google Nexus One.

Zhang et al. [104] presents an on-line power estimation and model generation

framework. It is designed for developers to have detailed profiling information.

The PowerTutor power estimation tool informs smartphone developers of the

power consumption implications of decisions about application design and use.

The power model in PowerTutor includes six components: CPU and LCD as

well as GPS, Wi-Fi, audio, and cellular interfaces. For 10-second intervals, it

is accurate to within 0.8% on average with at most 2.5% error. More impor-

tantly, this papers makes a pratical contribution - a software implementation

of the power estimation tool has been publicly released on the Google Android.

Application Market.

Pathak, et al. [84] presents a system-call-based power modeling approach

which gracefully captures both utilization-based and nonutilization-based power

67

behavior. The experimental results on Android and Windows Mobile using a

diverse set of applications show that the new model drastically improves the

accuracy of fine-grained energy estimation as well as wholeapplication energy

estimation. We further presented a proof-of-concept demonstration of eprof,

the energy-counterpart of gprof, for optimizing the energy usage of application

programs. Its power modeling study also exposed significant diversity of power

behavior of different OSes and smartphone handsets. As a continous work,

Pathak, et al. [83] uses eprof to analyze energy consumption of several popular

apps. Eprof sheds lights on internal energy dissipation of these apps and exposes

surprising findings like 65%-75% of energy in free apps is spent in third-party

advertisement modules. Eprof also reveals several wakelock bugs, a family of

energy bugs in smartphone apps, and effectively pinpoints their location in the

source code.

Both [104] and [84] are useful for developers to understand how software

consumes energy. However, in order to get accurate estimation, these work

introduce high overhead to log power usage trace. In contrast, eDoctor has a

different goal. Instead of providing detailed and accurate power consumption

to developers, eDoctor aims to diagnose why battery drains. It logs resource

usage data in a coarse granularity, which is enough to detect abnormal usage

and compare relative energy consumption between apps.

5.2 Abnormal Energy Usage Detection

Kim et al. [71] proposes a power-aware malware-detection framework. This

work also detects abnormal energy usage, however, there are some major differ-

ences: (1) while they model power for detection only, we more sensitively model

resource usage, power, and app/system events, so that we can automatically

diagnose and resolve the issues; (2) their target is malware, whereas we focus

on general ABD issues; such different threat models result in many different

design choices; (3) while their evaluation only considers proof-of-concept mal-

ware, we have evaluated real-world apps by user study, demonstrating eDoctor’s

effectiveness and practicability.

5.3 Energy-efficient System Design

A lot of work has been done to build more energy-efficient smartphone system,

which cover the wide spectrum of system design, from hardware architecture to

applications.

As smartphones require great computation power, processor designers need

to explore energy efficiency. GreenDroid [67] is a recenlt work that introduces

conservation cores. Conservation cores, or c-cores, are specialized processors

that focus on reducing energy and energy-delay instead of increasing perfor-

68

mance. Its results show that conservation cores can reduce energy consumption

by up to 16.0x for functions and by up to 2.1x for whole applications, while

patching can extend the useful lifetime of individual c-cores to match that of

conventional processors.

Operating systems on smartphones also require special design and tech-

niques to reserve energy. ECOSystem [103] explores how to support energy

as a first-class operating system resource. To traditional operating system, en-

ergy, because of its global system nature, presents challenges beyond those of

conventional resource management. To meet these challenges ECOSystem pro-

poses the Currentcy Model that unifies energy accounting over diverse hardware

components and enables fair allocation of available energy among applications.

Experimental results show that ECOSystem accurately accounts for the energy

consumed by asynchronous device operation, can achieve a target battery life-

time, and proportionally shares the limited energy resource among competing

tasks.

Cinder OS [93]) uses techniques similar to existing systems to model device

energy use, while going beyond the capabilities of current operating systems

by providing an IPC system that fundamentally accounts for resource usage on

behalf of principals. It extends this accounting to add subdivision and delega-

tion, using its reserve and tap abstractions.We have described and applied this

system to a variety of applications demonstrating, in particular, their ability to

partition applications to energy bounds even with complex policies.

Besides re-designing the whole operating system, work has been conducted

to make sub-components of an operating system more energy efficient. Anand

et al. proposed interfaces that allow apps to actively query device states and

issue ghost hints, based on which a middleware layer can support adaptive disk

cache management, thus preserving energy [50]. quFiles [100] is a file-system

abstraction for representing logical data in different contexts, with which energy

consumption can be saved by storage optimizations. Lebeck et al. [75] proposes

page allocation schemes to reduce energy consumption and access delay. Coop-

erative I/O [101] suggests a new I/O interface for apps to defer requests in order

to create longer idle period for devices to stay in low-power mode. MAUI [57]

automatically off-loads computation to remote servers to save energy on smart-

phones. Bickford et al. [53] studies the tradeoffs between security versus energy

in malware detection.

The LED display on smartphones are also among the most energy consuming

hardware components. Anand et al. [48] shows how tone mapping techniques

can be used to dynamically increase the image brightness, thus allowing the LCD

backlight levels to be reduced. This saves significant power as the majority of

the LCDs display power is consumed by its backlight. Its measured analytical

results for two different games (Quake III and Planeshift), and user study results

(using Quake III and 60 participants) shows that it can save up to 68% of the

display power without significantly affecting the perceived gameplay quality.

69

Dong et al. [60] presents Chameleon, a color-adaptive mobile web browser to

reduce the energy consumption by OLED mobile systems. Chameleon is able

to reduce the system power consumption of OLED smartphones by over 41%

for web browsing, without introducing any user noticeable delay

Wireless networking is also critical to smartphone battery life. STPM [49]

is a scheme of self-tuning power management in wireless networks. It adapts

to hardware/software environments, and reduces total energy usage of mobile

devices. SALSA [92] is an algorithm that automatically adapts to networking

channel conditions and requires only local information to decide whether and

when to defer large data transmission to save energy. Bartendr [95] schedules

cellular data transmission in an energy-efficient fashion based on signal strength

prediction. PGTP [47] is an energy-efficient transport protocol for multi-player

mobile games. SleepWell [78] achieves energy efficiency by evading Wi-Fi net-

work contention.

Research has also been done to improve the energy efficiency of high level

application and services, e.g., location service (Micro-blog [65], EnTracked [72],

EnLoc [55] and A-loc [77]).

The above previous work achieves great improvement in smartphone bat-

tery usage, yet as discussed before they only focus on normal circumstances,

i.e., where energy is indeed needed for expected system/app behaviors. In com-

parison, eDoctor targets at a different yet increasingly important set of problems

- abnormal battery drain. It can be noticed that eDoctor also adopts ideas of

the above work to minimize its own energy consumption.

5.4 Abnormal Battery Drain Studies

As a result of the paradigm shift in smartphone industry (discussed in Sec-

tion 1), ABD issues become an emerging research topic that drawn new atten-

tion. Pathak et al. [82] also studies characteristics of battery issues on Android

system. Our study shares common findings with [82], but there are also many

differences. For example, we find very few cases (2.6%) where the battery be-

comes bad, but [82] finds 15.7% of the cases of this type. We think the reason

of contradictory findings are the result of different methodologies. First, [82]

counts “post” whereas our study counts “thread”. Counting “post” may not be

able to well present the distribution of types of issues, because a post could be a

reply, not inquiry of an issue. Second, [82] uses machine learning approaches to

cluster “post”, whereas we manually read each “thread” in our study. Machine

learning approach is more scalable, but it may also introduce errors. Last but

not least, our work applies what learned from the characteristic study to design,

implement and evaluate eDoctor, a tool that automatically helps users diagnose

and fix ABD issues.

70

6 Conclusion

6.1 Thesis Achievements

The past few years have witnessed an evolutionary change in the smartphone

ecosystem. Smartphones have gone from closed platforms containing only pre-

installed applications to open platforms hosting a variety of third-party appli-

cations. Unfortunately, this change has also led to a rapid increase in Abnormal

Battery Drain (ABD) problems that can be caused by software defects, mis-

configuration, or environmental changes. Such issues can drain a fully-charged

battery within a couple of hours, and can potentially affect a significant number

of users.

The main contribution of this thesis is to understand ABD issues and their

causes, help smartphone users diagnose ABD issues and assist app developers

prevent software bugs that may cause ABD.

• We conducted an empirical study of 537 real-world user-reported battery

drain issues sampled from five major smartphone forums (Section 2.1).

They covered the two most popular mobile platforms, Android and iOS.

We developed a taxonomy for these battery drain issues, and identified

their distribtuion in the real world. We found that software problems

accounted for a significant portion of the battery drain issues (39.2% on

Android, 35.1% on iOS) compared to other root causes.

• We designed and implemented eDoctor, a practical tool to help users trou-

bleshoot ABD issues on smartphones. eDoctor runs as a light-weight ser-

vice on a smartphone to record resource usage and relevant events. It then

uses this information to diagnose ABD issues and suggest resolutions. To

be practical, eDoctor meets several objectives, including (1) low monitor-

ing overhead (including both performance and battery usage), (2) high

diagnosis accuracy and (3) little human involvement. In our user study

with 21 ABD issues and 31 participants, eDoctor successfully diagnosed

47 out of 50 cases with only small battery and storage overhead.

• We study 117 battery-related software problems in the Android operating

system (with about four years of development history) and 29 popular

open source Android apps. From them, we characterized common mistakes

programmers make that could lead to battery drain. Based on the results,

we provide practical implications for system and app developers.

71

6.2 Future Work

We plan to release eDoctor on Google Play so that it can help real users while

also collect feedback for further improvement. By doing so, we can also extend

eDoctor in many ways. For example:

• Collecting phase information from massive amount of users to improve

the accuracy of diagnosis. We have found that phase behaviors of a given

app are relatively consistant across different users in our user study. How-

ever, apps with complicated features may have different usage patterns by

different usage scenarios.

• Evaluating energy consumption of apps that have similar features and

recommending energy-conservative apps. As we discussed before, energy

efficiency is often ignore by developers, because (1) one single app is not an

obiviously significant energy consumer even if it is not energy efficient and

(2) users’ purchasing decisions are largely made on app features and user

interfaces. To encourge developers to put more effort on energy efficiency

and improve overall battery life for users, we can build an energy efficiency

evaluation system based on data from massive users.

More generally, even though eDoctor uses phase behavior and identification

to diagnose ABD issues, we believe that it may be useful for other purposes as

well, e.g., detecting information leakage, viruses, etc.

We foresee many opportunities to apply static analysis on smartphone apps

to prevent energy bugs. In particular, we believe model checking is a suitable

technology to analyze smartphone app source code because of its event-driven

programming model.

Besides static analysis on source code, profiling application execution is also

a promising approach to optimize energy usage and detect energy bugs. The

information collected by eDoctor can be directly used by developers to diagnose

some of the resource leak bugs.

72

References

[1] http://developer.android.com/guide/components/services.html.

[2] 4g network drains battery fast. http://goo.gl/4WumI.

[3] Adding more email accounts drains battery. http://goo.gl/Tqyjl.

[4] Android 1.6 platform highlights - battery usage indicator. http://goo.

gl/yQwui.

[5] Android central forum. http://www.androidcentral.com/.

[6] Android forum. http://androidforums.com/.

[7] Apple support forum. https://discussions.apple.com/.

[8] comscore reports august 2011 u.s. mobile subscriber market share. http:
//goo.gl/JTj9C.

[9] Droid forum. http://www.droidforums.net/.

[10] Facebook mobile app stats shocker. http://goo.gl/8HKW7.

[11] Frequent email update drain battery. http://goo.gl/1Ibph.

[12] Gallery sync with picasa albums. http://goo.gl/aSPxC.

[13] Google io 2012 keynote. http://goo.gl/Fo2i0.

[14] Heavy battery drain after gingerbread upgrade on nexus one.
http://goo.gl/OkVGi.

[15] ios 5.0.2 is coming next week to solve your iphone 4s battery problems.
http://goo.gl/Cf89V.

[16] ios app programming guide - app states and multitasking. http://bit.

ly/GGzDpw.

[17] Is facebook ’live feeds sync’ causing our battery drain? http://goo.gl/

uQmBL.

[18] Java pathfinder. http://babelfish.arc.nasa.gov/trac/jpf.

[19] Macrumor forum. http://forums.macrumors.com/.

[20] Number of available android applications. http://goo.gl/Mmuu4.

[21] Our bug reports. http://goo.gl/5c5mb.

[22] Patch: Audiotrack - extend callback thread sleep time. http://goo.gl/

sa6AP.

[23] Patch: Enable keeping bt chip in low power mode. http://goo.gl/d1ZtD.

73

[24] Patch: Fix wakelock leak for interrupted rpc call/reply. http://goo.gl/
enKvT.

[25] Patch: Gpslocationprovider eliminate min fix count. http://goo.gl/

CzyWB.

[26] Patch: Implement smartreply and smartforward for eas. http://goo.gl/
LJ7ba.

[27] Patch in android browser: Stop the loading after wakelock timeout. http:
//goo.gl/kgwcq.

[28] Patch in mytrack: Fixing wakelock being held for too long. http://goo.
gl/m3jFx.

[29] Patch: Near-final tweaks to sync timeouts and logging. http://goo.gl/
vOGp9.

[30] Patch: Nfc enable low-power rf polling feature. http://goo.gl/3akSO.

[31] Patch: Reduce battery drain caused by insainly high value of widget up-
date. http://goo.gl/dOB8O.

[32] Patch: Release wakelock on ril request send error. http://goo.gl/YvENw.

[33] Patch: Release wakelock when power removed. http://goo.gl/D1uWa.

[34] Patch: Set maximum screen off cpu frequency to 700mhz. http://goo.

gl/CAmwQ.

[35] Patch: Shut down the sockets at an earlier point. http://goo.gl/uWfxS.

[36] Patch: Tune notification led blink ramping to reduce power. http://goo.
gl/CFxbx.

[37] Patch: Used setinexactrepeating() to fire alarms if appropriate. http:

//goo.gl/j7lGn.

[38] Patch: Wifi power management change. http://goo.gl/yzuIY.

[39] Remove the tree map in the http headers. http://goo.gl/cxpXI.

[40] Smart phones overtake client pcs in 2011. http://goo.gl/iT86O.

[41] Sprint forum: Htc evo maintenance release - android 2.3 (4.24.651.1).
http://goo.gl/SUiPF.

[42] Suffering from 24% per hour drain. http://goo.gl/d1Ajh.

[43] Trepn TMprofiler. http://goo.gl/0LPyM.

[44] Turning on bluetooth drains battery. http://goo.gl/Kcs3q.

[45] Turning on locaton service drains battery. http://goo.gl/tR3r3.

[46] Wikipedia: ios app store. http://goo.gl/iz8ru.

[47] B. Anand, J. Sebastian, S. Ming, A. Ananda, M. Chan, and R. Balan.
Pgtp: Power aware game transport protocol for multi-player mobile
games. In 2011 International Conference on Communications and Sig-
nal Processing (ICCSP), pages 399–404.

74

[48] B. Anand, K. Thirugnanam, J. Sebastian, P. G. Kannan, A. L. Ananda,
M. C. Chan, and R. K. Balan. Adaptive display power management for
mobile games. In Proceedings of the 9th international conference on Mobile
systems, applications, and services, MobiSys ’11, pages 57–70. ACM, 2011.

[49] M. Anand, E. B. Nightingale, and J. Flinn. Self-tuning wireless network
power management. MobiCom ’03, pages 176–189. ACM, 2003.

[50] M. Anand, E. B. Nightingale, and J. Flinn. Ghosts in the machine: in-
terfaces for better power management. In Proceedings of the 9th interna-
tional conference on Mobile systems, applications, and services, MobiSys
’04, pages 23–35. ACM, 2004.

[51] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani. En-
ergy consumption in mobile phones: a measurement study and implica-
tions for network applications. In Proceedings of the 9th ACM SIGCOMM
conference on Internet measurement conference, IMC ’09, pages 280–293.
ACM, 2009.

[52] P. Barford, J. Kline, D. Plonka, and A. Ron. A signal analysis of network
traffic anomalies. In In Internet Measurement Workshop, pages 71–82,
2002.

[53] J. Bickford, H. A. Lagar-Cavilla, A. Varshavsky, V. Ganapathy, and
L. Iftode. Security versus energy tradeoffs in host-based mobile malware
detection. In Proceedings of the 9th international conference on Mobile
systems, applications, and services, MobiSys ’11, pages 225–238. ACM,
2011.

[54] A. Carroll and G. Heiser. An analysis of power consumption in a smart-
phone. In Proc. of the 2010 USENIX conference on USENIX annual
technical conference, USENIXATC’10, pages 21–21. USENIX Association,
2010.

[55] I. Constandache, S. Gaonkar, M. Sayler, R. Choudhury, and L. Cox. En-
Loc: Energy-efficient localization for mobile phones. In INFOCOM 2009,
IEEE, pages 2716–2720, 2009.

[56] R. Cozza, C. Milanesi, A. Gupta, H. J. D. L. Vergne, A. Zimmermann,
C. Lu, A. Sato, and T. H. Nguyen. Competitive landscape: Mobile devices,
worldwide, 3q10. Gartner Research Report, 2010.

[57] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl. Maui: making smartphones last longer with
code offload. In Proceedings of the 8th international conference on Mo-
bile systems, applications, and services, MobiSys ’10, pages 49–62. ACM,
2010.

[58] CyanogenMod. Cyanogenmod commit: Get the wakelock only if it isn’t
held already. http://goo.gl/8veZf.

[59] A. S. Dhodapkar and J. E. Smith. Comparing program phase detection
techniques. MICRO 36, pages 217–, Washington, DC, USA, 2003. IEEE
Computer Society.

[60] M. Dong and L. Zhong. Chameleon: a color-adaptive web browser for
mobile oled displays. In Proceedings of the 9th international conference
on Mobile systems, applications, and services, MobiSys ’11, pages 85–98.
ACM, 2011.

75

[61] M. Dong and L. Zhong. Self-constructive high-rate system energy model-
ing for battery-powered mobile systems. In Proceedings of the 9th interna-
tional conference on Mobile systems, applications, and services, MobiSys
’11, pages 335–348, New York, NY, USA, 2011. ACM.

[62] E. Duesterwald, C. Cascaval, and S. Dwarkadas. Characterizing and pre-
dicting program behavior and its variability. PACT ’03, pages 220–, Wash-
ington, DC, USA, 2003. IEEE Computer Society.

[63] D. Freedman, R. Pisani, and R. Purves. Statistics, 3rd Edition. W. W.
Norton & Company., 1997.

[64] D. Freedman, R. Pisani, and R. Purves. Statistics, 3rd Edition. W. W.
Norton & Company., 1997.

[65] S. Gaonkar, J. Li, R. R. Choudhury, L. Cox, and A. Schmidt. Micro-
blog: sharing and querying content through mobile phones and social
participation. In Proceedings of the 6th international conference on Mobile
systems, applications, and services, MobiSys ’08, pages 174–186. ACM,
2008.

[66] Google. Android activity lifecycle. http://goo.gl/5xvtY.

[67] N. Goulding-Hotta, J. Sampson, G. Venkatesh, S. Garcia, J. Auricchio,
P.-C. Huang, M. Arora, S. Nath, V. Bhatt, J. Babb, S. Swanson, and
M. Taylor. The greendroid mobile application processor: An architecture
for silicon’s dark future. IEEE Micro, 31:86–95, March 2011.

[68] M. C. Huang, J. Renau, and J. Torrellas. Positional adaptation of pro-
cessors: application to energy reduction. ISCA ’03, pages 157–168, New
York, NY, USA, 2003. ACM.

[69] I. T. Jolliffe. Principal Component Analysis. Springer, second edition,
Oct. 2002.

[70] K9Mail. K9mail commit: Fixed battery drain and delete messages. http:
//goo.gl/yIXpV.

[71] H. Kim, J. Smith, and K. G. Shin. Detecting energy-greedy anomalies
and mobile malware variants. In Proceedings of the 6th international con-
ference on Mobile systems, applications, and services, MobiSys ’08, pages
239–252. ACM, 2008.

[72] M. B. Kjǽgaard, J. Langdal, T. Godsk, and T. Toftkjǽr. Entracked:
energy-efficient robust position tracking for mobile devices. In Proceedings
of the 7th international conference on Mobile systems, applications, and
services, MobiSys ’09, pages 221–234. ACM, 2009.

[73] Lateroid. Juicedefender, an battery saving application on android. http:
//latedroid.com/juicedefender.

[74] J. Lau, E. Perelman, G. Hamerly, T. Sherwood, and B. Calder. Motivation
for variable length intervals and hierarchical phase behavior. In Proceed-
ings of the IEEE International Symposium on Performance Analysis of
Systems and Software, 2005, ISPASS ’05, pages 135–146, Washington,
DC, USA, 2005. IEEE Computer Society.

[75] A. R. Lebeck, X. Fan, H. Zeng, and C. Ellis. Power aware page allocation.
SIGARCH Comput. Archit. News, 28:105–116.

76

[76] F. X. Lin, Z. Wang, R. LiKamWa, and L. Zhong. Reflex: using low-power
processors in smartphones without knowing them. ASPLOS ’12, pages
13–24, New York, NY, USA, 2012. ACM.

[77] K. Lin, A. Kansal, D. Lymberopoulos, and F. Zhao. Energy-accuracy
trade-off for continuous mobile device location. In Proceedings of the 8th
international conference on Mobile systems, applications, and services,
MobiSys ’10, pages 285–298. ACM, 2010.

[78] J. Manweiler and R. Roy Choudhury. Avoiding the rush hours: Wifi en-
ergy management via traffic isolation. In Proceedings of the 9th interna-
tional conference on Mobile systems, applications, and services, MobiSys
’11, pages 253–266. ACM, 2011.

[79] M. Musuvathi and D. R. Engler. Model checking large network proto-
col implementations. In Proceedings of the 1st conference on Symposium
on Networked Systems Design and Implementation - Volume 1, NSDI’04,
pages 12–12, Berkeley, CA, USA, 2004. USENIX Association.

[80] M. Musuvathi, S. Qadeer, and T. Ball. Chess: A systematic testing tool
for concurrent software, 2007.

[81] M. Owens. The Definitive Guide to SQLite. Apress, 2003.

[82] A. Pathak, Y. C. Hu, and M. Zhang. Bootstrapping energy debugging on
smartphones: A first look at energy bugs in mobile devices. HotNets ’11.
ACM, 2011.

[83] A. Pathak, Y. C. Hu, and M. Zhang. Where is the energy spent inside
my app?: fine grained energy accounting on smartphones with eprof. In
EuroSys, pages 29–42, 2012.

[84] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang. Fine-grained
power modeling for smartphones using system call tracing. In Proceedings
of the sixth conference on Computer systems, EuroSys ’11, pages 153–168.
ACM, 2011.

[85] A. Pathak, A. Jindal, Y. C. Hu, and S. Midkiff. Characterizing and
detecting nosleep energy bugs in smartphones apps. In Mobisys, 2012.

[86] A. Pathak, A. Jindal, Y. C. Hu, and S. Midkiff. Characterizing and
detecting nosleep energy bugs in smartphones apps. In ECE Technical
Reports, Purdue University, 2012.

[87] A. Pathak, A. Jindal, Y. C. Hu, and S. P. Midkiff. What is keeping
my phone awake?: characterizing and detecting no-sleep energy bugs in
smartphone apps. In Proceedings of the 10th international conference on
Mobile systems, applications, and services, MobiSys ’12, pages 267–280,
New York, NY, USA, 2012. ACM.

[88] E. Perelman, G. Hamerly, and B. Calder. Picking statistically valid and
early simulation points. PACT ’03, pages 244–, Washington, DC, USA,
2003. IEEE Computer Society.

[89] G. Perrucci, F. Fitzek, G. Sasso, W. Kellerer, and J. Widmer. On the
impact of 2g and 3g network usage for mobile phones’ battery life. Wireless
Conference, pages 255–259, 2009.

77

[90] R. Powers. Batteries for low power electronics. Proc. of the IEEE,
83(4):687–693, apr 1995.

[91] F. Qian, Z. Wang, A. Gerber, Z. Mao, S. Sen, and O. Spatscheck. Pro-
filing resource usage for mobile applications: a cross-layer approach. In
Proceedings of the 9th international conference on Mobile systems, appli-
cations, and services, MobiSys ’11, pages 321–334, New York, NY, USA,
2011. ACM.

[92] M.-R. Ra, J. Paek, A. B. Sharma, R. Govindan, M. H. Krieger, and M. J.
Neely. Energy-delay tradeoffs in smartphone applications. In Proceedings
of the 8th international conference on Mobile systems, applications, and
services, MobiSys ’10, pages 255–270. ACM, 2010.

[93] A. Roy, S. M. Rumble, R. Stutsman, P. Levis, D. Mazières, and N. Zel-
dovich. Energy management in mobile devices with the cinder operating
system. In Proceedings of the sixth conference on Computer systems, Eu-
roSys ’11, pages 139–152. ACM, 2011.

[94] Samsung. Linux kernel shg-i777 commit: Fix fuel alert wakelocks. http:
//goo.gl/Kzu8e.

[95] A. Schulman, V. Navda, R. Ramjee, N. Spring, P. Deshpande,
C. Grunewald, K. Jain, and V. N. Padmanabhan. Bartendr: a prac-
tical approach to energy-aware cellular data scheduling. MobiCom ’10,
pages 85–96. ACM, 2010.

[96] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically
characterizing large scale program behavior. ASPLOS-X, pages 45–57,
New York, NY, USA, 2002. ACM.

[97] T. Sherwood, S. Sair, and B. Calder. Phase tracking and prediction. ISCA
’03, pages 336–349, New York, NY, USA, 2003. ACM.

[98] A. Shye, B. Scholbrock, and G. Memik. Into the wild: studying real user
activity patterns to guide power optimizations for mobile architectures.
MICRO 42, pages 168–178. ACM, 2009.

[99] R. C. Sprinthall. Basic Statistical Analysis: Seventh Edition. Pearson
Education Group, 2006.

[100] K. Veeraraghavan, J. Flinn, E. B. Nightingale, and B. Noble. qufiles: The
right file at the right time. Trans. Storage, 6:12:1–12:28, September 2010.

[101] A. Weissel, B. Beutel, and F. Bellosa. Cooperative I/O: a novel i/o seman-
tics for energy-aware applications. In Proceedings of the 1st conference on
Symposium on Operating Systems Design and Implementation, OSDI ’02,
pages 117–129. ACM, 2002.

[102] J. Yang, P. Twohey, D. Engler, and M. Musuvathi. Using model checking
to find serious file system errors. ACM Trans. Comput. Syst., 24(4):393–
423, Nov. 2006.

[103] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat. Ecosystem: managing
energy as a first class operating system resource. SIGOPS Oper. Syst.
Rev., 36:123–132, October 2002.

78

[104] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao, and
L. Yang. Accurate online power estimation and automatic battery be-
havior based power model generation for smartphones. In Proc. of the
eighth IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis, CODES/ISSS ’10, pages 105–114. ACM,
2010.

79

