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Abstract

In many applications at the sensory edge, such as security and environmen-

tal sensing, reliable sensor nodes must operate for extended time periods

on battery supplies. To meet this constraint, energy-efficient systems have

been developed through different technologies. The primary and the most

effective approach has been technology scaling. Another emerging technique

is to operate circuits in the subthreshold region as some of the applications

such as environmental sensing do not require high throughput. However,

both techniques lead to large process, voltage and temperature variations

and therefore jeopardize system reliability.

In order to achieve both energy savings and system reliability, we take

inspirations from biological methods, such as population-coding, and apply

these methods to a canonical problem of non-coherent (unknown phase) fre-

quency estimation. Energy efficiency is achieved using low cost, overlapping

band-pass filters rather than conventional non-overlapping band-pass filters.

Energy savings are also achieved by operating the hardware at a voltage

lower than the nominal voltage (voltage overscaling), which leads to hardware

timing errors. In the presence of these hardware errors, signal statistics are

generated from overlapping band-pass filters with frequency redundancy. Ro-

bust techniques, such as median estimation and algorithmic noise-tolerance,

are applied to filter outputs to achieve error-tolerance. Energy/performance

trade-offs are further explored by altering the supply voltage. Simulation re-

sults show that the root-mean-squared-error of the bio-inspired method can

be reduced by an order of magnitude relative to that of the conventional ar-

chitecture while achieving an energy consumption reduction of 78% relative

to the conventional method which is under hardware-error-free operations at

nominal supply voltage.
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Chapter 1

Introduction

1.1 Future Computer Workloads and

Perceptual Sensor Network

The past few decades have witnessed dramatic change of computational work-

loads, which used to be CPU centric and could be based on high-end servers

and personal computers. Today’s computational workload features mobile

devices, which are the fastest growing sector in the consumer electronics in-

dustry in the past ten years. Future workloads can be roughly classified

into four categories: high performance computing tasks, complex distributed

systems, personalized services and surrounding perceptual processing sensor

networks. The last category is evolving towards more advanced user inter-

faces [1].

Such emerging applications impose great challenges because there are new

design metrics needed. For example, sensor networks running on batter-

ies need to be energy efficient while low power consumption may be one of

the traditional design constraints. Furthermore, sensor networks have more

stringent requirements on traditional design metrics such as reliability, as

these networks often operate in a highly dynamic and noisy environment.

1.2 Energy-Efficient Digital Signal

Processing

Computational platforms on the sensory edge comprise computational cores

and the input/output components such as sensors and analog-to-digital con-

verters. The computational core is usually implemented using digital circuits
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and consumes energy as given by [2]

E=CV 2
dd, (1.1)

where C is the average switching capacitance and Vdd is the supply volt-

age. This indicates that energy consumption scales down significantly with

technology scaling as both C and Vdd scale down with transistor size until

the 130 nm technology node. Beyond 130 nm technology node, the supply

voltage is kept at 1.2 V to keep the leakage current down. However, new

device technologies such as FinFET [3] could further reduce the supply volt-

age. Nevertheless, transistor feature size scaling has been the major driving

force to reduce energy consumption by digital circuit operation. However,

transistor feature size scaling magnifies variations caused by manufacturing

process, supply voltage fluctuations, temperature hot spots on the chip, and

circuit aging effects [4].

Another recent trend in digital circuit design that achieves low energy

operation at the cost of sacrificing throughput is to operate the circuit in

the sub-threshold regime where the gate-to-source voltage (Vgs) is below

the threshold voltage. As the current scales exponentially with the Vgs in

this regime, the throughput of the system is greatly reduced [5]. Hence,

sub-threshold design is suitable for certain applications such as bio-medical

applications in which the sampling rate is usually in the kilohertz range. Sim-

ilarly to feature size scaling, sub-threshold design achieves energy efficiency

while introducing more susceptibility to process, voltage and temperature

(PVT) variations [6].

In summary, technology scaling and subthreshold circuit design can reduce

circuit energy consumption effectively. However, these trends make digital

circuits exhibit statistical rather deterministic behavior, which leads to the

challenge of error-resilient or error-tolerant digital circuit design.

1.3 Error-Tolerant Digital Signal Processing

In general, redundancy can be used to detect and/or correct hardware errors,

including errors caused by timing violations in digital circuits. Redundancy

can be achieved by either spatial, temporal or spatio-temporal redundancy.

Spatial redundancy in hardware is achieved by adding hardware replicas.
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Figure 1.1: N-modular redundancy (NMR).

NMR consists of N replicas of the original system and a voter, as depicted

in Figure 1.1. The most commonly used NMR is triple modular redundancy

(TMR), having three replicas and a majority voter. If a single hardware

error occurs in any of the three replicas, the other two units can detect and

correct the error by majority voting. However, the implementation requires

the voter to be error-free [7].

The check-point technique (temporal redundancy) uses re-computation or

redundancy in time and divides the datapath into stages. At the end of

each stage the state of the computation is stored so that computations can

be rolled back and recomputed to guarantee a consistent outcome [8]. The

check-point technique is an effective way to correct transient errors.

A recent work (RAZOR) can be viewed as an example of spatio-temporal

redundancy. It aims to correct timing errors caused by PVT variations. Each

pipeline stage incorporates two flip-flops in parallel. One has the normal clock

while the other one (RAZOR flip-flop) has a clock with a delayed edge. The

clock frequency and the supply voltage are set to guarantee that the RAZOR

flip-flop meets the setup and hold time constraints in the worst case. At each

check-point, the two latched data outputs are compared against each other.

Inconsistent results would cause the computation to fall back to the previ-

ous check-point and run again while scaling the supply voltage to meet the
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Figure 1.2: Stochastic sensor network on a chip (SSNOC) [10],[11].

timing constraints [9].

Redundancy can achieve error-tolerance at the expense of energy consump-

tion and therefore counters the energy benefits due to transistor feature size

scaling and subthreshold circuit design.

In some applications, it is possible to introduce redundancy into the system

without significantly increasing the energy consumption overhead. As shown

in Figure 1.2 this technique is applied to the PN-code acquisition problem.

The original main architecture is decomposed into sub-systems (sensors) with

similar output statistics. Results from individual sensors are fed into the fu-

sion block, which is a median filter, to achieve error-tolerance. Redundancy

is achieved with small energy consumption overhead associated with the final

fusion block [10][11]. However, this technique is application specific.
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In this work, bio-inspired signal processing concepts such as population-

coding are explored to develop a robust and energy-efficient bio-inspired com-

putational system.

1.4 Problem Definition

Future computing applications on the sensory edge will be characterized by

very different requirements both for energy consumption and noise tolerance,

with an emphasis on tasks such as sensory data processing, mining and fusion,

detection and recognition, and scene and situation analysis. Neither conven-

tional computing systems nor signal-processing algorithms perform well for

these anticipated future workloads. In contrast, biological systems perform

extraordinarily well in such situations. Biological systems display great ro-

bustness to variation and uncertainty, remarkable abilities to fuse data from

different senses, and incredibly low energy consumption in performing these

tasks.

To demonstrate bio-inspired signal processing concepts, an audio-frequency-

band application is chosen. This application reflects many characteristics of

sensory-edge applications. It is expected that the system design principles ob-

tained for this application apply equally to many other types of sensory data

such as acoustically steered cameras, multi-modal automated light switches,

acoustic omnipresence with anyone else in the same or a similarly equipped

space, and interactive toys and devices.

The problem chosen in this paper is a single-tone sinusoid frequency es-

timation in the audio frequency range (2 ∼ 14 kHz). When the signal to

be estimated only contains additive white Gaussian noise, the optimal esti-

mator in term of mean-square-error (MSE) is a non-overlapping filter bank,

in which the frequency estimation is given by the filter with the maximum-

energy response [12].

For the problem formulated above, a certain number of samples in the

time domain need to be accumulated to record the filter energy response in

the time domain. In this work, 64 samples are recorded as shown in Figure

1.3. The solid line plots the filter response in time domain with an input

frequency within the passband of this filter. When the input signal matches

the filter, the signal-to-noise ratio is maximized and the output is considered
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Figure 1.3: Narrowband bandpass filter response with and without the
signal.

as the energy response. At the next time step, as the input signal has shifted

phase and does not match the filter, the output has smaller amplitude. The

dashed line shows that the filter output has a much smaller amplitude when

the input frequency is outside the passband of the filter.

1.5 Timing Errors and Voltage Overscaling

This work focuses on timing errors caused by PVT variation. Timing errors

are introduced into the system by deliberately lowering the supply voltage to

reduce the system energy consumption. Doing so increases the critical path

delay. For a given clock frequency this could cause set-up time violations

and hence timing errors. Voltage overscaling is applied to the combinational

logic part of the digital circuits while the registers are operated under the

nominal supply voltage [6].
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1.6 Thesis Organization

The remainder of the thesis is organized as follows: Chapter 2 presents bio-

inspired signal processing concepts and an algorithmic noise-tolerance (ANT)

filter based on signal statistics in the time domain, which are applied to the

canonical problem introduced in the introduction. Furthermore, Chapter

2 formalizes the algorithms explored and the system architecture. Chap-

ter 3 presents the simulation methodology and compares the performance in

terms of root-mean-squared-error (RMSE) and energy consumption of differ-

ent methods. Chapter 4 gives the conclusion and potential further research

directions.
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Chapter 2

Bio-inspired Signal Processing
and System Description

After the specific problem of estimating a single-tone sinusoid frequency has

been introduced in the last chapter, this chapter elaborates the bio-inspired

signal processing concepts such as population-coding in the context of this

canonical problem.

2.1 The Redundant Sensor Network
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Figure 2.1: Conventional nonoverlapping filter approach. The arrow with
‘a’ indicates the filter output with hardware errors. The arrow with ‘B’
indicates the filter output with the signal in the filter’s passband.

In the presence of hardware errors caused by voltage overscaling mentioned

in Chapter 1.5, the conventional estimator is not optimal in terms of MSE

anymore. Illustrated in Figure 2.1, a hardware error can cause a false peak,
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which leads to a discrepancy between the estimated and the correct value of

the input frequency.

Demonstrated ubiquitously in biological systems, the population activity

of groups of neurons provides more accurate information than individual

ones. This mechanism has particularly been observed in the control of eye

and arm movements [13]. Based on these observations, a population-coding

concept can be proposed and has two key features: 1) Correlated outputs of

neighboring processing units are combined/fused to provide noise tolerance.

2) Low-precision and low-cost computations.
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Figure 2.2: Overlapping filter with hardware redundancy. The arrow with
‘a’ indicates the filter output with hardware errors. The arrow with ‘B’
indicates a group of correlated filter outputs with the signal in the
passband.

Inspired by this population-coding concept, a more error-tolerant solution

is proposed for the problem imposed by the conventional non-overlapping

filter approach. As shown in Figure 2.2, overlapping filters with wider band-

width are used in combination with robust techniques (e.g., the median)

applied to bundles of neighboring filters to achieve higher error tolerance.

Instead of searching for the maximum of the filter outputs directly, the me-

dian value of the neighboring filter outputs is used to search the maximum.

For instance, an isolated filter output with hardware errors (denoted by the

9



arrow with ‘a’) with two adjacent filters containing noise only will be ig-

nored when the median estimator is applied to these three neighboring filter

outputs.

2.2 The Low-Cost Sensor

Another benefit of using overlapping filters is that fewer taps are required

to build FIR filters with wider bandwidth. In this work, coefficients for

filters are obtained by using windowed linear-phase FIR digital filter design

function (FIR1). MATLAB simulations show that 16 instead of 64 taps are

needed to implement a filter with 1 kHz bandwidth instead of 0.25 kHz in

order to keep the 20 dB reduction from mainlobe to sidelobe. This indicates

significant hardware cost reduction and energy consumption savings, which

can be related to the second feature of population-coding.

2.3 Signal Statistics in Time Domain under

Voltage Overscaling

Besides frequency redundancy mentioned early in this chapter, signal statis-

tics in the time domain under voltage overscaling can be also utilized to filter

out the hardware timing errors caused by voltage overscaling [14]. As shown

in the top panel of Figure 2.3, when the input frequency is not in the filter

passband, with voltage overscaling the filter output in the time domain oc-

casionally has errors, resulting in isolated abrupt signal amplitude change at

certain time periods. In contrast, when the input frequency is in the filter

passband, the filter output amplitude change over one time step could also

be large. But because of the oscillating behavior of the filter output when

the input frequency is in the filter passband as shown in the bottom panel of

Figure 2.3, a filter output sample with similar amplitude might be found a

few time steps earlier. Based on this property, a ANT filter can be developed

to filter out hardware errors. The details are given later in this chapter.
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Figure 2.3: Filter outputs in the time domain with hardware errors.

2.4 The Nonoverlapping Estimator

As described earlier, the nonoverlapping estimator is only optimal in terms

of MSE in the presence of additive white Gaussian noise and absence of

hardware errors. Using the Hamming window design method, 64-tap FIR

filters with a 0.25 kilohertz bandwidth are constructed. The filter with the

maximum energy response indicates the value of the input signal frequency.

The block diagram of the conventional estimator is shown in Figure 2.4.

The major components are the FIR filter banks (annotated by Fi), the en-

ergy estimator (annotated by Ei) and the frequency estimator (annotated by

MAX). The individual FIR filter is implemented by the direct-form architec-

ture with 8-bit inputs and 8-bit filter coefficients. The adders in the MAC

have 22-bit outputs to avoid potential overflow. However, the final outputs

to the next stage energy estimators only have 8-bit precision (the high 8 bits

of the FIR filter output) as this is sufficient for the next stage computation.

The energy estimator consists of a series of shift registers and records 64 sam-

ples in the time domain for a particular filter output. Then the maximum

response within these samples is considered as the energy response.
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Figure 2.4: Conventional estimator overview.

Figure 2.5 shows the block diagram of the final frequency estimator based

on the filter energy responses from the last stage. The elementary block in

this diagram is a block with four sets of inputs such as the filter energy re-

sponse and the index of one particular filter, which indicates the passband

range of the filter. Its outputs are the max filter energy response of the four

inputs and the corresponding filter index. Using this block, the estimator

is implemented in a three-stage hierarchy [15]. The first stage has 16 basic

blocks (annotated by M-A...M-R). Each takes four energy responses from

the energy detector and passes the largest within the four inputs and the

corresponding filter index to the next stage. The second stage utilizes four

basic blocks (annotated by M1...M4) and generates 4 intermediate outputs

in a similar fashion as in the first stage. The final stage use one basic block

(annotated by M) and chooses the largest energy response and its filter in-

dex, from which the input frequency range can be derived (annotated by f̂

in the Figure 2.5).
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Figure 2.5: High level frequency estimator diagram.

2.5 The Bio-inspired Estimator

This estimator uses overlapping filters with wider bandwidth to achieve fre-

quency redundancy. Using the Hamming window design method, 16-tap

FIR filters with 1 kilohertz bandwidth are constructed while adjacent filters’

bandwidth overlapping is 0.75 kilohertz.

The more detailed robust estimator is shown in Figure 2.6. It contains four

major sub-blocks, including the prediction-based ANT filter bank (annotated

by P − ANTi), the energy estimator, the sliding median filter and the fre-

quency estimator. The FIR filters Fi are similar to those in the conventional

estimator. The difference is that 16-tap FIR filters instead of 64-tap filters

are used. The input and the filter coefficients are both 8-bit. The adders in

13



Figure 2.6: Robust estimator overview.

the MAC have 20-bit outputs instead of 22-bit as in the conventional esti-

mator. The final outputs to the next stage energy estimators still only have

8-bit precision (the high 8 bits of the FIR filter output).

Figure 2.7 describes the structure of the ANT-based error compensator

(EC), which takes the filter output from one of the upstream FIR filters and

compensates for the hardware noise caused by voltage overscaling. A shift-

register chain is used to store the filter output response of the last four time

steps. If the signal magnitude change is larger than a quarter of the output

dynamic range and there is no signal in the last four steps with magnitude

similar to that of the current signal, then the current signal is replaced by

the signal in the last time step. This means that the EC block employs a

1-step predictor to compensate for hardware errors [16]. The functionality of

the EC block in Figure 2.7 is:

• Error detection: If |y[n]− y[n− 1]| > Eth and |y[n]− y[n− 2]| > Eth/2

and |y[n]− y[n− 3]| > Eth/2 and |y[n]− y[n− 4]| > Eth/2, an error is

declared. Eth is set as a quarter of the filter output dynamic range.

• Error correction: If an error is detected, ŷ[n]=y[n−1]; otherwise,ŷ[n]=y[n].

14



The second sub-block in Figure 2.6 is the filter energy estimator and it is

the same as in the conventional estimator described in Chapter 2.4.

The third sub-block is the sliding median filter, which takes the neighboring

filter responses as inputs and passes the median energy response as the output

to the next stage. For example, the ith median filter takes the group of

energy responses Ei−1,Ei and Ei+1 as inputs and chooses the median value

as the energy response for the ith FIR filter. The next median filter takes

the energy responses Ei, Ei+1 and Ei+2 as inputs and chooses the median

value as the energy response for the next FIR filter.

The fourth sub-block is the frequency estimator, which takes the output

of the sliding median block instead of using energy response from the energy

response estimator directly, searches for the largest response and decides the

input frequency range. The detailed architecture is the same as that used in

the conventional estimator as in Figure 2.5.

Figure 2.7: ANT-based EC block.
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Chapter 3

Simulation Setup and Results
Comparison

In this chapter, the performance in terms of RMSE is simulated using the

RTL model of the algorithms. The energy consumption is based on the

synthesis tool estimation (SYNOPSIS design compiler) and is normalized

to total energy consumption of the conventional method under the nominal

supply voltage.

3.1 Simulation Setup

In order to introduce timing errors to the FIR filter under different voltage

overscalings, a structural Verilog model of the FIR filter is developed. As

shown in Table 3.1, the sum and carry bit delay of the one-bit adder are sim-

ulated using SPICE in a 45 nm process under different voltage overscaling.

Then an 8-bit ripple-carry adder (RCA) and an 8-by-8 bit signed multiplier

are designed using the one-bit adder as the primary block. Finally, multi-

ply/accumulate units (MAC) and FIR filters are constructed using the RCA

and the multiplier.

The delay parameter in the adder’s Verilog model can be modified accord-

ing to different voltages. After the RTL model is constructed, the hardware

error is introduced to each filter output by changing the delay parameters for

specific Kvos = Vdd/Vdd−crit, where the Vdd−crit is the critical supply voltage.

Voltage overscaling is only applied to the combinational logic part of the FIR

filter banks. The erroneous filter output is then fed into different estimation

blocks under the nominal supply voltage to estimate the input frequency.
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Table 3.1: Delay parameters for one bit adder driving a load of an identical
adder under voltage overscaling

voltage(v) Sum bit delay(ps) Carry bit delay(ps)

1.20 45 41
1.15 48 43
1.10 51 46
1.05 55 48
1.00 61 52
0.95 68 57
0.90 77 63
0.85 90 70
0.80 100 80
0.75 121 95
0.70 151 115
0.65 230 150
0.60 381 221

3.2 Performance Comparison

3.2.1 Performance comparison

The performance of different estimators in terms of RMSE is summarized in

Figure 3.1. RMSE is defined as:

RMSE =

√√√√ 1

N

N∑
i=1

(fi − f̂i)2 (3.1)

where N is the number of trials, fi and f̂i are input frequency and its es-

timated value, respectively, for a particular trial. The conventional method

shows negligible but non-zero RMSE without voltage-overscaling because of

the background additive white Gaussian noise. However, it exhibits no toler-

ance to hardware errors and its RMSE increases by two orders of magnitude

under slight voltage overscaling.

At the nominal voltage and without hardware timing errors, the RMSE

of the bio-inspired method is greater than the corresponding value of the

conventional method, as the filter bandwidth is four times wider and there

is more background Gaussian noise power leaking into the corresponding

passband. Unlike the conventional method, the bio-inspired method shows
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Figure 3.1: Performance comparison.

moderate tolerance against hardware errors introduced by voltage overscaling

and the RMSE increases only slightly with further reduced supply voltage.

When Kvos reaches 0.75, the performance of the bio-inspired method deterio-

rates greatly and the RMSE is at the same magnitude as in the conventional

method.

3.2.2 Energy consumption comparison

It is necessary to assess the performance of different estimators in the context

of energy consumption, which is estimated by the power and the operation

time of different estimators. As no time redundancy is explored in this work,

the operation time of different methods is the same. The energy consump-

tion comparison would be equivalent to the power consumption comparison.

The power consumption is estimated by the SYNOPSIS synthesis tool, ‘DC

compiler’. In general, the system is divided into the FIR filter and the esti-

mator. The power of each part is estimated individually and the total power

is considered as the sum of the two parts. Under voltage overscaling, the
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Figure 3.2: Power consumption at different Kvos.

power consumption of the filter banks is calculated by [14]

P=PVdd−crit
K2

vos (3.2)

Figure 3.2 summarizes the energy-consumption and performance trade-offs.

According to (3.1), the conventional method’s power consumption scales

down approximately with the square of the supply voltage and exhibits no

error tolerance as its RMSE increases by two orders of magnitude under

slightly reduced supply voltage.

At the critical supply voltage, the total power of the bio-inspired method

is 31% of the conventional method. The majority of the power saving can

be attributed to the reduced hardware cost of the FIR filter banks. In the

bio-inspired method, the FIR filter has 16 taps, which is only 25% of the

tap numbers in the conventional method. The more complicated estimator

introduces power consumption overhead. When voltage scaling is applied to

the overlapping filter banks, more power saving can be achieved. However,

this leads to deterioration of the system performance in terms of RMSE. At

Kvos= 0.79, the bio-inspired method can reduce the power consumption by
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up to 78% while keeping the RMSE under 500 Hz.
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Chapter 4

Conclusion

4.1 Summary

Transistor feature size scaling along with subthreshold design provides sig-

nificant energy consumption benefits for many sensor network applications

such as security and environmental sensing, which often take place in a highly

dynamic and variable environment. However, implementations using smaller

transistor size or operating under the subthreshold voltage often introduce

variations that can cause timing errors.

In this thesis, a novel algorithm for non-coherent frequency estimation of

a sinusoid in noise inspired by biological signal processing systems is devel-

oped. This method is shown to be energy-efficient and error-tolerant for the

canonical problem addressed.

The bio-inspired method can reduce the RMSE to 500 Hz compared to the

conventional method results of 5000 Hz RMSE. Moreover, the bio-inspired

method’s energy consumption is only 22% of the conventional method.

In this work, hardware redundancy is mainly introduced by using low-cost

‘sensors’ which have overlapping passband and lower energy consumption

compared to the conventional design.

This method is mostly effective under weak or moderate voltage overscal-

ing. Under this condition errors happen occasionally.

4.2 Future Work

This work mainly has explored the frequency redundancy applied to this

canonical single-tone audio frequency problem. Further research can be ex-

panded in several aspects. First, we could explore redundancy in time, which

utilizes more samples in time for the same input frequency. This intro-

duces extra energy consumption while it could improve system performance
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in terms of RMSE. Energy/performance trade-offs are further explored by

altering the number of iterations.

In this work, hardware errors are introduced by deliberately overscaling the

supply voltage of the digital filter part of the system. Similarly, hardware

errors could also be introduced by other variations such as process, temper-

ature and aging. Other hardware error models such as Stuck-At fault can

also be explored. For the fusion part of the system, alternative architectures

for ANT filters can also be explored and the length of the ANT filters can

be optimized for different input frequencies.

Further research can expand the bio-inspired method with features such

as low-cost rough detectors/estimators with redundancy into other detection

and estimation problems mentioned in Chapter 1.4 to design energy-efficient

and error-tolerant algorithms for certain applications. To achieve this, the

key is to design low-cost and energy-efficient detectors/estimators compared

to the conventional design. Further, hardware redundancy can be introduced

given the low-cost detectors/estimators are available.
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