(© 2012 Prabhat Jain

REFRINT: INTELLIGENT REFRESH TO MINIMIZE POWER
IN ON-CHIP MULTTPROCESSOR CACHE HIERARCHIES

BY

PRABHAT JAIN

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science
in the Graduate College of the
University of Illinois at Urbana-Champaign, 2012

Urbana, Illinois

Adviser:

Professor Josep Torrellas

ABSTRACT

As manycores use dynamic energy ever more efficiently, static power con-
sumption becomes a major concern. In particular, in a large manycore
running at a low voltage, leakage in on-chip memory modules contributes
substantially to the chip’s power draw. This is unfortunate given that, intu-
itively, the large multi-level cache hierarchy of a manycore is likely to contain
a lot of useless data.

An effective way to reduce this problem is to use a low-leakage technol-
ogy such as embedded DRAM (eDRAM). However, such systems require
refresh. In this paper, we examine the opportunity of minimizing on-chip
memory power by intelligently refreshing a full-eDRAM cache hierarchy. We
present Refrint, a simple approach to perform fine-grained, intelligent re-
fresh of eDRAM multiprocessor cache hierarchies. We introduce the Refrint
algorithms and the microarchitecture support. We evaluate Refrint in a sim-
ulated manycore running 16-threaded parallel applications. Compared to
a full-SRAM system, Refrint’s memory hierarchy only consumes 36% of the
SRAM’s memory hierarchy energy and induces a negligible slowdown. In con-
trast, a basic fullleDRAM memory hierarchy consumes 50% of the SRAM’s

memory hierarchy energy and induces a slowdown of 18%.

i

To my parents, for their love and support.

iii

ACKNOWLEDGMENTS

[would like to express my deep gratitude to my adviser, Prof. Josep Torrellas,
for his guidance and support throughout the course of this work. I thank
him for his patience, motivation, and immense knowledge. The complete
freedom that he gave me enabled me to experiment with different ideas and
put enough thought to the problems before deciding on a solution. Through
this work, he has given me a valuable insight into research, and for this I am
indebted to him.

I express my heartfelt gratitude to Aditya Agrawal, who has helped me
throughout this project. I am grateful to him for all the discussions that I
have had with him which have helped shaped the work. I would also like to
thank Amin Ansari for having shared his knowledge and suggestions, which

helped improve the work.

v

TABLE OF CONTENTS

LIST OF TABLES vi
LIST OF FIGURES vii
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 MOTIVATION 3
CHAPTER 3 REFRINT ARCHITECTURE 5
3.1 MainIdea 5
3.2 Refresh Policies Proposed 6
3.3 Application Data Access Patterns 8
CHAPTER 4 IMPLEMENTATION ISSUES 11
4.1 Sentry Bit Design oL 11
4.2 Processing Refresh Interrupts 13
CHAPTER 5 EXPERIMENTAL SETUP 16
CHAPTER 6 EVALUATION 20
6.1 Memory Hierarchy Energy 21
6.2 L1,L2, L3& DRAM 21
6.3 On-Chip Dynamic, Leakage, Refresh & DRAM 22
6.4 Total Energy 23
6.5 Execution Time oo 24
CHAPTER 7 RELATED WORK 27
CHAPTER 8 CONCLUSIONS 29
REFERENCES 30

3.1

5.1
5.2
5.3
5.4

6.1

LIST OF TABLES

Refresh policies proposed. 7
Evaluation architecture & tools. 17
Baseline and proposed architecture. 18
Applications. 18
Parameter sweep of policies. 19
Application Binning. 20

vi

3.1

4.1

4.2
4.3

6.1

6.2

6.3
6.4

LIST OF FIGURES

Application data access patterns from the point of view of

the last level of on-chip cache.

Hardware operations in WB(n,m) when a Sentry bit inter-

rupt occurs. Lo
Sentry bit Interrupt logic with a priority encoder.
Logic to process the refresh interrupts.

L1, L2, L3 & DRAM energy (normalized to ful-SRAM

MEMOTY €NETEY). . « « . o v v v e e e

On chip dynamic, leakage, refresh & DRAM energy (nor-

malized to ful-lSRAM memory energy).
Total energy (normalized to fullSRAM system energy).
Execution time (normalized to full-SRAM execution time). . .

vil

CHAPTER 1

INTRODUCTION

While CMOS technology continues to enable higher integration of transistors
on a chip, energy and power have emerged as the true constraints for more
capable systems. For this reason, there is much interest in techniques for
efficient use of energy in chip multiprocessors, such as lower frequencies,
simpler cores with extensive clock gating, accelerators and, most recently,
renewed interest in ultra low voltages [1].

As chips use dynamic energy more efficiently, however, static power be-
comes a major concern. For example, in a large manycore running at a low
voltage, the fraction of power that is static is substantial, perhaps even dom-
inant. In particular, since memory modules use much (if not most) of the
chip area, much of the leakage comes from on-chip memories.

Intuitively, the large multi-level cache hierarchies of a chip multiprocessor
are likely to contain much useless (or dead) data. Keeping such data on chip
results in unnecessary leakage. For this reason, there are several proposals for
power-gating techniques for on-chip memory. They include various forms of
dynamically-resizable caches with turned-off ways or sets (e.g., [2, 3]), cache
decay [4], and Drowsy caches [5], among others. While these techniques can
be effective, they need to be applied in a fine-grained manner to reduce chip
leakage substantially — and hence can be expensive.

An alternative approach to reduce on-chip memory leakage is to use a
memory technology that, while compatible with a logic process, does not
leak by design — or leaks much less. One obvious example is embedded
DRAM (eDRAM). Roughly speaking, for the same size in Kbytes as SRAM,
eDRAM reduces the leakage power to a quarter or less [6]. A shortcoming is
that it needs to be refreshed, and refresh power is significant [7]. However,
this fact in turn offers a novel opportunity for power savings, through fine-
grained refresh management. Another shortcoming of eDRAM is its lower

speed but, arguably, upcoming modest-frequency processors will be able to

tolerate this issue.

In this paper, we examine the opportunity of power savings by intelligently
refreshing a full-eDRAM cache hierarchy. Our goal is to refresh only the
data that will be used in the near future, and invalidate and /or write back to
main memory the other data. We present Refrint, a simple approach for fine-
grained, intelligent refresh of eDRAM lines to minimize on-chip power. We
introduce the Refrint algorithms and the microarchitecture support required.

Our results show that Refrint is very effective. We evaluate 16-threaded
parallel applications running on a simulated chip multiprocessor with a three-
level cache hierarchy. Compared to a fullSRAM system, Refrint’s memory
hierarchy only consumes 36% of the SRAM’s memory hierarchy energy (in
L1, L2, L3 and DRAM). In addition, Refrint’s early invalidation and write-
back of lines does not increase the execution time of the applications notice-
ably. In contrast, a basic full-.eDRAM memory hierarchy consumes 50% of
the SRAM’s memory hierarchy energy and induces an application execution
slowdown of 18%.

This paper is organized as follows: Section 2 provides a motivation; Sec-
tions 3 and 4 present the architecture and implementation of Refrint; Sec-

tions 5 and 6 evaluate our system; and Section 7 covers related work.

CHAPTER 2

MOTIVATION

Current trends suggest a progressive increase in the number of cores per
chip in the server market. These cores need to be relatively simple to meet
the power and thermal budget requirements of chip designs. In addition, in
order to enhance the performance of these cores and also mitigate thermal
hot-spots, a large fraction of the chip is regularly devoted to caches — for
example, more than 70% in Niagara [8]. At the same time, there is significant
interest in reducing the supply voltage of the chip and cycle at more moderate
frequencies, to operate in a much more energy-efficient environment [1], with
lower dynamic power.

The combination of lower dynamic power and large on-chip caches points to
on-chip cache leakage as one of the major contributors to present and future
chip power consumption [5]. As a result, there have been multiple propos-
als for new approaches and technologies to deal with on-chip SRAM leak-
age. These proposals include new SRAM organizations, embedded DRAM
(eDRAM), on-chip flash, and non-volatile memory technologies. Section 7
discusses the work in detail.

One of the most interesting proposals is eDRAM, which has been used by
IBM to build the 32MB last level cache (LLCs) of the POWER-7 proces-
sor [9]. eDRAM is a capacitor-based dynamic RAM that can be integrated
on the same die as the processor. Compared to the SRAM cell, eDRAM has
much lower leakage power and a higher density. It also has a lower speed.
However, as we explore lower supply voltages and frequencies for energy ef-
ficiency, eDRAM may be a very competitive technology.

A major challenge in implementing eDRAM as the building cell of on-chip
caches is its refresh power. Since eDRAM is a dynamic cell, as opposed to
SRAM, it needs to be refreshed at periodic intervals called retention peri-
ods to preserve its value and prevent decay. In addition, on an access, the

cell automatically gets refreshed, and stays valid for another retention pe-

riod. Refreshing the cells imposes a significant power consumption cost, and
may hurt performance because the cells are unavailable as they are being
refreshed.

It is well known that today’s large last-level caches of chip multiprocessors
contain a lot of useless data. There is, therefore, an opportunity to minimize
the refresh power by not refreshing the data that is not useful for the program
execution anymore. The challenge is to find which data should be kept alive
and which data can be let to decay in an inerpensive manner. This is the

problem addressed in this paper.

CHAPTER 3

REFRINT ARCHITECTURE

3.1 Main Idea

Our goal is to consider an on-chip multiprocessor cache hierarchy built exclu-
sively out of eDRAM, and identify and selectively refresh only those cache
lines which are expected to be used again in the short and medium term,
while letting the rest decay. If our refresh policies are effective, we will only
expend refresh energy on those useful lines which are going to be used in
the near future, and discard the rest of the lines, by either writing them
back to the lower level memory or silently invalidating them from the cache,
depending on the cache line state.

If the schemes are over-aggressive, we may end up invalidating a lot of
useful data from the caches, thereby having to access the lower level memory a
far higher number of times than in an SRAM-based cache hierarchy. Writing
back and invalidating a soon-to-be-accessed dirty line has double penalty of
invalidating a clean line, as it involves writing back the dirty line and then
reading it again. Therefore, our schemes need to be more conservative at
handling dirty lines.

We propose Refrint, an alternative to a trivial periodic refresh policy of
the cache lines by the cache controller. A periodic scheme ends up eagerly
refreshing lines, possibly right after the line has been accessed (and auto-
matically refreshed), leading to a higher number of refreshes than needed. In
contrast, Refrint maintains a Sentry Bit with every cache line, such that it
decays faster than the rest of the eDRAM cells in the cache line and acts as
a canary, indicating when the line is about to decay and hence needs refresh.
This approach minimizees the number of refreshes on the cache line and saves
refresh energy.

When the Sentry bit decays, the hardware interrupts the cache controller,

which either refreshes the line or invalidates it, depending on the state of the
line and our policies. Dirty lines that are invalidated are written back to the
lower level memory, while clean lines are simply discarded. In shared-memory
multiprocessors, cache inclusivity is typically maintained across cache lev-
els, for easy and efficient implementation of the coherence protocol. Conse-
quently, the invalidation of a line in a cache also involves the invalidation of
that line in its upper-level caches. This results in extra messages across the
network.

In this paper, we focus on simple refresh policies. We do not consider
line reuse predictors or similarly elaborate hardware structures. We do not
assume that we have information provided by the programmer or software
system either. Instead, we focus on refresh policies that consider the state of
the line in a multiprocessor hierarchy (valid, dirty, etc.), to decide what to

refresh.

3.2 Refresh Policies Proposed

A refresh policy has a time- and a data-based component (Table 3.1). The
time-based component decides when to refresh. As indicated above, in
Refrint, we use an Interrupt-based policy, where we associate a Sentry bit per
line that decays faster than the line. When it decays, it triggers an interrupt
in the cache controller, which indicates that the line is about to decay soon.
This induces the refresh of the line. This approach performs the minimum
number of refreshes to keep a particular line alive. Every access to a cache
line refreshes both the cache line and its Sentry bit. To reduce the hardware
implementation complexity, we group the interrupt wires of many individual
cache lines into a single interrupt line.

As a reference, we also examine a trivial Periodic time-based policy. In
this case, the cache controller refreshes lines at periodic intervals equal to
the retention period of the eDRAM cells. This approach is cheap because it
requires no Sentry bit — it only needs a global counter for the whole cache.
However, it is conservative, resulting in more refreshes than necessary, as it
may eagerly refresh a line much before it is about to decay. Also, it can
render the cache unavailable for a continuous period of time when the lines

are being refreshed. To avoid bunching up the refresh operations in the

’ Time-based policies: When ¢ ‘

Periodic Refresh periodically (a group of lines at a time)
Refrint Refresh on Sentry bit decay (a group of lines at a time)

’ Data-based policies: What ? ‘

All All lines are refreshed
Valid Only Valid lines are refreshed
Dirty Only Dirty lines are refreshed

WB(n,m) | Dirty lines are refreshed n times before writeback, while
Valid lines are refreshed m times before invalidation

Table 3.1: Refresh policies proposed.

periodic scheme, we refresh lines in groups at a time. Specifically, the refresh
of a full cache is staggered across an entire retention period.

Our proposed data-based policies are shown in Table 3.1. Either of the
time-based policies can be combined with any of the data-based policies,
which decide what to refresh. There are many possible approaches to build
these policies. In this paper, we explore very simple approaches that are
based on the state of the line in the cache.

Specifically, we compare four data-based policies: All, Valid, Dirty, and
WB(n,m) (write back). All refreshes every cache line, irrespective of whether
it is valid or not. We only evaluate this policy for reference purposes. Valid
and Dirty policies always refresh Valid and Dirty cache lines respectively, and
invalidate the line otherwise.

The WB policy is associated with a tuple (n,m). This policy refreshes a
Dirty line (that is not being accessed) for n times before writing it back and
changing its state to Valid Clean; it refreshes a Valid Clean line (that is not
being accessed) for m times before invalidating it. We maintain a Dirty line
in the cache for longer because evicting it has the additional cost of writing
back the data to lower-level memory. It is, therefore, worthwhile to keep
it in the cache for longer. To implement this policy, we maintain a per-line
Count. Count is initially set to a reference value. It is then decremented every
time that the Sentry bit decays and the line is refreshed. On any normal,
non-refresh access to the line, Count is reset to its reference value. Note
that the Dirty policy is equivalent to WB(oo,0), while Valid is equivalent to
WB(00,00). Finally, every policy refreshes cache lines in transient states as
well.

Using cache states has the advantage that the hardware support needed is

simple. A disadvantage is that the policies are unable to disambiguate lines
that, within the same state, behave differently. In addition, these policies
interact with the cache coherence protocol and the inclusivity requirements
of multilevel caches in a non-trivial manner. For example, a Valid Clean line
in a shared L3 may or may not be Dirty in upper private layers of the cache
hierarchy; in either case, the algorithm will treat it in the same way. As
another example already mentioned, if the policy decides to invalidate a line
in L3, it has to also invalidate that line in L2 and L1.

The periodic policy can also be combined with the data-based policies.
A naive eDRAM implementation periodically refreshes all the lines in the
cache. Consequently, we use Periodic All as the baseline implementation for
eDRAM caches. A slightly smarter and natural extension is the Periodic

Valid policy.

3.3 Application Data Access Patterns

Intelligent refresh policies try to evict from the on-chip memory the data
that is not useful — i.e., the data that will not be accessed anymore or in a
long while. Intuitively, given a chip with a large on-chip memory, it is likely
that there is a significant amount of such useless data. In practice, however,
every application has a different access pattern, and is not easy to identify
useless data.

Figure 3.1 presents a high-level categorization of applications with respect
to our data-based refresh policies. It corresponds to a cache coherent mul-
tiprocessor with an inclusive cache hierarchy, where the last level of cache
is shared by all the cores. This is a common design. We are interested in
observing the events from the point of view of the last level cache, which is
the one that matters the most in terms of the refresh energy.

We consider two axes:

a) The first one is the size of the application footprint relative to the size of
the last level cache. Since an application can only access the data at a given
maximum rate, it is likely that applications that have a large data footprint
will have long time intervals between reuse of the data, if data is reused at all.
Hence, such data can be safely displaced and, if reused, can be brought back

again. Therefore, the best policy for such applications should be a general

Visibility
in Last
Level Cache

High —

|
Srr‘1a|| La‘rge Application Footprint

Relative to Last Level Cache

Figure 3.1: Application data access patterns from the point of view of the
last level of on-chip cache.

one, namely WB(n,m), with a small (n,m). Indeed, after an initial flurry of
accesses, the data can soon be invalidated and evicted from the cache. On
the other hand, for small footprint applications, the processors are likely to
reuse the data more often. Therefore, a general policy such as WB(n,m),
with a large (n,m), is likely to be useful. Data will be reused and, therefore,
should be kept in the on-chip memory.
b) The second axis captures whether the last level cache has “visibility”
on the activity of the lines in the upper levels of the cache hierarchy. For
example, assume that we have the directory in the L3. Assume that the
working set is such that: (i) it largely fits in the L1 and L2 caches and hence,
there is no overflow and, (ii) there is little data sharing between processors
and hence, the last level cache does not see the data moving back and forth
between caches and its associated state transitions from dirty to shared. In
this case, visibility is low. Therefore, we need to be conservative and assume
that the data is being repeatedly accessed in the L1 and L2 caches. Hence,
the conservative Valid scheme should be best for such applications, as it
avoids invalidating data that could potentially be heavily reused in upper-
level caches.

Even with a small data footprint, if there is high data sharing across upper-

level caches, such that data is frequently written by a processor and read by

another, then visibility at L3 is high. There are frequent writebacks due to
transitions from Dirty to Shared. In such cases, the more specific WB(n,m)
should do better than Valid.

We refer to the three classes of applications described as Class 1, Class
2, and Class 3 applications, respectively. In our evaluation (Section 6), we
will show that the results of our experiments confirm this model. We do not
find any application of the type Large footprint and Low visibility. We find
that all our large-footprint applications also have substantial data sharing
between the caches in the upper levels, or that dirty data is often evicted

from upper level caches and written back to L3, therefore providing visibility.

10

CHAPTER 4

IMPLEMENTATION ISSUES

4.1 Sentry Bit Design

The Sentry bit needs to be designed conservatively, such that it decays be-
fore the rest of the cells in its corresponding cache line. This is done by
implementing it as a 1T-1C eDRAM cell with a capacitance lower than that
of the cells in its line, similar to the Valid bit suggested in [10]. In addition,
to minimize the effects of process variation, the Sentry bit should be placed
in physical proximity of its corresponding cache line, so that at least the
systematic component of variation is the same. In this paper, however, we
do not consider the effects of process variation.

Furthermore, the Sentry bit needs to be designed such that it decays at
least as many cycles faster than the rest of the eDRAM cells in its cache line
as the maximum number of Sentry bits that can fire simultaneously. This is
needed to guarantee timely and successful refresh of every cache line even
in the most pessimistic case of the maximum possible number of Sentry bits
firing together. In our evaluations, we take the most conservative approach
and assume that all the Sentry bits in a cache can fire in a given cycle.
However, that need not be the case. If the chip fabrication process, or the
post silicon testing process can guarantee/determine the timing variation
amongst the Sentry bit cells, then a better bound on the Sentry bit retention
period can be deduced. For example, if the difference between the retention
times of the Sentry bit with the longest retention time and the Sentry bit
with the shortest retention time can be determined to be, say A cycles, then
a simple and conservative upper bound on the number of Sentry bits that
can fire together would be A, assuming that the cache supports access to
only one cache line in a given cycle (single- ported cache). This could, in

turn, enable further significant savings in refresh energy as a line would be

11

refreshed fewer times in a given time period.

The retention period of the Sentry bit defines the refresh period of the cache
line. Note that this reduces the refresh period of a cache line compared to
the trivial Periodic refresh scheme. Owing to the deterministic nature of
refresh in a Periodic scheme, a line need not be refreshed any sooner than
its retention period. In our evaluations, where each L3 cache has 16K lines,
we assume the retention period of the Sentry bit to be 16 us (@1GHz) less
than that of rest of the eDRAM cells. For a normal eDRAM cell retention
time of 50 us, we lose a significant 32% (16/50) opportunity as compared to
a Periodic Scheme. However, despite this disadvantage, our Refrint schemes
outperform the Periodic schemes, both in performance and energy, due to
reasons cited in Section 3.1.

When the Sentry bit decays, it interrupts the cache controller triggering
an action on the line. Figure 4.1 shows the algorithm used by the WB(n,m)
scheme, when a Sentry bit interrupt occurs. When the line is accessed with
a normal read or write, if it is dirty, Count is set to n while, if it is clean, it
is set to m. Note, in All, Valid and Dirty schemes, Count is not needed as

the state of the line is sufficient to decide the action.

Read the line' s Count

If (Count >=1)
Refresh line and Sentry bit
Decrement Count

Else If (Count==0 & & lineis Dirty)
Write back the line, change its state to Valid Clean
Refresh Sentry bit
[* Writeback automatically refreshed the line */
Reset Count to "m"

Else If (Count==0 & & lineisValid Clean)
Invalidate the line
/* Requiresinvalidation in upper level cachestoo */
[* Do not refresh line or Sentry bit */

Figure 4.1: Hardware operations in WB(n,m) when a Sentry bit interrupt
occurs.

To reduce the logic complexity and the number of wires feeding into the

cache controller, all the interrupt wires are first input into a priority encoder,

12

the far fewer output wires of which, provide input to the cache controller
(Figure 4.2). A simple encoder will not suffice as many Sentry bits can fire
at the same time. A priority encoder, instead, would serialize the interrupts.
The design of the interrupt handling logic, as explained later, and the time
margin between the retention periods of the cache line and the Sentry bit
ensure that no line is ever starved and every line is timely processed before
it expires. Moreover, since the firing of Sentry bits is so spread out, no line
is likely to be forced to wait for a significant amount of time before being

serviced, as also shown by our simulations.

Valid
Cache Line(Tag + Data) Bit Sentry Bit

| Line 1 | [+ >___
| Line 2 | %—

AND

I Lmeﬁ-l | == > :
I Line N lEEL_E;E:j{::>—————

Figure 4.2: Sentry bit Interrupt logic with a priority encoder.

Cache
Controller

\ Priority Encoder /
N~

A priority encoder could be built in a similar fashion as a decoder used in
caches to select a row. The priority logic would add some more complexity
and area, but the area would be greatly dominated by the number of wires,
and so it would be similar to a cache decoder. We improve and further
simplify the interrupt logic design by grouping many Sentry bit wires into a
single interrupt line.

Figure 4.2 represents the hardware sentry bit logic to implement Valid,
Dirty, and WB(n,m) policies (not the All policy). We only evaluate the All

policy for completeness and reference purposes.

4.2 Processing Refresh Interrupts

The Sentry bit interrupt takes priority over the normal R/W requests queued

in the cache controller that are yet to be processed. Even if multiple interrupt

13

lines go high simultaneously, they are processed sequentially by the priority
encoder, and hence the cache controller. Since the cache is pipelined, a new
interrupt request can be processed every cycle. No plain R/W requests are
serviced in a given cycle if there are interrupt requests pending as well.

The following actions are sequentially performed by the interrupt process-
ing logic depicted in Figure 4.3 on getting an interrupt request. In case of
grouping of sentry bits, the following will be done for each and every line in

the group in a pipelined way:

1. Reset the Sentry bit of the interrupting line so that the priority encoder

can output another interrupting line, if any, in the next cycle.

2. Read the Count and State of the line into the “Decision Logic” and
decide whether to refresh the line or invalidate it depending on the line
State, Count, and the refresh policy(WB, Dirty, or Valid).

3. Based on the output of the previous step, either refresh the line, or
invalidate it. Invalidation can involve sending invalidates to upper level
caches and this would be initiated by the cache controller. The exact

steps are shown in Figure 4.1.

The per-line Count can be maintained as a few extra memory bit cells along
with the tag bits of the cache line. As on every Sentry bit decay of a line,
the line needs to processed by the cache controller, either to be refreshed
or invalidated, and hence, Count can be explicitly processed by the cache
controller. There is no need for a logic based counter, which would have a
significant transistor overhead. In our implementation, a 5-bit Count needs
only 5 extra eDRAM cells, which has a negligible overhead compared to a
512b cache line and its associated tag and state bits.

Note, we do not introduce an additional queue for buffering the interrupt
requests. The interrupt requests are automatically serialized by virtue of the
priority encoder. As shown in Figure 4.3, we just need a single buffer to

enable the pipelining effect.

14

Plain R/W Request
(multi-buffer) Queue

Buffer

Priority Encoder

— Bits)

| Refresh Request (single)

Interrupt Lines
(from Sentry

Cache Controller

[€—

le—
v

Sentry Bits

Count bits
State bits

Data + Tag

Figure 4.3: Logic to process the refresh interrupts.

15

v

3

Decision Logic

I

CHAPTER 5

EXPERIMENTAL SETUP

We evaluate Refrint on a 16 core chip multiprocessor (CMP) system. Each
core is a dual issue, out-of-order (OOQ) processor running the MIPS32 in-
struction set. Fach core has a private instruction cache (IL1), a private
data cache (DL1) and a private second level (L2) cache. The 16 cores are
connected through a 4x4 torus network. A shared third level (L3) cache is
divided into 16 banks and each bank is connected to a vertex of the torus
network. The addresses are statically mapped to the banks of the L.3. Each
bank has a dedicated logic to process refresh interrupts as shown in Fig. 4.3.
We employ a directory MESI coherence protocol. The directory is maintained
at L3. The architectural parameters are summarized in Table 5.1.

We model our architecture (cores, caches and network) in the publicly
available cycle accurate simulator, SESC [11]. The timing, dynamic energy
and leakage power numbers for cores and network were obtained from Mc-
PAT [12], while for SRAMs and eDRAMs, they were obtained from CACTI
[13]. Even though McPAT uses CACTTI internally, it does not allow for an
eDRAM memory hierarchy. Hence, we had to use CACTI as a standalone
tool. We experiment with 3 different values of retention times: 50us, 100us,
and 200us. Barth et al. [14] report a retention time of 40us for eDRAM cells
at 105°C. The retention time has an exponential dependence on tempera-
ture [15]. In this paper, we target a low-voltage, low-frequency, simple-core
and energy-efficient futuristic architecture for which the temperatures would
be significantly lower than 105°C, and hence, we conduct experiments at the
above mentioned three retention times. Other experimental parameters like
temperature, frequency etc. are also summarized in Table 5.1.

In this paper, we compare a fullSRAM memory hierarchy (baseline) to a
full-eDRAM memory hierarchy (proposed). To do a fair and simple compar-
ison between the two, we have made a few simplifying decisions, which are

listed in Table 5.2. Since, our chip frequency is low enough (1000 MHz), we

16

’ Architectural Parameters

Chip 16 core CMP

Core MIPS32, 2 issue OOO processor
Instruction L1 32 KB, 2 way, private

Access time: 1 ns

Data L1 32 KB, 4 way, WT, private
Access time: 1 ns

L2 256 KB, 8 way, WB, private
Access time: 2 ns

L3 1 MB per bank, 16 banks, 8 way, WB, shared
Access time: 4 ns

Line size 64 Bytes

DRAM Access time: 40ns

Network 4 x 4 torus

Coherence Directory MESI protocol at L3

’ Technology Parameters

Technology node | 32 nm

Frequency 1000 MHz
Device type LOP (Low operating power)
Temperature 330 Kelvin

’ Tools
Architecture SESC [11]

Timing & Power | McPAT [12] & CACTI [13]

Table 5.1: Evaluation architecture & tools.

were able to achieve same latency numbers for SRAM and eDRAM for all
levels of the cache hierarchy. We assume the access energies to be the same.
In addition, we assume that the refresh energy of a line is equal to the access
energy of the line and that a line can be refreshed in a cycle, when done in
a pipelined fashion.

If, at higher frequencies, or due to other technological constraints, it is
not viable to implement L1 caches with eDRAM cells, then L1s could be
implemented with normal SRAM cells. Most of the energy expended in L1
is dynamic energy (~ 90 %). The fraction of refresh energy in L1 is ~ 1 %.
Therefore, there are minimal refresh energy savings to be leveraged from L1
caches, and so, our conclusions would still remain the same even if L1s are
implemented with SRAM technology.

We evaluate Refrint by running 16-threaded parallel applications, avail-
able from the SPLASH-2 [16] and PARSEC benchmark suites. The set of

applications and the problem sizes are summarized in Table 5.3. Each ap-

17

’ ‘ Baseline ‘ Proposed ‘
Cell SRAM | eDRAM
Access time (ratio) 1 1
Access energy (ratio) | 1 1
Leakage power (ratio) | 1 1/4
Refresh time NA access time
Refresh energy NA access energy

Table 5.2: Baseline and proposed architecture.

plication was run at 3 retention times, 2 timing policies, 7 data policies and
the baseline case amounting to a total of 43 (42 + 1) combinations. The
parameter sweep is summarized in Table 5.4. For periodic scheme, we club
lines into as many groups as the number of sub arrays per bank reported by
CACTI. Therefore, for L1 we have 4 groups of 128 lines each, for L2 we have
4 groups of 1024 lines each and for L3 we have 4 groups of 4096 lines each.
For Refrint, we group sentry bits so that we have a maximum of 1024 inputs
to the priority encoder. We have a group size of 1 (512 inputs to the encoder)
for L1, for L2 we have a group size of 4 (1024 inputs to the encoder) and for

L3 we have a group size of 16 (1024 inputs to the encoder).

| SPLASH-2 [16] |
FFT 220
LU 512 x 512
Radix 2M keys
Cholesky tk29.0
Barnes 16 K particles
FMM 16 K
Radiosity batch
Raytrace teapot

| PARSEC |
Streamcluster | sim small
Blackscholes sim medium
Fluidanimate | sim small

Table 5.3: Applications.

18

Retention time
Timing policy
Data policy

50 ws, 100 ws, 200 us

Periodic, Refrint

All, Valid, Dirty

WB(4,4), WB(8,8), WB(16,16), WB(32,32)
Total combinations

Table 5.4: Parameter sweep of policies.

19

CHAPTER 6

EVALUATION

In this section, we present our evaluation of Refrint. We present the effect of

our policies on memory hierarchy energy, total energy and execution time.

Policies: We present results for Periodic and Refrint. The two data-based
policies viz. All and Valid do not create extra DRAM accesses. However,
Dirty and WB(n,m) (write back) policies create extra DRAM accesses by
either discarding valid data or pushing dirty data to DRAM to save on-chip
refresh energy. Therefore, to do a fair comparison, we take DRAM access
energy into account. In addition, we assume that at the end of the simulation
all dirty data will be written back to main memory (DRAM).

Applications: In section 3.3 and in Fig. 3.1 we categorized applications
into three classes. In the course of our evaluation we found that applications
within a class responded similarly to our timing and data policies. Table 6.1
shows the binning for our set of applications. In the following sections, rather
than pick one representative application from each class, we will present

average numbers for the entire class.

’ Category \ Applications ‘
Class 1 FFT, FMM, Cholesky, Fluidanimate
Class 2 Barnes, LU, Radix, Radiosity

Class 3 Blackscholes, Streamcluster, Raytrace

Table 6.1: Application Binning.

20

6.1 Memory Hierarchy Energy

In this section, we present the effects of our policies on the memory hierarchy
energy. We split the memory energy in two different ways, the first as a sum
of L1, L2, L3 and DRAM energies 6.2 and the second as a sum of on-chip
dynamic, leakage, refresh and DRAM energies 6.3.

6.2 L1,12 L3 & DRAM

all

06 rT 1T rrrrrrrrrrid rT 1T rrrrrrrrrrid rT 1T rrrrrrrrrrid

L1, L2, L3 & DRAM energy

DI T ITITIIIIDDDDD
25225255 z<
S2BTTB SRCE]

2229 < 22 @ Q g2 X =< 2222 < 22232 E< 2D

=
o N
bW
o

@
S
c
@
c
@

100 us
Retention Time

Figure 6.1: L1, L2, L3 & DRAM energy (normalized to fulll.SRAM memory
energy).

In Fig. 6.1 we show memory energy as the sum of L1, L.2, L3 and DRAM
energies (averaged over all applications). On the X-axis we have 3 sets of bars,
each at retention times of 50 us, 100 us and 200 us respectively. Within each
retention time we have 2 time-based policies viz. periodic (P) and Refrint
(R). For each time-based policy we have 7 data-based policies viz. All, Valid,
Dirty, WB(4,4), WB(8,8), WB(16,16) and WB(32,32). The bars are labelled
as ‘time-policy.data-policy’ e.g., P.WB(4,4) stands for periodic and WB(4,4)
policy. The Y-axis represents total memory energy as a sum of L1, 1.2, L3
and DRAM energies respectively, from bottom to top.

Across all retention times and policies, we find that L3 consumes the ma-
jority (~ 60 %) of the on-chip memory energy. This was expected, and so
we focussed our evaluation on the effect of our policies in saving L3 energy.
In each of the 42 combinations, all on-chip memories (L1, L2 and L3) have
the same timing policies i.e. either Periodic or Refrint. However, L1 and L2
were always run at the Valid data-policy, which refreshes all the valid lines

in the cache. This was done because L1 and L2 caches have very high dy-

21

namic energy and small leakage and refresh energy components. Therefore,
there are minimal refresh energy savings to be gained. In addition, any line
which is not being used is quickly replaced by the normal cache replacement
policies. Even with this decision of applying intelligent refresh only at L3,
we are able to save significant memory energy, as can be seen from the plot.

To show the effectivness of our polices in saving on chip refresh energy,
we present the same data (memory energy), but now as a sum of on-chip

dynamic, leakage, refresh and DRAM energies.

6.3 On-Chip Dynamic, Leakage, Refresh & DRAM

In Fig. 6.2 we show the memory energy (averaged) for Class 1, Class 2
and Class 3 applications as the sum of on-chip dynamic, leakage, refresh
energies and DRAM energy. The fourth plot (labelled ‘all’) shows the average
distribution over all applications. The X-axis of the plots are the same as
in section 6.2. The Y-axis represents total memory energy as a sum of on-
chip dynamic, leakage, refresh energies and DRAM energy respectively, from
bottom to top.

In all classes of applications, the fraction of dynamic energy remains almost
the same across retention times and across policies because the amount of
work done is the same. The fraction of leakage energy varies because of the
effect of the policies on execution time (Sec. 6.5). The main variation is in
the fraction of refresh energy, which is the focus of this paper. The reduction
in on-chip refresh energy (as a result of policies) comes at the cost of extra

DRAM accesses, and has been taken into account.

Retention Time: As the retention time increases, the lines have to be re-
freshed less often and hence the fraction of refresh energy reduces. The effect
of the policies (timing and data) are most pronounced at smaller retention

times.

Timing Policies: Refrint policies always do better than Periodic. This is
because the refreshing of lines is highly staggered and is done only when the
line truly needs one. Periodic schemes, on the other hand, block the cache

more often leading to increased execution times, hence leakage and refresh

22

the line even if not required.

Data Policies: The effect of data policies is different in the three classes
of applications. In Class 1 applications (high footprint, high visibility),
WB(n,m) policies even at small values of (n,m) are very effective and sig-
nificantly reduce the refresh component and the total memory energy in
comparison to All, Valid and Dirty policies. In Class 2 applications (low
footprint, high visibility), WB(n,m) policies are still effective but only at
high values of (n,m). Valid scheme does equally well for such applications.
In Class 3 applications (low footprint, low visibility), any policy Dirty or
WB(n,m) which attempts to reduce refresh energy pays a penalty in terms
of leakage energy (due to increased execution time) or DRAM energy. Valid
scheme does best for this class of applications. Our observations are in line
with our hypothesis presented in Sec. 3.3.

Across all applications, Refrint schemes do better than Periodic schemes.
On average, WB(32,32) policy does better than all other policies. At 50 us,
on average, the base refresh policy for eDRAM (Periodic All) consumes 50 %
energy compared to a full-SRAM memory hierarchy. Our Refrint WB(32,32)
policy reduces the memory hierarchy energy to 36 % compared to a full-

SRAM memory hierarchy.

6.4 Total Energy

In Fig. 6.3 we show the normalized total system energy (cores, caches, net-
work and DRAM energy), averaged over Class 1 applications and over all
applications. The X-axis of the plots is the same as in section 6.2. The
Y-axis represents the total system energy. For Class 1 applications, Refrint
WB(32,52) policy does the best. On average, across all applications, Refrint
WB(32,52) still does the best although, Refrint Valid policy comes close
enough. For emerging classes of high footprint applications, we expect Refrint
WB(32,52) policy to bring in the most energy savings. At 50 us, on aver-
age, the base refresh policy for eDRAM (Periodic All) consumes 72 % energy
compared to a full-SRAM system. Our Refrint WB(32,32) policy reduces
the system energy to 61 % compared to a full-SRAM system.

23

Dynamic mm—

RWB(32,32)
R.WB(16,16)
R.WB(8,8)
RWB(4,4)
R.dirty
R.valid

Rall
P.WB(32,32)
P.WB(16,16)
P.WB(8,8)
P.WB(4,4)
P.dirty
P.valid

P.all

200 us

RWB(32,32)
R.WB(16,16)
R.WB(8,8)
RWB(4,4)
R.dirty
R.valid

Rall
P.WB(32,32)
P.WB(16,16)
P.WB(8,8)
P.WB(4,4)
P.dirty
P.valid

P.all

classl
100 us .
Retention Time

R.WB(32,32)

: R.WB(16,16)

et R.WB(8,8)

-t R.WB(4,4)

- R.dirty

S Ruvalid

- Rall "
; P.WB(32,32) 5

P.WB(16,16)

: P.WB(8,8)

- P.WB(4,4)

- P.dirty

- P.valid

. DU P.all

@ v ¥ @ o o o
S 6 8 8 5 o

ABi1aua WvHQ ® ysayay ‘abexea ‘olweulq

DRAM s
Refresh e
Leakage mswmm
Dynamic mm—

A RWB(32,32)

- R.WB(16,16)
bt R.WB(8,8)

L) - R.WB(4,4)
R.dirty
R.valid
Rall
P.WB(32,32)
P.WB(16,16)
P.WB(8,8)
P.WB(4,4)
P.dirty
P.valid
P.all

200 us

RWB(32,32)
R.WB(16,16)
R.WB(8,8)
R.WB(4,4)
R.dirty
R.valid

Rall
P.WB(32,32)
P.WB(16,16)
P.WB(8,8)
P.WB(4,4)
P.dirty
P.valid

P.all

class2
T T T T TTTT
100 us .
Retention Time

R.WB(32,32)
R.WB(16,16)
R.WB(8,8)
R.WB(4,4)
R.dirty

Ruvalid

Raall "
- P.WB(32,32) 3
i P.WB(16,16)
- P.WB(8,8)

- P.WB(4,4)
i P.dirty

SRR P.valid

P.all

0
=

0.45
0.4
0.35
03
0.25
0.2
0.15
0.1
0.05

AB1aua W@ ® ysalay ‘abexeaT ‘olweulg

DRAM wwms
Refresh s
Leakage wmmm
Dynamic mm—

R.WB(32,32)
R.WB(16,16)
R.WB(8,8)
R.WB(4,4)
R.dirty

R.valid

Rall 0
PWB(3232) S
P.WB(16,16) ™
P.WB(8,8)
P.WB(4,4)
P.dirty

P.valid

P.all

R.WB(32,32)
R.WB(16,16)
R.WB(8,8)
RWB(4,4)
R.dirty
R.valid

Rall
P.WB(32,32) o
P.WB(16,16)
P.WB(8,8)
P.WB(4,4)
P.dirty
P.valid

P.all

class3
100 u
Retention sl’ime

R.WB(32,32)
R.WB(16,16)
R.WB(8,8)
R.WB(4,4)
R.dirty
Ruvalid
R.all »
P.WB(32,32) o
P.WB(16,16) *
P.WB(8,8)
P.WB(4,4)
P.dirty
P.valid
- I P.all

@ v ¥ 9 N o o
S 5 5 5 o o

AB1aua WvHQ ® ysauyay ‘abexeaT ‘olweulq

Dynamic m—

R.WB(32,32)
R.WB(16,16)
R.WB(8,8)
R.WB(4,4)
R.dirty

Ruvalid

Rall «
PWB(3232) S
P.WB(16,16) ™
P.WB(8,8)
P.WB(4,4)
P.dirty

P.valid

P.all

RWB(32,32)

R.dirty
R.valid

Rall
P.WB(32,32)
P.WB(16,16)
P.WB(8,8)
P.WB(4,4)
P.dirty

P.valid

P.all

all

00 us .
Retention Time

R.WB(32,32)
R.WB(16,16)
R.WB(8,8)
R.WB(4,4)
R.dirty

R.valid

Rall “
P.WB(32,32) 5
P.WB(16,16)
P.WB(8,8)
P.WB(4,4)
P.dirty
e P.valid
. Pall

@ v T o o o o
S 8 5 5 o o

AB1aua WyHQ ® ysaiay ‘abexea ‘olweulg

leakage, refresh & DRAM energy (normalized

).

b

Figure 6.2: On chip dynamic

to ful-SRAM memory energy

6.5 Execution Time

In Fig. 6.4 we show the normalized execution time averaged over Class 1

applications and over all applications. The X-axis of the plots are the same

as in section 6.2. The Y-axis represents total execution time. All applications

have the same trend across all retention times and policies. On average, with

increasing retention times, the performance penalty reduces.

24

g 08 T T T LT T T T T 1T T T 11 TT T T T T T T T T T T 11 T T T T T T T T T T T T T T | Energy s
%0'7 e S S HE S S S)
< 06 1 1 1] 1 e
o
£ 05 1 i 111
5
p= | 1 111 pee.
5§ o4
3 03 1 i 111
2 02 1 1 111
3
g 01 1 i 111
5
= 0
TIDIIIIDIDIDNDDTDD TIDIIIIIDIDNDDDD TITTIIIDIDIDIDIDIDDD
25252 ss5ss 252252 =ss¢<¢s B52sssz52ss5ss
2 222w 2222w s 222w 2222w g 22 @A <2209
SR EN TR RN TEE R SCECEN TBE R
ENCREN ENCREN BN 2o IR RN
&L w ey &L EeLq SEL W R
e e 28 R o8 SR
50 us 100 us . 200 us
Retention Time
all
g 08 TT 1T LT T T T T 1T T rrIT TT T T T T T T T 11T T T T T T T T T T T T T T T] Energy s
50'7 Do e S T T S S S A) F T
< 06 1 i
o
2 o5 1 1 111 B
5
c | 1 111 pee.
5§ o4
5 03 1 1 111 B
2 02 1 i 111
5
s 01 1 1 111 B
]
= 0
TDVIVIVIIVIDDIIADD TITVIVITIVIDDDDARD TIVIIIIIIDIDIDDD
252z 35 8 252238 252258
1355551358533 2135555°L358535% 235555°238k55
I TeE W I T E W@ NECECECY TEE W
RN ENCRZEN SRR ENCRZEN SRR ENCRZEN
SELw &L 2EL W &Ly SeL W &Ly
en GRS R a8 R a8
50 us 200 us

100 us .
Retention Time

Figure 6.3: Total energy (normalized to full-SRAM system energy).

Timing Policies: Periodic schemes do much worse in comparison to Refrint
schemes. This is because periodic schemes block the cache while the lines
are being refreshed. Also, by their nature of being periodic they refresh the
lines more often than needed. Refrint schemes, on the other hand, refresh
lines in a very staggered fashion and do not cause significant performance

degradation.

Data Policies: All and Valid data policies are the best w.r.t. execution
time as they keep all data in the cache do not create any extra invalida-
tions or writebacks compared to full-SRAM memory hierarchy. Dirty and
WB(n,m) policies incur a performance overhead, due to an increase in miss
rates caused by extra invalidations and writebacks. The performance penalty
for WB(n,m) policy goes down as (n,m) grow. This is obvious, as the data
is kept around for a longer time.

At 50 ps, on average, the base refresh policy for eDRAM (Periodic All)
suffers a slowdown of 18 % compared to a full-SRAM system. Our Refrint
WB(32,52) policy suffers a slow down of only 2 % compared to a ful-SRAM

system.

25

classl

Time m—

i
-

~
-

- 9 e %
S o o

awi] uonnoax3

]
o

o

R.WB(32,32)
R.WB(16,16)
R.WB(8,8)
R.WB(4,4)
R.dirty
R.valid

Rall
P.WB(32,32)
P.WB(16,16)
P.WB(8,8)
P.WB(4,4)
p.dirty
P.valid

Pall

R.WB(32,32)
R.WB(16,16)
R.WB(8,8)
RWB(4,4)
R.dirty
R.valid

Rall
P.WB(32,32)
P.WB(16,16)
P.WB(8,8)
P.WB(4,4)
P.dirty
P.valid

Pall

R.WB(32,32)
R.WB(16,16)
R.WB(8,8)
RWB(4,4)
R.dirty
R.valid

Rall
P.WB(32,32)
P.WB(16,16)
P.WB(8,8)
P.WB(4,4)
P.dirty
P.valid

Pall

200 us

50 us

100 us .
Retention Time

all

Time m—

@
i

$ N d @ e
S G S o o

awi] uopnoax3

]
o

R.WB(32,32)
R.WB(16,16)
R.WB(8,8)
RWB(4,4)
R.dirty
Ruvalid

R.all
P.WB(32,32)
P.WB(16,16)
P.WB(8,8)
P.WB(4,4)

o

R.WB(32,32)
R.WB(16,16)
R.WB(8.8)
R.WB(4,4)
R.dirty
R.valid

R.all
P.WB(32,32)
P.WB(16,16)
P.WB(8,8)
P.WB(4,4)

RWB(32,32)
R.WB(16,16)
R.WB(8,8)
R.WB(4,4)
R.dirty
R.valid

Rall
P.WB(32,32)
P.WB(16,16)
P.WB(8,8)
P.WB(4,4)

200 us

100 us .
Retention Time

50 us

ime).

t

1011

d to full-SRAM execut

(normalize

ime

ion t

Execut

Figure 6.4

26

CHAPTER 7

RELATED WORK

To reduce leakage power in the conventional SRAM caches, two main ap-
proaches have been proposed. They differ in their ability to preseve state.
Gated-Vdd [17] and Cache Decay [4, 18] turn off cache lines that are not
likely to be accessed in the near future, and thereby save leakage power.
Drowsy Caches [5, 19], periodically move inactive lines to a low power mode
in which they cannot be read or written.

Nevertheless, both approaches targetting SRAMs, require design changes,
power gating/voltage biasing circuitry and have a non-negligible hardware
overhead.

Emerging memory technologies like eDRAM, the focus of our work, of-
fer great leakage reduction and area benefits, and are a promising memory
technology of the future.

eDRAM 1T-1C cells can be logic-based or DRAM based. Logic-based
eDRAM operates faster but it is more expensive as it complicates the logic
manufacturing process. Logic-based eDRAM, as a feasible alternative to on-
chip SRAMs, has been proposed in [20]. To make eDRAM characteristics
closer to SRAM in terms of delay and to simplify the process technology,
Liang et al. [21] proposed the 3T-1D eDRAM cell for L1 caches. The pro-
posed cell consists of three transistors and a diode which loses its charge over
time, thereby requiring refresh. Juang et al. [22] proposed a dynamic cell
with 4 transistors by removing two transistors that restore the charge loss
in a conventional 6T SRAM cell. The 4T cell requires less area compared to
6T SRAM while achieving almost the same performance. However, the data
access is slower and destructive, which can be solved by refreshing the data.

Hybrid memory cells have also been proposed to take advantage of the
different features that different memory cells offer. Valero et al. [10] intro-
duced a macro-cell that combines SRAM and eDRAM at cell-level. They

implement a N-way set-associative cache with these macro-cells consisting of

27

one SRAM cell, N-1 eDRAM cells, and a transistor that acts as a bridge to
move data from the static cell to the dynamic ones. Although applicable to
first-level caches, this approach is not effective for large shared caches, since
the access patterns are not so predictable and the data access characteristics
at L1 caches do not hold true at lower level caches.

In deep sub-micron technology nodes, when implementing an eDRAM-
based on-chip cache, power consumption and the performance overhead of
refreshing the eDRAM cells become the main bottlenecks. An interesting
approach is introduced by Venkatesan, et al. [23] which is a software-based
mechanism that allocates blocks with longer retention time before allocating
the ones with a shorter retention time. Using this technique, the refresh
period of the whole cache is determined only by the portion instead of the
entire cache. Ghosh et al. [24] proposed SmartRefresh that reduces refresh
power by adding timeout counters per line. This avoids unnecessary refreshes
of the lines which were recently read or written.

Usage of error-correction codes (ECC) is another technique to reduce the
refresh power [25]. ECC can tolerate some failures and hence, allows setting
the global refresh time irrespective of the weakest cells. This means that
employing a stronger ECC can increase the refresh period and reduce the
refresh energy. Nonetheless, strong codes come with high overheads in terms

of storage, encoding/decoding power, area, and complexity.

28

CHAPTER 8

CONCLUSIONS

To reduce the power consumed by large chip multiprocessors in the cache
hierarchy, this paper considered a low-leakage technology (eDRAM) and ex-
amined intelligently refreshing it for power savings. Our goal was to refresh
the data that will be used in the near future, and invalidate and/or write
back to memory the other data. We presented Refrint, a simple approach for
fine-grained, intelligent refresh of eDRAM lines to minimize on-chip power.
We introduced the Refrint algorithms and the microarchitecture support re-
quired.

We evaluated 16-threaded parallel applications running on a representative
chip multiprocessor with a three-level cache hierarchy. Our results showed
that Refrint is very effective. Compared to a full-SRAM system, a basic full-
eDRAM system consumes 50 % memory (L1, L2, L3 and DRAM) energy
and 72 % system energy. In comparison, Refrint consumes 36 % memory
energy and 61 % system energy. In addition, in the energy remaining, the
contribution of refreshes is negligible. Finally, Refrint’s early invalidation and
write back of lines does not increase the execution time of the applications
noticeably. The basic full-eDRAM suffers a slowdown of 18 %, while Refrint

slows down performance by only 2 %

29

1]

REFERENCES

R. G. Dreslinski et al., “Near-threshold computing: Reclaiming Moore’s
law through energy efficient integrated circuits,” Proc. of the IEEFE,
no. 2, pp. 253-266, Feb. 2010.

S. Yang, M. Powell, B. Falsafi, K. Roy, and T. Vijaykumar, “An
integrated circuit/architecture approach to reducing leakage in deep-
submicron high-performance i-caches,” in HPCA, 2001, pp. 147 —157.

S.-H. Yang, M. Powell, B. Falsafi, and T. Vijaykumar, “Exploiting choice
in resizable cache design to optimize deep-submicron processor energy-
delay,” in HPCA, Feb. 2002, pp. 151 — 161.

S. Kaxiras, Z. Hu, and M. Martonosi, “Cache decay: exploiting gen-
erational behavior to reduce cache leakage power,” in ISCA, 2001, pp.
240-251.

K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge, “Drowsy
caches: simple techniques for reducing leakage power,” in ISCA, 2002,
pp. 148-157.

S. S. Iyer et al., “Embedded dram: Technology platform for the blue
gene/l chip,” IBM Journal of Research and Development, vol. 49, no.
2-3, pp. 333-350, 2005.

C. Wilkerson, A. R. Alameldeen, Z. Chishti, W. Wu, D. Somasekhar,
and S.-L. Lu, “Reducing cache power with low-cost, multi-bit error-
correcting codes,” in ISCA, 2010, pp. 83-93.

P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: A 32-way mul-
tithreaded sparc processor,” IEEE Micro, vol. 25, no. 2, pp. 21-29, 2005.

D. F. Wendel et al., “Power7: A highly parallel, scalable multi-core high
end server processor,” J. Solid-State Circuits, vol. 46, no. 1, pp. 145-161,
2011.

A. Valero, J. Sahuquillo, S. Petit, V. Lorente, R. Canal, P. Lépez, and
J. Duato, “An hybrid edram/sram macrocell to implement first-level
data caches,” in MICRO, 2009, pp. 213-221.

30

[11]

[12]

[16]

[17]

[18]

[19]

[20]

J. Renau et al, “SESC simulator,” January 2005,
http://sesc.sourceforge.net.

S. Li et al., “McPAT: an integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in MICRO, 2009,
pp- 469-480.

S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. Jouppi, “CACTI
5.1. Technical Report,” Hewlett Packard Labs, Tech. Rep. HPL-2008-20,
Apr. 2008.

J. Barth et al., “A 500 mhz random cycle, 1.5 ns latency, soi embedded
dram macro featuring a three-transistor micro sense amplifier,” Solid-
State Circuits, IEEE Journal of, vol. 43, no. 1, pp. 86 —95, Jan. 2008.

K. C. Chun, W. Zhang, P. Jain, and C. Kim, “A 700mhz 2t1c embedded
dram macro in a generic logic process with no boosted supplies,” in
1SSCC, Feb. 2011, pp. 506 —507.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The splash-
2 programs: characterization and methodological considerations,” in
ISCA, 1995, pp. 24-36.

M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. Vijaykumar, “Gated-
vdd: a circuit technique to reduce leakage in deep-submicron cache mem-
ories,” in Low Power Electronics and Design, 2000. ISLPED, 2000, pp.
90 — 95.

H. Zhou, M. C. Toburen, E. Rotenberg, and T. M. Conte, “Adaptive
mode control: A static-power-efficient cache design,” in IEFE PACT,
2001, pp. 61-70.

S. Petit, J. Sahuquillo, J. M. Such, and D. Kaeli, “Exploiting temporal
locality in drowsy cache policies,” in Computing frontiers, 2005, pp.
371-377.

R. E. Matick and S. Schuster, “Logic-based edram: Origins and rationale
for use,” IBM Journal of Research and Development, vol. 49, no. 1, pp.
145-166, 2005.

X. Liang, R. Canal, G.-Y. Wei, and D. Brooks, “Process variation tol-
erant 3t1d-based cache architectures,” in MICRO, 2007, pp. 15-26.

Z. Hu, P. Juang, P. Diodato, S. Kaxiras, K. Skadron, M. Martonosi, and
D. W. Clark, “Managing leakage for transient data: decay and quasi-
static 4t memory cells,” in ISLPED. ACM, 2002, pp. 52-55.

31

[23]

[24]

C. Isen and L. John, “Eskimo: Energy savings using semantic knowledge
of inconsequential memory occupancy for dram subsystem,” in MICRO,
2009, pp. 337-346.

M. Ghosh and H.-H. Lee, “Smart refresh: An enhanced memory con-
troller design for reducing energy in conventional and 3d die-stacked
drams,” in MICRO, Dec. 2007, pp. 134 —145.

P. Emma, W. Reohr, and M. Meterelliyoz, “Rethinking refresh: Increas-
ing availability and reducing power in dram for cache applications,” Mi-
cro, IEEFE, vol. 28, no. 6, pp. 47 —56, nov.-dec. 2008.

32

