
c© 2012 by Jong Hyun Yun. All rights reserved.

ENSEMBLE FILTERING FOR STATE SPACE MODELS

BY

JONG HYUN YUN

DISSERTATION

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Statistics

in the Graduate College of the

University of Illinois at Urbana-Champaign, 2012

Urbana, Illinois

Doctoral Committee:

Professor Yuguo Chen, Chair

Professor John I. Marden

Professor Adam T. Martinsek

Professor Xiaofeng Shao

Abstract

The state space model has been widely used in various fields including economics, finance, bioinformatics,

oceanography, and tomography. The goal of the filtering problem is to find the posterior distribution of

the hidden state given the current and past observations. The first part of my thesis focuses on designing

efficient proposal distributions for particle filters. I propose a new approach named the augmented particle

filter (APF), which combines two sets of particles from the observation and state equations. The APF

can be applied to general state space models, and it does not require special structures of the model or

any approximation to the target or proposal distribution. I find through simulation studies that the APF

performs similarly to or better than other filtering algorithms in the literature. The convergence of the

augmented particle filter has been established.

The second part of my thesis develops the localization methods for particle filters in high dimensional

state space models. Under high dimensional state space models, the computational constraints prevent us

from having a large number of particles to avoid the degeneracy problem of the importance weights. When

the dimension of the state vector is high, it is common that only a few components of the state vector are

dependent on any single component or a set of a few components of the observation vector. In filtering

problems, the concept of localization is to use the information in the components of the observation vector

to update only the corresponding a few components of the hidden state vector.

I propose the localized augmented particle filter. This new approach divides state vectors into small blocks,

and it updates each block of the state vectors through state dynamics and observations. By considering

blocks, the influence of observations in updating state vectors is restricted to a few blocks of the state

vectors, so the localized augmented particle filter allows constructing the proposal distribution in a lower

dimension than the original model. The localized augmented particle filter can outperform many other

methods in the literature. The convergence of the localized augmented particle filter has been proved for

some class of models.

The method to improve particle filters by dividing the particles into independent batches is presented.

The development of the method is motivated by the particle Markov chain Monte Carlo method proposed

ii

by Andrieu et al. (2010). Often, the combination of particle filters in batches outperforms the standard

particle filter. Parallel computing techniques can be easily adapted to make the implementation fast. The

convergence property of the batched particle filter has been established. As the number of batches goes to

infinity, the estimate based on the combination of batches converges to the target.

iii

Table of Contents

List of Tables . vi

List of Figures . vii

Chapter 1 Introduction . 1
1.1 State Space Models . 1
1.2 Kalman Filters . 2

1.2.1 Ensemble Kalman Filters . 3
1.2.2 Localized Ensemble Kalman Filters . 4
1.2.3 Serial Updating Ensemble Kalman Filters . 4

1.3 Particle Filters . 5
1.3.1 Naive Particle Filters . 7
1.3.2 Independent Particle Filters . 7
1.3.3 Optimal Particle Filters . 8

1.4 Resampling Procedures . 8
1.4.1 Multinomial Resampling . 9
1.4.2 Residual Resampling . 9
1.4.3 Stratified Resampling . 9

1.5 Curse of Dimensionality . 10

Chapter 2 The Augmented Particle Filter . 11
2.1 Augmented Particle Filtering . 12
2.2 Justification . 16
2.3 State Space Models with Additive Errors . 18

2.3.1 SSMs with Gaussian Additive Noise and Linear Observation Equations 19
2.4 Simulation Studies . 22

2.4.1 Nonlinear Filtering . 22
2.4.2 Maneuvering Target Tacking . 24
2.4.3 Linear Gaussian Models . 28
2.4.4 Lorenz-96 Model . 30

Chapter 3 The Localized Augmented Particle Filter . 34
3.1 The Localized Augmented Particle Filter (LAPF) . 34
3.2 The Convergence of the LAPF . 35
3.3 Simulation Studies . 39

3.3.1 Lorenz-96 Model . 39

Chapter 4 Particle Filtering with Independent Batches . 42
4.1 Review of the PF . 42
4.2 Independent Batches for the PF . 43
4.3 Convergence of the SIRB . 45
4.4 Simulation Studies . 46

iv

Chapter 5 Future Work . 50
5.1 The Generalized LAPF (GLAPF) . 50
5.2 The EnKF as a Proposal Distribution . 52

5.2.1 Gaussian Mixture Approximation for the Posterior Density 53

References . 55

v

List of Tables

2.1 No resampling: The RMSEs and their standard errors of the augmented particle filter (APF),
the naive particle filter (NPF), and the independent particle filter (IPF) for different combi-
nations of δ and σ with T = 5. 24

2.2 Resampling at every time step: The RMSEs and their standard errors of the augmented
particle filter (APF), the naive particle filter (NPF), and the independent particle filter (IPF)
for different combinations of δ and σ with T = 100. 25

2.3 The RMSEs and their standard errors of three filtering methods for the model in (2.22): the
augmented particle filter (APF), the independent particle filter (IPF), and the naive particle
filter (NPF). 28

2.4 No Resampling: The RMSEs and their standard errors of three filtering methods for the
model in (2.32): the augmented particle filter (APF), the optimal particle filter (OPF), and
the ensemble Kalman filter (EnKF). For the APF and the OPF, we provide CV 2 to compare

their variances of importance weights. CV 2 =

1
N

N
∑

i=1

(w
(i)
T

−w̄T)
2

(w̄T)2
where w̄T = 1

N

N∑
i=1

w
(i)
T 29

2.5 Resampling at every time step: The RMSEs and their standard errors of four filtering methods
for the model in (2.32): the augmented particle filter (APF), the optimal particle filter (OPF),
the independent particle filter (IPF), and the naive particle filter (NPF). 29

2.6 Resampling: The RMSEs and their standard errors of four filtering methods for the model in
(2.35): the augmented particle filter(APF), the optimal particle filter (OPF), the independent
particle filter (IPF), and the naive particle filter (NPF). 33

2.7 No Resampling: The RMSE and their standard errors of four filtering methods for the model
in (2.35). the augmented particle filter(APF), the optimal particle filter (OPF), the ensemble

Kalman filter (EnKF), and the localized EnKF (LEnKF). CV 2 =

1
N

N
∑

i=1

(w
(i)
T

−w̄T)
2

(w̄T)2
where

w̄T = 1
N

N∑
i=1

w
(i)
T . 33

3.1 The comparison of RMSE and its standard error for four methods for Lorenz 96 model with
g(x) = x. 41

3.2 The comparison of RMSE and its standard error for four methods for Lorenz 96 model with
g(x) = exp(x/||x||2). 41

4.1 A Comparison of the average RMSE and standard errors for the SIR and the SIR with batches
based on K = 100 repeated experiments. SMC: N=1,000,000, Bat1: N=25 and L=40,000,
Bat2: N=100 and L=10,000, Bat3: N=250 and L=4,000, and Bat4: N=1,000 and L=1,000. 48

vi

List of Figures

1.1 A Graphical illustration of the state space model. 1

2.1 The Illustration of the Augmented State Space. 11
2.2 The sparse matrix H used for the data generation in Section 2.4.3. In the gray scale, the

brighter component has a larger value than the darker components. 30

3.1 A graphical representation of the covariance matrix Q. Each component of Q is converted to
the gray scale with white being 0 and black being 1. 40

4.1 The illustration of the state space model in Chapter 4. 42
4.2 Comparison of the average RMSE for the SIR and the SIR with batches based on K = 100

repeated experiments. SMC: N=1,000,000, Bat1: N=25 and L=40,000, Bat2: N=100 and
L=10,000, Bat3: N=250 and L=4,000, and Bat4: N=1,000 and L=1,000. 49

vii

Chapter 1

Introduction

1.1 State Space Models

The state space model (SSM) is also called the hidden Markov model. At each time step t, the hidden state

xt evolves through the state equation that describes the first order Markov chain. The xt’s are unobservable

vectors, and only a function of xt with some measurement error is observable through yt. A graphical

illustration of the state space model is given in Figure 1.1. A representation of the state space model is the

following:

1
x

1
y

2
x

2
y

0
x

Figure 1.1: A Graphical illustration of the state space model.





yt|xt = ht(xt, ut), the measurement equation,

xt|xt−1 = ft(xt−1, vt), the state equation,
(1.1)

where vt and ut are independent error terms with known distributions.

The SSM has been widely applied in many fields, including signal processing, image analysis, speech

recognition, DNA sequence analysis, oceanography, and time series modeling; see Rabiner (1989), Geweke

(1989), Gordon et al. (1995), Elliott et al. (1995), Durbin et al. (1998), Liu and Lawrence (1999), Liu (2001),

Tsay (2002), Bertino et al. (2003), and Butala et al. (2009).

One important problem concerning discrete-time SSMs is computing E(g(X0:t)|Y1:t), the expectation of

g(X0:t) with respect to the posterior distribution of the hidden state X0:t = {X0, X1, . . . , Xt} given the

current and past observations Y1:t = {Y1, Y2, . . . , Yt}. This is the filtering problem and E(g(X0:t)|Y1:t) is the

1

Bayes estimate of g(X0:t) with respect to the squared error loss. The filtering problem is typically performed

online in the sense that the estimate of E(g(X0:t)|Y1:t) is needed as soon as the observation yt arrives. The

main focus of this dissertation is the on-line filtering problem.

If we have a linear Gaussian state space model or if the state space is finite, then we can find explicit

expressions for the posterior distribution of X0:t given Y1:t = y1:t. In the next section, we review the Kalman

filter and its variants which can be implemented for the filtering problem when the model is linear Gaussian.

In most of other cases, however, p(x0:t|y1:t) are not analytically tractable. Thus, we need to pursue a generic

method to obtain the estimates in general state space models. The most widely used approach to the filtering

problem is the particle filter, which is presented in Section 1.3.

1.2 Kalman Filters

When both the observation and state equations are linear and Gaussian, the Kalman Filter (KF) can be

applied to obtain the exact posterior density p(xt|y1:t). The general model setup for Kalman filters is the

followings: 



yt|xt = Htxt + ut, ut ∼ N(0, Rt)

xt|xt−1 = Ftxt−1 + vt, vt ∼ N(0, Qt).
(1.2)

In the above equations, Ft and Ht are known matrices. At each time t, the Kalman filter has two steps:

• Analysis step: Compute the mean of variance of Xt|y1:t ∼ N(xat , P
a
t), where x

a
t = xft +Kt(yt −Htx

f
t),

P a
t = (I −KtHt)P

f
t , and Kt = P f

t H
′
t(HtP

f
t H

′
t +Rt)

−1 (the Kalman gain matrix).

• Forecast step: Compute the mean of variance of Xt+1|y1:t ∼ N(xft+1, P
f
t+1), where x

f
t+1 = Ftx

a
t and

P f
t+1 = FtP

a
t F

′
t +Qt.

The Kalman filter is applicable only if we have linear Gaussian state space models. The extended Kalman

filter (EKF) is designed to extend the applicability of Kalman filtering by linearizing nonlinear functions.

Here, we allow both equations to be nonlinear, but the distributions for the error terms are still normal:





yt|xt = ht(xt, ut), ut ∼ N(0, Rt)

xt|xt−1 = ft(xt−1, vt), vt ∼ N(0, Qt).

Let Ht = Dht(·)|(xf
t ,0)

and Ft = Dft(·)|(xa
t ,0)

where Df(·)|x denotes a Jacobian matrix of function f(·) at

x. The KF is implemented as follows on the linearized system:

2

• Analysis step: Compute xat = xft +Kt(yt −Htx
f
t), P

a
t = (I −KtHt)P

f
t , and Kt = P f

t H
′
t(HtP

f
t H

′
t +

Rt)
−1, where xft = ft(x

a
t−1, vt).

• Forecast step: Compute xft+1 = Ftx
a
t and P f

t+1 = FtP
a
t F

′
t +Qt, where x

a
t = ht(x

a
t , 0).

The EKF in general does not give consistent estimates of the state. In this approach, it is crucial to have

an accurate linear approximation of the nonlinear functions. If the nonlinearities are very severe, then the

solutions from the EKF would be far from the true state.

1.2.1 Ensemble Kalman Filters

When both the state and measurement equations are linear and Gaussian, we can implement the Kalman

filtering which gives analytic solutions for E(Xt|Y1:t) and E(Xt+1|Y1:t). When the dimension of the state

vector xt is high, it is hard to apply the Kalman filter for two reasons: First, the computation of matrix

product for large covariance matrices takes a large amount of CPU time. Second storing the large covariance

matrix takes a lot of space. For example, if the state vector xt is represented by 1283 components, then 8

TB of storage is required to store the matrix P f
t with 32-bit precision. Thus, we want to pursue a filter with

lower computational cost. The following is the ensemble Kalman filter (EnKF) updating algorithm proposed

by Evensen (1994), which can overcome the computation and storage problems:

1. Compute x
a,(i)
t = x

f,(i)
t +K̂t(yt+v

(i)
t −Htx

f,(i)
t) where K̂t = P̂ f

t H
′
t(HtP̂

f
t H

′
t+Rt)

−1 and v
(i)
t ∼ N(0, Rt).

2. Estimate xat and P a
t by these ensembles (or particles):

x̂at =
1

N

∑N

i=1
x
a,(i)
t , P̂ a

t =
1

N

∑N

i=1
(x

a,(i)
t − x̂at)(x

a,(i)
t − x̂at)

′.

3. For the next time step t+ 1, each ensemble is propagated by x
f,(i)
t+1 = Ftx

a,(i)
t + u

(i)
t , u

(i)
t ∼ N(0, Qt).

4. In the same way, xft+1 and P f
t+1 can be estimated from x

f,(i)
t+1 ’s as follows:

x̂ft+1 =
1

N

∑N

i=1
x
f,(i)
t+1 , P̂

f
t+1 =

1

N

∑N

i=1
(x

f,(i)
t+1 − x̂ft+1)(x

f,(i)
t+1 − x̂ft+1)

′. (1.3)

Note that we do not really need to calculate or store P̂ a
t , since the ensembles can be updated without P̂ a

t .

Also, the estimate from the EnKF converges to the solution from the Kalman filter as N goes to infinity

(Butala et al., 2008).

3

1.2.2 Localized Ensemble Kalman Filters

When the dimension of the state vector xt is high, it is common that only a few components of xt are

dependent on any single component or a set of a few components of yt. In filtering problems, the concept

of localization is to use the information in the components of yt to update only the corresponding a few

components of xt. In the EnKF, it can be done by introducing the constrained covariance matrix estimator

C ◦ P̂ f
t , where ◦ denotes component–wise matrix product (also called the Schur product). A covariance

tapering matrix C can be chosen from our prior knowledge about the state space model. For example, the

(i, j)-th component of C can be chosen as a distance measurement between the i-th and j-th components of

xt. The most popular choice of C is the banded matrix with a few bands around the diagonal components.

The localized ensemble Kalman filter (LEnKF) provides a much more stable estimate in high dimensional

state space model when it is applied with a good choice of C (Furrer and Bengtsson, 2007). One interpretation

is because the localization regularizes the estimate of the covariance matrix (Bickel and Levina, 2008), so

we can obtain a stable covariance estimate with a small bias when we can only afford a few samples. Note

that the localized ensemble Kalman filter introduces a bias in our estimate, and it has been shown that

the LEnKF converges to the local Kalman filter (Butala et al., 2009). The EnKF or the LEnKF can be

implemented even for nonlinear or non–Gaussian state space models. However, the convergence properties

of the estimates cannot hold anymore.

1.2.3 Serial Updating Ensemble Kalman Filters

In Step 1 of the EnKF algorithm, the inversion of a large covariance matrix when the dimension of yt is high,

is another computationally expensive step, and the result may be unstable. Sometimes in the state space

model, the components of yt in (1.2) are conditionally independent given xt. In this case, the observation

yt can be processed one at a time, and xt can be updated by assimilating the observation yt serially. We

can utilize this property to reduce the computation cost of matrices inversion. Let yt,j denote the j-th block

of the conditionally independent components for j = 1, ...,M . Then, we can implement the following to

achieve the EnKF estimate at each time t:

1. For each j = 1, . . . ,M , find the sub–matrices of Ht and Rt which correspond to yt,j , and denote them

by Ht,j and Rt,j , respectively.

2. When j = 1, we have x
a,(i)
t,1 = x

f,(i)
t + K̂t,1(yt,1 + v

(i)
t,1 − Ht,1x

f,(i)
t), v

(i)
t,1 ∼ N(0, Rt,1) where K̂t,1 =

P̂ f
t H

′
t,1(Ht,1 P̂

f
t H

′
t,1 +Rt,1)

−1.

4

3. Estimate the mean and covariance as follows:

x̂at,j =
1

N

∑N

i=1
x
a,(i)
t,j , P̂ a

t,j =
1

N

∑N

i=1
(x

a,(i)
t,j − x̂at,j)(x

a,(i)
t,j − x̂at,j)

′.

4. For j > 1, update x
a,(i)
t,j = x

a,(i)
t,j−1 + K̂t,j(yt,j + v

(i)
t,j − Ht,jx

a,(i)
t,j−1), v

(i)
t,j ∼ N(0, Rt,j) where K̂t,j =

P̂ a
t,j−1H

′
t,j(Ht,jP̂

a
t,j−1H

′
t,j +Rt,j)

−1.

5. Repeat Steps 3 and 4 until all M blocks are updated.

6. For the next time step t + 1, each ensemble is propagated by x
f,(i)
t+1 = Ftx

a,(i)
t,M + u

(i)
t , u

(i)
t ∼ N(0, Qt),

and then obtain P̂ f
t+1.

We can see that for each yt,j updating x
a
t,j is computationally simple because we deal with lower dimensional

matrix inversion problems with serial updating.

1.3 Particle Filters

The particle filter (PF), also known as sequential importance sampling (SIS), is a method to generate a

weighted sample {x(i)0:t, w
(i)
t }Ni=1 from the posterior distribution of X0:t given Y1:t = y1:t. Based on the

weighted sample, we are able to estimate E(g(X0:t)|Y1:t) at each t. Also, due to the size of the state vector

xt and the time step t, the dimension of X0:t does not allow us to draw particles all at once. To deal with

this issue, the PF considers a recursive way to generate weighted samples as follows:

The posterior density can be decomposed into the product of each state and measurement density.

p(x0:t|y1:t) ∝ p(yt|xt)p(xt|xt−1)p(x1:t−1|y1:t−1)

∝ p(x0)

t∏

n=1

p(xn|xn−1)p(yn|xn).

Assuming p(x0) is known, E(g(x0:t)|y1:t) can be rewritten as

∫
· · ·
∫
g(x0:t)Ct

p(x0)
∏t

n=1 p(xn|xn−1)p(yn|xn)
p(x0)

∏t
n=1 q(xn|yn, xn−1)

×p(x0)
t∏

n=1

q(xn|yn, xn−1)dx0 · · · dxt,

where Ct is a normalizing constant coming from the unnormalized densities in the integrand. To draw parti-

cles, we draw samples from a proposal density q(xn|yn, xn−1) for each n. By doing the above decomposition,

we are able to draw the weighted samples in the recursive way as follows:

5

1. Draw x
(i)
0 from p(x0) for i = 1, . . . , N .

2. For each time-step t = 1, . . . , T , draw x
(i)
t from the proposal distribution q(xt|yt, x(i)t−1). Compute the

importance weight as

w
(i)
t = w

(i)
t−1

p(yt|x(i)t)p(x
(i)
t |x(i)t−1)

q(x
(i)
t |yt, x(i)t−1)

, (1.4)

and normalize the weight by w̃
(i)
t =

w
(i)
t

∑

N
i=1 w

(i)
t

.

Note that in practice we often only know the densities in (1.4) up to some normalizing constants. Using the

normalized importance weight w̃
(i)
t in Step 2 guarantees the convergence without computing the normalizing

constants in w
(i)
t . From the theory of the general simple importance sampling, we have the convergence of

our estimate at time t as follows:

∑N

i=1
w̃

(i)
t g(X

(i)
0:t)

p−−−−→ E(g(X0:t)|Y1:t) as N → ∞.

More convergence results can be found in Doucet et al. (2000).

The performance of the particle filter depends highly on the quality of the proposal density. One way

to measure the quality is to look at the variance of the importance weights. The best scenario is to draw

samples from p(x0:t|y1:t), so all the importance weights are the same. In this case, the variance of the weight

is 0. However, it is usually impossible to sample from p(x0:t|y1:t) except some special SSMs. If the proposal

density is far from p(x0:t|y1:t), the variance of the weight wt would be large. In the worst case scenario,

only one particle with the largest weight would dominate our estimate, which is called the degeneracy of

the weights. See Bengtsson et al. (2008) for more details about the sample size requirements to avoid the

degeneracy problem. The variance of the weight is also used in the effective sample size Ness introduced in

Kong et al. (1997) which is:

Ness =
N

1 + V ar(wt)
=

N

E(w2
t)

≤ N. (1.5)

We estimate the effective sample size by its sample counterpart as follows:

N̂ess =
1

∑N
i=1 (w̃

(i)
t)2

.

Note that N̂ess must lie between 1 and N . A common problem in particle filtering is that as t increases, the

variance of the weight increases, so Ness gets close to 1, which implies that applying the PF alone could be

very ineffective. We will consider this issue in the last section of this chapter. In the next a few sections, we

can see filtering algorithms based on different proposal densities.

6

1.3.1 Naive Particle Filters

The naive particle filter (NPF) is proposed by Gordon et al. (1993). It chooses the proposal as

q(xt|yt, xt−1) = p(xt|xt−1).

Also, the weight evaluation is quite simple for this case:

wt = wt−1p(yt|xt).

Hence, no information from the observation yt is used to generate the particles at time t. When combining

the information from both equations is too challenging, or when drawing the particles from the state equation

is doable, but computing the state density is impossible, we can implement the naive particle filter. Since

the information in yt is incorporated only by the importance weights, this approach does not work well in

the state space model with accurate measurement equations and noninformative state equations. In the

opposite case with noisy measurement and accurate state equations, we expect the performance of the NPF

to be fine.

1.3.2 Independent Particle Filters

The independent particle filter (IPF), introduced by Lin et al. (2005), is another extreme case because the

construction of the proposal density is completely based on the measurement equation

q(xt|yt, xt−1) = q(xt|yt).

Note that the particles from the past do not appear in the proposal density. Only when p(yt|xt) is integrable

with respect to xt, we can choose q(xt|yt) ∝ p(yt|xt); otherwise we choose q(xt|yt) to be close to p(yt|xt).

Since the particles generated from the proposal are independent of the past particles, the particles at time

t can be matched with any particles in the history by a random permutation. After the matching is done,

we can calculate the importance weight as

wt = wt−1
p(yt|xt)p(xt|xt−1)

q(xt|yt)
.

Also, we can consider multiple matchings from several random permutations. Then, the weight will be a

simple average of the weights from each matching. This strategy can reduce the variance of the weights (Lin

7

et al., 2005). However, the resampling procedure in the IPF does not help to control the variance of the

estimate effectively.

1.3.3 Optimal Particle Filters

The optimal particle filter (OPF) can be applied when the following proposal density is available:

q(xt|yt, xt−1) = p(xt|yt, xt−1).

The reason we call it optimal is because this proposal density minimizes the variance of the weights among

other choices of the proposals (Doucet and Gordon, 1999).

However, the OPF can be implemented for only very limited class of SSMs, because the proposal and

the weight update are intractable in general. One class of models that the optimal particle filter can be

implemented is 



yt|xt = Htxt + ut, ut ∼ N(0, Rt)

xt|xt−1 = ft(xt−1) + vt, vt ∼ N(0, Qt),
(1.6)

where ft is any function and Ht is a matrix. With the above model, the proposal density for the optimal

particle filter is N(µt,Σt), where

Σt = (Q−1
t +H ′

tR
−1
t Ht)

−1 and µt = Σt(Q
−1
t f(xt−1) +H ′

tR
−1
t yt).

Also, the weight evaluation can be written as wt = wt−1p(yt|xt−1), where p(yt|xt−1) is

N(yt|Htf(xt−1), Rt +H ′
tQtHt).

1.4 Resampling Procedures

One source of high dimensionality in particle filtering is the time step t. If we perform the PF for large t,

the target density p(x1:t|y1:t) would become a high dimensional density even with the low dimensional xt.

Notice that the variance of the importance weight increases over time, so one can expect that as t goes to

infinity, our estimate of E(X0:t|Y1:t) will be evaluated by a single particle because the maximum of w̃
(i)
t goes

to 1 (Bengtsson et al., 2008).

Resampling is proposed to overcome the degeneracy of the weight. In the simple random resampling

procedure, the given particles will be resampled with probability proportional to their importance weights.

8

In other words, let Ni denote the number of times the i-th particle x
(i)
1:t appears after resampling. Then, we

have E(Ni) = Nw̃
(i)
t , which implies that we put more effort on the particle with larger weight to be evolved

over time. After the resampling is done, we set w̃
(i)
t = 1/N for each sample. If we implement the resampling

procedure at every time t, then the convergence result of the particle filtering still holds with resampling.

The variance of the filtering estimate under resampling can be found in Doucet and Johansen (2011).

In this section, we review several resampling procedures that have been introduced to achieve smaller

V ar(Ni), the additional source of variation introduced by the resampling, or to reduce the computational

cost of the resampling procedure.

1.4.1 Multinomial Resampling

The multinomial resampling is also known as the bootstrap resampling. Let N := (N1, . . . , NN) and w̃t :=

(w̃
(1)
t , . . . , w̃

(N)
t). Then, we sample N from multinomial(N ; w̃t).

1.4.2 Residual Resampling

The residual resampling is also know as the remainder resampling. Here Ni can be obtain as follows:

Ni = ⌊w̃(i)
t N⌋ − N̄i, i = 1, . . . , N

where ⌊·⌋ denote the integer part and (N̄1, . . . , N̄N) is a sample from multinomial(N − R; w̃t) with R :=

∑N
i=1 ⌊w̃

(i)
t N⌋. In this approach, R particles are selected deterministically given w̃t. Thus, the residual

resampling would be effective to obtain small V ar(Ni).

1.4.3 Stratified Resampling

First, we partition an interval (0, 1] into N disjoint intervals whose length equal to w̃t, respectively. Then,

we draw Uj ∼ U(({j − 1}/N, j/N]) for j = 1, . . . , N , and Ni is chosen by counting the number of Uj ’s

in the i-th pre–partitioned interval. This approach is faster than the other methods, so we implement the

stratified resampling for the simulation studies in the following chapters. See Douc (2005) for more details

about properties of each resampling schemes.

9

1.5 Curse of Dimensionality

There are two sources of high dimensionality in particle filtering. One is the dimension of the state vector

xt, and the other is the time step t. The resampling procedure can deal with problems caused by large t

in the particle filter. We need to find an effective approach to handle a high dimensional xt because the

degeneracy of the importance weights can result from the high dimensionality of xt alone in the filtering

problem.

The reasons that the EnKF works for the inference in high dimensional state space models are: 1) it

deals with the posterior density p(xt|y1:t) instead of p(x0:t|y1:t), 2) in linear Gaussian models, the EnKF

converges to the optimal estimate for E(Xt|Y1:t), and 3) it allows the localization by taking into account the

dependency relation between the observation and the state vectors. Roughly speaking, the LEnKF gives a

shrinkage estimate by restricting the influence of the observation yt on only some components of xt.

Notice that the LEnKF only works only for the linear Gaussian models. We want to construct a particle

filtering method working in general nonlinear non–Gaussian models. Applying the localization idea to

particle filtering is not straightforward, and it will be investigated in the following chapters.

This dissertation is structured as follows. Chapter 2 describes the development of a new particle filter

algorithm called the augmented particle filter. Chapter 3 describes the localization procedure that can be

implemented with the augmented particle filter. Chapter 4 describes an effective way to combine particle

filtering estimates coming from independent identical batches of particle filtering. Chapter 5 describes some

future work on the particle filter in high dimensional state space models.

10

Chapter 2

The Augmented Particle Filter

In this chapter, we introduce a new particle filter named the augmented particle filter (APF). Our framework

is not restricted to Sequential Monte Carlo (SMC) or state space models (SSMs). However, we will show

the development of APFs under the SSM framework. APFs depend on the combination of observation

and state equations to construct a proposal distribution. The implementation of APFs does not require

special structures of SSMs or any approximation to the target or proposal distribution which may affect the

convergence of our estimates. To be more specific, APFs combine two sets of particles from the observation

equation (likelihood function) and the state equation (prior distribution). To avoid the difficulty in the

evaluation of importance weights, we augment the state space and specify the joint proposal distribution.

We find that the augmented state space does not hurt the efficiency of the filtering algorithms, and often

times the APF performs better than other filtering algorithms in the literature.

Here, we introduce the SSM with the augmented state space. In Figure 2.1, a few more nodes with the

superscript f are added the SSM to illustrate the idea. Given xt−1, the augmented state vector xft depends

only on xt−1 through the state equation p(xft |xt−1), and x
f
t is free of all the observations, other state vectors,

and other augmented state vectors except xt−1. The augmented state space model can be redefined as (2.1).

1
x

1
y

2
x

2
y

0
x

1

fx
2

fx
3

fx

Figure 2.1: The Illustration of the Augmented State Space.

11





yt|xt = ht(xt, ut), the observation equation,

xt|xt−1 = ft(xt−1, vt), the state equation,

xft |xt−1 = ft(xt−1, v
f
t), the augmented state equation,

(2.1)

where the error term vft can be defined by users, and as a default choice we can set vft
d
= vt.

By considering the augmented state space, we actually make the state space two times larger than the

original state space, since now our target distribution is p(x0:t, x
f
1:t|y1:t) instead of p(x0:t|y1:t). However, we

can sample from the augmented state space xf1:t directly. Notice that the convergence of SMC estimates does

not rely on the dimension of the state space when we directly draw particles from the target distribution.

For each augmented state vector xft , we have its target distribution as p(xft |xt−1), from which we can sample

directly. In following sections, we will see how the APFs can utilize this new structure of SSMs.

2.1 Augmented Particle Filtering

For general state space models, the NPF is often used because the OPF is usually not available, and

incorporating the observation yt into the proposal density could be too challenging. For the NPF, the

proposal density may not be close to the target density which could lead to a large variance of the importance

weight. If the dimension of the model is high, the problem would be even worse. The proposal density of

the NPF relies solely on the state equation, so it does not use any information from the observation yt. The

proposal density of the APF combines the information from both the observation and state equations, which

makes it possible for the APF to outperform the NPF.

In this section, we propose the APF algorithm for general SSMs given in (1.1). In such SSMs, we

evaluate the amount of information contained in the two equations by looking at conditional variances of

yt|xt and xt|xt−1. Thus, at each time t, the implementation of the APF requires evaluating V ar(yt|xt)

and V ar(xt|xt−1) to decide the weight to put on observation and state equations, so we can build up the

proposal distribution as a combination of the two equations. However, state vectors are unknown, so we have

to estimate the variance terms by linearizing the equations and plugging in PF estimates into the equations

unless the model has additive errors. Before we describe the algorithm, we explain a few notations: x
(i)
t and

x
f,(i)
t denote samples generated for the hidden state vectors shown in Figure 2.1, and x

l,(i)
t denotes a sample

from a proposal distribution which solely depends on the likelihood function associated with the current

observation yt.

The detailed algorithm of the APF for the above state space model is given as follows. At the initial step

12

t = 0, draw x
(i)
0 from q(x0), whose target density is p(x0), for i = 1, . . . , N , and compute the importance

weight as

w
(i)
0 =

p(x
(i)
0)

q(x
(i)
0)

.

For i = 1, . . . , T , we repeat the following steps:

1. Draw x
f,(i)
t from p(xft |x

(i)
t−1), which can be easily obtained by evolving through the augmented state

equation.

2. Draw x
l,(i)
t from a proposal density ql(x

l
t|yt) whose functional form is close to p(yt|xt).

3. Let h̃t(x̃t, ut) denote the derivative of ht(xt, ut) with respect to xt at x̃t where x̃t is an temporary

estimate of xt. Evaluate Ĥt := E(h̃t(x̃t, ut)|x̃t) and R̂t := V ar(ht(x̃t, ut)|x̃t).

4. Evaluate Q̂t := V ar(f(x̄t−1, v
f
t)|x̄t−1).

5. Let Σ̂t = (Ĥ ′
tR̂

−1
t Ĥt)

−1. Then, combine the two particles from Steps 1 and 2 as

x
(i)
t = (Σ̂−1

t + Q̂−1
t)−1(Σ̂−1

t x
l,(i)
t + Q̂−1

t x
f,(i)
t) (2.2)

= Q̂t(Σ̂t + Q̂t)
−1x

l,(i)
t + Σ̂t(Σ̂t + Q̂t)

−1x
f,(i)
t .

6. Calculate the importance weight of x
(i)
t as

w
(i)
t =

p(yt|x(i)t)p(x
(i)
t |x(i)t−1)

ql(x
l,(i)
t |yt)

w
(i)
t−1.

The construction of the APF proposal can be viewed as follows: First, we draw a forecast particle x
f,(i)
t =

ft(x
(i)
t−1, v

f,(i)
t) by evolving the particle according to the state equation, and draw a likelihood particle x

l,(i)
t ,

which comes from a proposal density for the likelihood function p(yt|xt). Then, we combine the two sets

of particles to incorporate the information contained in both the observation and state equations. The

justification of the weight computation in Step 6 will be given in Section 2.2.

Here are a few remarks on the general APF algorithm:

1. Note that to choose ql(x
l
t|yt) proportional to the observation density, p(yt|xt) must be proper with

respect to xt, in such case we prefer to choose ql(x
l
t|yt) ∝ p(yt|xlt). As an alternative, when the

SSM has the additive observation noise, we can linearize h(xt) w.r.t xt at the modes of the likelihood

p(yt|xt), and then we can substitute h(xt) with its linearization in p(yt|xt) to construct ql(x
l
t|yt).

13

2. In the case that the function ht(xt, ut) is not differentiable at x̃t or if it is impossible to obtain the

analytical derivative of ht(xt, ut), we could set h̃t(xt, ut) as a numerical differentiation at (x̃t, E(ut)).

3. When coefficients in the linear combination Ĥt, R̂t, or Q̂t in (2.2) cannot be computed analytically,

we can use Monte Carlo method to estimate. Let u
(i)
t and v

(i)
t denote samples from their own error

distributions, we have

Ĥt ≈
1

N

∑N

i=1
h̃t(x̃t, u

(i)
t)

R̂t ≈
1

N

∑N

i=1
(ht(x̃t, u

(i)
t)− ht(x̃t, E(ut)))(ht(x̃t, u

(i)
t)− ht(x̃t, E(ut)))

′

Q̂t ≈
1

N

∑N

i=1
(f(x̄t−1, v

(i)
t)− f(x̄t−1, E(vt)))(f(x̄t−1, v

(i)
t)− f(x̄t−1, E(vt)))

′.

(2.3)

In Section 2.2, we will see that the coefficient estimation above would not cause any problems in the

convergence of the APF estimates.

4. When p(yt|xt) is a proper density w.r.t. xt, we can take an optional resampling step right after Step

2. The importance weight at step 2 can be computed as

w
l,(i)
t =

p(yt|xl,(i)t)

ql(x
l,(i)
t |yt)

. (2.4)

We resample x
l,(i)
t with probability proportional to w

l,(i)
t , so x

l,(i)
t follows p(xlt|yt) approximately. If

p(yt|xt) is not a proper density in terms of xt, then this step is not possible because w
l,(i)
t would not

be the proper weight.

5. We usually choose the temporary estimate x̃t as the mode of p(yt|xt) (viewed as a function of xt with yt

fixed). If it is difficult to find the mode, we can obtain the temporary estimate by generating samples

from ql(x
l
t|yt). Then, we have

x̃t =

∑N
j=1 w

l,(j)
t x

l,(j)
t∑N

j=1 w
l,(j)
t

,

which is the estimate of E(Xt|Yt) with the flat prior of xt.

6. Besides the linear combination in (2.2), the APF allows other ways to combine the forecast and

likelihood particles. For example, if we believe the state equation is not informative, we can inflate

the variance components in the augmented state noise vft , so the final particle would put more weight

on x
l,(i)
t which is the particle from the IPF proposal. This is one extreme case. Another extreme case

is to inflate the variance components in Σ̂t when the observation equation is not informative. In this

14

case, the final particle would be close to x
f,(i)
t , which is the particle from the NPF proposal. Thus, the

NPF and IPF can be viewed as two extreme cases of the APF.

7. The particle x
l,(i)
t and x

f,(i)
t can be matched arbitrarily. The APF can adopt the multiple matching

technique proposed by Lin et al. (2005) to reduce the variance of the importance weight. Let Km =

km,1, . . . , km,N denote the set of random permutation of (1, . . . , N). For m = 1, . . . ,M , each x
l,(i)
t can

be combined with the permuted forecast particle through the linear combination

x
(i)
t,m = Q̂t(Σ̂t + Q̂t)

−1x
l,(i)
t + Σ̂t(Σ̂t + Q̂t)

−1x
f,(km,i)
t , (2.5)

and compute the importance weight as

w
(i)
t,m =

p(yt|x(i)t,m)p(x
(i)
t,m|x(km,i)

t−1)

ql(x
l,(i)
t |yt)

w
(km,i)
t . (2.6)

After obtaining M × N weighted samples {x(i)t,m, w
(i)
t,m, i = 1, . . . , N,m = 1, . . . ,M}, we estimate

E(g(Xt)|Y1:t) by

Ê(g(Xt)|Y1:t) =
∑M

m=1

∑N
i=1 w

(i)
t,m · g(x(i)t,m)

∑M
m=1

∑N
i=1 w

(i)
t,m

.

To obtain N particles to evolve to the next time step t+ 1, we perform the selection step as follows.

For each i we select one particle from {x(i)t,m}Mm=1 with probabilities proportional to {w(i)
t,m}Mm=1, and

set the selected particle and its history to be x
(i)
0:t with the importance weight

w
(i)
t =

∑M
m=1 w

(i)
t,m

M
. (2.7)

The APF proposal draws x
f,(i)
t in the first step and constructs the final particle x

(i)
t by combining x

f,(i)
t

and x
l,(i)
t . Thus, the APF proposal can be viewed as a joint distribution:

q(x
(i)
t , x

f,(i)
t |yt, x(i)t−1) = q(x

(i)
t |xf,(i)t , yt)p(x

f,(i)
t |x(i)t−1).

From (2.11), we have q(x
(i)
t |yt, xf,(i)t) = ql(x

l,(i)
t |yt)|(Σ̂−1

t +Q̂−1
t)−1Σ̂−1

t |, so the marginalized proposal density

q(x
(i)
t |xt−1, yt) can be evaluated through

q(x
(i)
t |yt, x(i)t−1) =

∫
ql(Σ̂t{(Σ̂−1

t + Q̂−1
t)x

(i)
t − Q̂−1

t x
f,(i)
t)}|yt)p(xft |x

(i)
t−1)dx

f
t |(Σ̂−1

t + Q̂−1
t)−1Σ̂−1

t |, (2.8)

15

which gives us the importance weight under p(x0:t|y1:t) without any augmented state space as follows:

w
(i)
t =

p(yt|x(i)t)p(x
(i)
t |x(i)t−1)

q(x
(i)
t |yt, x(i)t−1)

w
(i)
t−1. (2.9)

The integral in (2.8) might not be solved analytically. In order to estimate it, we can implement the naive

Monte Carlo algorithm for each particle i as

q̂(x
(i)
t |yt, x(i)t−1) =

1

k

∑M

j=1
ql(Σ̂t{(Σ̂−1

t + Q̂−1
t)x

(i)
t − Q̂−1

t x
f,(j)
t)}|yt)|(Σ̂−1

t + Q̂−1
t)−1Σ̂−1

t |,

where x
f,(j)
t is the sample from p(xft |x

(i)
t−1) for j = 1, . . . ,M . So, the approximated weight would be

ŵ
(i)
t =

p(yt|x(i)t)p(x
(i)
t |x(i)t−1)

q̂(x
(i)
t |yt, x(i)t−1)

ŵ
(i)
t−1. (2.10)

The proposal density q(x
(i)
t |yt, x(i)t−1) is approximated by the naive Monte Carlo method with sample size

M . For N particles, we need to evaluate ql(Σ̂t{(Σ̂−1
t + Q̂−1

t)x
(i)
t − Q̂−1

t x
f,(j)
t)}|yt) totally N ×M times,

which is very computationally expensive. However, it can be avoided by considering the augmented state

space and the joint proposal density in the importance weight computation.

We presented a certain type of linear combination to combine xlt and x
f
t . However, in the APF we have the

freedom to choose any type of weighted sum. For example, if we believe the state equation is not informative,

then we can inflate the variance components in Q̂t, so the final particle would be generated with more weight

on x
l,(i)
t which is the particle from the IPF proposal. This is one extreme case. Another extreme case is to

inflate the variance components in Σ̂t when the observation equation is not informative. In such case, our

final particle would be close to x
f,(i)
t , which is the particle from the NPF proposal. Thus, NPFs and IPFs

can be viewed as the two extreme cases of APFs which strike a balance between the information from two

different sources.

2.2 Justification

Evaluating the proposal q(x
(i)
t |yt, x(i)t−1) for each i is a time consuming job. However, it can be avoided by

considering the proposal as a joint density

q(x
(i)
t , x

f,(i)
t |yt, x(i)t−1) = q(x

(i)
t |yt, xf,(i)t)p(x

f,(i)
t |x(i)t−1).

16

The density q(x
(i)
t |yt, xf,(i)t) can be described in two parts: 1) sampling x

l,(i)
t from ql(x

l
t|yt) and 2) combining

x
l,(i)
t with x

f,(i)
t via Equation (2.2). Notice that in our sampling procedure x

l,(i)
t depends only on yt, and

x
f,(i)
t would be treated as a constant in q(·|yt, xf,(i)t), so the conditional distribution of x

(i)
t |yt, xf,(i)t can be

reduced to the conditional distribution of x
l,(i)
t |yt. The proposal q(x

(i)
t |yt, xf,(i)t) can be written as

q(x
(i)
t |yt, xf,(i)t) = q{(Σ̂−1

t + Q̂−1
t)−1(Σ̂−1

t x
l,(i)
t + Q̂−1

t x
f,(i)
t)|yt, xf,(i)t } (2.11)

= ql((Σ̂
−1
t + Q̂−1

t)−1Σ̂−1
t x

l,(i)
t |yt)

= ql(x
l,(i)
t |yt)|(Σ̂−1

t + Q̂−1
t)−1Σ̂−1

t |

∝ ql(x
l,(i)
t |yt).

Therefore, q(x
(i)
t |yt, xf,(i)t) can be evaluated to be proportional to q(x

l,(i)
t |yt), and the normalizing constant

|(Σ̂−1
t + Q̂−1

t)−1Σ̂−1
t | is the same for all particles x

(i)
t ’s. The evaluation of Ĥt, R̂t, and Q̂t affect the combi-

nation of the particles from the two equations, but their values are not involved in the weight computation.

Now we illustrate how the augmented state space, xf1:t would change the target density. Recall given xt−1,

xft is free of any other state vectors or observations, and its relation with xt−1 is determined through the

augmented state equation p(xft |xt−1). Thus, we have

p(x0:t, x
f
1:t|y1:t) =

p(x0:t, x
f
1:t, y1:t)

p(yt|y1:t−1)p(y1:t−1)

=
p(yt|xt)p(xt|xt−1)p(x

f
t |xt−1)

p(yt|y1:t−1)

p(x0:t−1, x
f
1:t−1, y1:t−1)

p(y1:t−1)

=
p(yt|xt)p(xt|xt−1)p(x

f
t |xt−1)

p(yt|y1:t−1)
p(x0:t−1, x

f
1:t−1|y1:t−1).

By augmenting xf1:t, we have additional component p(xft |xt−1) in the target density, but this part would

cancel out in the importance weight evaluation as shown in (2.9).

w
(i)
t =

p(yt|x(i)t)p(x
(i)
t |x(i)t−1)p(x

f,(i)
t |x(i)t−1)

q(x
(i)
t |yt, x(i)t−1)

w
(i)
t−1

=
p(yt|x(i)t)p(x

(i)
t |x(i)t−1)p(x

f,(i)
t |x(i)t−1)

q(x
(i)
t |yt, xf,(i)t)p(x

f,(i)
t |x(i)t−1)

w
(i)
t−1

=
p(yt|x(i)t)p(x

(i)
t |x(i)t−1)

ql(x
l,(i)
t |yt)|(Σ̂−1

t + Q̂−1
t)−1Σ̂−1

t |
w

(i)
t−1

∝ p(yt|x(i)t)p(x
(i)
t |x(i)t−1)

ql(x
l,(i)
t |yt)

w
(i)
t−1.

17

Recall that we construct our particle x
(i)
t by taking a linear combination through estimates Ĥt,R̂t, and Q̂t

from our samples, but those estimates only implicitly appear in the importance weight computation through

x
(i)
t . The benefit from the above evaluation is that we avoid the potential increase in the computational cost

as appeared in (2.9) and (2.10), and the importance weight is still exact up to a normalizing constant without

any approximation. Therefore, we obtain the weighted sample {x(i)0:t, w
(i)
t }Ni=1 for the posterior distribution

p(x0:t|y1:t).

As an optional step in the APF, we may perform resampling x
l,(i)
t with probability proportional to w

l,(i)
t .

In such case, q(x
(i)
t |yt, xf,(i)t) would be approximately proportional to the observation density p(yt|xl,(i)t)

instead of ql(x
l,(i)
t |yt), and we need to substitute ql(x

l,(i)
t |yt) with p(yt|xl,(i)t) in (2.9).

2.3 State Space Models with Additive Errors

In this section, we explain the APF algorithm for the state space model with additive error terms. We do

not restrict our model to have normal errors. The following equations illustrate our model:





yt|xt = ht(xt) + ut, ut ∼ (0, Rt)

xt|xt−1 = ft(xt−1) + vt, vt ∼ (0, Qt),
(2.12)

where (µ,Σ) denote a distribution with mean µ and variance Σ. For the APF with the general SSM in Section

2.1, evaluating variances in the SSM by R̂t and Q̂t is necessary to measure the amount of information in

the observation and the state space evolution over time. Here in Model (2.12), we simply set R̂t = Rt and

Q̂t = Qf
t , whereQ

f
t is a variance of the augmented state noise, because we have V ar(ht(x̃t)+ut|x̃t) = V ar(ut)

and V ar(ft(x̄t−1) + vft |x̄t−1) = V ar(vft).

The detailed algorithm is given as follows. At the initial step t = 0, draw x
(i)
0 from q(x0) for i = 1, . . . , N ,

and compute the importance weight as

w
(i)
0 =

p(x
(i)
0)

q(x
(i)
0)

.

For i = 1, . . . , T , we repeat the following steps:

1. Draw x
f,(i)
t from p(xft |x

(i)
t−1).

2. Draw x
l,(i)
t from a proposal density ql(x

l
t|yt).

3. Let Ĥt denote the derivative of ht(xt) with respect to xt at x̃t.

18

4. Let Σ̂t = (Ĥ ′
tR

−1
t Ĥt)

−1. Then, combine the two particles from Steps 1 and 2 as

x
(i)
t = (Σ̂−1

t + Q̂−1
t)−1(Σ̂−1

t x
l,(i)
t + Q̂−1

t x
f,(i)
t) (2.13)

= Q̂t(Σ̂t + Q̂t)
−1x

l,(i)
t + Σ̂t(Σ̂t + Q̂t)

−1x
f,(i)
t .

5. Calculate the weight as

w
(i)
t =

p(yt|x(i)t)p(x
(i)
t |x(i)t−1)

ql(x
l,(i)
t |yt)

w
(i)
t−1.

For the SSM with additive errors, R̂t and Q̂t are given in the model, and the estimation of Ĥt requires

less computational cost than that for the general SSM in Section 2.1. In high–dimensional SSMs, the Monte

Carlo estimation step of the coefficients in (2.3) could be unstable. The APF for SSMs with the additive

errors is capable of avoiding that step.

2.3.1 SSMs with Gaussian Additive Noise and Linear Observation Equations

In this section, we consider a subclass of additive SSMs in Section 2.3. The model in (2.14) has Gaussian

additive errors, and the observation equation has a linear operator Ht. In this type of SSMs, the OPF can

be implemented, and the APF proposal distribution can be marginalized to the OPF proposal distribution

when the model is not under–determined, that is, the dimension of yt is less than or equal to the dimension

of xt. 



yt|xt = Htxt + ut, ut ∼ N(0, Rt)

xt|xt−1 = ft(xt−1) + vt, vt ∼ N(0, Qt).
(2.14)

Notice that in the linear Gaussian SSM, we have Ht as the derivative of ht(xt). From Section 2.3, we have

R̂t = Rt and Q̂t = Qf
t .

Here we present the APF algorithm. At the initial step t = 0, draw x
(i)
0 from q(x0) for i = 1, . . . , N , and

compute the importance weight as

w
(i)
0 =

p(x
(i)
0)

q(x
(i)
0)

.

For t = 1, . . . , T , we repeat the following steps.

1. Draw x
f,(i)
t by x

f,(i)
t = ft(x

(i)
t−1) + v

(i)
t where v

(i)
t ∼ N(0, Q̂t).

2. Draw x
l,(i)
t from a proposal distribution ql(x

l
t|yt). Let Σt = (H ′

tR
−1
t Ht)

−1. Here the proposal distri-

19

bution, which is proportional to p(yt|xt), would be

N(H ′
t(HtH

′
t)

−1yt,Σt). (2.15)

3. Construct the particles by combining particles from the last two steps:

x
(i)
t = (Σ−1

t + Q̂−1
t)−1(Σ−1

t x
l,(i)
t + Q̂−1

t x
f,(i)
t). (2.16)

4. The importance weights can be obtained by

w
(i)
t =

p(yt|x(i)t)p(x
(i)
t |x(i)t−1)

ql(x
l,(i)
t |yt)

w
(i)
t−1.

Here are some remarks on the above algorithm.

1. In Step 2, (H ′
tR

−1
t Ht) might not be invertible if the dimension of xt is less than the dimension of

yt. Thus, in the under–determined SSMs, we cannot choose ql(x
l
t|yt) to be proportional to p(yt|xt).

However, we do not take this case into account because we assume it is always possible to have over–

determined SSMs by adding artificial noised observations into the observation equation. For example,

spatial smoothness conditions for xt can be incorporated into the observation equation with small

noise.

2. The OPF can be implemented for both over and under–determined SSMs without any modification.

At time t, its proposal distribution would be

q(x
(i)
t |yt, x(i)t−1) = N(µt,Σ

∗
t), (2.17)

where Σ∗
t = (Σ−1

t +Q−1
t)−1, and µt = Σ∗

t (H
′
tR

−1
t yt +Q−1

t ft(xt−1)). Also, its importance weight can

be obtained recursively as follows.

w
(i)
t = p(yt|x(i)t−1)w

(i)
t−1 (2.18)

∝ exp{1
2
(yt −Htft(x

(i)
t−1))(Rt +HtQtH

′
t)

−1(yt −Htft(x
(i)
t−1))

′}w(i)
t−1.

3. The importance weight of x
(i)
t for the marginalized proposal density q(x

(i)
t |yt, x(i)t−1) can be analytically

20

evaluated without the augmented state space as

w
(i)
t =

p(yt|x(i)t)p(x
(i)
t |x(i)t−1)

q(x
(i)
t |yt, x(i)t−1)

w
(i)
t−1.

The marginalized proposal density would be

q(x
(i)
t |yt, x(i)t−1) = N(µt,Σ

∗
t). (2.19)

The last remark indicates that the two sets of particles from the APF and OPF are equivalent in distri-

bution. We deliver this result as the following proposition.

Proposition 2.3.1. For the SSM in (2.14) with dim(yt) ≥ dim(xt), if the APF utilizes the likelihood

proposal in (2.15) and sets vft
d
= vt, then the marginal proposal distribution of x

(i)
t in the APF proposal is

the same as the OPF proposal distribution (2.19).

Proof. It is sufficient to prove that at any time t, the marginalized proposal distribution of the APF is

N(µt,Σ
∗
t) which is the OPF proposal distribution. Note that the conditional distribution of x

f,(i)
t given x

(i)
t−1

follows N(ft(x
(i)
t−1), Qt), and the conditional distribution of x

l,(i)
t given yt follows N(Ht′(HtHt′)

−1yt,Σt).

The derivation of the conditional moments of x
(i)
t given yt and x

(i)
t−1 is as follows:

E(x
(i)
t |yt, x(i)t−1) = E((Σ−1

t +Q−1
t)−1(Σ−1

t x
l,(i)
t +Q−1

t x
f,(i)
t)|yt, x(i)t−1)

= (Σ−1
t +Q−1

t)−1{Ht
′R−1

t HtHt′(HtHt′)
−1yt +Q−1

t ft(x
(i)
t−1)}

= (Σ−1
t +Q−1

t)−1{Ht
′R−1

t yt +Q−1
t ft(x

(i)
t−1)}

= µt

V ar(x
(i)
t |yt, x(i)t−1) = V ar((Σ−1

t +Q−1
t)−1(Σ−1

t x
l,(i)
t +Q−1

t x
f,(i)
t)|yt, x(i)t−1)

= (Σ−1
t +Q−1

t)−1{Σ−1
t ΣtΣ

−1
t +Q−1

t QtQ
−1
t }(Σ−1

t +Q−1
t)−1

= (Σ−1
t +Q−1

t)−1

= Σ∗
t

Thus, µt and Σ∗
t are conditional mean and variance given yt and xt−1 of our final particle x

(i)
t . Since the

conditional distribution of x
l,(i)
t and x

f,(i)
t given yt and xt−1 follow independent normal distributions, the

weighted sum of the two random vectors follow a normal distribution. Therefore, the marginalized proposal

21

density for APFs is the same as the proposal density for OPFs.

Next, it might be interesting to see how the APF and the OPF are related in terms of their importance

weights. If the APF is implemented for the over–determined SSM in (2.14), then the variance of its im-

portance weight cannot be smaller than the variance of the OPF weight. See Doucet et al. (2001) for the

detail.

2.4 Simulation Studies

The simulations were coded in MATLAB and ran on a UNIX machine with a 2.40GHz processor.

2.4.1 Nonlinear Filtering

When the observation equation is nonlinear, the optimal particle filter is not available in general. The

naive particle filter and the independent particle filter are often used to estimate E(Xt|Y1:t). We want to

compare the performance of three methods: the augmented particle filter, the naive particle filter, and the

independent particle filter on the following nonlinear SSM in Gordon et al. (1993):





yt|xt = x2t /20 + ut

xt|xt−1 = 0.5xt−1 +
25xt−1

1+x2
t−1

+ 8 cos(1.2(t− 1)) + vt,
(2.20)

where vt ∼ N(0, σ2) and ut ∼ N(0, δ2). Because of the difficulty in deriving the proposal density of xlt based

on the observation density

p(yt|xt) ∝ exp

(
− 1

2δ2
(
x2t
20

− yt)
2

)
,

we use the proposal distribution q(xt|yt) suggested by Lin et al. (2005), which can be obtained by plugging

in the linearization of h(xt) into p(yt|xt),

ql(x
l
t|yt) =





0.5N(c, s2) + 0.5N(−c, s2) yt > 0

N(0, 25δ2) yt ≤ 0,
(2.21)

where c =
√
20yt, and s

2 = min(5δ2/yt, 25δ
2). The model has additive error terms, so the APF in Section 2.3

can be implemented. The three coefficients for the linear combination are obtained as Ĥt =
1
10 x̃t, R̂t = δ2,

and Q̂t = σ2, where x̃t = c if yt > 0; 0 otherwise. For each t, the particle from the APF is

x
(i)
t = (

x̃2t
100δ2

+
1

σ2
)−1(

x̃2t
100δ2

x
l,(i)
t +

1

σ2
x
f,(i)
t),

22

where x
f,(i)
t is the sample from p(xt|xt−1

(i)). Thus, if yt > 0, the APF proposal would be simplified to the

NPF proposal. The IPF proposal density is the same as the density in (2.21), and no multiple matching

is considered. The proposal density for the NPF is given as the state equation in (2.20). The importance

weights are computed recursively for the three methods.

APF : w
(i)
t =





N(yt|
(x

(i)
t

)2

20 ,δ2)N(x
(i)
t |0.5x

(i)
t−1+

25x
(i)
t−1

1+(x
(i)
t−1

)2
+8 cos(1.2(t−1)),σ2)

ql(x
l,(i)
t |yt)

w
(i)
t−1 yt > 0

N(yt| (x
(i)
t)2

20 , δ2)w
(i)
t−1 yt ≤ 0

IPF : w
(i)
t =

N(yt| (x
l,(i)
t)2

20 , δ2)N(x
l,(i)
t |0.5x(i)t−1 +

25x
(i)
t−1

1+(x
(i)
t−1)

2
+ 8 cos(1.2(t− 1)), σ2)

ql(x
l,(i)
t |yt)

w
(i)
t−1

NPF : w
(i)
t = N(yt|

(x
(i)
t)2

20
, δ2)w

(i)
t−1,

where N(x|µ, σ2) denote the normal density w.r.t. x with mean µ and variance σ2.

We consider sixteen different combinations of δ ∈ {1/4, 1/2, 1, 2} and σ ∈ {1, 2, 4, 8}. The number of

particles is set to be 100. Each method is implemented with two schemes: 1) resample at every time step

with the time step T = 100 and 2) no resampling with T = 5. We chose a very small T for the second

scheme because otherwise, the naive particle filter would crash too often to obtain stable RMSEs for some

settings.

To measure the performance of each method, we compute the root mean square error (RMSE) and the

standard error of the RMSE (se(RMSE)). Let X̂0:T denote (Ê(X0|Y1), Ê(X1|Y1:2), . . . , Ê(XT |Y1:T)). We

have

RMSE =
1

K

K∑

k=1

√
1

T
||X̂k

0:T −Xk
0:T ||2,

se(RMSE) =

√√√√ 1

K
V̂ ar

(√
1

T
||X̂k

0:T −Xk
0:T ||2

)
,

where K = 10, 000 is the number of independent repeated experiments.

The results for no resampling case are presented in Table 2.2. We can see that for small observation noise

δ and large state noise σ, the APF outperforms the NPF. For large δ and small σ, the APF is slightly worse

than the NPF, but the difference is small. The reason is that the APF uses the information from both the

observation and state equations to construct the proposal distribution, but the NPF only uses the state

equation. Notice that using the observation equation alone for constructing proposal densities is not very

effective, as shown in the results for the IPF. Also, we present the results without resampling in Table 2.1.

From the table, we can see the similar pattern as that in Table 2.2, but in many settings NPFs crash due to

23

Table 2.1: No resampling: The RMSEs and their standard errors of the augmented particle filter (APF),
the naive particle filter (NPF), and the independent particle filter (IPF) for different combinations of δ and
σ with T = 5.

σ = 1 σ = 2
APF NPF IPF APF NPF IPF

δ = 1/4 2.5323 N/A 7.6962 2.9654 N/A 7.4247
(0.0281) (0.0223) (0.0239) (0.0258)

δ = 1/2 2.8375 2.4707 7.6724 3.1192 3.2822 7.3664
(0.0307) (0.0239) (0.0213) (0.0251) (0.0263) (0.0250)

δ = 1 3.3964 2.6153 7.4040 3.6195 3.3728 7.1542
(0.0326) (0.0217) (0.0232) (0.0284) (0.0238) (0.0247)

δ = 2 4.3756 2.9464 7.2872 4.3674 3.5170 7.1231
(0.0356) (0.0217) (0.0239) (0.0311) (0.0218) (0.0241)

σ = 4 σ = 8
APF NPF IPF APF NPF IPF

δ = 1/4 4.6565 N/A 7.5133 8.8570 N/A 10.4759
(0.0271) (0.0310) (0.0476) (0.0529)

δ = 1/2 4.7176 N/A 7.5175 8.9116 N/A 10.5194
(0.0273) (0.0310) (0.0477) (0.0535)

δ = 1 4.9248 5.3864 7.4968 8.9539 N/A 10.5390
(0.0284) (0.0334) (0.0305) (0.0478) (0.0533)

δ = 2 5.4727 5.3699 7.6135 9.1470 10.5610 10.5754
(0.0307) (0.0301) (0.0296) (0.0486) (0.0675) (0.0523)

the degeneracy of the importance weights.

2.4.2 Maneuvering Target Tacking

We test the APF on a multi–dimensional nonlinear SSM. The tracking problem given in Ikoma et al. (2001)

and Lin et al. (2005) is aimed to track a maneuvering target (e.g. ship or aircraft) over time φ in seconds.

The dynamics of the target is given as a differential equation, and the discretization of the model is as

follows. (see Ikoma et al. (2001) for the detail.)

ξφ+∆φ = A(∆φ)ξφ +B(∆φ)vφ, (2.22)

24

Table 2.2: Resampling at every time step: The RMSEs and their standard errors of the augmented particle
filter (APF), the naive particle filter (NPF), and the independent particle filter (IPF) for different
combinations of δ and σ with T = 100.

σ = 1 σ = 2
APF NPF IPF APF NPF IPF

δ = 1/4 3.8377 3.535 7.0362 3.9126 4.525 7.5077
(0.0170) (0.012) (0.0056) (0.0116) (0.013) (0.0063)

δ = 1/2 4.2076 3.334 7.1632 4.0988 4.192 7.4909
(0.0174) (0.010) (0.0051) (0.0116) (0.011) (0.0060)

δ = 1 4.7366 3.394 7.3042 4.4781 4.151 7.4682
(0.0173) (0.008) (0.0044) (0.0122) (0.008) (0.0054)

δ = 2 5.4820 3.693 7.5929 5.1177 4.423 7.6222
(0.0164) (0.007) (0.0036) (0.0124) (0.006) (0.0044)

σ = 4 σ = 8
APF NPF IPF APF NPF IPF

δ = 1/4 5.0669 6.967 8.1862 8.9337 12.81 11.1696
(0.0088) (0.019) (0.0082) (0.0139) (0.027) (0.0138)

δ = 1/2 5.1639 6.155 8.1684 8.9693 11.729 11.1754
(0.0087) (0.016) (0.0080) (0.0143) (0.026) (0.0139)

δ = 1 5.3603 5.775 8.1336 9.0266 10.752 11.1822
(0.0089) (0.013) (0.0079) (0.0142) (0.024) (0.0140)

δ = 2 5.7650 5.778 8.1492 9.1098 10.091 11.1450
(0.0092) (0.009) (0.0072) (0.0142) (0.021) (0.0138)

where

A(∆φ) =




1 0 ∆φ 0 a1 0

0 1 0 ∆φ 0 a1

0 0 1 0 a2 0

0 0 0 1 0 a2

0 0 0 0 e−α∆φ 0

0 0 0 0 0 e−α∆φ




,

B(∆φ) =



b1 0 b2 0 b3 0

0 b1 0 b2 0 b3




′

.

(2.23)

The components in (2.23) are as follows:

b1 =
1

α

(
(∆φ)

2

2
− a1

)
,

a1 = b2 =
1

α
(∆φ− a2),

a2 = b3 =
1

α
(1− e−α∆φ).

25

Here ξφ has six components: the first two components ξφ,1:2 for the position, the middle two ξφ,3:4 for the

velocity, and the last two ξφ,5:6 for the acceleration of the target at time φ in the Cartesian space. As in

Ikoma et al. (2001), we assume an independent Cauchy state noise vφ = (vφ,1, vφ,2)
′ with the density

p(vφ,i) =
q

π(v2φ,i + q2)
. (2.24)

For notational convenience, let xt denote ξt∆φ. In terms of xt, state dynamics can be rewritten as

xt = A(∆φ)xt−1 +B(∆φ)vt, (2.25)

where vt has the same density in (2.24). The target position is measured by a radar, so the observation at

time t is the measurement of angle and distance of the target from the origin.

yt = h(xt) + ut, (2.26)

where

h(xt) =

(
arctan

(
xt,1
xt,2

)
,
√
x2t,1 + x2t,2

)′

. (2.27)

As in Ikoma et al. (2001), we assume the Gaussian observation noise

ut ∼ N(0, R), R = σ




10−10 0

0 10−2


 . (2.28)

The initial distribution at φ = 0 of the position, velocity, and acceleration of the target is

N((50000, 5000, 0, 10, 0, 0)′, I6).

We sample the true trajectory of the target from (2.22) with ∆φ = 0.01. The observations arrive every 3.75

seconds, so for the implementation we use the dynamics in (2.25) with ∆φ = 3.75. We track the target for

the first 375 seconds, so the total time step T is 100. We set α = 1000 in (2.23), q = 1 in (2.24), and the

number of particles N = 1000. We consider three different values of σ ∈ {0.01, 1, 100}. In each setting, the

experiment is repeated 100 times. We compare three methods with resampling at every step: the augmented

particle filter, the independent particle filter, and the naive particle filter. An extension of the IPF (MIPF-1,

see Lin et al. (2005)) is considered with no multiple matching, and its proposal distribution for the position

vector is the same as in (2.29).

26

Given that the state noise is Cauchy, we truncate the density in (2.24) on its 99.99% highest density region

to estimate Q̂. The naive Monte Carlo method with sample size 10, 000 is used to obtain Q̂. The proposal

distribution for the observation equation is

ql(x
l
t,1:2|yt) = N((x̃t,1, x̃t,2)

′, Σ̂t), (2.29)

where

(x̃t,1, x̃t,2)
′ = h−1(yt),

Σ̂−1
t = I2 ◦ (Ĥ ′

tR
−1Ĥt).

Here ◦ denotes the component–wise matrix product. The matrix Σ̂−1
t is tapered to prevent a potential

matrix inversion problem. The entities in Ĥt, which is the derivative of h(·) at the mode of p(yt|xt), is as

follows:

Ĥt =




1

1+
(

x̃t,1
x̃t,2

)2
1

x̃t,2
− 1

1+
(

x̃t,1
x̃t,2

)2

x̃t,1

x̃2
t,2

(x̃2t,1 + x̃2t,2)
−0.5

x̃t,1 (x̃2t,1 + x̃2t,2)
−0.5

x̃t,2


 . (2.30)

Since the distribution of the state noise is heavy–tailed, we relaxed the density of the augmented state

vector to cover the tail region with higher probabilities. Also, the augmentation is only for the position

vector xt,1:2. The augmented state density p(xft |xt−1) follows the dynamics in (2.22), but we set q = 1000

for the density of Cauchy noise in (2.24). The observation equation relies only on the position vector, so the

sampling needs two steps:

1. We sample the position vector x
(i)
t,1:2 by combining x

l,(i)
t,1:2 from the density in (2.29) and x

f,(i)
t,1:2 from

p(xft |x
(i)
t−1) through the linear combination in (2.2).

2. Given x
(i)
t,1:2 and x

(i)
t−1, the velocity and acceleration x

(i)
t,3:6 follows a degenerated distribution. So, we

directly sample from p(xt,3:6|x(i)t,1:2, x
(i)
t−1).

The APF importance weight at t is

w
(i)
t =

N(yt|h(x(i)t,1:2), R)p(x
(i)
t,1:2|x

(i)
t−1)

N(x
l,(i)
t,1:2|h−1(yt), Σ̂t)

w
(i)
t−1 (2.31)

The results are given in Table 2.3. The APF has smaller RMSEs than the other two methods. Balancing

the information from the past particles and the current observation in the APF works well for the tracking

problem.

27

Table 2.3: The RMSEs and their standard errors of three filtering methods for the model in (2.22): the
augmented particle filter (APF), the independent particle filter (IPF), and the naive particle filter (NPF).

σ = 0.01 RMSE se(RMSE) CPU Time (sec)
APF: 1.161 0.337 2.919
IPF: 2.840 0.338 2.257
NPF: 4784.008 1193.049 2.029
σ = 1 RMSE se(RMSE) CPU Time (sec)
APF: 0.801 0.079 3.015
IPF: 4.526 0.229 2.414
NPF: 1139.173 366.924 2.117

σ = 100 RMSE se(RMSE) CPU Time (sec)
APF: 7.934 0.172 2.942
IPF: 42.328 2.149 2.286
NPF: 67.595 39.252 2.029

2.4.3 Linear Gaussian Models

For the simulation study, we consider a slightly high dimensional SSM as follows:





yt|xt = Hxt + ut, ut ∼ N(0, R),

xt|xt−1 = xt−1 + vt, vt ∼ N(0, Q).
(2.32)

The dimension of xt and the dimension of yt are set to be 50, and the time step is considered up to

T = 300. The matrix H is very sparse, which is often the case in the high dimensional SSM. In many

SSMs, how the state vector xt evolves over time is often unknown, so the state equation is often chosen to

be a random walk. The matrix H is randomly chosen as follows: for each row, we randomly select centers

without replacement. If the center of a certain row is in the middle column, then the corresponding row of

H will have three nonzero consecutive components at the center. If the center is at the edge of the matrix,

then we will assign only two nonzero consecutive components around the center. The values of each nonzero

component is drawn from the standard normal distributions. The matrix H used for the experiments is

given in Figure 2.2.

The covariance matrixQ is assumed to be a banded matrix with 4 on diagonal, 0.5 on the first off–diagonal,

0.1 on the second off–diagonal, and all other components are 0. We assume the covariance matrix R is 1
4 · I50

where the subscript 50 indicates the dimension of the given identity matrix. The number of particles N for

each experiment is set to be 100, and the experiment is repeated for K = 1, 000 times.

We compared five methods: 1) the augmented particle filter (APF) discussed in Section 2.3.1, 2) the

optimal particle filter (OPF), 3) the ensemble Kalman filter (EnKF), 4) the independent particle filter

(IPF), and 5) the naive particle filter (NPF). Under the current model, the IPF and NPF crash too often to

obtain stable results, so we present their results only with resampling. Note that the target density of the

28

Table 2.4: No Resampling: The RMSEs and their standard errors of three filtering methods for the model
in (2.32): the augmented particle filter (APF), the optimal particle filter (OPF), and the ensemble Kalman
filter (EnKF). For the APF and the OPF, we provide CV 2 to compare their variances of importance

weights. CV 2 =

1
N

N
∑

i=1
(w

(i)
T

−w̄T)
2

(w̄T)2
where w̄T = 1

N

N∑
i=1

w
(i)
T .

RMSE se(RMSE) CV 2 se(CV 2) CPU Time (sec) # of Crashes
APF 38.704 0.364 95.841 10.092 11.539 0
OPF 42.462 0.382 97.944 5.749 7.234 24

EnKF 46.097 0.533 3.577 0

Table 2.5: Resampling at every time step: The RMSEs and their standard errors of four filtering methods
for the model in (2.32): the augmented particle filter (APF), the optimal particle filter (OPF), the
independent particle filter (IPF), and the naive particle filter (NPF).

RMSE se(RMSE) CPU Time
APF 35.870 0.410 11.942
OPF 41.602 0.458 7.537
IPF 941.912 8.519 5.488
NPF 101.322 0.505 2.683

APF is augmented with xft .

In order to implement the APF under such a linear Gaussian model, we let Ĥt = H , R̂t = 1
4 · I50

and Q̂t = Q. The sampling procedure for the APF follows the algorithm described in Section 2.3.1 with

ft(xt−1) = xt−1. The proposal density based on the observation equation is chosen as

ql(x
l
t|yt) = N(H ′(HH ′)−1yt,

1

4
(H ′H)−1),

which will also be used as the IPF proposal. We implemented the IPF with no multiple matching, so its

importance weight is

w
(i)
t = N(x

(i)
t |x(i)t−1, Q)w

(i)
t .

The proposal density of the NPF is the state equation N(xt|x(i)t−1, Q), and its importance weight is w
(i)
t =

N(yt|Hx(i)t , 14 · I50)w(i)
t−1. The proposal density of the OPF is

q(x
(i)
t |yt, x(i)t−1) = N(x

(i)
t |Σ∗

t (
1

4
·H ′

tyt +Q−1
t x

(i)
t−1),Σ

∗
t),

where Σ∗
t = (4 ·H ′H +Q−1

t)−1, and the importance weight would be evaluated as follows:

w
(i)
t = exp{1

2
(yt −Hx

(i)
t−1)(

1

4
· I50 +HQH ′)−1(yt −Hx

(i)
t−1)

′}w(i)
t−1. (2.33)

29

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 2.2: The sparse matrix H used for the data generation in Section 2.4.3. In the gray scale, the
brighter component has a larger value than the darker components.

The results with and without resampling are given in Tables 2.4 and 2.5 respectively. We can see that

APFs have significantly smaller RMSEs than the other methods. The IPF and NPF gave much larger

RMSEs than the APF, so it could be very risky to utilize only one equation in SSMs to construct proposal

densities. The simulation results also illustrate that with a relatively small number of particles, the EnKF

without localization can be worse than the APF. The APF can be even better than the OPF for this linear

Gaussian model. Also, the OPF without resampling crashes sometimes. Given that the particles from the

APF and the OPF have the same marginal distributions, the augmented state space may improve the quality

of the estimate.

2.4.4 Lorenz-96 Model

The Lorenz-96 model (Lorenz, 2006) provides a SSM continuous in time, but it has spatially discrete state

space. The model is to study high–dimensional chaotic dynamics such as the atmosphere. The Lorenz-96

model is defined by a set of differential equations over time φ:

ξφ,i
dφ

= (ξφ,(i+1 mod k) − ξφ,(i−2 mod k))ξφ,(i−1 mod k) − ξφ,i + F.

30

After linearizing Lorenz-96 model via the first order Euler method with time step ∆φ = 0.001, we have:

ξφ+∆φ,i = ∆φ(ξφ,i−1(ξφ,i+1 − ξφ,i−2)− ξφ,i + F) + ξφ,i, i = 1, . . . , k (2.34)

The spatial relationship in the state space is given as ξφ,0 := ξφ,k, ξφ,−1 := ξφ,k−1, and ξφ,k+1 := ξφ,1.

For notational convenience, let xt+1,i denote ξt∆φ,i which is the i–th spatial component of the discretized

state vector at time t × ∆φ. Then, we have the discretized nonlinear state equation after adding random

perturbations to (2.34) as follows.

xt,i = ∆φ(xt−1,i−1(xt−1,i+1 − xt−1,i−2)− xt−1,i + F) + xt−1,i + vt,i, i = 1, . . . , k (2.35)

The dimension of xt is k = 80, the constant F = 8, and vt,i ∼ N(0,∆φ). We consider two different

observation equations:

1. full observation: yt,i = xt,i + ut,i for i = 1, 2, ..., k.

2. half observation: yt,i = xt,2i−1 + ut,i for i = 1, 2, ..., k/2.

For the half observation case, we can examine the performance of the APF when the SSM is under–

determined. Each ut,i is assumed to follow independentN(0, 0.01) distribution. The data for each experiment

are generated with the number of time steps T = 500. Six different SMC methods are implemented with

the number of particles N = 50. For both the half and full observation cases, the OPF utilizes the proposal

in (2.19), and its importance weight is

w
(i)
t = exp{1

2
(yt −Hx

(i)
t−1)(R +HQH ′)−1(yt −Hx

(i)
t−1)

′}w(i)
t−1, (2.36)

where for the half observation case R + HQH ′ = (0.01 + 0.001) · I40, Hxt−1 = xt−1,A and for the full

observation case R+HQH ′ = (0.01+0.001)·I80, Hxt−1 = xt−1. The NPF utilizes p(xt|xt−1) as the proposal

distribution, and its weight is w
(i)
t = N(yt|x(i)t , 0.01·Idim(yt))w

(i)
t−1. The LEnKF utilizes a covariance tapering

matrix C = I80. See Butala et al. (2008) for the details about the LEnKF.

For the full observation case, the dimension of yt is 80, and the proposal distribution for the likelihood

is chosen to be ql(x
l
t|yt) = N(yt, 0.01 · I80) for the APF and the IPF. The importance weight of the IPF is

w
(i)
t = p(x

(i)
t |x(i)t−1)w

(i)
t−1. The APF combines particles as

x
(i)
t = (

1

0.01
+

1

0.001
)−1(

1

0.01
x
l,(i)
t +

1

0.001
x
f,(i)
t),

31

and the importance weight is

w
(i)
t =

N(yt|x(i)t , 0.01 · I80)p(x(i)t |x(i)t−1)

N(x
l,(i)
t |yt, 0.01 · I80)

w
(i)
t−1

For the half observation case, the dimension of yt is 40, and we can partition the state space into two

parts: 1) xt,A := {xt,2i−1}i=1,2,...,k/2 and 2) xt,B := {xt,2i}i=1,2,...,k/2. The second state vector xt,B does not

depend on yt, and it is free of the first state vector xt,A given xt−1. Hence, when we implement the APF,

only xt,A will be updated by yt, and xt,B will be updated through the state equation. That is, the final

particle at time t would be x
(i)
t = [x

(i)
t,A, x

(i)
t,B], where

x
(i)
t,A = (

1

0.01
+

1

0.001
)−1(

1

0.01
x
l,(i)
t,A +

1

0.001
x
f,(i)
t,A),

x
(i)
t,B = x

f,(i)
t,B .

The likelihood proposal distribution for xlt,A would be ql(x
l
t,A|yt) = N(yt, 0.01 · I40). Define a function

δxf

t,B

(xt,B) =





1 if xt,B = xft,B

0 if xt,B 6= xft,B

,

we have the proposal distribution for the APF as

q(xt, x
f
t |yt, xt−1)

= q(xt|yt, xft)p(xft |xt−1)

= δxf

t,B

(xt,B)q(xt,A|yt, xft,A)p(x
f
t |xt−1)

∝ δxf
t,B

(xt,B)ql(x
l
t,A|yt)p(xft |xt−1).

Only the first part xf1:T,A is augmented into the state space, so the target is p(x1:T , x
f
1:T,A|y1:T). Thus, the

importance weight in each step is evaluated as follows:

w
(i)
t =

p(yt|x(i)t)p(x
(i)
t |x(i)t−1)p(x

f,(i)
t,A |x(i)t−1)

q(x
(i)
t |yt, xf,(i)t)p(x

f,(i)
t |x(i)t−1)

w
(i)
t−1

=
p(yt|x(i)t)p(x

(i)
t |x(i)t−1)

ql(x
l,(i)
t,A |yt)p(xf,(i)t,B |x(i)t−1)

w
(i)
t−1

=
p(yt|x(i)t,A)p(x

(i)
t,A|x

(i)
t−1)

ql(x
l,(i)
t,A |yt)

w
(i)
t−1.

32

Table 2.6: Resampling: The RMSEs and their standard errors of four filtering methods for the model in
(2.35): the augmented particle filter(APF), the optimal particle filter (OPF), the independent particle
filter (IPF), and the naive particle filter (NPF).

Half RMSE se(RMSE) CPU Time (sec)
APF 7.202 0.033 38.741
OPF 7.316 0.035 46.506
IPF 7.641 0.037 22.365
NPF 6.905 0.030 15.638
Full RMSE se(RMSE) CPU Time (sec)
APF 0.837 0.00020 92.306
OPF 0.737 0.00016 70.855
IPF 1.137 0.00008 43.195
NPF 1.300 0.00064 25.384

Table 2.7: No Resampling: The RMSE and their standard errors of four filtering methods for the model in
(2.35). the augmented particle filter(APF), the optimal particle filter (OPF), the ensemble Kalman filter

(EnKF), and the localized EnKF (LEnKF). CV 2 =

1
N

N
∑

i=1

(w
(i)
T

−w̄T)
2

(w̄T)2
where w̄T = 1

N

N∑
i=1

w
(i)
T .

Half RMSE se(RMSE) CV 2 se(CV 2) CPU Time (sec)
APF 6.289 0.021 48.946 0.873 32.371
OPF 6.181 0.019 48.999 0.014 39.507

EnKF 7.589 0.037 16.834
LEnKF 5.297 0.025 16.027

Full RMSE se(RMSE) CV 2 se(CV 2) CPU Time (sec)
APF 0.898 0.00019 48.936 0.860 92.193
OPF 0.897 0.00017 48.720 2.178 69.633

EnKF 0.697 0.00019 30.091
LEnKF 0.473 0.00007 29.506

The proposal distribution for the IPF is chosen to be N(xt,A|yt, 0.01·I40)p(xt,B |xt−1), so the IPF importance

weight is w
(i)
t = p(x

(i)
t,A|x

(i)
t−1)w

(i)
t−1.

The RMSEs of six filtering methods based on 1, 000 independent experiments are presented in Table 2.6

(resampling at every time step) and Table 2.7 (no resampling). The NPF and IPF cannot be implemented

without resampling, because they crash too many times due to the degeneracy of the importance weights.

Note that the EnKF and LEnKF cannot guarantee the convergence of their estimates to E(Xt|Y1:t) when

the SSMs include non–linear functions as in (2.35). The APF and the OPF performed similarly.

33

Chapter 3

The Localized Augmented Particle
Filter

Bengtsson et al. (2008) showed that the number of particles has to increase exponentially with the dimension

of xt for some SSMs in order to avoid the degeneracy of the importance weights in the PF. In practice,

however, we cannot afford a large number of particles due to the computational constraints, especially when

the dimension is high. In online estimation problems, we have to be able to obtain the estimate E(Xt|Y1:t)

immediately after observing yt, and that limits the amount of computation time. Because of the success

of the LEnKF for high dimensional linear Gaussian SSMs, in this chapter, we develop a localized PF for

general high dimensional SSMs.

3.1 The Localized Augmented Particle Filter (LAPF)

Similar to the localization procedure in the LEnKF, we consider the localization for PFs that allows us to

update each block xt,Kj
of the state vector based on the corresponding block yt,Nj

of the observation vector,

where the indices Kj and Nj indicate which components are in the blocks of xt and yt, respectively. Here we

do not allow the blocks of xt to overlap with each other, and similarly for the blocks of yt. For the localized

PF, we borrow the idea of serial updating in the EnKF and develop an algorithm that allows blockwise

updating to construct the whole state vector xt.

Note that the EnKF serial updating gives us an estimator which is the same as a non-serial updating

estimator. However, We do not pursue to find the serial updating PF that provides the same estimates

as the non–serial updating PF. The two methods, the localization and the serial updating, which makes

the EnKF effective in the high dimensional SSMs, have different purposes. However, what they do in the

EnKF looks quite similar: Both of them follow a blockwise update, that is, to update xt,Kj
by using the

corresponding block yt,Nj
. In the localized EnKF, the influence of yt on updating xt,Kj

can be suppressed,

and only a small part of yt would be used for the updating. In the serial updating EnKF, the conditional

independence of yt given xt can be utilized to do the blockwise update. Hence, in this chapter, we focus on

developing an algorithm that allows to do a blockwise update to construct the whole state vector xt.

34

First, we have to choose the block xt,Kj
and the corresponding block yt,Nj

which will be used to update

xt,Kj
. The block xt,Kj

can be chosen based on the covariance structure of the state noise, the geometrical

distance between the components of xt, or any prior knowledge about the structure of xt. Once we decide

xt,Kj
, the corresponding block yt,Nj

can be chosen by the measurement equation. It is also possible to choose

the blocks of yt first, and then find the corresponding blocks of xt afterwards. This strategy may be useful

when our knowledge about the structure of xt is very limited. After we have the two sets of blocks, we

draw particles from the local target density by considering p(yt,Nj
|xt,Kj

) as the local measurement density,

p(xt,Kj
|xt−1) as the local state density, and p(xft,Kj

|xt−1) as the local augmented state density. The details

of the localized augmented particle filter are given as follows for each time t.

1. Draw a forecast particle x
f,(i)
t,Kj

from p(xft,Kj
|x(i)t−1).

2. Draw a likelihood particle x
l,(i)
t,Kj

from ql(x
l
t,Kj

|yt,Nj
).

3. Combine the two particles x
f,(i)
t,Kj

and x
l,(i)
t,Kj

through a linear combination as in (2.2) to obtain x
(i)
t,Kj

.

4. Compute the weight w
(i)
t,Kj

=
p(yt,Nj

|x
(i)
t,Kj

)p(x
(i)
t,Kj

|x
(i)
t−1)

ql(x
l,(i)
t,Kj

|yt,Nj
)

.

5. Resample the blocks {x(i)t,Kj
}Ni=1 with probability proportional to {w(i)

t,Kj
}Ni=1.

6. Repeat Steps 1-5 for every block j = 1, . . . ,M .

7. Combine each block by match their index i to construct x
(i)
t . For each overlapping component, take

the simple average of that component in different blocks.

Then, a simple average of g(x
(i)
t) is the estimate of E(g(Xt)|Y1:t). In the above, we want ql(x

l
t,Kj

|yt,Nj
) to

be close to p(yt,Nj
|xt,Kj

) which is an approximated marginal density of yt,Nj
under p(yt|xt). The updating

procedure of xt (sampling and resampling) can be done in a smaller dimension than the dimension of the

original problem.

This approach can increase the quality of particles, and provide better estimates for the hidden state xt

than other approaches as shown in Section 3.3. Since now the sampling and resampling are done in a lower

dimension, the localized augmented PF can avoid the problems caused by the high dimensionality in the

SSM. Theocratical justification of this approach is given in the next section.

3.2 The Convergence of the LAPF

We provide a theoretical justification for the localized APF for the simplest case. Note that xt,Kj
denotes

the j-th block of the state vector, and yt,Nj
is the corresponding block of the observation vector.

35

Assumption 0 The blocks yt,N1 , . . . , yt,NM
and xt,K1 , . . . , xt,KM

have no overlaps.

Assumption 1-1 The measurement density can be decomposed as

p(yt|xt) =
M∏

j=1

p(yt,Nj
|xt,Kj

),

which requires yt,Nj
’s to be conditionally independent given xt, and each yt,Nj

depends only on xt,Kj
.

Assumption 1-2 All blocks of xt, xt,K1 , . . . , xt,KM
are conditionally independent given xt−1. Also,

p(xt,Kj
|xt−1) = p(xt,Kj

|xt−1,Kj
).

Assumption 2-1 For all j, p(xt,Kj
|y1:t) = p(xt,Kj

|yt,Nj
, y1:t−1).

Assumption 2-2 For all j, p(xt|y1:t) =
∏M

j=1 p(xt,Kj
|y1:t).

At each time t, the LAPF procedure generates the weighted samples from each block independently and

combines the samples for each component of xt to construct samples for the whole state vector xt after

resampling. The final samples for xt can be viewed as the samples from p(xt|y1:t). Unlike the true state

vector xt, given xt−1 the augmented state vector xft is conditionally independent with every xt and yt except

xt−1. Hence, we use xft,K1
, . . . , xft,KM

as the blocks for xft according to the blocks of xt in Assumption 0.

Proposition 3.2.1. Under Assumption 0, Assumptions 1-1 and 1-2 imply Assumptions 2-1 and 2-2.

Proof. We will prove the proposition via the mathematical induction. First, the proposition is true at t = 1

since for any j, we have

p(x1,Kj
|y1)

∝ p(y1,Nj
|x1,Kj

)p(x1,Kj
)

∝ p(y−1,Nj
)p(y1,Nj

|x1,Kj
)p(x1,Kj

)

∝ p(y−1,Nj
)p(x1,Kj

|y1,Nj
)

∝ p(x1,Kj
|y1,Nj

),

36

where y−1,Nj
is the components of yt that are not in y1,Nj

. Also, because of Assumption 1-1 we have

p(x1|y1)

∝
∏M

j=1
p(y1,Nj

|x1,Kj
)p(x1,Kj

)

∝
∏M

j=1
p(y1,Nj

|x1,Kj
)p(x1,Kj

)

∝
∏M

j=1
p(x1,Kj

|y1,Nj
)

∝
∏M

j=1
p(x1,Kj

|y1).

Suppose Assumptions 2-1 and 2-2 hold at t − 1. Let x−t,Kj
denote components of xt that are not in xt,Kj

.

Then, we have

p(xt,Kj
|y1:t)

∝
∫ ∫

p(yt|xt)p(xt|xt−1)p(xt−1|y1:t−1)dxt−1dx
−
t,Kj

=

∫ ∫ ∏M

k=1
p(yt,Nk

|xt,Kk
)p(xt,Kk

|xt−1,Kk
)p(xt−1,Kk

|y1:t−1)
∏M

k=1
dxt−1,Kk

dx−t,Kj

=

∫ ∏
k 6=j

p(yt,Nk
|xt,Kk

)p(xt,Kk
|y1:t−1)dx

−
t,Kj

×
∫
p(yt,Nj

|xt,Kj
)p(xt,Kj

|xt−1,Kj
)p(xt−1,Kj

|y1:t−1)dxt−1,Kj

∝
∫
p(yt,Nj

|xt,Kj
)p(xt,Kj

|xt−1,Kj
)p(xt−1,Kj

|y1:t−1)dxt−1,Kj

= p(yt,Nj
|xt,Kj

)p(xt,Kj
|y1:t−1)

∝ p(xt,Kj
|yt,Nj,y1:t−1)

Also, we have

p(xt|y1:t)

∝ p(yt|xt)
∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1

=
∏M

j=1
p(yt,Nj

|xt,Kj
)

∫ ∏M

j=1
p(xt,Kj

|xt−1,Kj
)p(xt−1,Kj

|y1:t−1)dxt−1

=
∏M

j=1
p(yt,Nj

|xt,Kj
)
∏M

j=1

∫
p(xt,Kj

|xt−1,Kj
)p(xt−1,Kj

|y1:t−1)dxt−1,Kj

=
∏M

j=1
p(yt,Nj

|xt,Kj
)
∏M

j=1
p(xt,Kj

|y1:t−1)

∝
∏M

j=1
p(xt,Kj

|yt,Nj
, y1:t−1).

∝
∏M

j=1
p(xt,Kj

|y1:t).

37

By the mathematical induction, Assumptions 2-1 and 2-1 hold for all t.

Theorem 3.2.2. Under Assumptions 0, 2-1 and 2-2, the LAPF estimate which utilizes the same partition

of xt and yt as in Assumption 0 converges to its target under p(xt|y1:t) as the sample size n goes to ∞.

Proof. Suppose we have the samples {x(i)t−1}Ni=1 from p(xt−1|y1:t−1). For each block j = 1, . . . ,M , we obtain

the weighted samples {x(i)t,Kj
, x

f,(i)
t,Kj

, x
(i)
t−1, w

(i)
t,Kj

}Ni=1, whose target density is

p(xt,Kj
, xft,Kj

, xt−1|yt,Nj
, y1:t−1)

∝ p(yt,Nj
, xt,Kj

, xft,Kj
, xt−1|y1:t−1)

= p(yt,Nj
|xt,Kj

)p(xt,Kj
, xft,Kj

, xt−1|y1:t−1)

= p(yt,Nj
|xt,Kj

)p(xt,Kj
|xt−1)p(x

f
t,Kj

|xt−1)p(xt−1|y1:t−1).

Also, the joint proposal density for {x(i)t,Kj
, x

f,(i)
t,Kj

, x
(i)
t−1, w

(i)
t,Kj

}Ni=1 is

q(xt,Kj
, xft,Kj

|yt,Nj
, xt−1)q(xt−1|y1:t−1) ∝ ql(x

l
t,Kj

|yt,Nj
)p(xft,Kj

|xt−1)p(xt−1|y1:t−1).

Thus, the weight for the set of particles {x(i)t,Kj
, x

f,(i)
t,Kj

, x
(i)
t−1} is given to be

w
(i)
t,Kj

=
p(yt,Nj

|x(i)t,Kj
)p(x

(i)
t,Kj

|x(i)t−1)

ql(x
l,(i)
t,Kj

|yt,Nj
)

.

The detailed computation of the weight is as follows.

p(yt,Nj
|x(i)t,Kj

)p(x
(i)
t,Kj

|x(i)t−1)p(x
f,(i)
t,Kj

|x(i)t−1)p(x
(i)
t−1|y1:t−1)

q(x
(i)
t,Kj

, x
f,(i)
t,Kj

|yt,Nj
, x

(i)
t−1)p(x

(i)
t−1|y1:t−1)

=
p(yt,Nj

|x(i)t,Kj
)p(x

(i)
t,Kj

|x(i)t−1)p(x
f,(i)
t,Kj

|x(i)t−1)

ql(x
l,(i)
t,Kj

|yt,Nj
)p(x

f,(i)
t,Kj

|x(i)t−1)

=
p(yt,Nj

|x(i)t,Kj
)p(x

(i)
t,Kj

|x(i)t−1)

ql(x
l,(i)
t,Kj

|yt,Nj
)

.

After the blockwise resampling, {x(i)t,Kj
}Ni=1 alone, without the particles for the augmented space xft and

the particles for the previous time step t− 1, can be treated as the samples from p(xt,Kj
|yt,Nj

, y1:t−1) =

p(xt,Kj
|y1:t). In our LAPF implementation, the particles for each block are generated independently. The

history of different blocks does not affect the sampling of the current block j, so {x(i)t,Kj
}Ni=1 are independent

38

to any other particles for different blocks. At the end, we combine particles through matching index i to

construct the final samples from p(xt|y1:t). Notice that p(xt|y1:t) =
∏M

j=1 p(xt,Kj
|y1:t), so the final particles

are the samples from p(xt|y1:t).

A SSM that satisfies Assumptions 1-1 and 1-2, can be found in linear Gaussian models.





yt|xt = xt + ut

xt|xt−1 = xt−1 + vt

where ut ∼ N(0, I) and vt ∼ N(0, I). Under this model, any choice of blocks in xt can satisfy the two

assumptions. The model can be relaxed with block diagonal covariance matrices with the same shape for

measurement and state equations, but in this case blocks of xt must be chosen to match the blocks in the

covariance matrices.

3.3 Simulation Studies

3.3.1 Lorenz-96 Model

We revisit the Lorenz-96 model in Section 2.4.4. The Lorenz-96 model is defined by a set of differential

equations over continuous time φ and discrete space i = 1, . . . , k:

ξφ,i
dφ

= fi(φ, ξφ) = (ξφ,i+1 − ξφ,i−2)ξφ,i−1 − ξφ,i + F.

Here k = 100 is the dimension of ξφ and the constant F = 8. To discretize the given differential equations,

we implemented the fourth order Runge-Kutta method with time step ∆φ = 0.05. That is,

ξφ+∆φ = ξφ +
1

6
∆φ(k1 + 2k2 + 2k3 + k4), (3.1)

where

k1 = f(φ, ξφ),

k2 = f(φ+
1

2
∆φ, ξφ +

1

2
∆φ · k1),

k3 = f(φ+
1

2
∆φ, ξφ +

1

2
∆φ · k2),

k4 = f(φ+∆φ, ξφ +∆φ · k3).

Recall that we define ξφ,0 := ξφ,k, ξφ,−1 := ξφ,k−1, and ξφ,k+1 := ξφ,1. For notational convenience, let xt+1,i

39

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.1: A graphical representation of the covariance matrix Q. Each component of Q is converted to
the gray scale with white being 0 and black being 1.

denote ξt∆φ,i. Then, we have the discretized nonlinear state equation after adding random perturbations to

(3.1) as follows.

xt = xt−1 +
1

6
∆φ(k1 + 2k2 + 2k3 + k4) + vt, (3.2)

where vt is Gaussian noise with mean 0 and a banded covariance matrix Q, which is shown in Figure 3.1.

Each (i, j)-th component of Q is related to the distance between the i-th and j-th components of xt. The

measurement equation is given as

yt = xt + ut,

where ut ∼ N(0, I100).

In the following simulation study, we compared five methods: the localized augmented particle filter

(LAPF), the optimal Kalman filter (OPF), the localized ensemble Kalman filter (LEnKF), the independent

particle filter (IPF), and the nonlinear ensemble adjustment filter (NLEAF) proposed by Lei and Bickel

(2009). The NLEAF incorporates the EnKF and the NPF, and it can be implemented with the localization.

However, their localized estimate is not generally consistent. For the LAPF and the NLEAF, we use the

notation C, {b, a} to denote the setting with C blocks and b and a denote the number of components

behind and ahead of the center of each block. The centers of the blocks for a fixed C are chosen to be

40

Table 3.1: The comparison of RMSE and its standard error for four methods for Lorenz 96 model with
g(x) = x.

RMSE se(RMSE)
OPF 54.681187 0.535504
IPF 13.385649 0.010565

LAPF C = 100, {0, 0} 8.483723 0.011024
NLEAF C = 100, {0, 0} 8.544413 0.014321

Table 3.2: The comparison of RMSE and its standard error for four methods for Lorenz 96 model with
g(x) = exp(x/||x||2).

RMSE se(RMSE)
OPF 0.023341 0.000216
IPF 0.009284 0.000254

LAPF C = 100, {0, 0} 0.006626 0.000219
NLEAF C = 100, {0, 0} 0.006708 0.000219

{ k
C (j − 1) + 1}Cj=1. With K = 100 (number of experiments) and T = 200 (number of time steps), we define

the root mean squared error and its standard error as the following:

RMSE =
1

K

K∑

k=1

√
1

T
||ĝ(Xk

1:T)− g(Xk
1:T)||2

se(RMSE) =

√√√√ 1

K
V̂ ar

(√
1

T
||ĝ(Xk

1:T)− g(Xk
1:T)||2

)

Note that we consider two different cases for g(·): 1) g(x) = x and 2) g(x) = exp(x/||x||2), where in exp(x)

we apply exp(·) to each component of x. Also, in both OPF and IPF we need to do resampling at every

step t; otherwise the estimate would diverge.

In Table 3.1 and 3.2, we can see that the LAPF does much better than the OPF and the IPF. It is

interesting to see that the LAPF outperforms the OPF with a significant margin. This indicates that the

PF should be implemented with localization in high dimensional SSMs.

41

Chapter 4

Particle Filtering with Independent
Batches

In this chapter, we discuss the improvements of the PF by dividing the particles into independent batches.

The development of the method is motivated by the particle Markov chain Monte Carlo method proposed by

Andrieu et al. (2010), so we will borrow the new notations from their paper, which are given in the following

section.

4.1 Review of the PF

In this chapter, the state space model has minor changes. Unlike the one we define in Section 1.1, the

sequence of the state vector begins with time step n = 1. Also, the initial state vector X1 has a observation

Y1, as illustrated in Figure 4.1. The model can be presented by





X1 ∼ µθ(·)

(Xn+1|Xn = x) ∼ fθ(·|x)

(Yn|Xn = x) ∼ gθ(·|x).

(4.1)

The PF with resampling at every time step is presented below. In Step 2 a), Ak
n−1 denotes the index of

the resampled particle at time step n− 1. A distribution function F describes the resampling procedure we

use with probability proportional to Wn−1 = (W 1
n−1, . . . ,W

k
n−1, . . . ,W

N
n−1).

Step 1: At time n = 1,

2
x

2
y

3
x

3
y

1
x

1
y

Figure 4.1: The illustration of the state space model in Chapter 4.

42

(a) sample Xk
1 ∼ qθ(·|y1) and

(b) compute and normalize the weights

w1(X
k
1) :=

µθ(X
k
1)gθ(y1|Xk

1)

qθ(Xk
1 |y1)

W k
1 :=

w1(X
k
1)

N∑
m=1

w1(Xm
1)

Step 2: At times n = 2, . . . , T

(a) sample Ak
n−1 ∼ F (·|Wn−1)

(b) sample Xk
n ∼ qθ(·|yn, X

Ak
n−1

n−1) and set Xk
1:n := (X

Ak
n−1

1:n−1, X
k
n), and

(c) compute and normalize the weights

wn(X
k
1:n) :=

fθ(X
k
n|X

Ak
n−1

n−1)gθ(yn|Xk
n)

qθ(Xk
n |yn, X

Ak
n−1

n−1)
,

W k
n :=

wn(X
k
1:n)

N∑
m=1

wn(Xm
1:n)

.

Then, we have
∑N

k=1
W k

ng(X
k
1:T)

p−−−−→ E(g(X1:T)|Y1:T) as N → ∞.

We make use of the notion of ancestral lineage Bk
1:T = (Bk

1 , B
k
2 , ..., B

k
T−1, B

k
T = k) of a path Xk

1:T =

(X
Bk

1
1 , X

Bk
2

2 , ...X
Bk

T−1

T−1 , X
Bk

T

T) where Bk
T := k and Bk

n = A
Bk

n+1
n for n = T − 1, ..., 1. The ancestral lineage Bk

1:T

allows us to track down all ancestors of the k-th particle Xk
T , so we can more easily handle the randomness

of the resampling procedure in the proof of theocratical results. See Andrieu et al. (2010) for more details

of the notations.

4.2 Independent Batches for the PF

Andrieu et al. (2010) proposed the particle Markov chain Monte Carlo method (PMCMC) which utilizes the

proposal density constructed from the particle filter. Their main interest is to solve the off–line estimation

problem, and the PMCMC might not be suitable for the on–line filtering problem. Our goal is to utilize the

results from the PMCMC to improve the quality of the PF estimate.

Let us assume that we can afford to generate NL particles to run the SIR algorithm in Section 4.1. We

43

find that running L independent SIR batches with N particles each, and combining L different estimates in

a certain way can outperform running the ordinary SIR with NL particles. So this could be a more efficient

way to implement the PF.

Let us consider running SIR in L independent batches. In each batch, we perform SIR with N samples,

and compute

ẐN :=

T∏

n=1

{ 1

N

N∑

k=1

wn(X
k
1:n)}.

Note that ẐN is an estimate of the marginal likelihood p(y1:T). Let the index i denote the batch number.

After carrying out SIR at all batches, we need to combine the estimates from each batch as the following:

µ̂ :=

L∑

i=1

z̃(i)

N∑

k=1

W k
P (i)g(X

k
1:P (i)), where z̃(i) =

ẐN(i)
L∑

i=1

ẐN (i)

. (4.2)

We call this method the sequential importance resampling within batches (SIRB). The given estimate con-

verges to E(g(X1:T)|Y1:T) as either N or L goes to infinity, and the proof of the convergence is given in

Section 4.3. The convergence as N goes infinity is trivial, but the result as L goes to infinity is rather

interesting, since it implies that increasing the number of batches with a fixed number of particles within

each batch guarantees the convergence of µ̂.

Let µ = E(g(X1:T)|Y1:T). The asymptotic mean and variance of the estimate µ̂ is given by the Taylor

series approximation from Givens and Hoeting (2005):

E(µ̂) = µ− 1

NL
cov(X1:T , z̃WT) +

µ

NL
var(z̃WT) +O(

1

(NL)2
),

var(µ̂) =
1

NL
(var(X1:T) + µ var(z̃WT)µ

′ − 2µ cov(X1:T , z̃WT) +O(
1

(NL)
2).

The variance and covariance in the expressions above are taken with respect to all the random variables

generated in the SIR algorithm. We know that µ̂ converges to µ as either N or L goes to infinity. However,

we can see that increasing N might reduce the mean square error of the estimate faster than increasing

L because of the following reason. Notice that the SIR estimate ẐN converges to p(y1:T). So, we have

var(z̃WT) goes to zero as N goes to infinity, but increasing L does not affect var(z̃WT) much. Therefore,

it is better to have a small number of batches with a large sample size in each batch than to have a large

number of batches with a small sample size in each batch.

44

4.3 Convergence of the SIRB

All the notation and equation numbers follow those in Andrieu et al. (2010) unless defined otherwise. With

N particles and L batches, the SIRB estimate of E(g(X1:P)|Y1:P) from the model 4.1 is defined by

L∑

i=1

z̃∗(i)

N∑

k=1

W ∗k
P (i)g(X∗k

1:P (i)) where z̃
∗(i) =

ẐN,∗(i)
L∑

i=1

ẐN,∗(i)

The index i denote the i-th SIR batch. The superscript star can be ignored in our setting, but we keep the

stars to have the consistent notation with Andrieu et al. (2010). Under Assumption 1 and Assumption 2 in

Andrieu et al. (2010), for any N ≥ 1 the SIRB estimate converges to E(g(X1:P)|Y1:P) as L goes to infinity.

Let’s consider a proposal distribution qNk to describe the particle generating procedure and the resampling

procedure with a realization of a set of random variables x̄1, . . . , x̄P , a1, . . . , aP−1 as the SIR in a single

batch except at the last step P . To use the results in Andrieu et al. (2010), we make qNk to deterministically

choose the k-th particle with all ancestors, xk1:P = (x
bk1
1 , x

bk2
2 , ..., x

bkP−1

P−1 , x
bkP
P) where bkp is a realization of the

ancestral lineage Bk
p . Thus, q

N
k can be written as:

qNk (x̄1, . . . , x̄P , a1, . . . , aP−1) := ψ(x̄1, . . . , x̄P , a1, . . . , aP−1),

where

ψ(x̄1, . . . , x̄P , a1, . . . , aP−1) :=

{
N∏

m=1

M1(x
m
1)

}
P∏

n=2

{
r(an−1|wn−1)Mn(x

m
n |xa

m
n−1

1:n−1)
}
.

With the density r(·) for the resampling procedure with probabilities proportional to wn−1 and the proposal

density Mn(·) to draw Xn, ψ(·) describes the density of all the random variables (particles and random

indexes after resampling) generated by the SIR. Also, our extended target π̃N
k is similar to the density in

equation (31) defined in Andrieu et al. (2010) except the fact that we fixed k:

π̃N
k (x̄1, . . . , x̄P , a1, . . . , aP−1) :=

π(xk1:P)

NP

ψ(x̄1, . . . , x̄P , a1, . . . , aP−1)

M1(x
bk1
1)

P∏
n=2

r(bkn−1|wn−1)Mn(x
bkn
n |xb

k
n−1

1:n−1)

.

Note the following fact from Andrieu et al. (2010):

∫ g(xk1:P)
π(xk1:P)

NP

ψ(x̄1, . . . , x̄P , a1, . . . , aP−1)

M1(x
bk1
1)

P∏
n=2

r(bkn−1|wn−1)Mn(x
bkn
n |xb

k
n−1

1:n−1)

d(k, x̄1, . . . , x̄P , a1, . . . , aP−1)

= Z · E(g(X1:P)|Y1:P),

45

which implies if we fix k in the integrand and do the integral with respect to x̄1, . . . , x̄P , a1, . . . , aP−1 in the

above, the results would be Z
NE(g(Xk

1:P)|Y1:P).

Assume we choose the k-th path xk1:P from every SIR batch. Those sets of particles can be viewed as

samples from the proposal density qNk . With the fact in (41) of Andrieu et al. (2010):

ẐN (i)W k
P (i)q

N
k (x̄1, . . . , x̄P , a1, . . . , aP−1) = Zπ̃N

k (x̄1, . . . , x̄P , a1, . . . , aP−1),

we have as L goes to infinity,

1

L

L∑

i=1

ẐN,∗(i)W ∗k
P (i)g(X∗k

1:P (i))

p−−−−→ ∫ g(xk1:P)ẐN(i)W k
P (i)q

N
k (x̄1, . . . , x̄P , a1, . . . , aP−1)d(x̄1, . . . , x̄P , a1, . . . , aP−1)

= Z ∫ g(xk1:P)π̃N
k (x̄1, . . . , x̄P , a1, . . . , aP−1)d(x̄1, . . . , x̄P , a1, . . . , aP−1)

= Z ∫ g(xk1:P)
π(xk1:P)

NP

ψ(x̄1, . . . , x̄P , a1, . . . , aP−1)

M1(x
bk1
1)

P∏
n=2

r(bkn−1|wn−1)Mn(x
bkn
n |xb

k
n−1

1:n−1)

d(x̄1, . . . , x̄P , a1, . . . , aP−1)

=
Z

N
E(g(X1:P)|Y1:P).

Also,
L∑

i=1

ẐN,∗(i) is a consistent estimate of Z in terms of L. Therefore, we have

L∑

i=1

z̃∗(i)

N∑

k=1

W ∗k
P (i)g(X∗k

1:P (i)) =

1
L

L∑
i=1

ẐN,∗(i)
N∑

k=1

W ∗k
P (i)g(X∗k

1:P (i))

1
L

L∑
i=1

ẐN,∗(i)

p−−−−→ Z · E(g(Xk
1:P)|Y1:P)
Z

, L→ ∞

= E(g(Xk
1:P)|Y1:P).

4.4 Simulation Studies

In this section we compare the SIR and the SIR with batches (SIRB). We want to show that SIR with batches

works better with large N rather than large L. The following model will be used to test the algorithms.





Yn|Xn = X2
n/20 +Wn

Xn|Xn−1 = 0.5Xn−1 +
25Xn−1

1+X2
n−1

+ 8 cos(1.2n) + Vn,

46

where Wn and Vn are Gaussian noise terms with variance σ2
V and σ2

W . Also, X1 ∼ N(0, 5). With σ2
V = 1

and σ2
W = 10, we generated 300 observations y1:300. The root mean square error is used as the performance

criteria:

RMSE =
1

K

K∑

j=1

√
1

T
||X̂1:T,(j) −X1:T,(j)||2,

where K is the number of independent experiments, X1:T,(j) is a true state vector for the j-th exper-

iment, and X̂1:T,(j) is the estimate. Let K = 100. The RMSE is evaluated for six values of T =

(50, 100, 150, 200, 250, 300) to compare the performances for different length of the time series. For SIR

with batches, it is equivalent to draw NL samples. We fix N∗ = N · L, and consider five different settings:

SMC N=1,000,000.

Bat1 N=25 and L=40,000.

Bat2 N=100 and L=10,000.

Bat3 N=250 and L=4,000.

Bat4 N=1,000 and L=1,000.

From the simulation results, we can see that for fixed N∗ = NL, increasing N is more effective in reducing

the RMSE. Also, the five methods compared in the study are not significantly different at small T , but the

difference becomes significant at large T . Not all the SIRBs work better than SIR. With the first setting,

N = 25 and L = 40, 000, SIR with batches is actually doing worse than SIR. However, in the other three

SIR settings with batches did better than the SIR for large T , and this seems to suggest that they may do

well in high dimensional problems.

47

Table 4.1: A Comparison of the average RMSE and standard errors for the SIR and the SIR with batches
based on K = 100 repeated experiments. SMC: N=1,000,000, Bat1: N=25 and L=40,000, Bat2: N=100
and L=10,000, Bat3: N=250 and L=4,000, and Bat4: N=1,000 and L=1,000.

T=10 T=25
RMSE se(RMSE) RMSE se(RMSE)

SMC 2.962 0.426 2.946 0.255
Bat1 2.364 0.254 2.460 0.185
Bat2 2.414 0.254 2.399 0.142
Bat3 2.57 0.327 2.586 0.198
Bat4 2.542 0.323 2.63 0.201

T=50 T=100
RMSE se(RMSE) RMSE se(RMSE)

SMC 2.364 0.172 2.096 0.119
Bat1 2.206 0.129 2.375 0.100
Bat2 2.054 0.099 1.980 0.085
Bat3 2.139 0.132 1.941 0.095
Bat4 2.129 0.130 1.931 0.090

T=150 T=200
RMSE se(RMSE) RMSE se(RMSE)

SMC 2.174 0.097 2.245 0.079
Bat1 2.479 0.081 2.584 0.073
Bat2 2.006 0.079 2.094 0.066
Bat3 1.923 0.078 1.983 0.067
Bat4 1.934 0.076 1.937 0.064

T=250 T=300
RMSE se(RMSE) RMSE se(RMSE)

SMC 2.273 0.069 2.297 0.064
Bat1 2.741 0.069 2.770 0.073
Bat2 2.188 0.061 2.150 0.056
Bat3 2.027 0.062 2.024 0.055
Bat4 1.946 0.058 1.924 0.054

48

0 50 100 150 200 250 300
1.8

2

2.2

2.4

2.6

2.8

3

T

R
M

S
E

SMC
Bat1
Bat2
Bat3
Bat4

Figure 4.2: Comparison of the average RMSE for the SIR and the SIR with batches based on K = 100
repeated experiments. SMC: N=1,000,000, Bat1: N=25 and L=40,000, Bat2: N=100 and L=10,000, Bat3:
N=250 and L=4,000, and Bat4: N=1,000 and L=1,000.

49

Chapter 5

Future Work

5.1 The Generalized LAPF (GLAPF)

For the high dimensional SSMs, this is the case that the observations yt,Nj
’s arrives sequentially. In such

case, users may want to update the posterior distribution given the components of yt that are available,

rather than waiting for all components of yt. A new method can be utilized to sample particles from the

posterior density p(xt|yt,N1 , . . . , yt,Nk
, y1:t−1). Also, the method utilizes the localization idea from EnKFs

through the covariance tapering.

Assumption yt,Nj
’s are conditionally independent given xt and each yt,Nj

depends only on xt,Kj
.

When the j–th observation arrives, the target posterior density would be p(xt|yt,K1 , . . . , yt,Kj
, y1:t−1), and

the assumption allows to decompose the density as follows:

p(xt|yt,K1 , . . . , yt,Kj
, y1:t−1)

∝ p(yt,K1 , . . . , yt,Kj
|xt)p(xt|y1:t−1)

∝ p(yt,Kj
|xt)p(yt,K1 , . . . , yt,Kj−1 |xt)p(xt|y1:t−1)

∝ p(yt,Kj
|xt)p(xt|yt,K1 , . . . , yt,Kj−1 , y1:t−1)

To take an advantage of the given decomposition, we apply the APF for each block by treating p(yt,Kj
|xt)

as a likelihood and p(xt|yt,K1 , . . . , yt,Kj−1 , y1:t−1) as a prior. The detail algorithm is the following:

At t− 1, we have a set of particles x
(i)
t−1 from p(xt−1|y1:t−1). For j = 1,

1. Evolve x
(i)
t−1 through the state equation to obtain x

f,(i)
t .

2. Obtain p̂(xt|y1:t−1) that is an approximation of p(xt|y1:t−1) by using particles x
f,(i)
t .

3. Generate x
l,(i)
t,K1

samples from a proposal density ql(xt,K1 |yt,N1).

4. Obtain weighted samples x
(i)
t,1 from p(xt|yt,N1 , y1:t−1) by combining x

f,(i)
t and x

l,(i)
t,K1

.

50

5. Compute the importance weights

w
(i)
t,1 =

p(yt,N1 |x
1,(i)
t)p̂(x

1,(i)
t |y1:t−1)

ql(x
l,(i)
t,K1

|yt,N1)

6. Do resampling with prob. proportional to wt,1’s.

For j > 1,

1. Generate x
l,(i)
t,Kj

samples from a proposal density ql(xt,Kj
|yt,Nj

).

2. Obtain weighted samples x
(i)
t,j from p(xt|yt,K1 , . . . , yt,Kj

, y1:t−1) by combining x
j−1,(i)
t and x

l,(i)
t,Kj

.

3. Compute the importance weights

wt,j =

∏j
k=1 p(yt,Nk

|xj,(i)t)p̂(x
j,(i)
t |y1:t−1)

ql(x
l,(i)
t,Kj

|yt,Nj
)

4. Do resampling with probability proportional to wt,j ’s.

We deliver a few remarks:

• At j = 1, we construct the final particles for K1 block by combining x
f,(i)
t and x

l,(i)
t,K1

through linear

combination, and we set particles for other components to be those for x
f,(i)
t .

• Also, for the j > 1, we update the components in Kj block by combining particles from previous

update and x
l,(i)
t,Kj

, and the other components would be set to be the same as the particles from the

previous update.

• For the density approximation, we can apply either a single normal distribution or a mixture normal

distribution. Each mean and covariance matrix will be estimated by associated particles. Also, for the

covariance estimation, we can consider a tapered estimate. That is,

C ◦ 1

L
(ξ(i) − ξ̄)(ξ(i) − ξ̄)′,

where ◦ is a component–wise matrix product. This can be helpful to reduce a variance of the estimate

when the given SSM is high–dimensional.

51

• We can pursue another type of density approximation:

p̂(xt−1|y1:t−1) =
1

∑
w

(i)
t−1

∑
w

(i)
t−1p(xt|x

(i)
t−1),

p̂(xt|yt,K1, . . . , yt,Kj
, y1:t−1) = C · p(yt,K1 , . . . , yt,Kj

|xt)
1

∑
w

(i)
t−1

∑
wt−1p(xt|x(i)t−1)

where {x(i)t−1, w
(i)
t−1} is the weighted sample from p(xt−1|y1:t−1) and C

−1 = p(yt,K1 , . . . , yt,Kj
|y1:t−1).

The implementation of the APF within each block requires to identify observation and state equations.

The observation equation would be p(yt,Nj
|xt), but the state equation would not be given except a block

with j = 1. This will make it hard to determine the coefficient matrices when we combine two sets of

particles from p(yt,Nj
|xt) and p(xt|yt,K1, . . . , yt,Kj−1 , y1:t−1). We present a way to sequentially determine

the coefficient matrices. Recall the typical linear combination in the APF without localization:

(Σ̂−1
t + Q̂−1

t)−1(Σ̂−1
t x

l,(i)
t + Q̂−1

t x
f,(i)
t)

In the GLAPF, we apply this update formula for the first block. That is, components of xt which is not

in xt,K1 would be the same as the components of xft (updated by the state equation), and the xt,K1 would

be updated by

x
(i)
t,K1

= (Σ̂−1
t,K1

+ Q̂−1
t,K1

)−1(Σ̂−1
t,K1

x
l,(i)
t,K1

+ Q̂−1
t,K1

x
f,(i)
t,K1

),

where Σ̂t,K1 and Q̂t,K1 are the sub–matrices of Σ̂t and Q̂t associated with xt,K1 . From the second block

update, we repeat the following procedure for the update.

1. Components of x
(i)
t which is not in xt,Kj

would be the same as the components of x
j−1,(i)
t

2. xt,Kj
= (Σ̂−1

t,Kj
+ Q̂−1

t,j−1,Kj
)−1(Σ̂−1

t,Kj
x
l,(i)
t,Kj

+ Q̂−1
t,Kj

x
j−1,(i)
t,Kj

)

Sampling particles in the GLAPF occurs in the lower dimension then the dimension of the given SSM, but

its weight computation and resampling must be done in the full dimension in the SSM. The Performance

of the GLPAF is comparable to that of the LAPF, and we want to investigate how approximations to the

prediction posterior densities affect the convergence of the GLAPF.

5.2 The EnKF as a Proposal Distribution

The EnKF does not converge to E(Xt|Y1:t) when the state space model is nonlinear or non–Gaussian. We

hope to modify the EnKF to make it work for nonlinear or non–Gaussian model. As a beginning, we assume

52

the SSM has a linear Gaussian measurement equation, but we do not make any specific assumption on the

state equation. 



yt|xt = Hxt + ut, ut ∼ N(0, R)

xt|xt−1 = f(xt−1, vt).
(5.1)

We want to compute the weight for the EnKF to correct its bias. For that matter, we need to compute

the target density p(xt|y1:t−1) and the EnKF proposal density q(xt|y1:t−1). In the general SSM, there is no

closed form expression for the two densities. However, we can approximate p(xt|y1:t−1) by p̂(xt|y1:t−1) =

∑
i p(xt|x

(i)
t−1) where x

(i)
t−1’s are sampled from p(xt−1|y1:t−1). Because of the high computational complexity,

we can only use a few randomly selected particles in the approximation. If we can establish an one-one

mapping between the forecast and analysis particles in the EnKF, we can approximate the EnKF proposal

density q(xt|y1:t) by

q̂(xt|y1:t) =
∑

i
p̂([xt − K̂(yt + ut

(i))] · [I− K̂H]−1]),

where K̂ is the estimated Kalman gain matrix and ut
(i)’s are independent N(0, R) random variables.

Then, we need to evaluate the weights as w
(i)
t =

p(yt|x
(i)
t)p̂(x

(i)
t |y1:t−1)

q̂(x
(i)
t |y1:t)

. Note that in the EnKF we do not

perform any resampling. However, the resampling procedure is required in this approach since the bias

correction needs to be done by modifying the ensemble generating procedure in the EnKF.

5.2.1 Gaussian Mixture Approximation for the Posterior Density

In the precious section, we pursue to correct bias of the EnKF in nonlinear or non–Gaussian models by

introducing the weights. Under the same model assumption in (5.1), Bengtsson et al. (2003) proposed

another way to deal with this issue by approximating the posterior densities by the mixture normal density

to implement the EnKF. The method is called the ensemble mixture Kalman filter. The main weakness of

their method is the approximation to the mixture normal needs to be done by a data driven method, so it

may not work well in high dimensional SSMs. Hence, we want to find a way to approximate p(xt+1|y1:t) as

Gaussian mixture in a more effective way. We assume that p(xt|y1:t−1) and p(xt|y1:t) at any t are Gaussian

mixtures, and the number of mixtures for each density can be different. Let p(xt|yt) =
∑

i αiN(xt|µi,Σi).

Then, we have to know how to approximate the following by the mixture of Gaussian so that we can

implement the mixture Kalman filter.

p(xt+1|y1:t) =
∫
p(xt+1|xt)

∑
i
αiN(xt|µi,Σi)dxt ≈

∑
k
βikN(xt|µk,Σk).

53

Thus, it comes down to finding βik, µk, and Σk. The solutions or estimates must be obtained for every i at

every time step t, and they must work well in the high dimensional situation with low computational cost.

54

References

Andrieu, C., Doucet, A., and Holenstein, R. (2010). Particle markov chain monte carlo methods (with
discussion). Journal of Royal Statistical Society, Series B, 72(3):269–342.

Bengtsson, T., Bickel, P., and Li, B. (2008). Curse-of-dimensionality revisited: Collapse of importance
sampling in very large scale systems. Probability and Statistics: Essays in Honor of David A. Freedman,
IMS Collections, 2:316–334.

Bengtsson, T., Snyder, C., and Nychka, D. (2003). Toward a nonlinear ensemble filter for highdimensional
systems. Journal of Geophysical Research, 108:8775–8785.

Bertino, L., Evensen, G., and Wackernagel, H. (2003). Sequential data assimilation techniques in oceanog-
raphy. International Statistical Review / Revue Internationale de Statistique, 71(2):223–241.

Bickel, P. and Levina, E. (2008). Regularized estimation of large covariance matrices. The Annals of
Statistics, 36(1):199–227.

Butala, M., Frazin, R., Chen, Y., and Kamalabadi, F. (2009). Tomographic imaging of dynamic objects
with the ensemble kalman filter. IEEE Transactions on Image Processing, 18(7):1573–1587.

Butala, M., Yun, J., Chen, Y., Frazin, R., and Kamalabadi, F. (2008). Asymptotic convergence of the
ensemble kalman filter. In Proceedings of the 2008 IEEE International Conference on Image Processing,
825–828.

Douc, R. (2005). Comparison of resampling schemes for particle filtering. In In 4th International Symposium
on Image and Signal Processing and Analysis (ISPA), 64–69.

Doucet, A., de Freitas, J., and Gordon, N. (2001). Sequential Monte Carlo Methods in Practice. New York:
Springer-Verlag.

Doucet, A., Godsill, S., and Andrieu, C. (2000). On sequential monte carlo sampling methods for bayesian
filtering. Statistics and Computing, 10(3):197–208.

Doucet, A. and Gordon, N. J. (1999). Simulation-based optimal filter for maneuvering target tracking. In
Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), 3809:241–255.

Doucet, A. and Johansen, A. M. (2011). A tutorial on particle filtering and smoothing: fifteen years later.
In Crisan, D. and Rozovsky, B., editors, Handbook of Nonlinear Filtering, 656–704. Cambridge University
Press, Cambridge.

Durbin, R., Eddy, S., Krogh, A., and Mitchison, G. (1998). Biological Sequence Analysis: Probabilistic
Models of Proteins and Nucleic Acids. Cambridge, UK: Cambridge University Press.

Elliott, R. J., Aggoun, L., and Moore, J. B. (1995). Hidden Markov Models: Estimation and Control. New
York: Springer.

Evensen, G. (1994). Data assimilation: The Ensemble Kalman Filter. Springer.

55

Furrer, R. and Bengtsson, T. (2007). Estimation of high-dimensional prior and posterior covariance matrices
in kalman filter variants. Journal of Multivariate Analysis, 98:227–255.

Geweke, J. (1989). Bayesian inference in econometric models using monte carlo integration. Econometrica,
57:1317–1339.

Givens, G. and Hoeting, J. (2005). Computational Statistics. Wiley Series in Probability and Statistics.

Gordon, N., Salmond, D., and Ewing, C. (1995). Bayesian state estimation for tracking and guidance using
the bootstrap filter. Journal of Guidance, Control, and Dynamics, 18:1434–1443.

Gordon, N., Salmond, D., and Smith, A. (1993). Novel approach to nonlinear/non-gaussian bayesian state
estimation. IEE Proceedings F: Radar and Signal Processing, 140(2):107–113.

Ikoma, N., Ichimura, N., Higuchi, T., and Maeda, H. (2001). Maneuvering target tracking by using particle
filter. In Joint 9th IFSA World Congress and 20th NAFIPS International Conference, 4:2223–2228. IEEE.

Kong, A., Liu, J., and Wong, W. (1997). The properties of the cross-match estimate and split sampling.
The Annals of Statistics, 25(6):2410–2432.

Lei, J. and Bickel, P. (2009). Ensemble filtering for high dimensional non-linear state space models. Technical
Report 779, Department of Statistics, UC Berkeley.

Lin, M., Zhang, J., Cheng, Q., and Chen, R. (2005). Independent particle filters. Journal of the American
Statistical Association, 100(472):1412–1421.

Liu, J. and Lawrence, C. (1999). Bayesian inference on biopolymer models. Bioinformatics, 15:38–52.

Liu, J. S. (2001). Monte Carlo Strategies for Scientific Computing. New York: Springer.

Lorenz, E. (2006). Predictability: A problem partly solved. In Predictability of Weather and Climate, 40–58.
Cambridge Univ. Press, Cambridge, U. K. Originally presented in a 1996 ECMWF workshop.

Rabiner, L. (1989). A tutorial on hidden markov models and selected applications in speech recognition.
Proceedings of the IEEE, 77(2):257–286.

Tsay, R. S. (2002). Analysis of Financial Time Series. New York: Wiley.

56

