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ABSTRACT 

Anxiety and depression are prevalent forms of psychopathology and are associated with 

significant impairment in multiple areas of life, including occupational, educational, and social 

functioning.  In addition to their affective symptoms, anxiety and depression are associated with 

significant cognitive disruptions, yet our understanding of these impairments and their 

mechanisms is very limited. In particular, such cognitive deficits could be accounted for by 

fundamental deficits in specific aspects of executive function (EF), processes that are imperative 

for adaptive emotion regulation.  Determining specific EF impairments in anxiety and depression 

has the potential to provide a mechanistic account of the development and maintenance of these 

highly comorbid disorders. Thus, understanding EF in an integrated manner across psychological 

and neurobiological levels is extremely relevant to mental health. The present dissertation aims 

to advance these literatures by identifying a behavioral model of EF impairment in anxiety and 

depression, and its associated neural correlates. Brain regions associated with implementing 

inhibition, a specific EF component of this model, are identified.  The moderating effects of 

anxiety and depression on brain activity associated with inhibition-related functions are 

examined.  
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CHAPTER 1 

GENERAL INTRODUCTION 

Anxiety disorders are the most common class of psychopathology (estimated lifetime 

prevalence of 29%), and major depression is the most common individual disorder (estimated 

lifetime prevalence 16.6%; Kessler et al., 2005a).  Anxiety and depression are highly comorbid, 

and comorbidity is associated with greater symptom severity (Kessler et al., 2005b). These 

prevalent forms of psychopathology are associated with enormous personal and societal burdens, 

seriously impairing social, occupational, and educational functioning (Kessler et al., 2005a) and 

are associated with an increased risk for some medical conditions (Lecrubier, 2001).  Although 

there is much evidence of serious compromise of cognitive function in depression and anxiety, 

the precise nature of cognitive dysfunction in depression and anxiety is markedly underspecified 

(Levin et al., 2007; Warren, Heller & Miller, 2008).  For example, the DSM-IV-TR states only 

that depression is accompanied by difficulties in concentration, far under-representing the 

number and range of cognitive deficits.  Furthermore, a mechanistic account (both cognitive and 

neural) of the etiology and maintenance of these cognitive impairments remains elusive.  There 

are few models of the neural structures and functions associated with these problems, and the 

models available are limited, often highlighting one brain region only (e.g., anterior cingulate 

cortex) or describing multiple brain regions with little specificity regarding their functional 

significance. The importance of understanding how cognition, particularly executive function 

(EF), is disrupted in depression and anxiety is underscored by the fact that most non-

pharmacological interventions for these disorders are based on altering cognitive processing 

(e.g., Mindfulness, Cognitive Behavioral Therapy) which require intact EFs.   
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Additionally, individual differences in emotion regulation strategies are implicated as key 

vulnerability factors in the development of psychopathology (Aldao & Nolen-Hoeksema, 2011; 

Davidson, Jackson, & Kalin, 2000).  Adaptive emotion regulation depends on one’s goals and 

values within a given context, as well as the ability to determine a response that is in line with 

obtaining those goals.  This process involves EFs such as inhibition/control of inappropriate or 

impulsive responses and behaving in a way that is goal-consistent when experiencing negative 

emotions (Linehan, 1993).  Therefore, determining specific EF impairments in depression and 

anxiety would not only inform current and potential methods of treatment, but may be useful for 

predicting which individuals would benefit from certain forms of therapy.  Consequently, the 

present dissertation has three primary goals: 1) to identify meaningful dimensions of EF and to 

examine the impact of depression and anxiety on these constructs (using ecologically valid and 

experimentally based methods); 2) to identify brain regions associated with these EF dimensions; 

and 3) to determine how depression and anxiety moderate activity in these regions.  

Chapter Organization  

The present dissertation is organized into 5 chapters.  Chapter 1 serves as a brief 

introduction of the overarching goals of the present research and the organization of this 

document.  Chapter 2 is a manuscript that presents a behavioral model of EF impairment in 

depression and anxiety, testing specific hypotheses of domain-specific dysfunction, and 

discussing EF mechanisms of emotion regulation.  Chapter 3 discusses the neural correlates of 

inhibition, an EF dimension identified in chapter 2.  Chapter 4 examines the moderating effects 

of depression and anxiety on brain regions associated with inhibition identified in chapter 3.  

Finally, chapter 5 provides a general discussion that reviews the implications of these findings 
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and future directions for research. Notably, chapter 2 is written in the form of a manuscript ready 

to submit for publication.  
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CHAPTER 2 

THE STRUCTURE OF EXECUTIVE FUNCTION IN DEPRESSION AND ANXIETY 

Abstract 

Cognitive deficits are a prominent source of distress and functional impairment in both 

depression and anxiety, yet our understanding of these deficits and their mechanisms are limited. 

These cognitive deficits could be accounted for by fundamental deficit(s) in specific aspects of 

executive function (EF).  Research on the structure of executive dysfunction in depression and 

anxiety has the potential to provide a mechanistic account of maladaptive patterns of behavior. 

Item-level exploratory and confirmatory factor analyses were conducted on an ecologically-

sensitive measure of EF. Consistent with Miyake et al. (2001), a three-factor model of EF 

including updating, shifting, and inhibition best fit the data. Structural equation modeling 

examined the relationship of EF factors to dimensions of psychopathology (anxious 

apprehension, anxious arousal, anhedonic depression). All three dimensions of psychopathology 

predicted shifting impairment, with anxious apprehension exhibiting the strongest relationship.  

Additionally, anxious arousal and anhedonic depression were associated with deficits in updating 

and inhibition, with anxious arousal exhibiting the stronger relationship in both domains.  

Implications for the development and maintenance of psychopathology are discussed, including 

proposed mechanisms of emotion regulation.   
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Executive Function, Depression, and Anxiety 

 Interest in and awareness of cognitive impairments in depression and anxiety has been 

increasing. Executive function (EF) has been a particular target of research. According to Lezak 

et al. (2004), EFs are abilities that involve goal formation, problem-solving, planning, 

sequencing of events to carry out goal-directed plans, and effective performance.  They are 

processes that serve to guide behavior towards a goal, particularly in novel or non-routine 

situations (Banich, 2009).  Given the necessity of these processes in directing purposeful and 

adaptive behavior, it is not surprising that impaired EF is associated with severe disability in 

everyday life functions, including problems with relationships, maintaining employment, and 

sustaining a household (Angst, 1999; Elliott, 1998; Grigsby, Kaye, Baxter, Shetterly, & 

Hamman, 1998; Heller, Nitschke, Etienne, & Miller, 1997; Jaeger, Berns, Uzelac, & Davis-

Conway, 2006; Rogers et al., 2004).   

 Depression and anxiety have long been associated with cognitive biases, as opposed to 

cognitive deficits per se (Hertel, 1997; Hertel & Brozovich, 2010; Joormann, Teachman, & 

Gotlib, 2009; Levin et al., 2007; Mathews & MacLeod, 2005; McNally, 1998; Sarason, 1988; 

Warren, Heller, & Miller, 2008).  In particular, depression and anxiety are associated with 

attentional biases to negative material.  For example, depression is associated with a tendency to 

recall negative (e.g., negative autobiographical memories) better than positive material, and 

anxious individuals have demonstrated an increased likelihood of interpreting ambiguous 

information in a negative manner (see Warren et al., 2008, for review). Biases in the processing 

of information can lead to deficits in cognitive function and may be detrimental to an 

individual’s ability to utilize effective emotion-regulation strategies.  For example, biases in 

attention and memory may lead to inflexible and automatic appraisals, impeding the deliberate 
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use of coping strategies (e.g., cognitive restructuring, cognitive reappraisal processes) to regulate 

emotions (Gotlib & Joormann, 2010; Joormann & Gotlib, 2010).  Such biases may also foster 

maladaptive emotion-regulation strategies (e.g., emotional suppression, rumination, 

catastrophizing, avoidance) and have therefore been implicated in the development and 

maintenance of emotional disorders (Gotlib & Joormann, 2010).   

Although cognitive biases are associated with depression and anxiety, research suggests 

that the processes by which these biases emerge differ. Whereas anxiety is associated with 

attentional biases to threatening information (Bar-Haim, et al., 2007), depression is characterized 

by a memory bias for negative information (Mathews & MacLeod, 2005), which has been 

associated with difficulties disengaging from negative stimuli (Gotlib & Joormann, 2010).  

Furthermore, these biases may be the result of impairments in specific EFs that distinguish 

depression and anxiety.  Joormann, Yoon, and Zetshke (2007) proposed that deficits in inhibitory 

control are related to problems disengaging from negative information in depression. In their 

attentional control theory, Eysenck, Derakshan, Santos, and Calvo (2007) argued that worry 

reduces attentional control and hypothesized that anxiety impairs inhibition and shifting 

functions, but not working memory updating. However, these predictions remain to be tested.  

Research has repeatedly demonstrated that problems with attention, memory, and 

problem-solving have been associated with depression (Burt, Zembar, & Niederehe, 1995; Marx, 

Williams, & Claridge, 1992; Weiland-Fiedler et al., 2004).  In general, these findings have 

primarily been considered in the broader context of the cognitive deficit literature in depression 

and as such are represented in diagnostic criteria (e.g., difficulty concentrating).  Many studies in 

this line of research have narrowly focused on demonstrating cognitive deficits and biased 

processing in depression.  Relatively few studies have examined individual differences in 



8 
 

specific cognitive processes that could lead to the development and/or maintenance of 

depression.  Consequently, a comprehensive, mechanistic account explaining the cognitive 

deficits associated with depression is lacking.  It is likely that EF impairments are fundamental to 

these broad cognitive problems (Austin, Mitchell, & Goodwin, 2001; Levin et al., 2007; 

Pizzagalli, Peccoralo, Davidson, & Cohen, 2006).  Research has demonstrated that depression is 

associated with impaired performance on a wide range of EF tasks (for reviews, see Levin et al., 

2007; and Rogers et al., 2004) and that diminished performance might be accounted for by 

deficits in specific EF domains (e.g. inhibition, see Joormann & Gotlib, 2010; shifting, see 

Austin et al., 2001).  

Research on anxiety-related EF impairment is less well developed (for review, see 

Snyder, Kaiser, Warren, & Heller, in preparation), although some evidence of impairment exists. 

It has been suggested that anxiety may be associated with deficits in visuospatial working 

memory (Bredemeier, Berenbaum, Most, & Simons, 2009; Castaneda et al., 2010; Shackman et 

al., 2006), working memory capacity (e.g., Bredemeier & Berenbaum, under review; Eysenck, 

Payne, & Derakshan, 2005; Hayes, Hirsch, & Mathews, 2008) and shifting between mental sets 

(Airaksinen, Larsson, & Forsell,  2005), although these findings are inconsistent (e.g., Castaneda 

et al., 2010; Santos & Eysenck, 2005). Despite limited anxiety-related EF research, a prominent 

theory in cognitive research proposes that anxiety impairs performance because it reduces 

attentional control in the presence of salient distracters. Although attentional control theory 

represents significant progress in that it targets specific EF components (unlike cognitive theories 

of depression), this theory has not yet been fully tested.  Moreover, this theory does not 

distinguish among dimensions of anxiety (i.e., anxious apprehension, anxious arousal).  
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 In summary, there is some evidence that EF impairments are associated with depression 

and anxiety, although the research is inconsistent. Furthermore, although attentional biases have 

been assigned a prominent role in the depression and anxiety literatures, it is unclear whether 

these results reflect attentional problems and/or EF impairments distinct from attention. In 

particular, anxiety-related EF deficits have largely been unexplored.  The present study seeks to 

advance the literature by investigating these impairments associated with specific dimensions of 

depression and anxiety by drawing upon an empirically-supported theory of EF, and utilizing a 

statistical framework that fosters systematic examination of executive impairment.  

An Executive Function Framework: Executive Function Is Not Unitary  

 A significant problem in the study of EF has been conceptual in nature (Stuss & 

Alexander, 2000).  EF is often difficult to define and is frequently framed or operationalized 

imprecisely (Jurado & Rosselli, 2007; Martin & Failows, 2010). Despite these limitations, 

neuropsychological research supports distinguishing EFs (see Miyake et al., 2000, for review), 

although the exact decomposition remains a matter of debate.  Given the variable definitions of 

EF, it is not surprising that inconsistent findings of EF integrity/impairment in psychopathology 

have emerged.   

  In an influential contribution, Miyake et al. (2000) used latent variable analysis to 

demonstrate that EF is multi-dimensional, parsing it into three separable but related fundamental 

domains: 1) shifting between tasks/mental sets, 2) updating of working memory representations, 

and 3) inhibition of dominant or prepotent responses (recently re-conceptualized as subsumed by 

a more general ability to maintain task set; Miyake & Friedman, 2012).  Although the component 

processes of shifting, updating, and inhibition are not intended to be an exhaustive list of 

executive processes (Miyake et al., 2000), they are frequently postulated in the literature as 
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important EFs and are relatively circumscribed in comparison to other executive processes (e.g., 

“planning”).  Shifting is a fairly robust construct, defined as the ability to shift attention between 

different aspects of stimuli to be processed and also between several cognitive operations.  

Consequently, shifting ability is considered to be an important aspect of executive control 

(Norman & Shallice, 1986).  The updating process involves monitoring and modifying the 

contents of working memory in real time based on new information.  Updating is essential for a 

variety of everyday activities, including implementing multistep activities and organizing 

recently acquired information.  Lastly, the term “inhibition” is defined in the context of this 

study as the ability to resist impulsive responses by pre-empting or stopping one’s behavior at 

the appropriate time (Guy, Isquith, & Gioia, 2004) and controlled suppression of a prepotent 

response (Miyake et al., 2000).  In turn, the concept of inhibition refers to several different 

processes (Friedman & Miyake, 2004; Nigg, 2000).  As defined here, inhibition closely maps 

onto Friedman and Miyake’s (2004) conceptualizations of resistance to distractor interference 

and prepotent response inhibition, two subprocesses of inhibition that were determined to be 

closely related via confirmatory factor analysis. In the Miyake et al. (2000) framework, 

inhibition incorporates resistance to distraction. 

The processes of shifting, updating, and inhibition are considered to act as control 

functions for working memory.  Working memory is conceptualized as the focus of attention and 

active representation and manipulation of context-specific information (Baddeley, 2003).  Given 

the limited capacity of working memory (Engle, Kane, & Tuholski, 1999), it is imperative that 

the contents of working memory be updated efficiently, a task controlled by executive processes 

(Friedman & Miyake, 2004).  EFs allow relevant information in, block intrusive irrelevant 
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material, and discard information that is no longer relevant (Engle et al., 1999). Individual 

differences in these processes could be associated with specific dimensions of psychopathology.   

The Present Study 

Given the methodological (e.g., task impurity problem; Burgess, 1997; see Miyake et al., 

2000 for a review) and conceptual limitations in the definition and assessment of EF, and 

uncertainties about its relationship to depression and anxiety, it is not surprising that 

inconsistencies in the literature have emerged. Specific EFs are important to study as they are 

key processes in self-regulation abilities.  Given that the experience of negative mood states and 

negative life events activates mood-congruent representations in working memory (Siemer, 

2005), the ability to control the contents of working memory could be crucial in understanding 

why some individuals easily recover from negative affect and others initiate and persist in using  

maladaptive emotion-regulation strategies that maintain negative affect.  Determining specific 

EF impairments in depression and anxiety has the potential to provide a mechanistic account of 

maladaptive patterns of behavior, as well as understanding emotion-regulation proclivities. The 

present study sought to advance the current state of the EF literature by examining the validity of 

EF constructs of updating, shifting, and inhibition as they manifest in daily life, and to determine 

how impairments in these processes distinguish psychopathology types.  

The Behavior Rating Inventory of Executive Function – Self-Report (BRIEF-SR; Guy, 

Isquith, & Gioia, 2004) is a standardized, self-report questionnaire that measures several aspects 

of EF in an individual’s environment, including aspects of shifting, updating/working memory, 

and inhibition.  A challenge in assessing EF within formal and laboratory settings is that this 

structured format generally facilitates a restricted range of behaviors.  Although formal and 

experimental measures may assess the EF potential or capacity of an individual, the situation 
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they present is not typically like those encountered in everyday life.  That is, EF tests typically 

lack environmental supports/distractions that may facilitate/hinder an individual’s function in 

everyday life.  Consequently, questionnaires that attempt to measure performance in an 

individual’s everyday environment appear to tap aspects of EF that may not be measured by 

standardized tests.  Additionally, such questionnaires, including the BRIEF-SR, sample behavior 

over a longer period of time than is generally afforded by standardized testing.  Thus, a benefit of 

the BRIEF-SR is its intended ecological validity.  In order to determine the factor structure of the 

items comprising the BRIEF-SR’s shifting, updating/working memory, and inhibition scales, an 

Exploratory Factor Analysis (EFA) was conducted in the present study.  Notably, the items on 

the BRIEF-SR reflect self-reported activities of daily life and are not measurements obtained in 

the laboratory.  The items comprising the scales labeled shifting, working memory/updating, and 

inhibition may not index the same constructs as articulated by Miyake et al (2000). Therefore, in 

the present study, subsequent latent factors were used to define EF constructs. The measurement 

model resulting from EFA was subsequently tested via confirmatory factor analysis (CFA) in a 

non-overlapping sample of participants.  Structural equation modeling (SEM) was used to 

estimate relationships between the EF latent variables and dimensional measures of 

psychopathology, specifically anxious apprehension, anxious arousal, and anhedonic depression.  

It was hypothesized that anxious apprehension (i.e., worry) would be associated with problems in 

shifting mental sets and that anhedonic depression would be associated with EF impairment in 

inhibition and shifting domains.  No known study to date has specifically examined shifting, 

updating, and inhibition processes associated with anxious arousal (i.e., intense fear and/or 

panic).  Neuroimaging evidence supports distinct patterns of brain activity associated with 

anxious apprehension and anxious arousal during an EF task (Engels et al., 2007; 2010). Thus 
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the nature of anxiety EF impairment may depend on anxiety type.  Carefully differentiating 

between anxious apprehension and anxious arousal may help to provide more conclusive 

findings in studies of anxiety and EF.  

Methods 

Participants    

Participants were recruited from a larger pool of undergraduates (n =1,140), who 

completed a series of questionnaires for credit in a psychology course. The questionnaires 

assessed symptoms associated with anxiety and depression: the Penn State Worry Questionnaire 

(PSWQ; Meyer, Miller, Metzger, & Borkovec, 1990; Molina & Borkovec, 1994) and the 

Anxious Arousal and Anhedonic Depression scales of the Mood and Anxiety Symptom 

Questionnaire (MASQ; Watson, Clark, et al., 1995; Watson, Weber, et al., 1995).  Participants 

also filled out the BRIEF-SR during the same questionnaire session. Participant data were 

excluded from analyses if questionnaire data had missing values and/or illegible responses (n 

=17). The final sample consisted of 635 females and 451 males
1 
(mean age

2
 = 18.7 years, SD = 

1.1).  Observations from the final sample (N = 1,123) were randomly selected for exploratory (n 

=561) and confirmatory (n =562) factor analyses.  All participants were right-handed, native 

speakers of English with self-reported normal hearing and color vision.  

Questionnaires and Procedures 

 Participants completed the BRIEF-SR questionnaire, involving 80 items assessing EF 

problems in daily life during the last 6-months on a 3–point scale (1 = never; 2 = sometimes; 

3=often). Research indicates that the BRIEF-SR has good clinical utility (e.g., Niendam, 

                                                             
1 Thirty-seven individuals did not specify their gender 

2 Forty individuals did not specify their age 
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Horwitz, Bearden & Cannon, 2007) and internal consistency (Cronbach’s alpha  > .82 for 

inhibition, updating/working memory, and shift scales). Given that one goal of this study was to 

examine the ecological validity of shifting, updating, and inhibition EF constructs, only items 

from these scales (n=35) were subject to EFA.     

The 16-item PSWQ was used to assess anxious apprehension (i.e., the tendency to engage 

in worry).  Participants responded to questions such as “My worries overwhelm me,” by rating 

how characteristic (1 = not all, 5 = very typical) each statement was of them.  The Anxious 

Arousal scale of the MASQ (MASQAA) consists of 17 items in which participants responded to 

statements such as “Startled easily.”  An eight-item subscale of the MASQ Anhedonic 

Depression (MASQAD8) was used as it has been shown to reflect depressed mood (Nitschke et 

al., 2001), and to predict current and lifetime depressive disorders (Bredemeier, Spielberg, 

Silton, Berenbaum, Heller, & Miller, 2010).  The MASQAD8 scale consists of items such as 

“Felt like nothing was very enjoyable.”  For both MASQ scales, participants rated how much 

they experienced each item during the previous week (1 = not at all, 5 = extremely). Research 

has shown that the PSWQ and MASQ have excellent test-retest reliability and good convergent 

and discriminant validity in undergraduate and clinical samples (Meyer, et al., 1990; Nitschke et 

al. 2001; Watson et al., 1995). Internal consistencies for the present sample were .93 and .86, 

respectively. Dimensional measures of anxiety and depression were selected because they have 

been shown to effectively distinguish these highly comorbid constructs, which share many 

overlapping symptoms (Nitschke et al., 2001).  Moreover, related research suggests that different 

dimensions of depression and anxiety may be associated with distinct EF impairments.  For 

example, low levels of positive affect, a characteristic of depression but not anxiety, has been 

linked to problems shifting attention (e.g., “cognitive inflexibility;” Compton, Wirtz, Pajoumand, 
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Claus, & Heller, 2004).  Given that low levels of positive affect are specific to depression (Clark 

& Watson, 1991), it is possible that anhedonic depression may be associated with specific EF 

impairments that cannot be accounted for by high negative affect and/or comorbid anxiety.   

Data Analysis  

The distributional properties of the observed responses to the BRIEF-SR items do not 

have a multivariate-normal distribution.  Research has indicated that using normal-theory 

estimation (e.g., Pearson product-moment correlations) factor analytic techniques for ordered, 

categorical responses to Likert-type scales could result in biased model fit statistics, negatively 

biased parameter estimates, inflated error variances, and extraction of illegitimate factors (Flora, 

Finkel & Foshee, 2003).  Thus, as an alternative to the Pearson product-moment correlation, 

polychoric correlations were used for EFA and CFA (see Olsson, 1979, for explanation of 

appropriate use).  Additionally, robust maximum likelihood estimation mean- and variance-

adjusted weighted least squares (WLSMV; Muthén, du Toit & Spisic, 1997) was implemented, 

as this method has been shown to perform well when modeling categorical data (Brown, 2006; 

Flora & Curran, 2004).   

The computer program Mplus 6.1 (Muthén & Muthén, 2010) was used to conduct factor 

analyses and SEM.  Resulting items from EFA were used as indicators in CFA.  CFA served as 

an objective test of the statistical fit against the EF factor model established using EFA in an 

independent sample.  Model fit (CFA and SEM) was evaluated using the mean- and variance- 

adjusted chi-square goodness-of-fit statistic (χ
2
; Muthén et al., 1997), the comparative fit index 

(CFI; Bentler, 1990), the Tucker-Lewis index (TLI; Tucker & Lewis, 1973), and root-mean-

square error of approximation (RMSEA; Steiger, 1990).  Simulation studies in Yu and Muthén 

(2001) suggest the following cut off values for categorical outcomes: CFI>.95, TLI>.95, and 
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RMSEA<.06, which are consistent with Hu and Bentler’s (1999) recommendations.  The error 

variances of two inhibition items were allowed to co-vary to account for similarity in question 

structure. 

Scores on the dimensional measures of anxiety and depression were added as manifest 

variables.  SEM was used to examine the relationships between the latent EF variables and the 

three psychopathology scores, as this method allows for these relationships to be estimated 

simultaneously and (unlike regression) explicitly accounts for measurement error in predictor 

variables.  Additional structural tests of this model were conducted in order to evaluate 

potentially distinct relationships between EF latent variables and psychopathology scores.   A 

series of nested models was created in which pairs of standardized psychopathology regression 

weights leading to one of the latent variables were constrained to be equal and were subsequently 

compared to a model in which all regression weights were allowed to be freely estimated.  All 

difference tests of the nested models were performed using a chi-square difference procedure 

described by Asparouhov and Muthén (2006). Model χ
2
 values and degrees of freedom are not 

reported for these nested model tests, as they are not interpretable when using WLSMV; only p-

values are interpretable (Muthén, 2008).          

Results 

Exploratory Factor Analysis 

 Thirty-five items from the BRIEF-SR inhibit (n=13), shift (n=10), and update/working 

memory (n=12) scales were subjected to EFA.  Given theoretical and empirical support for 

moderate correlations among inhibition, shifting, and updating EF processes (e.g., Miyake et al. 

2000), an oblique rotation, the Promax method, was applied.  In order to obtain simple factor 

structure, items were retained if their primary loading was >.45 and cross-loading was <.2.  
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Following procedures outlined by Brown (2006), factor retention was determined using multiple 

methods: examination of a scree plot of the eigen values, goodness of model fit statistics (χ
2
, 

RMSEA), and evaluation of the meaningfulness and interpretability of the factors that emerged.  

Poorly defined factors (e.g., a one-item loading) were eliminated. 

 Nineteen items (inhibit n=10; shift n=4; update n=5) were retained that met the above 

outlined criteria.  Examination of the scree plot, model fit statistics, and interpretability of factors 

indicated that a three-factor solution best explained the relationships among the items.  The 

complete three-factor solution is presented in Table 2.       

Confirmatory Factor Analysis 

 Although the chi-square goodness-of-fit statistic (χ
2
) is typically used to test the fit of 

CFA models, several fit statistics are reported here, given this statistic’s sensitivity to large 

sample sizes and consequently excessive Type I error rates (see Kline, 2010, for review).  The 

three-factor model was successfully estimated and associated with a χ
2

61value of 315, p<.001.  

Fit indices indicated that this three-factor model provided an excellent fit to the data (CFI=.968; 

TLI=.963; RMSEA=.045, 90% confidence interval = .038 to .052).  All measurement weights 

were significant at p<.001 (see Table 3 for standardized estimates).     

Structural Equation Modeling 

 Descriptive statistics of the psychopathology measures for the total sample are presented 

in Table 1. Criteria for evaluating model fit were identical to those for the CFA procedure.  The 

model was successfully estimated and associated with a χ
2

196value of 578, p<.001.  Fit indices 

indicated that this model provided an excellent fit to the data (CFI=.954; TLI=.950; 

RMSEA=.042, 90% confidence interval = .038 to .046).  All measurement weights were 
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significant at p<.001 and were virtually identical to the measurement weights determined by the 

CFA procedure. 

 The psychopathology manifest variables (PSWQ, MASQAA, and MASQAD8) were 

modeled as exogenous (i.e., independent) variables predicting endogenous (i.e., dependent) EF 

latent variables.  Increased levels of anxiety and depression were differentially associated with 

worse EF (see Figure 2.1).  As shown in Table 4, PSWQ positively predicted problems with 

shifting, whereas MASQAA and MASQAD8 positively predicted problems with all three 

domains of EF.  Additional structural tests determined that the magnitude of the γ for PSWQ 

predicting shifting was larger than the γ’s for MASQAA (p<.001) and MASQAD8 (p<.001).  

The magnitude of the γ for MASQAD8 predicting shifting was larger than the γ for MASQAA 

(p<.04).  For updating, the γ for MASQAA was larger than MASQAD8 (p=.02) and PSWQ 

(p<.001); MASQAD8 γ was larger than PSWQ (p<.01).  Finally, the magnitude of the γ for 

MASQAA predicting inhibition was larger than the γ’s for MASQAD8 (p<.001) and PSWQ 

(p<.001).  The γ for MASQAD8 predicting inhibition was not significantly larger than the γ for 

PSWQ (p=.08).       

Discussion 

The purpose of the present study was to identify meaningful dimensions of EF and their 

relationship with depression and anxiety, with the specific goal of testing hypotheses that 

domain-specific EF deficits distinguish relevant dimensions of psychopathology.  Present 

findings indicate distinct EF impairments as contributing factors to the maintenance and 

development of anxious apprehension, anxious arousal, and anhedonic depression, suggesting EF 

mechanisms of emotion regulation.  EFA identified items from an ecologically valid measure of 

EF that were consistent with Miyake et al.’s (2000) EF framework.  A three-factor structure 
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representing shifting, updating, and inhibition EF domains was found to provide an excellent fit 

to the data, and was replicated via CFA in an independent sample.  SEM examined how 

individual differences in dimensions of depression and anxiety were associated with these 

specific domains of EF.   Importantly, anhedonic depression and the two anxiety dimensions 

evidenced distinct patterns of relationships with EF.  Specifically, all three dimensions of 

psychopathology predicted shifting impairment, with anxious apprehension exhibiting the 

strongest relationship.  Problems with updating and inhibition were associated with anxious 

arousal and anhedonic depression, with anxious arousal exhibiting the stronger relationship in 

both domains.   

As predicted, anxious apprehension positively predicted shifting impairment, suggesting 

that individuals who experience elevated levels of worry have limited cognitive control.  This 

finding is consistent with Eysenck et al.’s (2007) prediction that “anxiety” impairs shifting, 

though it extends attentional control theory to a specific dimension of anxiety, anxious 

apprehension, and identifies shifting as a mechanism involved in worry.   Impaired cognitive 

performance in a variety of cognitive domains (e.g., dual-task paradigms) are hypothesized to 

result from anxiety-related intrusive thoughts and worry preempting some of the processing and 

storage resources of working memory (e.g., Eysenck et al., 2007), a limited capacity system 

(Engle et al., 1999).  According to attentional control theory, worry disrupts the “central 

executive” (or top-down attentional system) of working memory and subsequently impairs 

shifting and inhibition processes in anxious individuals, as these aspects of EF require attentional 

control.  Although deficits in attentional control (e.g., Eysenck et al., 2007) could be 

consequences of a reduction in working memory capacity (Bredemeier & Berenbaum, under 

review), the present study demonstrated that impaired shifting in particular is a result of 



20 
 

increased anxious apprehension.  Shifting could be a mechanism involved in the relationship 

between worry and elevated anxiety (anxious apprehension, GAD).  For example, Borkovec 

(2004) proposed that worry is a cognitive avoidance strategy, in that it functions to prevent 

information processing associated with threat-related imagery.  The engagement of worry is 

viewed as a maladaptive coping mechanism that is negatively reinforced (i.e., worry prevents 

engaging in a full fear response).  Shifting is considered to act as a control function for working 

memory and is an EF process that is important in understanding failures of cognitive control in 

patient populations on laboratory tasks (Miyake et. al, 2000).  Impaired shifting function could 

prevent appropriate selection of working memory contents that are pertinent to the task at hand, 

manifesting as worry, as well as difficulty making transitions, problem-solving inflexibility (e.g., 

approaching a problem with the same strategy), and difficulty changing focus from one mindset 

or topic to another.     

As predicted, anhedonic depression was associated with deficits in inhibition and shifting 

EFs.  In addition, anhedonic depression predicted deficits in updating.  The present findings 

implicate deficits in all three EF domains as important factors in depression, which could lead to 

maladaptive emotion regulation strategies.  The difficulty experienced by depressed individuals 

in ameliorating negative mood may be due to relative weaknesses in utilizing working memory 

resources effectively, resources that have been compromised by poor EF. For instance, the 

finding that anhedonic depression predicted impaired inhibition is consistent with research 

suggesting that characteristics of depression (e.g., rumination, negative memory bias) result from 

difficulties controlling access to mood-congruent material in working memory (Gotlib & 

Joormann, 2010; Hertel, 1997; 2004; Joormann, 2010; Joormann, Levens, & Gotlib, 2011).  

Specifically, it is hypothesized that inhibitory processes in particular are critical for efficient 
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working memory function, limiting the access of information and removing information that is 

no longer necessary (Friedman & Miyake, 2004).  Individual differences related to dysfunctional 

inhibition would then lead to problems controlling mood-congruent activations in working 

memory and consequently may play a role in maladaptive emotion regulation strategies 

(Joormann & Gotlib, 2010).  For example, in depression, emerging evidence suggests that 

difficulties inhibiting mood-congruent information in working memory result in prolonged 

processing of goal-irrelevant negative material, deterring recovery of negative mood and leading 

to sustained negative affect (Gotlib & Joormann, 2010).   Furthermore, reduced control of mood-

congruent material in working memory may precipitate ruminative tendencies and negative 

memory biases, maladaptive emotion regulation strategies that are characteristic of depression.  

If reduced control (via inhibition dysfunction) of mood-congruent material in working memory 

sets the stage for ruminative tendencies, impaired shifting may be the mechanism linking 

rumination and depression.   Depressive and trait-like ruminative tendencies involve focusing on 

recurrent thoughts that are organized around a specific theme that is often emotionally charged 

(Nolen-Hoeksema, Wisco, & Lyubomirsky, 2008).  This perseverative style reinforces the 

recurrent thoughts in working memory, impeding switching to more positive and/or goal-related 

thoughts.  The finding that depression was associated with worse shifting is consistent with 

recent work linking rumination with impaired mental flexibility (Altamirano, Miyake, & 

Whitmer, 2010; Joormann, Levens, & Gotlib, 2011).  On a task that emphasized rapid goal 

shifting of emotion-neutral material (letter naming), Alatmirano and colleagues (2010) 

demonstrated that higher ruminative tendencies predicted lower switching accuracy.  In a sample 

of clinically depressed participants, Joormann and colleagues (2011) demonstrated that 

compared to control participants, depressed participants evidenced greater switch costs for 
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negative than for positive or neutral words during a working memory manipulation task.  

Moreover, in the depressed group, rumination predicted switch costs for negative words only.   

Taken together, these findings along with the present study suggest that impaired shifting is the 

mechanism fostering ruminative tendencies.  In addition, negatively valenced stimuli may be 

particularly salient for depressed individuals, interfering with manipulating information in 

working memory. 

Results revealed that depression was also associated with deficits in updating, implicating 

a platform for perseverative processing of the contents in working memory.  This finding 

supports work suggesting that rumination and depression are also associated with dysfunctions in 

updating.  To the degree that the experience of negative mood is associated with activation of 

mood-congruent representations in working memory (Siemer, 2005), impaired updating could 

result in increased interference by previously relevant negative material (Joormann & Gotlib, 

2008).  Moreover, a deficit in inhibiting goal-irrelevant representations and removing irrelevant 

negative material from working memory leads to prolonged negative affect and recurring 

negative thoughts.  Using a modified Sternberg task, Joormann and Gotlib (2008) demonstrated 

that depressed individuals exhibited increased interference from irrelevant negative material 

when updating the contents of working memory, and that this pattern of results was specific for 

negative stimuli.  In addition, these results could not be accounted for by negative mood state 

alone as depressed participants exhibited greater interference from negative material than did 

never-depressed participants who completed a sad mood induction prior to starting the task.  

Lastly, in the depressed group, higher rumination scores were associated with more difficulty 

removing task-irrelevant material from working memory (i.e., interference). 
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Given the separability of EF domains in the present study, the finding that anhedonic 

depression contributed to deficits in all three domains raises the question of whether depression 

is equally related to different types of executive dysfunction.  Although it is generally agreed that 

depression is associated with EF deficits (e.g., Levin et al., 2007), there is little direct evidence 

that compares depression and its relationships with specific EF domains.  In the present research, 

subsequent analyses were performed comparing the magnitude of the regression coefficients 

(i.e., γs) relating anhedonic depression to the three domains of EF.  The γ for MASQAD8 

predicting shifting was larger than γ’s for inhibition and updating, and γ s for inhibition and 

updating did not differ.  To the degree that shifting, updating, and inhibition share variance, it is 

likely that they share common resources, or “capacity sharing,” (Pessoa, 2009).   In a process 

called “executive competition,” Pessoa (2009) proposed that resources devoted to one EF 

component will detract from resources available for another and that this process is modulated by 

the affective significance of information.  On the surface, the finding that anhedonic depression 

shows a greater relationship with impaired shifting than with updating and inhibition is 

consistent with this proposal. However, the lack of explicit tests of such EF impairments during 

specific task performances precludes firm conclusions.   

 Results indicated that anxious arousal was also associated with deficits in all three 

domains of EF, although the pattern of impairment was distinct from depression. Post-hoc 

analyses were performed comparing the magnitude of the regression coefficients (i.e., γs) 

relating anxious arousal to the three domains of EF.  Whereas anhedonic depression exhibited 

the greatest impairment in shifting, anxious arousal demonstrated equal impairments in inhibition 

and updating (γ s for inhibition and updating were significantly greater than shifting) functions. 

The present findings implicate a unique pattern of deficits in all three EF domains (with greater 
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deficits in inhibition and updating) as contributing factors in anxious arousal.  Although no 

known study to date has specifically examined inhibition, shifting, and updating in anxious 

arousal, its distinctive characteristics and EF research on anxiety-related clinical diagnoses 

(albeit limited; see Snyder et al., in preparation, for review) provide some basis for speculation of 

the present findings.  Anxious arousal, characterized by somatic tension and sympathetic 

hyperarousal (Watson, Clark et al., 1995; Watson, Weber et al., 1995), is a prominent feature of 

panic disorder and specific phobias.  Perhaps the difficulty experienced by anxiously-aroused 

individuals in ameliorating panic-like symptoms may be due to crucial deficits in inhibitory 

processes, processes that are conceptualized as critical for efficient working memory function 

(Miyake & Friedman, 2004).  Moreover, it is also possible that this particular pattern of 

compromised EF is susceptible to “short-circuiting” in the presence of unpleasant emotional 

stimuli (e.g., triggers for panic symptoms).  More research is needed to link specific EF deficits 

associated with specific symptoms of anxious arousal.   

Although the present study provides new insights into specific domains of EF affected by 

specific dimensions of psychopathology, there are some limitations.  First, the study was 

restricted to an undergraduate sample of college students, and results may not generalize to more 

cognitively diverse samples.  For example, the degree of separability of EF may be less 

pronounced in general community samples (e.g., Legree, Pifer, & Grafton, 1996) and across the 

lifespan.  To the degree that distinct brain regions implement these executive processes, 

neuroimaging evidence suggests that older adults recruit additional bilateral prefrontal regions 

(for a review, see Reuter-Lorenz & Lustig, 2005).  Thus, generalizability to additional samples 

remains to be established.  Nonetheless, present findings could serve as a baseline measure of 

executive dysfunction in early development of depression and anxiety.  Second, the present 
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research assumed that dimensions of depression and anxiety influenced the development of 

executive dysfunction.  Although executive dysfunctions are often viewed as sequelae of 

psychopathology, this is not the only pattern of cognitive influence.  It is possible that specific 

EF deficits confer vulnerability to the development and maintenance of psychopathology, or that 

there is a bidirectional relationship.  Notably, the present SEM was re-analyzed with EF latent 

variables as exogenous (independent) variables predicting endogenous (dependent) 

psychopathology manifest variables (PSWQ, MASQAA, and MASQAD8).  All paths remained 

intact, supporting a bidirectional pattern of influence.   

  Despite these limitations, the present research demonstrates that domain-specific EF 

impairments are important factors in the maintenance and development of distinct dimensions of 

depression and anxiety, implicating specific maladaptive emotion-regulation processes.  EF 

deficits may impair an individual’s ability to evaluate, initiate, or engage in pleasurable 

activities/stimuli that promote pleasant emotional states. Importantly, the present study highlights 

naturally occurring executive dysfunction in everyday living that is associated with depression 

and anxiety, extending previous EF research obtained in formal (and typically artificial) 

evaluation settings.  Indeed, the cognitive processes that formal tests of EF purport to measure 

are still not well known, and the range of behaviors/activities in an individual’s everyday 

environment that require these same processes remains to be established (Burgess, Alderman, 

Volle, Benoit, & Gilbert, 2009).  Moreover, this is the only within-subjects study to date that 

explicitly assesses the relationships of specific EF impairments, at the level of latent variables, 

among anxious apprehension, anxious arousal, and anhedonic depression.  As evidenced here, 

discovering the nature of executive dysfunction depended on carefully differentiating these 

dimensions of psychopathology.   
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That these separate dimensions of psychopathology were associated with distinct 

cognitive deficits has implications for the development and implementation of effective 

treatment interventions.  Present results indicate that deficits in domain-specific EFs affect 

different aspects of daily life.  Accordingly, assessment of specific EF profiles could aid in 

developing therapeutic goals tailored to the needs and particular symptoms experienced by a 

given patient.  As part of the psychoeducational component of psychotherapy, EF profiles could 

clarify how anxiety and/or depression affect the individual’s thought processes, decision making, 

and maintenance of symptoms.  For example, an individual who has problems shifting may need 

help with planning strategies to facilitate easier transitions among daily tasks.  Individuals who 

struggle with selecting among options may benefit from learning how to structure their 

environment (Snyder et al., in preparation).   Understanding EF profiles could inform the 

clinician of potential barriers to treatment in widely used interventions for mood and anxiety 

disorders (e.g., Cognitive Behavioral Therapy, Mindfulness, Behavioral Activation therapy).  

These non-pharmacological interventions for mood and anxiety disorders are based on altering 

cognitive processing (e.g., thought restructuring exercises, monitoring cognition and behavior) 

that depend on intact EFs.  Understanding the role of EF in treatment compliance could direct the 

clinician to alternative strategies for implementing effective interventions (e.g., writing a 

homework summary for individuals with working memory deficits).  In addition, preliminary 

evidence suggests that EF training may actually improve response to non-pharmacological 

interventions (e.g., CBT; Mohlman, 2008), although research is needed to examine which 

aspects of EF are most critical for the efficacy of these interventions.  Future research should 

continue to examine executive function impairment in depression and anxiety to increase our 
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understanding of the role of these cognitive processes in the development and maintenance of 

psychopathology, and assess changes in these processes in response to EF-specific interventions.  
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Table 1  

 

Self-Report Psychopathology Scores (N=1123) 

Questionnaire 

 

Mean SD Min Max 

 

PSWQ (Anxious Apprehension) 

 

48.69 13.45 16 80 

MASQAA (Anxious Arousal) 

 

28.31 8.55 17 80 

MASQAD8(Anhedonic Depression) 17.15 5.19 8 39 

Note. PSWQ = Penn State Worry Questionnaire (Meyer et al., 1990). MASQAA = Mood and Anxiety Symptom 

Questionnaire Anxious Arousal scale (Watson, et al., 1995). MASQAD8 = Mood and Anxiety Symptom 

Questionnaire Anhedonic Depression 8-item subscale (Bredemeier et al., 2010; Nitschke, Heller, Imig, McDonald, 

& Miller, 2001; Watson et al., 1995). 
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Table 2 

 

Exploratory Factor Analysis: Three-Factor Solution  

 

 

Factor 

 

 

 

1 

 

2 

 

3 

Promax-Rotated Pattern 

Coefficient  

 

 

 

 

 

 

     Item    

I71 0.93 -0.02 -0.17 

I54 0.80 0.09 -0.10 

I79 0.65 -0.04 0.19 

I66 0.62 0.00 0.02 

I61 0.61 -0.06 0.15 

I19 0.57 0.17 -0.04 

I10 0.56 0.01 -0.10 

I80 0.56 -0.02 0.11 

I37 0.53 -0.15 0.08 
I28 0.52 0.04 0.13 

S27 -0.03 0.87 0.02 

S9 0.03 0.86 -0.04 

S18 0.01 0.80 0.02 

S36 0.03 0.58 0.12 

WM73 0.01 0.01 0.83 

WM63 -0.07 0.09 0.80 

WM48 0.00 -0.05 0.76 

WM3 -0.14 -0.01 0.69 

WM39 0.19 -0.03 0.57 

 

   

Interfactor Correlations 

   

     Factor 

   

2 

0.23   

3 

0.46 0.23  

Note. N=561. χ2
117=258, p<.001. RMSEA = 0.046. Entries in bold are the highest loading per item. I=Inhibition; 

S=Shifting; WM=Working Memory.  The number indicates the item number on the BRIEF-SR. 
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Table 3 

 

Confirmatory Factor Analysis: Standardized Regression Coefficients  

 

 

Factor 

 

 Inhibit Shift Update 

Item    

I79 0.82 - - 

I61 0.72 - - 

I80 0.68 - - 
I28 0.64 - - 

I54 0.62 - - 

I66 0.61 - - 

I71 0.59  - - 

I19 0.59 - - 

I37 0.58 - - 

I10 0.47 - - 

S18 - 0.88 - 

S27 - 0.87 - 

S9 - 0.77 - 

S36 - 0.59 - 
WM73 - - 0.90 

WM48 - - 0.79 

WM63 - - 0.74 

WM39 - - 0.73 

WM3 - - 0.67 

 

   

Interfactor Correlations 

   

     Factor 

   

Shift 

0.32   

Update 

0.44 0.33  

Note. N=562. χ2
61=315, p<.001.  CFI=.968; TLI=.963; RMSEA=.045.  All measurement weights were significant at 

p<.001.  I=Inhibition; S=Shifting; WM=Working Memory. The number indicates the item number on the BRIEF-

SR. 
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Table 4 

 

Structural Equation Modeling: Standardized Regression Coefficients  
 

Variable 

 

λ 

 

p 

Exogenous variable: PSWQ 

 

 

 

 

Updating <.01 0.98 

Shifting 0.45 <.01 

Inhibition <.01 0.91 

Exogenous variable: MASQAA 

 

 

 

 

Updating 0.32 <.01 

Shifting 0.08 0.04 

Inhibition 0.34 <.01 

Exogenous variable: MASQAD8 

 

 

 

 

Updating 0.17 <.01 

Shifting 0.22 <.01 
Inhibition 0.11 <.01 

Note. N=1123. χ2
196=578, p<.001.  CFI=.954; TLI=.950; RMSEA=.042.   

Updating, shifting, and inhibition represent latent variables derived from EFA and CFA. 
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Figure 2.1: Structural equation model for N=1123. Psychopathology measures predicting latent 

executive function variables updating, shifting, and inhibition.  PSWQ = Penn State Worry 

Questionnaire. MASQAA = Mood and Anxiety Symptom Questionnaire Anxious Arousal scale. 

MASQAD8 = Mood and Anxiety Symptom Questionnaire Anhedonic Depression 8-item 

subscale. BRIEF = Behavior Rating Inventory of Executive Function. The covariances between 

the latent variables, error terms, and the individual BRIEF items are not pictured for conciseness. 
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CHAPTER 3 

NEURAL MECHANISMS OF INHIBITION-RELATED FUNCTIONS:  

DLPFC AND COGNITIVE CONTROL 

Inhibition and Executive Function 

Executive function (EF) is a broad term that encompasses many critical skills and 

cognitive functions, including those that guide, control, inhibit, and monitor behavior. Often 

included are aspects of decision-making and risk evaluation, planning, goal-setting, switching 

between task sets, self-evaluation, and monitoring of actions (Lezak, 2004).  Given the necessity 

of EF in directing purposeful and adaptive behavior in novel or non-routine situations (Banich, 

2009), cognitive disruptions in these processes are a prominent source of distress and 

impairment.  

Inhibitory processes are considered to be critical when it comes to understanding 

executive control and its translation to real-word, everyday behavior.  Despite a lack of 

consensus on how best to define EF, neuropsychological and neuroimaging (Collette et al., 2005) 

research indicates that executive control may be usefully characterized as a collection of 

correlated yet dissociable processes: inhibition, set shifting, and working memory updating (e.g., 

Miyake et al., 2000).  Friedman, Miyake, and colleagues found that inhibition was more closely 

related to attention problems, depressive symptoms, and externalizing behaviors than were 

shifting and updating (for review, see Friedman et al., 2008).  Inhibition-related functions in 

particular are critical for efficient working memory function, limiting the access of information 

and removing information that is no longer necessary (Friedman & Miyake, 2004).   

Not only do inhibitory processes play a critical role in aspects of daily life, but they have 

come to be viewed as central players within numerous domains of psychology.  Deficient 
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inhibition-related processes have been implicated in a range of clinical disorders such as 

schizophrenia (Williams, 1996), substance abuse (Kaufman, Ross, Stein, & Garavan, 2003), 

anxiety disorders (Eysenck, Derakshan, Santos, & Calvo, 2007; Snyder, Kaiser, Warren, & 

Heller, in preparation), depression (Joormann & Gotlib, 2010; Levin et al., 2007; Snyder, in 

press), and ADHD (Barkley, 1997).  Changes in inhibition-related functions have been used to 

explain cognitive development (Bunge, Dudukovic, Thomason, Vaidya, & Gabrieli, 2002; 

Casey, Tottenham, Liston, & Durston, 2005), some age-related cognitive declines (Hasher & 

Zachs, 1988; Kramer, Humphrey, Larish, Logan, & Strayer, 1994), learning difficulties, and 

behavioral problems (Young, et al., 2009).  Occasional failures in normal cognition are also 

thought to represent inhibitory disruption as suggested by lapses in speech, thought, action, and 

intention (e.g., Broadbent, Cooper, FitzGerald, & Parkes, 1982).   

Given the importance of understanding inhibition-related functions in the context of 

cognitive control, as successes and failures in this domain have real consequences in everyday 

life, and given that individual differences in inhibition-related functions have been implicated as 

risk factors for a broad range of psychopathology, including depression and anxiety, one goal of 

the present study is to better understand the neural and behavioral organization of inhibitory 

functions.  More specifically, how is self-reported inhibition as manifested in everyday life 

related to individual differences in inhibitory control abilities?  

Behavioral inhibition has been theorized to relate to a broad range of psychopathology 

(e.g., Nigg, 2000) that are associated with poor executive control (e.g., Dalley, Everitt, & 

Robbins, 2011). Prepotent response inhibition, a more specific ability to deliberately suppress a 

dominant or automatic response, has also been linked to poor executive control, and is partially 

dependent on frontal-lobe function (e.g., Milham et al., 2001; Milham & Banich, 2005). 
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Although these two inhibition-related functions are distinguishable (Friedman & Miyake, 2004; 

Young et al., 2009), it is not clear the extent to which they reflect the same or different neural 

mechanisms. Specific inhibition-related functions are important to study, as they are key 

processes in self-regulation abilities, including emotion regulation (Zelazo & Cunningham, 

2007). Intact inhibitory functions are crucial for working memory, a function supported by 

dorsolateral prefrontal cortex (Wager & Smith, 2003).  To the degree that the experience of 

negative mood states and negative life events activates mood-congruent representations in 

working memory (Siemer, 2005), identifying specific inhibition-related functions could 

constitute relatively specific targets for interventions that are EF component or process focused. 

A small but growing number of studies demonstrate that training-related increases in working 

memory ability can yield improvements in a range of cognitive skills (Brehmer, Westerberg, & 

Backman, 2012; Chein & Morrison, 2010; Jaeggi, Buschkuehl, Jonides, & Shah, 2011; Popov et 

al., 2011), improvements in cognitive function in clinical populations with known inhibitory 

impairment (e.g., Klingberg, et al., 2005), and improvements in quality of life (e.g., Vogt et al., 

2009).  Furthermore, the generalizability of training-related increases in working memory ability 

to non-trained tasks is hypothesized to occur when the transfer task recruits overlapping cortical 

regions (e.g. Jonides, 2004; Olesen et al., 2004).  Thus, identifying brain regions that support 

inhibition-related functions could provide a mechanistic account of the development and 

maintenance of psychopathology, as well as inform current and potential methods of treatment. 

In general, neuroimaging studies of inhibition frequently implement a single measure of 

inhibition (i.e., typically response inhibition).  Thus, it is unclear whether the same neural 

mechanisms associated with response inhibition implement self-reported inhibition in everyday 

life. The present study capitalized on an ecologically sensitive measure of self-reported 
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inhibition derived in Warren et al. (in prep; Chapter 2) in order to compare patterns of brain 

activity with a commonly-used, laboratory-based response inhibition task.  

Self-reported inhibition in everyday life was measured using the BRIEF inhibition factor 

score developed by Warren et al. (in prep; Chapter 2). The BRIEF inhibition factor score reflects 

the ability to resist impulsive responses (Guy, Isquith, & Gioia, 2004) and the tendency to act 

prematurely without foresight in social situations The color-word Stroop task is well established 

in the fMRI literature (see Banich, 2009, for a review) and is known to recruit EF processes, 

including response inhibition and top-down attentional control (directing attention to a less 

automatic process, i.e. color identification over word reading; Liu, Banich, Jacobson, & Tanabe, 

2006). Although the Stroop task has been characterized as being closely related to a facet of 

cognitive inhibition, resistance to interference (Nigg, 2000),  Friedman and Miyake (2004) 

determined that Stroop performance loaded heavily on a prepotent response inhibition latent 

factor.  Conceptually, the Stroop task differs from resistance to interference tasks in that the 

response that must be avoided is a dominant response (MacLeod, 1991) as opposed to a non-

dominant irrelevant distractor, such as those used in flanker-type tasks. Thus, the Stroop task was 

used as a measure of prepotent response inhibition. However, to the degree that these inhibition-

related processes overlap (e.g., Friedman and Miyake (2004) showed that prepotent response 

inhibition and resistance to distractor interference constructs were correlated (r = .67) and work 

in concert, and they may be implemented by similar brain regions (Wilson & Kipp, 1998). 

Inhibition and Brain Organization  

Neuroimaging studies exploring inhibition processes have demonstrated the involvement 

of various regions in the cingulate, prefrontal, and parietal areas.  In general, measures of 

“cognitive” and “emotional” inhibition appear to rely partially on prefrontal cortex (Dillion & 
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Pizzagalli, 2007). However, the exact functional significance of regions associated with 

inhibitory processes is unknown (Collette et al., 2006).  Given that the term “inhibition” is often 

inadequately defined (Aron, 2007; Nigg, 2000), it is likely that the tasks used in neuroimaging 

studies have differed in their exact inhibitory requirements, with engagement of heterogeneous 

cerebral areas.  Despite this lack of specificity, neuroimaging studies frequently identify 

dorsolateral prefrontal cortex (DLPFC), inferior frontal gyrus (IFG), and anterior cingulate 

cortex (ACC) as serving inhibitory functions, although lesion studies implicate right IFG in 

particular (see Aron, Robbins, & Poldrack, 2004, for a review).  More specifically, IFG is 

thought to be activated when an individual needs to resolve interference among potentially 

conflicting attributes of a stimulus (Nelson et al., 2003; for left IFG, see Jonides & Nee, 2006, 

for review), and ACC is engaged when conflicting stimulus-response associations are present 

(Banich et al., 2009; Nelson et al., 2003).  Given Miyake et al.’s (2000) unity and diversity of 

EFs model (i.e., inhibition, updating, and shifting are correlated yet separable processes), it is 

likely that inhibition interacts with other cognitive functions in these tasks, making it difficult to 

determine which brain regions are involved in a specific implementation of this function.  

Moreover, DLPFC, ACC, and IFG are all typically activated in inhibition paradigms, because 

they likely interact to facilitate task performance.  That is, DLFPC is associated with top-down 

control (e.g., Dosenbach, Fair, Cohen, Schlaggar, & Petersen, 2008), maintaining goals, and 

updating information (e.g., Wager & Smith, 2003),  ACC detects response conflict and monitors 

performance (see Banich et al., 2009, for a review), and IFG may function to inhibit incorrect 

responses (Aron et al., 2004) as well as playing a more general role in responding to salient, task-

related cues as part of an EF network (Hampshire, Chamberlain, Monti, Duncan, & Owen, 

2010). 
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Through latent-variable analysis, Friedman and Miyake (2004) demonstrated that 

prepotent response inhibition and resistance to distractor interference are separable at the 

cognitive level, although they share some common features. Specific types of inhibition could 

differentially contribute to the overall behavioral impact of inhibition dysfunction as seen in 

various disorders. Thus, understanding the relationship between specific inhibitory-related 

functions and the neural structures that implement them could provide insights into the 

development and maintenance of various disorders.   

Examining the extent to which the distinctions found at the cognitive level can be 

demonstrated at the neural level could prove to be informative about individual differences in 

inhibition-function processes, as behavioral deficits may not be readily apparent.  More 

specifically, performance effectiveness (e.g., achieving a goal) may not be affected, but how the 

individual performs the task may not be efficient (Eysenck & Calvo, 1992; Eysenck et al., 2007).  

Thus, compensatory strategies that are not behaviorally apparent may be measured using 

neuroimaging techniques.     

The Experimental Problem   

Colloquially, the term inhibition is used to describe the outcome of behaviors in everyday 

life (e.g., impulsivity), although the contribution of specific inhibitory functions is not well 

understood.  Notably, most formal tests of EF were developed and administered in 

understandably artificial environments (e.g., laboratory; controlled testing environment).  

Although research is advancing in determining the cognitive processes that these formal tests of 

EF actually measure (e.g., Miyake, et al., 2000), the degree to which activities of daily life 

require these same processes is unclear (Burgess, Alderman, Volle, Benoit, & Gilbert, 2009).  

The present study sought to empirically demonstrate the nature of the relationship between the 
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type of inhibition that has been demonstrated clearly in a laboratory setting, i.e., prepotent 

response inhibition, and self-reported inhibition as measured in everyday life, by examining 

brain activity using neuroimaging.  Given that individual differences in inhibition-related 

functions have been implicated as risk factors for a broad range of psychopathology, it is 

important that the nature of inhibition-related processes be specified. As the term inhibition is a 

broad construct and has been broadly applied across research paradigms, the implications for its 

explanatory utility and potential avenues for intervention are limited.  Following empirical 

support for separable, inhibition-related functions at the behavioral level (Friedman & Miyake, 

2004), it is possible that self-reported inhibition in everyday life and response inhibition recruit 

separable and/or overlapping neural mechanisms.  

As a level of analysis, neuroimaging fosters a process-oriented approach to understanding 

how an individual or population approaches task performance, providing information that is 

inaccessible through self-report and behavioral assessment (Miller & Keller, 2000).  For 

example, compensation strategies via recruitment of additional/alternative brain regions for task 

performance may result in normal performance, such that behavior cannot distinguish any 

impairment.  The present study examined the similarities and/or differences in the neural 

mechanisms supporting ecologically-sensitive versus laboratory-based measures of inhibition 

functions in order to clarify the broader construct of inhibition.  Individual differences in specific 

inhibition-related functions at the level of neural mechanisms might be more strongly tied to the 

maintenance and development of psychopathology rather than the broader construct of inhibition 

as a whole would be.  Thus, identifying meaningful behavioral and functional components of 

“inhibition” may be a more fruitful approach in identifying mechanisms that foster variation in 

cognitive abilities and emotion regulation. Furthermore, cognitive neuroscience research has 
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demonstrated that the relationship between EF and working memory relies, in part, on inhibition-

related functions (e.g., Burgess, Gray, Conway, & Braver, 2011). Given the importance of 

inhibition-related functions for efficient working memory function (Friedman & Miyake, 2004), 

individual differences in these cognitive processes could be key to understanding cognitive 

difficulties in psychopathology.  

The inhibition constructs used in the present study were previously validated through 

factor analytic work by Warren et al. (in prep; self-reported inhibition in everyday life) and 

Friedman and Miyake (2004; prepotent response inhibition via the Stroop task).  Importantly, 

treating EF as a multidimensional construct enables increased specificity about the nature of 

executive involvement in various cognitive, neuropsychological, and clinical constructs.  In the 

clinical domain, considering the multiple components of EF has led to better specification of the 

nature of executive deficits associated with psychopathology (e.g., Warren et al., in prep).  

Based on the review above, it is anticipated that regions involved in a frontal-parietal 

network supporting inhibition-related process will be associated with both self-reported 

inhibition in everyday life and prepotent response inhibition. In addition, however, it is 

anticipated that distinct neural mechanisms may be associated with the two aspects of inhibition 

under investigation. It is anticipated that Stroop interference, a measure of prepotent response 

inhibition, will reflect greater active suppression than the BRIEF factor score, as the nature of the 

task presents directly conflicting semantic and response-related representations. In other words, 

responding to the color of the ink during the Stroop incongruent condition (“RED” in blue ink) is 

a weak response relative to the dominant word-reading tendency and is associated with active 

suppression and EF. As such, it is expected that RT interference (as a measure of prepotent 

response inhibition) will be associated with DLPFC, ACC, and IFG activity, as these regions 
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have been implicated in implementing cognitive control,  as well as response inhibition (Banich, 

2009; Banich et al., 2000; Milham & Banich, 2005). In particular, it is anticipated that RT 

interference will be associated with posterior DLPFC activity, as this region is considered to be 

critically involved in performance of this task, in part by biasing other brain regions towards 

processing task-relevant information (e.g., color of the ink) and away from task-irrelevant 

information (reading the color word). In contrast, the latent factor of self-reported inhibition will 

be associated with mid-DLPFC activity, as this region is implicated in maintaining task-relevant 

information and top-down attentional control (Banich, 2009; Kane & Engle, 2002). Given that 

response-inhibition paradigms have dominated much of the inhibition neuroimaging literature, it 

is unknown whether self-reported inhibition as measured in everyday life will elicit IFG and 

ACC activity.  To the degree that self-reported inhibition relies on stopping behavioral 

responses, it is likely to be associated with IFG activation.  However, a correlation with ACC is 

less likely, as this region’s contribution to cognitive control is thought to be recruited during 

tasks that generate conflicting, response-related representations (Banich, 2009).  

Methods  

Participants   

Eighty-five paid undergraduate participants (52 females, age M = 19.08, SD = 1.04) with 

varying levels of anxiety and depression were recruited from a larger study (Warren, Heller, & 

Miller, in prep) examining emotion and executive function. All participants were right-handed, 

native speakers of English with self-reported normal color vision and hearing, with no 

neurological disorders or impairments. Participants were given a laboratory tour, informed of the 

procedures of the study, and screened for claustrophobia and other contraindications for MRI 

participation. The study was approved by the University of Illinois at Urbana-Champaign 
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Institutional Review Board. Participants were excluded if they had ever experienced loss of 

consciousness > 10 minutes or exhibited current substance abuse or dependence, mania, or 

psychosis. Additional exclusion criteria included excessive motion or scanner artifact (n=8), 

signal loss due to substantial uncorrected magnetic susceptibility in areas of interest (n=1), or 

Stroop reaction time errors greater than 3 standard deviations from the sample mean (n=1). 

Measures of Inhibition 

Inhibition in everyday life.  The Behavior Rating Inventory of Executive Function – 

Self-Report (BRIEF-SR; Guy, Isquith, & Gioia, 2004) is a standardized, self-report questionnaire 

that measures several aspects of executive function in an individual’s everyday life, including 

inhibition.  Through a series of item-level factor analyses using the BRIEF-SR, Warren et al. (in 

prep) identified shifting, updating and inhibition latent factors consistent with Miyake et al.’s 

(2000) EF framework. For the present study, the inhibition-item weights (λs; N=1123) identified 

in Warren et al. (in prep) were used to compute participants’ BRIEF inhibition scores. The 

BRIEF self-reported inhibition score indexes an individual’s ability to resist impulsive responses 

by pre-empting or stopping one’s behavior at the appropriate time (Guy, Isquith, & Gioia, 2004).  

As defined in Warren et al. (in prep), the BRIEF inhibition factor score is an ecologically-

sensitive measure for the tendency to act prematurely in social situations. Notably, the BRIEF 

inhibition factor score reflects self-reported activities of daily life, sampling reported behavior 

outside of the laboratory (e.g., “I interrupt others,” “I am impulsive”).  Elevated scores represent 

impaired cognitive control, manifesting behaviorally as disinhibition and impulsivity.  In order to 

examine the relationship between brain activation and behavioral (dis)inhibition, BRIEF 

inhibition factor scores were converted to z scores and entered in regressions as predictors of 

brain activity.  
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Inhibition in the laboratory. Participants completed the color-word Stroop task (Stroop, 

1935) during fMRI data acquisition (see below) in which they were asked to press a button 

indicating the color of the ink in which color words and neutral words were printed, ignoring the 

dominant tendency to read the words. During the incongruent condition of the Stroop task, 

cognitive interference is created by the actual meaning of the presented word relative to the ink 

color in which it is presented (e.g., “RED” in blue ink).  

Average RT for correct-response trials was computed for incongruent (e.g., “RED” in 

blue ink) and neutral trials (e.g., “LOT” in red ink). RT interference scores were computed by 

subtracting each participant’s average neutral RT from their average incongruent RT, divided by 

their sum (i.e., [incongruent RT minus neutral RT]/[incongruent RT plus neutral RT]), and 

converted to z scores across all subjects. Higher interference scores indicated that participants 

took longer to respond to the ink color with incongruent stimuli than neutral words. No-response 

trials were excluded from behavioral analyses. In order to examine the relationship between 

brain activation and prepotent response inhibition, RT interference z scores were entered in 

regressions as predictors of brain activity.  

Experimental Task and Stimuli 

Color-Word Stroop task. Participants completed color-word and emotion-word Stroop 

tasks during an fMRI session, and also completed an EEG procedure and a diagnostic interview 

in other sessions. Only findings from the color-word Stroop task are presented here. The order of 

presentation of the two tasks within the fMRI session was counterbalanced. The color-word 

Stroop task consisted of blocks of color-congruent or color-incongruent words alternating with 

blocks of neutral words. Half of the trials in the congruent and incongruent blocks were neutral 

to prevent the development of word-reading strategies. This type of blocked-design color-word 
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Stroop task has been shown to effectively elicit Stroop interference (Banich et al., 2000; Milham 

& Banich, 2005; Milham, Banich, Claus, & Cohen, 2003; Silton et al., 2010). There were eight 

orders of stimulus presentation blocks that were counterbalanced across subjects (i.e., each 

participant received 1 out of 8 possible orders).  In addition to the word blocks, there were four 

fixation blocks (one at the beginning, one at the end, and two in the middle of the session) and 

five rest blocks (one at the beginning, one at the end, and one between each word block). In the 

fixation condition, a fixation cross intensified in place of word presentation, and in the rest 

condition the subject was instructed to rest and keep their eyes open while the screen was blank.  

Each trial consisted of one word presented in one of four ink colors (red, yellow, green, 

blue) on a black background, with each color occurring equally often with each word type. The 

task consisted of congruent trials in which the word named the ink color in which it was printed 

(e.g., the word “RED” printed in red ink), incongruent trials in which the word named a color 

incongruent with the ink color in which it was printed (e.g., “GREEN” printed in red ink), and 

neutral trials in which the word was unrelated to color (e.g., “LOT” in red ink).  Neutral words 

were matched with color words on word frequency and length. Participants responded to the 

color of the ink with their middle and index fingers using left- and right-hand response boxes. 

Participants received 256 trials presented in 16 blocks (4 congruent, 4 incongruent, and 8 

neutral) of 16 trials each, with a variable ITI (±225 ms) averaging 2000 ms between trial onsets. 

A trial began with the presentation of a word for 1500 ms, followed by a fixation cross for an 

average of 500 ms. There was a brief rest period after every fourth block. Additionally, there 

were four fixation blocks (one at the beginning, one at the end, and two in the middle) in which a 

brighter fixation cross was presented by for 1500 ms. No participants failed to understand the 

task instructions or the mapping between colors and buttons after completing practice trials.  
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Stimuli, word presentation, and reaction-time measurement were controlled by STIM software 

(James Long Company, Caroga Lake, NY). 

Image acquisition. Participants were given task instructions and informed of all relevant 

information about the procedure before participating. Participants completed 32 practice trials 

during a low-resolution anatomical scan.  

A series of 370 fMRI images (16 images per block of 16 stimuli plus rest and fixation 

periods) were acquired using a gradient-echo echo-planar pulse sequence (TR 2000 ms, TE 25 

ms, flip angle 80 , FOV=22 cm) on a 3T Siemens Allegra head-only scanner. Thirty-eight 

contiguous oblique axial slices (slice thickness 3 mm, in-plane resolution 3.4375 x 3.4375 mm
2
, 

.3 mm gap between slices) were acquired parallel to the anterior and posterior commissures. 

After the EPI sequence, a 160-slice MPRAGE structural sequence was acquired (slice thickness 

1 mm, in-plane resolution 1x1 mm) for registering each participant’s functional data to standard 

space. Prior to the EPI sequence, gradient field maps were collected for correction of geometric 

distortions in the EPI data caused by magnetic field inhomogeneity (Jezzard & Balaban, 1995). 

fMRI data reduction and analysis. Functional image processing and analysis relied on 

tools from the FSL analysis package (e.g., MCFLIRT, PRELUDE, FILM, FUGUE, FEAT, 

FLAME; http://www.fmrib.ox.ac.uk/fsl) and AFNI (http://afni.nimh.nih.gov/afni/). Additional 

region-of-interest (ROI) analyses were carried out using locally written Matlab programs (e.g., 

Herrington et al., 2005) and IBM SPSS Statistics version 19.0.  

Functional data for each participant was motion-corrected using rigid-body registration, 

implemented in FSL’s linear registration tool, MCFLIRT (Jenkinson, Bannister, Brady, & Smith, 

2002).  The first 3 volumes of each participant’s functional data were discarded to allow the MR 

signal to reach a steady state. Each time series was temporally filtered with a nonlinear high-pass 
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filter to attenuate frequencies below 1/212 Hz (to remove drift in signal intensity), mean-based 

intensity-normalized by the same single scaling factor, and spatially smoothed using a 3D 

Gaussian kernel (FWHM 5 mm) prior to analysis.  Temporal low-pass filtering was carried out 

using AFNI’s 3dDespike tool (http://afni.nimh.nih.gov/) to remove intensity spikes.  The ends of 

two participants’ time series were truncated due to excessive motion. All other participants 

demonstrated less than 3.3 mm absolute motion or 2 mm relative motion. After motion 

correction and temporal low-pass filtering, each time series was corrected for geometric 

distortions caused by magnetic field inhomogeneity. Remaining preprocessing steps, single-

subject statistics, and group statistics were completed with FEAT. 

Blood-oxygen-level-dependent (BOLD) activity during the color-word Stroop task was 

assessed using FILM (FMRIB's Improved Linear Model). Statistical maps were generated via 

multiple regression on each intracerebral voxel (Woolrich et al., 2001). An explanatory variable 

(EV) was created for each trial type (congruent, neutral, incongruent, and rest; fixation condition 

left unmodeled) and convolved with a gamma function to better approximate the temporal course 

of the BOLD hemodynamic response function (e.g., Aguirre et al., 1998).  The contrast of 

particular interest for this study is the incongruent versus neutral condition, because incongruent 

trial performance requires executive function to exert top-down control and resolve conflict.  

Thus, it is expected that this contrast would yield posterior DLPFC activation and ACC 

activation (i.e., ACC is involved in response evaluation and selection).  To the degree that 

portions of DLPFC are involved in maintaining an attentional set, DLPFC activation should 

remain consistent.  Each EV (i.e., regressor) yielded a per-voxel effect-size parameter estimate 

(ß) map representing the magnitude of activity associated with that EV for a given participant. 

Functional activation maps for each contrast were transformed into MNI stereotactic space 
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(Montreal Neurological Institute 152 symmetrical 1 mm x 1 mm x 1 mm template; Fonov, 

Evans, McKinstry, Almli, & Collins, 2009) using FMRIB’s Non-Linear Image Registration 

Tool, FNIRT (Andersson, Jenkinson, & Smith, 2007).  

Group inferential statistical analyses were carried out using FLAME and SPSS. To 

identify ROIs for subsequent analysis, activated voxels were identified for the incongruent vs. 

neutral contrast via two-tailed, per-voxel t-tests on contrast β maps converted to z-scores. Monte 

Carlo simulations via AFNI’s AlphaSim program estimated the overall significance level 

(probability of a false detection) for thresholding these 3D functional z-map images (Ward, 

2000). These simulations used a gray-matter mask to limit the number of voxels under 

consideration (2,340 mm
3
) and provided a cluster size (390) and z-value (z = 2.97) combination 

to use for thresholding, resulting in an overall family-wise error rate of .05. Clusters that 

survived thresholding were defined as ROIs for further analysis.  In order to explore brain 

regions uniquely associated with inhibition-related constructs, BRIEF inhibition factor score, RT 

interference, updating, and shifting factor scores from Warren et al. in prep,  (each converted to a 

z score) were entered as predictors in whole-brain, per voxel, cross-subject regression analyses in 

FSL. Although there is empirical support for moderate correlations among some aspects of EF 

(Miyake et al., 2000; Warren et al., in prep), these components are also behaviorally, genetically, 

and neutrally dissociable (e.g., Collette et al., 2005, Friedman et al., 2008; Miyake et al., 2000; 

Warren et al., in prep). Thus, two different higher-level analyses were conducted.  First, separate 

regressions were performed for each EF measure (without the shared variance from the other EF 

measures removed), essentially providing zero-order correlations between EF components and 

each brain voxel. Second, brain areas showing distinct relationships with EF measures were 

examined by including all EF measures (BRIEF inhibition, RT interference, updating and 
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shifting) as covariates in one regression model.  No significant correlations emerged between 

brain activity and updating or shifting for either higher-level analysis.  Thus, results were 

virtually identical in both higher-level analyses, indicating that shifting and updating covariates 

were appropriate to include in the main regressions, as each measure appears to be capturing 

what it intends.  Each regression analysis produced a β map corresponding to the unique variance 

associated with each inhibition construct.   

Results 

Behavioral Data 

All participants demonstrated color-choice accuracy of at least 85%. As a manipulation 

check, we examined RT interference for color-word trials. As expected, participants 

demonstrated more RT interference for incongruent-word trials (M = 814 ms, SD = 160 ms) than 

for congruent-word trials (M = 633 ms, SD = 103 ms), t(84) = 15.3, p < .001, and neutral-word 

trials (M = 652 ms, SD = 103 ms), t(84) = 15.2, p < .001 .  

Descriptive statistics and the zero-order correlation for the inhibition measures are 

presented in Table 5 and Table 6, respectively.  

fMRI Data 

Brain-activation results were consistent with anticipated regions of interest generally 

associated with inhibition-related processes.  Importantly, a functional differentiation of DLPFC 

emerged for the two measures of inhibition.  Worse self-reported inhibition (increased BRIEF 

factor score) was associated with more mid-DLPFC activation whereas increased RT 

interference was associated with less posterior-DLPFC activity during blocks of incongruent 

words relative to neutral words (see Figure 3.1). Specific activation findings are discussed 

separately for each predictor.  
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Brain regions uniquely associated with BRIEF inhibition factor score.  Table 7 lists 

the seven regions that were positively correlated with the BRIEF inhibition factor score.  In line 

with hypotheses, higher levels of BRIEF inhibition factor score were associated with more 

activation in left mid-DLPFC (middle frontal gyrus) and left IFG, regions that are generally 

associated with implementing inhibition-related processes (see Figure 3.1). Additional clusters 

emerged in frontal pole, OFC, and supramarginal and angular gyrus regions. There were no 

significant clusters negatively correlated with BRIEF inhibition factor score. 

Brain regions uniquely associated with RT interference.  Table 8 lists a network of 

regions that were negatively correlated with RT interference.  In line with hypotheses, higher 

levels of RT interference were associated with less activation in left posterior-DLPFC (middle 

frontal gyrus), bilateral IFG, and ACC, as well as regions that are generally associated with 

attentional control and motor response coordination (e.g., premotor cortex, frontal eye fields, 

posterior parietal cortex, precuneus; see Figure 3.1). Additional clusters emerged in occipital 

cortex, thalamus and caudate, parahippocampal gyrus, frontal pole, OFC, and supramarginal and 

angular gyrus regions (see Figure 3.1). There were no significant clusters positively correlated 

with BRIEF inhibition factor score. 

Discussion 

As hypothesized, DLPFC activity was associated with both measures of inhibitory 

functions, BRIEF inhibition factor score and RT interference, but each measure exhibited distinct 

relationships with DLPFC.  Results thus provide empirical support for distinctions between types 

of inhibition, as these processes were associated with separable neural mechanisms. In general, 

more behavioral disinhibition (elevated BRIEF factor score) was associated with increased 

activity in brain regions typically associated with inhibitory functions (left DLPFC, left IFG, 
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bilateral inferior parietal cortex). In contrast, increased RT interference was associated with 

decreased brain activity in these regions as well as ACC (see Figure 3.1).  Furthermore, 

behavioral disinhibition was associated with increased activity in mid-DLPFC, and greater RT 

interference was associated with less activity in posterior-DLPFC.  These differential patterns of 

inhibition-related processes suggest a distinct role for each DLPFC area.     

The cascade of control model (Banich, 2009; Banich et al., 2000; Milham & Banich, 

2005) identifies four aspects of EF that are critical for inhibiting responses, which rely on distinct 

areas within PFC: (1) biasing responses towards task-relevant processes (the relevant task or 

mental set), (2) biasing attention towards task-relevant representations (the relevant stimulus or 

response required), (3) selecting the information that should guide responding, and (4) evaluating 

the response.  Furthermore, this model proposes that distinct areas of DLPFC implement these 

functions which are necessary for executive control.  In this model, posterior DLPFC imposes a 

top-down attentional set toward task-relevant processes, maintains the overall task goals, and 

subsequently biases other brain regions (e.g., mid-DLPFC, dorsal ACC, parietal cortex) toward 

processing task-relevant information.  In contrast, mid-DLPFC is involved in selecting and 

maintaining the most relevant aspects of task stimuli (Banich, 2009) and is considered to be a 

critically involved in tracking and multitasking functions.  

In the context of present findings, the behavioral manifestation of a high BRIEF 

inhibition factor score is impulsivity.  Thus, mid-DLPFC hyperactivity associated with increased 

BRIEF inhibition factor score could reflect paying attention to too many task representations, 

and/or hyper-focusing on stimulus properties, which could disrupt the selection of the most 

relevant of the representations to which to respond.  In other words, perhaps mid-DLPFC is 

functioning like a leaky filter when it comes to impulsivity.  In line with this interpretation, 
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hyperactivity in mid-DLPFC has been linked to over-engagement with irrelevant features of 

stimuli (the meaning of threat-related words in an emotion-word Stroop task), interfering with 

processing task-relevant features (word color; Engels et al., 2010).   

In contrast, a negative correlation between RT interference and posterior DLPFC was 

observed, such that the greater the RT interference, the less brain activity (or vice versa). Given 

DLPFC’s prominent role in top-down attentional control (Milham, et al., 2003), if posterior 

DLPFC fails to impose a top-down attentional set toward task-relevant processes (inferred by 

decreased activity), we would anticipate greater RT interference. Results are consistent with 

other findings (Banich et al., 2000; Milham & Banich, 2005; Milham, et al., 2003). 

Consistent with the cascade-of-control model, RT interference was also associated with 

areas of ACC that are involved in response selection and response evaluation.  Specifically, the 

model asserts that there is a temporal cascade of cognitive operations, such that, following 

DLPFC activation, dorsal ACC selects the appropriate response among available response 

options.  When incorrect responses are made during a task, more anterior regions of the ACC 

signal the posterior DLPFC to assert greater top-down control for task performance, requiring re-

initiation of certain steps in the temporal cascade of events.  In addition to posterior DLPFC and 

ACC, regions of activation for RT interference were consistent with those implicated in a 

distributed network associated with response inhibition, including bilateral IFG, as well as 

regions that are generally associated with attentional control and coordinating motor responses 

(e.g., premotor cortex, frontal eye fields, posterior parietal cortex, precuneus; Banich, 2009; 

Corbetta, Patel, & Shulman, 2008). 

Interestingly, RT inference correlated with activity in a network of brain regions 

implicated in task-related expectations and preparation (i.e., goal-directed, executive control), 
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whereas self-reported inhibition was associated with activity in regions hypothesized to reorient 

attention from top down goal-directed control toward more stimulus-driven processing (Crocker 

et al., submitted).  According to Corbetta et al. (2008), adaptive behavior relies on the interaction 

between functionally separate cortical systems specialized for selection of sensory information.  

The dorsal frontoparietal network, involved in goal-directed attention, includes posterior MFG 

(posterior-DLPFC), premotor areas, frontal eye fields (FEF), and dorsal parietal cortex 

(intraparietal sulcus and superior parietal lobule), whereas the ventral frontoparietal network 

(bottom-up, stimulus-driven system) includes anterior parts of MFG (mid-DLPFC), IFG, 

supramarginal gyrus, anterior insula, and temporal parietal junction (TPJ).  In the context of a 

given task, dorsal attention regions such as posterior-DLPFC, dorsal parietal cortex, and FEF, 

along with anterior insula and ACC (implicated in a task-control network; Dosenbach, Visscher, 

Palmer, Miezin, & Wenger, 2006) are hypothesized to suppress the ventral network by sustained 

top-down signals.  Suppression of ventral network activity has been interpreted as preventing an 

inappropriate response to irrelevant stimuli (Shulman et al., 2003).   

Although the source of top-down signals is still under investigation, cortical regions such 

as MFG may link dorsal and ventral networks (see Corbetta et al., 2008, for review).  Although 

speculative, perhaps the distinct functional patterns of inhibition-related processes implemented 

by DLPFC (mid-DLPFC hyperactivity reflecting behavioral disinhibition; posterior-DLPFC 

hypoactivity reflecting greater RT interference) may play a role in integrating the dorsal and 

ventral systems. It is plausible that decreased top-down control, as evidenced by decreased 

activation associated with greater RT interference, over the ventral network results in 

inappropriate reorienting to distracting stimuli (greater behavioral disinhibition/impulsivity) as 

manifested in everyday life.  However, these interpretations are speculative as neuroimaging the 
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functional differences between brain regions associated with inhibitory processes provides 

limited insight.  Methods examining how these regions communicate with one another during a 

task (e.g., functional connectivity) could be employed to test their contributions to the overall 

functions of networks.   

Maintaining top-down attentional control is typically assumed to be the main function of 

DLPFC. However, current results suggest a more nuanced role of DLPFC as sub-regions were 

differentiated by two aspects of inhibition-related functions. DLPFC dysfunction has been 

implicated as a contributory source of cognitive impairment in a range of psychopathology, 

including depression and anxiety (Engels et al., 2007; 2010; Herrington et al., 2010, Levin et al., 

2007; Silton et al., 2010; Warren et al., 2008).  Although inhibition-functions alone are not likely 

the only factors that are associated with cognitive dysfunction in psychopathology, their differing 

neural mechanisms certainly have probative value.  For example, theories of depression 

(Joormann et al., 2007) and anxiety (Eysenck et al., 2007) postulate inhibitory dysfunction as a 

source of symptom development and maintenance, although specific inhibitory-functions are not 

addressed.  Thus, assessing individual differences in specific inhibition-related functions and 

their neural mechanisms might be a more profitable approach in understanding how “inhibition” 

contributes to cognitive and emotional disruptions in psychopathology.  

In conclusion, results provide evidence for overlapping and unique brain regions 

supporting the inhibitory functions of self-reported inhibition and prepotent response inhibition. 

In particular, inhibition-related functions differentiated specific regions within left DLPFC, an 

important structure that has been associated with implementing cognitive control and working 

memory. These results suggest the potential importance of utilizing an EF framework for 

understanding how some individuals persist in utilizing maladaptive emotion regulation 
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strategies that may confer vulnerability to psychopathology. In particular, DLPFC dysfunction 

often accompanies dimensions of depression and anxiety (Engels et al., 2007; 2010; Herrington 

et al., 2010, Levin et al., 2007; Silton et al., 2010; Warren et al., 2008). Moreover, as cognitive 

training programs develop, training goals might include alleviation of particular symptoms (e.g., 

rumination, worry) that may rely on specific inhibition-related functions. Results suggest the 

need for greater specificity of inhibition-related functions in order to explain psychological 

phenomena and associated brain activity. 
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Table 5  

 

Descriptive Statistics  
Questionnaire M SD Min Max 

PSWQ (Anxious Apprehension) 49.08 18.03 17 80 

MASQAA (Anxious Arousal) 27.56 7.58 17 48 

MASQAD8 (Anhedonic Depression) 16.89 5.77 8 33 

Inhibition Measure M SD Min Max 

BRIEF Factor Score 9.18 2.09 6.32 15.82 

RT Interference 0.11 0.60 -0.30 0.23 

Note.  N = 85. PSWQ = Penn State Worry Questionnaire (Meyer et al., 1990). MASQAA = Mood and Anxiety 

Symptom Questionnaire Anxious Arousal scale (Watson et al., 1995). MASQAD8 = Mood and Anxiety Symptom 

Questionnaire Anhedonic Depression 8-item subscale (Bredemeier et al., 2010; Nitschke, Heller, Imig, McDonald, 

& Miller, 2001; Watson et al., 1995). RT Interference computed by ([incongruent RT minus neutral 

RT]/[incongruent RT plus neutral RT]). 
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Table 6   

 

Zero-Order Correlations among Psychopathology and Inhibition-related Measures 
Measure 1 2 3 4 

1. PSWQ (Anxious Apprehension) --    

2. MASQAA (Anxious Arousal) .48** --   

3. MASQAD8 (Anhedonic Depression) .49** .51** --  

4. BRIEF Factor Score .10 .35** .29** -- 

5. RT Interference .12 .13 .11 .13 

 

Note.  ** Correlation is significant at .01 (two-tailed). 
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Table 7 

 

Distinct Effects of BRIEF Inhibition Factor Score  

Region Cluster 

Size (mm3) 

Mean Z 
COM Location Max Z Location 

X Y Z X Y Z 

Incongruent versus Neutral Wordsa 

LH frontal pole, OFC 397 3.30 -46 39 -16 -48 40 -17 

LH inferior frontal gyrus (IFG), anterior insula 1346 3.25 -46 16 0 -51 17 -2 

LH frontal pole, IFG-pars triangularis 423 3.35 -47 39 6 -46 40 6 

RH lateral occipital cortex, angular gyrus, TPJ 498 3.18 53 -59 21 53 -60 20 

LH middle frontal gyrus (mid-DLPFC) 402 3.19 -40 26 28 -43 25 27 

LH supramarginal gyrus 4851 3.26 -54 -53 41 -54 -44 52 

RH angular gyrus, lateral occipital cortex 558 3.31 48 -55 54 50 -56 54 

Note.  N = 85. COM = center of mass. RH = right hemisphere. LH = left hemisphere. DLPFC = dorsolateral 

prefrontal cortex. OFC = orbitofrontal cortex. TPJ = temporoparietal junction. Location coordinates are in MNI152 

2009 space.  

az-scores > 2.9677, cluster-size ≥ 390 (corrected p < .05).  
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Table 8 

 

Distinct Effects of RT Interference  

Region Cluster 

Size (mm3) 

Mean Z 
COM Location Max Z Location 

X Y Z X Y Z 

Incongruent versus Neutral Wordsa 

Bilateral thalmaus, caudate; LH OFC, insula, 

IFG 

30997 -3.67 -12 -5 5 -6 -21 11 

RH OFC, insula, IFG 7029 -3.45 36 17 -11 28 17 -16 

RH temporal occipital fusiform cortex 442 -3.23 37 -47 -21 36 -42 -21 

RH lingual gyrus  566 -3.31 5 -81 -15 4 -80 -12 

LH lateral occipital cortex, posterior ITG 4764 -3.32 -38 -77 -11 -46 -62 -8 

RH temporal occipital fusiform cortex, ITG 1119 -3.25 45 -61 -16 46 -56 -18 

LH lateral occipital cortex, occipital pole 581 -3.20 33 -89 -10 35 -86 -9 

RH middle temporal gyrus 1316 -3.44 54 -30 -7 54 -31 -7 

RH parahippocampal gyrus 549 -3.42 20 -30 -9 22 -28 -8 

dACC and rACC 19171 -3.49 0 25 32 10 25 24 

Bilateral precuneous cortex 14804 -3.54 -7 -67 39 -7 -66 45 

RH frontal pole 942 -3.40 26 54 13 28 55 9 

LH middle frontal gyrus (posterior-DLPFC) 1980 -3.49 -54 15 32 -53 13 41 

RH angular gyrus 399 -3.28 58 -52 24 58 -51 23 
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Table 8 con’t 

Note. N = 85. COM = center of mass. RH = right hemisphere. LH = left hemisphere. DLPFC = dorsolateral 

prefrontal cortex. OFC = orbitofrontal cortex. IFG = inferior frontal gyrus. ITG = inferior temporal gyrus. dACC = 

dorsal anterior cingulate cortex.  rACC = rostral anterior cingulate cortex. FEF = frontal eye field. Location  

coordinates are in MNI152 2009 space. 

az-scores > 2.9677, cluster-size ≥ 390 (corrected p < .05).   
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Figure  3.1:Areas that are uniquely associated with either self-reported inhibition in everyday 

life or prepotent response inhibition.  Red = increased brain activation associated with behavioral 

inhibition as measured by BRIEF inhibition factor score. Blue = decreased brain activation 

associated with prepotent response inhibition as measured by RT interference.  L = Left.  

Location of crosshairs emphasizes a functional differentiation of mid-DLPFC (red) and posterior 

DLPFC (blue) regions. 
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CHAPTER 4 

INTERACTIONS OF ANXIETY AND DEPRESSION MODERATE BRAIN ACTIVITY 

ASSOCIATED WITH RESPONSE INHIBITION 

Inhibition and Psychopathology 

Despite the diverse and interesting findings from information-processing paradigms, 

cognitive biases in anxiety and depression have generally not been explicitly and systematically 

studied in relation to the basic cognitive mechanisms of executive control. A better 

understanding of the relationship between specific cognitive control functions, particularly 

inhibition, and their role in affective symptoms may improve our theoretical understanding of 

information processing impairments in anxiety and depression.  Elevated symptoms on 

dimensions of psychopathology (anxious apprehension, anxious arousal, anhedonic depression) 

have been associated with risk for the development of anxiety and mood disorders (e.g., Behar, 

Alcaine, Zuellig, & Borkovec, 2003; Bredemieier et al., 2010).  Thus, discerning whether 

specific executive function (EF) impairments are associated with dimensions of psychopathology 

could have implications for understanding the development and/or maintenance of anxiety and 

depression.   

Intact inhibition-related processes are considered to be crucial for working memory and 

efficient EF (Friedman & Miyake, 2004). Some researchers have hypothesized that anxiety and 

depression are associated with deficits in inhibitory control.  According to attentional control 

theory (Eysenck et al., 2007), anxiety enhances the influence of a bottom-up, stimulus-driven 

attentional system (influenced by salient stimuli) over a top-down, goal driven system 

(influenced by current task goals). Anxiety impairs performance because it is associated with 

impaired inhibition, a function that is considered to be key in restraining attention from task-
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irrelevant stimuli and responses. Similarly, depression is hypothesized to have deficient 

inhibitory control. Joormann and colleagues (2007, 2010) have proposed that deficits in 

inhibitory control are related to difficulties preventing irrelevant information from entering 

working memory, with problems disengaging from negative information, and with difficulties 

removing previously relevant information from working memory. Thus, difficulties disengaging 

attention from negative material and inhibiting the processing of that material may lead to 

prolonged activation of negative content in working memory.  

Although there is support for inhibitory dysfunction in anxiety and depression, the 

literature to date is inconclusive (Derakshan & Eysenck, 2009; Snyder, in press; Snyder, 

Henderson, Warren, & Heller, in preparation).  Several explanations could account for such 

mixed results. Cognitive tasks that are generally employed include multiple aspects of cognitive 

function that might be impaired in psychopathology, making it difficult to draw firm conclusions 

about the presence of inhibitory deficits specifically (Henry & Crawford, 2005). In addition, the 

concept of “inhibition” is broad, and tasks that are assumed to measure inhibition vary in their 

definition of it, making it difficult to ascertain the nature of the function measured (see chapter 3 

for review). Finally, evidence suggests that co-occurring disorders may have additive and 

interactive effects on brain activity and EF (e.g. Basso et al., 2007; Engels et al., 2010; Heller, 

Etienne, & Miller, 1995; Herrington et al., 2010; Keller et al., 2000; Moritz et al., 2001), as well 

as clinical outcomes (e.g. Emmanuel, Simmonds, & Tyrer, 1998). Yet many studies fail to assess 

or control comorbidity, making it difficult to parse the effects of specific dimensions of 

psychopathology on EF and related brain activity.  In particular, few studies have examined the 

relationship of specific EF impairments to dimensions of anxiety and depression (anxious 
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apprehension, anxious arousal, anhedonic depression) that are known to be associated with 

different patterns of activity in relevant brain regions.  

Neural Correlates of Psychopathology and Executive Function  

 Relatively few studies have addressed the relationship between anxiety, depression, and 

EF at the neural level.  Neuroimaging studies have identified regions including prefrontal cortex 

(particularly DLPFC and IFG), ACC, and areas within parietal cortex with abnormal function in 

depression (Davidson & Henriques, 2000; Engels et al., 2010; Heller & Nitschke, 1997; 

Herrington, Heller, Mohanty, Engels, Banich, Webb, et al., 2010; Levin et al., 2007; Mayberg, 

1997; Mayberg, et al., 1999; Pizzagalli et al., 2006; Rogers et al., 1998, 2004; Warren et al., 

2008).  Research on attentional bias rather than EF impairment has dominated much of the 

anxiety literature, and neuroimaging studies are no exception.  However, results of these 

paradigms (usually testing inhibition of irrelevant distracting stimuli such as during an emotion-

word Stroop task) highlight regions that are also involved in EF.  For example, Bishop, Duncan, 

and Lawrence (2004) demonstrated that individuals high in state anxiety showed decreased 

activation of the lateral prefrontal cortex (associated with attentional control) when threat-related 

distracting stimuli were present.  Bishop (2008) showed that high trait anxiety was associated 

with deficiencies in recruiting brain regions supporting prefrontal attentional control (e.g., 

DLPFC) needed to inhibit distracting stimuli under conditions of low attentional demand.   

Research has implicated various brain regions associated with EF impairment in anxiety 

and depression, and a clear picture has yet to emerge.  Both methodological and conceptual 

issues are likely culprits.  Anxiety disorders are highly comorbid with each other and with 

depression (Kessler et al., 2005a, 2005b) and have overlapping symptoms (e.g., negative affect; 

Clark & Watson, 1991). Additionally, research suggests that comorbidity has additive and 
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interactive effects on prefrontal regions and EFs (e.g., Engels et al., 2010; Heller, Etienne, & 

Miller, 1995; Herrington et al., 2010; Keller et al., 2000; Moritz et al., 2001).  Many studies have 

failed to assess or control for comorbidity either experimentally or statistically, which Heller and 

Nitschke (1998) have argued is critical for disentangling discrepancies and inconsistencies in the 

literature. In addition, anxiety and depression are often assessed via self-report questionnaires, 

many of which include symptom questions that are not specific to either anxiety or depression 

(Nitschke, et al., 2001).   

Importantly, many studies have failed to distinguish between types of anxiety (for review, 

see Engels et al., 2010; Snyder et al., in preparation).  Despite overlapping symptoms and high 

rates of comorbidity, research indicates that depression is distinguishable from two types of 

anxiety, anxious apprehension and anxious arousal (Nitschke, Heller, Imig, McDonald, & Miller, 

2001; Heller et al., 1997; Nitschke et al., 1999). Anxious apprehension is characterized by worry 

and verbal rumination (Andrews & Borkovec, 1988; Barlow, 1991; 2002), whereas anxious 

arousal is characterized by somatic tension and sympathetic hyperarousal (Watson, Clark et al., 

1995; Watson, Weber et al., 1995).  Depression is characterized by decreased responsivity to 

pleasurable stimuli (i.e., anhedonia; APA, 2000) and the absence of positive affect (Watson, 

Clark et al., 1995).  When these distinctions are taken into account, distinct patterns of neural 

activity emerge.  For example, Engels et al. (2007; 2010) demonstrated that anxious 

apprehension is associated with increased left IFG (Broca’s area) activity, whereas anxious 

arousal is associated with increased right temporal gyrus activity.  Furthermore, depression is 

associated with rightward lateralization of DLPFC activity (Herrington et al., 2010). 
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The Experimental Problem   

Deficits in inhibition are hypothesized to play a prominent role in the affective and 

cognitive symptoms of anxiety and depression. In particular, intrusive thoughts such as worry 

and rumination are hallmark characteristics of anxiety and depression, respectively, and several 

researchers have suggested that these symptoms are a result of impaired inhibition (Eysenck, et 

al., 2007; Hertel, 1997, 2004; Joormann, 2005).  Anxiety has been associated with broad 

impairments in attentional control, including increased distractibility and impaired processing 

efficiency (i.e., resource utilization) as opposed to performance effectiveness (i.e., percentage of 

correct responses; Eysenck, et al., 2007; Eysenck & Derakshan, 2011). Research in depression 

has repeatedly demonstrated problems with attention, memory, and problem-solving abilities 

(Burt, Zembar, & Niederehe, 1995; Levin et al., 2007; Marx, Williams, & Claridge, 1992; 

Weiland-Fiedler et al., 2004), and impaired inhibition is hypothesized to facilitate these cognitive 

disruptions via effects of working memory (e.g., Joorman & Gotlib, 2010). Thus, making an 

explicit link among individual differences in specific inhibition-related functions and dimensions 

of anxiety and depression is important for understanding the intricate relationship between 

affective experiences and cognitive control. 

In line with this goal, the present study examined the relationship of brain activity 

associated with specific inhibition functions and its relationship with distinct dimensions of 

anxiety and depression (anxious apprehension, anxious arousal, and anhedonic depression).  The 

study used empirically validated, inhibition-specific measures (inhibition in everyday life, 

Warren et al., in prep; prepotent response inhibition, Friedman & Miyake, 2004), and a 

dimensional approach to psychopathology. Regional brain activity associated with self-reported 

inhibition in everyday life (measured via BRIEF inhibition factor score; Warren et al., in prep) 
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and prepotent response inhibition (indexed by Stroop RT interference score; see chapter 3) were 

used as dependent variables in multiple regressions. Anxious apprehension, anxious arousal, 

anhedonic depression, and their interactions served as independent variables.   

These analyses served several hypotheses designed to understand the relationship among 

critical dimensions of psychopathology and their modulation of neural mechanisms supporting 

inhibition-related functions.  Understanding the nature and role of inhibition-related deficits and 

their relationships with anxiety and depression may provide some insight regarding factors that 

confer vulnerability to psychopathology.  For example, although it is generally assumed that EF 

deficits are a by-product of anxiety and depression, it is possible that EF deficits may predispose 

individuals to develop psychopathology (e.g., Warren et al., in prep; see chapter 2). Although 

theories postulate anxiety- and depression-related disruptions in inhibition as a potential source 

of cognitive and emotional dysfunction, the modulation of neural mechanisms supporting such 

functions remains to be established. Given empirical support from hemodynamic neuroimaging 

studies that have properly accounted for comorbidity between depression and anxiety or 

comorbidity among anxiety types (Engels et al., 2007, 2010; Herrington et al., 2010), it is 

anticipated in general that depression will be associated with decreasing left DLPFC and ACC 

activity and that co-occurring anxiety of either type (anxious apprehension and anxious arousal) 

will increase activity in these regions (e.g., Engels et al., 2007, 2010).  Given that anxiety is 

thought to manifest as greater activation in brain areas associated with attentional control in 

distracting conditions, (see Eysenck & Derakshan, 2011, for review), it is anticipated that anxiety 

will increase activity in mid- and posterior-DLPFC regions, as they have been implicated in 

playing prominent roles in attentional control (e.g., Banich, 2009) . In contrast, it is hypothesized 

that depression will be associated with opposing affects on posterior-DLPFC activity as previous 
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work has shown hypoactivation in this area (e.g., Herrington et al., 2010).  It is also anticipated 

that anxious apprehension, characterized by worry and anticipatory anxiety, will increase left 

IFG activity (Engels et al., 2007).  

Methods  

Participants   

The same participants discussed in chapter 3 were used for the present study.  See chapter 

3 for details.  

Psychopathology Questionnaires 

Questionnaires. Dimensional measures of anxiety and depression, the Penn State Worry 

Questionnaire (PSWQ; Molina & Borkovec, 1994) and the Anxious Arousal and Anhedonic 

Depression scales of the Mood and Anxiety Symptom Questionnaire (MASQ; Watson et al., 

1995), were administered during the participant's first visit to the lab (see Table 5).  Anxious 

apprehension (i.e., worry) was measured using the 16-item PSWQ (e.g., “My worries overwhelm 

me”).  Anxious arousal, characterized by somatic tension and sympathetic hyperarousal, was 

measured using the relevant 17-item subscale of the MASQ (MASQAA; e.g., “startled easily”). 

Anhedonic depression, characterized by depressed mood and a lack of positive affect, was 

measured using an 8-item subscale from the MASQ (MASQAD8; e.g., “Felt like nothing was 

very enjoyable”), as it has been shown to predict current and lifetime depressive disorders 

(Bredemeier, Spielberg, Silton, Berenbaum, Heller, & Miller, 2010).  Past research has shown 

that these measures have good test-retest reliability and good convergent and discriminant 

validity in undergraduate and clinical samples (Nitschke et al., 2001; Watson et al., 1995).   

Dimensional measures of anxiety and depression were selected because they have been 

shown to effectively distinguish these highly comorbid constructs, which share many 
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overlapping symptoms (Nitschke et al., 2001).  Indeed, dimensional approaches to understanding 

the complex relationships between emotion and brain function have proven more fruitful than a 

categorical approach (Warren et al., 2008), and are consistent with recent calls to integrate 

neuroscience and clinical research to identify fundamental mechanisms of psychopathology 

(Cuthbert & Insel, 2010; Sanislow et al., 2010).   

Experimental Task and Stimuli 

Color-Word Stroop task. Participants completed the color-word Stroop task, a classic 

EF task, during fMRI acquisition.  For full details, see chapter 3. 

fMRI Data Analysis 

For full details, see chapter 3. Briefly, Warren and colleagues (chapter 3) investigated the 

moderation of brain activity associated with the color-word Stroop (1935) task by two inhibition-

related functions, self-reported inhibition as manifested in everyday life (BRIEF inhibition factor 

score), and RT interference, a measure of prepotent response inhibition. Brain activity associated 

with incongruent words (“RED” in blue ink) was contrasted with activity associated with neutral 

words, and the two inhibition scores were entered as between-subject predictors. Clusters 

associated with inhibition in everyday life and RT interference that surpassed statistical 

thresholding were identified as regions of interest (ROIs). To assess the potential effect of 

psychopathology on neural activity related to these specific inhibition processes, a score for each 

ROI identified in which BRIEF inhibition factor score and RT interference predicted fMRI was 

created by averaging β values across voxels in each ROI, for each participant.  ROI scores were 

then entered as the dependent variable in hierarchical linear regressions in which PSWQ, 

MASQAA, MASQAD, and their interactions were entered as regressors.  
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Results 

Behavioral Data 

Descriptive statistics for all of the measures are presented in Table 5, and zero-order 

correlations among psychopathology and inhibition measures are presented in Table 6.  

Moderation of brain activity by psychopathology associated with behavioral disinhibition  

No significant moderation of depression, anxiety, or their interactions emerged with any 

of the self-reported inhibition ROIs.        

Moderation of brain activity by psychopathology associated with RT interference  

Four, two-way interactive effects for anxiety and depression for response-inhibition-

related brain activity emerged in three regions. A PSWQ x MASQAA interaction emerged for 

left posterior DLPFC (Figure 4.1).  Tests of simple slopes showed that low levels of anxious 

arousal are associated with  increased brain activity in left posterior DLPFC at high levels of 

anxious apprehension [t(78) = -2.46, p <.05] but with decreased activation at low levels of 

anxious apprehension  [t(78) = 2.27, p <.05; Figure 4.1]. A PSWQ x MASQAA interaction was 

found for right middle temporal gyrus (MTG; Figure 4.2).  Tests of simple slopes showed that 

high anxious apprehension was associated with low right MTG activation at high levels of 

anxious arousal [t(78) = -2.86, p <.01] but with increased activation at low levels of anxious 

arousal  [t(78) = 2.02, p =.05].  Finally, two interactions emerged for right frontal pole (Figures 

4.3 and 4.4). Similar to right MTG, increased anxious apprehension was associated with 

decreased right frontal pole activation at high levels of anxious arousal [t(78) = -3.47, p <.001] 

but with increased activation at low levels of anxious arousal  [t(78) = 2.91, p <.01; Figure 4.3]. 

Additionally, a PSWQ x MASQAD interaction  emerged in which high levels of anhedonic 
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depression were associated with decreased right frontal pole activity at low levels of anxious 

apprehension [t(78) = -3.55, p <.001; Figure 4.4]. 

Discussion 

Select patterns of brain activation that emerged in the present study for response 

inhibition were modulated by psychopathology, contributing to understanding EF deficits in 

anxiety and depression. A two-way interaction emerged for left posterior-DLPFC in which 

greater activity was associated with high anxious apprehension when anxious arousal was low.  

Anxious apprehension typically involves elaborate verbal processing and worry.  Given that 

posterior DLPFC is involved in imposing top-down attentional control and maintaining task set, 

hyperactivity in this area may reflect an attempt to compensate for anxious apprehension (which 

can be inferred to impair the efficiency of this inhibition-related function). Considerable 

evidence suggests that anxiety is often associated with increased susceptibility to distraction (see 

Derakshan & Eysenck, 2009, for review), hypothesized to reflect impaired inhibition (e.g., 

Eysenck & Derakshan, 2011).  According to attentional control theory, anxiety impairs 

processing efficiency to a greater extent than it impairs performance effectiveness (i.e., quality of 

performance) and manifests in greater activation in brain regions associated with attentional 

control.  Present findings suggest that anxious apprehension (i.e., worry), a specific dimension of 

anxiety, at least when anxious arousal is low, is more susceptible to distraction and thus to 

impaired efficiency of inhibition during cognitively demanding tasks (i.e., difficulty inhibiting 

the dominant tendency to read the color word).  The fact that anxious apprehension and anxious 

arousal are not associated with deficits in performance (i.e., errors) likely reflects compensation 

by posterior-DLPFC (inferred by hyperactivity). 
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When worry (anxious apprehension) was low, brain activity in right MTG increased as 

anxious arousal increased.  Right MTG is a region that is thought to interact with a network of 

regions involved in detecting and responding to threat (e.g., Compton et al., 2003; Corbetta et al., 

2008). This region may be a part of a system that functions adaptively to switch between top-

down attentional control and more stimulus-driven processing (Corbetta et al., 2008).  Using an 

emotion-word Stroop task, Engels et al. (2007) demonstrated that negative emotion words 

elicited greater right middle-temporal/inferior-temporal activity in an anxious arousal group.  

Additionally, in a non-overlapping sample, Engels et al. (2010) found that anxious arousal 

increased depression-related suppression of activity in this region, in response to threatening 

words.  Importantly, present results generalize Engels’ et al. (2007, 2010) findings to non-

emotional contexts, suggesting that anxious arousal, in the presence of other types of 

psychopathology, interferes with an inhibition-related function for cognitive control.   

Similar to the pattern observed for right MTG, anxious arousal activity in right frontal 

pole (BA10) increased when anxious apprehension was low, but decreased when anxious 

apprehension was high.  Additionally, anxious apprehension increased depression-related 

suppression of activity in this region.  Rostral PFC (BA10) has been implicated in supporting a 

wide range of functions including prospective memory, multitasking, and “mentalizing” or 

reflecting on mental states (see Burgess et al., 2007, for review).  According to the gateway 

hypothesis (Burgess et al., 2007), rostral PFC is part of a cognitive control system that biases the 

relative influence of stimulus-independent and stimulus-oriented thought (Burgess, Simons, 

Dumontheil, & Gilbert, 2005). Lateral regions of rostral PFC are associated with stimulus-

independent cognition, the mental processes that accompany self-generated or self-maintained 

thought that is not provoked or directed toward an external stimulus (i.e., task-irrelevant 
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thought).  Medial regions of rostral PFC are associated with stimulus-oriented cognition, or 

attending behavior that is required to concentrate on the task at hand.  The right frontal pole 

region in the present study overlaps with the lateral area of rostral PFC identified by Burgess et 

al. (2007) as supporting stimulus-independent function.  Anxious apprehension modulation of 

brain activity in this region (when other psychopathology is low) could reflect task-irrelevant 

thoughts such as worry, an example of stimulus-independent cognition.  These findings suggest 

that weakened inhibition-related functions observed in anxious arousal increase worry-related 

activity in right lateral PFC, interfering with task efficiency.   

Contrary to hypotheses, no significant moderation of anxiety, depression, or their 

interactions emerged with any of the self-reported inhibition ROIs. A possible explanation for 

the lack of significant findings is the general nature of conditions that self-reported inhibition 

measures. The self-reported inhibition score indexes everyday scenarios which could occur under 

a range of conditions. Although the self-reported inhibition score may be sensitive to neural 

mechanisms supporting this function, the measure may not be specific enough to capture anxiety 

and depression deficits. In other words, the self-reported inhibition score is not reflective of a 

specific task condition. In support of this explanation, attentional control theory posits that, under 

conditions in which there is no specific task goal, high-anxious individuals have a low level of 

motivation and make minimal use of attentional control mechanisms (Eysenck & Derakshan, 

2011). In contrast, when the task goals are clear, such as in the color-word Stroop task, high-

anxiety individuals are highly motivated and engage in compensatory strategies (i.e., effortful 

processing). That is not to imply that task goals are not clear in everyday life. Rather, it is 

possible that the effects of anxiety and depression on self-reported inhibition are less robust 

because of the range of contexts it may be indexing.  In other words, the signal is being lost in 
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the noise. In support of this explanation, it is noteworthy to mention that left IFG (a BRIEF 

inhibition ROI) showed a trend for PSWQ x MASQAA moderation, such that the main effect of 

worry was moderated by anxious arousal (∆R
2
 = 0.06, p=.14). This finding is consistent with 

Engels et al. (2007), who used an emotion-word Stroop task.     

Overall, neural activity in select brain regions associated with RT interference was 

modulated by co-occurring anxiety types and depression.  In particular, when anxious arousal 

was low, anxious apprehension was associated with increased brain activity in left posterior-

DLPFC, right MTG, and right frontal pole.  Consistent with attentional control theory, present 

findings of anxiety-modulated increases in brain activity could reflect inefficient neural 

recruitment during an EF task.  More specifically, anxious apprehension appears to manifest as 

hyperactivity in brain regions associated with attentional control in distracting conditions.  

Moreover, the interaction of anxious apprehension and depression implies that worry “boosted” 

depression-related hypoactivity in right frontal pole, suggesting a buffering effect. Present 

findings reveal possible brain mechanisms of anxiety- and depression-related deficits in 

cognitive control, particularly susceptibility to distraction, which rely on distinct areas within 

PFC and MTG.  

Present findings have implications for theories of anxiety and depression.  Intrusive 

thoughts and memories are a common symptom in anxiety and mood disorders and are a key 

source of distress and dysfunction.  Individuals with anxiety disorders demonstrate impaired 

cognitive performance in a variety of cognitive domains, hypothesized to result from anxiety-

related intrusive thoughts and worry (e.g., Eysenck et al., 2007). Individuals with depression 

demonstrate difficulty inhibiting attention to negative emotional stimuli (see Peckham et al., 

2010 for a meta-analysis), and may have difficulty disengaging from negative information, 
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leading to rumination (Joormann, 2010). Present findings elucidate possible brain mechanisms of 

interference (susceptibility to distraction) that could help to explain established deficits in aspects 

of EF, attention, and memory in anxiety and depression (see Warren et al., 2008, for review).  

The patterns of activation demonstrated in the present study reveal possible brain mechanisms 

supporting inhibitory-related functions and their modulation by different combinations of anxiety 

and depression in the context of a cognitive control task. As anxiety and depression frequently 

co-occur, it can be difficult to disentangle whether an individual’s attentional problems are 

related to anxiety, depression, or both.  As interest in the potential role of EF as a target of 

intervention is increasing (Brehmer, Westerberg, & Backman, 2012; Chein & Morrison, 2010; 

Jaeggi, Buschkuehl, Jonides, & Shah, 2011), identification of specific EF deficits and associated 

patterns of brain activity in psychopathology will likely serve the development and/or 

modification of effective interventions.  Present results support the identification of differential 

patterns of brain activity implementing cognitive control abilities as a way of informing 

evidenced-based treatments. In particular, mindfulness-based treatments involve training 

individuals to use attentional control methods. Additionally, preliminary evidence suggests that 

EF training may actually improve response to non-pharmacological interventions (e.g., CBT; 

Mohlman, 2008), although research is needed to examine which aspects of EF are most critical 

for the efficacy of these interventions.  
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Figure 4.1: Left posterior DLPFC activation for RT interference.  Graphing the PSWQ x 

MASQAA interaction illustrates that anxious apprehension’s relationship with left posterior 

DLPFC depends on the level of co-occurring anxious arousal. 
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Figure 4.2: Right MTG activation for RT interference.  Graphing the PSWQ x MASQAA 

interaction illustrates that anxious apprehension’s relationship with right MTG depends on the 

level of co-occurring anxious arousal. 
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Figure 4.3: Right frontal pole activation for RT interference.  Graphing the PSWQ x MASQAA 

interaction illustrates that anxious apprehension’s relationship with right frontal pole depends on 

the level of co-occurring anxious arousal. 
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Figure 4.4: Right frontal pole activation for RT interference (same region pictured in Figure 4).  

Graphing the PSWQ x MASQAD8 interaction illustrates that anxious apprehension’s 

relationship with right frontal pole depends on the level of co-occurring anhedonic depression. 
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CHAPTER 5 

INTEGRATION AND FUTURE DIRECTIONS 

The primary goal of the present dissertation was to address the hypothesis that disrupted 

executive functions (EFs), defined as abilities that guide goal-directed behavior and allow for 

flexible responses to environmental demands, are a primary source of cognitive problems in 

pathological anxiety and depression. Joormann and colleague’s (2007) hypothesis that 

depression is related to deficits in inhibition was supported; however, depression was also 

associated with deficits in updating and shifting, demonstrating broader EF impairments than 

previously considered.  In addition, depression exhibited a stronger relationship with shifting 

impairment than inhibition or updating.  This suggests that, although the etiology and 

maintenance of depression may be related to broad executive dysfunction, this influence is 

stronger for shifting. In a similar vein, Eysenck and colleagues’ (2007) hypothesis that “anxiety” 

is related to shifting and inhibition impairments was supported.  However, consistent with 

previous neuroimaging evidence demonstrating distinct patterns of brain activity associated with 

anxious apprehension vs. anxious arousal during an EF task (Engels et al., 2007, 2010), the 

nature of anxiety dysfunction depended on carefully differentiating these dimensions. Anxious 

apprehension was associated with shifting impairments only, whereas anxious arousal 

demonstrated impairments in all three domains.  Furthermore, anxious arousal demonstrated 

equal impairments in inhibition and updating domains. This suggests that the influence of 

shifting is important for anxious apprehension, but less so for the development and maintenance 

of anxious arousal. 

These differences in executive dysfunction patterns underscore the importance of 

distinguishing anxiety dimensions. More importantly, the fact that each psychopathology 
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dimension exhibited distinct combinations of EF deficits suggests that impairments in cognitive 

control (and emotion-regulation), whether these impairments are overtly apparent or not, are 

complex. Executive dysfunction in anxious arousal and depression could not be accurately 

accounted for by examining one aspect of EF. Furthermore, if the focus is on just one dimension 

of EF, as has often been the case in the literature, it is possible that what might appear to be a 

primary EF deficit in depression or anxiety may actually be the result of another correlated, yet 

separable EF component (e.g., inhibition vs. shifting for depression).  

Results from a series of studies yielded a number of intriguing findings that elucidate the 

nature of executive function in healthy individuals and provide insights into executive 

dysfunction associated with specific dimensions of anxiety and depression. In chapter 2, EFA 

established and CFA replicated meaningful dimensions of self-reported EF that are consistent 

with Miyake et al.’s (2000) updating, shifting, and inhibition framework. SEM determined that 

all three dimensions of psychopathology evidenced shifting impairment and that anxious 

apprehension and anhedonic depression were also associated with updating and inhibition 

impairments. Furthermore, anxious apprehension demonstrated the strongest relationship with 

shifting, whereas anxious arousal exhibited stronger relationships with updating and inhibition. 

These findings designate distinct EF impairments as contributing factors to the maintenance and 

development of anxiety and depression, suggesting EF mechanisms of emotion regulation and 

targets for intervention. Although clinicians and applied clinical researchers may feel that such 

distinctions within EF and psychopathology may not be relevant to their work, such a precise 

understanding may be extremely valuable in modifying and/or developing effective treatments. 

Moreover, as research in this area continues to develop, it is likely that deficits in different EF 

processes will affect different aspects of daily life, contributing to the maintenance of particular 
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symptoms. Thus, by implementing comprehensive EF assessments, specific EF profiles could 

assist with the development of therapeutic goals, as well as the delivery of such treatment. 

Chapter 3 provided empirical support for distinctions between types of inhibition-related 

functions, as these processes were associated with separable neural mechanisms. Moreover, 

results suggested that sub-regions of DLPFC are differentially sensitive to self-reported 

inhibition and RT interference. Using the regions of interest that emerged in chapter 3, chapter 4 

demonstrated that interactions among dimensions of psychopathology moderated brain activity 

associated with RT interference. In general, the presence of anxious apprehension or anxious 

arousal (when other psychopathology was low) was associated with increasing brain activity in 

regions associated with cognitive control. In particular, anxious apprehension was observed to 

boost activity in right frontal pole, counteracting the hypoactivity seen in depression, suggesting 

a buffering effect. Present results are consistent with other neuroimaging evidence demonstrating 

that excessive anxiety may require more effort (as indexed by greater PFC activity) to achieve 

the same level of performance on EF tasks that healthy control participants demonstrate. The 

present finding that anxiety-modulated hyperactivity in brain regions associated with cognitive 

control suggests a vulnerability to distraction, even in conditions when there is no manipulated 

threat (i.e., color-word Stroop task). In the same vein, Silton et al. (2011) found that, as anxious 

apprehension increased, increased dACC activity (another key region associated with 

implementing cognitive control) was associated with greater Stroop interference (less efficient 

performance).  However, there are limits to compensation, and it is important to determine when 

compensation may break down, such as when individuals with excessive anxiety are under 

stress. Under such conditions, the functional impairments that may emerge (and that may be 

overtly apparent) are likely to be in the contexts in which they are most detrimental (e.g. during a 
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final exam or important work task). Interestingly, mindfulness-based interventions are used to 

ameliorate attentional control deficits associated with anxiety and depression, helping individuals 

to increase the ability to regulate their attention (Baer, 2003). Present findings call attention to 

the non-unitary natures of both EF and anxiety (anxious apprehension and anxious arousal), and 

these distinctions could have implications for mindfulness-based interventions. These findings, 

when considered in the context of existing research, highlight a number of directions for future 

research examining executive dysfunction associated with anxiety and depression. 

Future research examining cognitive deficits associated with anxiety and depression 

should employ a number of strategies utilized in the present study. First, rather than using 

complex neuropsychological tasks that rely on a number of cognitive functions for performance, 

research may be best served by choosing relatively simple tasks that are designed to primarily 

elicit single aspects of EF (e.g., shifting, updating, and inhibition).  Notably, measures with low 

reliabilities necessarily lead to low zero-order correlations. Thus, it is important to explore the 

psychometric properties (e.g., test-retest reliability) of the tasks in order to evaluate 

appropriateness of use. Second, in order to reduce the task impurity problem (Burgess, 1997), 

and improve construct validity and power, it is valuable to administer multiple tasks tapping each 

EF component of interest. When feasible, statistical techniques such as factor analysis and 

structural equation modeling should be employed to isolate critical aspects of EF that are 

disrupted in specific dimensions psychopathology. Such latent variable approaches are 

particularly desirable as they explicitly account for measurement error in predictor variables 

(unlike regression) and remove method variance. Third, behavioral measures can be profitably 

supplemented with self-report and psychophysiological measures such as neuroimaging. 

Utilizing multiple approaches can off-set inherent limitations within each approach. For 
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example, biological measures such as neuroimaging can provide information that may be 

inaccessible through self-report and behavioral assessment (Miller & Keller, 2000). Of particular 

importance, neuroimaging can reveal when individuals are adopting alternative strategies for task 

performance that may be maladaptive and eventually break down.  In the context of the present 

dissertation, anxious apprehension and anxious arousal were associated with increasing brain 

activity in regions associated with cognitive control (interpreted as compensation), yet these 

dimensions of anxiety were not related to task accuracy (i.e., errors). Thus, such differential 

patterns of attentional control difficulties could inform evidenced-based treatments for anxiety 

and depression that involve remediating attentional control methods, such as mindfulness-based 

techniques (Baer, 2003; Segal, Williams, & Teasdale, 2002).  

Finally, future research should consider the use of dimensional measures assessing 

anxiety and depression. Given the difficulty in distinguishing the boundaries between clinical 

diagnoses, the high levels of symptom overlap between diagnoses, and the high heterogeneity 

within diagnoses (Krueger, Watson & Barlow, 2005; Widiger & Samuel, 2005), it has been 

suggested that it may be more meaningful to investigate the existence of fundamental 

components of psychopathology. Dimensional approaches to understanding the complex 

relationships between emotion and brain function have proven more fruitful than a categorical 

approach (Warren et al., 2008). Furthermore, discerning dimensions such as anxious 

apprehension, anxious arousal, anhedonic depression, and their interactions with a wide range of 

environmental and developmental factors may be a more productive approach to understanding a 

particular clinical phenotype.  

Although findings from the present research provide new insights into specific domains 

of EF affected by specific dimensions of psychopathology, there are some limitations. The 
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present series of studies were restricted to an undergraduate sample and may not generalize to 

more cognitively diverse samples. Thus, generalizability to additional samples (e.g., community-

based, samples across the life-span) remains to be established. Present findings could 

nevertheless serve as a baseline measure. Additionally, it should be noted that the methods used 

are not sufficient to establish causal relationships. In the context of the present research (chapter 

2 specifically), path analysis (i.e., SEM) results are consistent with the authors’ hypothesized 

models of EF and psychopathology, though causality cannot be determined, as the true causal 

model is unknown (Kline, 2011).  For chapters 3 and 4, the interpretation of findings should be 

qualified by the fact that the analysis strategy was correlational in nature and cannot determine 

causality or direction of influence.  

Moreover, in addition to neuroimaging of functional differences between brain regions 

associated with inhibitory processes, insights could be gained by analyzing functional 

connectivity among regions. Such methods could be employed to examine how these regions 

communicate with one another during a task, as well as to determine their contributions to the 

overall functions of networks. Present findings, especially mid- and posterior-DLPFC regions, 

could be used as seed clusters. Lastly, there is evidence that individual differences in dopamine 

function could affect activation patterns (e.g., Gibbs & D’Esposito, 2005). Dopamine is well 

known to play an important role in complex cognitive functions such as working memory and 

cognitive control and has high concentrations in PFC, a region that is associated with 

implementing these cognitive processes (Cools & D’Esposito, 2011). Although the present 

research cannot speak to the potential effects of individual differences in dopamine levels, future 

research using genetic, neuroimaging, and behavioral methods could be profitably combined to 
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develop more complete models of how aspects of prefrontal function are neurally implemented, 

how they support EF, and their complex relationships with psychopathology.   

In addition to anxiety and depression being associated with EF impairment, present 

findings suggest that executive dysfunction plays a role in the etiology of anxiety and depression 

(chapter 2). These findings have implications for developmental models of psychopathology, as 

well as intervention and treatment. It is commonly assumed that cognitive deficits are a by-

product of anxiety and depression and that they will improve upon successful treatment. 

However, it is possible that executive dysfunction is a factor predisposing to developing anxiety 

and/or depression. For example, in addition to playing a role in the development, 

implementation, and execution of daily plans and goals (Banich, 2009), EFs may affect our 

ability to evaluate potentially pleasurable stimuli or activities. EF deficits could make it 

challenging for individuals to initiate and/or maintain activities promoting pleasant emotional 

states or engage in adaptive coping behaviors that would buffer against the effects of life stress 

(Monroe & Reid, 2009).  Moreover, persistent EF deficits could contribute to episodes of relapse 

or confer vulnerability to developing comorbid disorders.  

Perhaps more importantly, findings that support specific EF deficits associated with 

anxiety and depression suggest that these deficits are appropriate targets for intervention.  

Difficulties with different aspects of EF may present barriers to current treatment methods. For 

example, an individual who has trouble shifting might need help planning strategies to transition 

more easily between daily tasks. In addition to structuring treatment to work with and around EF 

deficits, there is some evidence that EF training actually improves response to cognitive 

behavioral therapy (CBT; Mohlman, 2008).  Interestingly, a growing number of studies 

demonstrate that cognitive training, targeting working memory function, can yield improvements 
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in a range of cognitive skills (Brehmer, Westerberg, & Backman, 2012; Chein & Morrison, 

2010; Jaeggi, Buschkuehl, Jonides, & Shah, 2011).  Cognitive remediation strategies have 

demonstrated improvements in cognitive function in clinical populations with known inhibitory 

impairment (e.g., ADHD; Klingberg, et al., 2005). Furthermore, the generalizability of cognitive 

training-related increases in working memory to non-trained tasks is hypothesized to occur when 

the transfer task recruits overlapping cortical regions (e.g. Jonides, 2004; Olesen et al., 2004). 

However, it is unknown what aspects of EF are most critical for CBT efficacy (or for other 

treatment methods such as mindfulness), and therefore might benefit most from training. It is 

also unknown which brain regions are the most critical for transfer of cognitive remediation 

strategies to be effective in everyday life, although given present findings DLPFC is a likely 

candidate. More research is clearly needed to explore how EF training might improve treatment 

outcomes.    
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