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Abstract

With the advent of Web, text information is being generated across the globe at an unfathomable rate and

covering countless topics. This dramatic growth in text information and the increasing number of ways

people can utilize it has influenced our daily lives in fundamental and profound ways. The widespread and

multi-purposed use of search engines is one example of how transformed our lives have become in relation

to text information.

Although the vast majority of people’s information needs can be served very successfully by current

search engines, there is still a considerable number of queries that even the best search engines perform

poorly on. In this dissertation, we propose a method of optimizing a search engine to better handle such

difficult queries, which addresses issues and opportunities at three different stages of an interactive search.

Specifically, we propose to improve search quality for difficult queries by: (1) Bridging the vocabulary gap

by defining a semantic smoothing language model. A query can be difficult because it does not contain the

optimal choice of related terms, or lacks sufficient discriminative terms. In the pre-retrieval stage, using

semantic smoothing during query formulation can mitigate the effect of those omissions. (2) Incorporating

user negative feedback, i.e., improving a search engine by learning from user feedback in the post-retrieval

stage. When a query is so difficult that all the top retrieved results (e.g., top 10) are completely irrelevant,

the feedback that a user can provide is solely negative. We propose a generalized optimization framework

to learn from feedback on non-relevant documents to prune extensively, but carefully, a large number of

non-relevant documents from the top of the ranking list. (3) Balancing priorities when learning from user

interaction in order to optimize the whole session. When presenting the search results to the user, there is

a tradeoff between promoting those with the highest immediate utility and promoting those with the best

potential for collecting feedback information, which can be used to better serve the user over the course of

the session (interactive search stage). We frame this tradeoff as a problem of optimizing the diversification

of search results, and we propose a machine learning approach that adaptively optimizes each individual

user query such that we maximize the overall utility of the entire session.

In summary, this dissertation is expected to advance the state of the art of search engines by providing
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a suite of novel search algorithms, which use the listed approaches to improve a search engine’s ability to

handle difficult queries.
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Chapter 1

Introduction

With the advent of Web, an explosive growth of online information, including Web pages, news articles,

email messages, scientific literature, and information about all kinds of products on the Web, etc. are being

generated across the globe at an unfathomable rate and covering countless topics. This dramatic growth

in text information and the increasing number of ways people can utilize it has influenced our daily lives

in fundamental and profound ways. This growth makes it more challenging to manage useful information

effectively and efficiently for the users. Users are usually overwhelmed with the huge amount of information

and have an urgent need for more powerful information retrieval systems. The widespread and casual use

of search engines is one example of how transformed our lives have become in relation to text information.

Search engines are to find relevant information from large amounts of texts and thus have now become

essential tools in all aspects of our life; clearly, their effectiveness would directly affect our productivity and

quality of life.

Although a variety of information needs can be served very successfully by current search engines, there

are still a lot of queries that search engines cannot answer accurately which make users frustrated. For

example, when a user does not have any particular pages in mind or does not know well about the topic

to be searched, as is often the case in exploratory search and informational search [92], such short keyword

queries are not always effective. When a query is so difficult that a large number of top-ranked documents

are non-relevant to the user information need, a user would have to either reformulate the query or go far

down on the ranked list to examine more documents, both may decrease the user satisfaction. As a result,

improving the effectiveness of search results for such difficult queries would bring user satisfaction which is

the ultimate goal of search engines.

The study of difficult queries has just started attracting attention recently due to the launch of the

ROBUST track in the TREC conference [145, 146], which aims at studying the robustness of a retrieval

model and developing effective methods for difficult queries. However, the most effective methods developed

by the participants of ROBUST track tend to rely on external resources to perform query expansion, which

has in some sense bypassed the difficulty of the problem because in reality, there are often no such external
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Figure 1.1: Three natural stages in interactive search process.

sources to exploit, or otherwise, the user would have directly gone to the external sources to find information.

There has been some work on understanding why a query is difficult [12, 17, 52] or identifying difficult

queries [146] or on predicating query performance [30, 54, 56, 61, 127, 160], but none of this work has

systematically addressed how to improve the search accuracy for difficult queries from multiple perspectives.

In this dissertation, we systematically study how to improve the accuracy of search engines from different

perspectives, naturally corresponding to different stages of an interactive search process. First, the user may

not be able to formulate an effective query or he/she might not use the exact query terms that appear in

relevant documents and thus would need support to bridge the vocabulary gap. This stage is called pre-

retrieval stage. Second, for a difficult query, a user would have to browse through a long list of results before

reaching the very first relevant document, and thus would benefit if the system can learn from the feedback

information from top-ranked non-relevant documents. This stage is called post-retrieval stage. Third, When

a query is difficult, a user is unlikely satisfied with only one interaction with the search engine; so there will

be more interactions to get the desired results. Optimizing the utility from user perspective in the entire

session of the user interaction with the system is called interactive retrieval stage. Figure 1.1 shows these

stages in more details.

Each stage is described in more details in the followings:
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Pre-retrieval stage: The accuracy of any search engine is mainly determined by the retrieval model

that it uses. Language models have been widely used in text retrieval, leading to many state of the art

retrieval models. A key challenge of language modeling approaches is how to estimate a robust language

model from the very sparse information in a document or how to smooth a language model. Most of the

retrieval models rely on exact matching of users’ information need with a document. Since a user might

not use the same exact vocabulary used in relevant documents and express his information need in many

different ways, how to bridge the vocabulary gap is an important research problem that also helps improve

the accuracy of difficult queries. Berger and Lafferty [8] proposed to assess the relevance of a document

to a user’s query by estimating the probability that the query would have been generated as a translation

of the document. For estimating the translation probabilities, they proposed the idea of synthetic queries

as their training data to learn the estimation probabilities. Some other study [62] uses (title, document)

pairs as training data. These estimation methods are really inefficient and the coverage of query words is

limited. In this dissertation, we propose methods to estimate the translation probabilities based on mutual

information-based approach [67] and conditional-based approach [70] which are more efficient and accurate

than the existing methods. Chapter 3 discusses it in more details.

Since the effectiveness of the translation language model would be mainly determined by the accuracy

of the estimated translation probabilities, knowing whether one estimated translation language model is

better than another is a key to the optimal behavior of the retrieval. No previous work has attempted to

systematically analyze if a translation language model is optimal. To address this limitation and further

analyze the optimality of a translation language model, we perform axiomatic analysis [38] which has been

shown to be useful for diagnosing weakness of a retrieval model to gain insight about how to optimize

the estimation of a translation language model [70]. We then propose five constraints that a reasonable

translation language model should satisfy and check these constraints on the estimation translation language

models. The results indicate that the mutual information-based approach does not satisfy all the constraints

and the conditional-based estimation method better satisfies the constraints. Chapter 4 discusses it in more

details.

With the prevalence of social media applications, an increasing number of internet users are actively pub-

lishing text information online. This influx provides a wealth of text information on those users. Ranking in

social media poses different challenges than Web search ranking, one of which is that microblog messages are

really short. As a result, the vocabulary mismatch problem is exacerbated in social media search, making

it interesting to study how effective statistical translation language models are for improving social media

search. In this dissertation, we study the standard translation language model for ranking short microblog
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messages for Twitter [143] because it has gained huge popularity since the first day that was launched. More

specifically, we study whether and how we can use statistical translation language model for ranking short

tweet messages and reveal that translation language model not only helps to bridge the vocabulary gap

but also improves the estimate of term frequency (TF) heuristics in information retrieval where the words

appear only once in a tweet and there is no discrimination between the words. We further propose two ways

to improve translation language model through leveraging hashtag information and adaptively setting the

self-translation probability. Experimental results on Twitter data set show that our proposed methods are

effective. Chapter 5 discusses it in more details.

Post-retrieval stage: When a query is very difficult that the search results are poor, getting feedback

information from the user is a very helpful method to improve the retrieval accuracy and user experience. For

example, if a user clicks on a document, we can use useful related terms in that document to reformulate the

query (positive feedback). In a case where the query is very difficult that none of the top-ranked documents

are relevant, we can learn from negative examples (i.e., documents that a user does not click on.) to perform

negative feedback. There have been some studies on negative feedback [148, 149] where the authors studied

different methods for negative feedback in both language models and vector space model and concluded that

negative feedback for language modeling approach works better. One challenge in negative feedback is that

negative documents tend to be distracting in different ways, thus as training example, negative documents

are sparse. In this dissertation, we solve the problem of data sparseness in the language modeling framework.

We propose an optimization framework in which we learn from a few top-ranked negative documents and

search in the space of all candidate language models to build a more general negative language model. This

general negative language model has been shown to have more power in pruning non-relevant documents

outperforming the state of the art negative feedback methods significantly for difficult queries [69]. Chapter

6 discusses it in more details.

Interactive retrieval stage: When a query is difficult, the user is unlikely satisfied with only one inter-

action with the search engine; so there will be more interactions to get the desired results. When presenting

the search results to the user, there is a tradeoff between presenting search results with the highest immediate

utility to a user (but not necessarily most useful for collecting feedback information) and presenting search

results with the best potential for collecting useful feedback information (but not necessarily the most useful

documents from a user’s perspective). Optimizing such a tradeoff (called exploration-exploitation tradeoff)

is a key to the optimization of the overall utility of feedback to a user in the entire session of user inter-
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action with the system and has not studied before. We frame this tradeoff as a problem of optimizing the

diversification of search results where we propose a machine learning approach to adaptively optimizing the

diversification of search results for each user query so as to optimize the overall utility in an entire session [68].

In this optimization framework, we also propose to model the patience of the user [71]. Evaluation results

indicate that optimizing the exploration-exploitation tradeoff is important to optimize the whole utility over

an entire session in an interactive search and optimizing such a tradeoff outperforms the traditional relevance

feedback method. Chapter 7 discusses it in more details.

The contributions from this dissertation are summarized as below:

• We propose methods to estimate the translation probabilities based on mutual information and con-

ditional context which are more efficient and accurate than the state of the art estimation methods.

• We perform axiomatic analysis which has been shown to be useful for diagnosing weakness of a retrieval

model to gain insight about how to optimize the estimation of a translation language model. We then

propose five constraints that a reasonable translation language model should satisfy and check these

constraints on the proposed estimation translation language models.

• We study whether a direct application of standard translation language model would improve the

performance for Twitter search and find that it improves the performance. Further analyses reveal

that statistical translation language model can have two benefits; it helps to bridge the vocabulary gap

and in case when there is no vocabulary gap it still helps by improving the estimate of term frequency

especially for short tweets where the words appear only once and there is no discrimination between

the words. We further propose two ways to improve translation language model through leveraging

hashtag information and adaptively setting the self-translation parameter which show further improve

the performance.

• We propose an optimization framework in which we learn from a few top-ranked negative documents

and search in the space of all candidate language models to build a more general negative language

model. This general negative language model has been shown to have more power in pruning non-

relevant documents outperforming the state of the art negative feedback methods significantly for

difficult queries.

• When presenting the search results to the user, there is a tradeoff between presenting search results

with the highest immediate utility to a user and presenting search results with the best potential

for collecting useful feedback information. Optimizing such a tradeoff (called exploration-exploitation
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tradeoff) is a key to the optimization of the overall utility of feedback to a user in the entire session of

the user interaction with the system. We frame this tradeoff as a problem of optimizing the diversi-

fication of search results where we propose a machine learning approach to adaptively optimizing the

diversification of search results for each user query so as to optimize the overall utility in an entire

session which outperforms the traditional relevance feedback.

1.1 Plan of This Thesis

The results of this thesis have been partially reported before in [67, 68, 69, 70, 71, 72]. The rest of this thesis

is organized as follows:

• Chapter 2 discusses all the previous work related to this dissertation including retrieval models, se-

mantic term matching, difficult queries, diversification and social networks.

• Chapters 3, 4 and 5 discuss about the pre-retrieval stage where in Chapter 3 we focus on proposing new

efficient and accurate estimation methods, in Chapter 4 we focus on performing axiomatic analysis of

translation language model for retrieval in order to gain insights about how to optimize the estimation

of translation probabilities. Finally in Chapter 5, we study the standard translation language model

for ranking short microblog messages for Twitter.

• Chapter 6 discusses the post-retrieval stage where an optimization framework in which we learn from

a few top-ranked negative documents and search in the space of all candidate language models to build

a more general negative language model is proposed.

• Chapter 7 discusses optimizing the whole interaction session with the user after post-retrieval stage to

optimize the exploration-exploitation tradeoff which is a key to the optimization of the overall utility

of feedback to a user in the entire session of user interaction with the system.

• And finally Chapter 8 concludes this dissertation and discusses a few directions for future work.
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Chapter 2

Related Work

In this chapter, we review all the previous relevant work to this dissertation including retrieval models,

semantic term matching, feedback techniques, difficult queries, diversification and social networks.

A basic information retrieval problem set up is as follows: We assume there exists a document collection

C = {d1, . . . , dn} where di is a text document. Given a query (user information need) q, the task of an

information retrieval system is to return a ranked list of documents so that the documents which are ranked

on the top are more relevant to the query than those ranked below of them. Relevant documents are what

the user is looking for, i.e., they can be regarded as containing the expected answers to the query. Ranking is

done by using a retrieval function S to score each document with respect to the query and then ranking all the

documents based on their scores. In many retrieval models, the order of words in a query or in a document

is ignored, thus both query and document would be a bag of words. The bag of words representation has

been shown to perform quite well which is a popular representation in all search engines.

2.1 Retrieval Models

Many retrieval models such as vector space model [120, 122, 123], probabilistic models [43, 66, 79, 115, 103],

probabilistic inference models [42, 46, 77, 110, 111, 142, 112, 154] and axiomatic retrieval framework [38, 39,

40, 41] have been proposed previously. In this section, all the major retrieval models are briefly reviewed.

2.1.1 Similarity-Based Models

In these models, it is assumed that the relevance of a document with respect to a query is correlated with

the similarity between the query and the document. The vector space model [120, 122, 123] is the most

well-known model for this type where a document and a query are represented as two term vectors in a high-

dimensional term space. Each term defines an independent dimension. The value of each vector component

is related to the weight of the corresponding term in the given text. Term weighting is usually assigned

based on different heuristics, such as TF-IDF weighting (term frequency-inverse document frequency) and
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document normalization. The relevance score between a query and a document can be computed based on

the similarity between two corresponding vectors. The most commonly used similarity function is cosine

similarity. The term weighting scheme is outside the relevance modeling framework, which makes it hard

to control and explain the parameters. As a result, retrieval performance is very sensitive to the parameter

setting.

One of the best performing vector space retrieval function is pivoted normalization retrieval function [132]

which is as follows:

S(q, d) =
∑
t∈q,d

1 + ln(1 + ln(c(t, d))

(1− s) + s dl
avdl

.c(t, q).ln
N + 1

df(t)
(2.1)

Where s is an empirical parameter (usually 0.2), and

c(t, d) is the term’s frequency in document

c(t, q) is the term’s frequency in query

N is the total number of documents in the collection

df is the number of documents that contain the term

dl is the document length, and

avdl is the average document length.

2.1.2 Probabilistic Relevance Models

In probabilistic relevance model, given a query, a document is assumed to be either relevant or non-relevant,

so the system has to rely on a probabilistic relevance model to estimate it. Such a retrieval strategy can

be justified by the Probability Ranking Principle (PRP) [114]. Under this assumption, the PRP provides a

justification for ranking documents in decreasing order of probability of relevance. The notion of relevance is

then captured through the binary random relevance variable and a probabilistic model is defined to associate

this variable with some probabilistic representation of documents and queries. Without relevance example,

the estimation of parameters can be difficult; thus, heuristics may be needed to make a model useful for

ad hoc retrieval. For example, an approximation of 2-Poisson mixture model has led to a quite effective

retrieval function, BM25 [116]. The BM25 retrieval formula is as follows:

s(q, d) =
∑
t∈q,d

(ln
N − df(t) + 0.5

df(t) + 0.5
× (k1 + 1)× c(t, d)

k1((1− b) + b dl
avdl ) + c(t, d)

× (k3 + 1)× c(t, q)
k3 + c(t, q)

) (2.2)

Where k1 ∈ [1.0, 2.0], b (usually 0.75) and k3 ∈ [0, 1000] are parameters and other variables have the same

meaning as in the vector space retrieval formula.
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2.1.3 Probabilistic Inference Model

In a probabilistic inference model [42, 46, 77, 110, 111, 112, 142, 154], the uncertainty whether a document

is relevant to a query is modeled by the uncertainty associated with inferring the query from the document.

Various definitions of “inferring a query from a document” lead to different inference models. The proba-

bilistic inference model must rely on further assumption about the representation of documents and queries

in order to obtain an operational retrieval formula. The choice of such representations is in a way outside

the model, so there is little guidance on how to choose or how to improve a representation. The inference

network model is also based on probabilistic inference [142] which is essentially a bayesian belief network

that models the dependency between the satisfaction of a query and the observation of documents. The

estimation of relevance is based on the computation of the conditional probability that the query is satisfied

given the observed document.

In general, the probabilistic inference models address the issue of relevance in a very general way. Their

lack of commitment to specific assumptions in these general models has helped to maintain their generality

as retrieval models but they generally provide little guidance on how to refine the general notion of relevance.

2.1.4 Axiomatic Retrieval Framework

The three retrieval model categories described have some parameters that need to be tuned in order to

obtain optimal retrieval performance. If the retrieval parameter is not set optimally, their performance can

be very poor. In addition, these models eventually lead to some retrieval function that implements TF-IDF

weighting and document length normalization. These weighting heuristics must be implemented in some

special functional form in order for retrieval function to perform well.

In [38], the three major retrieval heuristics (i.e., TF, IDF and length normalization) are formally described

with well-defined constraints on retrieval functions. It is also shown that the empirical performance of a

retrieval function is correlated with whether they satisfy the constraints. Since all reasonable retrieval

functions must satisfy such constraints, these constraints can be regarded as axioms for a retrieval function.

These axioms can be used to guide us in finding an effective retrieval function by satisfying all the constraints.

In [39, 40, 41] an axiomatic retrieval framework has been leveraged to derive some interesting new retrieval

functions that are more robust than existing retrieval functions. Although, the framework offers a novel way

to explore different retrieval models, the framework does not provide guidance on what candidate functions

to explore. Thus, it is still needed to rely on existing retrieval models to suggest a tractable search space.

As an extension of previous work, we propose new constraints for statistical translation language model.
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2.1.5 Probabilistic Distance Retrieval Model

The major problem with query likelihood retrieval model is that it cannot easily handle relevance or pseudo-

relevance feedback. In these models, a document is represented with a document language model and a

query is represented with a query language model. A document is scored based on the distance between

the corresponding language models using some probabilistic distance measure such as Kullback-Leibler (KL)

divergence [78]. This model is a generalization of the query likelihood retrieval model and would score a

document d w.r.t query q based on the negative Kullback-Leibler divergence between the query language

model θq and the document language model θd:

S(d, q) = −D(θq||θd) = −
∑
w∈V

p(w|θq) log
p(w|θq)
p(w|θd)

(2.3)

where V is the words in the vocabulary.

Clearly, the two main tasks are to estimate the query language model θq and the document language

model θd. The document language model θd is usually smoothed using Dirichlet prior smoothing which is

an effective smoothing method [165].

The query model intuitively captures what the user is interested in, thus would affect retrieval accuracy

significantly. The query language model, is often estimated (in case of no feedback) based on p(w|θq) = c(w,q)
|q| ,

where c(w, q) is the count of word w in query q and |q| is the total number of words in the query. Such

a model is not very discriminative because a query is typically extremely short. When there is feedback

information, the information would be used to improve our estimate of query language model, θq.

Feedback techniques have proven to be very effective for improving retrieval performance (e.g. [5, 51,

68, 81, 115, 118, 121, 129, 155, 164]). After a search engine presents some results to a user, sometimes the

user is willing to provide some feedback on the relevance status of the results (relevant or non-relevant). In

such a case, the retrieval system can learn from the examples of relevant or non-relevant documents provided

by the user to improve the search results. This is called relevance feedback. When the user is not willing

to make any judgments, the system still can perform feedback by assuming some top-ranked documents to

be relevant. This is called pseudo-relevance feedback. A third kind of feedback is to use user interactions

(e.g., past queries, click-through) to infer user’s intent and improve search results. This is called implicit

feedback [73]. The fourth kind of feedback is active feedback. Active feedback is essentially an application

of active learning which has been extensively studied in machine learning (e.g. [23, 119]). Active learning

has been applied to text categorization (e.g. [86, 93, 140]) and information filtering [167]. Recently, it has

also been applied to ad hoc retrieval [59] and relevance feedback [130, 158, 157].
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Most feedback methods rely on positive documents, i.e., documents that are judged as relevant to provide

useful related terms for query expansion. In contrast, negative (non-relevant) documents have not been

found to be very useful. However, there have been some attempts to exploit non-relevant documents; query

zone [133] appears to be the only major heuristic proposed to effectively exploit non-relevant information

for document routing tasks. It showed that using non-relevant documents that are close to the original

query is more effective than using all non-relevant documents in the collection. However, this problem was

studied for document routing tasks and a lot of relevant documents are used. Also, the work in [109] exploits

high-scoring documents outside of top N documents (called pseudo-irrelevant documents) to improve the

performance of pseudo-relevance feedback. The work in [148] and later extension to that [149] are the first

studies of negative relevance feedback that exploit only the top non-relevant documents to improve the

ranking of documents and they start with non-relevant documents close to a query to study how to use

this negative information optimally in ad hoc retrieval. Our work in this dissertation defines an important

concept called generalization of a language model and we propose an optimization framework based on

this concept to more aggressively (but carefully) prune non-relevant documents, leading to a more effective

negative feedback method. Since we define an optimization framework for negative feedback, our work is also

related to previous optimization techniques for pseudo-relevance feedback [24, 25, 32]. Our work is similar

to all this work since we also define an optimization framework for term selection. However, it differs in that

1) our optimization framework is defined based on generalizing a negative language model, an important

concept that none of the previous work considered; 2) our optimization framework is for negative feedback

not for positive feedback, thus helps improving difficult queries.

2.2 Semantic Term Matching

Many existing retrieval functions assume that relevance score can be computed solely based on the exact

matching of query terms. But in reality, this assumption does not hold because it is unlikely that a user

would use a query term that is exactly the same one used in relevant documents. As a result, many studies

have tried to bridge the vocabulary gap between documents and queries mostly based on either the co-

occurrence thesaurus [7, 63, 82, 102, 105, 128, 134, 155] or hand-crafted thesaurus [88, 147]. Some other

studies have considered to combine both approaches [14, 91]. Also, the query expansion work in [27] used

a term dependency graph in which word co-occurrence was one of the several dependency types. In this

dissertation, we consider word co-occurrence relationship based on mutual information and incorporate it

into statistical translation language model in a more principled way. Although it is applicable to exploit
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both types of thesauri in statistical translation language model, in this dissertation, we focus on the use of

co-occurrence-based thesaurus and leave other possibilities as future work.

In language modeling framework, statistical translation language model has been introduced to incor-

porate term relationship into language modeling approaches. Statistical translation models were originally

studied in machine translation with the goal of automatically translating sentences between different lan-

guages (e.g., French and English) [10] where authors proposed five different translation models. The simplest

model (i.e., IBM 1) [10] ignores position information when learning word-to-word translation probabilities.

This model has been adopted in information retrieval by Berger and Lafferty [8] to incorporate term re-

lationship into language modeling approaches. Theoretically, the translation language model provides a

principled way to support semantic matching of related words. To train translation language models, they

synthetically generated (query, document) pairs. An alternative way of estimating the translation model is

based on document titles [62]. In this work, the authors proposed to use (title, document) pairs as training

data. These estimation methods are inefficient and the coverage of query words is low due to sampling. In

this dissertation we systematically analyze the optimality of the translation language model and propose

estimation methods that are more efficient and accurate.

Translation language models have been naturally used in cross-lingual information retrieval domain [98,

156]. For example, Nie et al. [98] used parallel corpus as training data to learn translation models. The work

by Lavrenko et al. [80] has adapted the relevance model in two different ways based on KL-divergence retrieval

models to perform cross-lingual information retrieval. The cluster-based query likelihood proposed in [76]

can be regarded as a form of a translation model where the whole document is translated into the query.

Recently, translation models have been applied in many applications including question answering, sentence

retrieval and tracking information flow [95, 97, 159]. For example, Xue et al [159] has applied translation

model on question-answer archives where question and answer pairs are used to train the translation model.

In contrary to all these studies, we studied statistical translation language model in ad hoc retrieval context.

2.3 Difficult Queries

The study of difficult queries has attracted much attention recently especially with the launch of ROBUST

track in TREC conference which aims at studying the robustness of retrieval models [145, 146]. However,

the most effective retrieval models that are developed by ROBUST participants relied on external resources

(mostly Web) to perform query expansion which has bypassed the difficulty of the problem in reality. Because

there are often no such external resources to exploit and indeed the Web resources would not help improve
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the search accuracy for difficult queries on the Web itself. In this dissertation, we aim at exploiting negative

feedback information in the target collection through an optimization framework.

Queries are difficult due to various reasons. Understanding why a query is difficult and categorizing

difficult queries into different causes are critical to developing effective retrieval strategies. There has been

some work on understanding why a query is difficult [12, 17, 52, 126]. Savoy [126] analyzed the reasons

of difficult topics from a query perspective. Harman and Buckley [12, 52] conducted the analysis from a

retrieval engine perspective. However, their focus is on identifying the causes, but do not propose methods

to address the problems.

More recent work on difficult queries are on predicting query difficulty [30, 54, 56, 61, 127, 160]. In [30],

clarity score is defined to measure the difference between a query language model and a collection language

model. They found that the smaller the score is, the more difficult the query is. More features are designed

and analyzed in [17, 160] to estimate query difficulty. All this work predict whether a query is difficult but

do not try to predict the causes of why a query is difficult.

Most of previous work on difficult queries has not addressed the important question of how to improve

search accuracy for difficult queries. In this dissertation, we systematically study this problem by proposing

specific techniques along different perspectives.

2.4 Diversification and Interaction

Since we optimize the exploration-exploitation tradeoff, in this section, we review the related work. Relevance

feedback methods that are discussed in the previous section, only consider “exploitation”, and our study

is orthogonal to optimization of these relevance feedback algorithms. We used a mixture model feedback

method [164] in this dissertation, but our idea is general and can potentially work for other feedback methods

too. All active feedback methods emphasize on “exploration” only, and are also orthogonal to our study.

We adopted the diversification strategy for active feedback, but the proposed methods are also potentially

applicable to other methods for active feedback.

Multi-arm bandit methods that seek to find the optimal tradeoff between exploration and exploitation

have been studied extensively (e.g., [99, 100, 108, 162]). Existing solutions to the standard bandit problem

assume a fixed set of arms with no delayed feedback. However, recently, the work in [2] has considered such

a tradeoff to maximize total clicks on a web content. Also, reinforcement learning has been used for solving

sequential decision making problems, which assumes there exists an agent interacting with the environment

with the goal of maximizing the total reward. There have been extensive applications adopting reinforcement
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learning (e.g. [1, 65, 85, 131, 166]). Our work in this dissertation is similar to all this work in that we also

maximize the total utility by optimizing the tradeoff between exploration and exploitation, but we explore

a new application in optimizing interactive relevance feedback.

Our work in this dissertation is also related to previous work in diversifying search results. Goffman

[48] recognized that the relevance of a document must be determined w.r.t documents appearing before

it. Several researchers have been working on methods to eliminate the redundancy in the result sets (e.g.

[9, 16, 20, 163, 169]) by sequentially selecting documents that are relevant to the query but dissimilar to

documents ranked above them or by introducing an evaluation framework that rewards novelty and diversity

and penalizes redundancy [21]. Some other approaches [18, 161] maximize diversity (topic coverage) among

a set of documents without regard for redundancy [18] or by learning the importance of individual words

and then selecting the optimal set of results that cover the largest number of words [161]. Some other work

on diversification make use of taxonomy for classifying queries and documents and create a diverse set of

results according to this taxonomy [3, 144, 170]. Generating related queries and taking the results from

each of them for re-ranking purposes [106] is another way for diversification. In addition, some other work,

consider diversity in the area of spatial information retrieval [137] or in image retrieval [101, 124] or for query

diversification [22]. All these studies consider diversity in terms of providing a complete picture of different

aspects of the query. However, we consider diversity in terms of providing more information for optimizing

the utility of relevance feedback over an interactive retrieval session. We used the method in [163] however,

our approach can be applied to any diversification method where there is a novelty parameter.

Learning to rank has recently attracted much attention (e.g. [13, 15, 57, 64, 107]). Most of the work in

this line has not considered diversity. Logistic regression [53] is widely used to learn a retrieval function to

rank documents directly [19, 28, 45, 47, 157, 168]. Our work uses logistic regression to learn the diversity

parameter.

In [108] an online learning algorithm that directly learns a diverse ranking of documents based on user’s

clicking behavior to minimize abandonment (maximizing clickthrough) for a single query is proposed. While

abandonment is minimized, their approach cannot generalize to new queries. The difference between our

work and theirs is that they optimize the tradeoff for multiple users and a single query, while we optimize

such a tradeoff for a single user over multiple interaction cycles (i.e., over multiple pages).

Interactive search is another related line to our work [44, 85]. The author in [44] has proposed the

holistic model to determine what is the best next action the system should perform when considering past

interactions. However, none of this work has provided a technique to optimize the exploration-exploitation

tradeoff.

14



2.5 Social Networks

Our work is also related to social network analysis which has been a hot topic for quite some time. Many

techniques have been proposed to discover communities [6, 74], model the evolution of the graph [83], and

understand the diffusion of social networks [50, 84]. The work in [94] defines a topic model on the network

structure. Our work is similar to all in that we also consider the problem in social network, however our

problem setup is different in that we rank the short text messages for the search problem in social media

applications.

More specifically on ranking in social media, the work in [152], extends PageRank to Twitter which make

use of follow relationships in the Twitter graph as well as topical similarity to find the influential users for

various topics. Then the work in [151] extends it by examining the semantics of follow links and proposing

retweet links as an additional source of information. In addition, the work in [125] improves the ranking

accuracy for the “Twitter-like” postings in forums with a comparison-based mechanisms. Tunkrank [141]

proposes a ranking mechanism to identify the most influential Twitter users. The notion of influential is

described as the expected number of users who will read a tweet from them. In addition, as described in [33],

Twitter users are ranked with different criteria such as the number of followers, average content spread per

tweet, average conversation activity per tweet and so on. Our work is similar to all this work in a sense that

our problem is also a ranking problem; however we specifically consider to rank the short tweets by relying

on the text content rather than considering the network structure.

A recent work [35] considers modeling temporal information in Twitter where time is considered as a

factor in the retrieval model. In another work [34], hashtag retrieval is considered where the author proposes

relevance feedback based on hashtags. Our work is similar to this work since we consider hashtags to help

improve the performance in the statistical translation language model framework. However, our methods

improve the ranking of Twitter search which is more general than hashtag retrieval.

Other Related Work: The document term frequency (TF), which dates back to Luhn’s pioneer work

on automatic indexing [89] has been playing a critical role in modern information retrieval models [4, 117,

132, 165]. It is widely recognized that linear scaling in term frequency puts too much weight on repeated

occurrences of a term, as a result normalization is needed [132]. Since we consider ranking in Twitter and

tweets are really short, most words appear only once in the tweets. Thus, term frequency discrimination is

very important in Twitter search. We study statistical translation language model to discriminate between

the words by getting support from other semantically related words.
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Chapter 3

Pre-Retrieval: Statistical Translation
Language Model for Information

Retrieval
In this chapter, we talk about the pre-retrieval stage where the user might not use the same exact words in

documents and the question is how to bridge the vocabulary gap and return relevant documents for users.

As a principled approach to capturing semantic word relations, statistical translation language models

have been proposed for information retrieval to reduce the gap between documents and queries [8, 62].

Based on statistical machine translation [10], the basic idea of translation language models is to estimate

the likelihood of translating a document to a query. Since a term has certain probability to be translated

into a different term, translation language models can alleviate the vocabulary gap problem in a natural

manner. As a result, translation language models have been successfully applied to different tasks such as

cross-lingual information retrieval [80, 98, 156], question answering [159], sentence retrieval [97], and tracking

information flow [95].

A main challenge in applying translation models to ad hoc information retrieval is to estimate a trans-

lation model without training data. Existing work has relied on training on synthetic queries generated

based on a document collection [8]. However, this method is computationally expensive and does not have

a good coverage of query words. In this chapter, we propose an alternative way to estimate a translation

model based on normalized mutual information between words, which is less computationally expensive and

has better coverage of query words than the synthetic query method of estimation. We also propose to

regularize estimated translation probabilities to ensure sufficient probability mass for self-translation prob-

abilities. Experimental results show that the proposed mutual information-based estimation method is not

only more efficient, but also more effective than the synthetic query-based method, and it can be combined

with pseudo-relevance feedback to further improve retrieval accuracy. The results also show that the pro-

posed regularization strategy is effective and can improve retrieval accuracy for both synthetic query-based

estimation and mutual information-based estimation.

In the next sections, we first review basic language modeling approach and translation language model.
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3.1 Statistical Language Models

A statistical language model is a probability distribution over word sequences. It gives any sequence of words

a different probability. Language modeling approaches received considerable attentions recently [103]. Given

a language model, we can sample word sequences according to the distribution to obtain a text sample. Such

a model can be used to generate a text. As a result, a language model is also called a generative model for

text.

The simplest language model is the unigram language model in which a word sequence is generated by

generating each word independently. As a result, the probability of a sequence of words would be equal to

the product of the probability of each word.

The basic idea of a language model which is often called query likelihood scoring method can be described

as follows [103]:

We assume that a query q is generated by a probabilistic model based on a document d. Given a

query q = q1, q2, . . . , qm, and a document d, we are interested in estimating p(d|q), i.e. the probability that

document d has been used to generate query q. By applying Bayes’ formula, we have:

p(d|q) ∝ p(q|d)p(d) (3.1)

p(d) on the right hand side of the above formula is our prior belief that document d is relevant to any query.

p(q|d) is the query likelihood for the given document d, which intuitively measures how well document d

matches query q. p(d) is often assumed to be uniform and thus can be ignored for ranking documents.

Further assuming that each query word is generated independently, i.e., assuming a multinomial language

model, we would generate a sequence of words by generating each word independently, we can rewrite the

above formula as (in the form of log likelihood):

log p(d|q) rank
=
∑
w∈V

c(w, q). log p(w|d) (3.2)

where
rank
= means equivalence for the purpose of ranking documents, c(w, q) is count of word w in query

q, and V is the vocabulary set. The challenging part is to estimate a document model p(w|d). Based on

multinomial distribution, the simplest way to estimate p(w|d) is the maximum likelihood estimator :

pml(w|d) =
c(w, d)∑
w′ c(w

′, d)
(3.3)
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Where c(w, d) is count of word w in document d.

Due to the data sparseness problem (since a document is a very small sample for the model), maximum

likelihood estimator underestimates the probability of unseen words in a document. Smoothing techniques

address this problem by assigning non-zero probabilities to the unseen words and thus improving the accu-

racy of probability estimation. Specifically, smoothing is to discount the probabilities of words seen in the

text and then assign extra probability mass to the unseen words according to some fallback model. Usually,

collection language model is used as fallback model [165]. Two commonly used methods are Jelinek-Mercer

and Dirichlet prior smoothing methods:

Jelinek-Mercer Method (JM Smoothing): This is a linear interpolation of maximum likelihood model

with the collection model, using λ as a coefficient weight.

p(w|d) = (1− λ)pml(w|d) + λp(w|C) (3.4)

Where p(w|C) is probability of word w in collection C.

Bayesian Smoothing using Dirichlet Prior (Dirichlet Prior Smoothing): Since the conjugate prior of a

multinomial distribution is the Dirichlet distribution, we can specify a Dirichlet prior distribution parame-

terized as

(µp(w1|C), µp(w2|C), . . . , µp(wn|C))

where µ is a parameter. The estimated document model based on the posterior mean is then:

p(w|d) =
|d|
|d|+ µ

pml(w|d) +
µ

|d|+ µ
p(w|C) (3.5)

The challenging part is to estimate a document model p(w|d). The simplest way to estimate p(w|d) is

the maximum likelihood estimator. Another interesting way of estimating p(w|d) introduced by Berger and

Lafferty [8] is based on statistical machine translation [10]. In order to assess the relevance of a document to

a user’s query, they have estimated the probability that the query would have been generated as a translation

of the document. In other words, they allow the query likelihood to be computed based on a translation

model of form p(w|u), which is the probability that word u is semantically translated to word w.

To put it more formally, in their model, the query likelihood can be calculated by using the following

“translation document model”:

p(w|d) =
∑
u∈d

p(w|u)p(u|d) (3.6)
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where p(w|u) is the probability of “translating” word u into word w and it allows us to score a document by

counting the matches between a query word and semantically related words in the document. If p(w|u) only

allows a word to be translated into itself, the simple exact matching query likelihood would be achieved.

However, p(w|u) would in general allow us to translate u into other semantically related words with non-zero

probabilities, thus achieving “semantic smoothing” of the document language model.

3.2 Smoothing for Translation Language Model

In this section, we consider statistical translation language model when combined with two basic smoothing

methods described in section 3.1.

The basic component in the translation language model is p(w|d) =
∑
u∈d p(w|u)p(u|d) which can be

used to replace pml(w|d) in all basic language model approaches. This will give us 1) translation language

model with Dirichlet prior smoothing and 2) translation language model with Jelinek-Mercer smoothing.

When we replace pml(w|d) with p(w|d) =
∑
u∈d p(u|d)p(w|u) in equation 3.5, we have the following:

p(w|d) =
|d|
|d|+ µ

[
∑
u∈d

p(u|d) · p(w|u)] +
µ

|d|+ µ
p(w|C) (3.7)

And when it is replaced with pml in equation 3.4, we have the following:

p(w|d) = (1− λ)[
∑
u∈d

p(u|d) · p(w|u)] + λp(w|C) (3.8)

Equations 3.7 and 3.8 give us Dirichlet prior smoothing and Jelinek-Mercer (JM) smoothing with trans-

lation language model, respectively.

3.3 Estimation of Translation Language Model

The key part for translation language model is to learn the word-to-word translation probability, p(w|u).

It is clear that the performance of the proposed smoothed translation language model depends on the

quality of the word-to-word translation probabilities. In the scenario of statistical machine translation [10],

a parallel corpus of two languages is often assumed to be available, and the Expectation-Maximization (EM)

algorithm [31] can be used to estimate a translation model.

The authors in [10] applied the EM algorithm on bilingual training data. In their simplest model, i.e.,
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IBM model 1, the parallel corpus consisting of English and French sentence pairs is given,

S = (e1, f1), (e2, f2), . . . , (eN , fN )

(Note that e refers to an English sentence while e is an English word. The same applies to f and f

respectively.) Then, the probability of translating an English word e to French word f is calculated as

follows:

p(f |e) = λ−1e

N∑
i=1

c(f |e; ei, fi) (3.9)

where

c(f |e; f, e) =
p(f |e)

p(f |e1) + p(f |e2) + . . .+ p(f |el)
c(f ; fi)c(e; ei) (3.10)

where l is the length of the English sentence and c(f ; fi) is the count of French word f appearing in the French

sentence fi, similarly, c(e; ei) is count of the English word e in the English sentence ei. λ
−1
e is a normalization

factor which makes the sum of translation probabilities for English word e to 1 and is estimated as follows:

λe =
∑
f

N∑
i=1

c(f |e; fi, ei) (3.11)

EM algorithm is used to find the updated probabilities for p(f |e).

In order to gain word-to-word probabilities in monolingual scenario, ideally, we should have a sample

of queries and relevant documents, but since we do not often have, Berger and Lafferty [8] use the idea of

synthetic queries as their training data. The idea is to take a document and synthesize a query to which

the document would be relevant. There are different methods for synthesizing a query from a document.

One way would be to sample words uniformly from the document, but this method would generate queries

containing a number of common words such as the, of, etc. Preferable method would be a sampling algorithm

biased in favor of words which distinguish the document from other documents.

In order to select words which are representative of a document, for each document d ∈ C, they compute

the mutual information statistics [60] for each of its words according to:

I(w,d) = p(w, d) log
p(w|d)

p(w|C)
(3.12)

where p(w|d) is the probability of word w in document d, and p(w|C) is the probability of word w in the

collection. Their proposed algorithm for generating synthetic queries is shown in Figure 3.1, where synthetic
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queries are sampled based on normalized mutual information Ĩ, and the Poisson parameter λ is set to 15.

The resulting (d,q) of documents and synthetic queries are used to estimate the probabilities with the EM

algorithm.

1. Begin

2. Do for each document d ∈ C

3. Do for x = 1 to 5

4. Begin

5. Select a length m for this query according to Poisson distribution

6. Do for i = 1 to m

7. Select the next query word by sampling the scaled distribution: qi ∼ Ĩ

8. Record (d, q)

9. End

10. End

Figure 3.1: A Sampling method for synthetic queries.

Although generating synthetic queries is a reasonable way to estimate the translation probabilities, this

method has two deficiencies: (1) it is inefficient; (2) there is no guarantee that a query word is covered. In

the next section, we propose a mutual information-based estimation which is more efficient than this method

and has a better word coverage.

3.4 Estimation of Translation Language Model based on Mutual

Information

In this section, a more efficient way to estimate translation probabilities is proposed which can have a better

coverage of query words than the existing method discussed in the previous section.

3.4.1 Mutual Information-Based Approach

Mutual information [113] is a good measure to assess how two words are related. In our method, for each

word in the collection, we compute all words which have high mutual information scores with it and normalize

the computed mutual information scores as follows:

First, we compute the mutual information scores for each pair of two words w and u in the collection.

Informally, mutual information compares the probability of observing w and u together (the joint probability)
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with the probabilities of observing w and u independently. The mutual information between words w and u

are calculated as follows:

I(w;u) =
∑

Xw=0,1

∑
Xu=0,1

p(Xw, Xu) log
p(Xw, Xu)

p(Xw)p(Xu)
(3.13)

where Xu and Xw are binary variables indicating whether u or w is present or absent.

The probabilities are estimated as follows:

p(Xw = 1) =
c(Xw = 1)

N

p(Xw = 0) = 1− p(Xw = 1)

p(Xu = 1) =
c(Xu = 1)

N

p(Xu = 0) = 1− p(Xu = 1)

p(Xw = 1, Xu = 1) =
c(Xw = 1, Xu = 1)

N

p(Xw = 1, Xu = 0) =
(c(Xw = 1)− c(Xw = 1, Xu = 1))

N

p(Xw = 0, Xu = 1) =
(c(Xu = 1)− c(Xw = 1, Xu = 1))

N

p(Xw = 0, Xu = 0) = 1− p(Xw = 0, Xu = 1)

−p(Xw = 1, Xu = 0)− p(Xw = 1, Xu = 1)

where c(Xw = 1) and c(Xu = 1) are the numbers of documents containing word w and u, respectively,

c(Xw = 1, Xu = 1) is the number of documents that contain both w and u, and N in the total number of

documents in the collection.

We then normalize the mutual information score to obtain a translation probability:

pmi(w|u) =
I(w;u)∑
w′ I(w′;u)

(3.14)

pmi(w|u) gives us the probability of translating word u to another word w; intuitively, the probability

would be higher if the two words tend to co-occur with each other.
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3.4.2 Optimizing Self-Translation Probability

The approaches described in sections 3.3 and 3.4 might underestimate the self-translation probabilities, i.e.,

it is possible that p(w|u) > p(w|w). This may lead to non-optimal retrieval performance because it is possible

that a document that matches a query word exactly (p(w|w)) gets less score contribution from matching

the query word exactly than a document that “matches” a query word through translation (p(w|u)). To

overcome this bias, a parameter α is introduced to control the effect of self-translation. This is a general

method that can be applied to adjust the estimated probabilities for any given estimation method.

p(w|u) =

 α+ (1− α)pt(u|u) w = u

(1− α)pt(w|u) w 6= u
(3.15)

and pt(w|u) is estimated with any estimation methods such as mutual information or synthetic queries.

α is a parameter that controls the effect of self-translation probability and when we set α = 1, we recover

the basic query likelihood method.

The “regularized” translation model p(w|u) can then be used in Equations 3.7 and 3.8 to rank documents.

3.4.3 Translation Language Model with Feedback

Feedback techniques have been shown to improve retrieval accuracy substantially[81, 115, 164]. A natural

question with translation language model is whether translation model can benefit from feedback techniques.

In this section, we use pseudo-relevance feedback to expand our query model [164] and then score the

expanded query model with translation language model based on the negative cross entropy of the expanded

query language model and the translation document model (also equivalent to scoring based on negative

KL-divergence): ∑
p(w|θq)>0

p(w|θq). log p(w|d) (3.16)

where p(w|θq) is the query model generated by pseudo-relevance feedback and p(w|d) is a smoothed trans-

lation model and can be computed using either of equations 3.7 or 3.8.

3.5 Experiments

3.5.1 Data Set

The experiments in this section use four main document collections: (1) news articles (AP90) with TREC

topics 51-100 and 78,321 articles. (2) San Jose Mercury News (SJMN) articles with TREC topics 51-100

23



0 0.2 0.4 0.6 0.8 1
0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

Alpha

M
A

P

Synthetic Queries
Mutual Information

0 0.2 0.4 0.6 0.8 1
0.37

0.38

0.39

0.4

0.41

0.42

0.43

0.44

Alpha

P
re

ci
si

on
 a

t 1
0

Synthetic Queries
Mutual Information

Figure 3.2: Comparison of mutual information and synthetic queries according to MAP (Left) and Precision
at 10 (right). (Both are according to Dirichlet prior smoothing).

and 90,250 articles (3) ad hoc data in TREC7 with topics 351-400 and 528,155 articles and (4) TREC8 with

topics 401-450 and 528,155 articles.

In the experiments, we only use title of the queries. As for preprocessing, we do stemming using Porter

stemmer [104] and stop word removal. All experiments are done using the Lemur toolkit 1. The performance

is measured using two standard measures: MAP(Mean Average Precision) and Precision @10 (precision at

10).

The optimal value for Dirichlet prior smoothing for baseline is 1000 for all data sets and optimal value

for JM smoothing for baseline method is gained when coefficient is set to 0.5 for AP90 data set and 0.3 for

the rest of data sets.

The methods used for experiments in the following sections are: BL (baseline), i.e., either Dirichlet

prior smoothing or JM smoothing (Equations 3.4 or 3.5), MI (translation language model with mutual

information2 for word-to-word translation probabilities), SYN (translation language model with synthetic

queries), fb (pseudo-relevance feedback on baseline) and fb+TM(pseudo-relevance feedback combined with

translation language model using mutual information).

3.5.2 Comparing Synthetic Queries with Mutual Information

We first look into the question whether mutual information (MI) can be an alternative way of estimating

translation model. Table 3.1 shows the results for both SYN and MI methods with both Dirichlet prior

smoothing and JM smoothing, respectively. The results indicate that MI method is better able to capture

1http://www.lemurproject.org/
2We use mutual information throughout the dissertation for simplicity but we mean the normalized mutual information

described in section 3.4.
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Table 3.1: Performance of translation language model with synthetic queries and mutual information esti-
mation according to Dirichlet prior smoothing (left) and JM smoothing (right), * means improvements over
SYN are statistically significant with Wilcoxon signed-rank test. We only show the significance tests for
MAP measure.

Data MAP Precision @10
MI SYN MI SYN

AP-90 0.272∗ 0.251 0.423 0.404
SJMN 0.2∗ 0.195 0.28 0.266

Data MAP Precision @10
MI SYN MI SYN

AP-90 0.264* 0.25 0.381 0.357
SJMN 0.197* 0.189 0.252 0.267

Table 3.2: Sample word translation probabilities using synthetic queries (left) and mutual information (right).
Note that words are stemmed.

w=everest
q p(q|w)

everest 0.079
climber 0.042
climb 0.0365

mountain 0.0359
mount 0.033
reach 0.0312

expedit 0.0314
summit 0.0253
whittak 0.016

peak 0.0149

w=everest
q p(q|w)

everest 0.1051
climber 0.0423
mount 0.0339

028 0.0308
expedit 0.0303

peak 0.0155
himalaya 0.01532

nepal 0.015
sherpa 0.01431
hillari 0.01431

word relatedness. Indeed, statistical significance tests indicate that the difference between MI and SYN is

statistically significant. In addition, estimating translation probabilities by mutual information for all data

sets is more efficient than learning translation probabilities by synthetic queries. Table 3.2 shows a document

word together with ten most probable query words that it will translate to by both synthetic queries and

mutual information estimation methods. The table shows that the related words for word “everest” in case

of mutual information are more specific than for words learned via synthetic queries.

Figure 3.2 shows the sensitivity of mutual information and synthetic queries to α parameter according to

MAP measure (left) and Precision@ 10 (right). The difference indeed makes clearer that mutual information

works better than synthetic queries. (Our results for synthetic queries are comparable to those reported

in [8].)

According to these results, we can conclude that mutual information works better than synthetic queries

and it is also more efficient.

Because of the high computational complexity of synthetic queries, we cannot compare mutual informa-

tion with it on larger collections, but later we will further experiment with mutual information on larger

collections.
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Table 3.3: Performance of translation language model on different datasets with Dirichlet prior smooth-
ing (left) and JM smoothing (right), * means improvements over baseline are statistically significant with
Wilcoxon signed-rank test. We only show the significance tests for MAP measure.

Data MAP Precision @10
BL MI BL MI

AP-90 0.248 0.272∗ 0.398 0.423
SJMN 0.195 0.2∗ 0.266 0.28

TREC7 0.183 0.187∗ 0.412 0.404
TREC8 0.248 0.249 0.452 0.456

Data MAP Precision @10
BL MI BL MI

AP-90 0.246 0.264* 0.357 0.381
SJMN 0.188 0.197* 0.252 0.267

TREC7 0.165 0.172 0.354 0.362
TREC8 0.236 0.244* 0.428 0.436
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Figure 3.3: Stress Tests on AP90 collection, Precision @10 (left) and MAP (right).

3.5.3 Comparing Translation Language Model with Standard Query

Likelihood

We now look into how well a translation model with our mutual information-based estimation method

performs as compared with the standard query likelihood method. Table 3.3 shows the results for BL and

MI methods according to both measures MAP and Precision @10.

Comparing the columns MI with BL in both tables indeed indicates that the MI outperforms method

BL. Significant tests using Wilcoxon signed-rank test [153] show the difference between these two methods

for cases marked in the tables are statistically significant. Comparing MI with Dirichlet prior smoothing

and MI with JM smoothing shows that MI with Dirichlet prior smoothing has higher MAP than MI with

JM smoothing.

Stress Tests: In order to have a better understanding of the translation language model, we applied

some stress tests on AP90 data set3. This experiment is to help us understand when exactly the translation

3The same trends on other data sets have observed, but only the results for AP90 data set is shown.
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Figure 3.4: Precision-Recall curve when only “one query word” is removed from relevant documents.

language model would be most beneficial. For the stress test, we gradually and randomly remove query

words from relevant documents and compare the performance of BL method with MI method. The results

of MAP and Precision @10 are shown in Figure 3.3. Figure 3.4 shows the Precision-Recall curve when only

“one query word” is removed from relevant documents.

The results indeed indicate that the baseline method (BL) is purely based on exact matching and the

performance will drop significantly if the exact matching does not happen. On the other hand, translation

language model (MI) is still able to find relevant documents by translating query words to semantically

related words in the documents. This indicates that the translation language model works significantly

better than the baseline when there is a vocabulary gap between queries and documents.

3.5.4 Effect of Smoothing on Translation Language Model

Understanding the influence of smoothing on translation language model is important and no previous work

has looked into this. We have a good understanding of smoothing methods for basic language models [165],

but it is not clear how smoothing affects the performance of statistical translation language models. In this

section, we look into how statistical translation model behaves with the smoothing parameters.

We vary the smoothing parameters (both JM and Dirichlet prior smoothing) for both BL and MI methods.

Figure 3.5 (left and right) shows the variation of the JM smoothing parameter and Dirichlet prior smoothing

parameter on AP90, respectively (The results on other data sets are not shown since they are similar.). The

result of MI with JM smoothing indicates that the translation model does need a very little smoothing. As

shown, the optimal values for translation language model with Dirichlet prior smoothing is 1000 and with

JM smoothing is 0.1. As a result, translation language model is less sensitive to the choice of smoothing
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Figure 3.5: JM parameter variation on AP90 (left), Dirichlet prior parameter variation on AP90 (right).
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Figure 3.6: Sensitivity of MAP measure to the number of words used for translation.

parameter than the baseline method. And this is intuitively expected, as smoothing is implicitly gained by

translating a document word to other semantically related words.

Please note that in the translation language model, we have one other parameter to tune, i.e., the number

of words used for translation. Figure 3.6 shows the sensitivity of the number of the words according to MAP

measure. As shown in the figure, the translation language model is not so sensitive to the number of words

used for translation.

3.5.5 Results with Pseudo-Relevance Feedback

Both statistical translation model and pseudo-relevance feedback are to capture word associations, so it

would be interesting to see whether they are essentially taking advantage of the same associations or they

can be combined to achieve even more improvement.
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Table 3.4: Performance of translation language model combined with pseudo-feedback with Dirichlet prior
smoothing (top) and JM smoothing (bottom), * and + mean improvements over baseline and fb, respectively,
are statistically significant with Wilcoxon signed-rank test. We only show the significance tests for MAP
measure.

Data MAP Precision @10
BL fb fb+TM BL fb fb+TM

AP-90 0.248 0.285 0.285∗ 0.3978 0.404 0.406
SJMN 0.195 0.231 0.232∗ 0.266 0.295 0.3

TREC7 0.183 0.226 0.226∗ 0.412 0.38 0.38
TREC8 0.248 0.270 0.278∗ 0.452 0.456 0.438

Data MAP Precision @10
BL fb fb+TM BL fb fb+TM

AP-90 0.246 0.271 0.298*+ 0.357 0.383 0.411
SJMN 0.188 0.229 0.234*+ 0.252 0.316 0.313

TREC7 0.165 0.209 0.222*+ 0.354 0.38 0.384
TREC8 0.236 0.240 0.281*+ 0.428 0.4 0.452

Table 3.4 shows the pseudo-relevance feedback results for baseline (fb) and when pseudo-relevance feed-

back is combined with translation language model (fb+TM). For fb+TM method, we first apply pseudo-

relevance feedback on initial results (i.e., KL-divergence retrieval model [78]), and then this new query model

from pseudo-relevance feedback is used with translation language model to score documents. The feedback

parameters are fixed to extract 20 expanded words from the top 10 retrieved documents in the initial run. As

shown in table 3.4, fb-TM method indeed outperforms fb method when used with JM smoothing. Statistical

significant tests reveal that the difference is indeed statistically significant. However, fb+TM method does

not significantly outperform fb method when used with Dirichlet prior smoothing. An interesting obser-

vation is that although the performance of pseudo-relevance feedback (fb) method with JM smoothing is

lower than pseudo-relevance feedback with Dirichlet prior smoothing, when pseudo-relevance feedback (fb) is

combined with translation language model, i.e., fb+TM method, the better performance is gained with JM

smoothing. In fact, the performance of fb+TM with JM smoothing is consistently better than the fb+TM

with Dirichlet prior smoothing.

Figure 3.7 (left) shows the Precision-Recall curves for BL, fb and fb+TM methods with JM Smoothing

on AP904. This figure indeed indicates that the precision of fb+TM method at different recall points is

higher than BL and fb methods. This is an interesting conclusion that translation language model brings in

co-occurrence word knowledge that once combined with pseudo-relevance feedback, significant improvement

is gained.

4We do not show other curves due to their similarity.
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Figure 3.7: Comparison of baseline with translation language model combined with pseudo-relevance feed-
back and pseudo-relevance feedback alone on AP90 data set with JM smoothing (left) and the sensitivity of
MAP measure to α parameter (right).

3.5.6 The Need for Self-Translation Regularization

A potential problem of the estimated translation probabilities is that it is possible that p(w|u) > p(w|w).

This may lead to non-optimal retrieval performance because it is possible that a document that matches

a query word exactly (p(w|w)) gets less score contribution from matching the query word exactly than a

document that “matches” a query word through translation (p(w|u)). The interpolation formula (with α)

can help alleviate this problem; indeed, if α ≥ 0.5, we can always ensure that this constraint be satisfied.

So, it would be interesting to see how α affects the performance. Figure 3.7 (right) shows the sensitivity of

MAP measure to α parameter. We indeed observe that when α is very small (close to no interpolation) the

performance is poor, suggesting that it is important to regulate the self-translation probabilities to ensure

that it is sufficiently large. In Figure 3.7 (right), we can see that when 0.5 ≤ α ≤ 0.8 for most data sets, we

can gain the optimal value. Note that when α = 1, we reach the baseline.

3.6 Chapter Summary

As a principled approach to capturing semantic relation of words in information retrieval, statistical transla-

tion models have been shown to outperform simple language models which rely on exact matching of words

in the query and documents. In this chapter, we proposed a new simple way to estimate translation proba-

bilities based on mutual information. Our experiment results indicate that the proposed mutual information

estimation method is both more efficient and more effective than the existing synthetic query estimation

method. The findings are as follows:

1. Translation language model is a principled way to support semantic matching of related words, thus it is
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an important contribution in extending the basic query likelihood retrieval model.

2. Translation language model is statistically significant better than the baseline query likelihood especially

when there is a vocabulary gap.

3. Normalized mutual information can be used for word-to-word translation effectively and the results in the

previous sections indicate that it is more accurate than synthetic queries. Synthetic queries are inefficient

for a large collection such as TREC7 or TREC8.

4. The performance of translation language model combined with pseudo-relevance feedback outperforms

pseudo-relevance feedback alone; this indicates that translation language model brings in co-occurrence

knowledge in addition.

5. Translation language model is less sensitive to the choice of smoothing parameter than the baseline.

6. Translation language model is robust as it improves over all individual queries.

For future, it would be interesting to combine document clustering with translation language model to

see if it improves the estimate of translation language models from the viewpoint of smoothing. As it is

shown in [87, 150], documents are clustered (either using a cosine similarity [87] or using the Latent Dirichlet

Allocation (LDA) [150]) and each document is smoothed with the cluster containing the document and it

has been shown that such a smoothing based on clustering improves the performance over the non-clustering

smoothing methods [165] as it helps to bring in closely related words which would be really interesting for

the estimation in translation language model.

As we discussed in this chapter, the retrieval effectiveness of a translation language model would be

mainly determined by the accuracy of the estimated translation probabilities. The question is that how we

should know whether the estimated probabilities are optimal. In the next chapter, we perform axiomatic

analysis of translation language model to reveal important properties that any estimated translation method

should satisfy to have an optimal retrieval behavior .
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Chapter 4

Pre-Retrieval: Axiomatic Analysis of
Translation Language Model

As shown in the previous chapter, statistical translation language models have been shown to outperform

simple document language models which rely on exact matching of words in the query and documents by

reducing the vocabulary gap between documents and queries. A main challenge in applying translation

language models to ad hoc information retrieval is to estimate a translation model without training data. In

the pre-retrieval stage, the retrieval effectiveness of a translation language model would be mainly determined

by the accuracy of the estimated translation probabilities, i.e., p(w|u) in the case of standard ad hoc retrieval

setting where there is no training data available for learning word-to-word translation probabilities. As shown

in the previous chapter, mutual information-based estimation method is more efficient than synthetic query-

based approach, however, the translation probabilities estimated using mutual information are based on

heuristic normalization of mutual information values with no clearly defined event space associated. This

may cause unfair assignment of probability values to different word pairs, and does not provide guidance on

how to further improve the estimate.

The main challenging question is that: How do we know whether one estimated translation language

model is better than another? Empirical evaluation can only offer limited answer to this question as how

well we can generalize an observation on a test set to another is always a concern. Axiomatic analysis [38]

has been shown to be useful for diagnosing weakness of a retrieval model and obtaining insights about how

to improve a model. In this chapter, we perform axiomatic analysis to gain insights about how to optimize

the estimation of a translation language model.

We first prove that in order to behave reasonably for retrieval, the self-translation probability of any

word must be a constant. We further define four constraints that a reasonable translation language model

should satisfy. We check these constraints on the existing translation language model estimation method

based on mutual information and show that it does not satisfy most of the constraints, suggesting that there

is room for further improving the estimate. We then propose a new estimation method which is shown to

be able to better satisfy the constraints.
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4.1 General Translation Language Model Constraints

In this section, we define some general constraints that must be satisfied regardless of any estimation method

for translation language model.

Constraint 1: ∀v and w, p(w|w) = p(v|v).

The constraint says that self-translation probability (e.g. translating a document word w to a query word

w) for all words should be the same (a constant). This constraint can be justified by the following theorem.

Theorem 1: In order to have a reasonable retrieval behavior, for all translation language models, we

have p(w|w) = p(v|v),∀w, v.

Proof by Contradiction: Suppose there exist two words w and v such that p(w|w) 6= p(v|v) and

consider two documents D1 and D2 with identical length and a query with two query terms w and v.

Suppose D1 matches w once, but not v, and D2 matches v once, but not w. Further assume that w and v

have identical probability according to the collection language model, i.e., p(w|C) = p(v|C). Normally, the

two documents would get the same score. But with a translation language model, one might get a higher

score than the other “even” if no other words in these documents can be translated into w or v (had there

been other words inexactly matching w or v, this difference would be reasonable).

Formally, in the case described above, the score of D1 would be (assuming there are no other words that

can be translated to word w, i.e., ∀u ∈ D1, if u 6= w, p(w|u) = 0):

p(w, v|D1) = (
|D1|
|D1|+ µ

[
∑
u

p(u|D1)p(w|u)] +
µ

|D1|+ µ
p(w|C)) ∗ (

µ

|D1|+ µ
p(v|C)) (4.1)

= (
|D1|
|D1|+ µ

p(w|D1)p(w|w) +
µ

|D1|+ µ
p(w|C)) ∗ (

µ

|D1|+ µ
p(v|C))

Similarly,

p(w, v|D2) = (
|D2|
|D2|+ µ

p(v|D2)p(v|v) +
µ

µ+ |D2|
p(v|C)) ∗ (

µ

µ+ |D2|
p(w|C)) (4.2)

where C is the collection and p(v|C) means the smoothed probability of word v based on the collection

language model (the same applies to p(w|C)).
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Since p(w|C) = p(v|C), p(w|D1) = p(v|D2) and |D1| = |D2|, the score ratio would be

p(w, v|D1)

p(w, v|D2)
=
p(w|D1)p(w|w) + p(w|C)
p(w|D1)p(v|v) + p(w|C)

(4.3)

That is, if w has a higher self-translation, D1’s score would be higher which is not reasonable. Thus, in

order to avoid such unreasonable behavior, we must have: ∀w and v, p(w|w) = p(v|v), which provides the

proof for theorem.

This is an interesting new analytical result, and without special attention, in general, there is no guarantee

that the self-translation probability would be the same for all the words. As we will show in the experiments,

if we heuristically modify an existing translation model to make it satisfy this constant constraint, we will

be able to improve the retrieval accuracy.

Furthermore, the self-translation probability should be larger than translation probabilities involving

different words which leads to the following two constraints:

Constraint 2: ∀w, u, if w 6= u, then p(w|w) >= p(w|u).

This constraint states that self-translation probability (i.e., translating a document word w to a query word

w) should be larger than translating any other words to this word (i.e., translating a document word u to

a query word w). From retrieval perspective, suppose that a query term is w, and further assume that a

document D1 contains word w, and no other words in D1 can be translated to w, so the score of D1 would be

|D1|
|D1|+µp(w|w)p(w|D1)+ µ

|D1|+µp(w|C). In another document D2, assume that it does not have any occurrence

of word w but has the same number of occurrence of u as w in D1, i.e., c(w,D1) = c(u,D2) and the two

documents have the same length. Similarly, the score of D2 would be |D2|
|D2|+µp(w|u)p(u|D2) + µ

|D2|+µp(u|C).

It is clear that the first case is the exact match while the second one is the inexact match. Since |D1| = |D2|

, p(w|D1) = p(u|D2) and p(w|C) = p(u|C), if this constraint is not satisfied, the score of D1 would be smaller

than the score of D2 which is undesirable. So, this constraint must be satisfied.

Constraint 3: ∀w, u, if w 6= u, then p(w|w) >= p(u|w).

This constraint intuitively means that a word is more likely to be translated to itself (i.e., p(w|w) which

means that a document word w is translated to a query word w) than translating into any other words (i.e.,

p(u|w) which means a document word w is translated to a query word u) which makes sense.
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4.2 Additional Translation Language Model Constraints

Since co-occurrences are the primary information used for estimating translation models without training

data, in this section, we further propose two additional constraints based on word co-occurrences that any

reasonable estimation method for translation language model should satisfy. Note that c(x, y) means the

number of co-occurrences of word x with word y in a context. We counted the number of co-occurrences in

the context of documents but any other contexts such as sentences, etc can also be used.

Constraint 4: if c(w, u) > c(w, v) and
∑
w′ c(w

′, u) =
∑
w′ c(w

′, v) then p(w|u) > p(w|v).

Constraint 5: if c(w, u) = c(w, v) and
∑
w′ c(w

′, u) <
∑
w′ c(w

′, v) then p(w|u) > p(w|v).

The fourth constraint states that if word u occurs more times than v in the context of w and both words

u and v co-occur with every other words similarly, the probability of translating word u to word w should

be higher than that of translating v to word w. From retrieval perspective, if a document mentions word

u, p(w|u) should capture the probability that the document can be regarded as matching a query term w.

In other words, the presence of u in a document more likely implies that the document matches w in the

query, than the presence of v in the document does. Consider the following example. Suppose w =“Eu-

rope”, u =“France” and v = “Chicago”. We can expect “Europe” to co-occur more with “France” than with

“Chicago”, thus c(w, u) > c(w, v). This constraint basically requires p(Europe|France) to be larger than

p(Europe|Chicago).

The fifth constraint states that if both words u and v equally co-occur with word w but v co-occurs with

many other words than word u, the probability of translating word u to w is higher. Intuitively, this means

that word v is a more general word than u since it co-occurs with so many other words, so the confidence of

translating to word w is less because it could potentially be translating into many other words.

4.3 Analysis of Mutual Information-Based Translation Language

Model

In this section, we analyze the existing state of the art translation language model which is based on mutual

information, i.e., Equation 3.13 to see if it satisfies the proposed constraints.

Constraint 1: In general, this method does not ensure the self-translation probabilities are constant

across all the words. The need for sufficient self-translation probability was addressed in Section 3.4.2 and

35



a regularized parameter α is introduced to control the effect of self-translation. We call this method “MI”

in our experimental results.

Although, this heuristic modification helps satisfy the second constraint, it still does not ensure the

constant self-translation probabilities. We will define a general heuristic way to make the self-translation

probabilities constant later in the dissertation.

Constraint 2: The analysis of the second constraint is complicated. However, the following examples

(taken from DOE data set) show that mutual information does not satisfy it. Note that the words are

stemmed.

p(microeconom|microeconom) = 0.3362 and p(microeconom | fluctuact) = 0.4421.

p(sneez | sneez ) = 0.1107 and p(sneez | rhinorrhea ) = 0.1371.

However, with the α regularization, this constraint is satisfied.

Constraint 3: We need to show that I(w;w)∑
w′
I(w′;w)

> I(w;u)∑
w′
I(w′;w)

. Since I(w;w) > I(w;u), it is easy

to see that this constraint is always satisfied.

Constraint 4: The analysis of this constraint is complicated. However, the following examples (taken

from DOE data set) show that mutual information does not satisfy this constraint. Note that the words are

stemmed.

1: c(deliber, ensur)=24 > c(deliber, recogn) = 22 and (
∑
w′ c(w′, ensur) =

∑
w′ c(w′, recogn) = 4105) but

p(deliber|recogn) = 0.0018 > p(deliber|ensur) = 0.0017.

2: c(hypothermia, hypotherm) = 4 > c(hypothermia, mepyramin)= 3 and (
∑
w′ c(w′, hypotherm) =

∑
w′

c(w′, mepyramin) = 21) but p(hypothermia|mepyramin) = 0.073 > p(hypothermia|hypotherm) = 0.0669.

Constraint 5: This constraint is not satisfied since the followings are a few undesirable examples taken

from DOE collection (words are stemmed):

1: c(theolog, benefit) = c(theolog, held) and (
∑
w′ c(w′, benefit) = 5211) < (

∑
w′ c(w′, held) = 7496) but

p(theolog| benefit) = 0.0001 < p(theolog| held) = 0.00014.

2: c(polytomograph,neck) = c(polytomograph,thirti) and (
∑
w′ c(w′, neck) = 1652) < (

∑
w′ c(w′, thirti) =

1710) but p(polytomograph |neck) = 0.00046 < p(polytomograph|thirti)= 0.00066.

The fact that the mutual information-based method does not satisfy at least four of the proposed five
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constraints suggests that there may be room for improving the estimation of translation language model. In

the next section, we present a new estimation method based on conditional context analysis.

4.4 Estimation of Translation Probabilities based on Conditional

Context Analysis

In this section, we propose a new method that can better satisfy the constraints. As mentioned before

p(w|u) would give us the probability that a document containing u can be regarded as matching a query

term w. In other words, this is the probability that matching a document word u implies matching a query

word w, or if a document is about u, it is also about w. To illustrate this, consider two semantically related

words “Europe” and “France”. Intuitively, if a document mentions “France”, we can confidently say that

it is also about “Europe”, thus we should expect p(Europe|France) to be relatively high. In contrast, if

a document mentions “Europe”, it does not necessarily imply that it is about “France” (since it can be

about any other European country), thus we should expect p(France|Europe) to be somewhat low. The

reason why we expect p(Europe|France) to be much larger than p(France|Europe) is because “Europe” is

a broader concept than “France”. Indeed, if we look at all the documents where “France” occurs, we may

expect to see relatively high frequency of “Europe”; on the other hand, “France” does not necessarily occur

frequently in the documents that contain “Europe”. This analysis suggests that we can use word context

analysis to capture the desired asymmetry. More specifically, we can use the frequency of seeing word w

in the context of word u to estimate p(w|u) so that if we see w often in the context of u, p(w|u) would be

high, whereas if w does not occur in the context of u, p(w|u) would be nearly zero. Context can be any

meaningful text units such as a sentence, a paragraph, or a document. In our experiments, we assume that

a document is a context unit. This forms the basic idea of our new estimation method. Below, we present

the method more formally:

Let c(u) = n be the number of all context units containing word u in our collection; we estimate p(w|u)

based on the conditional probability of seeing w in the context of u, i.e., p(w|u) = c(w,u)
n where c(w, u) is

the number of times that these two words u and w co-occur with each other in a context unit. In order

to account for unseen words in the context of u, we do Additive smoothing [165]. As a result, p(w|u) is

estimated as follows:

p(w|u) =
c(w, u) + 1∑

w′ c(w
′, u) + |V |

(4.4)

Where
∑
w′ c(w

′, u) is the co-occurrences of word u with other words in the vocabulary (i.e., w′) in the
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context of u and |V | is the size of the vocabulary.

We now analyze the five constraints for this new estimation method:

Constraint 1: As in the case of mutual information-based approach, this method does not ensure the

self-translation probabilities are constant across all the words.

Constraint 2: For satisfying the second constraint, we should show that c(w,w)+1∑
w′
c(w′,w)+|V |

> c(w,u)+1∑
w′
c(w′,u)+|V |

.

After some algebraic transformation, it is equivalent to show that:

|V | >
[(
∑
w′ c(w

′, w))(1 + c(w, u))]− [(
∑
w′ c(w

′, u))(1 + c(w,w))]

c(w,w)− c(w, u)
(4.5)

This suggests that as long as we set |V | to a sufficiently large value, this constraint would be satisfied.

However, can we obtain a lower bound for |V |? To investigate this, we may consider a special case where

the denominator is minimized, i.e., c(w,w) = c(w, u) + 1 and
∑
w′ c(w

′, w) = c(w)|D| where |D| is the

average document length. This leads to: |V | > [c(w)|D| − c(u)|D|)]c(w,w) − c(u)|D|. This gives us a way

to empirically set |V | to a sufficiently large value.

Constraint 3: We need to show that c(w,w)+1∑
w′
c(w′,w)+|V |

> c(w,u)+1∑
w′
c(w′,w)+|V |

, since c(w,w) > c(w, u), the

constraint is always satisfied.

Constraint 4: We need to show that c(w,u)+1∑
w′
c(w′,u)+|V |

> c(w,v)+1∑
w′
c(w′,v)+|V |

, Since the denominators are equal

(i.e.,
∑
w′ c(w

′, u) =
∑
w′ c(w

′, v)) and c(w, u) > c(w, v), this constraint is satisfied.

Constraint 5: We need to show that c(w,u)+1∑
w′
c(w′,u)+|V |

> c(w,v)+1∑
w′
c(w′,v)+|V |

, Since c(w, u) = c(w, v), and∑
w′ c(w

′, u) <
∑
w′ c(w

′, v), it is easy to see that this constraint is satisfied.

We call this method “Cond” in our experimental results. We see that the new method better satisfies

the constraints than mutual information-based approach. As we will show later, the new method indeed

outperforms mutual information-based approach.

4.5 Heuristic Adjustment of Self-Translation Probability

As pointed out earlier, none of the methods “MI” and “Cond” satisfy the first constraint. Here, we present a

general heuristic way to make the self-translation probability constant, which we will show later improves over
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the self-translation proposed in Section 3.4.2 (with α parameter). Given any estimated translation model

p(u|v), we can define an adjusted translation language model p′(u|v) to ensure constant self-translation

probability as follows:

p′(u|u) = s(s >= 0.5) (4.6)

Replacing p′(u|u) = s in Equation 3.15 gives us:

α+ (1− α) ∗ p(u|u) = s⇒ α = (s− p(u|u))/(1− p(u|u)). (4.7)

Then plugging in α in Equation 3.15 gives us:

p′(w|u) = (1− s) ∗ p(w|u)/(
∑
v 6=u

p(v|u)). (4.8)

We then plug in Equations 4.6 and 4.8 in Equation 3.7 to replace p(w|u).

We can apply this strategy to both methods “MI” and “Cond” leading to two additional methods, which

we denote as “CMI” and “CCond” in our experiments.

4.6 Experiments

The experiments in this section use three main document collections: (1) ad hoc data in TREC7 with TREC

topics 351-400 and 528,155 articles (2) WSJ news articles with TREC topics 51-100 and (3) technical reports

in DOE abstracts with TREC topics 51-100.

In the experiments, we only use title of the queries because short keyword query is the most frequently

used query type by web users and semantic term matching is necessary for such short queries. For all data

sets, preprocessing of documents and queries is minimum and involves only stemming with Porter stem-

mer [104] and stop word removal. All experiments are done using the Lemur toolkit. The performance is

measured using two standard measures: MAP and Precision@10. MAP serves as our main measure but

we show the results for P@10 for the sake of completeness. We set Dirichlet prior smoothing for baseline

methods to 1000 for all data sets. The methods used for the experiments in the following sections are:

BL: BaseLine, i.e., basic query likelihood method.

MI: Mutual information, i.e., translation language model with mutual information-based approach with

parameter α for self-translation probabilities explained in section 3.4.2.
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Table 4.1: Performance of translation language model on different datasets with conditional-based approach
(top): cross validation and (bottom): upper bound, * and + mean improvements over baseline BL and MI
are statistically significant with Wilcoxon signed-rank test, respectively. We only show the significance tests
for MAP measure.

Data MAP Precision @10
BL MI Cond BL MI Cond

TREC7 0.1852 0.1854 0.1864∗+ 0.4180 0.42 0.418
WSJ 0.2600 0.2658 0.275∗+ 0.424 0.44 0.448
DOE 0.1740 0.1750 0.1758∗ 0.1913 0.1956 0.2043

Data MAP Precision @10
BL MI Cond BL MI Cond

TREC7 0.1852 0.1885 0.1887∗ 0.4180 0.42 0.446
WSJ 0.2600 0.2708 0.2778∗+ 0.424 0.44 0.448
DOE 0.1740 0.1813 0.1868∗+ 0.1913 0.1956 0.2086

Cond: Conditional context, i.e., translation language model with conditional-based approach with param-

eter α for self-translation probabilities.

CMI: Constant mutual information, i.e., translation language model with constant parameter s for self-

translation probabilities explained in section 4.5 and mutual information-based approach for word-to-word

translation probabilities.

CCond: Constant conditional context, i.e., translation language model with constant parameter s for self-

translation probabilities explained in section 4.5 and conditional-based approach for word-to-word translation

probabilities.

For the translation language model, we have two parameters 1) the number of words used for translation

2) s: the amount of self-translation probabilities in Equations 4.6 and 4.8. In order to have a fair comparison

of the methods, we do leave-one-out cross validation to learn the two parameters for our method.

4.6.1 Comparing Conditional-Based Approach with Baselines

Our first hypothesis is that the proposed conditional-based approach for word-to-word translation probabil-

ities with parameter α for self-translation probabilities (method Cond) should outperform the BL method

and state of the art method MI which is the mutual information-based approach for word-to-word transla-

tion probabilities with parameter α for self-translation probabilities. Table 4.1(top) shows the leave-one-out

cross validation results for these methods and table 4.1(bottom) shows the upper bound results.

Comparing the columns Cond with BL in both tables indicates that the Cond method outperforms the

BL method according to both MAP and P@10. Significant tests using Wilcoxon signed-rank test[153] show

that the difference between these two methods are statistically significant. Since translation language model
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bridges the vocabulary gap and it is not only based on exact matching of query words, these results are

expected. In addition, the results confirm our hypothesis that conditional-based approach is able to capture

the word relatedness.

Comparing the columns MI with Cond in both tables indicates that the Cond outperforms the MI method.

Significant tests using Wilcoxon signed-rank test show that the difference between these two methods are

statistically significant for cases marked in the table. These results are intuitively expected which indicates

that in order to have a reasonable retrieval behavior, estimation methods should satisfy all the constraints

and we see that method Cond satisfies more constraints (it does not satisfy only the first constraint) than

method MI.

Table 4.2 (left) and (right) show some sample words that can be translated to word “launch” (a query

word in TREC 54) based both on conditional-based approach and mutual information-based approach,

respectively. As it is shown since the conditional-based approach considers the context of the words into

account, the other words that “launch” can be translated to are all in the same context whereas for the

mutual information-based approach, the words are not necessarily in the same context which further indicates

that the proposed estimation method based on conditional probabilities is better than mutual information.

Table 4.2: Sample word translation probabilities using conditional-based approach (left) and mutual
information-based approach (right). Note that words are stemmed. “launch” is a query word in TREC
query 54.

w=launch
u p(w|u)

launch 0.00341
nasa 0.00087

rocket 0.00082
tender 0.00078
satellit 0.00078
shuttl 0.00073
orbit 0.00072

eurobond 0.00069
missil 0.00068
space 0.00061

w=launch
u p(w|u)

launch 0.59830
rocket 0.02382
nasa 0.0222

shuttl 0.01675
satellit 0.01546

aim 0.01351
target 0.01117
space 0.01085
rival 0.00926
hostil 0.00839

4.6.2 Comparing Methods with Constant Self-Translation Probability

In this section, we look into the question whether the constant self-translation probability is effective for

both methods MI and Cond. The results are shown in Table 4.3 for both leave-one-out cross validation

results (top) and upper bound results (bottom). Comparing columns of MI and CMI clearly shows that the
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Table 4.3: Performance of translation language model on different datasets with conditional-based approach
and mutual information-based approach (top): cross validation and (bottom): upper bound, *, + and &
mean improvements over Cond, MI and CMI are statistically significant with Wilcoxon signed-rank test,
respectively. We only show the significance tests for MAP measure.

Data MAP Precision @10
MI CMI Cond CCond MI CMI Cond CCond

TREC7 0.1854 0.1872+ 0.1864 0.1920∗& 0.42 0.408 0.41 0.418
WSJ 0.2658 0.267+ 0.275 0.278∗& 0.44 0.442 0.448 0.448
DOE 0.1750 0.1774+ 0.1758 0.1844∗& 0.1956 0.2 0.2043 0.2

Data MAP Precision @10
MI CMI Cond CCond MI CMI Cond CCond

TREC7 0.1885 0.1905+ 0.1887 0.1965∗& 0.42 0.41 0.41 0.418
WSJ 0.2708 0.2717+ 0.2778 0.2800∗& 0.44 0.448 0.448 0.45
DOE 0.1813 0.1841+ 0.1868 0.1953∗& 0.1956 0.2043 0.2086 0.2086
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Figure 4.1: Comparison of mutual information-based approach and conditional-based approach according to
MAP measure on TREC 7 data set.

constant self-translation probabilities are effective. The statistical significant tests using Wilcoxon signed-

rank test shows that the results are indeed significant. In addition, comparing the columns of Cond and

CCond shows that CCond performs better than Cond stating that the constant self-translation probability

is indeed helpful.

In addition, comparing our proposed method CCond with both MI and CMI clearly indicates that

the conditional-based approach for translation probabilities with constant self-translation probability helps

improve the performance. Figure 4.1 shows the sensitivity of conditional-based approach and mutual

information-based approach to parameter s according to MAP measure on TREC 7 data set1. The dif-

ference indeed makes clear that conditional-based approach works better than mutual information-based

approach.

1Similar trends can be seen for other data sets.
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4.6.3 Results with Pseudo-Relevance Feedback

Pseudo-relevance feedback and translation language models both capture the word associations. The both

estimation methods, i.e., mutual information-based approach and conditional-based approach are consid-

ered global methods as they consider the whole collection to estimate the translation probabilities. However,

pseudo-relevance feedback is considered a local method, as it only considers the words in the top-ranked

documents to expand the query. As shown in Section 3.5.5, combining translation language model with

feedback helps improve the performance more. So, our hypothesis is that the proposed method CCond

when combined with feedback can still outperform method fb+MI. Table 4.4 shows the pseudo-relevance

feedback results for baseline, when pseudo-relevance is combined with mutual information-based translation

language model (fb+MI) and fb+CCond (constant conditional-based approach combined with feedback).

We again show the results based both on leave-one-out cross validation (top) and upper-bound (bottom)

results. For both methods fb+MI and fb+CCond, we first apply pseudo-relevance feedback on initial results

(i.e., KL-divergence retrieval model with Dirichlet prior smoothing [165]), and then this new query model

from pseudo-relevance feedback is used with both mutual information-based translation language model and

conditional-based approach. The feedback parameters are fixed to extract 10 top words from top 20 ranked

documents. As it is shown, the method fb+CCond can outperform both fb and fb+MI which further con-

firms that the proposed estimation method is better than mutual information-based approach. In addition,

the differences between the results are statistically significant for the cases marked in the tables.

Table 4.4: Performance of translation language model with conditional-based approach combined with
pseudo-relevance feedback on different datasets (top): cross validation and (bottom): upper bound, * and
+ means improvements over fb and fb+MI are statistically significant with Wilcoxon signed-rank test, re-
spectively. We only show the significance tests for MAP measure.

Data MAP Precision @10
fb fb+MI fb+CCond fb fb+MI fb+CCond

TREC7 0.2203 0.2210 0.2236∗+ 0.394 0.396 0.4
WSJ 0.2947 0.295 0.2975∗+ 0.47 0.468 0.464
DOE 0.1696 0.1868 0.186 0.1956 0.2 0.2

Data MAP Precision @10

fb fb+MI fb+CCond fb fb+MI fb+CCond
TREC7 0.2208 0.2232 0.2242∗ 0.394 0.396 0.4

WSJ 0.2947 0.2974 0.2988∗+ 0.472 0.468 0.466
DOE 0.1889 0.1921 0.1927∗ 0.2043 0.1956 0.213
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Figure 4.2: Sensitivity of MAP measure to parameter s (left) and sensitivity of MAP measure to the number
of words used for translation (right).

4.6.4 Parameter Sensitivity Study

There are two parameters associated with the translation language model which are the number of words

and s which controls the amount of self-translation probabilities. In this section, we study how sensitive the

MAP measure is to these two parameters.

Figure 4.2 (left) shows the sensitivity of MAP measure to parameter s in conditional-based translation

language model (CCond) for all data sets. The figure shows that the parameter s should be set to 0.5 <=

s <= 0.8 to achieve the optimal performance. Please note that when s = 1, the baseline (BL) results is

gained.

Figure 4.2 (right) shows the sensitivity of MAP measure to the number of words used for translation in

conditional-based translation language model (CCond) for all data sets. The figure shows that the method

is not so sensitive to the number of words used for translation.

4.7 Chapter Summary

Estimating word-to-word translation probabilities for statistical translation language model is challenging in

monolingual information retrieval. In this chapter, we performed axiomatic analysis for translation language

model and introduced various constraints that a reasonable translation language model should satisfy. The

existing estimation method based on mutual information did not satisfy all of them. We then proposed a

new estimation method based on the context of the words that satisfies all the constraints except for the

first one. We then defined a heuristic way to make the self-translation probability a constant so that both

methods can satisfy the first constraint. Experimental results show that our proposed new estimation is
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better than mutual information-based estimation, suggesting that the proposed constraints are probably

necessary in order to achieve good performance. Also, for both mutual information-based approach and the

new estimation method, when we ensure self-translation probabilities to be constant, it would also improve

performance, empirically supporting the proposed constraint.

For future work, it would be interesting to develop more constraints on translation models that can help

improve effectiveness of a translation model for retrieval. In addition, setting up a unified optimization

framework for estimating translation probabilities where constraints can directly be incorporated into the

estimation method is another future direction.

So far, in the last two chapters, we proposed novel methods that help improve the accuracy of retrieval

models in the pre-retrieval stage. In the next chapter, we describe an application of the statistical translation

language model for Twitter search.
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Chapter 5

An Application of Statistical
Translation Language Model -

Twitter Search
With the prevalence of social media applications, an increasing number of internet users are actively publish-

ing text information online. This influx provides a wealth of both text and social graph information on those

users. In weblog posts one can find a wide range of topics being discussed, as well as an evolving and implicit

friendship network among the bloggers themselves. In such social networks, we are dealing with collections

of text content where they exhibit a number of unique properties that necessitate the development of novel

ranking techniques for social media search. While there have been different ranking methods for Web search,

there is little study of ranking in social media. In the past, social network analysis solely focused on the

topology structure of a network addressing questions such as “what the diameter of a network is [83]”, “how

a network evolves [83]”, and “how information diffuses on a network [84]”. However, these techniques usually

do not leverage the rich text information.

Ranking in social media poses different challenges than Web search ranking, one of which is that microblog

messages are really short. For example, Twitter [143] messages are limited to 140 characters of contents.

This limit causes users to write in an abbreviated form [49] which increases the likelihood of having the

vocabulary gap (i.e., vocabulary mismatch problem). The vocabulary mismatch/gap problem means that

the user query uses one word and the relevant documents use another word and we need to match the query

with documents.

In this chapter, we study whether and how we can use statistical translation language model to solve

the ranking in Twitter. Twitter has gained huge popularity since the first day that was launched which has

drawn increasing interest from research and industry communities. As mentioned in the previous chapters,

statistical translation language model has been proposed for ad hoc information retrieval to reduce the

vocabulary gap between documents and queries. In this chapter, we first study whether a direct application

of standard translation language model would improve the performance for Twitter search and find that it

improves the performance. Further analyses reveal that statistical translation language model can have two

benefits; it helps to bridge the vocabulary gap and in case when there is no vocabulary gap it still helps by

improving the estimate of term frequency (TF) especially for short tweets where the words appear only once
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and there is no discrimination between the words. We then propose two ways to improve the performance

of statistical translation language model further. The first method is to leverage the hashtag information

to bridge the vocabulary gap between remotely related words. The second way is to have a per-term

self-translation parameter. We evaluate the proposed methods by comparing them with the best-performing

estimation method as described in the previous chapter, i.e., constant conditional context estimation method

on Twitter data set (called CCond). Experimental results show that the proposed solutions are effective in

alleviating the vocabulary gap problem, thus improving the accuracy of search results for Twitter search.

5.1 DataSet

For our data set, we use TREC microblog track 2011 data set. The microblog track was unique because

it required participants to crawl/download the data set on their own. This corpus consists of microblog

posts made available by Twitter. TREC organizers distributed data in a two-stage process. First, orga-

nizers enumerated a set of approximately 16M unique tweet ID numbers. Participants downloaded these

ID’s, then downloaded the tweets themselves using a software [135] provided by the track organizers. The

TREC-supplied software supported two types of download. We used the version that directly scrapes tweets

from Twitter’s web-facing HTML. We used this software to download those tweets among the enumerated

ID’s that were available via HTTP on May 25-26, 2011. In total our data set has 15,653,612 documents

with 5,243,118 unique users. Tweets are inherently multi-lingual, but we only consider English tweets in this

dissertation and we leave searching in multi-lingual language for future work. Therefore, accurate language

identification is important. We apply the following heuristics algorithm to discard non-English tweets from

our data set.

Given a set of tweets T, we want to find E v T such that E consists of only English tweets. We start

by defining a mapping R(w) that maps each entry in our set of known English words to a score value of 1.0,

and all other strings to 0.0. We then add more non-zero valued mappings to R during multiple passes (we

used 2 passes) over T. In each pass, we do the following to each tweet: break up each tweet into distinct

words, strip out hashtags, usernames, URLs, special characters and simple repeating patterns. We then look

at the average score, v, of the tweet by averaging together the R(word) values of its words. If this aggregate

score v is above a particular threshold value (we used 0.7), all the words wi found in the tweet are given

a new score value R(wi) ← max(R(wi), v), effectively upgrading each word’s confidence rating for English

usage. On the final pass, we designate all tweets with an aggregate score above a threshold (0.7 again) as
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Table 5.1: Comparing the results of translation language model, i.e., CCond with BL.
Method MAP P@10

BL 0.21 0.3244
CCond 0.2207 0.3448

containing primarily English content.

This results to contain only English tweets which are 8,349,758 tweets with 3,375,847 unique users. There

are about 1,906,548 users that have written only one tweet in total.

A set of 50 test topics was released for evaluation purposes. Each topic consists of a keyword query

and a temporal reference point, which acts as a query timestamp. NIST employed a pooling strategy to

obtain ground truth for evaluation purposes. There were no relevant items for topic 50 and it was therefore

eliminated from the topic pool.

Preprocessing of tweet documents and queries is minimum and involves only stemming with Porter

stemmer and stop word removal. All experiments are done using the Lemur toolkit. The performance is

measured using two standard measures: MAP and Precision @10. The optimal value for Dirichlet prior

smoothing parameter for baseline method is 1000.
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Figure 5.1: Vocabulary Gap measure against absolute difference of the translation language model (CCond)
and BL (left) and Vocabulary Gap measure against the relative difference between translation language
model (CCond) and BL (right).
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Figure 5.2: Absolute difference of the translation language model (CCond) and BL (left) and relative differ-
ence between translation Language model (CCond) and BL (right).

5.2 Study of Standard Translation Model for Twitter Search

In this section, we study the effectiveness of direct application of statistical translation language model for

Twitter search. And specifically we describe our vocabulary gap hypothesis:

Since there is a vocabulary gap in tweets, statistical translation language model can be used to reduce the

vocabulary gap between documents and queries.

In order to test the vocabulary gap hypothesis, we compare the results of statistical translation language

model with the BL approach, i.e., KL-divergence with Dirichlet prior smoothing [165]. The results are shown

in Table 5.1. Comparing the results of the statistical translation language model (CCond) with BL method

shows that there is an improvement over the BL method. However, given that the average length of the

tweets is short, the improvement is not as much as we expected. The question now is whether this kind of

model is really effective for bridging the vocabulary gap? to answer this question, we look into the statistical

translation language model to see if it really fills in the vocabulary gap for this Twitter data set.

In order to examine the vocabulary gap problem in tweets quantitatively, we propose a new measure,

i.e., Vocabulary Gap measure and plot the Vocabulary Gap measure against MAP where Vocabulary Gap

measure is defined as follows:

Vocabulary Gap measure = 1 - the percentage of the relevant documents that contain all the query words.
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Figure 5.3: Precision-Recall curves comparing statistical translation language model (CCond) with BL
method

When Vocabulary Gap = 1, it means that no documents contain all the words and when Vocabulary

Gap = 0, it means that all the documents contain all the words which make sense.

We then plot the Vocabulary Gap measure against absolute difference (MAP(CCond)-MAP(BL)) and

Vocabulary Gap measure against the relative difference:

Relative MAP difference = MAP (CCond)−MAP (BL)
MAP (BL)

The results are shown in Figures 5.1 (left) and (right), respectively. The results of both of these figures

indeed indicate that when there is a vocabulary gap (i.e., 1), statistical translation language model is indeed

helpful which confirms our hypothesis.

The interesting observation is that even if all (or many) query words are matched, we still observe an

improvement of the statistical translation language model. We hypothesize that the benefit comes from

improving the estimation of the term frequency heuristics. Indeed translation language model is a way of

smoothing and smoothing is important for short tweets, but even though the word occurs in a tweet, the

counts of the word is not informative. So, we look into the case to see even if there is no vocabulary gap

(i.e., all query terms are matched), statistical translation language model is still helpful because it helps

term frequency heuristics.

So for this experiment we look at only documents that match all query terms, and see if translation

language model can re-rank these documents more accurately than the BL method. We show the results for

each query in Figures 5.2 (left) based on absolute difference and (right) based on relative difference. The

results confirm that even if there is no vocabulary gap problem, statistical translation language model is still
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helpful because it helps to improve the term frequency.

Figure 5.3 shows the Precision-Recall curves comparing the BL method with translation language model

for this experiment. The Precision-Recall curves indeed indicate that the statistical translation language

model is still helpful even if there is no vocabulary gap.

Table 5.6 (top) shows the ranked lists of tweets for query “NSA” according to the BL method and

Table 5.6 (bottom) shows ranked tweets for translation language model. The italic tweet words in translation

language model (i.e., Table 5.6 (bottom)) are those words that support the query word “NSA” through the

translation language model and it shows that for the top 10 ranked tweets, the BL method can only retrieve

one relevant document vs. the translation language model can return three relevant documents. In addition,

the BL method generally favors short documents vs. there is not such a limit for statistical translation

language model due to getting support from other semantically related words in the tweets and as a result

improving the term frequency of the query words.

While in the past the benefit of semantic smoothing achieved by a translation model is mainly to bring

in unseen words related to a document, and its benefit for adjusting TF values for seen words in a document

may not be significant (since documents are generally long and the observed counts of seen words may be

discriminative enough), in Twitter search, the observed counts are not discriminative, and thus benefit of

adjusting the TF estimation becomes more significant.

In summary, the study of standard translation language model has two benefits for Twitter search and

in the next section, we study if we can further improve the translation language model.

5.3 Further Improving Statistical Translation Language Model

In this section, we investigate to see if we can further improve the statistical translation language model for

Twitter search.

5.3.1 Leveraging Hashtag Information

Many tweets are marked with # called hashtags. Hashtags are used to mark the topics in a tweet or the

intended audience [34]. For example, #CIKM2012 marks all tweets related to the 2012 CIKM conference.

In this section, we show that how hashtags can be leveraged to further improve the statistical translation

model by alleviating the data sparseness problem.

Table 5.2 (left) shows the number of hashtags for the number of tweets’ category. For example, it
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Table 5.2: Hashtag distributions.
Number of Tweets Number of Hashtags

1−5000 316,703
5000−10000 5
10000−15000 1
15000−20000 3
20000−25000 1

Number of Tweets Number of Hashtags

1 233,730
2−10 68,760

11−100 12,663
101−5000 1550

states that there are about 316,703 unique hashtags that have between 1 to 5000 tweets. To have a clear

understanding of the long-tail distribution, we break down the number of hashtags in 1−5000 category in

Table 5.2 (right).

Since tweets that have the same hashtag would mean that they are on the same topic, we build a new

collection by combining all tweets with the same hashtag to form a larger document. We then estimate the

translation probabilities using Equation 4.4 in this larger collection (hashtag collection). The reason behind

this idea is that hashtags help to connect remotely related words once they are in the same document.

We then combine the translation probabilities estimated based on the hashtag collection and the original

collection based on the following formula:

P (w|u) = (1− γ)PC(w|u) + γPH(w|u) (5.1)

where PH(w|u) is the estimated translation probability based on the hashtag collection and PC(w|u) is

the estimated translation probability based on the whole collection. γ is the parameter that controls the

amount of the translation probabilities for each of these collections which we empirically set it. We call this

method TM−CombinedHashTags.

Figure 5.4 shows the sensitivity of the MAP measure to γ parameter. It shows that when γ = 0.3, the

optimal value is gained which means that we want to focus more on the estimation probabilities gained from

the whole collection.

Table 5.3 shows that leveraging hashtag information helps improve the performance by bringing remotely

connected words together. The table also shows that the proposed method is statically significant using

Wilcoxon singed ranked test. A main hypothesis here is that a hashtag will not be able to help if it just

occurs in one single tweet or a few tweets as it would not help much in bringing together remotely related

words. It means that the improvement that we see has come from the hashtags that do occur in many tweets

as the analyses in Table 5.2 shows.
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Table 5.3: Comparing the results of TM−CombinedHashTags and CCond. * and + means improvements
over BL and CCond are statistically significant with Wilcoxon signed-rank test, respectively. We only show
the significance tests for MAP measure.

Method MAP P@10

BL 0.21 0.3244
CCond 0.2207∗ 0.3448

TM−CombinedHashTags 0.2295∗+ 0.3551

5.3.2 Adaptively Setting the Self-Translation Parameter

This method is a general approach and later we show the results based on news data set (AP90) as well too.

Since a user might use the hashtag word as a query word to indicate the topic he is looking for, we need

to adaptively set the self-translation probability for each query word. The first question is: What query

terms should have high self-translation probabilities? Intuitively the words that do not rely on translations;

because they are already covered well.

The second question is: How we should set this parameter for each query word without relevance judg-

ments? We do approximation and follow the idea of measuring the vocabulary gap in the previous section,

and set the self-translation parameter to the percentage of the query word that appear in the top N retrieved

documents (pseudo-relevance feedback). The reason is because we assume that top N documents is a good

approximation of the relevant documents. We call this method TM−AdaptiveQW (adaptive self-translation

parameter for each query word).

Table 5.4 shows that adaptively setting the self-translation parameter for two data sets, i.e., Twitter

(left) and AP90 (right) further help improves the performance. The table also shows that the proposed
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Table 5.4: Comparing the results of TM−AdaptiveQW and CCond both based on Twitter data set (left)
and AP90 data set(right). * and + means improvements over BL and CCond are statistically significant
with Wilcoxon signed-rank test, respectively. We only show the significance tests for MAP measure.

Method MAP P@10

BL 0.21 0.3244
CCond 0.2207∗ 0.3448

TM−AdaptiveQW 0.23∗+ 0.3469

Method MAP P@10

BL 0.21484 0.3978
CCond 0.264∗ 0.4234

TM−AdaptiveQW 0.2698∗ 0.4234

methods are statically significant using Wilcoxon singed ranked test.

Figure 5.5 shows the sensitivity of MAP measure to the top N retrieved documents. Figure 5.5 (left)

shows that when we use top 50 documents to set the self-translation probability on Twitter data set, the

optimal value is gained. However for AP90, the optimal value is gained when using top 300 documents as

shown in Figure 5.5 (right).
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Figure 5.5: Number of documents used for pseudo-relevance feedback to set the self-translation probability
for each query word, Left: Twitter data set and Right: AP90 data set.

The third question that we should ask is: How many top-ranked documents should then be used to

estimate the self-translation probability? If a query has more relevant documents, we should look at more

retrieved documents to set the self-translation probability (i.e., positive correlation). Figure 5.6 confirms

that. Figure 5.6 (left) shows positive correlation between the optimal number of documents to set the

self-translation parameter and the total number of relevant documents for each query. To aid exposition,

in Figure 5.6 (right), we show the correlation between the average number of relevant documents and the

optimal number of retrieved documents which again confirms that the more relevant documents we have for

each query, the more top N retrieved documents should be used to set the self-translation probability.
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Figure 5.6: Positive correlations between the relevant documents and the top N retrieved documents for
each query to set the self-translation probability.

Table 5.5: Comparing the results of TM−Adaptive−IDF and TM−AdptiveQW on Twitter data set. * means
improvements over BL is statistically significant with Wilcoxon signed-rank test, respectively. We only show
the significance tests for MAP measure.

Method MAP P@10

Baseline 0.21 0.3244
TM−AdaptiveQW 0.23∗ 0.3469

TM−Adaptive−IDF 0.233∗ 0.3469

Analyzing Constant Self-Translation Probability Constraint:

In Section 4.1, we described that:

In order to have a reasonable retrieval behavior, for all translation language models, we have p(w|w) =

p(v|v),∀w, v.

But in this section, we described how to adaptively set a self-translation probability for each query word.

In order to obey the “constant self-translation probability”, we set the self-translation probabilities for all

the query words with the same document frequency to the average of their self-translation probabilities.

This is to ensure that the self-translation probabilities for query words with the same document frequency

are the same. We expect this method to improve the performance. We call this method “TM-Adaptive-

IDF”. The results in Table 5.5 indeed indicate that the constant self-translation probability further improves

the performance. The reason for not being statistically significant is that there are not many query terms

with the same document frequency in this Twitter data set. Figure 5.7 also shows that the absolute MAP

difference for these two methods for each query. As shown in the figure, the method TM−Apdative−IDF

improves over the TM−AdaptiveQW .
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Figure 5.7: Absolute difference of method TM−Adaptive−IDF and TM−AdaptiveQW .

5.4 Chapter Summary

In this chapter, we studied the direct application of standard translation language model for Twitter search.

Further analyses revealed that statistical translation language model can have two benefits; it helps to

bridge the vocabulary gap and in case when there is no vocabulary gap it still helps by improving the

estimate of term frequency especially for short tweets where the words appear only once and there is no

discrimination between the words. We then proposed two ways to improve the performance of statistical

translation language model further. The first method is to leverage the hashtag information to bridge the

vocabulary gap between remotely related words. The second way is to have a per-term self-translation

probability. We evaluated the proposed methods on Twitter data set. Experimental results showed that our

proposed solutions are effective, thus improving the accuracy of search results for Twitter search.

For future, it would be interesting to look into some other ways to construct the pseudo documents than to

concatenate all tweets containing the same hashtag and see how the estimated translation language model

would be different. One alternative way would be to consider different Twitter characteristics including

time, users and etc. For example, it would be interesting to see how the estimated translation probabili-

ties based on combining tweets with the same time (or the same user) would change the performance. This

strategy might be complementary with the “deficiency” of hashtags most of which only occur in a few tweets.

So far, in the last three chapters, we proposed novel methods and an application of the models for Twitter

search that help improve the accuracy of retrieval models in the pre-retrieval stage. In the next chapter, we

discuss about how the accuracy of search engines can be improved when we present the results to the user.
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Chapter 6

Post-Retrieval: Optimization
Framework for Negative Feedback

In the previous chapters, we discussed about the pre-retrieval stage (i.e., how the queries are matched with

the documents). In this chapter, we discuss what happens after we show the results to the user which is

called post-retrieval stage.

When a query is so difficult that a large number of top-ranked documents are non-relevant, a user would

have to either reformulate the query or go far down on the ranked list to examine more documents, both

may decrease the user satisfaction. As a result, improving the effectiveness of search results for such difficult

queries would bring user satisfaction which is the ultimate goal of search engines.

A commonly used strategy to improve search results is through feedback techniques, including relevance

feedback (e.g., [115, 118, 121]), pseudo-relevance feedback (e.g., [5, 11, 155]) and implicit feedback [129].

In the case of difficult queries, if we can perform effective negative feedback when a user could not find

any relevant document on the first page of the search results, we would be able to improve the ranking

of the unseen results in the next few pages. It is clear that in this case of negative relevance feedback,

we only have negative (i.e., non-relevant) documents since a query is difficult that none of the top-ranked

documents are relevant. When a user is unable to reformulate an effective query (which happens often in

informational queries due to insufficient knowledge about the relevant documents), negative feedback can be

quite beneficial, and the benefit can be achieved without requiring extra effort from users (e.g., by assuming

the skipped documents by a user to be non-relevant).

While relevance feedback has been studied extensively, negative feedback has just attracted attention

recently. In [148, 149], the authors studied different methods for negative feedback in both language models

and vector space model and concluded that negative feedback for language modeling approaches works

better than the vector space model. Negative feedback works by excluding documents that are similar to

an example negative document. Previous work [149] has shown MultiNeg strategy is most useful when

each individual negative document is considered independently, suggesting that negative documents are

distracting in different ways. Thus, as training examples, negative examples are sparse. Intuitively, if we

can learn from each single negative example to prune aggressively a lot of non-relevant documents from
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the top-ranked documents, we should improve the performance more, but in reality there is a risk of over-

generalization of a negative example. Thus, an important, yet difficult question is how to appropriately

generalize a negative language model; specifically, there are two technical challenges to be solved:

1. What does a general language model mean? How do we formally define generality?

2. Among all the general negative language models of a given negative example, which one should we

choose so that we can both maximize its pruning power and avoid over-generalization?

To address the first research question, we propose a formal definition of generality of a language model to

measure if one negative language model is more general than another. For example, if the query is “jaguar”

and the user is looking for documents about jaguar animals, a document containing a jaguar car would be

a non-relevant example. This document, however, may not mention the word “car” that often, so if we

construct a negative document language model based on this document, the high probability words may be

words of a particular jaguar car model such as “Alezon” and “Oxford models”. While it is safe to use such

words to prune non-relevant documents, their pruning power is limited. A more common word like “car”

would be able to prune non-relevant documents more effectively. This generalized negative language model

is meant to capture this intuition, and it can be expected to be more effective than the original negative

document language model in removing other unseen non-relevant documents, thus improving the accuracy

of search results.

Figure 6.1: An illustrative example. Only case (a) is desirable.

To address the second research question, we propose an optimization framework where we seek a gener-

alized negative language model that optimizes three criteria:

1) closeness to the original negative language model, 2) not too close to the query and not too far away

from the query (if it is too close to the query, there would be a danger of pruning relevant documents,

while if it is too far away from the query, it would not be very effective in pruning top-ranked non-relevant
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documents), and 3) a generalization constraint that defines the amount of generalization we would like

to achieve. The reason why all these three components are important can be explained in Figure 6.1,

where (a) shows that the general negative language model (i.e., green circle) is safe since it is both close

to the original negative language model (thus ensures that the pruned documents to be non-relevant) and

reasonably close (not too close) to the query (thus can make a difference in the top-ranked results through

pruning). Figure 6.1 (b) shows that if we move too far away from the original negative language model

and very close to the query, there would be a danger that we would move into the relevant documents zone

(red circle). Figure 6.1 (c) shows another undesirable case where we move too far away from the query and

as a result, pruning would only affect the lowly ranked documents, and thus is less effective; specifically,

although those documents (shown in red circle) are negative documents, removing those documents does

not help improving the retrieval accuracy for the given query since they are not in the query zone. So, it is

very important to ensure the generalized negative language model to be close (though not too close) to the

given query and close to the original negative language model.

Since the space of all possible negative language models is infinite, we propose two instantiations of our

proposed optimization framework to search in a finite space of all feasible language models, which is more

tractable.

The first instantiation is based on the KL-divergence distance function where we propose two different

methods:

1) Perturbation: to remove the terms (based on the generality measure) in the original negative language

model that have less power in pruning non-relevant documents.

2) K-nearest neighborhood (KNN): to search in the neighborhood of the original negative language model

to find a more general negative language model.

The second instantiation is based on selecting only powerful terms from the original negative language

model where we define an optimization formulation and find an exact solution by solving the optimization

formulation directly.

Before we talk about the optimization framework, we give the necessary background for feedback models

in language modeling framework.

6.1 Negative Feedback for Language Models

The basic idea in relevance feedback is to extract useful terms from positive documents and use them to

expand the original query. When a query is difficult, it is often impossible to obtain positive (or relevant)
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documents for feedback. Therefore, the best way would be to exploit the negative documents to perform

negative feedback [149]. The idea of negative feedback is to identify distracting non-relevant documents and

penalize unseen documents containing such information. More formally:

Given a query q and a document collection C, a retrieval system returns a ranked list of documents

L where li is the i−th ranked document in the ranked list L. We assume that the query q is difficult so

that the top f ranked documents (seen so far by the user) are non-relevant. The goal is how to use these

negative examples, i.e., N = {l1, . . . , lf}, to re-rank the next r unseen documents in the original ranked list:

U = {lf+1, · · · , lf+r}.

The two negative feedback methods proposed in [149] are SingleNeg and MultiNeg methods which we

briefly describe below:

SingleNeg: This method adjusts the original relevance score of a document with a single negative model.

Let θq and θd be estimated query model and document model, respectively. Let θN be a negative topic model

estimated based on negative feedback documents N = {l1, . . . , lf}. The new scoring according to this model

is:

S(q, d) = −D(θq||θd) + β.D(θN ||θd) (6.1)

In order to estimate θN , it is assumed that all non-relevant documents are generated from a mixture model

of a unigram language model θN and a background language model (generating common words). The

log-likelihood of these documents is:

L(N|θN ) =
∑
d∈N

∑
w∈d

c(w, d)log[(1− λ)p(w|θN ) + λp(w|C)] (6.2)

Where λ (=0.9 in our experiments) is a mixture parameter that controls the weight of the background model,

i.e., p(w|C) = c(w,C)∑
w
c(w,C)

. The standard EM algorithm is used to estimate parameters p(w|θN ).

MultiNeg: This method adjusts the original relevance scores with multiple negative models. Document

d w.r.t query q is scored as follows:

S(q, d) = SR(q, d)− β × S(qneg, d) (6.3)

= SR(q, d)− β ×max(

f⋃
i=1

{
S(qineg, d)

}
)
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= −D(θq||θd) + β ×min(

f⋃
i=1

{D(θi||θd)}).

where qneg is a negative query representation and β is a parameter that controls the influence of negative

feedback. EM algorithm is used to estimate a negative model θi for each individual negative document li in

N . Then we obtain f negative models and combine them with the above formula in our experiments.

Improving negative document language model: A basic component in both SingleNeg and MultiNeg

is a negative document language model (i.e., θN in SingleNeg and θi in MultiNeg), and the accuracy of the

estimate of these negative document models may affect the effectiveness of the negative feedback significantly.

A main goal of our study in this chapter is to improve the estimate of a negative document language model

through generalizing a basic negative document language model (estimated with an existing approach) with

an optimization framework. The improved negative document language models can then be directly plugged

into an existing negative feedback method to replace a current negative document language model. In

the next section, we present an optimization framework for improving the estimate of negative document

language models.

6.2 An Optimization Framework for Generalizing Negative

Language Models

6.2.1 Problem Formulation

The goal of our study is to use top f negative examples, i.e., N = {l1, . . . , lf} (with language model θN )

to build a set of more general negative language models, each corresponding to a negative example, so that

these general negative language models are better able to describe other unseen negative documents and im-

prove the ranking of documents by pushing down negative documents in the ranked list. More formally, given

θN = {θ1, . . . , θf} which is the original negative language model based on documents in N , where

θ1 = {w1 : p1, . . . , wm : pw} (similarly for {θ2, . . . , θf}), i.e., each language model consists of words along

with their probabilities.

Our goal is to estimate θGN
= {θG1 , . . . , θGf}, a set of more general negative language models than θN ,

where each negative language model θGi
is more general than its corresponding negative language model,

θi. The improved negative language models θGN
can then be plugged into a negative feedback method to

62



improve feedback performance.

6.2.2 Optimization Framework

In order to build a more general negative language model, we propose an abstract optimization framework

that given θN , searches in the space of all language models and finds a set of more general negative language

models, i.e., θGN
. Note that since there are so many general language models, we make it tractable by

searching in a finite space of all feasible solutions, S.

The objective function is defined as:

θG∗
N

= arg min
θGN

∈S
(αδ(θGN

, θN ) + (1− α)δ′(θGN
, q)) (6.4)

Subject to:

G(θG∗
N

) > G(θN ) + ε (6.5)

This abstract optimization framework defines that we would like to search in the finite space of all

language models S, to find a more general negative language model θG∗
N

, that is 1) close to the original

negative language model θN (the first term), 2) and close to query q (the second term). The closeness to the

query ensures the pruning power, and the closeness to the original negative language model both ensures

that the feedback model is indeed accurate and prevents θG∗
N

from being too close to the original query. The

generalization constraint is to avoid over-generalization. So, we want the general negative language model

to deviate by only ε from its original negative language model (i.e., G(θG∗
N

) > G(θN ) + ε).

δ and δ′ are distance functions. G(θ) is a generality measure defined in the next section. α is a tradeoff

between closeness to the query and closeness to the original negative language model. ε controls the devia-

tion from the original negative language model. These parameters can be optimized based on training data

(i.e., cross validation) as done in our experiments.

In order to use the proposed optimization framework for negative feedback, there are three remaining

problems to be solved:

1. Definition of the generality measure, i.e., G(θ).

2. Definition of the similarity/distance functions δ and δ′.

3. Definition of a search algorithm to efficiently enumerate the most promising candidate language models.
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Note that the space of potential language models is infinite, but in order to do effective enumeration,

our proposed methods search in the finite space (we discuss how to search in the finite space in the

next section).

In the next section, we discuss how we solve these problems.

6.3 Instantiation of the Optimization Framework

6.3.1 Generalization of Language Models

In this section, we propose to quantify the generality of a language model by introducing a new notion called

Generality of a language model to measure if one negative language model is more general than another.

The Generality measure is defined as the expected number of documents that hit a word. More For-

mally:

Generality G(θ): A language model θGK
is more general than language model θK iff G(θGK

) > G(θK)

where G is defined as:

G(θ) =
∑
w∈θ

df(w)× p(w|θ) (6.6)

Where df(w) is the number of documents containing word w in collection C (document frequency) and p(w|θ)

is the probability of word w given language model θ. Intuitively, the generality in this formula is captured

through both the probability of the word in the language model and the number of documents containing

that word in the collection.

Next, we define the distance functions, δ and δ′ in our optimization framework, and discuss how to

efficiently solve the optimization problem.

6.3.2 Distance Functions δ and δ′

In this section, we define two distance functions based on KL-divergence [29] and term-based similarity,

respectively. The search strategies vary according to the distance functions.

• KL-divergence

The first instantiation of the abstract optimization framework is to define the distance functions based

on KL-divergence. Formally:
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δ(θGN
, θN ) =

1

2
[D(θGN

||θN ) +D(θN ||θGN
)] (6.7)

δ′(θGN
, q) = D(θGN

||θq) (6.8)

where θq is the query language model. Since there might be some terms which are absent in each

of those distributions, we use the symmetric version of KL-divergence for the similarity between two

distributions θN and θGN
, (i.e. δ(θGN

, θN )).

With these instantiations, our objective function is completely defined. So the next challenge is how

to efficiently search in the space S to find an optimal solution. Here we propose two strategies:

1. Perturbation of θN : For each θi in the original negative language model, we build a more

general negative language model by removing those words w that satisfy p(w|θi) × df(w) < Ψ

and we still ensure that the final negative language model, i.e., θGi is still more general than θi,

i.e., satisfying the generalization constraint and minimizing the objective function. Note that the

probabilities are re-normalized to ensure they are comparable.

2. K-nearest Neighborhood (KNN): For this method, we search among the K-neighbors of the

negative language model θi for those satisfying the generality constraint, and then among the

satisfied ones, we select the best one that minimizes our abstract objective function, i.e., it is

both close to the original negative language model and query. Then we use the negative language

model of that neighbor instead of the original negative language model as a more general negative

language model. We denote this as KNN in our experiments.

• Term-based similarity

In this section, we present another instantiation of our abstract optimization framework where we

seek an exact solution in a finite space of all language models defined based on term similarity and

selection. This idea is to convert the problem of searching for θGN
to search for optimal values for

binary variables xi’s that would tell us which words should be selected in the generalized negative

language model. Specifically, for each top non-relevant document, we get m non-relevant words gained

from MultiNeg strategy and feed those terms to an optimization problem using an objective function

instantiated as follows.

In the abstract optimization framework defined earlier, there are two important components, which

we now discuss how to instantiate using term-based similarity. For convenience, in the following we
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use δ and δ′ to denote similarity instead of distance as in the original optimization framework.

1) Generalization of the negative language model: We instantiate this component as:

δ(θGN
, θN ) = (DF.P )T ×X (6.9)

where

DF = [df(w1), . . . , df(wm)]T is a vector of document frequencies (in the collection) for each word wi

(document frequency for word wi).

P = [p(w1|θi), . . . , p(wm|θi)]T where i is between zero and 10 for each of the 10 non-relevant documents

(e.g., p(w1|θi) is the probability of word w1 given the language model θi).

X = [x1, . . . , xm]T is the solution vector, which tells which of the words among m words should be

included as final words according to the objective function.

The operator “.” means element-by-element multiplications of two vectors DF and P .

Maximizing this similarity function has a mixed effect of both staying close to the negative language

model (by preferring terms with high probabilities according to the negative language model) and max-

imizing generalization. As a result, with this formulation, there is no need to have the generalization

constraint (i.e., inequality 6.5).

2) Closeness to query:

δ′(θGN
, q) = SimT

q ×X (6.10)

where Simq = [Sim(w1, q), . . . , Sim(wm, q)]
T which is the similarity between each word and query

word. In case a query consists of multiple words, we get their average similarity. We define the co-

occurrence between two words as their similarity. The co-occurrence similarity is based on mutual

information as described in Equation 3.13.

According to this instantiation strategy, the optimization problem becomes:

max
[
α(DF.P )T ×X + (1− α)SimT

q ×X
]

(6.11)

However, there are two problems with the above formula: 1) The two components defined in this
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optimization framework are not really comparable, so the interpolation parameter α is not very mean-

ingful; 2) Since we maximize generalization in the first term, we no longer have protection against

being too close to the query. To address these two issues, we reparameterize the objective function as

follows, where γ < 0 is a parameter to control the closeness to the query.

Maximize

((DF.P )T ×X + γSimT
q ×X)

Subject to:

C1:xi ∈ {0, 1}

Figure 6.2: Optimization formulation

This optimization framework has an analytical solution, i.e., xi = 1 (i.e., we would select wi), iff

df(wi)p(wi|θN ) > −γSim(wi, q). The intuition here is that the closer a term is to the query, the

higher we would set its threshold of generality; this way, if a selected term is very close to the query,

it would have to be a very general term, thus unlikely hurting relevant documents. Note that when

γ ≥ 0, the solution is to select all terms with no generalization.

Our solution, i.e., X would tell us which terms should be added to the final negative language model,

and we can then recover the θGN
based on X as follows (re-normalization is done):

p(wi|θGN
) ∝ xip(wi|θN ) (6.12)

We denote this method as OptMultiNeg in our experimental results.

6.4 Experiment Design

6.4.1 Data Sets

We experiment with two data sets that are representative of heterogeneous and homogeneous data sets,

respectively. Our first data set is ROBUST track of TREC 2004 which has 528,155 news articles [146].

On average, each document has 521.89 words and there are 249 queries1 in this set. The robust track

is a standard ad hoc retrieval with an emphasis on the overall reliability of IR systems which contains

difficult queries and is a heterogeneous data set. The data set is called “ROBUST”.

1One query was dropped because the evaluators did not provide any relevant documents for it.
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The second data set is the AP88-90 in ad hoc retrieval which is a homogeneous data set. It contains

242,918 documents. On average, each document has about 464.226 terms. We used queries 51−200

for our experiments. The data set is called “AP88-90”.

For both data sets, preprocessing of documents and queries is minimum and involves only stemming

with Porter stemmer but without removing any stopwords. As in some previous work (e.g., [165]), we

did not remove stop words for two reasons: (1) A robust model should be able to discount the stop

words. (2) Removing stop words would introduce one extra parameter (e.g. the number of stop words)

into our experiments.

Since our goal is to study difficult queries, we consider naturally difficult queries from our data sets as

follows:

We follow the definition of naturally difficult queries as in [149]. A query is naturally difficult when its

P@10=0 given a retrieval model. For language model (LM), we use the standard ranking function (i.e.,

KL-divergence retrieval model with Dirichlet prior smoothing [78]) to select their naturally difficult

queries. We first optimize the parameter µ (Dirichlet prior) for LM on all data sets. The optimal is

gained when µ = 2000 for ROBUST data set and µ = 3000 for AP88-90 data set using Lemur toolkit.

We then fix these parameters in all the following experiments. Using the optimal parameter setting,

we select those queries whose P@10=0 as our naturally difficult queries. 26 queries in ROBUST and

38 queries from AP88-90 are selected as naturally difficult queries and we experiment with these query

sets in the rest of this chapter.
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Figure 6.3: Sensitivity of the GMAP measure to the number of terms used for negative feedback with
MultiNeg method.
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6.4.2 Baselines and Experiment Procedure

Since previous work has shown MultiNeg is the most effective negative feedback method [149], we

focus on applying the proposed language model generalization method to MultiNeg, and compare our

proposed methods (i.e., OptMultiNeg, KNN and Perturbation) with two state of the art methods, i.e.,

SingleNeg and MultiNeg. All our proposed solutions follow the same scoring as described in Section 6.1,

i.e., each negative document is used to penalize unseen documents, however the language models in

our methods are more general.

Our experiment setup is the same as the one adopted in [149]. The goal is to simulate a scenario when

a user has found the top-K ranked documents are non-relevant (i.e., these document were skipped by

a user without being viewed) and is about to view the rest of the search results. At this point, we

can naturally apply negative feedback to re-rank all the unseen documents. We set K = 10, which

simulates the scenario of applying negative feedback when a user has not found any relevant document

on the first page of search results and is about to view the next page of results (a realistic assumption

in the case of difficult topics).

With this setup, the top-ranked 1000 unseen documents for all runs were compared in terms of

two sets of performance measures: (1) Mean Average Precision (MAP) and Geometric mean Average

Precision (GMAP), which serve as good measures for the overall ranking accuracy. (2) Mean Reciprocal

Rank (MRR) and Precision@10 (P@10), which reflect the utility from users perspective who only read

the top-ranked documents. Please note that since we are working with difficult queries, GMAP is

considered as our main measure, however, we show our experimental results based on all measures

for the sake of completeness.

In order to set two baseline parameters (i.e., β and ρ), we do cross validation as follows: We fix the

number of feedback terms to 100 and learn two baseline parameters, i.e., β (i.e., a parameter to control

the influence of the negative feedback) and “number of documents to penalize” (ρ in [149]) based

on the training data. Since there are not so many naturally difficult queries in TREC data sets, we

do leave-one-out cross validation to learn the parameters for the baselines. The parameters of our

proposed methods, i.e., γ, α, Ψ and ε are also leaned through leave-one-out cross validation. Thus, the

parameters of all the methods (i.e., our proposed methods and baseline methods) are optimized in the

same way (i.e., leave-one-out cross validation) to have a fair comparison. Please note that the number

of feedback terms is chosen to be 100 (for each document) without loss of generality. As shown in

Figure 6.3, when the number of feedback terms are small (smaller than 100), the performance is not
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Table 6.1: Performance of the optimization framework on ROBUST data set based on cross validation (top)
and upper bound (bottom), * and + means improvements over MultiNeg and SingleNeg are statistically
significant with Wilcoxon signed-rank test, respectively. We only show the significance tests for GMAP
measure since this is our main measure given that we are improving the performance of difficult queries.
These results are only based on 100 words extracted from each top non-relevant document.

Methods MAP GMAP MRR P@10
SingleNeg (baseline) 0.0321 0.0134 0.1775 0.088
MultiNeg (baseline) 0.0318 0.0132 0.2124 0.08

KNN 0.0322 0.0138∗+ 0.2137 0.084
Perturbation 0.0327 0.0136∗ 0.2597 0.088
OptMultiNeg 0.0365 0.0144∗+ 0.2804 0.084

OptMultiNeg/MultiNeg 14.7% 9% 32% 5%
OptMultiNeg/SingleNeg 13.7% 7% 57% -4.5%
Perturbation/MultiNeg 2.8% 3% 22% 10%
Perturbation/SingleNeg 1.8% 1.5% 46% 0%

KNN/MultiNeg 1.2% 4.5% 0.6% 5%
KNN/SingleNeg 0.31% 3% 20% -4.5%

Methods MAP GMAP MRR P@10
SingleNeg (baseline) 0.0351 0.0145 0.2195 0.092
MultiNeg (baseline) 0.0361 0.0151 0.2388 0.088

KNN 0.034 0.0154∗+ 0.2445 0.088
Perturbation 0.0393 0.0159∗+ 0.3407 0.1
OptMultiNeg 0.0378 0.0156∗+ 0.3223 0.088

good (with MultiNeg baseline method) and when the number of feedback terms are very large (larger

than 200), the performance drops. To aid exposition, we increase the number of feedback terms to

even 10000 in Figure 6.3 (right), and as shown, the performance drops when the number of feedback

terms increases.

We also experiment to get the optimal performance on test queries. For that, we vary β from 0.1 to

0.9 and ρ from 50 to 1000 on test queries and select the best-performing set of parameters (i.e., one β

and one ρ for all test queries) according to GMAP measure as done in [149]2 but our main focus would

be on the results gained from cross validation. We also vary γ, α, Ψ and ε in our proposed solutions

as shown in Figures 6.4 and 6.5 to get the optimal parameters.

6.5 Experimental Results

6.5.1 Effectiveness of our Proposed Solutions

In order to see the effectiveness of our proposed solutions, we compare them with the baselines methods.

2The authors only reported the upper bound results (or the optimal results) without reporting the results based on cross
validation. However, one should note that parameters should be learned based on training data sets.
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Table 6.2: Performance of the optimization framework on AP88-90 data set based on cross validation (top)
and upper bound (bottom), * and + means improvements over MultiNeg and SingleNeg are statistically
significant with Wilcoxon signed-rank test, respectively. We only show the significance tests for GMAP
measure since this is our main measure given that we are improving the performance of difficult queries.
These results are only based on 100 words extracted from each top non-relevant document.

Methods MAP GMAP MRR P@10
SingleNeg (baseline) 0.0377 0.0091 0.1500 0.0631
MultiNeg (baseline) 0.0389 0.0093 0.1521 0.0651

KNN 0.0388 0.0094+ 0.1554 0.0657
Perturbation 0.0386 0.0093+ 0.1523 0.0631
OptMultiNeg 0.0391 0.0096∗+ 0.1937 0.0658

OptMultiNeg/MultiNeg 0.5% 3% 27% 1.1%
OptMultiNeg/SingleNeg 3.7% 5.5% 29% 4%
Perturbation/MultiNeg -0.7% 0% 0.13% -3%
Perturbation/SingleNeg 2.4% 2% 1.5% 0%

KNN/MultiNeg -0.25% 1% 2.2% 0.9%
KNN/SingleNeg 2.9% 3% 3.6% 4.1%

Methods MAP GMAP MRR P@10
SingleNeg (baseline) 0.0381 0.0092 0.1517 0.0684
MultiNeg (baseline) 0.0396 0.0094 0.1914 0.0684

KNN 0.0393 0.0095+ 0.1755 0.0684
Perturbation 0.0403 0.0096∗+ 0.197 0.071
OptMultiNeg 0.0392 0.0097∗+ 0.1950 0.0658

The results are shown in Tables 6.1 and 6.2 based on both collections ROBUST and AP88-90, respec-

tively. Table 6.1 (top) shows the cross validation results on ROBUST data set and Table 6.1 (bottom) shows

the upper bound results. The results in Table 6.2 (top) and (bottom) also show cross validation and upper

bound results based on AP88-90 data set, respectively. The upper bound baseline results are comparable to

their corresponding results reported previously [149] (the authors of [149] did not report the cross validation

results). From these two tables, we have the following observations:

(1) The results both based on upper bound and cross validation show that our proposed methods

outperform the baselines in terms of GMAP (since this serves as our main measure and we maximize based

on this measure when learning the parameters). For example, on ROBUST data set, the OptMultiNeg

method can improve GMAP from 0.0132 (in MultiNeg method) to 0.0144, about 9% relative improvement

which is a significant improvement given that the difficult queries are harder to be improved. On AP88−90,

our proposed methods can also significanlty improve over baseline methods. The results are also statistically

significant based on Wilcoxon signed-rank tests (for GMAP measure) for those cases marked in the tables.

We also show the percentage improvement for our methods over the baselines (based on cross validation only)

in Tables 6.1 and 6.2 (top). For example, OptMultiNeg/MultiNeg means the improvement of OptMultiNeg

over MultiNeg baseline method. Please note that we only show the percentage improvement for cross
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Table 6.3: Performance of the optimization framework on ROBUST data set based on cross validation (top)
and Upper bound (bottom), * and + means improvements over MultiNeg and SingleNeg are statistically
significant with Wilcoxon signed-rank test, respectively. We only show the significance tests for GMAP
measure. These results are based on all words extracted from each top non-relevant document.

Methods MAP GMAP MRR P@10
SingleNeg (baseline) 0.0336 0.0137 0.1861 0.088
MultiNeg (baseline) 0.0287 0.0127 0.1502 0.08

OptMultiNeg 0.0316 0.0141∗+ 0.2082 0.08

Methods MAP GMAP MRR P@10
SingleNeg (baseline) 0.0350 0.0147 0.2119 0.088
MultiNeg (baseline) 0.0318 0.0144 0.2147 0.088

OptMultiNeg 0.0326 0.0151∗+ 0.2463 0.088

Table 6.4: Performance of the optimization framework on AP88-90 data set based on cross validation (top)
and upper bound (bottom), * and + means improvements over MultiNeg and SingleNeg are statistically
significant with Wilcoxon signed-rank test, respectively. We only show the significance tests for GMAP
measure. These results are based on all words extracted from each top non-relevant document.

Methods MAP GMAP MRR P@10
SingleNeg (baseline) 0.0395 0.0094 0.1702 0.0710
MultiNeg (baseline) 0.0386 0.0091 0.1723 0.0684

OptMultiNeg 0.0389 0.0096∗+ 0.1869 0.0710

Methods MAP GMAP MRR P@10
SingleNeg (baseline) 0.0396 0.0095 0.1752 0.071
MultiNeg (baseline) 0.0401 0.0096 0.1981 0.071

OptMultiNeg 0.0396 0.0097∗+ 0.1917 0.0763

validation results only since these are our main results.

(2) Another interesting observation is that although we only maximize based on GMAP, the results of

our proposed methods also outperform MAP and MRR measure in most cases (cross validation results).

(3) Comparing our proposed methods shows that the OptMultiNeg method outperforms (according to

GMAP measure) all the other proposed methods since it finds an exact optimal solution.

Given that these are all very difficult queries where the state of the art retrieval models worked poorly

and negative feedback can be done automatically based on implicit feedback information without requiring

any additional user effort, these results are quite encouraging.

Table 6.5 shows some sample words along with their probabilities selected both based on MultiNeg and

OptMultiNeg for TREC query 690 (This is an example where the OptMultiNeg method outperformed the

baselines in terms of GMAP measure a lot). We only show top 10 selected terms and also calculate their

generality measures for these two methods. It is shown that the OptMultiNeg method is more general (i.e.,

G10(θ′) > G10(θ)). Please note that the generality values calculated here is based on only 10 shown words;
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we should also mention that G100(θ′) > G100(θ), i.e., our OptMultiNeg is more general than MultiNeg when

top 100 words are selected (this is the number of feedback terms that we experimented with). In addition,

we show another example (TREC query 343) where the performance was hurt a lot. The sample words

selected are shown in Table 6.6 which shows the over-generalization both in terms of the words themselves

(e.g., words are not specific compared to the original words) and in terms of the generalization value.

Another experiment setup is to give all the words extracted from the original non-relevant documents

to the OptMultiNeg method and let the method choose among them (instead of choosing among top 100

words). Our hypothesis is that the results of our OptMultiNeg from this experiment should also be better

than that of baselines for the case when we have only 100 terms. The results of such experiments are shown

in Tables 6.3 and 6.4 for both data sets. As shown in the tables, the results are worse than their corre-

sponding results in Tables 6.1 and 6.2 (as we expected from the analyses shown in Figure 6.3). However,

the OptMultiNeg still outperforms the baselines which confirms our hypothesis.

Efficiency of our proposed methods: Since we only have 10 negative examples (first-page result

simulation), building a language model for each of them can be done efficiently online. Also, since we search

in the finite space of all the potential language models, the search is fast enough to be done online, i.e.,

even for the OptMultiNeg method, search does not take a lot of time to select words since the space of the

selection is also finite.

Table 6.5: 10 Sample word selected from MultiNeg model (left) and OptMultiNeg (right) for query 690=
“colleg educ advantag”. Note that words are stemmed.

q p(q|θ)
shanghai 0.0512

school 0.0354
we 0.0336

reform 0.0171
teacher 0.0155
system 0.0141
higher 0.0138

establish 0.0125
learn 0.0124

graduat 0.0117
G10(θ) = 32, 899

q p(q|θ′)
shanghai 0.275

we 0.1804
reform 0.0921
system 0.0760

establish 0.0672
percent 0.0542
cooper 0.0450
must 0.0444

construct 0.0441
develop 0.0294
G10(θ′) = 33, 461

6.5.2 Parameter Sensitivity Study

Since there are parameters associated with the proposed methods, in this section, we analyze the sensitivity

of GMAP to the parameters.
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Table 6.6: 10 Sample word selected from MultiNeg model (left) and OptMultiNeg (right) for query 343=
“polic death”. It is an example that over-generalization hurts the performance. Note that words are
stemmed.

q p(q|θ)
injuri 0.0336
anc 0.0318

attack 0.0264
support 0.0204
hostel 0.0200
incid 0.0193
ifp 0.0180

allegedli 0.0158
secur 0.0141

member 0.0140
G10(θ) = 10, 990

q p(q|θ′)
anc 0.1325

support 0.0852
secur 0.0591

member 0.0585
forc 0.0497
were 0.0479
week 0.0402
sub 0.04023
11 0.0323

region 0.0317
G10(θ′) = 20, 850
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Figure 6.4: Sensitivity of GMAP to different parameters: γ in OptMultiNeg method (left), Ψ in Perturbation
method (right).

Figure 6.4 (left) shows sensitivity of GMAP to γ in OptMultiNeg method for both ROBUST and AP88-

90 data sets. We first fix β, ρ to their optimal values and vary γ to see how it changes to the GMAP

value. As shown in the figure, when γ = 0, the baseline method (MultiNeg) is achieved, and by choosing an

appropriate negative value, the performance can be improved, though when γ is too large, the performance

would be poor, likely because of over-generalization.

Figure 6.4 (right) shows the sensitivity of Ψ in Perturbation method. As shown in the figure, when

we increase the amount of Ψ, it hurts the performance, so it indicates that over-generalization hurts the

performance and Ψ should be set to: 1 < Ψ < 5 to ensure improvement in the performance.

Figure 6.5 (left) also shows the sensitivity of GMAP measure to parameter α in KNN method3 which is

a tradeoff between closeness to query and closeness to negative language model. The best performance is

gained when 0.4 < α < 0.6 which confirms our hypothesis that the general negative language model should

3The same pattern can also be seen with Perturbation method.
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Figure 6.5: Sensitivity of GMAP to different parameters: α in KNN method to GMAP (left), ε in KNN
method to GMAP (right).

be close to both query and original negative language model.

Figure 6.5 (right) also shows the sensitivity of GMAP measure to parameter ε in KNN method. As we

increase ε, the performance hurts indicating that over-generalization hurts the performance and ε should be

set to: 1 < ε < 50.

6.6 Chapter Summary

How to help users when their queries do not work well with the state of the art retrieval methods is a very

important, yet difficult challenge. Negative feedback is an important and useful technique for tackling this

challenge, and can be done automatically without requiring extra user effort based on implicit feedback

information (such as skipping all the results on the first page and attempting to view additional results on

the next page).

In this chapter, we addressed the problem of data sparseness in negative feedback in the language

modeling framework by proposing an abstract optimization framework, in which we learned from a few

top-ranked non-relevant examples, and searched in the space of all candidate language models to build a

more general negative language model. This general negative language model has been shown to have more

power in pruning the non-relevant documents on two representative TREC data sets, outperforming the

state of the art negative feedback methods significantly for difficult queries. The proposed methods are

general and can be potentially implemented in any search engine applications to improve a user’s experience

in the case of difficult topics.

This work is only a first step in the exploration of the general idea of generalization of language models.

There are many interesting directions to further explore. First, we can relax the feedback condition to
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include a small number of positive feedback examples, which would lead to the interesting problem of how

to generalize both negative and positive language models simultaneously. Second, it would be interesting

to apply explanation-based learning (EBL) [36] to feedback and construct a generalized language model

based on a formal explanation of why a document has been judged as non-relevant (or relevant). Finally,

we believe that the idea of generalizing language models can also be potentially applied to many other tasks

in interactive retrieval where we need to infer a user’s intent based on the user’s behavior.

In the next chapter, we talk about the interactive retrieval to interact with the users several times helping

them find their relevant information when they have complex information needs.
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Chapter 7

Interactive Retrieval: Interactive
Relevance Feedback

Difficult queries tend to cause more interactions with the search engine, so it is important to study how to

optimize the interactive retrieval which is the topic of this chapter.

After we present the results to the user (i.e., post-retrieval stage), there is a tradeoff between presenting

search results with the highest immediate utility to a user (but not necessarily most useful for collecting

feedback information) and presenting search results with the best potential for collecting useful feedback

information (but not necessarily the most useful documents from a users perspective). Especially when a

query is difficult, the interaction with the user is more needed but how to optimize such a tradeoff (called

exploration-exploitation tradeoff) is a key to the optimization of the overall utility of feedback to a user in

the entire session of user interaction with the system and has not studied before. In this chapter, we address

this important problem.

A lot of research has been done on relevance feedback. However, most existing work is focused on

developing and improving relevance feedback methods (e.g., [118, 121, 138, 164]), where the goal is to optimize

the ranking of results based on a given set of relevance judgments. Typically, the relevance judgments are

assumed to be collected on some top-ranked documents that would be shown to a user as initial results.

Although this strategy of relevance feedback is very natural as a user can judge documents while viewing

search results in a normal way, the judgments collected in this way (i.e., judgments on the top-ranked

documents) may not necessarily be the most useful judgments for relevance feedback. As an extreme case,

if the top documents all have similar contents, the judgments on all these documents would be clearly

redundant, and would not be so useful for relevance feedback as if we collect the same number of judgments

on a more diversified set of documents. Clearly, in such an extreme case, the benefit brought by relevance

feedback to the user in the next iteration of the interactive retrieval process would be relatively small, at

least not as much as the user would have if the judgments were collected on a more diverse set of documents.

This shows a deficiency of the traditional (standard) relevance feedback strategy: it does not attempt to

obtain the most useful judgments.

This observation has motivated some researchers to study active feedback methods [130, 158, 157], where
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the goal is to choose documents for relevance feedback so that the system can learn most from the feedback

information. The idea of these methods is usually to choose a set of diverse documents for judgments since

judgments on diverse documents can be expected to be more informative and thus helpful for the system to

learn the user’s information need. For example, in [130], the top-ranked documents are first clustered and

only one document is selected from each cluster to form a diverse set of documents to present to the user.

However, presenting diverse documents to users means that we generally do not present the search results

in the order of relevance. Thus, the utility of the presented documents to the user is generally lower than

that of presenting the top-ranked documents. This shows that active feedback has a different deficiency: it

does not attempt to optimize the utility of the presented documents to the user.

These observations illustrate an interesting dilemma in interactive relevance feedback: On the one hand,

we want to present the top-ranked documents to a user so that the presented documents would be most

useful for the user in this interaction cycle as in standard relevance feedback. However, such a strategy does

not generate the most useful judgments for feedback. On the other hand, if we diversify the results in order

to obtain more useful judgments, which would bring more utility to the user in the next interaction cycle,

we would risk on decreasing the utility to the user in the current interaction cycle. We refer to this dilemma

as exploration-exploitation tradeoff [75, 139].

Intuitively, if we present top ranked results to the user, it is very useful for the user since there is no

discount compromise of the utility, which can be regarded as emphasizing exploitation of all the existing

information about the user’s information need, but it does not help the system to explore the space of

all the potentially relevant documents to the user. On the other hand, if we show diversified results (i.e.,

emphasizing exploration), there is a concern of decreasing the utility from the user perspective, thus possibly

compromising exploitation.

Clearly, in an interactive retrieval system, what matters to a user is the overall utility of relevance

feedback, which means that we need to optimize this exploration-exploration tradeoff so as to optimize the

overall utility over an interaction session1 which includes both the current interaction cycle and the next

interaction cycle after feedback. To the best of our knowledge, no existing work has addressed the problem

of optimizing the exploration-exploitation tradeoff for relevance feedback. Indeed, the standard relevance

feedback work is focused on exploitation without considering exploration, while the active feedback work does

the opposite – focused on exploration without considering exploitation; each can be regarded as optimizing

feedback for just one interaction cycle. Indeed, this tradeoff problem touches a more general issue of how to

optimize the utility of a retrieval system over an interaction session for a user [44].

1We define session as viewing multiple search results for the same user query through interacting with the system (e.g.,
clicking on buttons).
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In this chapter, we study how to optimize the exploration-exploitation tradeoff in relevance feedback

based on the following interactive process: A user is assumed to have a high-recall information need. After

issuing a query, the user is assumed to sequentially view results up to N top-ranked results. We further

assume that in this process, the user would need to fetch unseen results at least twice due to the limited

number of results that can be displayed on one screen, resulting in two natural time points when a system

can learn from the feedback information collected so far to optimize the unseen results. One instance of

this scenario is that a user views three pages of search results; in such a case, the system can learn from

the feedback information collected from the first page of results to optimize the results shown on the second

page right before the user navigates into the second page, and can also do the same for the third page when

the user reaches it. While most users of a Web search engine do not go this far when viewing results, we

would expect them to do so when the search results are displayed on a much smaller screen such as on a

smartphone. Also, a user often needs to scroll down on the first page to view all the results; in such case,

we may also view the “scrolling” as to fetch more unseen results, thus a point when the system can re-rank

the unseen results. For convenience of discussion, we will refer to the very first batch of results seen by the

user as the results on the first “page”(or segment), the results seen by the user through either scrolling or

clicking on a next-page button as the results on the second “page” (or segment) and so on so forth.

Since more diversified results would mean more exploration and thus less exploitation, while less diver-

sified would mean more exploitation and less exploration, we essentially convert this tradeoff problem to

one of optimizing this diversity parameter. We propose and study two methods to optimize this diversity

parameter. The first one assumes a fixed optimal value for all the queries (fixed-coefficient diversification),

and the second learns a query-specific optimal value for each query (i.e., adaptive diversification).

We evaluate our proposed methods on three representative TREC data sets. The experimental results

demonstrate that both of our proposed methods can effectively optimize exploration-exploitation tradeoff

and achieve higher utility for the session than both traditional relevance feedback which ignores exploration

and pure active feedback which ignores exploitation. Moreover, the adaptive diversification method is better

than the fixed-coefficient diversification method due to its optimization of the tradeoff at a per-query basis.

In the next section, we formally define the problem.
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7.1 Problem Formulation

Given a query q and a document collection C, we consider an interactive retrieval system where we assume

a user would “progressively” view three segments of results through either scrolling or clicking on next-page

button. The number of results in each segment is not necessary equal. For example, S1 can be the top 5

results seen by a user in the beginning (the screen size does not allow the user to see all the 10 results),

S2 can be the bottom 5 results on the first page, and S3 can be the next 10 results on the second page.

The system first uses the query to retrieve k documents S1 = (d11, ..., d1k) and present them on the first

segment S1. The user is then assumed to click on any relevant documents on this segment, leading to a

set of relevance judgments on the first segment, J1. We assume that the user would continue viewing the

second segment of search results, and at least some results on the third segment. We will focus on studying

relevance feedback that happens after the user finishes viewing all the results on the second segment.

Our goal is to study how to use all the information collected after the user views the first segment (i.e.,

judgments J1) to optimally interact with a user on the second segment so as to optimize the overall utility

over the session of the user interacting with all the three segments. Specifically, we would like to optimize

the diversification of the results on the second segment S2 = (d21, ..., d2m) so that the relevance feedback

that happens just before the user views the results on the third segment would deliver the maximum overall

utility on both the second segment and the third segment. (The utility on the first segment has already

been fixed in this setup, thus it is irrelevant for the optimization.) As discussed before, more diversification

leads to more exploration and less exploitation, thus optimizing the diversification is a way to optimize

exploration-exploitation tradeoff.

A common way to generate diversified results is a greedy algorithm called Maximal Marginal Relevance

(MMR) [16] which models both topical relevance and redundancy of documents. With this strategy, after

we have already selected documents d21, . . . , d2,i−1 for the second page, document d2i would be selected to

maximize the following score:

S(d2i; d21, . . . , d2,i−1) = (1− λ)SR(d2i, q) + λSnovelty(d2i; d21, . . . , d2,i−1) (7.1)

where q is the query, SR(d2i, q) is a relevance-based scoring function (i.e., regular retrieval function). Snovelty

is the novelty value of d2i w.r.t. {d21, . . . , d2,i−1}, and λ ∈ [0, 1] is the diversification parameter that controls

the degree of diversification, or equivalently, the amount of exploration.

The results on the third segment S3 = (d31, ..., d3p) would be generated using relevance feedback on the

judgments collected on the second segment. Clearly, the utility of this third segment would be affected
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by the usefulness of the collected judgments J2 which further depends on the diversification on the second

segment. Our goal is to optimize the diversification coefficient, i.e., λ, to maximize the overall utility of the

results on the second segment and the third segment, i.e., to optimize the exploration-exploitation tradeoff.

Formally, we assume that there is a function A that can map a query q and its corresponding relevance

judgments J1 on the first segment to the optimal diversification coefficient, i.e., λ = A(q, J1). Later, we will

propose two different ways to compute A(q, J1). One way is simply to search for an optimal λ over a set of

training queries and take this fixed coefficient as the optimal value for all the unseen test queries. The other

way is to use a machine learning method to learn a potentially different optimal λ for each query.

Since our main goal is to study different methods for optimizing the diversification coefficient, in our

experiments, we assume |S1| = |S2| = |S3| = 10 to simulate a scenario when the user views the first three

pages of results and we refer to S1 as first-page result, to S2 as second-page result and S3 as third-page

result. The proposed method does not depend on this configuration, though, and can be applied to other

scenarios as well.

In the next section, we describe the methods used throughout this chapter in more details.

7.2 Background

We now present all the components, i.e., basic retrieval model, feedback methods and novelty method in

problem setup (section 7.1) in more details.

Basic Retrieval Model: We use the Kullback-Leibler divergence retrieval model with Dirichlet prior

smoothing as our basic retrieval model for ranking documents on all the three pages (on the second page, it

is used together with a novelty measure function to diversify results).

Feedback Model: In [164], authors have defined a two-component mixture model (i.e., a fixed back-

ground language model, p(w|C), estimated using the whole collection and unknown topic language model

to be estimated) and assumed that the feedback documents are generated using such a mixture model.

Formally, let θT be the unknown topic model and F be a set of feedback documents. The log-likelihood

function of the mixture model is:

L(F|θT ) =
∑
d∈F

∑
w∈V

c(w, d) log[(1− α)p(w|θT ) + αp(w|C)] (7.2)
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Where α ∈ [0, 1) is a mixture noise parameter which controls the weight of the background model. EM

algorithm can be used to estimate p(w|θT ) which is then interpolated with the original query model p(w|q)

to obtain an improved estimation of the query model:

p(w|θq) = (1− γ)p(w|q) + γp(w|θT ) (7.3)

Where γ is the feedback coefficient to be set manually.

To perform relevance feedback after the user views the second page, we perform the two-component

mixture model for positive feedback and the MultiNeg strategy for negative feedback; both have been shown

to be effective for the respective feedback task.

Novelty Measure: To compute the novelty score Snovelty described in section 7.1, we use a method

proposed in [163]. The best performing novelty measure they reported is MixAvg. The novelty measure

is based on a two-component generative mixture model in which one component is the old reference topic

θ0 estimated based on {d21, · · · , d2,i−1} described in section 7.1 and the other is the background language

model (e.g., general English model). Specifically, let θB be a background language model with a mixing

weight of µ, the log-likelihood of a new document d = {w1, · · · , wn} is:

L(µ|d, θ0) =

n∑
i=1

log[(1− µ)p(wi|θ0) + µp(wi|θB)] (7.4)

And the estimated novelty score is obtained by:

µ∗ = argmax
µ
L(λ|d, θ0) (7.5)

The EM algorithm can be used to find the unique µ∗ that maximizes the score. We call this method

MixAvg-MMR in our experiments.

One should note that our focus is studying the parameter λ (novelty parameter) described in section 7.1

and the parameters that discussed in this section, will be fixed to their optimal or default values as suggested

in the literature.
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7.3 Learning to Optimize Diversification

We consider two ways to optimize the diversification parameter λ. The first is simply to vary this parameter

on a training data set and select the best performing value, and set this parameter to such a fixed optimal

value across all the test queries. We call this approach fixed-coefficient diversification.

Intuitively, the right amount of diversification may depend on queries (e.g., a query with more subtopics

may benefit from more diversification). Thus for our second method, we propose a learning method to “learn

when to diversify the results” by adaptively learning this coefficient for each query, which we present it in

details in the next section.

7.3.1 Features for Diversification

In this section, we describe a learning approach that adaptively learns the λ parameter for each query.

We first identify some features that are correlated to the diversification parameter, i.e. λ. These features

are computed based on only the first-page results and the judgments on it, J1. Because at the time of

optimizing the diversification on the second page, we only have this much information. In the next subsection,

we will discuss how we combine these features to learn the function A(q, J1) (which can be used to compute

an optimal value for λ for each query) using the past queries as training data. The learned function A(q, J1)

can then be used for future queries to predict new λ. Note that since we do not learn a fixed λ value, but a

function for computing an optimal value of λ, this allows us to obtain a potentially different optimal value

of λ for each query.

The following notations will be used in the definition of features. Frel and FnonRel are the set of relevant

and non-relevant documents in J1, respectively. c(w, q) is the count of term w in query q. |q| =
∑
w∈q c(w, q)

is the total number of words in query q. p(w|θq) = c(w,q)
|q| is the query language model. p(w|C) is the col-

lection language model. p(w|θFrel
) and p(w|θFnonRel

) are the language models of relevant documents and

non-relevant documents on the first-page results, respectively.

The followings are the features extracted from the first-page results. Please note that the reason for

showing the first-page results to the user is to get some limited information about relevant documents and

as a result extract the following features which are needed for our learning algorithm.
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Query Length: As mentioned in [55], query length affects retrieval performance and is defined as:

|q| =
∑
w∈q

c(w, q) (7.6)

Query Distribution: Each term is associated with an inverse document frequency which describes the

informative amount that a term in the query carries. It is defined as follows [55]:

QDist =
idfmax
idfmin

(7.7)

Where idfmax and idfmin are the maximum and minimum idfs among the terms w in query q, respectively.

Query Clarity: Query clarity has been shown to predict query difficulty [30]. When a query is difficult,

it might mean that it has different interpretations, so in order to complete the picture of all aspects of the

query, we need to provide a diverse set of documents to make sure that all aspects of the query are covered.

(1) According to definition [30], the clarity of a query is the Kullback-Leibler divergence of the query

model from the collection model. For our case, the query model is estimated from the relevant documents

in Frel which is defined as follows:

QClar1 =
∑

w∈Frel

p(w|θFrel
)log2

p(w|θFrel
)

p(w|C)
(7.8)

Where p(w|θFrel
) is estimated as c(w,Frel)∑

w′∈Frel
c(w′,Frel)

, where c(w,Frel) is the number of word w in Frel

(i.e., relevant documents).

(2) To avoid the expensive computation of query clarity, authors in [55] proposed a simplified clarity

score as a comparable pre-retrieval performance predictor. It is calculated as follows:

QClar2 =
∑
w∈q

p(w|θq)log2
p(w|θq)
p(w|C)

(7.9)

Query Entropy[26, 136]: If query entropy is high, it means that the query covers broad topics, as a result,

we do not need to diversify the results. We define two query entropies as follows:

(1)

QEnt1 =
∑
w∈q
−p(w|θq)log2p(w|θq) (7.10)
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(2) Since a query is often short, we compute another query entropy score based on the relevant documents

in Frel as follows:

QEnt2 =
∑

w∈Frel

−p(w|θFrel
)log2p(w|θFrel

) (7.11)

Where p(w|θFrel
) is estimated as c(w,Frel)∑

w′∈Frel
c(w′,Frel)

.

Number of Relevant documents: If the query has high initial precision, i.e., the fraction of retrieved

relevant documents on the first-page results are high, we do not need to diversify the results; as a result we

consider the number of relevant documents in the first-page results as a feature:

num = |Frel| (7.12)

Virtual Mean Average Precision: Another feature to capture high precision is to calculate Average

precision for the first-page results as in [90]:

V irMAP =
∑
d∈Frel

prec(rd)

10
(7.13)

Where rd is the rank of document d and prec(rd) is the precision of top rd documents.

Separation of Relevant and Non-Relevant Documents: If the query is clear enough (relevant and

non-relevant documents are separated) we do not need to diversify the results. Thus we introduce the

following two features to measure the separation between relevant documents in slightly different ways.

(1) Jensen-Shannon Divergence (JSD)

JSD =
1

2
[D(θFrel

||θFnonRel
) +D(θFnonRel

||θFrel
)] (7.14)

Where D is the Kullback-Leibler divergence between the two models.

(2) Cosine Similarity: We denote the term frequency vectors of Frel and FnonRel as VFrel
and VFnonRel

,

respectively. The cosine similarity is then defined as:

CosSim =
VFrel

.VFnonRel

||VFrel
||.||VFnonRel

||
(7.15)
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Diversification (Div): Intuitively, if the baseline results are already diversified, we do not need to do more

diversification; one measure to capture that is as follows: We cluster the top 30 results from Kullback-Leibler

divergence retrieval to 5 clusters using K-Means algorithm [37]. We then consider the ratio of the size of the

first largest cluster to the second largest cluster. If this ratio is small, it means that we have already formed

multiple clusters and the results are already diversified, so we do not need to diversify more.

Analysis of computational efficiency of the features: The features discussed above can be categorized

into query-based features and document-based features. Query-based features are those that are calculated

based on the query. Examples of these kinds of features are: query length |q|, query distribution QDist,

query entropy QEnt1 and etc. Document-based features are those that are calculated based on relevant and

non-relevant documents on the first-page results. Examples are: query clarity QClar1, query entropy QEnt2

and etc. Since we only have 10 documents on the first-page results, the calculation of language models based

on both relevant and non-relevant documents can be computed efficiently for online prediction. Also, the

query-based features can be computed efficiently for online prediction.

7.3.2 Learning Algorithm

We would like to use a learning technique to combine the features to predict the novelty parameter for

diversification. In this dissertation, we use logistic regression 2 since it can take any input value and

outputs a value between zero and one which is what we want. The logistic regression model is of the form:

f(z) = 1
1+exp(−z) , where z is a set of features and f(z) is the probability of an outcome. f(z) is used to

predict the novelty coefficient, i.e., λ. z is of the form z = w̄x̄ where x̄ is a vector of the features and w̄ is

the learned weight (based on our training data) associated with each feature. When a weight is positive,

it means that the corresponding feature increases the probability of outcome while a negative coefficient

means the opposite. Once these weights are learned based on our training data (i.e., past queries and their

optimal λ values as determined by some utility function to be defined in the next section), we can use the

model (features along with their weights) to predict the diversity coefficient parameter (λ) for test queries.

Statistical package R 3 is used to train the model.

2Since logistic regression has a global optimum, the choice of the learning algorithm is of little importance.
3http://www.r-project.org/
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7.3.3 Evaluation Metric

Our goal is to optimize the utility to a user over all the three pages P1, P2, and P3. We thus need to define

how we measure the utility over all these pages. Such a measure is needed to evaluate the effectiveness of

any method for optimizing exploration-exploitation tradeoff and also needed to set a criterion for selecting

the optimal λ values for training in learning an adaptive diversification coefficient.

Since the first-page results is the same for all the methods, we only consider the utility on the second and

third-page results. The user is assumed to see all the results on the second page, thus we define the utility

on the second page as the number of relevant documents on the second page, denoted as U(P2) = REL(P2).

For the third page, since the user is only assumed to see some results, the utility is defined as the expected

number of relevant documents that the user would see on the third page:

U(P3) =

10∑
j=1

sj

j∑
i=1

δ(i) (7.16)

where sj denotes the probability that the user would stop reading after seeing the top j documents and δ(i)

is 1 if the i-th document is relevant and is zero otherwise.

If we assume the uniform stopping probability, i.e., sj is uniform (i.e. sj = 1
10 since we have 10 documents

per result page), we would model the impatient user [96] and the utility on the third page with some algebraic

transformation is reduced to:

U(P3) =

10∑
n=1

(11− n)

10
.δ(n) (7.17)

where n is the ranking of the document. For example, if a document is ranked first on the third page, the

expected utility for that document would be one since n = 1, similarly, if the document is ranked at 10-th,

the expected utility from that document would be 1
10 .

This measure is reasonable for a user who is “impatient” who might indeed stop at any of the positions

equally likely. However, if the user is more “patient” with a high probability of viewing all the results on

the third page, we would like to put more weight on the utility from the third page. One way to account for

that is to parameterize the weights on the third page so that we can examine this effect as follows:

U(P3) =

10∑
n=1

[(
(k − 1)

9
).(n− 1).δ(n) + 1] (7.18)

where k ∈ [0, 1]. When k = 0.1, we gain Equation( 7.17).

The total utility on both the second page and the third page is thus U(P2) + U(P3).

87



7.4 Experiment Design

We used three standard TREC data sets in our study 4: TREC2004 robust track, WT2G and AP88-90

which represent different genre of text collections. There were 249 queries 5 in TREC2004 robust track data

set. WT2G is a web data set with 50 queries while AP88-90 is a homogeneous data set with 149 queries.

We used Porter stemming and did stop word removal on all these collections.

Since we do not have a real system for interactive search, we simulated user-clicked documents (user

feedback) as follows: We used Lemur toolkit to index document collections and retrieved a document list for

each query using Kullback-Leibler divergence retrieval model with Dirichlet prior smoothing (in Section 3.1)

to return 10 result documents (this is to simulate the first-page results). The reason for showing this page

to the user is to get some limited information about relevant documents and extract features that we need

for our learning algorithm. Also, the reason for returning only 10 documents for each page is to resemble

the Web search engine that shows 10 results per page, so we also simulate to have 10 results per page. We

then extract features from the first-page results to decide if we need to diversify the results on the second

page and then feedback is used to improve the ranking of documents on the third page based on the user

judgments on the first two pages. (We assume that the user would click on a relevant document.)

We compare our proposed methods (i.e., FixedDivFB and AdaptDivFB) with baseline methods, i.e.,

NoFeedback and RegularRelFB by measuring the total utility over all three pages. Since the first page is

the same for all the methods, we actually only computed the utility over the second and third pages. While

the first-page results are similar for all these four methods, the second-page results for different methods

are different. For NoFeedback and RegularRelFB, we return 10 results using Kullback-Leibler divergence

retrieval model [78]. For FixedDivFB, we use MixAvg-MMR [163] with a learned fixed novelty parameter

(using training queries) for all test queries and for AdaptDivFB, we use adaptive novelty coefficient (by

learning it with training data) for each individual query. Then for the third page, we use language model

feedback [149, 164] to return 10 documents as the third-page results. Figure 7.1 shows these methods clearly.

To train our proposed methods, we need to obtain training data first. In our study, we used 5-fold cross

validation to split our queries for testing and training purposes for each data set and get the average across

all folds. Since we are restricted to vary the parameters in testing stage, we set the parameters to their

optimal values gained from training data in the testing stage, i.e., we set the Dirichlet prior smoothing to its

optimal value for each training data using NoFeedback method, and set the feedback coefficient to its optimal

value using RegularRelFB. We fixed feedback term count to 100 and mixture noise parameter [164] to 0.9

4All experiments measured according to equation 7.17 unless otherwise stated.
5One query was dropped because the evaluators did not provide any relevant documents for it.
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and β in negative feedback [149] to 0.1. We did not vary these parameters because this is not our purpose of

study. For FixedDivFB, we choose an optimal fixed coefficient novelty, i.e., λ for all queries learned based on

training data. We then use the optimal parameters gained from training data to measure the performance

of test queries. The needed training data for AdaptDivFB is of the form of a set of feature vectors computed

based on different queries and retrieval results along with the corresponding optimal novelty parameter. The

learning task is to learn from such a training data set to predict the optimal novelty parameter for a new test

query based on its corresponding feature values. To get the optimal novelty parameter for training queries

for AdaptDivFB, we try different novelty coefficient λ ∈ {0, 0.1, 0.2, . . . , 1} using MixAvg-MMR [163] on

training data sets and we choose the best λ for each training query to form our training data set. As a

result, the main difference between the FixedDivFB and AdaptDivFB methods lies in what they can learn

from the training data: the FixedDivFB learns a fixed novelty coefficient, λ, that leads to the best utility

(described in Section 7.3.3) on the training data set, while the AdaptDivFB method learns a prediction

model that best fits the training data set.

Figure 7.1: Visualization of different methods. KL means Kullback-Leibler divergence retrieval model [78],
MMR Fixed means MixAvg-MMR using fixed novelty coefficient for all queries, MMR Adapt means MixAvg-
MMR using adaptive novelty coefficient for each query and FB means language model feedback [149, 164].

7.5 Experimental Results

Our main hypothesis is that optimizing the exploration-exploitation tradeoff over a session is effective and

we need to optimize such a tradeoff for each individual query. In order to test these hypotheses, we conduct

a set of experiments. In section 7.5.1, we empirically examine the exploration-exploitation tradeoff. Next, in

section 7.5.2, we examine the effectiveness of optimizing the total user utility over a session. In section 7.5.3,

we go further to see the effect of optimizing either exploration or exploitation and compare the results when

we optimize based on the combination. Then, in section 7.5.4, we examine what kind of queries would
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benefit from optimizing the exploration-exploitation tradeoff. Next, we consider the effect of optimizing

the exploration-exploitation and evaluate this effect on user patience. Since there are so many methods for

diversification, in section 7.5.6 we consider a different diversification method and evaluate the effect of the

diversification method on our main hypothesis. Finally, we analyze our features for optimizing the novelty

coefficient.

7.5.1 Is Optimal Exploration-Exploitation Tradeoff Query Dependent?

Diversification methods are usually controlled by an interpolation novelty coefficient λ to control the balance

between relevance and redundancy. According to the description in Section 7.1, when λ = 1, the emphasize

is on novelty whereas for λ = 0, the emphasize is on relevancy. To show the sensitivity of λ to the

utility function described on Section 7.3.3, we plot the utility of several randomly selected topics from each

category, i.e., easy 6, difficult 7 and others (351, 421, 425) by varying λ from 0 to 1. The results are shown

in Figure 7.2. These patterns show that the optimal exploration-exploitation tradeoff is query dependent

and it is important to dynamically optimize the novelty coefficient in a per-query basis.

7.5.2 Effectiveness of Optimizing the Total User Utility over a Session

Our hypothesis is that in order to achieve optimal retrieval performance and outperform relevance feedback,

we need to optimize based on the total user utility. In order to test our hypothesis, we compare our pro-

posed methods (i.e., FixedDivFB and AdaptDivFB) with baselines (i.e., NoFeedback and RegularRelFB)

which are optimized based on the whole utility, i.e., utilities on the second and third pages. Table 7.1

shows the comparison of our methods with baselines across different TREC data sets (we show the utilities

based on the second, third and total (second+third) pages.). The results indicate that method Regular-

RelFB is better than NoFeedback as we expected since feedback outperforms the basic retrieval model using

Kullback-Leibler divergence. Method FixedDivFB outperforms RegularRelFB and AdaptDivFB outper-

forms both FixedDivFB and RegularRelFB methods since it uses different novelty coefficient for each query.

Statistical Significant tests using Wilcoxon singed-rank test indeed indicate that our proposed methods are

statistically significant over method RegularRelFB 8. The table also shows percentage improvement, e.g.,

FixedDivFB/RegularRelFB means the percentage improvement for FixedDivFB over RegularRelFB. Thus,

by optimizing exploration-exploitation tradeoff, both FixedDivFB and AdaptDivFB outperform the regular

6We define a query as easy when its Precision@10 is 0.9 or 1, given a retrieval model.
7We define a query as difficult when its Precision@10 is no larger than 0.1, given a retrieval model.
8The reason why AdaptDivFB is not statistically significant over FixedDivFB for WT2G data set is because we only have 50

queries and since we do 5-fold cross validation, we have only 40 training queries in each fold which presumably is not sufficient
for learning.
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Figure 7.2: Exploration-exploitation tradeoff patterns. Optimal exploration-exploitation tradeoff is query
dependent.

relevance feedback method, i.e., RegularRelFB which ignores exploration. And indeed AdaptDivFB out-

performs FixedDivFB method which indicates that the optimal exploration-exploitation tradeoff is query

dependent.

Please note that while it appears that AdaptDivFB is simply more effective than RegularRelFB even for

the second page (where we would expect RegularRelFB to have some advantage), a decomposed analysis in

Table 7.3 shows that the improvement on the second page comes from difficult queries, and AdaptDivFB

does not perform as well as RegularRelFB for easy queries on the second page.

7.5.3 Detailed Analysis of Exploration-Exploitation Tradeoff

Our hypothesize is that to achieve optimal overall utility on a session, we should train with a “similar”

objective function (i.e., a similar utility measure on the training data). Thus, we expect training to optimize

utility on both second and third page should lead to better performance than training to optimize either one
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Table 7.1: Comparison of different methods on different TREC data sets. ∗ and § mean significant over
RegularRelFB and FixedDivFB, respectively.

Robust 2004
Methods Second Third Total

NoFeedback 2.8593 1.2171 4.0764
RegularRelFB 2.8593 2.2749 5.1342
FixedDivFB 2.8513 2.3207 5.172∗

FixedDivFB/RegularRelFB -0.27% 2.01% 0.74%

AdaptDivFB 2.919 2.3511 5.2701∗§

AdaptDivFB/RegularRelFB 2.08% 3.34% 2.65%
AdaptDivFB/FixedDivFB 2.37% 1.31% 1.9%

WT2G
Methods Second Third Total

NoFeedback 2.7 1.276 3.976
RegularRelFB 2.7 1.632 4.332
FixedDivFB 2.8 1.722 4.522∗

FixedDivFB/RegularRelFB 3.7% 5.51% 4.385%
AdaptDivFB 2.84 1.7 4.58∗

AdaptDivFB/RegularRelFB 5.18% 6.61% 5.72%
AdaptDivFB/FixedDivFB 1.43% 1.045% 1.28%

AP88-90
Methods Second Third Total

NoFeedback 2.5154 1.3149 3.8303
RegularRelFB 2.5154 2.4153 4.9307
FixedDivFB 2.558 2.4267 4.9847∗

FixedDivFB/RegularRelFB 1.69% 0.47% 1.09%

AdaptDivFB 2.6633 2.4446 5.1079∗§

AdaptDivFB/RegularRelFB 5.88% 1.21% 3.59%
AdaptDivFB/FixedDivFB 4.12% 0.73% 2.47%

alone. In particular, optimizing the second-page “only” would lead to over-exploitation (ending up with

lower third-page utility), while optimizing third-page “only” would be the opposite.

In order to see if this hypothesizes is true, we conduct two experiments: (1) optimizing the second-

page utility only (exploitation) (2) optimizing the third-page utility only (exploration). The results are

shown in Table 7.2 (we only show the results for AdaptDivFB method, similar patterns can also be seen

for FixedDivFB method.). From the table, we see that across all data sets, the second-page utility once

optimized on the second-page only is higher than when it is trained based on both pages. And indeed the

third-page utility is lowered. The opposite trend could be explained when optimizing on the third-page

only. The table also shows the percentage improvements, e.g., AdaptDivFB (2nd+3rd/2nd) indicates the

percentage improvement when optimized on both pages vs. optimized on the second page only.

The other interesting observation is that the overall utility is degraded and this indeed indicates that

92



optimizing the total utility, i.e. both second and third-page utility, is necessary to lead to the optimal

retrieval performance.

These observations indeed confirm our hypothesis that in order to have the optimal retrieval performance,

the exploration-exploitation tradeoff needs to be optimized.

Table 7.2: Comparison of optimizing based on second-page utility, third-page utility and second+third utility
for AdaptDivFB. ∗ and § mean significant over AdaptDivFB (2nd) and AdaptDivFB (3rd), respectively.

AdaptDivFB
Robust 2004

Methods Second Third Total
AdaptDivFB (2nd) 2.976 2.1905 5.1665
AdaptDivFB (3rd) 2.5249 2.4427 4.9676

AdaptDivFB (2nd+3rd) 2.919 2.3511 5.2701∗§

AdaptDivFB (2nd+3rd/2nd) -1.91% 7.33% 2.005%
AdaptDivFB (2nd+3rd/3rd) 15.60% -3.75% 6.09%

AdaptDivFB
WT2G

Methods Second Third Total
AdaptDivFB (2nd) 2.9 1.57 4.47
AdaptDivFB (3rd) 2.38 1.962 4.342

AdaptDivFB (2nd+3rd) 2.84 1.74 4.58∗§

AdaptDivFB (2nd+3rd/2nd) -2.07% 10.82% 2.46%
AdaptDivFB (2nd+3rd/3rd) 19.32% -11.31% 5.48%

AdaptDivFB
AP88-90

Methods Second Third Total
AdaptDivFB (2nd) 2.728 2.226 4.954
AdaptDivFB (3rd) 2.482 2.516 4.998

AdaptDivFB (2nd+3rd) 2.6633 2.4446 5.1079∗§

AdaptDivFB (2nd+3rd/2nd) -2.37% 9.82% 3.11%
AdaptDivFB (2nd+3rd/3rd) 7.3% -2.83% 2.19%

7.5.4 Best Queries for Tradeoff Optimization

Our hypothesis is that if a query is more difficult, it would benefit more from optimizing the exploration-

exploitation tradeoff. Indeed, the results in Table 7.3 (these results are based on their counterpart results in

table 7.1 for Robust 2004 data set.) confirm this hypothesis. We separate the results in Table 7.1 into easy

and difficult queries and measure their performance.

As we see from these results, it is clear that optimizing the exploration-exploitation tradeoff helps difficult

queries more than easy queries, i.e., both methods FixedDivFB and AdaptDivFB outperform baseline results

for difficult queries but the improvement for easy queries is negligible.
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Another observation from this table is that increasing diversity helps difficult queries due to the implied

(desirable) negative feedback however, hurts easy queries because of the implied (incorrect) negative feedback.

Table 7.3: Comparison of methods for DIFFICULT and EASY queries on Robust 2004 Data Set, 51 difficult
queries and 21 easy queries.∗ and § mean significant over RegularRelFB and FixedDivFB, respectively.

DIFFICULT Queries
Methods Second Third Total

NoFeedback 0.7129 0.5208 1.2337
RegularRelFB 0.7129 1.4738 2.1867
FixedDivFB 0.8256 1.497 2.3226∗

AdaptDivFB 0.9197 1.5091 2.4288∗§

EASY Queries
Methods Second Third Total

NoFeedback 6.7 2.6223 9.3223
RegularFB 6.7 3.901 10.601

FixedDivFB 6.45 4.02 10.47
AdaptDivFB 6.5333 4.068 10.6013∗

7.5.5 Exploration-Exploitation Tradeoff and User Patience

Since the standard relevance feedback does not do exploration, in “certain situations”, i.e., when a user is

more patient, exploration would have more benefit. When a user is more patient, there is a high probability

of viewing all the results on the third page, as a result, putting more weight on the utility from the third

page would be more beneficial for such a user. As we discussed in section 7.3.3, we model user patience with

k (equation 7.18), so we now have a different utility measure which is parameterized with k. Our hypothesize

is that for patient users, exploration is more useful.

In Figure 7.3, we vary k and measure the performance for RegularRelFB and FixedDivFB 9. Figure 7.3

(left) shows the difference between these two methods; as k gets larger, the difference (i.e., FixedDivFB-

RegularRelFB) between these methods is larger which indicates that the benefit from exploration is more

amplified as k increases. Also, Figure 7.3 (right) shows their performance on the third page (to show the

exploration benefit) for both methods, it also indicates that as k gets larger, the difference between these

two methods is more amplified. (The linear trend curves are expected given the form of our utility function.)

9Similar trends can be seen for AdaptDivFB.
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Figure 7.3: Modeling patience of the user (based on Robust 2004).

7.5.6 Sensitivity to Diversification Methods

We also want to know how our findings change if we use a different diversification method, i.e., MMR-PLSA

proposed in [72]. In this method, both the documents and the query would be mapped to a low-dimensional

space representation through Probabilistic Latent Semantic Indexing (PLSA) model [58], and then a similar

greedy algorithm to Maximal Marginal Relevance (MMR) [16] is used to select a diverse set of documents. In

this model, instead of indirectly covering multiple topic aspects through eliminating the redundancy among

documents, an intuitively better strategy is to directly cover topic aspects of the document through explicitly

modeling subtopics of the documents.

The results for this method are shown in Table 7.4. These results also support our main finding, i.e.,

optimizing exploration-exploitation tradeoff outperforms traditional relevance feedback, and adaptive opti-

mization (AdaptDivFB) is better than fixed-coefficient optimization (FixedDivFB).

7.5.7 Analysis of Features for Optimizing Novelty Coefficient

In this section, we discuss about the feature distributions and how they are linked to the novelty coefficient.

As discussed, we do 5-fold cross validation, and for each fold we have a different model according to our

training data. So, in total, we have 15 models for method AdaptDivFB in Table 7.1 (3 data sets and 5-

fold). For each model, we use AIC (Akaike Information Criterion) [53] to include only statistical significant

features. In order to understand the correlations of features to the novelty parameter, in Table 7.5, we

show the distributions across all 15 models. Negative means there is a negative correlation between that

feature and novelty parameter whereas positive means the opposite. As shown in the table, features QEnt1,

QClar2, V irAP and Div are the most frequently used features by these 15 models.
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Table 7.4: Comparing different methods and using MMR-PLSA as a diversification method. ∗ and § mean
significant over RegularRelFB and FixedDivFB, respectively.

Robust 2004
Methods Second Third Total

NoFeedback 2.8593 1.2117 4.0764
RegularRelFB 2.8593 2.2749 5.1342
FixedDivFB 2.8511 2.3597 5.2108∗

AdaptDivFB 2.911 2.4007 5.3117∗§

WT2G
Methods Second Third Total

NoFeedback 2.7 1.276 3.976
RegularRelFB 2.7 1.632 4.332
FixedDivFB 2.86 1.732 4.92∗

AdaptDivFB 3 1.776 4.776∗§

AP88-90
Methods Second Third Total

NoFeedback 2.5154 1.3149 3.8303
RegularRelFB 2.5154 2.4153 4.9307
FixedDivFB 2.604 2.401 5.005∗

AdaptDivFB 2.6377 2.4059 5.0436∗

The coefficients in this table are consistent with what we discussed in section 7.3.1, i.e., if a query is

long (|Q|), or the similarity between relevant and non-relevant documents is high (CosSim), or when the

results are not sufficiently diversified (Div), we need diversification. In other cases, i.e., when a query is

clear enough (QClar2) or relevant documents contain broad topics (QEnt1), we do not need diversification.

The contradictory effect of negative coefficient of QClar1 and positive coefficient of exp(QClar1) could be

explained as follows: in most models these two features co-occur with each other and the coefficients are

such that when a query is clear enough, i.e., QClar1 is relatively large, the overall effect would be negative

suggesting that we should use a smaller novelty coefficient. However, when a query is not clear enough,

the overall effect is positive which suggests we need to use a larger diversity coefficient. The interesting

observation of negative influence of VirAP indeed confirms our hypothesis that for difficult queries, we need

more diversification.

7.6 Chapter Summary

In this chapter, we studied how to optimize relevance feedback to maximize the total utility over an entire

interaction session. In particular, we studied the issue of exploration-exploitation tradeoff in interactive
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Table 7.5: Feature distributions
Negative Positive

|Q| - 20%
QDist 33.3% -
QEnt1 53.3% -
QEnt2 26.6% -
QClar1 20% -
QClar2 40% -

num 33.3% -
JSD 26.6% -

CosSim - 33.3%
Div - 40%

VirAP 53.3% -
exp(QClar1) - 26.6%

feedback, which is the tradeoff between presenting search results with the highest immediate utility to a

user and presenting search results with the best potentials for collecting feedback information. We framed

this tradeoff as a problem of optimizing the diversification of search results. We proposed two methods

that optimize the exploration-exploitation tradeoff. The first method is to fix a novelty coefficient for

diversification and the other one is to adaptively optimizing the diversification of search results for each

query. We also defined utility from user perspective and defined how we can model both patient and

impatient users. Experimental results on three representative TREC data sets indicate that our proposed

methods are effective for optimizing the tradeoff between exploration and exploitation and outperform the

traditional relevance feedback which only does exploitation without exploration. In summary, our findings

are as follows:

• Optimal exploration-exploitation tradeoff is query dependent and it is important to dynamically opti-

mize the novelty coefficient in a per-query basis.e

• In order to achieve optimal retrieval performance and outperform relevance feedback, we need to opti-

mize based on the total user utility. In other words, in order to have the optimal retrieval performance,

the exploration-exploitation tradeoff needs to be optimized.

• When a user is more patient, exploration would have more benefit because there is a high probability

of viewing all the results on later pages.

• If a query is more difficult, it would benefit more from optimizing the exploration-exploitation tradeoff.

One limitation of our study is that most users of a current Web search engine do not view so many

pages, even though in the case of a high-recall search task or when a user uses a small-screen device (e.g., a

smartphone), we can expect a user to often view more than two pages of results. Thus it would be interesting
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to consider more realistic assumptions such as considering fewer results per page to simulate the smartphone

scenario. Also, it would be interesting to evaluate the methods using the actual click-through data from

query logs. Ideally, building a real system that involves real users in interaction would be interesting.

Another limitation of our work is that in our current formulation, we assumed the availability of some

limited feedback information from the first-page result to make the problem more tractable; an interesting

future direction would be to just get information about the query which would also increase the applicability

of our method, but the problem would be that the only information we have available is information regarding

the query and we do not yet know anything about the relevant/non-relevant documents, so it would also be

harder to solve the problem of optimizing the diversity parameter.

In the current problem formulation, we only consider the second-page when measuring the novelty and

we only use the feedback information from the second page to re-rank results on the third page, so the

diversity on the second page is what matters in terms of optimizing the exploration-exploitation tradeoff.

For future, it is interesting to explore optimizing the diversity in the combined set of first and second pages.

In optimizing the exploration-exploitation tradeoff, the generated diversified results are based on the

greedy MMR approach which models novelty in respect to the previously selected documents, i.e., it indirectly

optimizes diversity by removing redundancy. An alternative way is to directly maximize the coverage of

different aspects of a topic. For example, we can formulate the task of diversified retrieval as the problem

of predicting the diverse subsets. Specifically, we can formulate a discriminant based on maximizing word

coverage, and perform training using the learning to rank methods.
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Chapter 8

Summary and Future Work

This dissertation studied how to systematically optimize the accuracy of Web search engines for difficult

queries. Due to the lack of necessary domain knowledge or complex information needs, a user can often

encounter difficulty to compose effective queries. We proposed novel algorithms to systematically improve the

retrieval accuracy in three important directions naturally corresponding to different stages of an interactive

search process:

• Pre-retrieval: Where we proposed novel and efficient estimation methods to bridge the vocabulary

gap when the user information need is not expressed exactly as it is in the relevant documents in

statistical translation language model framework. We then analyzed the model more to gain insight

about the optimality of the translation language model by introducing constraints that any reasonable

estimation method should satisfy. We also studied an application of statistical translation language

model for Twitter search which further confirms that statistical translation language model can bridge

the vocabulary gap and it can also improve the estimate of term frequency.

• Post-retrieval: After we present the results to the users, gaining feedback from the users would help

improve the retrieval accuracy especially for difficult queries. In a case when a query is very difficult

that the search results are poor that none of the top-ranked documents are relevant, we proposed

an optimization framework in which we learn from a few top-ranked negative documents and search

in the space of all candidate language models to build a more general negative language model to

prune aggressively but carefully a lot of non-relevant documents from the top-ranked documents in a

language modeling framework.

• Interactive retrieval: When a query is difficult, the user is unlikely satisfied with only one interaction

with the search engine; so there will be more interactions to get the desired results. As a result, after

we present the results to the user (i.e., post-retrieval stage), there is a tradeoff between presenting

search results with the highest immediate utility to a user (but not necessarily most useful for collecting

feedback information) and presenting search results with the best potential for collecting useful feedback
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information (but not necessarily the most useful documents from a user’s perspective). We proposed

methods to optimize such a tradeoff (exploration-exploitation tradeoff) of the overall utility of feedback

to a user in the entire session of user interaction.

We now discuss how related research fields can also benefit from the methods proposed in this disserta-

tion, as well as more general information retrieval problems:

Formalize more translation language model constraints: Ideally, if we could enumerate all de-

sirable translation language model constraints, the target translation language model function would be

guaranteed to be optimal. Unfortunately, it is extremely difficult, if not impossible, to find all desirable

constraints. However, even if we could not find the complete set of desirable constraints, such incomplete

set of constraints are still useful for us to find a more robust and effective translation language model.

Query adaptive retrieval models: Many studies in information retrieval show that no single retrieval

model is able to return satisfactory results for every query. The main reason is that the existing retrieval

models fail to adjust their scoring functions dynamically based on the queries. It would thus be interesting

to study how to automatically categorize queries based on the causes and automatically adapt the strategy

to improve search results for difficult queries based on identified causes. The current understanding of the

causes of difficult queries are still limited in a coarse granularity. In future, constructing a comprehen-

sive and finer-granularity taxonomy of difficult queries would have high impact. Based on the taxonomy,

machine learning techniques can be leveraged to identify or categorize difficult queries into the taxonomy

which we can further study specific retrieval models to improve search utilities for a family of difficult queries.

Unified search paradigm: In this dissertation, we studied how to optimize the accuracy of Web search

engines for difficult queries from naturally three different perspectives which we showed their effectiveness

individually. The proposed methods for improving a search engine in pre-retrieval, post-retrieval, and

interactive search are orthogonal, thus they can be combined in a search engine to potentially achieve

additive benefit. However, how to integrate all these approaches in a unified formal framework remains

a major open challenge. This direction involves interesting research questions such as, human-computer

interface (HCI) design, decision making, redundancy control, etc. Such a system makes it possible to collect

massive user feedback information which enables us to build a social system where past user interactions

can benefit future information seekers.
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One clear advantage of such a system is the potential benefit from improved estimation of the models

based on additional training data. As search engines are being used, we will be able to collect a lot of

implicit feedback information such as click-throughs. Translation language models appear especially to be

promising in this direction and they are complementary with the discriminative models for learning to rank

models. In addition, queries and the associated clicked documents can naturally serve as training data to

train a translation language model in a supervised way.

Novel applications: As our society becomes more data-driven, applications and tasks of all types will

come to increasingly rely upon information systems. Information services can potentially aid us in every

aspect of our lives. But our growing number of systems and services are becoming ever more difficult to

maintain. This line of research can lead to cost-effective information systems that can efficiently adapt to

variety of retrieval domains such as enterprise search, library search, medical search, and the many new and

exciting applications to come.
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