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ABSTRACT 

Background 

Alternative exon usage (AEU) is an important component of gene expression regulation. Exon 

expression platforms allow the detection of associations between AEU and phenotypes such as 

cancer. Numerous studies have identified associations between gene expression and the brain 

cancer glioblastoma multiforme (GBM). The few consistent gene expression biomarkers of 

GBM that have been reported may be due to the limited consideration of AEU and the analytical 

approaches used. The objectives of this study were to develop a model that accounts for the 

variations in expression present between the exons within a gene and to identify AEU 

biomarkers of GBM survival. 

Methods 

The expression of exons corresponding to 25,403 genes was related to the survival of 250 

individuals diagnosed with GBM in a training data set. Genes exhibiting AEU in the training 

data set were confirmed in an independent validation data set of 78 patients. A hierarchical 

model allows the consideration of covariation between exons within a gene and of the effect of 

the epidemiological characteristics of the patients was developed to identify associations 

between exon expression and patient survival. The same model serves multi-exon models with 

and without AEU and single-exon models. 

Results 

AEU associated with GBM survival was identified on 2477 genes (P-value < 5.0E-04 (FDR 

adjusted P-value < 5.0E-04). G-protein coupled receptor 98 (Gpr98) and epidermal growth factor 

(Egf) were among the genes exhibiting AEU with 30 and 9 exons associated with GBM survival, 
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respectively. Pathways enriched among the AEU genes included focal adhesion, ECM-receptor 

interaction, ABC transporters and pathways in cancer. In addition, 24 multi-exon genes without 

AEU and 8 single-exon genes were associated with GBM survival (P-value < 0.0005).  

Conclusions 

The inferred patterns of AEU were consistent with in silico AS models. The hierarchical model 

used offered a flexible and simple way to interpret and identify associations between survival 

that accommodates multi-exon genes with or without AEU and single exon genes. 
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CHAPTER 1 

LITERATURE REVIEW 

Alternative Splicing of Genes 

Central Dogma and Alternative Splicing 

Gene regulation is an important aspect for life and is a fundamental process in all living cells. 

Various fundamental mechanisms such as transcriptional factor regulation, transcriptional 

machinery, reproduction, homeostasis and adaptation all contribute in regulating gene 

expression. Studies have revealed mechanisms such as chromatin modifications, transcription, 

splicing, other mRNA modifications, translation and post translational modifications impact gene 

expression [1]. In 1958 Crick proposed the “Central Dogma of Molecular Biology”, which 

enunciated the transfer of information between DNA, RNA and protein. According to central 

dogma the transfer of genetic information can be subdivided into three major categories: transfer 

with direct or indirect evidence (DNADNA, DNARNA and RNAProtein), transfer with 

no evidence (RNADNA and DNAProtein) and no transfer (ProteinProtein, 

ProteinDNA and ProteinRNA), where ‘’ represent the flow of information. Hence, 

according to central dogma genes are transcribed into RNA molecule and further translated into a 

polypeptide chain [2]. Another important concept “one gene one enzyme” was put forward by 

Beadle and Tatum in 1941, which in 1962 was modified to “one gene one polypeptide” by 

Ingram. The completion of Human Genome Project (HGP) lead scientists to establish that human 

genome consists of roughly 30,000 genes, where the genes present in the genome are of varying 

lengths. Gene can be defined as, “the complete sequence region necessary for generating a 

functional product”, including both protein-coding and non-coding RNA genes. Most of these 

genes consist of coding region that are expressed referred to as ‘exon’ and non-expressing 
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intervening sequences known as ‘intron’ (Figure 1.1) [3]. In 1977, Walter Gilbert became the 

first one to suggest the concept of exon and intron and suggested that different mRNA variant 

can be produced from the same gene by splicing various exonic combinations. Walter observed 

that genes of eukaryotes contained intervening sequences that were removed as post-

transcriptional modification and were referred to as ‘Introns. By 1980’s various studies 

recognized that Alternative Splicing (AS) as a natural process occurring in the genome by 

confirming the presence of different transcripts of the same gene. Based on the number of 

expressed sequence (mRNA), it was anticipated that humans would have a much larger genome 

than drosophila (14,000 genes), including approximately 150,000 genes. Estimates from different 

studies suggest that approximately 95% of all the human genes are subjected to AS [4]. 

However, the sequencing of human genome reported presence of some 32,000 genes which were 

far less than anticipated. This vast difference in human gene content led scientists to evaluate the 

importance AS in producing genomic variation [5]. Thus, an AS event is categorized by the 

formation of different isoforms, mRNAs with altered gene functions produced from the same 

locus possessing different protein coding DNA sequences (CDS), transcription start sites (TSS) 

and untranslated region (UTR), from the same transcript due to retaining different exonic 

segments and splicing different combinations of splice site together in the mRNA [6]. Thus, the 

phenomenon of AS is a vital cellular and regulatory process involved in regulating genes, as 

variety of processes ranging from cell growth and differentiation to apoptosis utilize AS for their 

proper functioning, and diversifying genome by compelling genes with multiple exons to 

produce distinct variants that in turn code for structurally and functionally distinct protein 

variants i.e. involved in regulating and generating genomic and proteomic diversity [7].  
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Alternative splicing can be divided into three broad categories; intron retention, cryptic splice 

site usage (functions by elongating or shortening the exon), and alternative exon usage (AEU). 

An AEU results in the skipping of exon and is also termed as alternative 5` to 3` splicing. 

Alternative exon usage is sub-divided into two categories: cassette exons (discrete exons that can 

be independently included or excluded) and mutually exclusive splicing (which involves the 

selection of only one from a group of two or more exon variants
 
[4]. 

 

Mechanism For Regulating Alternative Splicing 

A variety of genetic diseases manifest solely due to mutation in splice site sequences, 

spliceosome complex and auxiliary or cis-regulatory elements including: Exon or Intron Splicing 

Enhancers (ESE and ISE) and Exon or Intron Splicing Silencers (ESS and ISS) [6]. The 

exclusion or inclusion of genomic content in a transcript is governed by a ribonucleoprotein 

complex called Spliceosome through the process of splicing [6, 8]. Splice sites are present at 

each exon intron boundary, where during splicing introns are removed from pre-mRNA and the 

exons are then spliced together.  

Both spliceosome complexes composed of five small ribonucleoprotein particles (snRNPs) and 

auxiliary proteins are important components of the splicing machinery. The auxiliary elements 

and spliceosome complex function collectively to correctly identify the splice site. The initial 

stage of spliceosome complex assembly involves recognition of the 5` splice site by snRNP U1 

followed by binding of splicing factor 1 (SF1) to the branch point and binding of U2 auxiliary 

factor (U2AF) to both polypyrimidine tract and 3` terminal AG. This assembly of the complex is 

referred to as E-complex. The ribonucleoprotein U2 snRNP then binds to the branch point 

replacing the SF1and converting the complex to into an ATP-dependent complex: pre-
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spliceosomal A-complex. This complex is then converted to B-complex following the 

recruitment of U4/U6-U5 tri-snRNP. Conformational changes in the structure of B complex 

leads to the formation of catalytically active spliceosome “C complex” (Figure 1.2). Various 

mechanisms at different steps of spliceosome assembly can contribute in regulating an AS event. 

Few steps through which AS can be regulated are correct identification and selection of the 

splice site, U1 & U2 snRNP base pairing, transcription coupled AS, tissue-specific AS [9].  

 

Inhibiting Splice Site Recognition 

U1 snRNP are recruited to the 5` splice site, similarly U2AF complex and snRNP are also 

recruited towards the 3` splice site by the SR protein after binding with ESE. Domains 

containing Arg-Ser repeats (RS) mediate the interaction between SR proteins, ESE and protein 

targets. On the other hand, there are many means to evade the recognition of the splice site. For 

instance splicing silencers can block the access of snRNPs or other positive regulators, if they are 

present in close proximity of the splice sites or splicing enhancers. One such example is of 

polypyrimidine-tract binding protein (PTB) that inhibits the binding of U2AF to regulated exon 

by binding to polypyrimidine tract [10]. Activators are also blocked from binding to enhancers 

by the splicing inhibitors. Inhibitors such as FOX1 and FOX2 prevent the recognition of splice 

site by binding to exonic sequence, in close proximity of ESE, in pre-mRNA. This binding 

inhibits binding of other activators (TRA2 and SRp55) to the ESE, preventing the U2AF 

recruitment by the activators, thus inhibiting the formation of E-complex [11].  
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Figure 1.2: Basic principle of Splicing
1
 

 

 

 

 

                                                           
1
Reprinted by permission from Macmillan Publishers Ltd: NATURE REVIEWS | MOLECULAR CELL BIOLOGY 

[6], copyright (2005). 
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Splicing silencers, also inhibit splice site and reside 100-200 b.p. away from the enhancers. Such 

silencers are considered to function by assembling multimers along RNA, thereby causing splice 

site to become inaccessible [12]. It is also proposed that the protein-protein interaction between 

RNA-binding proteins residing in close proximity of alternative exon, causes the alternative 

exons to loop out, which inturn poses hindrances in further spliceosome assembly [13]. 

 

Protein Factors Regulating Alternative Splicing 

A functional spliceosome results from cross interaction between introns of U1 and U2 snRNPs. 

However, binding of hnRNP L to ESS can potentially inhibit the pairing of U1 and U2 

snRNPs15. An ATP-dependent spliceosome-like complex, known as A-like exon-definition 

complex (AEC) is very similar to A-complex and contains both U1 and U2 snRNP. The 

progression of this complex into the B complex is inhibited by hnRNP L-containing AEC in 

presence of hnRNP L, which functions by inhibiting the cross-intron complex formation between 

adjacent U1 and U2 snRNPs bound to exonic splice sites, resulting in exon-skipping. On the 

other hand, U4/U6–U5 tri-snRNP complex is recruited in absence of hnRNP L and after 

formation of A-like complex across exons, converting intron defined A complex to form the B 

complex. It is possible that hnRNP L hinders the formation of B-complex by either substantially 

shielding the interaction between the two snRNP or by introducing conformational changes in 

the mRNA. This change renders the mRNA unable to form cross-intron pairing between snRNP-

bound alternative exons.  

Though most of the studies have related inhibition of intron definition with splicing regulation, 

considering occurrence of AS due to activation of intron definition cannot be left out of the 

equation. A study conducted by Martinez-Contreras et al. (2006) [14] resulted in verification of 
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presence of hnRNP binding sites in close proximity of intron definition sites assist in splicing. 

Presence of hnRNP sites close to each other results in cross-intron interaction between hnRNP’s. 

This interaction causes the intron ends to come closer to each other. Thus, indicating that 

hnRNPs are indeed one of the probable explanations that promote splicing [15]. Proteins such as 

cis-acting elements also play significant role in splicing regulation, certain cis-acting elements 

control the binding at 5` splice site. Study conducted by Yu et al. (2008) [16] revealed presence 

of ESSs and ISSs that inhibit the recognition of proximal (strong) 5`splice site by selecting a 

weaker (distal) 5` splice site, thereby altering U1 and U2 snRNP pairing. The inability of splice 

factors to bind to the correct splice site is due to occurrence of conformational change in 

proximal 5` splice site complex by action of splicing silencers. As a result of which proximal 

splice site complex loses its edge over the distal splice site complex for binding to U2 snRNP 3` 

splice site complex [15]. 

 

Tissue Specific Alternative Splicing 

Numerous splice variants are produced from multi-exon genes subjected to AS. This AS also 

results in production of structurally and functionally distinct protein products. Understanding the 

principles governing the splicing differences has become a necessity. Even more alluring fact is 

that studies have shown presence of different isoforms from the same gene in different tissues 

suggesting involvement of different factors. Microarray techniques have played a huge role in 

determining tissue-specific regulation of AS events but can only provide us with a limited 

amount of information due to the inability to distinguish between closely related variants. In 

tissues, factors typical to tissues and regular RNA-binding factors act in combination, 

influencing spliceosome to regulate AS event. RNA map, provides a good understanding on the 
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effect of various factors on AS, based on the site of action [15, 17]. Expression of splice factors 

specific to tissues and regulation of mRNA’s (targeted by the splice factors) can contribute 

towards the understanding of tissue-specific AS [15]. Wang et al. (2008) [17] verified the 

differences in AS occurring in different tissues by taking into account ~105,000 AS events of 8 

different types. The results deduced from the analysis showed disparity between tissues in 

amount of splice variants produced. The isoforms detected to be differentially expressed between 

different tissues were also taken into account. The frequency of identified tissue-specific AS 

event through the analysis was approximated to be over 22,000. The conclusion deduced from 

the experiment indicated that most of the AS events are subjected to tissue-specific regulation 

[17]. 

Brain usually displays the most frequent number of splicing patterns, with several identified 

splicing regulatory factors. One of the splicing regulatory factors is nPTB, which is highly 

expressed in differentiated neurons. However, neural progenitor cells show high expression of 

PTB. Thus, presence of PTB-to-nPTB switch promotes the post transcriptional mechanism 

necessary for differentiating the neuronal cells. 

 

Impact Of Activators And Inhibitors 

Both splicing activators and inhibitors pose huge impact on the splicing procedures; a pre-

mRNA undergoes. The combinatorial, as well as the competitive effects of activators and 

inhibitors effect the inclusion or exclusion of an alternative exon in the transcript. However, it is 

the activity of particular regulator type that regulates the fate of alternative exon [18]. A study 

conducted by Crawford and Patton (2006) confirmed that different regulatory factors exclude or 

include an exon by competing to bind to the same element. It was shown that the competitive 
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struggle between SR proteins and hnRNPs for binding to the same element regulates the exon-2 

of α-tropomyosin [19]. 

 

Position Specific Splicing 

Different studies have concluded that occasionally it is the positioning of the auxiliary elements 

(ESE, ISE, ESS and ISS) and their binding proteins that regulate the exon. Depending on the 

location of the binding site relative to the exons, the proteins can function as both activators and 

repressors [20, 21]. NOVA1 binds to ESS residing in the exon-4 of its own mRNA, thus 

excluding the exon-4 [22]. On the other hand, the inclusion of exon-9 in pre-mRNA of GABA A 

receptor γ2 (Gabrg2) gene is promoted by binding of NOVA1 to ISE [23]. A study conducted by 

Ule J et al (2006) [24] focused on generating mRNA maps that contained locations for the 

binding sites of NOVA1 and NOVA2 and the significance of binding. The maps were developed 

by searching for the existence of YCAY clusters that are the binding sites of NOVA1 and 

NOVA2, and by utilizing prior information from mRNA’s targeted by the NOVA1 and NOVA2 

[24]. Hence, results clearly indicate that the positioning of the splicing regulatory elements and 

proteins with respect to the regulated exon is an important aspect that cannot be neglected while 

considering AS. Binding of factors responsible for splicing to enhancers or silencers brings forth 

structural changes in the mRNA, presenting or obstructing the access of splicing machinery to 

the splice sites of alternative exons [15]. 
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Involvement Of RNA In Alternative Splicing Regulation 

Secondary structures of pre-mRNA pose a substantial influence over the selection of splice site. 

It has been established that the secondary structures can affect splice sites by either binding 

competitively to splice factor binding sites or by masking the splice sites. Dscam mRNA in 

drosophila presents a complex alternative splicing event. Down syndrome cell adhesion molecule 

(Dscam) exon-6 cluster comprises of 48 mutually exclusive exons, in which pairing of conserved 

sequences, downstream of exon-5 (dock site) & upstream of every exon in exon-6 array (termed 

as ‘selector’ sequence) results in inclusion of one exon-6 variant in the transcript. Binding of 

hrp36 (selector sequence homolog) leads to exclusion of other exon-6 variants [15, 25].  

Riboswitches are part of mRNA molecules which effect gene activity by binding to the target 

genes. It is well established that riboswitches control gene expression in prokaryotes [26] and are 

involved in regulation of AS in some smaller eukaryotes. However, their involvement in AS 

event of higher organisms remains to be established. [27]. Small nucleolar RNAs (snoRNAs) 

have been associated with AS event regulation.  It was observed that AS is accomplished when 

snoRNA HBII 52 binds to the silencing element in exon Vb of serotonin receptor (5-HT2CR) to 

promote its inclusion [28]. 

 

Prediction Of Alternative Splicing 

Various bioinformatics approaches have been developed to predict AS events. Su et al. (2008) 

[29] developed an individual exon approach and Purdom et al. (2008) [30] used the residuals 

from probe level analysis to identify AEU on a per-sample level in the FIRMAGene package. In 

this approach, series of consecutive residuals that depart from 0 are considered evidence of AEU 
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events. The sample-level analysis challenges the detection of AEU events or the identification of 

common patterns across treatments or conditions. The limitations of this approach were 

overcome by the use of a linear model to compare the exon expression among groups (Laderas et 

al., 2011) [4]. However, group comparison is not suited to identify alternative exon usage 

associated with other conditions such as survival or time-to-event. In addition, the previous 

approach did not account for correlations between exons measured on the same sample. Cline et 

al. [31] formulated a ANalysis Of Splice VAriation ANOSVA approach that models the 

logarithm of the background corrected intensity (yij) as a function of two factors: concentration 

θj of the target mRNA in the sample (target concentration) and a probe affinity term φi relating 

changes in probe intensity to unit changes in target concentration (yij = φi + θj + error). 

However, a limitation is that the model is not applicable to a gene that produced more than one 

splice form [31]. Barash et al. (2010) [8] developed a probabilistic model that was able to 

identify AS signals specific to a particular condition by utilizing prior knowledge about the AS 

event such as (information corresponding to expression level correlation, effect of AS event and 

expected small number of AS signal) and dataset based specific knowledge including (levels of 

gene expression in dataset and measurement quality pertaining to the dataset) [8]. Shai et al 2006 

[32] developed a model namely Generative model for the Alternative Splicing Array (GenASAP) 

that predicts exon skipping event by quantifying splicing changes at single exon level. AS levels 

in microarray data are predicted by GenASAP, which utilizes Bayesian learning in an 

unsupervised probability model [32]. Studies conducted by Eisen et al. (1998) [33] applied 

clustering analysis to group genes by detecting similarities in patterns of gene expression. The 

same technique can be applied for identifying common patterns in AS events.  A matrix 

representing inclusion and exclusion isoform for each exon against specific condition can help in 
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identifying patterns pertaining to AS events [33, 34]. However there are many drawbacks to this 

technique, firstly it cannot account for tissue specific splicing. Also the clustering either 

distinguishes or neglects to distinguish between relative increase or decrease due to exon 

inclusion or exclusion [8]. Zheng et al. (2009) developed a Regression Method for AS detection 

(REMAS) that was based on the Lasso regression algorithm [35]. This approach assumes that the 

overall gene expression is strongly interrelated with the intensities of constitutive exons and an 

AS event results in altered gene expression. Thus, the difference between the expression of 

alternatively spliced and constitutive exon is considered as an indicator of AS. Finally, the 

Splicing Index (SI), a basic linear model for estimating changes of exon expression, applied in 

this model, ignores the relation between exons and identifies alternatively spliced exons 

individually [35]. 

A number of resources and databases have also been developed to provide and store information 

for correct prediction of AS event. Dralyuk et al. (2000) [36] developed Alternative splicing 

database (ASDB) using Genbank and SWISS-PROT annotation. This search engine allows 

queries to be searched across SWISS-PROT and GenBank fields and then simply following the 

links to all variants allows information regarding splicing event to be retrieved [36]. In 2001, an 

alternative splice database of mammals (AsMamDB) was developed by Hongkai et al. (2001) 

[37] to assist studies related to alternatively spliced genes of mammal. In AsMamDB 

alternatively spliced genes are associated with a cluster of nucleotide sequences. The main 

information provided by AsMamDB includes AS patterns, gene structures and also provides 

information about gene products and gene’s expression site [37]. Intron information system 

(ISIS) was developed to evaluate the function and evolution of spliceosomal introns in 

eukaryotes. Analysis through this system allowed recognition of many alternative spliced exons 
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[38]. HASDB, a database to detect AS events in human EST data was established by Modrek et 

al (2001) [39]. The results obtained through HASDB provide deep understanding of AS function 

in human genome [39]. Another bioinformatics resource for AS events ASD was initially 

developed by Thanaraj et al. and was upgraded by Stamm et al. (2006) and contains both 

manually and computationally generated data[40]. This resource functions by collecting and 

annotating data related to AS. This resource consists of various parts: AltSplice, AEdb and a 

Workbench. AltSplice is a database that includes computationally predicted alternatively spliced 

events, patterns and transcripts. Gene alignments are utilized by AltSplice to generate the data. 

Information on various features including splicing signals, SNP-mediated splicing, intra-specie 

homology and expression states is provided by AltSplice. Results obtained from this component 

indicated that about 61% of human genes undergo AS. It was also concluded that approx. 3.9 

alternatively spliced transcripts are produced form a single gene. Around 5200 orthologous gene 

pairs (between human and mouse) are included in AltSplice. AEdb is manually developed 

portion of ASD, it contains datasets that are based entirely on literature. It can further be divided 

into 4 components: AEdb-Sequence (searches pub-med for studies related to AS), AEdb-Function 

(provides with literature-based survey of functions related to a particular alternatively spliced 

exon. The functionalities of proteins generated as a result of AS event are divided into 11 

different categories), AEdb-Motif (provides with literature related to splicing regulatory motifs, 

intronic/exonic regulatory sequences and mutations. It reported some 153 and 81 enhancers and 

silencers respectively) and AEdb-Minigenes (provides graphical representation of splicing patters 

and regulatory sequences for all minigenes reported in literature and includes a collection of 82 

minigenes). The last component is a workbench that is used for analysis of splicing. This system 

allows retrieval of information on variety of aspects including intron characterization across 
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splicing signals, identification of splicing regulatory elements, prediction of putative exons and 

translation start codons [40]. Another database developed that accumulates lot of information 

regarding AS events is The Alternative Splicing and Transcript Diversity database (ASTD). 

ASTD comprises of vast collection of alternative transcripts that integrate transcription initiation, 

polyadenylation and splicing variant data. Alternative transcripts are derived from the mapping 

of transcribed sequences to the complete human, mouse and rat genomes using an extension of 

the computational pipeline developed for the ASD (Alternative Splicing Database) and ATD 

(Alternative Transcript Diversity) databases, which are now superseded by ASTD. ASTD 

datasets are established through three different categories of transcript-to-genome mapping. The 

three prediction categories include splicing (AltSplice), polyadenylation (AltTrans and AltPAS) 

and transcriptional start site (AltTSS) variant. Altsplice was used for predicting spliced isoforms 

and AS events by mapping EST and mRNA onto genomic sequences of Ensembl. ASTD 

contained 8,125,884 mapped transcripts for humans, 4,935,071 for mouse and 824,394 for rats. 

However, after removing all sorts of false positive transcripts, less than 25% of the true positive 

mapped transcripts remain in ASTD that can be used as supports for splice variants. Two 

components are involved in the polyadenylation: AltTrans and AltPAS, both are responsible for 

identifying polyadenylation but recognize sites corresponding to specific splice patterns and 

potential poly (A) sites irrespective of underlying splice patterns, respectively. Splice sites were 

included only if they met the specified criterion for internal priming, unmatched transcript ends 

and presence of polyadenylation signal that has already been reported. The Poly (A) sites 

obtained from both the components are then merged. The last component AltTSS was used for 

predicting transcription start site (TSS) using libraries of oligo-capped full-length cDNA’s. TSS 

were taken into consideration after aligning the sequences residing ~10,000 b.p. upstream of 
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each splice variant with NCBI Blast program. High-scoring sement pairs with minimum 95% 

identity were selected and onwards filtered with the specified criterion. Results provided by 

ASTD for human genome report 68% splicing variants, 68% transcription initiation variants and 

62% polyadenylation variants. 

Annotating genes, transcripts and proteins is a complex and difficult task. Tools that can 

correctly predict genes have become a requirement. AceView predicts gene models and provides 

with non-redundant and comprehensive graphical and sequence representation all public mRNAs 

by summarizing cDNA data from Refseq, GenBank and dbEST. Developed by NCBI, AceView 

utilizes heuristics for maintaining the same annotations. AceView is also displayed as one of 

UCSC gene tracks. Through analysis of the gene prediction tools, it was established that 

AceView transcripts are more close to Gencode as compared to other transcripts predicted by 

other tools. Therefore, for all transcripts AceView annotates the finest predicted CDS. Introns of 

both Gencode and AceView are common (except 10% and 14% specific to Gencode and 

AceView respectively), nucleotides used in spliced variants are common (except 8% and 12% 

specific to Gencode and AceView respectively). AceView also provides with a more efficient 

and simplistic method for annotating complete chromosome, while maintaining a similar 

annotation quality as to Gencode. One other feature provided by AceView is re-annotation of its 

mRNA with parsimonious Gencode-like CDS. Overall results indicated that gene structures 

predicted by AceView are in agreement with those of Gencode [41]. 
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Alternative Splicing Influences Health 

Alternative splicing has been associated with a variety of cellular, molecular and physiological 

functions. The regulation of these mechanisms by AS displays even more variability than their 

regulation through promoters [42]. Studies have concluded that AS is the causal agent of variety 

of diseases ranging from developmental regulation, cancer to apoptosis [43]. Numerous novel 

protein products with completely different peptide sequence, structure and functions are 

produced as a consequence of AS [43]. Alternative splicing affects most of the genes residing in 

the genome, and thus changes occurring during the transcriptional and translational processes 

might manifest in disease. The aberrant pre-mRNA processing might be instigated because of 

mutations in cis elements or altered expression of splicing factors and can potentially lead to 

tumoral transformations and cancer development [44]. Kim et al. established that aberrant 

mRNA and the resulting proteins have distinctive characteristics and properties that impart 

distinctive growth, differentiation and other molecular properties to the cancerous cells [45]. 

 

Alternative Splicing Necessary For Developmental Processes 

Occurrence of alternatively spliced events for generating genomic and proteomic diversity has 

been related to the proper functioning of many biological processes. Grabowski et al., (2001) 

[46] declared that AS was the primary cause of protein diversity required for proper functioning 

and development of the Nervous System (NS). The study suggest that AS of exon 21 residing in 

N-methyl-D-aspartate R1 (NmdaR1) receptor is responsible for many important regulatory 

processes in brain like neuronal development and synaptic plasticity. Other studies [47] 

conducted in 1995 concluded that C1 cassette exon containing NmdaR1 receptor mRNA can also 

be directed to function in plasma membrane. The mRNA isoform expression was inspected in 
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quail Qt6 fibroblasts cell line. The receptors were clustered on plasma membrane only when the 

gene contained C1 cassette exon. In absence of this cassette exon, the target protein was not 

observed in plasma membrane [46]. It has been established that C1 exon is required in gene to 

associate NmdaR1 receptor with the neurofilaments [48]. 

Wu et al. (2010) [49] demonstrated the importance of AS by associating it with complex 

biological system such as cellular apoptosis. Apoptotic pathway is initiated after interaction 

between specialized TNF family ligands with their receptors. Extracellular domains are 

proteolytically cleaved to generate soluble form of liquids [50]. As shown by Agarwal., 2003 

FasL variants are soluble and pose a significant influence upon apoptotic potential by blocking 

the death-promoting activity. These soluble isoforms of FasL, which are deficient of intracellular 

domain, transmembrane and portion of extracellular domains inhibit apoptosis and are generated 

due to AS event [51]. Another important gene is the Bcl-2 family, many members of this family 

have been associated with apoptosis inducing and inhibiting activity. Study concluded by Adam., 

2003 suggested that AS is involved in regulation of many Bcl-2 proteins. Bcl-x is a member of 

Bcl-2 family and is subjected to AS, producing two functionally separate isoforms: Bcl-xL and 

Bcl-xS. Bcl-xL is the longer transcript comprising of all four BH domains and functions by 

inhibiting apoptosis. On the other hand, produced as a result of AS, Bcl-xS is the smaller of the 

two transcript lacking both BH1 and BH2 domains. As opposed to the expression of Bcl-xL in 

long lived cells, expression of Bcl-xS is normally observed in cells enduring high turnover rate 

and in hormone-dependent tissues [50].  
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Alternative Splicing causes disease 

Different studies have displayed abnormal AS to be related with a variety of diseases. One of the 

diseases that manifests due to AS is the spinal muscular atrophy (SMA) that is characterized by 

the degeneration of alpha-motor neurons in brainstem and spinal cord. It affects approx. 1:10000 

infants world-wide. In most cases manifestation of the disease in infants leads to death in early 

childhood [52]. Aberrant assembly of snRNP is reported to cause SMA, this abnormal assembly 

occurs due to loss of Smn1 gene which is responsible for producing SMN protein [43]. The study 

conducted by Zhang et al. (2008) [53] showed that motor neurons remain the only ones that are 

affected by splicing, no other defects leading to cell death were observed due to splicing. Exon 

arrays were utilized to compare splicing difference between 3 normal and 3 Smn1deficient mice. 

The analysis concluded 259, 73 and 633 from spinal cord, brain and kidney respectively, to be 

significant at a false discovery rate (FDR) adjusted P-value < 0.1, while utilizing 200,000 probes 

that corresponded to exons of some 20,000 mouse genes. To confirm the results obtained, exon-

junction specific primers were designed to conduct real time RT-PCR on 31 genes that were 

displayed significant by the exon arrays. The results obtained from RT-PCR validated the exon 

array results with a rate of 97%, suggesting differential expression of the exons in a particular 

tissue. They also used 8 genes to confirm the expression of same exons across tissues. These 

findings revealed that different tissues possessed disparity in expression levels of the exons, 

indicating that the splicing alterations are tissue specific [53]. 

Familial Hypercholesterolemia (FH) is a metabolic disorder characterized by the presence of 

elevated levels of total cholesterol (TC) and low density lipoproteincholesterol (LDL-C) 

affecting cholesterol metabolism. In some cases patients suffering with FH display skin and 

tendon xanthomas, where FH manifests itself into premature coronary heart disease (CHD). 
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Mutations in three genes have been shown to cause hypercholesterolemia (HC) these are: Low 

Density Lipoprotein Receptor (Ldlr), Apolipoprotein-B (ApoB) and Pro-Protein Convertase 

Subtilisin like Kexin Type 9 (Pcsk9) [54]. However, primary cause of manifestation of HC is 

mutation in Ldlr. Zhu et al. (2007) [55] analyzed SNPs present in Ldlr relative to ESE matrices 

and discovered presence of C/T (ESE site) single nucleotide polymorphism (SNP) rs688 in exon-

12 of Ldlr that enhances splicing event resulting in exclusion of exon-12 from the transcript. Ldlr 

c-DNA from exon 10-14, from liver samples of 21 female and 22 male patients, was amplified to 

analyze the splicing event. Ldlr isoforms missing exon-12 were readily detected and genotyping 

of rs688 revealed presence of T allele (minor allele) and its presence decreases the splicing 

regulatory protein (Spr40) binding affinity, which recruits the splicing machinery, especially in 

pre-menopausal women (P-value<0.0042). Splicing pattern caused by SNP is significantly 

related to high cholesterol level in women only (P-value<0.024) [55]. A truncated receptor is 

generated as a result of Exon-12 skipping, this receptor is deficient of transmembrane domain. 

Thus, no internalization and membrane binding occurs preventing LDL uptake by the cell. 

LDLR also acts as a receptor for Apo lipoprotein E (ApoE), which is reported to be associated 

with development of Alzheimer's disease. Zou et al. (2008) [56] concluded that skipping of 

exon-12 in Ldlr transcripts increases the possibilities of occurrence of the disease in the male, 

while no association of splicing event with alzheimers was observed for women [43]. This 

tissue-specific AS can be held accountable for the disordered cell differentiation and signaling 

that contribute to stem cell like proliferation of cancer cells [57] . 
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Alternative Splicing Associated With Cancer 

Alternative splicing leads to formation and expression of numerous different transcripts, 

produced due to varying combinations of exon inclusion and/or exclusion. The translation of 

these transcripts may results in production of structurally different protein that also possess 

different functions [57]. Numerous studies have validated the presence of alternative splicing 

patterns in cancerous cells. Studies have also associated aberrant AS event with development of 

cancer. The variable expression of these AS or tumor-specific spliced variants triggers many 

cellular and molecular functions that promote proliferation, motility and division of cancerous 

cells [43]. Cancerous cells have been reported to disrupt the splicing patterns by two prominent 

methods involving somatic mutation in cis-elements and trans-acting factors involved in 

regulating splicing [58]. Mutations in trans-acting factors, on numerous occasions have been 

been reported to be associated with various cancers including glioma, ovarian and colon cancer. 

Additionally, many gene have been reported with normal splice variant that contributes towards 

the development of tumorigenesis [57]. However, the roles of spliced variants in cancer have not 

been fully established; presence of a spliced variant in malignant phenotype could be a 

coincidental i.e. the spliced variant could be present in the malignant phenotype without ever 

contributing to its development [43]. However, the fact remains that results obtained from both 

predicted and experimentally verified data claim that AS is more prevalent in cancerous cells. On 

the other hand, study conducted by Kim et al. (2008) confirmed presence of relatively lower 

degree of alternatively spliced exons in cancerous cells as compared to normal cells [45]. 

Breast cancer susceptibility gene (Brca1) has known association with development of hereditary 

breast and ovarian cancers and is also reported to produce several splice variant that might 

significantly contribute to the development of tumor. Occurrence of mutations in intronic splice 



22 
 

sites and degenerative sites, located near intron/exon boundary, result in development of 

numerous splice variants. One such splice variant, resulting in exclusion of the constitutive exon-

18, involves G>T mutation at position 6 of exon-18, leading to E1694X change and removal of 

26 amino acids (a.a).The mutation disrupts the C-terminus of BRCA1. It was hypothesized that 

the mutation in consideration disrupted the ESE. However, the mutation occurred in a region not 

rich in purines whereas ESE’s are normally expected to be residing in purine-rich region. 

Utilizing motif scoring matrices it was established that the mutation disrupts ESE due to 

confirmation of correlation between SF2/ASF high-score motif distribution and the splicing 

patterns. Thus, SF2/ASF recognition sequence is a necessary; absence of recognition sequence 

can lead to skipping of exon-18 [59]. 
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Glioblastoma Multiforme 

Background 

Appropriate neuronal cell differentiation is necessary for the proper functioning of brain cells. 

Misregulation in neurotransmitter signaling, sequence mutations, methylation patterns, copy 

number variation, faulty apoptosis, erroneous DNA repair and cell differentiation can result in 

stem cell like proliferation of cells leading to development of brain malignancies [57].  

The World Health Organization (WHO) has grouped brain cancers into four different groups (I, 

II, III and IV) based on the severity of the disease, where group IV represents the most malignant 

tumors. Glioblastoma Multiforme (GBM) is considered as one of the primary and highly 

aggressive brain tumors, accounting for 50% of all CNS malignancies, 20% intracranial tumors 

[60] and 90% of all glioblastoma. GBM usually forms in cerebral white matter, exhibits 

devastating consequences with average survival ranging up to approximately 12 months and has 

been placed in group IV by WHO, due to high capacity of GBM to proliferate in the brain [61]. 

Secondary GBM referred to as ‘Astrocytoma’, display slow progression, accounts for less than 

10% of all GBM cases and occurs in relatively younger patient.  

The average survival time for a patient suffering with glioblastoma was estimated to be around 

five months. Increased time period after manifestation of disease resulted in decreased survival 

rates (42.4% at 6 months, 17.7% at 12 months and 3.3% at 24 months). It was also determined 

that males are slightly more susceptible to primary glioblatoma than females with male to female 

ratio being 1.28 [62]. However, females are more susceptible to secondary glioblastoma. 

Furthermore, age of an individual also poses significant effect over survival. Older age at 

diagnosis reduces the survival rates, while patients with age less than 50 years showed 

significantly longer survival and show higher incidence of rare secondary glioblastoma. 
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Manifestation of of primary tumors is observed in majority of older patients diagnosed with 

GBM [63]. Johnson et al. (2011) concluded that treatment of GBM patients with radiation and 

drug therapy increases the survival from 12 to 15.6 months [64]. However, even with all the 

therapies provided, GBM still displays high resistance to treatment because of presence of small 

areas displaying necrosis and hemorrhage in the tissues [65]. Studies also confirmed that 

ethnicity also contribute significantly in GBM development. It was estimated that white people 

are more likely to develop brain tumors as compared to non-white people [66]. 

 

Genes And Gene Expression Associated With Glioblastoma Multiforme 

In most of the GBM cases, aberrant genomic alterations are associated with the development of 

tumorous cells. Therefore, understanding the involvement of underlying genes, pathways, 

mechanisms and functions that contribute towards the development of brain malignancies is a 

must [65]. Various genes including Egf, Nf1, Idh1 have been associated with the initiation and 

progression of GBM [67]. 

Transcription is promoted by activation of several tyrosine kinases and downstream signal 

molecules after binding between epidermal growth factor (Egf) and epidermal growth factor 

receptor (Egfr). This binding also results in dimerization of Erg receptor family (Erb 1-4) [68]. 

Studies confirmed association of polymorphism, 61 A/G, with poor survival in GBM [69]. 

Another study performed tagging of Egf to estimate effect on the development of GBM. Results 

indicated minor alleles of four polymorphic events, rs17238095, rs3796944, rs9992755 and 

rs11568994 located in different exons, to be significantly associated with the GBM [68]. 

Therefore, analysis of various studies relates higher expression of Egf to be associated with 

GBM. 
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Neurofibrin1 (Nf1) is another gene that is negatively associated with GBM, by acting as a GBM 

suppressor gene. Accumulation of 19 specific mutations (6 non-sense, 4 splice site, 5 missense 

and 4 frame-shift indels) was observed and it was predicted that these mutations are responsible 

for the probable inactivate the gene. In all it was estimated that somatic mutation manifested in 

23% of the total patients were contributing towards the inactivation of the gene and in the 

process confirming the significant association to GBM [65]. 

Isocitrate dehydrogenase 1 (Idh1) is a gene residing in chromosome-2 and has been associated 

with secondary glioblastoma [70]. IDH1 is responsible for the production of NADPH by acting 

as a catalyst in the formation of α-ketoglutarate from isocitrate through the process of oxidative 

carboxylation. Experiments conducted showed that mutations in Idh1 reduced the activity of 

enzyme IDH1 due to formation of heterodimers that are catalytically inactive. This process also 

results in upregulation of a transcription factor hypoxia-inducible factor subunit (Hif-1a), which 

is reported to be associated with tumor growth [71]. The frequency of mutation of Idh1 was 

estimated to be above 80% in most of gliomas except primary GBM, which exhibits reduced 

frequency of less than 5% [70]. 

 

Genetic Pathways 

Due to development of various techniques and methods, understanding of genetics underlying 

glioma development has greatly improved. Large scale sequencing of genome has led to 

detection of several novel genetic alterations and pathways, adding valuable information towards 

further understanding glioma and may also help in identification of targets for interventions [70]. 
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Receptors (such as EGFR etc) normally reside in inactive state and get activated after binding to 

their respective ligands (EGF). Higher expression of Egfr is associated with development of 

primary GBM, where 70%-90% of GBM cases showing upregulation of Egfr also possess 

amplification of Egfr sequence. The interaction between EGFR and EGF results in recruitment of 

phosphatidylinositol 3-kinase (PI3K) complex composed of two subunits: catalytically active 

protein p110α and regulatory protein p85α. PI3K ultimately leads to activation of mammalian 

target of rapamycin (mTOR), a downstream effector molecule, by phosphorylation of 

phosphatidynositol-4,5-biphosphate (PIP2) to phosphatidynositol-4,5-3-phophate (PIP3). This 

entire process results in inhibition of apoptosis and consequentially promoting cell proliferation 

and survival. Phosphatase, tensin homologue, deleted on chromosome TEN (Pten) is a tumor 

suppressor gene that inhibits the cell proliferating action of PIP3. About 40% of the primary 

GBM cases exhibit mutation in Pten. The Cancer Genome Atlas (TCGA) pilot project reported 

alteration of Egfr/Ras/Nf1/Pten/Pi3k pathway in 88% of the GBM cases [15, 70]. 

Tumor protein p53 (Tp53) encodes for p53 protein that is reported to be associated with a variety 

of malignancies. Its main function is to regulate cells in response to increased cellular stress, cell 

death, differentiation. High levels of p53 protein are normally observed in malignant and 

transformed cells. It mainly consists of three domains including DNA-binding, transcription 

activation and oligomerization domains. The p53 protein is a DNA-binding protein which 

activates in response to DNA damage. Transcription of p21, Mdm2 gene is induced by activated 

Tp53. Amplification of Mdm2 is associated with ~15% of glioma cases, binds to Tp53, thereby 

blocking transcriptional event induced by action of Tp53. Another gene p14ARF binds to Mdm2, 

blocking the Tp53 binding ability of Mdm2. Methylation in promoter region of p14ARF is 

observed in almost 50% of glioma cases. Tp53 is also responsible for regulating p14ARF thereby 
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acting as a feedback mechanism. Another gene Mdm4 regulates the activity of Tp53. Thus 

mutation resulting in altered function of Tp53 can completely disrupt the pathways involving 

Tp53, Mdm2, Mdm4 and p14ARF. Different studies have reported frequency of mutated Tp53 in 

primary glioma (65%) to be reduced than its presence in secondary glioma (28%). The Cancer 

Genome Atlas (TCGA) pilot project also reported alteration of Tp53/Mdm2/ Mdm4/ p14ARF 

pathway in 88% of the glioblastoma cases [15, 70]. 

 

Alternative Splicing Associated With Glioblastoma 

Different studies to enumerate the expression of genes and their isoforms across tissues have 

been carried out. Ramskold et al., (2009) established that brain tissues contain expression of a 

large number of genes and gene isoforms because of high frequency of AS events [72]. AS is a 

natural process adopted by the genome to produce genetic and proteomic variation [4]. However, 

misregulation of AS has been associated with development of many diseases and cancers [59]. 

The development of GBM has also been linked with alternative splicing of various genes. One 

such gene is glioma-associated oncogene homologue 1 (Gli1), which is zinc-finger transcription 

factor. Gli1 protein functions as nuclear mediator for Hedgehog signaling pathway, a pathway 

known to regulate genes involved in premature development of the CNS and observed to be 

activated in gliomas. After being released from cytoplasm, Gli1 translocates to cell nucleus 

where its binding to GLI1-binding elements activates them. Lo et al., 2009 reported a presence of 

a truncated splice variant of GLI1 (tGLI1). The new variant manifested in most GBM cells but 

was undetectable in normal brain cells. Further investigation of tGLI1, established that the 

variant is produced due to deletion of 123 bases from exon-3 and exon-4. The in-frame deleted 

portion contains 41 codons corresponding to specific amino acid residue position (34 to 74) in 
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the protein. Production of the variant tGLI1 upregulates CD24, a gene reported to be associated 

with increased invasiveness. The results suggest that production of tGLI1 results in gain-of-

function that relates to aggressiveness of GBM cells due increased invasive and migrating 

properties of the infected cells [73]. 

Izaguirre et al. (2011) associated AS in (Usp5) with GBM. Usp5 also referred as isopeptidase T 

is regulated by polypyrimidine tract-binding protein 1 (Ptbp1), whose upregulated expression 

level is responsible for cell proliferation and migration in GBM cells. PTBP1 protein is a splicing 

regulator and its members are responsible for repressing the recognition of exons during splicing, 

exon inclusion, replication, mRNA stability, RNA transport and viral translation. AS of Usp5 

leads to the formation of two isoforms: isoform-1 formed due to inclusion and isoform-2 

containing exclusion of exons. This variation is observed as a result of 69 bases altering exon-15. 

Study revealed expression Usp5 isoform-1 to be significantly correlated to Ptbp1 expression. 

Results obtained were confirmed with RT-PCR and associated expression Usp5 isoform-1 with 

reduced PTBP1 levels. Invitro studies also confirmed the presence of consensus PTBP-binding 

sequences in proximity of alternative exon. Thus, for isoform-1 presence of binding site specific 

to PTBP1 was observed at 5` splice site, resulting in exclusion of exon from isoform-1. Increase 

in the levels of Usp5 isoform was negatively correlated to GBM cells migration and proliferation 

[74]. 
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Analysis Of Microarray Gene Expression 

Understanding of genomic variations and differences in gene expression levels related to a 

specific phenotype requires knowledge of the underlying genes and pathways [75]. Transcription 

and translation of the gene into mRNA and protein respectively is an extremely complex and 

delicate process involving many regulatory factors [76]. Therefore, quantifying mRNA 

expression levels pertaining to specific phenotype is necessary for identifying its impact on the 

phenotype. 

 

Gene Expression Measuring Platforms 

Genetic makeup, environmental conditions, cellular response and regulatory factors all 

contribute to and are responsible for varying expression levels of the genes. These expressions 

levels are quantifiable through utilization of various techniques, particularly developed to 

measure gene expression over last two decades [77]. Most prominent methods used to quantify 

mRNA levels include Northern Blot [78], real time polymerase chain reaction (RT-PCR) [79], 

microarrays [80] and RNA-seq [81]. 

Northern blotting is a technique derived from southern blotting, in which enzyme-cleaved DNA 

fragments, separated due to movement of ions from positive to negative electrode are transferred 

to nitrocellulose strips. In northern blotting, single strands of DNA are coupled covalently to 

paper and are transferred through a gel. After which hybridization with labeled 32p probe is 

performed to correctly identify and detect specific sequence [78]. 

Microarray is a high throughput technique that was developed in the recent past and has the 

capability of measuring expression of thousands of gene in chorus. Microarrays utilize the 
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information obtained from mRNA and on assembly basis can be divided into two categories: 

spotted microarrays and oligonucleotide microarrays [80]. Through this methodology, manual 

arrays are developed that takes into consideration both research interests and cost limitation of 

the experiment. However, the results obtained through this technique are not very consistent 

[82]. On the other hand, oligonucleotide microarrays consist of arrays in which probes that are 

formed by adding each base individually. Additionally, much of the research being conducted 

globally nowadays utilizes oligonucleotide microarrays developed by different companies [80]. 

There are three main microarrays platforms that have been widely utilized for expression studies: 

two-dye approach, BeadChips and Affymetrix. The working of these microarray techniques is 

very identical. First step involves the hybridization of the labeled sample to the DNA probe, after 

the samples are applied onto the array. The complete process is affected by a variety of external 

and environmental factors including temperature, salt concentration, etc. The previous step is 

followed with washing of the array to ensure that hybridized targets are the only ones that remain 

attached onto the microarray. Thus washing greatly reduces the chance of cross-hybridization. 

Next step involves measuring the intensity of the fluorescence emitted from the slide. This is 

accomplished by placing the slides in a scanner, allowing the scanner to measure the intensity of 

fluorescence emitted after being excited by the laser. After which the final step involves the 

measurement of gene expression levels [83].  

In two-dye microarray, fluorophore dye labeled both target gene samples are hybridized to the 

same array. Normally, Cy3 (fluorescence at red wavelength) and Cy5 (fluorescence at green 

wavelength) dyes are used to label the samples. Comparing the intensities of the fluorescence 

emitted by each wavelength in the array determines comparative expression levels between the 

samples of interest . Therefore this method offers reduced variability by performing direct 
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comparison between two samples [84]. In the same manner, one-dye platforms utilize 

fluorescence to label the samples but in this case only one dye is used. In this both the samples 

are placed in different arrays and expression level of each sample is determined by measuring the 

fluorescence [83]. One-dye systems present a very simplistic and flexible method to compare 

results between various groups of samples [80]. 

BeadChip microarray is designed by Illumina BeadArray Technology. The arrays designed 

comprise of thousands of 50mer oligonucleotide arranged in a unique bead type structure that are 

assembled into the microwells fixed onto surface of the BeadChip. Alongside expression 

measurement BeadChips can be used effectively for genotyping also. Different techniques can be 

utilized to synthesize probes of varying length: short (25-30 bases) and long (50-80 bases). An 

array contains approximately 30 instances of each bead type [85]. 

 

Affymetrix Gene And Exon Platform 

Among all the microarray techniques available in the market, Affymetrix platform is the one 

most extensively accepted and utilized microarray technology. Manufactured by utilizing the 

process of photolithography and combinatorial chemistry, each GeneChip presents some 1.4 

million individual oligonucleotide probes. The advantageous property of the spots on GeneChip 

is that each spot can contain millions of oligonucleotide copies [104]. Repeated illumination is 

performed to synthesize the probes onto the glass substrate. The glass substrate is layered with 

linkers, containing photoliable protecting groups. Normally, probe sets representing the genes or 

mRNAs of interest are 11-20 25mer oligonucleotide probe pairs. Based on the thier 

characteristics probe pairs are divided into two categories: perfect match (PM) probe and 
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mismatch (MM) probe (including modification on the 13
th

 base) accounting for removal of non-

specific hybridization and background noise [86]. 

Affymetrix gene array platform was designed to quantify the expression levels of well annotated 

genes obtained from any tissue. The probe set utilized for quantifying the expression levels of the 

gene consist of multiple probes that are complementary to different locations of the genomic 

locus. This platform contains 764,885 25-mer distinct probes that allow cross-examination of 

expression levels across 28,869 genes, based on March 2006 (UCSC hg18, NCBI Build 36). On 

average each gene contains 26 probes spanning different regions of the gene. This platform 

provides with an accurate and robust approach to detect transcriptional activities of genes [105]. 

GeneChip® Human Exon 1.0 ST Array is the latest platform developed by the Affymetrix for 

interrogating expression of genes at exon level [87]. The main objective behind developing exon 

array was “in interrogate each potential exon with one probe set over the entire genome on a 

single array”. The exon array platform consists of more than 1.4 million probe sets, where on 

average each probesets consists of 4 probes, built using human genome assembly (July 2003, 

hg16, build 34) [106]. The probe sets corresponds to 1,796,124 probe selection region (PSR) 

from 1,084,639 exon clusters and more than 24,000 genes in human genome. Different 

annotation were used to support probe sets, 50% probe sets are based on single type annotation 

where half were derived from EST’s and the other half from GENSCAN. The advantage of using 

exon array platform is that it allows detection of transcript diversity over a wide range. Using 

splice junction, detection of a small variation involving shift of 3 b.p. in splice sites becomes 

possible. However, this array platform as yet does not support exon junctions due to limited 

understanding of the variants present in the transcripts [106]. Increased probe concentration 

increases the density of probes four times and an eight-fold increase in perfect matches, as 
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compared to the previous platforms. Exon array utilizes specific probes instead of MM probes 

for detecting hybridization due to pure background. All these reformed advancements result in 

increased genomic coverage that provide with better estimation of gene-level expression analysis 

& also help to detect novel transcript variants due differences in exon-level expression [87].  

 

Data Processing And Normalization 

Processing of raw gene expression data obtained from any technique with an image analysis 

program is essential, as the initial data obtained is in form of scanned images. The processing of 

fluorescence emitted by probe in the array along with transformation of data need to be 

performed prior to applying statistical analyses on the data. The science behind normalization is 

to adjust for the variability encountered due to differences in microarray techniques and to 

reduce the background noise [88]. Signals emitting fluorescence are produced from the 

GeneChips during hybridization. The raw data from these signals is stored in a DAT extension 

file [89]. Information pertaining to image, pixels and technical information from the complete 

experiment is contained in the raw data. After performing grid alignment for registering set of 

unevenly spaced, parallel and perpendicular lines and computation of 75
th

 percentile of the spot 

specific pixel intensity, estimated intensities specific to each spot are stored in a CEL extension 

file. Since all the information present in DAT file is summarized to CEL file, grid alignment 

becomes an important step for avoiding errors and correctly summarizing information from DAT 

to CEL file. Additionally, image quality is affected by many other factors like flagging and 

background variations [89]. Another aspect that poses a significant affect over the quality of the 

image resulting in production of blurry images is the pixel in high intensity parts. These affect 

the reading of neighboring pixels possessing lower signals by recording the intensities from 
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different pixels. Non-specific hybridization due to MM probe also contributes to array’s cell 

signal intensity. Therefore, to have more accurate estimate of cell-hybridization, background 

signals are subtracted. Similarly flagged features, bad features (higher pixel SD), negative 

feature (higher background compared to foreground) and dark feature (extremely low signal) all 

need to be removed manually or through computational means from the data [80]. 

Variations such as microarray manufacturing process, biological sample preparation and 

intensity measurements affect the data analysis. Therefore, normalization of the probe intensity 

data is performed which takes into account variations produced due to systemic errors and bias 

originating from microarrays and attempts at reducing the affect instilled by these variations 

[90]. Numerous statistical approaches to normalize the expression data have been proposed: 

Affymetrix Microarray Suite MAS5.0 software, Robust Multi-array Average (RMA) [91, 115] 

and GeneChip RMA (GCRMA) [92] are some widely used methods. 

MAS5.0 utilizes intensity values of PMij and MMij, of the ith array and jth probe, to reduce the 

overall background noise. Implementation of log-transformation in the methods is responsible 

for reducing the reliance of variance on mean. The outliers are accommodated by the usage of 

Tukey’s biweight function (Tbi) [91, 92]. Another method developed for normalization of data is 

RMA, which was mainly developed to overcome issues related to MM, as RMA considers 

information related to MM as biologically and statistically insignificant. Thus MM probes are 

not considered and PMij intensities are stated as T(PMij). The values are transformed by applying 

background corrections, normalization and applying logarithm [91]. To the background-

corrected PM intensities base 2 logarithm is applied and substitution of original values is 

accomplished through utilization of mean quantile. This quantile normalization is performed at 

probe level, where the probe intensities for each array in array sets are distributed in similar 
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manner. Another normalization technique that is more extensively used by the scientific 

community is GCRMA. It is very much similar to RMA with the exception that it takes probe 

sequence into consideration, uses a different background correction and uses. Probe sequence 

consideration by GCRMA allows for intensity adjustment of probes showing different log 

intensities due to variation in GC content of the probes [92]. Thus PM values are corrected based 

on both GC content and MM probes, allowing GCRMA to have increased accuracy to estimate 

specific probe binding [92].  

Comparison between the three techniques has established that GCRMA normalization method 

outshines the other two normalization techniques and RMA yield more promising results than 

MAS5.0 [92]. 

 

Identification Of Differential Expression Using Linear Models 

General Linear Model (GLM) is one of the most commonly employed statistical models in the 

fields of social sciences and quantitative biology and comprises most of statistical analysis 

including the t-test, Analysis of Variance (ANOVA), Analysis of Covariance (ANCOVA), 

regression analysis, and many of the multivariate methods including factor analysis, cluster 

analysis, multidimensional scaling, discriminant function analysis, canonical correlation, and 

others. GLM describes the relationship between variables of interest by approximating to an 

optimal solution. The two variable case is the most simplistic type of GLM, consisting of 

explanatory and response variables.  
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Figure 1.3: Bivariate plot 
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Considering an example of tumor suppressor gene, looking at the plot it is expected that a 

positive relationship exists between the two variables with an increase in gene expression 

expected as the survival increases. How can we model this relationship so that we are able to 

describe the effect of survival accurately for any given sets of genes? The answer lies in the 

GLM approach which takes into account the effect of survival (X or explanatory variable) over 

gene expression (Y or response variable) and models this effect by fitting a line: 

y = b0 + bx + e 

y = a set of outcome variables 

x = a set of pre-program variables or covariates 

b0 = the set of intercepts (value of each y when each x=0) 

b = a set of coefficients, one each for each x 

We begin by collecting data for a number of individuals with varying survival periods. These 

individuals are called the experimental units. We plot the data into two-dimensional space and 

observe that both survival and gene expression are positively correlated. Now, we can draw a 

line that explains the ‘general’ effect of X over Y.  By general, we mean that with a unit increase 

in X, we expect some units increase (or decrease) in Y. This quantity is called as the ‘slope’ of 

the fitted line. Because we are able to draw a ‘linear’ line (not a curve or any other shape), this 

generalization is referred to as the General Linear Model. The important point is that the effects 

of any sets of variables can be modeled quite precisely if we can fit a linear line that describes 

the relationship between the variables truthfully. It is not expected that all the points would fall 

directly onto the line. Usually, there will be scattering of data points around the fitted line 

(Figure 1.3). This realization is true because not every individual will have the same gene 

expression at any given time point. This scattering explains another important term in the GLM, 

which is the ‘error’ (e) term or the deviation of the experimental units around the mean. Ideally, 

we would like to minimize the experimental error and the line that best fits the data (with 



38 
 

minimum scattering) is the linear model for the given data. This additional error term in the 

GLM proves useful for explaining the variability in the data set and also tests whether a more 

complex model is needed or not (quadratic or cubic relationship). Model specification is an 

important step for correctly answering the research question and selection of insignificant 

variables can instill biasness in estimates of coefficients [103]. 

 

Functional Analysis 

Gene expression patterns across thousands of genes results in production of tremendous amount 

of data which then needs to be analyzed to identify genes that are calculated to be significantly 

associated to the conditions under consideration. Various public databases, after being provided 

with gene list, categorize genes and gene products by including them into specific categories and 

sub-categories. These databases detect the genomic and functional categories enriched in the 

genelist provided, through help of statistical tools embedded in the database system [93]. Two 

such databases that are of high significance in biological community include Gene Ontology 

(GO) (http://www.geneontology.org/) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 

(http://www.genome.jp/kegg/pathway.html). Developed in 1998, the main objective of Gene 

ontology (GO) consortium was development of a system that provided a unified procedure to 

impart vocabulary to all novel findings even as knowledge of genes and proteins for all 

eukaryotic cells is accumulating and changing [94, 95]. Initially, GO contained information 

database against three model organism including mouse, yeast and fly. However, presently GO 

consortium constitutes major repositories microbial, plant and animal kingdoms genomes. GO 

web based tool contains diverse description on three categories including cellular component, 

molecular function and biological processes, where description in the sets is called ‘term’ [96]. 



39 
 

The cellular category of GO consortium mainly deals with the exact location of gene product 

within a cell. The biochemical properties and activities related to genes are represented by 

molecular functions. A broad variety of functions both simple and complex are included in 

molecular function category. Lastly, biological objectives referring to processes including or 

leading to chemical and physical alterations of genes and their products are included in 

biological processes. 

KEGG database is an online public resource containing information from 19 different databases 

on system, genomics and chemical properties across several genes and gene products. System 

information, one of three main categories, represents the functionality of any biological system. 

The second category, “Genomic information” represents the genomic building blocks of life 

while Chemical information represents the chemical building blocks necessary for life [97]. The 

graphic tool embedded in the KEGG database system allows retrieval of information pertaining 

to molecular networks and cellular processes. The graphic tool illustrates many metabolic 

interaction networks, genetic and environmental information processing, chemical structure 

transformation network and human diseases. The pathway maps, representing a particular 

network are described through nodes (genes, proteins) and edges (relation, reaction). 

Computational and statistical analysis conducted on large scale genomic data results in formation 

of genelist that includes genes found to be significantly associated with the characteristic of 

interest. Making biological inferences from the significant genes requires functional 

categorization of these genes in groups based on some specific pattern. Over the years some 68 

reputable bioinformatics tools have been developed that take into consideration biological 

information accumulated in various public databases (GO, KEGG). Utilizing these tools allows 

systematic assembly of enriched functions and pathways corresponding to the significant genes 
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[98]. Some of these high-throughput enrichment tools include Onto-Express, MAPPFinder, 

GoMiner, DAVID, EASE, GeneMerge and FuncAssociate that extract relevant GO terms and 

KEGG pathways from several databases. One of these online resources Database 

for Annotation, Visualization and Integrated Discovery (http://david.abcc.ncifcrf.gov/) (DAVID) 

is a highly reputable functional enrichment tool, which amalgamates/accumulates various 

features including back-end annotation database, advanced enrichment algorithm and powerful 

exploratory data mining ability within itself. DAVID utilizes information from several databases 

to extract GO terms and KEGG pathways, Fischer’s Exact test is then performed to categorize 

the genelists [99]. Thus enrichment analysis provides valuable information related to gene 

ontologies and pathways for the genelist provided. 

Transcriptome variants produced due to alternative exon usage (AEU) are an important aspect of 

gene regulation. Almost 90 % of the multi-exon genes in humans are transcribed into multiple 

transcript variants as result of alternative mRNA splicing [100]. Alternative exon usage has been 

associated with proliferation of malignant cells in humans [57, 101]. Glioblastoma multiforme 

(GBM) is the most severe form of malignant brain tumors and the expression of numerous genes 

has been associated with this cancer [62]. These transcripts might be related to a specific 

metastatic phenotype and can potentially function as diagnostic and prognostic biomarkers and 

even as therapeutic drug targets [102]. However, few consistent gene expression biomarkers of 

GBM have been reported [57]. Two reasons for this are the limited consideration of AEU and, 

the analytical approaches typically used to study AEU that ignore the relationship between exons 

within a gene. The goals of this study are to develop a general hierarchical model to identify the 

differential associations between cancer survival and expression at a gene or exon level that 

indicate AEU and to apply this methodology to identify biomarkers of GBM survival. 
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CHAPTER 2 

RESEARCH PAPER 

Background 

Alternative splicing (AS) is characterized by the formation of different mRNA isoforms as a 

result of including or excluding different exonic or intronic segments. This process is responsible 

for generating protein diversity [1-3]. AS can be divided into three broad categories; intron 

retention, cryptic splice site usage (functions by elongating or shortening the exon), and 

alternative exon usage (AEU) or exon skipping. AEU includes cassette exons (discrete exons that 

can be independently included or excluded) and mutually exclusive splicing (which involves the 

selection of one from a group of exon variants) [3]. Approximately 75% of multi-exon genes 

exhibit AS in humans [4] and on average more than 3 alternative transcripts are mapped to a 

gene [5]. The identification of "exon-level" expression profiles and characterization of AS events 

has become possible with the availability of exon platforms (e.g. GeneChip Exon Array).  

The brain exhibits particularly high rates of AS [6] and the highest number of AEU events [7]. 

Regulation of gene expression due to splicing has been associated with cancer. Many AEU 

events have been associated with disordered cell differentiation and signaling that contribute to 

stem cell like proliferation of cancer cells [8].  

Glioblastoma multiforme (GBM) is an aggressive type of brain cancer and the role of genes and 

AEU on GBM survival is still not completely understood [9-11]. Most work on AS and GBM 

studied individual genes or compared AS between GBM and control (e.g. blood) samples. The 

relationship between AS and the survival of individuals diagnosed with GBM has not been 

studied. Understanding of the factors influencing survival is particularly important in GBM 
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because the average survival after diagnostic is approximately one year [12, 13]. Furthermore, 

several epidemiological factors influence GBM survival including gender, race and treatment 

[14]. Thus, a more accurate understanding of the relationship between AS and GBM survival 

must consider epidemiological factors and inter-individual variability. 

Several approaches to identify AS events have been proposed. However, most approaches have 

limitations that can bias the identification and characterization of AEU.  For example, Su et al. 

developed an individual exon approach [15] that does not model the covariation between exons 

within a gene. Purdom et al. used the residuals from probe level analysis to identify AEU on a 

per-sample level [16]. The sample-level analysis challenges the detection of AEU events or the 

identification of common patterns across patients receiving the same treatment or from the same 

epidemiological strata. Laderas et al. and Zheng et al. proposed group comparison using linear 

models to overcome the limitations of the previous approach [3, 17]. However, group 

comparison is not suited to identify AEU associated with other conditions such as survival or 

time-to-event. In addition, the previous implementation does not account for correlations 

between exons measured on the same sample. Cline et al. formulated a ANalysis Of Splice 

VAriation ANOSVA approach that cannot be used in gene that produced more than one splice 

form [18].  

The goal of this study is to implement an exon-based and gene-centric model that allows the 

detection of AEU associated with cancer survival. The approach addresses the limitations of 

previous approaches by modeling the exon-level expression profiles within gene from all 

samples across all treatments or conditions studied. Our approach accommodates the 

dependencies between exons within a gene and patient and allows testing the hypothesis of 

differential exon expression or usage between treatment groups. A unique advantage of our 
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flexible approach is that one model encompasses all scenarios: i) multi-exon genes that have 

AEU, ii) multi-exon genes that do not have AEU, and iii) single-exon genes. This novel 

approach was applied to the identification of AEU associated with GBM survival. The 

performance of the approach and accuracy of the results were assessed by using separate training 

and validation data sets. Gene set enrichment and gene functional analyses offered insights into 

the biological processes related to the AEU genes associated with survival. Results were mapped 

to genes and to known or predicted AS events to further confirm and add biological 

interpretation to the results of our model.   

 

Materials and Methods 

Training Dataset 

Survival, clinical and exon expression information from 250 patients diagnosed with GBM was 

obtained from The Cancer Genome Atlas (http://cancergenome.nih.gov/) repository (May 2011 

data freeze). Surgical samples had a minimum of 80% tumor nuclei and maximum of 50% 

necrosis. In this training data set, clinical or epidemiological variables considered in the analysis 

of exon expression included treatment (levels: chemo-radiation-targeted or CRT, chemo-

radiation-non targeted or CRnT, radiation or R, other therapies or OTHER or no therapy or 

NONE); racial ethnicity (white Caucasian and others); and gender (male and female). These 

clinical factors were accounted for in the model because of their known association with survival 

[9]. The survival variable associated with exon expression was the time from diagnosis to death 

(expressed in months). 
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Exon expression measurements from each patient were obtained using the 

AffymetrixGeneChip® Human Exon 1.0 ST Array. Platform details can be found at 

(http://www.affymetrix.com/support/technical/annotationfilesmain.affx) (Affymetrix, Inc., 

2012). Briefly, this platform includes information from 1432143 (1.4 million) probe sets 

representing known and predicted exons on both strands of the genome. These probe sets were 

mapped to more than 25000 genes. Array platform and data was log-2 transformed and 

normalized using quantile and RMA normalization at the probe level following the procedures 

described in Beehive (http://stagbeetle.animal.uiuc.edu/Beehive). Probes sets within exon were 

collapsed using a Tukey biweight function that provides an iterative reweighed measure of 

central tendency. This robust statistic provides a single exon expression that is not heavily 

influenced by extreme probe expression levels [19]. 

 

Model  

One general exon expression model was developed to describe the association between and exon 

expression and GBM survival adjusted for other clinical factors. Three specifications of the 

model accommodated three groups of genes: 1) multi-exon genes exhibiting AEU, 2) multi-exon 

genes with no evidence of AEU, and 3) single-exon genes.   The general model is: 

yijklmn = µ+ Gi + Rj + Tk + Sl + Em + (SE)lm + Pn + eijklmn [1] 

where yijklmn denotes the expression of the mth exon (Em), recorded on the nth patient (Pn) that 

has the ith gender (Gi), jth race\ethnicity (Rj), received the kth therapy (Tk), and survived lth 

months after diagnostic (Sl). In addition, eijklmn is the residual associated with the yijklmn 

observation and SE denotes the interaction between survival and exon on expression levels. 
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Fixed effects are G, R, T, and S. Random effects E, SE, and P are assumed each to be 

independent and follow a Gaussian distribution with its own variance. 

Model [1] allows the study of two scenarios (groups 1 and 2). First, a significant SE effect 

constitutes evidence of an AEU scenario and thus differential survival across exons. This model 

can be used to identify AS biomarkers of GBM survival that exhibit AEU. Second, a significant 

S effect together with a non-significant SE effect constitutes evidence of a general association 

between gene expression and survival, regardless of exon. In addition, a significant E effect 

indicates that the exons have differential expression. However, the association between the exons 

expression and survival is similar because SE is non-significant. This result can be used to 

identify multi-exon biomarkers of GBM survival that do not exhibit AEU.  

The specification for the single-exon gene (group 3) is a reduced version of the full multi-exon 

model [1] that excludes E and SE. Like with the multi-exon model under non-significant SE, a 

significant S effect is evidence of association between the single-exon gene expression and 

survival and can be used to identify single-exon biomarkers of GBM survival. 

The novel gene-centered analysis allows accounting for the covariance between exon expression 

within a gene and the hierarchical nature of the model allows the inclusion of the covariance 

between exon expression within a patient. The analysis of expression data at the exon level 

permitted the identification of AEU by testing the null hypothesis of no differential association 

between expression and survival across exons within a gene.  

False Discovery Rate adjustment (FDR) of the P-values allowed controlling for multiple testing 

(Benjamini and Hochberg) [20]. In addition, a more stringent P-value threshold was considered 

for the detection of AEU associations with survival (significant SE) relative to the detection of a 

general association between gene expression and survival (significant S) in the multi-exon 
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scenarios. The more stringent P-values required for detection of AEU accounted for the multiple 

comparisons of the survival-expression associations among potentially numerous exons. A 

separate FDR adjustment of the P-values from the single-exon analysis was implemented 

because of the different number of parameters between the multi- and single-exon models. The 

P-value < 5.0E-4 corresponds to a FDR adjusted P-value < 5.0E-2or multi exon genes and to a 

FDR adjusted P-value < 1.0E-1for genes with single exon. 

Functional and pathway analyses of the genes exhibiting significant evidence (P-value < 5.0E-4) 

of AEU associated with GBM survival used hypergeometric tests and was implemented in 

DAVID (http://david.abcc.ncifcrf.gov/) [21, 22]. Gene set enrichment analysis of the association 

between expression and GBM survival among all the genes studied in the platform followed the 

approach described by Subramanian et al. [23] implemented in BABELOMICS 4.3 

(http://babelomics.bioinfo.cipf.es/index.html, [24]. For this analysis, the association between 

each gene and survival was characterized by the estimate of change in expression per additional 

survival month standardized by the standard error of the estimate. The enrichment of Gene 

Ontology (GO; http://www.geneontology.org/) biological processes, molecular functions, and 

KEGG (http://www.genome.jp/kegg/pathway.html) pathways was investigated. Finally, P-values 

of the enriched categories were adjusted for multiple testing using the FDR correction. 

We recognize that statistical evidence is one component in the identification of AEU. However, 

it is biologically unlikely that AS events skip single or two exons across a gene. In addition, 

changes in the association between exon expression and survival may be statistically significant 

due to the substantial number of patients studied but may only represent small fold changes.  

Thus, three types of evidence were used to identify AEU.  We looked for a) significant variations 

in the associations between exon expression and survival across a gene, b) consistent (over or 



61 
 

under-expressed) differential expression in multiple consecutive exons, and c) a minimum exon 

differential expression (< 0.995 or > 1.005 fold change / additional survival month).  Consistent 

patterns of expression across consecutive exons were identified using a moving average analysis 

[25]. A moving average analysis that computes the average expression across multiple exons at a 

time was used to predict a continuous trajectory of exon expression across the gene. This moving 

average trend of exon expression across the gene facilitated the identification of consistent 

changes in the pattern of over or under-expression across the exons within a gene.  

The exon expression estimates and the moving average trajectory of the estimates across 

individual genes were aligned to known or predicted alternative transcript variants reported in 

the AceView database 

(http://genome.ucsc.edu/cgibin/hgTrackUi?hgsid=243882995&g=acembly&hgTracksConfigPag

e=configure) that are available through the UCSC Genome Browser (http://genome.ucsc.edu). 

This visualization strategy facilitated the interpretation of results and the AS models offered an 

independent in silico confirmation of the AEU events identified. 

 

Validation Dataset 

Genes exhibiting AEU in the training data set were confirmed in an independent set of 78 

patients obtained from the same repository. The reliability of the exon expression profiles 

associated with survival identified in the training data set was assessed using a two-stage 

approach. First, the parameter estimates (i.e. changes in exon expression per one month increase 

in survival) obtained from the analysis of the training data set were applied to the covariate 

information from the patients in the validation data set and predictions of exon expression were 

obtained. Second, the predicted exon expression values were compared to the corresponding 
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observed expression values. The performance of the training estimates was evaluated using the 

coefficient of determination (R
2
) indicators [26].  High R

2
 on the validation data set based on the 

training data set estimates indicate the reliability of the exon expression patterns identified. 

 

Results and Discussion 

Expression measurements of 269951 exons from 25403 genes were analyzed. Of these, 2857, 

20288, 1965 and 293 genes had one, 2 to 24, 25 to 49 and 50 or more exons, respectively. The 

number of exons per gene ranged from 1 to 191 and the average number of exons was 10.75. 

Table 1 summarizes the distribution of the 250 and 78 individuals diagnosed with GBM analyzed 

in the training and validation data sets respectively, across clinical factors and survival 

descriptive statistics. The distribution of observations across clinical factors was consistent 

across data sets. 

The results from training data set are summarized in three groups according to the model used 

and evidence supporting AEU: 1) multi-exon genes exhibiting exon dependent association with 

GBM survival or AEU (group 1 genes), 2) multi-exon genes exhibiting exon-independent 

association with GBM survival or no AEU (group 2 genes), and 3) single-exon genes exhibiting 

association with GBM survival (group 3 genes). The general model proposed supports the 

consistent analysis of single-exon and multi-exon genes and identifies gene or exon associations 

with survival. The general and hierarchical nature of the model permits testing a myriad of 

hypothesis. The consideration of an interaction between survival and exon allowed the 

identification of associations between particular exons and survival and corresponding 

characterization of AEU (exon-specific fold change /additional survival month).  
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Table 1. Distribution of patients with glioblastoma multiforme analyzed by level of clinical 

factors. 

 

  Training data set  Validation data set 

  Number Percentage  Number  Percentage 

Patients   250  76.22   78 23.78 

Race
1
  

Caucasian 222 88.80  71 91.03 

Other 28 11.20  07 8.97 

Gender 

Females 94 37.60  29 37.18 

Males 156 62.40  49 62.82 

Therapy
2
 

R 63 25.20  21 26.92 

CRT 27 10.80  07 8.97 

CRnT 99 39.60  31 39.74 

OTHER 35 14.00  10 12.82 

NONE 26 10.40  09 11.54 

Survival 

(months) 

 17.46 0.16 - 128  15.02 0.10 – 77.57 

 

1
Race: White Caucasian, and all other race-ethnicity groups 

2
Therapy; R: radiation therapy alone; CRnT: chemotherapy plus radiation and no targeted therapy; CRT: 

chemotherapy plus radiation and targeted therapy; OTHER: all other therapies
 
None: no therapy. 
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In the event of non-significant exon-by-survival interaction, the inclusion of a general survival 

covariate allowed the detection of a general association between gene expression and survival 

that does not differ among exons. The novel modeling of exons as random effect levels permitted 

the specification of a variance-covariance structure between the exons within a gene. The 

removal of exon-dependent terms from the full multi-exon model offered a model suitable for 

single-exon genes.  In addition, the block patient effect accommodates the covariance between 

exon levels measured in the same patients. 

 

Multi-Exon Genes Exhibiting Exon-Dependent Association with Glioblastoma Multiforme 

Survival 

At unadjusted P-value < 5.0E-4 (equivalent to FDR-adjusted P-value < 5.0E-2), 2477 multi-exon 

genes exhibited AEU associated with survival (group 1 genes), 24 multi-exon genes exhibited 

expression associated with survival albeit no evidence of AEU (group 2 genes), and 8 single-

exon genes exhibited expression associated with survival (group 3 genes). At P-value < 1.0E-5, 

P-value < 1.0E-6, P-value < 1.0E-7, P-value < 1.0E-8, the number of genes exhibiting AEU 

(group 1 genes) were 592, 313, 201, and 129 respectively. 

Table 2 summarizes the top 36 multi-exon genes that have the most significant (P-value < 1.0E-

11) AEU or exon-dependent association with GBM survival (group 1 genes) due to space 

constraints. 

The nature of the association between expression and GBM is characterized by the sign and 

value of the expression fold change per additional month in survival. Tables 2, 4, and 5 include a 

general gene-wise estimate of expression fold change per additional month in survival for multi-

exon with (group 1) and without AEU (group 2) and single-exon (group 3) genes. The meaning 
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of this fold change estimate is straightforward for group 2 and 3 genes because these genes 

exhibit a single general association with GBM survival, Attention should be exercised when 

interpreting the general fold change estimate for group 1 AEU genes because these genes exhibit 

significant variation in association between expression and survival among exons.  

The top 36 genes exhibiting significant evidence of AEU have a minimum of 90 exons (Table 2). 

This result suggests that genes with high number of exons are more likely to experience AEU 

events that influence GBM survival. It is unlikely that high number of exons biased the 

identification of AEU because a stringent P-value threshold was used. 

Among the 36 genes that have significant AEU association with GBM survival most have been 

related to cancer.  Of these, 10 genes including titin (Ttn), polycystic kidney disease 1 (Pkd1), 

spectrin repeat containing, nuclear envelope 1 (Syne1), small nuclear ribinucleoprotein (Snrpn), 

phosphodiesterase 4D interacting protein (Pde4dip), obscurin (Obscn), dystonin (Dst), 

microtubule-actin cross-linking factor 1 (Macf1), ryanodine receptor 1 (Ryr1) and ryanodine 

receptor 2 (Ryr2) have been previously associated with GBM. Additionally, 13 genes Smg-1 

homolog (Smg1), Nebulin (Neb), TBC1 domain family, member 3 (Tbc1d3), Anaphase 

promoting complex subunit 1 (Anapc1), Spectrin repeat containing, nuclear envelope 1 (Syne2), 

Neuroblastoma breakpoint family, member 10 (Nbpf10), Mucin 19 (Muc19), Collagen, type VII, 

alpha 1 (Col7a1), Ubiquitin protein ligase E3 component n-recognin 4 (Ubr4), Hemicentin 1 

(Hmcn1), Collagen, type IV, alpha 5 (Col4a5), Ryanodine receptor 3 (Ryr3), G protein-coupled 

receptor 98 (Gpr98) have been previously associated to cancers other than GBM. The list of 

references is summarized in Table 2. Additionally, literature review also supported the presence 

of AS in most of the genes. 

 

http://www.ncbi.nlm.nih.gov/gene/23345
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Table 2. Top 36 multi-exon genes that have significant alternative exon usage associated 

with glioblastoma multiforme survival.  

 

Gene 

Symbol 

Estimate
1
 SE

2
 P-value 

AEU
3
 

Fold 

change
4
 

Exon 

Count
5
 

Literature
6
 

Ttn 0.0007 0.0001 4.2E-38 0.9993 340 [27] 
G 

Smg1 0.0017 0.0002 2.0E-24 1.0001 209 [70] 
AS

 

Neb 0.0007 0.0001 3.2E-21 0.9973 180 [71, 72]
C, AS

 

Pkd1 0.0010 0.0001 2.0E-19 1.0018 163 [28] 
G, AS

 

Herc2p2 0.0008 0.0001 2.3E-19 1.0012 163 NA 

Syne1 0.0018 0.0002 3.0E-18 0.9984 152 [9] 
G
 

Snrpn 0.0018 0.0002 3.8E-18 1.0020 151 [29, 73]
G, AS

 

Pde4dip 0.0016 0.0002 1.3E-17 0.9993 146 [30, 74]
G, AS

 

Golga8c 0.0031 0.0004 4.2E-17 1.0005 141 NA 

Sspo 0.0009 0.0001 1.2E-16 1.0003 137 NA 

Ankrd36 0.0026 0.0003 1.3E-16 1.0018 137 NA 

Tbc1d3 0.0008 0.0001 2.4E-16 1.0026 135 [75]
C
 

Flj45340 0.0018 0.0002 5.5E-16 1.0007 131 NA 

Anapc1 0.0009 0.0001 5.8E-15 0.9990 122 [59, 76]
C, AS

 

Syne2 0.0012 0.0002 6.2E-15 1.0017 115 [77]
C, AS

 

Nbpf10 0.0035 0.0005 1.3E-14 0.9992 118 [78]
 C, AS

 

Muc19 0.0015 0.0002 1.4E-14 1.0001 118 [79]
C, AS

 

Obscn 0.0006 0.0001 1.5E-14 0.9999 118 [27, 80]
G, AS

 

Npipl3 0.0019 0.0003 4.1E-14 1.0014 114 NA 

Dst 0.0013 0.0002 9.4E-14 0.9997 111 [31, 81]
G, AS
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Table 2 (Contd) 

Col7a1 0.0011 0.0001 1.4E-13 1.0001 109 [82, 83]
C, AS

 

Ubr4 0.0011 0.0001 1.4E-13 0.9994 109 [84, 85]
C, AS

 

Hmcn1 0.0006 0.0001 2.0E-13 0.9975 109 [86]
C, AS

 

Ryr2 0.0011 0.0001 2.7E-13 0.9974 107 [34, 87]
G, AS

 

Macf1 0.0011 0.0002 3.1E-13 0.9975 106 [32, 88]
G, AS

 

Mdn1 0.0006 0.0001 3.5E-13 0.9993 106 NA 

Col4a5 0.0008 0.0001 3.5E-13 0.9992 106 [89, 90]
C, AS

 

Ryr1 0.0007 0.0001 4.2E-13 0.9998 105 [33, 72, 91]
G, AS

 

Golga6l5 0.0013 0.0002 5.2E-13 1.0021 104 NA 

Ryr3 0.0009 0.0001 1.3E-12 0.9962 102 [92]
C, AS

 

Dnah14 0.0007 0.0001 2.0E-12 0.9990 99 NA 

Herc2 0.0006 0.0001 3.1E-12 1.0003 97 [60]
AS

 

Dnah8 0.0005 0.0001 4.7E-12 0.9997 96 NA 

Nomo1 0.0007 0.0001 4.9E-12 0.9996 95 NA 

Gpr98 0.0016 0.0002 5.9E-12 0.9948 95 [67]
C, AS

 

Golga6a 0.0017 0.0002 7.8E-12 1.0009 93 NA 

 

1
Estimate: exon-survival interaction variance indicator of alternative exon usage; 

2
SE: standard error of the estimate; 

3
P-value AEU: unadjusted P-value of alternative exon usage or exon-dependent association between 

expression and glioblastoma multiforme survival. 
4
Fold change: fold change in average exon expression per additional survival month; 

5
Exon Count: number of exons in the gene;  

6
Literature: review of studies that reported associations of the gene with cancers: 

G
: reported association of gene with glioblastoma multiforme; 

C
: reported association of gene with cancer other than glioblastoma multiforme. 

AS
: identification of different variants due to alternative splicing (AS) event. 
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Ttn encodes the protein TTN that is responsible for the passive elasticity of cells. A mutation 

resulting in an altered TTN was associated with GBM [27]. Pkd1 was over-expressed during the 

progression of low-grade to high-grade gliomas [28]. Syne1 has been associated with increased 

GBM survival [9].  Under- expression of Snrnp was observed in older GBM patients [29]. 

Pde4dip is down-regulated in glioma cell lines treated with dB-cAMP that reduces the 

invasiveness, proliferation and migratory properties of glioma cells and increases the survival of 

glioma cells lines [30]. The mutation R4558H in Obscn has been associated with GBM [27]. 

Likewise, a mutation in Dst that indirectly regulates the expression of Otub1 (through regulation 

of mir-15b has been associated with GBM [31]. Reduced expression of Macf1 has been observed 

in glioma cells treated with IL-13 cytotoxin that causes the cells to undergo necrosis. Thus, 

down-regulation of the expression of Macf1 is associated with increased GBM survival [32]. 

Ryr1 was under-expressed in high-grade gliomas relative to primary (low-grade) gliomas [33]. 

On the other hand Ryr2 was over-expressed in invasive GBM cells [34]. 

 

Functional and Pathway Analyses of the Multi-Exon Genes Exhibiting Exon-Independent 

Association with Glioblastoma Multiforme Survival 

The list of 2477 genes exhibiting significant evidence of AEU associated with GBM survival 

was further investigated using functional and pathway analyses. At FDR adjusted P-value < 

5.0E-2, 15 KEGG pathways, 87 GO biological processes, and 70 GO molecular functions were 

enriched. The top 10 pathways, biological processes and molecular functions are summarized in 

Table 3. Among the 15 KEGG pathways significantly enriched, focal adhesion was the most 

significant pathway encompassing 86 genes. This result is consistent with many reports of the 

critical role of focal adhesion and gliomas [35-37]. The extra-cellular matrix- (ECM-) receptor 
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interaction pathway enrichment detected in this study has been reported in other cancers [38, 39]. 

The ATP-binding cassette (ABC) transporter pathway has been associated with gliomas [40]. 

Our finding of small cell lung carcinoma pathways enrichment associated with GBM is 

consistent with the multiple studies that have identified commonalities among these cancers [41]. 

The most enriched biological process among the AEU genes associated with GBM survival 

included regulation of small GTPase mediated signal transduction (RSGST), and neuron 

development that has been associated with neuroblastoma [42]. The enrichment of biological 

adhesion confirms our focal adhesion results. Among the top 70 GO molecular functions 

significantly enriched were: adenyl nucleotide binding, adenyl ribonucleotide binding, ATP 

binding, nucleotide binding and helicase activity. These related nucleotide binding functions 

have been associated with GBM [43]. 
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Table 3. Ten most significant KEGG and GO categories enriched among the genes 

displaying alternative exon usage. 

Source Category 
Gene 

Count
1
 

FDR 

P-value
2
 

KEGG  

Pathway 

(hsa04510) focal adhesion 86 3.2E-21 

(hsa04512) ecm-receptor interaction  51 8.5E-20 

(hsa02010) abc transporters  30 2.5E-12 

(hsa04810) regulation of actin cytoskeleton  66 1.7E-07 

(hsa05412) arrhythmogenic right ventricular 

cardiomyopathy  

32 5.9E-06 

(hsa05414) dilated cardiomyopathy  37 1.3E-06 

(hsa04070) phosphatidylinositol signaling system  31 1.2E-05 

(hsa05222) small cell lung cancer  31 3.6E-04 

(hsa05410) hypertrophic cardiomyopathy  32 1.3E-04 

(hsa05200) pathways in cancer  73 3.0E-02 

GO 

Biological 

Process 

(GO:0051056) regulation of small GTPase 

mediated signal transduction  

105 5.0E-25 

(GO:0022610) biological adhesion  197 2.7E-22 

(GO:0007155) cell adhesion  197 2.3E-22 

(GO:0046578) regulation of Ras protein signal 

transduction  

79 5.0E-15 
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Table 3 (Contd) 

 

(GO:0035023) regulation of Rho protein signal 

transduction  

51 1.7E-15 

 (GO:0007010) cytoskeleton organization  129 1.3E-15 

 (GO:0030029) actin filament-based process  85 2.3E-14 

 (GO:0007018) microtubule-based movement  51 2.1E-12 

 (GO:0016568) chromatin modification  89 1.9E-12 

 (GO:0051276) chromosome organization  132 1.4E-12 

GO 

Molecular 

Function 

(GO:0030554) adenyl nucleotide binding  451 9.9E-59 

(GO:0005524) ATP binding  433 2.2E-59 

(GO:0032559) adenyl ribonucleotide binding  437 2.0E-59 

(GO:0001882) nucleoside binding  456 6.3E-58 

(GO:0001883) purine nucleoside binding  451 1.5E-56 

(GO:0017076) purine nucleotide binding  480 5.2E-44 

(GO:0032555) purine ribonucleotide binding  466 2.9E-44 

(GO:0032553) ribonucleotide binding  466 2.9E-44 

(GO:0000166) nucleotide binding  523 7.4E-39 

(GO:0003774) motor activity  86 1.3E-34 

1
Gene Count: number of genes that have significant alternative exon usage within category. 

2
FDR P-value: False discovery rate adjusted P-value of the hyper-geometric test of category enrichment. 
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Multi-Exon Genes Exhibiting Exon-Independent Association with Glioblastoma Multiforme 

Survival 

At unadjusted P-value < 5.0E-4 (equivalent to FDR-adjusted P-value < 5.0E-2), 24 multi-exon 

genes exhibited exon-independent association with GBM survival (group 2 genes). In other 

words, there was no evidence of AEU in these genes because the expressions of all the exons 

were consistently associated with GBM survival and a single general or overall association 

between the gene and survival can be identified. Table 4 lists the top five multi-exon genes that 

have the most significant exon-independent association with GBM survival. 

Among the 24 multi-exon genes that were associated with GBM survival on a general, exon-

independent manner, the five genes that have the lower AEU evidence (AEU unadjusted P-value 

> 1.0E-3, approximately FDR adjusted P-value > 1.0E-1) are listed in Table 4. The expression of 

three of these genes increased with increasing survival. Noteworthy was the low number of 

exons in these genes, relative to the higher number of exons in genes exhibiting evidence of 

AEU. 

Four of five multi-exon genes have been associated to different cancers in studies listed in Table 

4 and the remaining gene is uncharacterized (LOC100289627). Sirtuin2 (Sirt2) has been 

associated with GBM while the other three genes golgin subfamily A member 8J (Golga8j), 

semaphorin 3E (Sema3e) and SIX homeobox 1 (SIX1) were associated with other cancers. 

Under-expression of Sirt2 has been reported in glioma cells [44]. This result is also consistent 

with our findings that higher levels of Sirt2 were associated with higher GBM hazard. Golga8j 

has been associated with pancreatic cancer and the trend is consistent with our finding of lower 

GBM survival with higher expression levels of this gene [45].   
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Table 4. Top 5 multi-exon genes that have significant exon-independent  association with 

glioblastoma multiforme survival.  

 

Gene 

Symbol 

Estimate
1
 SE

2
 

Fold 

Change
3
 

P-value
4
 

P-val  

AEU
5
 

Exon 

Count
6
 

Litera

ture
7
 

Sirt2 0.0337 0.0092 1.0236 3.2E-04 2.5E-03 17 [44]
G
 

Six1 0.0056 0.0015 1.0039 3.3E-04 2.7E-01 05 [48]
C
 

Loc 

100289627 

0.0079 0.0022 1.0055 3.8E-04 4.3E-01 02 NA 

Sema3e -0.0256 0.0066 0.9824 1.3E-04 2.4E-03 18 [46]
C
 

Golga8j -0.0536 0.0141 0.9635 1.7E-04 1.1E-03 20 [45]
C
 

 

1
Estimate: change in average exon expression per additional survival month (in log2 units); 

2
SE: standard error of the estimate; 

3
Fold change: fold change in average exon expression per additional survival month; 

4
P-value: unadjusted P-value of the change in average exon expression per additional survival month; 

5
P-value AEU: non-significant (P-value > 1.0E-03) evidence of alternative exon usage; 

6
Exon Count: number of exons in the gene; 

7
Literature: review of studies that reported associations of the gene with cancers; 

G
: reported association of gene with glioblastoma multiforme; 

C
: reported association of gene with cancer other than glioblastoma multiforme. 
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Sema3e promotes invasiveness and metastatic ability of the cancerous cells [46]. Sema3e is 

associated with many cancers like prostate cancer colon cancer and lung adenocarcinoma [47]. 

This result is consistent with our findings that higher levels of Sema3e were associated with 

lower GBM survival. The gene Six1 is associated with lower survival in cancerous cells [48]. 

This result is inconsistent with our results showing an increase in Six1 expression associated with 

an increase in GBM survival. 

 

Single-Exon Genes Associated with Glioblastoma Multiforme Survival 

Eight single-exon genes were associated with GBM survival (group 3 genes) at unadjusted P-

value < 5.0E-4 (equivalent to FDR-adjusted P-value < 5.0E-2. Table 5 summarizes the results 

corresponding to these 8 single-exon genes. Among these, three genes had a negative 

relationship such that lower expression levels were associated with higher survival (Table 5). 

Four members of the family of small nucleolar RNA CD box (Snord) genes were associated with 

GBM survival and three had a positive association such that higher expression levels were 

associated with higher survival. These results are consistent with previous work. Snord are a type 

of small nucleolar RNA (SnoRNA) that guide the methylation of rRNAs and snRNAs. These 

snoRNAs can target other RNAs and are associated with carcinogenesis. Their reduced and 

dysregulated expression has been associated with progression of many human malignancies [49]. 

Along with their loss in brain tumorigenesis, snoRNA have also been linked to other cancers 

such as prostate, breast and lung cancer [49, 50]. In this study, a positive association between the 

levels of H1 histone family member 0 (H1f0) and GBM survival was identified. The expression 

of H1f0 was high in breast tumor cells, and decreased when the breast tumor cell lines were 

reverted back into normal ME cells [51]. 
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Table 5: Results corresponding to 08 single-exon genes associated with glioblastoma 

multiforme survival (group 3 genes).  

 

Gene symbol Estimate
1
 SE

2
 

Fold 

Change
3
 

P-value
4
 Literature

5
 

Hist1h1t 0.0118 0.0024 1.0082 2.5E-06 NA 

Snord116-11 0.0101 0.0025 1.0070 9.7E-05 [50]
C
 

Loc729852 -0.0074 0.0018 0.9949 5.8E-05 NA 

Snord123 -0.0087 0.0025 0.9940 4.8E-04 [50]
C
 

Snord104 0.0067 0.0019 1.0047 4.1E-04 [50]
C
 

Dkfzp779l1853 -0.0083 0.0023 0.9943 3.9E-04 NA 

H1f0 0.0062 0.0017 1.0043 2.3E-04 [51]
C
 

Snord28 0.0166 0.0044 1.0116 1.8E-04 [50]
C
 

 

The table includes group 3 single-exon genes that are associated with glioblastoma multiforme survival.
  

1
Estimate: change in gene expression per additional survival month (in log2 units); 

2
SE: standard error of the estimate; 

3
Fold change: fold change in gene expression per additional survival month; 

4
P-value: unadjusted P-value of the change in average exon expression per additional survival month; 

5
Literature:  review of studies that reported associations of the gene with cancers;

C
: associated with cancer 

other than glioblastoma multiforme. 
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Gene Set Enrichment Analyses of All Genes in Consideration of their Association with 

Glioblastoma Multiforme Survival 

Gene set enrichment analysis considered the level and sign of association between the expression 

of all the genes studied and GBM survival. At FDR adjusted P-value < 5.0E-2, 94 KEGG 

pathways, 402 GO biological processes, and 203 GO molecular functions were enriched. Results 

from the top 10 most significant pathways, biological processes and molecular functions are 

summarized in Tables 6, 7 and 8. Pathways and GO categories are characterized in GSEA by the 

number of genes that have a positive or negative association between expression and GBM 

survival, by the log odds ratio indicating whether the category is more enriched among the genes 

that have a positive or negative association and the corresponding P-value. Positive (or negative) 

loge odds ratio indicates that the enrichment was higher among the genes with positive (or 

negative) association with GBM survival. Extreme values indicate higher difference in the 

enrichment percentages between the positive and negative association groups, meanwhile values 

close to zero indicate similar enrichment percentages between positive and negative association 

groups. 
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Table 6. Ten most significant GO biological processes from the gene set enrichment 

analysis of the genome. 

GO 

Identifier 

GO Biological 

Process 

Over 

Expressed 

Gene
1
 

Under 

Expressed 

Genes
2
 

Log Odds 

Ratio
3
 

FDR       

P-value
4
 

GO:0046907 
intracellular 

transport 
357 560 -0.7338 3.79E-24 

GO:0034613 
cellular protein 

localization 
245 433 -0.8490 4.78E-24 

GO:0043067 

regulation of 

programmed 

cell death  

351 490 -0.6110 1.68E-15 

GO:0016192 

vesicle-

mediated 

transport 

271 400 -0.6639 1.16E-14 

GO:0006629 
lipid metabolic 

process 
424 538 -0.5148 1.30E-12 

GO:0044265 

cellular 

macromolecule 

catabolic 

process  

373 485 -0.5379 2.10E-12 

GO:0044255 

cellular lipid 

metabolic 

process  

346 457 -0.5528 2.41E-12 

GO:0050793 

regulation of 

developmental 

process  

442 549 -0.4932 4.27E-12 

GO:0007049 cell cycle  418 522 -0.4978 1.11E-11 

GO:0009966 

regulation of 

signal 

transduction  

414 509 -0.4812 9.93E-11 

 

1
Over Expressed Genes: number of genes that have a positive association between expression and 

glioblastoma multiforme survival; 

2
Under Expressed Genes: number of genes that have a negative association between expression and 

glioblastoma multiforme survival; 

3
Log Odds Ratio: indicates whether the category is more enriched among the genes that have a positive 

association between expression and survival relative to the enrichment among the genes that have a negative 

association between expression and glioblastoma survival (positive loge odds ratio) or vice versa (negative loge 

odds ratio). Extreme values indicate higher difference in the enrichment percentages between the positive and 

negative association groups meanwhile values close to zero indicate similar enrichment percentages between 

positive and negative association groups; 

4
FDR P-value: False discovery rate adjusted P-value of the log odds ratio test. 
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Table 7. Ten most significant GO molecular functions from the gene set enrichment 

analysis of the genome. 

GO 

Identifier 

GO Molecular 

Function 

Over 

Expressed 

Gene
1
 

Under 

Expressed 

Genes
2
 

Log 

Odds 

Ratio
3
 

FDR       

P-value
4
 

GO:0000287 
magnesium ion 

binding  

196 300 -0.6962 3.23E-11 

GO:0016818 

hydrolase activity, 

acting on acid 

anhydrides, in 

phosphorus 

containing 

anhydrides 

419 521 -0.4933 5.21E-11 

GO:0016462 
pyrophosphatase 

activity 

417 520 -0.4962 5.21E-11 

GO:0016817 

hydrolase activity, 

acting on acid 

anhydrides  

428 527 -0.4834 9.62E-11 

GO:0016773 

phosphotransferase 

activity, alcohol 

group as acceptor  

393 475 -0.4624 5.64E-09 

GO:0016301 kinase activity 421 501 -0.4473 5.64E-09 

GO:0016788 

hydrolase activity, 

acting on ester 

bonds 

349 429 -0.4781 9.84E-09 

GO:0003723 RNA binding  357 437 -0.4741 9.84E-09 

GO:0030695 
GTPase regulator 

activity 

193 260 -0.5651 4.10E-07 

GO:0016874 ligase activity 205 272 -0.5501 4.10E-07 

1
Over Expressed Genes: number of genes that have a positive association between 

expression and glioblastoma multiforme survival; 

2
Under Expressed Genes: number of genes that have a negative association between 

expression and glioblastoma multiforme survival; 

3
Log Odds Ratio: indicates whether the category is more enriched among the genes that 

have a positive association between expression and survival relative to the enrichment 

among the genes that have a negative association between expression and glioblastoma 

survival (positive loge odds ratio) or vice versa (negative loge odds ratio). Extreme values 

indicate higher difference in the enrichment percentages between the positive and negative 

association groups meanwhile values close to zero indicate similar enrichment percentages 

between positive and negative association groups; 

4
FDR P-value: False discovery rate adjusted P-value of the log odds ratio test. 
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Table 8. Ten most significant KEGG pathways from the gene set enrichment analysis of the 

genome. 

KEGG 

Identifier 
KEGG Pathway 

Over 

Expressed 

Gene
1
 

Under 

Expressed 

Genes
2
 

Log 

Odds 

Ratio
3
 

FDR       

P-value
4
 

hsa03010 ribosome 119 16 -2.4779 9.7E-10 

hsa00010 
glycolysis / 

gluconeogenesis 
57 27 -1.1614 3.6E-04 

hsa00190 
oxidative 

phosphorylation  

103 39 -0.9392 3.6E-04 

hsa05212 pancreatic cancer  54 45 -0.9460 4.7E-04 

hsa05130 

pathogenic 

escherichia coli 

infection  

44 41 -1.0575 4.7E-04 

hsa00240 
pyrimidine 

metabolism  

42 78 -0.8800 5.0E-04 

hsa03050 proteasome  33 32 -1.0965 7.2E-04 

hsa00280 

valine, leucine and 

isoleucine 

degradation  

20 48 -1.1353 8.5E-04 

hsa04662 
b cell receptor 

signaling pathway  

34 65 -0.9084 8.5E-04 

hsa05223 
non-small cell 

lung cancer  
25 52 -0.9922 9.0E-04 

 

1
Over Expressed Genes: number of genes that have a positive association between expression and 

glioblastoma multiforme survival; 

2
Under Expressed Genes: number of genes that have a negative association between expression and 

glioblastoma multiforme survival; 

3
Log Odds Ratio: indicates whether the category is more enriched among the genes that have a positive 

association between expression and survival relative to the enrichment among the genes that have a negative 

association between expression and glioblastoma survival (positive loge odds ratio) or vice versa (negative loge 

odds ratio). Extreme values indicate higher difference in the enrichment percentages between the positive and 

negative association groups meanwhile values close to zero indicate similar enrichment percentages between 

positive and negative association groups; 

4
FDR P-value: False discovery rate adjusted P-value of the log odds ratio test. 
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Noteworthy was that all top ten results had negative log odds ratio indicating that the categories 

were more enriched among the genes that have a negative association between expression and 

survival relative to the enrichment among the genes that have a positive association between 

expression and GBM survival. Positive log odds ratios were observed for less significant (P-

value < 5.0E-2) pathways and categories. The more extreme log odds ratios observed in the 

GSEA of KEGG pathways indicate higher difference between the enrichment percentages in the 

positive and negative association groups meanwhile values close to zero in the GSEA of GO 

categories indicate lower differences in the enrichment percentages between positive and 

negative association groups. 

Among the most differentially enriched pathways (Table 6) were cancer pathways (pancreatic, 

non-small cell lung). Additional pathways identified in this study that have been associated with 

gliomas include glycolysis/gluconeogenesis [52] and oxidative phosphorylation [53]. Among the 

top enriched GO biological processes, lipid metabolism and cell cycle have been associated with 

glioma [54, 55]. Likewise, several GO molecular functions hydrolase and ligase activities have 

been have been linked to glioma [56, 57].  

 

Demonstration of Alternative Exon Usage 

The identification of patterns of differential exon expression across a gene and comparison 

against predicted AS models helped to confirm associations between AS and survival. Figures 

2.1 to 2.4 depict patterns of exon expression associated with GBM survival and reported AS 

gene models for three genes among the 36 genes that exhibited the highest significant AEU 

associated with GBM survival (Table 2) and one gene of biological relevance that have AEU at 

P-value < 5.0E-4. The four genes depicted in Figures 2.1 to 2.4 are anaphase promoting complex 
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subunit 1 (Anapc1, Figure 2.1), HECT domain and RLD domain containing E3 ubiquitin protein 

ligase 2 (Herc2, Figure 2.2), G-protein coupled receptor 98 (Gpr98, Figure 2.3), and epidermal 

growth factor (Egf, Figure 2.4).The parallel alignment of estimated exon expression resulting 

from our analysis, the moving average trend and the AS prediction from AceView offered in 

silico verification of the identified AEU [3]. The AS models are denoted by lines parallel to the 

x-axis and identify the corresponding exons. However, no expression values should be assigned 

to the AS model lines and experimental confirmation of the AEU cases identified in this study is 

necessary. 

Anapc1 is located on human chromosome (HAS) 2 and the function of this gene is associated 

with transition in the cell cycle from metaphase to anaphase [58]. In agreement with the function, 

premature truncation of the gene leading to reduced expression of Anapc1 is associated with 

cancer development [59]. Six AS models for this gene were found in the alternative transcript 

variant database ACE View. Anapc1exhibited AEU in this study and of the 48 exons analyzed, 

the expression of 25 exons was associated with GBM survival (Figure 2.1). The AS pattern 

predicted by our model and highlighted by the moving average trend is supported by AS gene 

models (Anapc1.d, and Anapc1.e, Figure 2.1). Our model predicted under-expression of the 

majority of the exons in three gene models (Anapc1.d, Anapc1.e and Anapc1.g). The under 

expression of exons associated with higher survival predicted by our model and presented in 

Figure 2.1 are in consistent with previous studies of the relationship between Anapc1 and cancer 

[59]. Consistent with the functional analysis, Anapc1 pertains to enriched GO biological process 

of cell cycle phase and axonogenesis and the KEGG pathway Ubiquitin mediated proteolysis.  
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Herc2 is located on HAS 15 and belongs to the ubiquitin ligase family HERC. Various members 

of this family have high expression in fetal relative to adult brain [60]. Herc2 in mouse has been 

associated with neuromuscular disorder, was and has been proposed to be related to neuronal 

tissues in humans. Also, mutations resulting in under expression of Herc2 have been related to 

gastric and colorectal carcinomas [61]. Significant AEU and association between GBM survival 

and expression were detected on 42 of the 93 exons in Herc2 (Figure 2.2). Our model predicted 

exon under-expression that overlap with several AS models (e.g. Herc.q, Herc.g, Herc.j, Herc.t). 

These trends are consistent with demonstrations that HERC2 depletion restores the breast cancer 

suppressor BRCA1 [62] and that resulting HERC2 protein formation and cancer [61]. Supporting 

our GO analyses and enriched categories, Herc2 belongs to the GO molecular function 

categories GTPase regulator activity and ion binding, the GO biological process of intracellular 

transport and protein localization and the KEGG pathway Ubiquitin mediated proteolysis.  

Gpr98 is located on HAS 5 and is highly expressed in the central nervous system (CNS) [63]. 

This gene has been associated with Usher syndrome and Familial Febrile seizures. Usher 

syndrome is characterized by hearing loss and progressive vision loss, whereas the Febrile 

Convulsions is a form of seizure effecting children [64, 65]. Studies have r association of Gpr98 

with cancer [66] and also revealed that smaller variants of Gpr98, produced due to AS, are 

associated with increased survival against lymphoblastic leukemia [67]. Gpr98 exhibited AEU in 

this study and the expression of approximately 30 exons (out of 90 exons) exhibited significant 

association with GBM survival (Figure 2.3). Several over-expressed exons detected by our 

model are consistent with AS gene models including Mass1.b, Mass1.f, Mass1.e, and Mass1.c.  

Conversely, some under-expressed exons identified in our study are supported by gene models 

including Mass1d and Mass1g. These results are consistent with previous studies that indicated 
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association of smaller transcripts of Gpr98 with cancer survival by inducing apoptosis in 

cancerous cells [67]. In agreement with our GO analyses, Gpr98 is affiliated to the enriched GO 

biological processes of cell adhesion, neuron development and sensory perception of mechanical 

stimulus. Additionally, Gpr98 has the GO molecular function of cytoskeletal protein binding and 

ion binding. 

Egf is located on HAS 4 and over-expression of Egf has been associated with tumor progression 

and lower GBM survival [68]. Egf exhibited AEU and of the 24 exons analyzed, nine exons had 

significant associations with GBM survival. Several over-expressed exons detected in our 

analysis correspond to AS gene models including Egf.j and Egf.h. In accord with the pathway 

and functional analyses, Egf is part of many enriched KEGG pathways including focal adhesion, 

regulation of actin cytoskeleton, and cancer pathways. 
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Figure 2.1. Anapc1 exon expression, moving average, and alternative splicing models.  

 

Anapc1: anaphase promoting complex subunit 1.  

X-axis: location of exons in the gene (in bp). 

Y-axis (left): change in exon expression per additional survival month calculated from the hierarchical model of alternative exon usage. 

Full diamond markers: exon expression from the hierarchical model of alternative exon usage is denoted by (Exon expression). 

Y-axis (right): indicator of alternative splicing model. 

Black and gray lines that have x, triangle, square, circle, +, or no markers: AceView alternative splicing models. Lines denote the location of the exons included in 

the model. Alternative splicing models do not have inherent expression levels.  

Continuous line: moving average pattern of expression based on 10 exons. 

Standard Error: standard error of the exon expression estimate. 

 

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08
1
1
2
7
3
3
1
3
4

1
1
2
7
2
6
3
5
8

1
1
2
7
2
5
3
5
3

1
1
2
7
1
7
5
2
9

1
1
2
7
1
5
1
1
2

1
1
2
7
0
9
5
1
9

1
1
2
7
0
3
4
9
9

1
1
2
6
9
9
8
6
1

1
1
2
6
9
1
1
6
1

1
1
2
6
8
5
9
4
3

1
1
2
6
7
8
5
0
0

1
1
2
6
7
7
6
8
9

1
1
2
6
7
3
9
6
2

1
1
2
6
6
7
8
8
8

1
1
2
6
5
8
5
2
5

1
1
2
6
5
6
1
7
1

1
1
2
6
5
3
5
2
0

1
1
2
6
4
6
9
5
6

1
1
2
6
4
5
0
8
5

1
1
2
6
3
8
0
8
3

1
1
2
6
3
6
6
2
0

1
1
2
6
3
1
3
9
8

1
1
2
6
2
5
0
6
4

1
1
2
6
2
2
0
1
9

1
1
2
6
1
9
0
0
4

E
x
o
n

 e
x
p

re
ss

io
n

 

Exon Location 

Exon

expression

Anapc1b

Anapc1e

Anapc1a

Anapc1f

Anapc1g

Anapc1d

Moving

average

A
E

U
 r

ep
re

se
n

ti
n

g
 m

o
d

el
s 

Standard error: 0.0037 



85 
 

Figure 2.2. Herc2 exon expression, moving average, and alternative splicing models. 

 

 Herc2: HECT domain and RLD domain containing E3 ubiquitin protein ligase 2.  

X-axis: location of exons in the gene (in bp). 

Y-axis (left): change in exon expression per additional survival month calculated from the hierarchical model of alternative exon usage. 

Full diamond markers: exon expression from the hierarchical model of alternative exon usage is denoted by (Exon expression). 

Y-axis (right): indicator of alternative splicing model. 

Black and gray lines that have x, triangle, square, circle, +, or no markers: AceView alternative splicing models. Lines denote the location of the exons included in 

the model. Alternative splicing models do not have inherent expression levels.  

Continuous line: moving average pattern of expression based on 10 exons. 

Standard Error: standard error of the exon expression estimate. 
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Figure 2.3. Gpr98 exon expression, moving average, and alternative splicing models. 

 

Gpr98: G-protein coupled receptor 98.  

X-axis: location of exons in the gene (in bp). 

Y-axis (left): change in exon expression per additional survival month calculated from the hierarchical model of alternative exon usage. 

Full diamond markers: exon expression from the hierarchical model of alternative exon usage is denoted by (Exon expression). 

Y-axis (right): indicator of alternative splicing model. 

Black and gray lines that have x, triangle, square, circle, +, or no markers: AceView alternative splicing models. Lines denote the location of the exons included in 

the model. Alternative splicing models do not have inherent expression levels.  

Continuous line: moving average pattern of expression based on 10 exons. 

Standard Error: standard error of the exon expression estimate. 
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Figure 2.4. Egf exon expression, moving average, and alternative splicing models. 

 

 

Egf: epidermal growth factor.  

X-axis: location of exons in the gene (in bp). 

Y-axis (left): change in exon expression per additional survival month calculated from the hierarchical model of alternative exon usage. 

Full diamond markers: exon expression from the hierarchical model of alternative exon usage is denoted by (Exon expression). 

Y-axis (right): indicator of alternative splicing model. 

Black and gray lines that have x, triangle, square, circle, +, or no markers: AceView alternative splicing models. Lines denote the location of the exons included in 

the model. Alternative splicing models do not have inherent expression levels.  

Continuous line: moving average pattern of expression based on 10 exons. 

Standard Error: standard error of the exon expression estimate. 
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Validation 

The average and range of R
2
 values from the application of training data set estimates on the 

training and validation data set were 0.8 and 0.7, respectively. These results indicate that the 

AEU events and genes associated with GBM survival detected and characterized in the training 

data set were confirmed in the independent validation data set.  

 

Further Studies 

Extensions to the hierarchical model proposed in this study to identify AEU can be considered. 

First, the model can incorporate information of the mapping of the exons to the gene. In addition, 

the distance between the exons can be accommodated on the variance-covariance matrix. This 

would allow modeling of potentially higher dependencies between proximal exons relative to 

distant exons. Second, the model can incorporate information on different splicing scenarios [3].  

In this study, the vast majority of the exons within a gene mapped to one strand and few exons 

mapped to the other strand. Thus, AEU was studied among the exons that mapped to the most 

frequent strand. When sufficient information on both strands within a gene is available, our 

model allows the consideration of information across strands.  This model would allow the study 

of sense-antisense gene overlap and its impact on AS and regulation of gene expression 

following the work of Sorana Morrissy et al. Their work suggested an antisense transcription-

mediated mechanism of splicing regulation in human cells [69]. 
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Conclusions  

In conclusion, AEU is a complex process and thus the detection and characterization of AEU 

associated with survival is challenging. The hierarchical model developed in this study allowed 

simultaneously, the detection of differential expression of exons within a gene and differentially 

expressed genes associated with survival. From a total of 25,403 genes investigated, 2477 multi-

exon and 13 single exon genes were associated with GBM. Most of the significant genes 

detected by the model have been previously associated to GBM (27.78%) or other type of cancer 

(36.11%). The AEU events detected for several genes (Egf, Herc2, Gpr98, Anapc1) were 

consistent with AS models in AceView. The hierarchical model can be applied to other cancer 

types and to indicators other than survival. 
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