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Abstract

This dissertation consists of three essays in microeconomics. The first essay stud-

ies a finite-horizon alternating-offer model that integrates the common practice of

having an arbitrator determine the outcomes if both players’ offers are rejected. We

find that if the arbitrator uses final-offer arbitration (as in professional baseball),

and the arbitrator does not excessively favor one player, then the unique subgame-

perfect equilibrium always coincides with the subgame-perfect equilibrium outcome

in Rubinstein’s infinite-horizon alternating-offer game. However, if the arbitrator

sufficiently favors the player making the initial offer, then delay occurs in equilib-

rium. If, instead, the arbitrator uses the split-the-difference arbitration rule, then

the unique subgame-perfect equilibrium can feature immediate agreement, delayed

agreement, or no agreement, depending on the discount factor.

The second essay studies the arbitration problem using the axiomatic approach.

In particular, we define an arbitration problem as the triplet of a bargaining set

and the offers submitted by two players. We characterize the solution to a class

of arbitration problems using the axiomatic approach. The axioms we impose on

the arbitration solution are “Symmetry in Offers,” “Invariance” and “Pareto Op-

timality.” The key axiom, “Symmetry in Offers,” requires that whenever players’

offers are symmetric, the arbitrated outcome should also be symmetric. We find

that there exists a unique arbitration solution, called the symmetric arbitration so-

lution, that satisfies all three axioms. We then analyze a simultaneous-offer game

and an alternating-offer game. In both games, the symmetric arbitration solution is

used to decide the outcome whenever players cannot reach agreement by themselves.
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We find that in both games, if the discount factor of players is close to 1, then the

unique subgame perfect equilibrium outcome coincides with the Kalai-Smorodinsky

solution outcome.

The third essay studies the public good provision problem in which a public

good can be provided and payments can be collected from agents only if the pro-

portion of agents who obtain nonnegative expected utilities from the public good

provision mechanism weakly exceeds a prespecified ratio α. We call this requirement

“α proportional individual rationality”. We identify a key threshold such that if α is

less than this threshold, then efficiency obtains asymptotically. If α is greater than

the threshold, then inefficiency obtains asymptotically. In addition, we obtain the

convergence rate of the probability of provision to its efficient/inefficient level.
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Chapter 1

Finite-Horizon Alternating-Offer Game

with Arbitration

1.1 Introduction

The industrial relations literature features two types of well-known arbitration

procedures: conventional arbitration, and final-offer arbitration. Conventional ar-

bitration is an arbitration process in which the arbitrator is free to impose any

settlement as the arbitration outcome. A simple, widely-used conventional arbitra-

tion procedure is (equally) splitting the difference between players’ final offers (e.g.,

Anbarci and Boyd 2011; Compte and Jehiel 1995). In contrast, in final-offer arbitra-

tion, the arbitrator must choose one player’s final offer as the arbitration outcome.

Final-offer arbitration was first proposed by Stevens (1966) and has been widely used

in the public-sector to settle labor disputes and in major league baseball to resolve

salary disputes (Chelius and Dworkin 1980; Wilson 1994).

Although arbitration is a common dispute resolution mechanism, it has received

little attention in the bargaining literature. The purpose of my paper is to explore

how introducing arbitration affects players’ equilibrium strategies and bargaining

outcomes. My paper will address the following questions: when does the introduction
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of arbitration have an impact on the equilibrium of the bargaining game? and if

arbitration has an impact, what kind of impact will it have and which player benefits?

I show that if final-offer arbitration is used, then as long as the arbitrator does not

excessively favor one player, the equilibrium of the game is unaffected by the specific

details of the arbitrator’s preference, and both players obtain Rubinstein equilibrium

payoffs. In all other cases where final-offer arbitration is used, the equilibrium of the

game depends on the arbitrator’s preference and the player favored by the arbitrator

obtains a payoff higher than his Rubinstein equilibrium payoff. In addition, I show

that delay in reaching agreement emerges when the arbitrator is excessively biased

toward the player who makes the first offer: the bias encourages the player making

the first offer to make an unattractive demanding offer in order to get “closer” to

the threat of having allocations determined by the biased arbitrator.

If, instead, the split-the-difference arbitration rule is used, then the equilibrium of

the game depends on the discount factor. In particular, when the discount factor is

sufficiently small, the equilibrium features immediate agreement. When the discount

factor is sufficiently large, the equilibrium is an equilibrium with no agreement, where

both players make extreme demands and both offers are rejected (so the arbitration

outcome is the final outcome). Delay emerges when players are sufficiently patient:

players make extreme demands in equilibrium because the time cost of going to

arbitration is small and when arbitration is reached, split-the-difference punishes

compromise offers.

My basic framework builds on Yildiz (2011). Two players sequentially make

offers. If a player’s offer is accepted by his opponent, then that offer is the bargaining
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outcome and the game ends. If, instead, both players’ offers are rejected by their

opponents, an arbitration stage is reached. In contrast to Yildiz (2011), who assumes

that the arbitrator chooses the offer that yields the higher Nash product as the

arbitration outcome, I consider two very general classes of arbitration rules. One class

is the family of final-offer arbitration rules, where the arbitrator’s ideal settlement can

be any point on the Pareto frontier of the bargaining set and the arbitrator chooses

his preferred offer, i.e., the offer closest to his ideal settlement as the arbitration

outcome. The other class is the split-the-difference arbitration rule.

Player 1 makes the first offer. When final-offer arbitration is used, I find that,

(i) if the arbitrator is “balanced” (i.e., the arbitrator does not excessively favor one

player),1 then the unique subgame perfect equilibrium (henceforth SPE) outcome of

the game coincides with the equilibrium outcome of Rubinstein’s infinite-horizon

alternating-offer game (Rubinstein 1982); (ii) if the arbitrator sufficiently favors

Player 1, then the unique SPE of the game is such that Player 1 makes an offer

that Player 2 rejects, and Player 2 makes a counteroffer that Player 1 accepts; the

equilibrium payoff received by Player 1 exceeds what he would obtain from the Ru-

binstein equilibrium; and (iii) if the arbitrator sufficiently favors Player 2, then the

unique SPE of the game is such that Player 1 makes a more generous offer than the

Rubinstein equilibrium offer that Player 2 accepts immediately.

In the game that Yildiz (2011) considers, the unique SPE outcome coincides with

the Rubinstein equilibrium outcome. This result might lead one to believe that the

arbitrator’s preference used by Yildiz (2011) is special to the extent that it may

1An arbitrator is “balanced” if the arbitrator’s ideal settlement is close to the Rubinstein equi-
librium outcome. The measure of closeness depends on the discount factor.
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be the only arbitrator’s preference for which the SPE outcome coincides with the

Rubinstein equilibrium outcome. However, my analysis shows that there exists a

broad class (depending on the discount factor) of arbitrator’s preferences for which

the unique SPE outcome coincides with the Rubinstein equilibrium outcome. What

is special about the arbitrator’s preference that Yildiz (2011) considers is that it

belongs to that class for all discount factors.

One implication of my analysis is the following irrelevance result: as long as

the arbitrator is not too biased toward a player, then the unique equilibrium of the

arbitration game is unaffected by the arbitrator’s preference. In reality, when the

arbitrator uses final-offer arbitration, people may have concerns about the fairness of

the arbitrator. However, my irrelevance result shows that outcomes are unaffected

if the arbitrator has some bias, as long as this bias is not too large. In other words,

there is a wide range of arbitrator’s preferences under which the equilibrium of the

arbitration game is independent of the arbitrator’s preference. Within this range,

the precise choice of the arbitrator becomes unimportant.

Another implication of my analysis is that even when players have complete

information, delay might arise due to the introduction of arbitration.2 Delay in

equilibrium occurs when the arbitrator sufficiently favors Player 1. The intuition is

as follows. If Player 1 demands more than the Rubinstein equilibrium outcome, then

Player 2 will reject Player 1’s offer to exploit “time delay”. That is, Player 2 will

make a counteroffer, which Player 1 accepts in order to avoid the time cost of going

2Delay in equilibrium within the framework of complete information also occurs in Manzini and
Mariotti (2001), Manzini and Mariotti (2004), Ponsat́i and Sákovics (1998) and Rubinstein (1982).
However, the mechanism for delay is different. It arises in those models due to the existence of
multiple equilibria.
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to arbitration, and Player 2 is better off by making such a counteroffer, instead

of accepting Player 1’s initial offer.3 If, instead, Player 1 demands less than the

Rubinstein equilibrium outcome, then the offer is accepted by Player 2 immediately.

If the arbitrator sufficiently favors Player 1 (for a given discount factor), then Player

1 prefers to demand more than the Rubinstein equilibrium outcome. This is because

Player 1 can demand a payoff that is close to the arbitrator’s ideal settlement, which

is sufficiently higher than Player 1’s Rubinstein equilibrium payoff. Such a demand

is supported by the threat of the biased arbitrator, which implies that Player 2’s

counteroffer cannot be far away from Player 1’s offer. As a result, the benefit that

Player 1 can exploit from the biased arbitrator exceeds the cost incurred from the

delayed agreement. Therefore, delay in equilibrium occurs.

Manzini and Mariotti (2001) considered an infinite-horizon alternating-offer

model that also involves arbitration. They assume that an arbitrator can be called

in whenever a player has just rejected an offer and both players agree to move to

arbitration. My result contrasts with theirs in the sense that they show that the

Rubinstein equilibrium can arise only if the arbitration outcome sufficiently favors

one of the players, while my result shows that the Rubinstein equilibrium arises only

if the arbitration rule does not excessively favor a player. The difference between the

results is due to the following: (i) In Manzini and Mariotti (2001), the alternating-

offer game has an infinite horizon and the arbitration outcome is exogenously given

3In particular, assume that Player 1 makes the offer (x1, f(x1)), where x1 is Player 1’s own
demand and f(·) is the Pareto frontier function. Then, rather than accept Player 1’s offer, Player
2 can always obtain a higher payoff by rejecting Player 1’s offer and making the counteroffer
(δx1, f(δx1)) (depending on the arbitrator’s preference, Player 2 may make a more ungenerous
counteroffer in equilibrium), which Player 1 will accept. Notice that δf(δx1) > f(x1), as long as
x1 is greater than Player 1’s Rubinstein equilibrium payoff.
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when the arbitrator is called in. As a result, if the arbitrator is too biased to-

ward one player, the arbitration (as a background threat) becomes a non-binding

threat because both players need to agree in the event that an arbitrator is called

in. Therefore, the alternating-offer game in Manzini and Mariotti (2001) yields the

same equilibrium outcome as Rubinstein’s alternating-offer game. (ii) In my model,

the alternating-offer game has a finite horizon and the arbitration outcome is en-

dogenous in the sense that it depends on both players’ offers. As a result, when the

final-offer arbitration rule is sufficiently “balanced” in the sense that the arbitrator’s

ideal settlement is sufficiently close to the Rubinstein equilibrium outcome, it is not

profitable for Player 1 to demand more than the Rubinstein equilibrium outcome be-

cause of the time cost of delay,4 and the equilibrium outcome of the alternating-offer

game coincides with the Rubinstein equilibrium outcome.

Finally, I find that if the split-the-difference arbitration rule is used, then the

unique SPE depends on the common discount factor of players. In particular, (i)

if the discount factor is sufficiently small, then the unique SPE is such that Player

1 makes an offer that Player 2 accepts immediately. (ii) If the discount factor is

sufficiently large, then the unique SPE is such that both players make extreme offers

and both offers are rejected by the opponents (so the game moves on to the arbitration

stage). This result is due to the chilling effect of conventional arbitration. That is, as

players become more patient, they are more likely to take extreme positions before

4More particularly, for Player 1, making an excessively high demand is not supported by the
arbitrator and is thus not profitable. Making a demand that is only slightly higher than the
Rubinstein equilibrium offer is also not profitable because of the time cost of delay (notice that
even if Player 1 makes a demand that is slightly higher than the Rubinstein equilibrium offer, it
will be rejected by Player 2; see also footnote 3).
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arbitration.

This paper is organized as follows. Section 1.2 introduces some notation that helps

define the “alternating-offer arbitration game”. Section 1.3 studies the arbitration

game that uses the final-offer arbitration rule. Section 1.4 studies the arbitration

game that uses the split-the-difference arbitration rule. Concluding remarks are

offered in Section 1.5.

1.2 The Model

There are two players, Players 1 and 2, who are expected utility maximizers. Let

S ⊂ R2 denote the bargaining set, which includes all possible bargaining outcomes,

measured in terms of expected utility level. I use (x1, y1) ∈ S to denote Player 1’s

offer and use (x2, y2) ∈ S to denote Player 2’s offer, where x represents Player 1’s

utility payoff and y represents Player 2’s utility payoff. I normalize the disagreement

point of S to (0, 0). I assume that (x, y) ≥ (0, 0) for any (x, y) ∈ S, and that there

is at least one point (x, y) ∈ S such that (x, y) >> (0, 0). The bargaining set S is

assumed to be convex, compact and strictly comprehensive. The bargaining set S is

comprehensive if (x′, y′) ∈ S whenever (0, 0) ≤ (x′, y′) ≤ (x, y) and (x, y) ∈ S. The

bargaining set S is strictly comprehensive if S is comprehensive and there exists a

(x′′, y′′) ∈ S such that (x′′, y′′) >> (x, y) whenever (x, y) ∈ S and (x′, y′) ∈ S with

(x′, y′) ≥ (x, y) and (x′, y′) 6= (x, y).

The (weak) Pareto frontier of the bargaining set S is defined as PF = {p ∈ S :

q >> p ⇒ q /∈ S}.5 Define bi = max{Ui : (U1, U2) ∈ S} to be Player i’s maximal

5PF depends on S. However, I fix S in this paper, and I omit the dependency on S in notation
whenever there is no confusion.
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possible utility payoff from the bargaining set. Define f : x → max{y|(x, y) ∈ S}

for x ∈ [0, b1]. The function f is well-defined because S is compact. In addition, the

assumption that S is convex and strictly comprehensive implies that f is concave,

continuous, and strictly decreasing on [0, b1] with f(0) = b2 and f(b1) = 0 (see

Figure 1). Note that (x, y) ∈ PF if and only if y = f(x).

S
( , )

( , )

2

( ,0)

(0, )

(0,0)

S

1U

1 1( , )x y

2 2( , )x y

2U

1( ,0)b

2(0, )b

(0,0)

( )y f x=

Figure 1: The bargaining set.

I assume that there is an arbitrator who is informed about players’ util-

ities.6 Define B = {((x1, y1), (x2, y2)) |(x1, y1) ∈ S , (x2, y2) ∈ S}. An ar-

bitration rule is a function h : B → S. I write h((x1, y1), (x2, y2)) =

(h1((x1, y1), (x2, y2)), h2((x1, y1), (x2, y2))), where hi((x1, y1), (x2, y2)) is the arbitra-

tion outcome of Player i. A final-offer arbitration rule is any arbitration rule where

h((x1, y1), (x2, y2)) ∈ {(x1, y1), (x2, y2)} for any ((x1, y1), (x2, y2)) ∈ B. The split-the-

difference arbitration rule is the rule h((x1, y1), (x2, y2)) = (
x1 + x2

2
,
y1 + y2

2
) for any

6This is a standard assumption in the law and economics literature (Deck and Farmer 2007).
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((x1, y1), (x2, y2)) ∈ B.7 I assume that h is known to both players.

The only arbitration cost takes the form of time costs, which are measured by

the common discount factor δ of players. I assume that δ ∈ (0, 1). The unique

intersection point of the curve y = δf(x) and the curve y = f(1
δ
x) is denoted

by (δxR(δ), f(xR(δ))). That is, f(xR(δ)) = δf(δxR(δ)) (see Figure 2). The point

(xR(δ), f(xR(δ))) is the outcome of the unique SPE of Rubinstein’s infinite-horizon

alternating-offer game (Rubinstein 1982).8 Since δ is fixed in most parts of the paper,

I write (xR(δ), f(xR(δ))) as (xR, f(xR)) whenever it does not create confusion.

1U

2U

( , ( ))R Rx f xδ δ

1( ,0)b

2(0, )b

S

( , ( ))R Rx f x

( , ( ))R Rx f xδ

1
( )y f x
δ

=

( )y f xδ=

( )y f x=

Figure 2: Definition of (xR, f(xR)).

I define the alternating-offer arbitration game (or simply, the arbitration game),

which generalizes the game considered in Yildiz (2011), as the following three-stage

7Given that S is a convex set, (
x1 + x2

2
,
y1 + y2

2
) ∈ S for any (x1, y1) ∈ S and (x2, y2) ∈ S.

8In Rubinstein’s model, if Player 1 makes the Rubinstein equilibrium offer (xR(δ), f(xR(δ))),
then Player 2 is indifferent between accepting the offer and rejecting the offer. This is because if
Player 2 accepts the offer, then his payoff is f(xR(δ)); if Player 2 rejects the offer, then at the next
stage Player 2 will make the offer (δxR(δ), f(δxR(δ))) in equilibrium, which Player 1 will accept,
giving Player 1 a discounted payoff of δf(δxR(δ)) = f(xR(δ)).
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procedure:

Stage 1: Player 1 makes an offer (x1, y1) ∈ S. Player 2 decides whether to accept

the offer, ending the game with (x1, y1), or to reject the offer, moving the game to

the next stage;

Stage 2: Player 2 makes an offer (x2, y2) ∈ S. Player 1 decides whether to accept

the offer, ending the game with (x2, y2), or to reject the offer, moving the game to

the arbitration stage;

Stage 3: An arbitrator decides the final outcome using arbitration rule h, i.e.,

h((x1, y1), (x2, y2)) is the arbitrated outcome.

Section 1.3 analyzes the final-offer arbitration game and Section 1.4 analyzes the

split-the-difference arbitration game.

1.3 Final-Offer Arbitration Game

1.3.1 Notation and Assumptions

In this subsection, I introduce notation and assumptions regarding the final-offer

arbitration rule h.

For any (x1, y1) ∈ S, define the set V (x1, y1) = {(x2, y2) ∈ S|h((x1, y1), (x2, y2)) =

(x2, y2)} and Vx(x1, y1) = {x2 ∈ [0, b1]|(x2, y2) ∈ V (x1, y1)}. Thus, V (x1, y1) is the

collection of (x2, y2) that is chosen as the arbitration outcome when the final offers of

the two players are (x1, y1) and (x2, y2), and Vx(x1, y1) is the set of Player 1’s payoffs

in the set V (x1, y1). The set Vx(x1, y1) is nonempty because (x1, y1) ∈ V (x1, y1)

and x1 ∈ Vx(x1, y1). The set Vx(x1, y1) is bounded because S is bounded. For
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any (x1, f(x1)), define g(x1) = min{x2|x2 ∈ Vx(x1, f(x1))}. Note that g(x1) is well

defined if Vx(x1, f(x1)) is closed (Condition 1 below).

Figure 15 illustrates the sets V (x1, f(x1)) and Vx(x1, f(x1)) and the function g(x1)

for the case of Nash final-offer arbitration rule. The Nash final-offer arbitration rule

is the final-offer arbitration rule such that, among the final offers submitted by the

two players, the offer that yields the higher Nash product is chosen as the arbitration

outcome. This is the rule that Yildiz (2011) considers.

1U

2(0, )b

* *( , ( ))x f x

S

1 1( , ( ))V x f x

1 1( , ( ))xV x f x

2U

1 1( , ( ))x f x

1( ,0)b1 1( )x g x=

xy c=

1U

* *( , ( ))x f x

S

1 1( , ( ))V x f x

1 1( , ( ))xV x f x

2U

1 1( , ( ))x f x

1 1( ( ), ( ( )))g x f g x

1x1( )g x 1( ,0)b

2(0, )b xy c=

*
1The case where x x≥ *

1The case where x x<

Figure 3: V (x1, f(x1)), Vx(x1, f(x1)) and g(x1) under the Nash final-offer arbitration
rule.

A final-offer arbitration rule h is regular if there exists a continuous, strongly

monotone, and quasiconcave function u : S → R such that h((x1, y1), (x2, y2)) =

(x2, y2) if and only if u(x2, y2) ≥ u(x1, y1).
9 The function u can be regarded as the

arbitrator’s utility function. It can be easily verified that if the final-offer arbitration

9I am indebted to an anonymous referee for suggesting this definition. Strong monotonicity of
u requires that u(x′, y′) > u(x, y) whenever (x′, y′) ≥ (x, y) and (x′, y′) 6= (x, y). Quasiconcavity of
u requires that the set {(x, y) ∈ S : u(x, y) ≥ u} be convex for any u ∈ R.
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rule h is regular, then the set Vx(x1, f(x1)) and the function g(x1) satisfy the following

three properties:

Condition 1 (Closedness). The set Vx(x1, f(x1)) is a closed interval for any x1 ∈

[0, b1].

Condition 2 (Continuity). The function g(x1) is continuous in x1 for x1 ∈ [0, b1].

Condition 3 (Relative Fairness). There exists an x∗ ∈ [0, b1] such that, (i) for

x1 ∈ [0, x∗], we have g(x1) = x1; (ii) the function g(x1) is decreasing on (x∗, b1].

Condition 1 ensures that the function g is well-defined. Condition 2 ensures that

the arbitration curve (defined below) is continuous.

The point (x∗, f(x∗)) in Condition 3 can be regarded as the arbitrator’s ideal

settlement. Roughly speaking, Condition 3 implies that (i) if Player 1’s offer is

generous to Player 2 (i.e., x1 ≤ x∗), then Player 2’s offer will not be chosen as

the arbitration outcome if Player 2 demands more than the amount that Player 1

offers him; (ii) if Player 1’s offer is ungenerous to Player 2 (i.e., x1 > x∗), then the

arbitrator will allow Player 2 to make an offer where Player 2’s own demand exceeds

the ideal settlement, and Player 2’s offer is still chosen as the arbitration outcome.

Moreover, this “tolerance” for Player 2’s high demand increases as Player 1’s offer

becomes more ungenerous.

One can show that the Nash final-offer arbitration rule is regular. Under the

Nash final-offer arbitration rule, the utility function that the arbitrator maximizes

is u(x, y) = xy, and the arbitrator’s ideal settlement is the Nash bargaining solution

outcome.
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Let Σ denote the set of all regular final-offer arbitration rules. The remainder of

this section focuses on regular final-offer arbitration rules.

I now define two curves. The arbitration curve is defined as the curve x =

g(f−1(y)) where y ∈ [0, f(x∗)] (see Figure 4). According to Condition 3 (ii) and

using the fact that f is strictly decreasing, it follows that the arbitration curve is

increasing on [0, f(x∗)].

1U

* *( , ( ))x f x

2U

1
1( ( ))g f y− ′

1
1( ( ))g f y−

1y′

1y

1
1 1( ( ), )f y y−

1 1
1 1( ( ( )), ( ( ( ))))g f y f g f y− −

1 1
1 1( ( ( )), ( ( ( ))))g f y f g f y− −′ ′

1
1( )f y−1

1( )f y− ′

1
1 1( ( ), )f y y− ′ ′

arbitration curve

Figure 4: The arbitration curve.

The other curve, the discounted Pareto frontier, is defined as follows (see Fig-

ure 5):

y =

 δf(x) if 0 ≤ x ≤ δxR

f(1
δ
x) if δxR < x ≤ δb1.

If the arbitration curve and the discounted Pareto frontier intersect, then there

must be a unique intersection point. Denote this point by (x̂(δ), ŷ(δ)) (see Figure 5).
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In the remainder of the paper, I write (x̂(δ), ŷ(δ)) as (x̂, ŷ) whenever δ is fixed. If

there is no intersection point between those two curves, then the arbitration curve

must intersect the X-axis at a point that is to the right of the point (δb1, 0) (using the

fact that the arbitration curve is continuous). In this case, define (x̂, ŷ) = (δb1, 0).

( , ( ))
S

( ( ))′
( ( ))

1y′

1y 1 1( ( ), )f y y

( ( ( )), ( ( ( ))))

( ( ( )), ( ( ( ))))

( )( )′

( ( ), )′ ′

1U

2U

2(0, )b

ˆ ˆ( , )x y

1
( )y f x
δ

=

( )y f xδ=arbitration curve

discounted PF

( , ( ))R Rx f x
* *( , ( ))x f x

1( ,0)bδ 1( ,0)b

2(0, )bδ

Figure 5: Definition of (x̂, ŷ).

I show in Theorem 1 that the relationship between x̂ and xR is the key to iden-

tifying the SPE of any arbitration game that uses a regular final-offer arbitration

rule.

1.3.2 Characterization of the Equilibrium

I make the following two tie-breaking rules to simplify the analysis.

Tie-breaking rule 1: If a player is indifferent between acceptance and rejection,

he accepts.
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Tie-breaking rule 2: If a player is indifferent between two options that he can

offer his opponent, he chooses the option that yields his opponent a higher payoff.

The following result characterizes the SPE of the arbitration game that uses

arbitration rule h ∈ Σ.

Theorem 1. In the arbitration game with arbitration rule h ∈ Σ, we have:

(i) (Rubinstein equilibrium.) If δxR ≤ x̂ ≤ 1
δ
xR, then the outcome of the unique SPE

is that Player 1 makes the offer (xR, f(xR)) and Player 2 accepts it;

(ii) (type-II arbitration-driven equilibrium.) If 1
δ
xR < x̂ ≤ δb1, then the outcome of

the unique SPE is that at Stage 1, Player 1 makes the offer (1
δ
x̂, f(1

δ
x̂)), which Player

2 rejects, and at Stage 2, Player 2 makes the offer (x̂, f(x̂)), which Player 1 accepts;

(iii) (type-I arbitration-driven equilibrium.) If 0 ≤ x̂ < δxR, then the outcome of

the unique SPE is that Player 1 makes the offer (f−1(δf(x̂)), δf(x̂)) and Player 2

accepts it.

Proof: See Appendix 1. �

A final-offer arbitration rule h is balanced (or, an arbitrator is balanced) if x̂ ∈

[δxR, 1
δ
xR].10 Roughly speaking, the balancedness of an arbitration rule requires

that the arbitrator’s ideal settlement be close enough to the Rubinstein equilibrium

outcome.11 According to Theorem 1 (i), if a regular final-offer arbitration rule is

10The definition of “balanced” is distinct from the definition of “balanced” in Manzini and Mar-
iotti (2001). In both papers, an arbitration rule is balanced if and only if the arbitration rule does
not excessively favor a player. However, the measure of “favorness” is different.

11This is because the arbitrator’s ideal settlement is close to (x̂, ŷ), and (x̂, ŷ) is close to the
Rubinstein equilibrium outcome by balancedness. The measure of “closeness” depends on the
discount factor.
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balanced, then the equilibrium outcome is such that Player 1 offers (xR, f(xR)),

which Player 2 accepts. This result follows from the following two facts. First,

one can show that Player 1’s offer is accepted by Player 2 if and only if Player 1’s

demand is less than the Rubinstein equilibrium payoff (Lemma 11 (i) in Appendix 1),

so the best offer that Player 1 can make and Player 2 accepts is (xR, f(xR)). Second,

if Player 1 makes a demand that is higher than the Rubinstein equilibrium offer,

then Player 1’s offer is rejected by Player 2, and Player 2 makes a counteroffer that

Player 1 accepts (Lemma 11 (i) and Lemma 10 in Appendix 1). When the final-offer

arbitration rule is balanced in the sense that the arbitrator’s ideal settlement is close

enough to the Rubinstein equilibrium outcome, Player 2’s counteroffer is at most

marginally more generous than the Rubinstein equilibrium outcome. For Player 1,

the extra benefit of making an offer that will be rejected by Player 2 is thus less

than the time cost incurred by reaching a delayed agreement. As a result, when the

arbitrator is balanced, Player 1 makes the offer (xR, f(xR)) that Player 2 accepts

immediately.

For the class of balanced final-offer arbitration rules, the details of the final-

offer arbitration rule are irrelevant to the equilibrium outcome. That is, letting

Σ∗ = {h|h ∈ Σ with the corresponding x̂ ∈ [δxR, 1
δ
xR]}, we have:

Corollary 2. (Irrelevance Result) For any h ∈ Σ∗ and h′ ∈ Σ∗, the arbitration game

that uses rule h yields the same equilibrium outcome as the arbitration game that uses

rule h′.

To understand the significance of the above irrelevance result, we can imagine

that there is a stage before the arbitration game. At this pre-arbitration stage, an
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arbitrator is chosen from a pool, in which different arbitrators may have different

preferences over the two players’ offers. My irrelevance result shows that there is

a pool of arbitrators, in which the choice of the arbitrator does not matter for the

equilibrium of the arbitration game. Moreover, this pool of arbitrators is reasonable

and sufficiently wide in the sense that it includes all arbitrators who are not too biased

toward a player. However, as the discount factor increases, this pool shrinks. When

the discount factor approaches 1, the only arbitrator that belongs to this pool must

be the arbitrator whose ideal settlement is the Nash bargaining solution outcome

(see Appendix 4.1 for the robustness of the Nash final-offer arbitration rule).

1U

2U

2(0, )b

( , ( ))R Rx f x

1 1ˆ ˆ( , ( ))x f xδ δ

1( ,0)b

ˆ ˆ( , ( ))x f x

1( )x f yδ −=

1( ( ))x g f y−=

x̂

( )y f xδ=

* *( , ( ))x f x

( , ( ))

(0, )

( , ( ))

ˆ( , ( ))x f x

( )′ Rx ( ) ( ,0)

counteroffer

( ( ), ( ( )))

( ( ), ( ( )))

Rx

( , ) ( , ( ))x y x f x

Figure 6: The equilibrium with delay.

If 1
δ
xR < x̂ ≤ δb1, then the unique SPE is a type-II arbitration-driven equilibrium,

which is an equilibrium with delayed agreement. One may wonder why it is optimal

for Player 1 to make an offer that will be rejected by Player 2, as opposed to making

an offer that will be accepted by Player 2. The reason is as follows. On one hand, if

Player 1 makes an offer that demands more than the Rubinstein equilibrium payoff,
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then the offer will be rejected by Player 2, and Player 2 will make a counteroffer

that Player 1 accepts (Lemma 11 (i) and Lemma 9 in Appendix 1). However, if the

arbitrator sufficiently favors Player 1 (1
δ
xR < x̂ ≤ δb1), then Player 2’s counteroffer

will be close enough to Player 1’s initial offer, as long as Player 1’s demand is not

excessively higher than the arbitrator’s ideal settlement. One can show that if Player

1 makes the offer (1
δ
x̂, f(1

δ
x̂)), then Player 2’s counteroffer (x̂, f(x̂)) is the most favor-

able counteroffer that Player 1 could possibly obtain (see Figure 6).12 On the other

hand, if Player 1 makes an offer that demands less than the Rubinstein equilibrium

payoff, then the offer will be accepted by Player 2 (Lemma 11 (i) in Appendix 1).

Thus, the maximum payoff that Player 1 can obtain by making an offer that will

be accepted by Player 2 is the Rubinstein equilibrium payoff. Since δx̂ > xR, it is

optimal for Player 1 to make an offer that will be rejected by Player 2. Therefore,

delay in equilibrium occurs.

Notice that even if Player 1 makes the offer (x∗, f(x∗)), which is the arbitrator’s

ideal settlement, Player 2’s equilibrium action is to reject Player 1’s offer and make

the counteroffer (δx∗, f(δx∗)). Moreover, Player 1 will accept the counteroffer in order

to avoid the time cost of going to arbitration. However, in equilibrium, Player 1 will

not make the offer (x∗, f(x∗)), because he can obtain a more favorable counteroffer

by making the offer (1
δ
x̂, f(1

δ
x̂)) since x̂ > δx∗.

Finally, if the final-offer arbitration rule is sufficiently biased in favor of Player 2,

12The reason is that if Player 2 rejects Player 1’s offer (x1, y1) at Stage 1, then at the next stage,
Player 2 makes the counteroffer (min{δx1, g(x1)}, f(min{δx1, g(x1)})), which Player 1 will accept
(Lemma 9 in Appendix 1). Thus, Player 1 can “control” Player 2’s optimal counteroffer by varying
x1. The most favorable counteroffer to Player 1 occurs when x1 is such that δx1 = g(x1), i.e.,
x1 = 1

δ x̂ (see Figure 6).
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then the equilibrium is an equilibrium with immediate agreement. In addition, Player

1’s equilibrium offer is more generous than the Rubinstein equilibrium offer. This is

because if Player 1 makes an offer that is not more generous than the Rubinstein

equilibrium offer, then Player 2 will reject the offer and make a counteroffer, in which

Player 2’s demand is sufficiently higher than the Rubinstein equilibrium offer. Such

a counteroffer is supported by the biased arbitrator, and Player 1 has to accept

it. Player 1 is thus better off to make a more generous offer than the Rubinstein

equilibrium offer, which Player 2 accepts immediately.

1.3.3 Kalai-Smorodinsky Final-Offer Arbitration

This section studies the final-offer arbitration rule in which the arbitrator’s ideal

settlement is the Kalai-Smorodinsky solution outcome.

Definition 3. (Kalai and Smorodinsly 1975) The Kalai-Smorodinsky (KS) solution

outcome (xKS, f(xKS)) is the intersection point of the Pareto frontier with the line

connecting (0, 0) and (b1, b2), i.e.,
f(xKS)

xKS
=
b2
b1

.

Suppose the arbitrator’s utility function is uKS, where uKS : S → R is a contin-

uous, strongly monotone, and quasiconcave function with

uKS(x, y) =


(
y/x

b2/b1
)−1 if

y/x

b2/b1
≥ 1;

y/x

b2/b1
if

y/x

b2/b1
< 1.

for (x, y) ∈ PF .13 Notice that uKS is maximized at the Kalai-Smorodinsky solution

outcome. We have:
13I do not restrict the function uKS for (x, y) inside the bargaining set, as long as uKS is con-
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Theorem 4. Suppose the final-offer arbitration rule is such that

h((x1, y1), (x2, y2)) = (x2, y2) if and only if uKS(x2, y2) ≥ uKS(x1, y1). Then,

as long as
f(1

δ
xR)

1
δ
xR

≤ b2
b1
≤ f(xR)

δxR
, the unique SPE outcome of the arbitration game

is (xR, f(xR)).

Proof: See Appendix 4.2. �

Theorem 4 implies that as long as the line that connects the origin to (b1, b2) is

above the line that connects the origin to (1
δ
xR, f(1

δ
xR)) and is below the line that

connects the origin to (δxR, f(xR)), then the unique SPE outcome of the alternating-

offer arbitration game is (xR, f(xR)) (see Figure 4).

The condition in Theorem 4 is a sufficient condition for the Rubinstein equi-

librium outcome in the KS final-offer arbitration game. More generally, Appendix

4.2 provides the sufficient and necessary condition for the Rubinstein equilibrium

outcome and the conditions for other types of equilibrium (type-I arbitration-driven

equilibrium and type-II arbitration-driven equilibrium).

1.3.4 The Role of the Discount Factor

This subsection analyzes how the equilibrium payoffs of players change as the

discount factor changes.

I first consider the case where x∗ > xN , where (xN , f(xN)) is the Nash bargaining

solution outcome. The following result characterizes the SPE of the game for δ close

to 1.

tinuous, strongly monotone, and quasiconcave inside the bargaining set. It is unnecessary because
players make offers on the Pareto frontier in equilibrium. Therefore, only the arbitration rule
defined on the Pareto frontier matters for the equilibrium outcome.
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Figure 7: Sufficient condition for the Rubinstein equilibrium outcome in the KS
final-offer arbitration game.

Theorem 5. Assume that x∗ > xN . Let δ be the unique δ ∈ (0, 1) that satisfies

x̂(δ) =
1

δ
xR(δ). Let δ be the largest δ ∈ [0, δ] that satisfies x̂(δ) = δxR(δ). We have

(i) if δ < δ < 1, then the unique SPE of the alternating-offer arbitration game is

a type-II arbitration-driven equilibrium, in which the agreement is delayed, and (ii)

if δ ≤ δ ≤ δ, then the unique SPE of the alternating-offer arbitration game is the

Rubinstein equilibrium.

Sketch of proof: The threshold discount factor δ exists and is unique due to the

following facts (see Figure 8): (i) x̂(δ) is increasing in δ ∈ (0, 1); (ii)
1

δ
xR(δ) is strictly

decreasing in δ ∈ (0, 1);14 (iii) as δ approaches 1, x̂(δ) approaches x∗ and
1

δ
xR(δ)

approaches xN where xN < x∗; and (iv) as δ approaches 0,
1

δ
xR(δ) goes to infinity.

Threshold δ is also well-defined because there is at least one point (δ = 0) at which

x̂(δ) = δxR(δ).15 In addition, since the curve δxR(δ) is below the curve
1

δ
xR(δ) for

14See Appendix 3 for the proof.
15Figure 8 illustrates the case where the curve x̂(δ) intersects with the curve δxR(δ) exactly
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all δ ∈ [0, 1), it must be true that as δ decreases from 1 to 0, the curve x̂(δ) first

intersects with the curve
1

δ
xR(δ), and then intersects with the curve δxR(δ). So, we

must have δ < δ.

Theorem 5 then follows from the above analysis and Theorem 1. �

Figure 9 illustrates the equilibrium payoffs received by players. Figure 9 reveals

that the equilibrium payoff of Player 1 is xR(δ) for δ ≤ δ ≤ δ and is δx̂(δ) for δ < δ <

1. Note that when δ = δ, Player 1’s payoff obtained from the Rubinstein equilibrium

is the same as that obtained from the type-II arbitration-driven equilibrium, i.e.,

xR(δ) = δx̂(δ).

As δ increases, the equilibrium payoff of Player 1 strictly decreases. This implies

once, besides at δ = 0. Notice that depending on the shape of the curve x̂(δ), the curve x̂(δ) can
intersect with the curve δxR(δ) multiple times besides at δ = 0. Thus, we may have either the
Rubinstein equilibrium or type-I arbitration-driven equilibrium for a given δ ≤ δ, depending on

whether x̂(δ) ≥ δxR(δ) or x̂(δ) < δxR(δ). However, for δ ≤ δ ≤ δ, we must have x̂(δ) ≥ δxR(δ).
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Figure 9: Players’ equilibrium payoffs as functions of the discount factor.

that Player 1’s payoff is smaller when both players are more patient.

In contrast, the equilibrium payoff of Player 2 is f(xR(δ)) for δ ≤ δ ≤ δ and is

δf(x̂(δ)) for δ < δ < 1. Note that f(xR(δ)) > δf(x̂(δ)).

Player 1’s equilibrium payoff is continuous in δ for any δ ∈ [δ, 1). However, Player

2’s equilibrium payoff is discontinuous at δ = δ. At δ = δ, the equilibrium of the game

switches from the Rubinstein equilibrium to a type-II arbitration-driven equilibrium.

The total equilibrium payoff of the two players shrinks at δ. This is because the

Rubinstein equilibrium is an equilibrium with immediate agreement, whereas type-

II arbitration-driven equilibrium is an equilibrium with delayed agreement. Player 1,

as the player who first makes an offer, is “immune” to the switch between equilibria.

However, Player 2 is vulnerable and is subject to a strict payoff loss at δ = δ.

Manzini and Mariotti (2001) also obtain a discontinuity result for the equilibrium

payoff. In their game, the equilibrium payoffs of both players are “semidiscontinuous”

within a range of discount factors. However, the mechanisms behind the appearance
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of discontinuity are very different. In their game, the discontinuity appears due to a

multiplicity of equilibria. In my game, the discontinuity appears as a result of delay

in bargaining.

Finally, when x∗ ≤ xN , it must be true that x̂(δ) <
1

δ
xR(δ) for any δ ∈ (0, 1).

Thus, for any δ ∈ (0, 1), the unique SPE of the arbitration game is either a type-

I arbitration-driven equilibrium or the Rubinstein equilibrium. In both types of

equilibrium, the agreement is reached immediately. The equilibrium payoffs of both

players are thus continuous in the discount factor.

1.4 Split-the-Difference Arbitration Game

This section studies the arbitration game that uses the split-the-difference ar-

bitration rule.16 For simplicity, I assume that players can only make offers on the

Pareto frontier.

I first consider the case where the Pareto frontier is linear. I show in Theorem 6

that three types of equilibria appear as the discount factor is varied from 0 to 1.

In Theorem 6, an equilibrium with immediate agreement is one in which Player

1 makes an offer that Player 2 accepts immediately. An equilibrium with delayed

agreement is one in which Player 1 makes an offer that Player 2 rejects; and at the

next stage, Player 2 makes an counteroffer that Player 1 accepts. An equilibrium

16In general, the split-the-difference arbitration rule results in an inefficient arbitration outcome
(i.e., the arbitration outcome lies inside the bargaining set). Rong (2011) proposes a modified
version of the split-the-difference rule, called the symmetric arbitration rule, which not only “splits
the difference” between offers, but also results in an efficient arbitration outcome. Rong (2011)
finds that the unique equilibrium outcome of the arbitration game using the symmetric arbitration
rule coincides with the Kalai-Smorodinsky solution outcome as long as both players are sufficiently
patient.
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with no agreement is one in which all offers are rejected and the final outcome splits

the difference between offers.

Theorem 6. Suppose that the bargaining set S has a linear Pareto frontier with

b1 = b2 = 1, i.e., f(x) = 1 − x for x ∈ [0, 1]. Then the equilibrium of the split-the-

difference arbitration game as a function of δ is described by Table 1.

 

 

 

� Equilibrium Type 

� � 0.752 Immediate agreement 

0.752 � � � 0.763 Delayed agreement 

0.763 � � � 0.781 Delayed agreement 

0.781 � � � 0.868 Immediate agreement 

0.868 � � � 0.874 Immediate agreement 

� 
 0.874 Arbitration 

 

� Equilibrium Type 
Equilibrium Initial 

Offer (��) 

Equilibrium 

Counteroffer (��) 

0 � � � 0.752 Immediate agreement �2 � ��/�2 � �� NA 

0.752 � � � 0.763 Delayed agreement 1 �/�2 � �� 

0.763 � � � 0.781 Delayed agreement 2�2 � ���1 � ��/�� 2�1 � ��/� 

0.781 � � � 0.868 Immediate agreement �2 � ��/�2 � �� NA 

0.868 � � � 0.874 Immediate agreement �2 � 2���/�2 � ��� NA 

0.874 � � � 1 No agreement 1 0 

 

 

0.752 
0.763 

0.781 

0.868 0.874

1 0 

Discount factor (�) 

1/(1+�) 

2/3 

1/2 

Table 1: SPE of the game in the split-the-difference arbitration game (linear Pareto
frontier).

Proof: See Appendix 3. �

Based on the players’ equilibrium strategies listed in Table 1, I depict the equi-

librium payoff received by Player 1 in Figure 10. There are two interesting results in

Figure 10. First, for some ranges of discount factors, as the discount factor increases,

the equilibrium payoff of Player 1 increases.17 This happens when the equilibrium is

either an equilibrium with delayed agreement (0.752 < δ ≤ 0.763), or an equilibrium

with no agreement (0.874 < δ < 1). In those two types of equilibria, no agreement

is reached at Stage 1. Thus, in those two equilibria, after Player 2 rejects Player 1’s

17Notice that Player 1’s payoff obtained from the Rubinstein equilibrium is always strictly de-
creasing in δ (see Appendix 3).
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offer, the game moves to Stage 2 and Player 2 becomes the proposer. The switch of

the proposer role between the two players complicates the relationship between the

discount factor and the initial proposer’s equilibrium payoff and makes it possible for

Player 1 to increase his equilibrium payoff as the discount factor rises. In contrast,

in the standard alternating-offer model that features immediate agreement (e.g., Ru-

binstein 1982), as players become more patient, the payoff obtained by Player 1

decreases.
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Figure 10: Equilibrium payoff to Player 1 as a function of the discount factor.

Second, for any δ > 2/3, the equilibrium payoff of Player 1 is strictly less than

1/2, the fair division payoff and the Nash bargaining solution payoff of the game.

This occurs even when there is an immediate agreement in the game (2/3 < δ ≤ 0.752

and 0.781 ≤ δ ≤ 0.874). This means that with split-the-difference arbitration, when

players become patient, Player 1’s bargaining power becomes “less” than Player 2’s

bargaining power, even though Player 1 makes the first offer. The reason is as follows.
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As in the standard alternating-offer model, Player 1 (as the player who makes the first

offer) has the first-mover advantage because the players are impatient. On the other

hand, Player 2 has the second-mover advantage of being “closer” to the arbitration

stage, and thus Player 2 can more credibly threaten to make the extreme demand

in order to obtain a favorable outcome if the arbitration stage is reached. When

the players become patient, Player 1’s first-mover advantage decreases, while Player

2’s second-mover advantage increases. It is thus not surprising that when players

become sufficiently patient, Player 1’s bargaining power becomes “less” than Player

2’s.

Figure 10 also shows that Player 1’s equilibrium payoff is consistently less than

the Rubinstein equilibrium payoff.

Table 1 shows that the unique SPE of the game depends on the discount factor

in a complex manner. However, the equilibrium features immediate agreement when

the discount factor is sufficiently small, and it is an equilibrium with no agreement

when the discount factor is sufficiently large. This turns out to be a general property

that holds even when the Pareto frontier is not linear. This result is summarized in

Theorem 18.

For any δ ∈ (0, 1), define x∗1(δ) as the unique x1 ∈ (0, b1) that satisfies f(x1) =

δf(
δ

2− δ
x1). We have:

Theorem 7. In the split-the-difference arbitration game, there exists two thresholds

δ∗1, δ
∗
2 ∈ (0, 1) with δ∗1 > δ∗2, such that (i) when δ ∈ (δ∗1, 1), the only SPE of the game

is that at Stage 1, Player 1 offers (b1, 0), which Player 2 rejects; and at Stage 2,

Player 2 offers (0, b2), which Player 1 rejects, and (ii) when δ ∈ (0, δ∗2), the only
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SPE of the game is that at Stage 1, Player 1 offers (x∗1(δ), f(x∗1(δ))), which Player 2

accepts immediately.

Proof: See Appendix 2. �

Theorem 18 states that if δ is sufficiently large, then the unique SPE of the game

is such that both players make extreme offers. This occurs because, as δ becomes

sufficiently large, the time cost becomes so low that each player would rather choose

to make the extreme offer when it is his turn to make the offer. In particular, by

making the extreme offer, a player can guarantee himself a payoff of approximately

half of the maximum payoff that he can obtain from the bargaining set. However, by

making an offer that will be accepted by the other player, a player can only obtain

a small payoff because the other player can always threaten to reject the offer, make

an extreme counteroffer and move the game to arbitration if the offer is not good

enough (the threat is credible since players are very patient). Theorem 18 also states

that if δ is sufficiently small, then the unique SPE of the game is an equilibrium with

immediate agreement.

The arbitration stage is never reached in equilibrium in the final-offer arbitration

game, but it might be reached in equilibrium in the split-the-difference arbitration

game. The reason is that, unlike final-offer arbitration, split-the-difference arbitra-

tion chooses a compromise between final offers as the arbitration outcome. This

feature of split-the-difference arbitration encourages players to make extreme offers

before arbitration (and move the game to the arbitration stage).18 The incentives

18This is also known as the chilling effect of conventional arbitration, which holds for any ar-
bitration mechanism that allows for compromise between offers (Feuille 1975; Deck and Farmer
2007).

28



for players to make extreme offers become stronger as they grow more patient.

1.5 Conclusion

This paper studies a finite-horizon alternating-offer model that involves arbitra-

tion. I find that when final-offer arbitration is used, there exists a wide range of

arbitrator preferences (i.e., the set of balanced final-offer arbitration rules), under

which the unique equilibrium outcome of the arbitration game is unaffected by the

specific details of the arbitrator’s preference. Within this range, the equilibrium

outcome coincides with the Rubinstein equilibrium outcome. Outside this range,

delay in equilibrium might arise. If, instead, the arbitration rule splits the difference

between offers, then the unique equilibrium of the game depends on the discount

factor. In particular, when the discount factor is sufficiently small, the unique SPE

must be an equilibrium with immediate agreement; and when the discount factor is

sufficiently large, the unique SPE must be an equilibrium with no agreement (and

the arbitration stage will be reached).

Both the balanced final-offer arbitration rules and the split-the-difference arbi-

tration rule might be regarded as fair arbitration rules. However, they have very

different implications for players’ equilibrium payoffs. In particular, if a balanced

final-offer arbitration rule is used, players always obtain Rubinstein equilibrium pay-

offs. If, instead, the split-the-difference arbitration rule is used, then Player 1’s payoff

in the arbitration game is always less than the Rubinstein equilibrium payoff (when

the Pareto frontier is linear). These results reflect that Player 2 can credibly threaten

to make the extreme offer in the split-the-difference arbitration game, but not in the
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balanced final-offer arbitration game.19 As a result, Player 1’s bargaining power in

the split-the-difference arbitration game is “less” than that in the final-offer arbitra-

tion game and Player 1 obtains a smaller payoff in the split-the-difference arbitration

game.

A crucial feature of the arbitration games considered in this paper is that the

arbitration outcome depends on players’ offers. This dependency distinguishes my

model from the outside option literature20 in terms of equilibrium strategies and

equilibrium outcomes. The differences include (i) in my model, Player 2’s optimal

counteroffer depends on Player 1’s initial offer, so that Player 1 can control Player 2’s

counteroffer by varying his own offer; (ii) the condition that yields the Rubinstein

equilibrium outcome in my model is different from that obtained by Manzini and

Mariotti (2001), and (iii) delayed agreements can occur in my model even though

there is always a unique equilibrium.

1.6 Chapter 1 Appendix

1.6.1 Appendix 1: Proof of Theorem 1

I use the following four lemmas (Lemma 8, Lemma 9, Lemma 10 and Lemma 11)

to prove Theorem 1.

19By making the extreme offer in the split-the-difference arbitration game, a player guarantees
himself a payoff of at least half of the maximum payoff he can obtain from the bargaining set, while
making the extreme offer in the arbitration game with a balanced final-offer arbitration rule will
usually lead the arbitrator to choose the other player’s offer.

20See the joint outside option model considered by Manzini and Mariotti (2001, 2004) and the
unilateral outside option model considered by Binmore et al. (1989), Ponsat́i and Sákovics (1998)
and Shaked (1994). In the outside option literature, the outside options of players are exogenously
given.
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Lemma 8. If the final offer arbitration rule h is regular (i.e., h ∈ Σ), then

(i) for any x2 ∈ [g(x1), x1], we have h((x1, f(x1)), (x2, f(x2))) = (x2, f(x2));

(ii) for any x2 ∈ [0, g(x1)), we have h((x1, f(x1)), (x2, f(x2))) = (x1, f(x1)).

Sketch of Proof: The lemma follows from the definition of g(x1), and the strong

monotonicity of the arbitrator’s utility function. Notice that since x1 ∈ Vx(x1, f(x1)),

it must be true that g(x1) ≤ x1 and the interval [g(x1), x1] is well-defined. �

According to Lemma 8, for any given offer made by Player 1 (x1, f(x1)), the best

counteroffer that Player 2 could make on the Pareto frontier and the arbitrator would

choose is (g(x1), f(g(x1))).

The following lemma characterizes Player 2’s best counteroffer at Stage 2, gener-

alizing a result in Yildiz (2011).

Lemma 9. In the arbitration game where h ∈ Σ, if Player 1 offers (x1, y1) ∈ PF at

Stage 1 and Player 2 rejects it, then at Stage 2, in any equilibrium subgame, Player

2 makes the offer (min{δx1, g(x1)}, f(min{δx1, g(x1)})) and Player 1 accepts it.

Proof: I first show that it is never optimal for Player 2 to make an offer that

is strictly inside the bargaining set (i.e., not on the Pareto frontier). To do this, I

establish the following two facts. First, it is never optimal for Player 2 to make an

offer that is rejected by Player 1. Second, for any Player 2’s offer (x2, y2) /∈ PF

that Player 1 would accept, the offer (x2, y2) must be strictly dominated by the offer

(x2, f(x2)), which is on the Pareto frontier.

To establish the first point, notice that if Player 2’s offer is rejected by Player 1,

then it must be true that Player 1’s offer is the arbitration outcome. Thus, Player 2
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would be strictly better off if he offers (x2, y2) = (x1, y1), which will be accepted by

Player 1 immediately.

To establish the second point, suppose that (x2, y2) /∈ PF would be ac-

cepted by Player 1. Then, it must be true that h((x1, y1), (x2, y2)) = (x2, y2) or

x2 ≥ δx1 (or both). Since the arbitrator’s utility function is strongly monotone,

h((x1, y1), (x2, y2)) = (x2, y2) implies that h((x1, y1), (x2, f(x2))) = (x2, f(x2)). Thus,

if Player 2 offers (x2, f(x2)), it would also be accepted by Player 1. But then Player

2 obtains a strictly higher payoff by offering (x2, f(x2)).

It follows that Player 2 never makes an offer that is strictly inside the bargaining

set. Without loss of generality, I now restrict Player 2’s offer to be on the Pareto

frontier. We have the following two possibilities.

(i) Player 2 offers (x2, y2) ∈ PF with x2 < min{δx1, g(x1)}. If Player 1 accepts

the offer, then his payoff is δx2 (the payoff is measured at Stage 1). If Player 1 rejects

the offer, the game moves to the arbitration stage. Given that x2 < g(x1), we must

have h((x1, y1), (x2, y2)) = (x1, y1) (by Lemma 8 (ii)). Thus, Player 1’s payoff is δ2x1.

Since x2 < δx1, we have δx2 < δ2x1, so Player 1 will reject Player 2’s offer and Player

2’s payoff is δ2y1.

(ii) Player 2 offers (x2, y2) ∈ PF with x2 ≥ min{δx1, g(x1)}. If Player 1 accepts,

his payoff is δx2. If Player 1 rejects the offer, the game moves to the arbitration stage.

If (x2, y2) is the arbitrated outcome, then Player 1’s payoff is δ2x2, which is less than

δx2. If instead, (x1, y1) is the arbitrated outcome, then Player 1’s payoff is δ2x1. In

this latter case, since (x1, y1) is the arbitrated outcome, we must have either x2 <

g(x1) or x2 ≥ x1 (by Lemma 8). If x2 < g(x1), noting that x2 ≥ min{δx1, g(x1)},
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we must have x2 ≥ δx1, which implies that δ2x1 ≤ δx2. If x2 ≥ x1, then we have

δ2x1 ≤ δx2. In each of these cases, Player 1 obtains a higher payoff by accepting

Player 2’s offer. Thus, Player 1 will accept Player 2’s offer and Player 2’s payoff is

δy2.
21

In summary, if Player 2 offers (x2, y2) ∈ PF with x2 < min{δx1, g(x1)}, then

his equilibrium payoff is δ2y1 ≤ δy1 = δf(x1) < δf(min{δx1, g(x1)}), where the last

inequality follows from the fact that min{δx1, g(x1)} ≤ δx1 < x1.
22 If Player 2 offers

(x2, y2) ∈ PF with x2 ≥ min{δx1, g(x1)}, then his equilibrium payoff is δy2, which is

maximized at (x2, y2) = (min{δx1, g(x1)}, f(min{δx1, g(x1)})) with the correspond-

ing payoff for Player 2 being δf(min{δx1, g(x1)}). Comparing these two cases, it is

obvious that Player 2’s optimal counteroffer is (min{δx1, g(x1)}, f(min{δx1, g(x1)})).

Moreover, Player 1 will accept the offer (min{δx1, g(x1)}, f(min{δx1, g(x1)})). �

Three factors determine Player 2’s best counteroffer at Stage 2: (i) the dis-

count factor δ; (ii) the final-offer arbitration rule h; and (iii) Player 1’s initial offer

(x1, f(x1))
23.

Define x̃(x1) = min{δx1, g(x1)}. Define the (optimal) counteroffer curve (of

Player 2) as the curve x = x̃(f−1(y)) where y ∈ [0, b2] (see Figure 11). The coun-

teroffer curve is the collection of points (x̃(x1), f(x1)) as x1 varies from 0 to b1. The

counteroffer curve can be used to determine Player 2’s optimal counteroffer for any

given Player 1’s offer, if Player 2 chooses to reject Player 1’s offer. See Figure 11.

21Here, we used tie-breaking rule 1.
22Note that the last inequality is strict because x2 < min{δx1, g(x1)} implies x1 > 0.
23The dependency of Player 2’s counteroffer on Player 1’s initial offer is a key feature of my

arbitration game. This dependency is absent in Rubinstein’s infinite-horizon alternating-offer game.
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Figure 11: The counteroffer curve of Player 2.

The next lemma generalizes Lemma 9. It characterizes Player 2’s optimal coun-

teroffer when Player 1’s offer (x1, y1) is not on the Pareto frontier. Its proof is similar

to that of Lemma 9 and is omitted.

Let g(x1, y1) = min{x2|x2 ∈ Vx(x1, y1)} and x̃(x1, y1) = min{δx1, g(x1, y1)}.24

We have:

Lemma 10. In the arbitration game with h ∈ Σ, if Player 1 made an offer (x1, y1)

at Stage 1 and Player 2 rejected it, then at Stage 2, in any equilibrium subgame,

Player 2 makes the offer (x̃(x1, y1), f(x̃(x1, y1))) and Player 1 accepts it.

The following lemma characterizes the necessary and sufficient conditions for

Player 1’s offer (x1, y1) ∈ PF to be accepted by Player 2.

Lemma 11. In the arbitration game with h ∈ Σ, if Player 1 made an offer (x1, y1) ∈

PF at Stage 1, then in equilibrium:

24Notice that g(x1) = g(x1, f(x1)) and x̃(x1) = x̃(x1, f(x1)).
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(i) If δxR ≤ x̂ ≤ δb1, then Player 1’s offer (x1, y1) is accepted by Player 2 if and only

if 0 ≤ x1 ≤ xR;

(ii) If 0 ≤ x̂ < δxR, then Player 1’s offer (x1, y1) is accepted by Player 2 if and only

if 0 ≤ x1 ≤ f−1(δf(x̂)).

Proof:

(i) Suppose x̂ is such that δxR ≤ x̂ ≤ δb1.

Refer to Figure 12. There are two cases.

(a) At Stage 1, Player 1 makes an offer (x1, f(x1)) with x1 > xR. If Player 2

accepts the offer, then his payoff is f(x1). If Player 2 rejects the offer, then at Stage

2, from Lemma 9, he offers (x̃(x1), f(x̃(x1))) that Player 1 accepts; Player 2’s payoff is

δf(x̃(x1)). We have δf(x̃(x1)) ≥ δf(δx1) > f(x1), where the first inequality follows

from the fact that x̃(x1) = min{δx1, g(x1)} ≤ δx1 and the second inequality follows

from the fact that x1 > xR (see Figure 12). So, Player 2 rejects the offer (x1, f(x1))

and makes the counteroffer (x̃(x1), f(x̃(x1))), which Player 1 accepts.

(b) At Stage 1, Player 1 makes an offer (x′1, f(x′1)) with 0 ≤ x′1 ≤ xR. If Player 2

accepts the offer, then his payoff is f(x′1). If Player 2 rejects the offer, then at Stage

2, from Lemma 9, he offers (x̃(x′1), f(x̃(x′1))), which Player 1 accepts. Thus, Player

2’s payoff is δf(x̃(x′1)) = δf(δx′1) ≤ f(x′1) (see Figure 12). Consequently, Player 2

accepts (x′1, f(x′1)).

(ii) Suppose x̂ is such that 0 ≤ x̂ < δxR.

Refer to Figure 13. There are two cases.

(a) At Stage 1, Player 1 makes an offer (x1, f(x1)) with x1 > f−1(δf(x̂)). If Player

2 accepts the offer, then his payoff is f(x1). If Player 2 rejects the offer, then at Stage
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Figure 12: The case of δxR ≤ x̂ ≤ δb1.

2, from Lemma 9, he offers (x̃(x1), f(x̃(x1))) that Player 1 accepts. Thus, Player 2’s

payoff is δf(x̃(x1)). We have δf(x̃(x1)) ≥ δf(x̂) > f(x1), where the first inequality

follows from the fact that x̃(x1) = min{δx1, g(x1)} = g(x1) ≤ x̂ (see Figure 13) and

the second inequality follows from the fact that x1 > f−1(δf(x̂)). Therefore, Player

2 rejects the offer (x1, f(x1)) and makes the counteroffer (x̃(x1), f(x̃(x1))), which

Player 1 accepts.

(b) At Stage 1, Player 1 makes an offer (x′1, f(x′1)) with 0 ≤ x′1 ≤ f−1(δf(x̂)).

If Player 2 accepts the offer, then his payoff is f(x′1). If Player 2 rejects the offer,

then at Stage 2, from Lemma 9, he offers (x̃(x′1), f(x̃(x′1))), which Player 1 accepts;

Player 2’s payoff is δf(x̃(x′1)). Since δf(x̃(x′1)) ≤ f(x′1) (see Figure 13), Player 2 will

accept the offer (x′1, f(x′1)). �

Now, we can state the proof of Theorem 1.

Proof of Theorem 1:
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I first show that it is never optimal for Player 1 to make an offer that is strictly

inside the bargaining set (i.e., not on the Pareto frontier). In particular, I show that

if Player 1 offers (x1, y1) /∈ PF , then the offer is strictly dominated by the offer

(f−1(y1), y1).

Suppose (x1, y1) would be accepted by Player 2. Then, it must be true that

y1 ≥ δf(x̃(x1, y1)). Since the arbitrator’s utility function is strongly monotone, we

have g(f−1(y1), y1) > g(x1, y1) and x̃(f−1(y1), y1) > x̃(x1, y1). So, y1 ≥ δf(x̃(x1, y1))

implies that y1 ≥ δf(x̃(f−1(y1), y1)). Thus, if Player 1 makes the offer (f−1(y1), y1),

then it will also be accepted by Player 2. Player 1 thus obtains a strictly higher

payoff by offering (f−1(y1), y1).

Suppose (x1, y1) would be rejected by Player 2. Then, Player 1 must obtain

a payoff of δx̃(x1, y1). If Player 1 makes the offer (f−1(y1), y1), then it might be

accepted by Player 2, or rejected by Player 2. If Player 2 accepts the offer, then
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Player 1 obtains a payoff of f−1(y1) > x1 ≥ δx̃(x1, y1), where the last inequality

follows from the fact that δx̃(x1, y1) ≤ δ(δx1) ≤ x1. If Player 2 rejects the offer, then

Player 1 obtains a payoff of δx̃(f−1(y1), y1), which is strictly greater than δx̃(x1, y1).

In all the cases analyzed above, Player 2 is strictly better off by making the offer

(f−1(y1), y1). I thus showed that Player 1 never makes an offer that is strictly inside

the bargaining set. In the remainder of the proof, I assume that Player 1 can only

make an offer on the Pareto frontier. There are three cases.

(i) Suppose x̂ is such that δxR ≤ x̂ ≤ 1
δ
xR.

If Player 1 makes an offer (x1, f(x1)) with x1 > xR, then Player 2 will reject it and

make the counteroffer (x̃(x1), f(x̃(x1))), which Player 1 will accept (by Lemma 11

(i) and Lemma 9). Player 1’s payoff is thus δx̃(x1), which is maximized at x1 = 1
δ
x̂

with corresponding payoff δx̃(1
δ
x̂) = δx̂.25 If Player 1 makes an offer (x′1, f(x′1)) with

0 ≤ x′1 ≤ xR, then Player 2 will accept it (by Lemma 11 (i)). Player 1’s payoff is x′1,

which is maximized at x′1 = xR with corresponding payoff xR. Since δx̂ ≤ xR, Player

1’s optimal strategy is to offer (xR, f(xR)) at Stage 1.26 Player 2 accepts (xR, f(xR))

immediately.

(ii) Suppose x̂ is such that 1
δ
xR < x̂ ≤ δb1.

If Player 1 makes an offer (x1, f(x1)) with x1 > xR, then Player 2 will reject

the offer (x1, f(x1)) and make the counteroffer (x̃(x1), f(x̃(x1))), which Player 1 will

accept (by Lemma 11 (i) and Lemma 9). Player 1’s payoff is thus δx̃(x1), which is

25This is true except when x̂ = δxR, where the maximum of δx̃(x1) does not exist. However,
in this case, one can show that for Player 1, any offer (x1, f(x1)) with x1 > xR must be strictly
dominated by the offer (xR, f(xR)), and thus Player 1 never makes an offer (x1, f(x1)) with x1 > xR.

26If δx̂ = xR, Player 1 is indifferent between offering (xR, f(xR)) and offering ( 1
δ x̂, f( 1

δ x̂)). Using
tie-breaking rule 2, Player 1 must offer (xR, f(xR)).
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maximized at x1 = 1
δ
x̂ with corresponding payoff δx̃(1

δ
x̂) = δx̂. If Player 1 offers

(x′1, f(x′1)) with 0 ≤ x′1 ≤ xR, then Player 2 will accept it (by Lemma 11 (i)). Player

1’s payoff is x′1, which is maximized at x′1 = xR with corresponding payoff xR. Since

δx̂ > xR, Player 1’s optimal strategy is to offer (1
δ
x̂, f(1

δ
x̂)). Player 2 will reject the

offer and make the counteroffer (x̃(1
δ
x̂), f(x̃(1

δ
x̂))) = (x̂, f(x̂)), which Player 1 will

accept.

(iii) Suppose x̂ is such that 0 ≤ x̂ < δxR.

If Player 1 makes an offer (x1, f(x1)) with x1 > f−1(δf(x̂)), then Player 2 will

reject the offer (x1, f(x1)) and make the counteroffer (x̃(x1), f(x̃(x1))), which Player

1 will accept (by Lemma 11 (ii) and Lemma 9). Player 1’s payoff is thus δx̃(x1),

which is at most δx̂ (see Figure 13). If Player 1 makes an offer (x′1, f(x′1)) with

0 ≤ x′1 ≤ f−1(δf(x̂)), then Player 2 will accept the offer (by Lemma 11 (ii)). Player

1’s payoff is x′1, which is maximized at x′1 = f−1(δf(x̂)) with corresponding payoff

f−1(δf(x̂)). Since f−1(δf(x̂)) > δx̂ (see Figure 13), Player 1’s optimal strategy is to

offer (x1, f(x1)) where x1 = f−1(δf(x̂)). Player 2 will accept the offer immediately.

�

1.6.2 Appendix 2: Proof of Theorem 18

In this appendix, I first propose and prove three lemmas (Lemma 15, Lemma 17,

and Lemma 16). I then give the formal proof of Theorem 18 using the three lemmas.

I begin with a definition.

Definition 12. For any given (x1, y1) ∈ PF , define x̂2(x1, y1) =
δ

2− δ
x1.
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The following lemma characterizes Player 2’s optimal action at Stage 2 if he

rejects Player 1’s offer at Stage 1.

Lemma 13. In the equilibrium of the split-the-difference arbitration game, if Player

2 rejects Player 1’s offer (x1, y1) ∈ PF at Stage 1, then at Stage 2, Player 2 must

either offer (0, b2), which Player 1 will reject, or offer (x̂2(x1, y1), f(x̂2(x1, y1))), which

Player 1 will accept.

Proof: Using the definition of x̂2(x1, y1), we have δx̂2(x1, y1) ≥ δ2
x̂2(x1, y1) + x1

2

if and only if x2 ≥ x̂2(x1, y1). That is, Player 1 accepts Player 2’s offer (x2, y2) if and

only if x2 ≥ x̂2(x1, y1). Thus, if Player 2 wants to make an offer that Player 1 will

accept, his best option is to offer (x̂2(x1, y1), f(x̂2(x1, y1))). In addition, if Player 2

wants to make an offer (x2, y2) that Player 1 will reject, his best option is to make the

extreme offer (i.e., (0, b2)), because the arbitrated payoff
y1 + y2

2
received by Player

2 is strictly increasing in y2. �
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Figure 14: Definition of x̂2(x1, y1).

40



For any offer (x1, y1) ∈ PF made by Player 1, Player 2 can always make two

threats. One threat is the counteroffer (x̂2(x1, y1), f(x̂2(x1, y1))), which Player 1 will

accept. The other threat is the extreme offer (b2, 0), which Player 1 will reject.27

Using tie-breaking rules 1 and 2, one can show that the SPE of the alternating-

offer arbitration game is unique. In addition, using Lemma 15, one can show that

there are at most three types of SPE in the game. These results are summarized in

the following lemma.

Lemma 14. In the split-the-difference arbitration game, the unique SPE must take

one of the following forms:

(i) (immediate agreement) at Stage 1, Player 1 offers (x1, y1) ∈ PF , which Player 2

accepts;

(ii) (delayed agreement) at Stage 1, Player 1 offers (x1, y1) ∈ PF , which Player

2 rejects; and at Stage 2, Player 2 offers (x̂2(x1, y1), f(x̂2(x1, y1))), which Player 1

accepts;

(iii) (no agreement) at Stage 1, Player 1 offers (x1, y1) ∈ PF , which Player 2 rejects;

and at Stage 2, Player 2 offers (0, b2), which Player 1 rejects.

The following lemma is essential for the proof of Theorem 18, and can be used to

simplify the analysis of the SPE of the whole game. Notice that Lemma 15 implies

27The multiple threats facing Player 1 is a key feature of the split-the-difference arbitration game.
Actually, this feature holds as soon as the arbitration rule is such that it chooses a compromise
between offers as the arbitration outcome. This feature is absent in the game where the arbitration
rule is final-offer arbitration. In the case of final-offer arbitration, at Stage 2, it is never optimal
for Player 2 to make an offer that is rejected by Player 1. Due to the multiple threats, Player 1’s
bargaining power in the game will be significantly undermined. This point is also illustrated in the
case where the Pareto frontier is linear (see the analysis of Figure 10).
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that in equilibrium, if Player 1 offers (x1, y1) ∈ PF at Stage 1, then Player 2 chooses

among one of the following three options:

(A) accept the offer (x1, y1);

(B) reject (x1, y1), and at Stage 2, offer (x̂2(x1, y1), f(x̂2(x1, y1))), which Player 1 will

accept;

(C) reject (x1, y1), and at Stage 2, offer (0, b2), which Player 1 will reject.

Lemma 15. In the split-the-difference arbitration game, in any equilibrium, if Player

1 offers (x1, f(x1)) 6= (b1, 0) at Stage 1, then Player 2 must be indifferent between his

best two options among A, B and C, i.e., either A ∼2 B �2 C, or A ∼2 C �2 B, or

B ∼2 C �2 A.

Proof: For Player 1, the payoffs of the three options (A, B and C) are x1,

δ
δ

2− δ
x1 and δ2

x1
2

respectively. For Player 2, the payoff of the three options are

f(x1), δf(
δ

2− δ
x1) and δ2

f(x1) + b2
2

.

Note the following two facts. First, Player 1’s payoff from each option is strictly

increasing in x1. Second, Player 2’s payoff from each option is continuous in x1. Using

these two facts, it follows that if in equilibrium, Player 1 makes an offer (x1, y1) with

x1 < b1 and Player 2 has a strict preference over his best two options, then Player

1’s offer (x1, y1) cannot be an equilibrium offer. This is because Player 1 can obtain

a strictly higher payoff by making a slightly more extreme offer (x1 + ε, f(x1 + ε))

where ε > 0 is small enough such that Player 2’s preferences over the three options

are the same as before.
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Thus, I have proved that, if at Stage 1 Player 1 offers (x1, y1) 6= (b1, 0), then

Player 2 must be indifferent between the best two options of A, B and C. �

Now, we can state the proof of Theorem 18.

Proof of Theorem 18:

(i) I show that there exists a δ∗1 ∈ (0, 1) such that when δ ∈ (δ∗1, 1), the only SPE

of the alternating-offer arbitration game is that at Stage 1, Player 1 offers (b1, 0),

which Player 2 rejects; and at Stage 2, Player 2 offers (0, b2), which Player 1 rejects.

The threshold δ∗1 is determined below.

Suppose δ > δ∗1.

Step 1: I first show that at Stage 1, Player 1 offers (b1, 0).

If Player 1 offers (b1, 0), then he can guarantee himself a payoff of δ2
b1
2

. If Player

1 offers (x1, y1) ∈ PF with x1 < b1, then by Lemma 16, either A ∼2 B �2 C, or

A ∼2 C �2 B, or B ∼2 C �2 A; I discuss these three cases below.

If one of the first two cases hold, then Player 2 accepts (x1, y1) and Player 1’s

payoff is x1.
28 In addition, we have A �2 C, i.e., f(x1) ≥ δ2

f(x1) + b2
2

. This

implies that f(x1) ≥
δ2b2

2− δ2
, i.e., x1 ≤ f−1(

δ2b2
2− δ2

). Define δ∗11 ∈ (0, 1) as the

unique δ ∈ (0, 1) such that f−1(
δ2b2

2− δ2
) = δ2

b1
2

. Then, for δ > δ∗11, we have x1 ≤

f−1(
δ2b2

2− δ2
) < δ2

b1
2

, i.e., for Player 1, the offer (x1, y1) is strictly dominated by the

offer (b1, 0).

If the third case holds, then (x1, y1) will be rejected by Player 2 and Player 2 will

28Using tie-breaking rule 1.
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offer (x̂2(x1, y1), f(x̂2(x1, y1))) at Stage 2.29 Player 1’s payoff is δx̂2(x1, y1) =
δ2

2− δ
x1.

Since B ∼2 C, we have δf(
δ

2− δ
x1) = δ2

f(x1) + b2
2

. That is, we have x1 = x∗∗1 (δ),

where x∗∗1 (δ) is the unique x1 ∈ (0, b1) that satisfies δf(
δ

2− δ
x1) = δ2

f(x1) + b2
2

.

Since x∗∗1 (δ) → 0 as δ → 1, there exists δ∗12 ∈ (0, 1) such that if δ > δ∗12, then

δ2

2− δ
x∗∗1 (δ) < δ2

b1
2

, i.e., for Player 1, the offer (x1, y1) is strictly dominated by the

offer (b1, 0). Thus, we have proved that, for δ > max{δ∗11, δ∗12}, Player 1 must make

the offer (b1, 0).

Step 2: I now show that at Stage 2, Player 2 offers (0, b2).

First, notice that Player 2 must reject Player 1’s offer (b1, 0). At Stage 2, accord-

ing to Lemma 15, Player 2 either offers (x̂2(b1, 0), f(x̂2(b1, 0))), which Player 1 ac-

cepts, or Player 2 offers (0, b2), which Player 1 rejects. Note that x̂2(b1, 0) =
δ

2− δ
b1.

So, for Player 2, the payoffs of the above two options are δf(
δ

2− δ
b1) and δ2

b2
2

re-

spectively. Define δ∗13 as the unique δ ∈ (0, 1) such that f(
δ

2− δ
b1) = δ

b2
2

. Then, for

δ > δ∗13, we have δf(
δ

2− δ
b1) < δ2

b2
2

. That is, for all δ > δ∗13, Player 2 offers (0, b2)

at Stage 2.

Finally, define δ∗1 = max{δ∗11, δ∗12, δ∗13} and this completes the proof.

(ii) Define δ∗2 = min{δ∗13, δ∗21, δ∗22}. δ∗13 is defined above. δ∗21 = min0≤x1≤b1 δ
∗
21(x1),

where δ∗21(x1) is the unique δ ∈ (0, 1] that satisfies δf(
δ

2− δ
x1) = δ2

f(x1) + b2
2

, and

δ∗22 is defined shortly.

I now show that when δ ∈ (0, δ∗2), the only SPE of the alternating-offer arbitration

game is that at Stage 1, Player 1 offers (x∗1(δ), y
∗
1(δ)), and Player 2 accepts the offer

29Using tie-breaking rule 2.
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immediately.

Suppose δ ∈ (0, δ∗2). Suppose Player 1 makes an offer (x1, y1) ∈ PF at Stage 1.

There are two cases:

Case 1: x1 = b1.

In this case, Player 2 rejects Player 1’s offer (b1, 0) and offers

(x̂2(b1, 0), f(x̂2(b1, 0))) at Stage 2. This is because δf(
δ

2− δ
b1) > δ2

b2
2

> 0,

where the first inequality follows from the fact that δ < δ∗2 ≤ δ∗13. Thus, if δ ∈ (0, δ∗2),

then Player 1’s equilibrium payoff from offering (b1, 0) must be δ
δ

2− δ
b1 =

δ2

2− δ
b1.

Case 2: x1 < b1.

If 0 < δ < δ∗21, then δf(
δ

2− δ
x1) > δ2

f(x1) + b2
2

for any x1 ∈ [0, b1). That is, we

must have B �2 C. Now by Lemma 16, we must have that A ∼2 B �2 C. A ∼2 B

implies that f(x1) = δf(
δ

2− δ
x1). So, we must have x1 = x∗1(δ).

Now, let us compare the above two cases. Note that x∗1(δ)→ b1 as δ → 0. Thus,

there exists a δ∗22 ∈ (0, 1) such that if δ ∈ (0, δ∗22), then x∗1(δ) >
δ2

2− δ
b1, i.e., for

Player 1, the offer (b1, 0) is dominated by the offer (x∗1(δ), f(x∗1(δ))).

In summary, if δ ∈ (0, δ∗2) where δ∗2 = min{δ∗13, δ∗21, δ∗22}, the only SPE of the

alternating-offer arbitration game is that Player 1 offers (x∗1(δ), y
∗
1(δ)), which Player

2 accepts immediately. �

1.6.3 Appendix 3: Other proofs

Sketch of proof of Theorem 6:

To solve for the SPE of the game, note that if Player 1 offers (x1, y1) ∈ PF at

Stage 1, then Player 2 either accepts it, or rejects it with one of two counteroffers:
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(
δ

2− δ
x1, 1 −

δ

2− δ
x1) that Player 1 accepts, or (0, 1) that Player 1 rejects. The

corresponding payoffs are x1,
δ2

2− δ
x1 and δ2

x1
2

for Player 1, and 1−x1, δ(1−
δ

2− δ
x1)

and δ2
2− x1

2
for Player 2. Player 2 selects the action that maximizes his payoff and

the remaining calculations are straightforward. �

Proof of the statement that
1

δ
xR(δ) is strictly decreasing in δ ∈ (0, 1)

and δxR(δ) is strictly increasing in δ ∈ (0, 1):

I first show that
1

δ
xR(δ) is strictly decreasing in δ ∈ (0, 1). It is sufficient to show

that xR(δ) is strictly decreasing in δ ∈ (0, 1).

Notice that xR(δ) satisfies δf(δxR(δ)) = f(xR(δ)). Differentiating with respect

to δ and rearranging terms yields:

(f ′(xR(δ))− δ2f ′(δxR(δ)))xR
′
= f(δxR(δ)) + δxR(δ)f ′(δxR(δ)). (1)

Using the fact that f is concave and strictly decreasing, we have:

f ′(xR(δ))− δ2f ′(δxR(δ)) < f ′(xR(δ))− f ′(δxR(δ)) ≤ 0. (2)

Notice that the Nash bargaining solution (xN , f(xN)) satisfies f ′(xN) = −f(xN)

xN
,

i.e., f(xN) + f ′(xN)xN = 0. Since δxRf(δxR) = xRf(xR), the two points

(δxR(δ), f(δxR(δ))) and (xR(δ), f(xR(δ))) must lie on the curve xy = c with the

same constant c. Thus, it must be true that δxR(δ) < xN for any δ ∈ (0, 1). Then,

f(δxR(δ)) + δxR(δ)f ′(δxR(δ)) > f(xN) + f ′(xN)xN = 0 (3)
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where the inequality follows from the facts that δxR(δ) < xN and that f is a concave

and strictly decreasing function.

Now, using equations 1, 2, 3, we have xR
′
< 0, i.e., xR is strictly decreasing in

δ ∈ (0, 1). We thus proved that
1

δ
xR(δ) is strictly decreasing in δ ∈ (0, 1).

Finally, δxR(δ) is strictly increasing in δ ∈ (0, 1). This follows from the following

two facts: (i) the point (δxR(δ), f(δxR(δ))) and the point (xR(δ), f(xR(δ))) lie on the

same “indifference curve” xy = c, and (ii) xR(δ) is strictly decreasing in δ ∈ (0, 1).

�

1.6.4 Appendix 4: Additional results

In this appendix, I present additional results regarding the Nash final-offer arbi-

tration game and the KS final-offer arbitration game.

Appendix 4.1: Robustness of the Nash final-offer arbitration rule

Yildiz (2011) shows that the unique SPE outcome of the arbitration game that

uses the Nash final-offer arbitration rule is (xR, f(xR)). Here, we provide a simple

proof of this result based on Theorem 1.

Theorem 16. (Yildiz 2011) In the alternating-offer arbitration game where h is

the Nash final-offer arbitration rule, the unique SPE outcome is (xR, f(xR)) for any

given δ < 1.

Proof: Given that xRf(xR) = δxRf(δxR), we have g(xR) = δxR. That is,

g(f−1(f(xR))) = δxR, which implies that the point (δxR, f(xR)) is on the arbitration

curve. Since (δxR, f(xR)) is also on the discounted Pareto frontier, (δxR, f(xR)) is

exactly the intersection point of the arbitration curve and the discounted Pareto
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frontier and we must have x̂(δ) = δxR. Thus, the Nash final-offer arbitration rule

is balanced for any discount factor. According to Theorem 1 (i), the unique SPE

outcome of the arbitration game that uses the Nash final-offer arbitration rule is

(xR, f(xR)). �

Although for a given δ, there exists a class of final-offer arbitration rules under

which the arbitration game yields an SPE outcome of (xR, f(xR)), the following

theorem shows that if we require the arbitration game to yield an SPE outcome

of (xR, f(xR)) for any δ < 1, then we must have (x∗, f(x∗)) = (xN , f(xN)) where

(xN , f(xN)) = arg max{xy|(x, y) ∈ S}. That is, the arbitrator’s ideal settlement

must be the Nash solution outcome.

Theorem 17. In the arbitration game where h ∈ Σ, if the SPE outcome is

(xR, f(xR)) for any δ < 1, then we must have (x∗, f(x∗)) = (xN , f(xN)).

Sketch of Proof: The theorem follows from the following facts: (i) as δ approaches

1, both δxR and 1
δ
xR converge to xN (see Binmore et al. (1986)); (ii) as δ ap-

proaches 1, x̂ converges to x∗; and (iii) if the SPE outcome of the arbitration game

is (xR, f(xR)) for any δ < 1, then we must have δxR ≤ x̂ ≤ 1
δ
xR for any δ < 1. �

Appendix 4.2: Additional results for the KS final-offer arbitration game

Theorem 18. Suppose the final-offer arbitration rule is such that

h((x1, y1), (x2, y2)) = (x2, y2) if and only if uKS(x2, y2) ≥ uKS(x1, y1) (uKS is

defined in Section 3.3). Then,

(i) if

√
δf( 1

δ2
xR)f(1

δ
xR)

1
δ
xR

≤ b2
b1
≤ f(xR)

δxR
, then the unique SPE outcome of the final-

offer arbitration game is (xR, f(xR)).
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(ii) if
b2
b1

<

√
δf( 1

δ2
xR)f(1

δ
xR)

1
δ
xR

, then the unique SPE of the final-offer arbitration

game is a type-II arbitration-driven equilibrium. That is, at Stage 1, Player 1 makes

the offer (1
δ
x̂, f(1

δ
x̂)) that Player 2 rejects, and at Stage 2, Player 2 makes the coun-

teroffer (x̂, f(x̂)) that Player 1 accepts. Moreover, x̂ is determined by the equality

that
x̂/f(x̂)

b1/b2
=
f(1

δ
x̂)/1

δ
x̂

b2/b1
.

(iii) if
b2
b1

>
f(xR)

δxR
, then the unique SPE of the final-offer arbitration game is a

type-I arbitration-driven equilibrium. That is, Player 1 offers (f−1(δf(x̂)), δf(x̂))

that Player 2 accepts. Moreover, x̂ is determined by the equality that
x̂/f(x̂)

b1/b2
=

δf(x̂)/f−1(δf(x̂))

b2/b1
.

Sketch of proof: First, x̂ ≥ δxR is equivalent to g(xR) ≥ δxR. The condition

g(xR) ≥ δxR (i.e., the arbitrator weakly prefers (xR, f(xR)) over (δxR, f(δxR)))

is satisfied if and only if (i)
f(xR)/xR

b2/b1
< 1,

f(δxR)/δxR

b2/b1
> 1, and

f(xR)/xR

b2/b1
≥

(
f(δxR)/δxR

b2/b1
)−1, or (ii)

f(xR)/xR

b2/b1
≥ 1. The condition (i) is equivalent to

b2
b1

>

f(xR)

xR
,
b2
b1

<
f(δxR)

δxR
, and

b2
b1
≤ f(xR)

δxR
(for the last inequality, using the fact that

δf(δxR) = f(xR)), which is equivalent to
f(xR)

xR
<
b2
b1
≤ f(xR)

δxR
. The condition (ii)

is equivalent to
b2
b1
≤ f(xR)

xR
. Thus, the condition (i) or (ii) is satisfied if and only if

b2
b1
≤ f(xR)

δxR
.

Second, x̂ ≤ 1
δ
xR is equivalent to g(

1

δ2
xR) ≤ 1

δ
xR. The condition g(

1

δ2
xR) ≤ 1

δ
xR

is equivalent to
b2
b1
≥

√
δf( 1

δ2
xR)f(1

δ
xR)

1
δ
xR

(the proof here is similar to the first step

and is thus omitted). �
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Theorem 18 then follows from the above analysis and Theorem 1.

Now, we can prove Theorem 4.

Proof of Theorem 4:

By Theorem 18, if

√
δf( 1

δ2
xR)f(1

δ
xR)

1
δ
xR

≤ b2
b1
≤ f(xR)

δxR
, then the unique SPE

outcome of the KS final-offer arbitration game is (xR, f(xR)). A sufficient condition

for

√
δf( 1

δ2
xR)f(1

δ
xR)

1
δ
xR

≤ b2
b1
≤ f(xR)

δxR
is
f(1

δ
xR)

1
δ
xR

≤ b2
b1
≤ f(xR)

δxR
. This follows from

the fact that f( 1
δ2
xR) ≤ f(1

δ
xR) and δ < 1. �
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Chapter 2

An Axiomatic Approach to Arbitration

and Its Application in Bargaining Games

2.1 Introduction

Arbitration occurs when two players are unable to reach agreement with each

other. In this paper, we formally define the arbitration problem as the triplet that

consists of offers submitted by two players and their bargaining set. An arbitration

solution outcome is a point in the bargaining set chosen by an arbitrator. In order to

obtain the arbitration outcome, the arbitrator usually follows a certain arbitration

procedure. In the literature, there are two well-know arbitration procedures. One

is the rule of equally-split-the-difference between players’ offers, and the other is the

final-offer arbitration rule.30

In this paper, we will use the axiomatic approach (Nash, 1950; Kalai and

Smorodinsky, 1975) to characterize the arbitration procedure. An advantage of the

axiomatic approach is that, we don’t need to characterize the detailed arbitration

process. Instead, we propose several axioms that an arbitration procedure should

30Final offer arbitration is a procedure in which the arbitrator must choose one of the players’
offers as the arbitration outcome (Stevens, 1966).
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satisfy and then find the arbitration solution that satisfies those axioms.

The key axiom we impose on the arbitration procedure is “Symmetry in Offers,”

which requires fairness in arbitration. More particularly, it requires that whenever

the two players’ offers are symmetric with each other, the arbitrated outcome should

also be symmetric. “Symmetry in Offers” appears to be a strong rule in the sense

that it does not require symmetry in the bargaining set. However, “Symmetry in

Offers” is a natural rule given that the arbitrator should make a decision primarily

based on players’ offers, instead of the shape of the bargaining set. In addition, it is a

simple rule because it does not require the arbitrator to calculate the entire shape of

the bargaining set. The other two axioms, “Invariance w.r.t Affine Transformation”

and “Pareto Optimality” are self-evident. They require invariance and efficiency

in arbitration respectively. We find that there is a unique arbitration solution that

satisfies all the three axioms. We call this solution the symmetric arbitration solu-

tion. The symmetric arbitration solution has a simple graphical representation: for

any given bargaining set and offers submitted by the two players, the symmetric

arbitration solution outcome is the intersection point of the Pareto frontier of the

bargaining set with the line joining the component-wise minimum and component-

wise maximum of the offers. When the Pareto frontier of the bargaining set is linear,

the symmetric arbitration solution coincides with the rule of “equally splitting the

difference.” The symmetric arbitration solution solution is “superior” to the rule of

“equally splitting the difference” in that when the Pareto frontier of the bargaining

set is nonlinear, “equally splitting the difference” results in an inefficient outcome,

while the symmetric arbitration solution results in an efficient outcome.
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Although our focus is to use “Symmetry in Offers” to characterize the symmetric

arbitration solution, it is possible for us to use the weaker version of “Symmetry in

Offers” to characterize the symmetric arbitration solution. The weaker version of

“Symmetry in Offers,” called “Weak Symmetry in Offers,” requires that the arbi-

tration solution outcome be symmetric whenever players’ offers are symmetric and

the bargaining set is symmetric. We show that the symmetric arbitration solution

is the only solution that satisfies “Weak Symmetry in Offers,” “Invariance,” “Pareto

Optimality,” and “Strong Monotonicity.”

We then propose two bargaining games in which, whenever the players are unable

to reach agreement, an arbitration stage is reached and the symmetric arbitration

solution is used to decide the outcome. The first game is a simultaneous-offer game.

In this game, two players make offers simultaneously. If the offers are compatible,

then each player gets what he demands, otherwise the game moves to the arbitration

stage. In the arbitration stage, the symmetric arbitration solution is utilized to

determine the outcome. This game is similar to the second Nash demand game in

Anbarci and Boyd (2011)31. Both games are variants of the Nash demand game

(Nash, 1953) and have arbitration stages. The difference is that the game in Anbarci

and Boyd (2011) uses the rule of “equally splitting the difference” at the arbitration

stage, but our game uses the symmetric arbitration solution.

31The game considered in Anbarci and Boyd (2011) can be rephrased as follows. At the first
stage, two players make offers simultaneously. If the offers are compatible, then each player gets
what he demands, otherwise with probability 1 − p the game terminates with the disagreement
point as the outcome, and with probability p the game goes to the arbitration stage in which the
rule of “equally splitting the difference” is used to decide the outcome. Note that the probability p
of moving to the arbitration stage in their game is equivalent to the discount factor δ in our game
when the disagreement point is normalized to (0, 0).
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Our second game is an alternating-offer game. In this game, at stage 1, player

1 makes an offer and player 2 decides whether to accept or reject it. If player 2

chooses to reject the offer, then the game moves to the next stage, at which player 2

makes an offer and player 1 decides whether to accept or reject it. If player 1 rejects

the offer, then the game moves to the arbitration stage in which the symmetric

arbitration solution is used to decide the final outcome. This game can be regarded

as a variant of the game proposed by Yildiz (2011) and the two games studied by

Rong (2011). In all of those games, two players make offers sequentially and if both

offers are rejected, the game moves to an arbitration stage. Our game differs from

Yildiz (2011) and Rong (2011) in that our game uses the symmetric arbitration

solution at the arbitration stage, while the game in Yildiz (2011) and the first game

in Rong (2011) use final offer arbitration, and the second game in Rong (2011) uses

equally-split-the-difference arbitration.

In both the simultaneous-offer game and the alternating-offer game that we con-

sider, the only arbitration cost is the time cost, which is measured by the common

discount factor of players. Our equilibrium analyses show that, in both games,

when the discount factor is close to 1 (i.e., the time cost is low), players tend to

make extreme offers. The threshold discount factor required for players to make

extreme offers is relatively small. In particular, when the Pareto frontier is linear,

the threshold discount factor is 2
3

for the simultaneous-offer game and is 0.91 for

the alternating-offer game. In addition, we find that, when both players make ex-

treme offers, the arbitrated outcome coincides with the Kalai-Smorodinsky solution

outcome.
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The result that as the discount factor becomes close to 1, the only equilibrium

requires each player to make the extreme offer is not surprising. Actually, it is well

known in the literature that if a bargaining process involves an arbitration mechanism

which allows for compromise between offers, then the bargaining process is subject to

the so-called chilling effect (Feuille, 1975; Deck and Farmer, 2007). That is, players

tend to take extreme positions before arbitration. This tendency is stronger when

players become more patient.

This paper is organized as follows. The next subsection is the axiomatic charac-

terization of the arbitration problem. Section 2.3 presents the main result. Section

2.4 provides an alternative axiomatic characterization of the symmetric arbitration

solution using the axiom of Weak Symmetry in Offers. Section 2.5 discusses the two

bargaining games with symmetric arbitration, i.e., the “simultaneous-offer game with

symmetric arbitration” and the “alternating-offer game with symmetric arbitration.”

Concluding remarks are offered in section 2.6.

2.2 Axiomatic Characterization of Arbitration Problem

Suppose there are two players who are expected utility maximizers. Let S ⊂ R2

denote the bargaining set, which includes all possible bargaining outcomes, measured

in expected utility level. Let (x1, y1) ∈ S denote player 1’s final offer submitted to an

arbitrator and (x2, y2) ∈ S denote player 2’s final offer submitted to the arbitrator.

Note we always use x to represent player 1’s payoff and y to represent player 2’s

payoff.

We assume the bargaining set S is nonempty, convex, compact and strictly com-
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prehensive. The definition of “comprehensiveness” and “strict comprehensiveness”

are given below:

Definition 2. S is comprehensive if ∃(d1, d2) ∈ R2 s.t. ∀(x, y) ∈ S, we have (i)

(x, y) ≥ (d1, d2), and (ii) if (d1, d2) ≤ (x′, y′) ≤ (x, y), then (x′, y′) ∈ S.

Definition 3. S is strictly comprehensive if S is comprehensive and for any

(x, y) ∈ S and (x′, y′) ∈ S with (x′, y′) ≥ (x, y) and (x′, y′) 6= (x, y), there exists a

(x′′, y′′) ∈ S such that (x′′, y′′) >> (x, y).

If we regard d as the disagreement point, then the “comprehensiveness” of a

bargaining set simply requires: (i) for each player, the utility level at the disagreement

point is the lowest possible utility level that he can get from bargaining; (ii) each

player can freely dispose any utility that is higher than the disagreement point.

Strict comprehensiveness further requires the Pareto frontier of the bargaining set

be strictly downward-sloping. We need a bargaining set to be strictly comprehensive

to avoid the case that the Pareto frontier contains a flat or vertical segment. A

typical strictly comprehensive bargaining set S is shown in Figure 15.

Any nonempty bargaining set S that is convex, compact and strictly compre-

hensive determines a unique d = (d1, d2) that satisfies Definition 1. We use d(S) to

denote this point.

The Pareto frontier of the bargaining set S is defined as PF (S) = {p ∈ S : q ≥ p

with q 6= p ⇒ q /∈ S}. We assume that each player can only make an offer on the

Pareto frontier. This assumption is made for simplicity, although it is not essential

for our main results.
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Figure 15: Bargaining set and players’ offers.

Define bi = max{Ui : (U1, U2) ∈ S} as player i’s maximal possible utility level

from the bargaining set. Define the function f : x → max{y|(x, y) ∈ S} for x ∈

[d1, b1]. Thus {(x, f(x))|x ∈ [d1, b1]} denotes the Pareto frontier. Our assumption

that S is convex, compact and strictly comprehensive implies that f is a strictly

decreasing function on [d1, b1] with f(d1) = b2 and f(b1) = d2.

Now define Σ = {S ⊂ R2 |S is nonempty, convex, compact, strictly comprehen-

sive} and B = {((x1, y1), (x2, y2), S) |(x1, y1) ∈ PF (S) , (x2, y2) ∈ PF (S), (x1, y2) /∈

S and S ∈ Σ}. We call any ((x1, y1), (x2, y2), S) ∈ B an arbitration problem.32 An ar-

bitration solution is any function g : B → R2 such that g((x1, y1), (x2, y2), S) ∈ S. We

may write g((x1, y1), (x2, y2), S) = (g1((x1, y1), (x2, y2), S), g2((x1, y1), (x2, y2), S)),

where gi((x1, y1), (x2, y2), S) is the arbitration outcome for player i.

32Notice that the arbitration problem we consider involves incompatible offers (i.e., (x1, y2) /∈ S).
If players’ offers are compatible, then each player simply gets what he demands (and arbitration
is not necessary). In addition, notice that our arbitration problem consists of two players’ offers
and a bargaining set, while the classic bargaining problem proposed by Nash (1950) consists of a
disagreement point and a bargaining set.
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We will propose the following three axioms that an arbitration solution should

satisfy:

Definition 4. An arbitration solution g is a symmetric arbitration solution if

it satisfies the following three axioms:

1. Axiom 1 (Symmetry in Offers): For any arbitration problem

((x1, y1), (x2, y2), S) ∈ B with x1 = y2 and x2 = y1, we have

g1((x1, y1), (x2, y2), S) = g2((x1, y1), (x2, y2), S).

2. Axiom 2 (Invariance w.r.t. Affine Transformation): If A : R2 →

R2 represents a strictly increasing affine transformation, i.e., A(x, y) =

(a1x + c1, a2y + c2) for some positive constant ai and some constant ci,

then we have g(A(x1, y1), A(x2, y2), A(S)) = A(g((x1, y1), (x2, y2), S)) for any

((x1, y1), (x2, y2), S) ∈ B.

3. Axiom 3 (Pareto Optimality): For any arbitration problem

((x1, y1), (x2, y2), S) ∈ B, we have g((x1, y1), (x2, y2), S) ∈ PF (S).

Axiom 1 requires that if the offers from the two players are symmetric around the

45 degree line, then the arbitration solution outcome should also be symmetric (i.e.,

on the 45 degree line). That is, if each player makes the same demand for himself

and suggests the same payoff for his opponent, then the arbitrated outcome should

result in the same payoff for each player. Axiom 1 does not require symmetry in the

bargaining set. However, we still regard Axiom 1 as a natural rule for the following

reasons. First, an arbitrator should primarily focus on the offers of players, instead

of the shape of the bargaining set. Second, it is generally costly for the arbitrator
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to calculate the entire shape of the bargaining set. Axiom 1 (together with Axiom 2

and Axiom 3) only requires that the arbitrator calculate a fraction of the bargaining

set in order to determine the arbitration outcome on the Pareto frontier.33

Axiom 2 is adapted from Nash (1950). The idea behind this axiom is that the

arbitration outcome should only depend on players’ underlying preferences and not

on their utility representations. Hence, for two arbitration problems with the same

preferences and the same physical offers submitted by the players, the arbitration

outcome should also be the same (with correspondingly different utility representa-

tion). Note that players’ utilities are expected utilities, so a player’s utility is unique

up to strictly increasing affine transformation. Finally, Axiom 3 simply requires the

arbitration outcome to be efficient.

2.3 Main Result

It turns out the symmetric arbitration solution is unique and has a simple rep-

resentation. For p1, p2 ∈ R2, let L(p1, p2) denote the line joining p1 and p2. We have

the following result:

Theorem 5. There is one and only one symmetric arbitration solution, denoted by γ.

The function γ has the following simple graphic representation. For any arbitration

problem ((x1, y1), (x1, y2), S) ∈ B, γ((x1, y1), (x2, y2), S) is the intersection point of

L((x1, y1) ∧ (x2, y2), (x1, y1) ∨ (x2, y2)) with PF (S) (see Figure 16).

Proof: For a given arbitration problem ((x1, y1), (x2, y2), S) ∈ B, we have two

33I am indebted to an editor and an anonymous referee for suggesting the above explanations for
the axiom of Symmetry in Offers.
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Figure 16: Symmetric arbitration solution.

cases:

(i) y2 > x2.

We need to find a strictly increasing affine transformation that trans-

forms the given problem ((x1, y1), (x2, y2), S) to an offer-symmetric problem

((x′1, y
′
1), (x2, y2), S

′), where x′1 = y2 and y′1 = x2 (see Figure 17). Let A∗i (x) = a∗ix+c∗i

(i = 1, 2) be such a transformation. Then we have:

′S

1U

2 2( , )x y
2U

Transformed Problem 

�45  

1 1 2 2(( , ), ( , ), )x y x y Sγ ′ ′ ′

1 1( , )x y′ ′

S
1U

1 1( , )x y

2U
1 1 2 2(( , ), ( , ), )x y x y Sγ

Original Problem 

1 1 2 2( , ) ( , )x y x y∨
2 2( , )x y

1 1 2 2( , ) ( , )x y x y∧

Figure 17: Transformation of the arbitration problem.
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 x2 = a∗1x2 + c∗1

y2 = a∗2y2 + c∗2

and

 y2 = a∗1x1 + c∗1

x2 = a∗2y1 + c∗2

. (4)

Solving the equations, we have:


a∗1 =

y2 − x2
x1 − x2

a∗2 =
x2 − y2
y1 − y2

and


c∗1 =

x2(x1 − y2)
x1 − x2

c∗2 =
y2(y1 − x2)
y1 − y2

. (5)

Since (x1, y1) ∈ PF (S), (x2, y2) ∈ PF (S), (x1, y2) /∈ S and the Pareto frontier is

strictly downward-sloping, we must have x1 > x2 and y1 < y2. Note we have also

assumed that y2 > x2. It can be verified that a∗1 > 0 and a∗2 > 0, which ensures that

the above affine transformation is indeed an expected utility transformation.

If (u∗1, u
∗
2) is the symmetric arbitration solution to the original arbitration prob-

lem ((x1, y1), (x2, y2), S), then by Axiom 2, (a∗1u
∗
1 + c∗1, a

∗
2u
∗
2 + c∗2) is the symmet-

ric arbitration solution to the transformed problem ((x′1, y
′
1), (x2, y2), S

′). Since

((x′1, y
′
1), (x2, y2), S

′) is symmetric in offers, the symmetric arbitration solution to

it must be on the 45 degree line. Hence, we have:

a∗1u
∗
1 + c∗1 = a∗2u

∗
2 + c∗2. (6)

Using equations 5, equation 6 can be rewritten as:

u∗2 =
y2 − y1
x1 − x2

u∗1 +
x1y1 − x2y2
x1 − x2

. (7)
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It can be verified that the line

u2 =
y2 − y1
x1 − x2

u1 +
x1y1 − x2y2
x1 − x2

is the line that passes through (x1, y1)∧(x2, y2) and (x1, y1)∨(x2, y2). Now, by Axiom

3 (Pareto Optimality), we can conclude that (u∗1, u
∗
2) must be the intersection point

of L((x1, y1) ∧ (x2, y2), (x1, y1) ∨ (x2, y2)) with the Pareto frontier.

(ii) y2 ≤ x2. We can always find a strictly increasing affine transformation such

that the transformed arbitration problem has the property y′2 > x′2. Then we go

back to case (i) and the remaining proof is straightforward. �

A graphic representation of the symmetric arbitration solution is shown in Fig-

ure 16.

The idea of the proof is that, for any offer-nonsymmetric arbitration problem

((x1, y1), (x2, y2), S), we can always find a strictly increasing affine transformation

to transform it to an offer-symmetric problem ((x′1, y
′
1), (x2, y2), S

′), where x′1 = y2

and y′1 = x2 (see Figure 17). Due to the axiom of Pareto optimality and the

axiom of Symmetry in Offers, the symmetric arbitration solution to the problem

((x′1, y
′
1), (x2, y2), S

′) must be the intersection point of the 45 degree line with the

Pareto frontier. Then, using the inverse of the above affine transformation, we

can transform this solution outcome back to the original problem. It can be ver-

ified that the solution to the original problem is exactly the intersection point of

L((x1, y1) ∧ (x2, y2), (x1, y1) ∨ (x2, y2)) with PF (S).

Another graphic interpretation of the solution is as follows. For the arbitration
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Figure 18: Another representation of the symmetric arbitration solution.

problem ((x1, y1), (x2, y2), S), connect the two offers (x1, y1) and (x2, y2) with a line

and denote its middle point by m. Now, draw a line through m with a slope that

is the negative of the slope of L((x1, y1), (x2, y2)). Then, the intersection point of

this new line with the Pareto frontier is the symmetric arbitration solution (see

Figure 18). The essential point here is that the line joining m and the solution point

γ((x1, y1), (x2, y2), S) always has a slope that is the negative of the slope of the line

joining (x1, y1) and (x2, y2). Note this is true for any offer-symmetric arbitration

problem because of the axiom of Symmetry in Offers. This is also true for any

offer-nonsymmetric arbitration problem, because (i) any offer-nonsymmetric problem

can be transformed to an offer-symmetric problem by some strictly increasing affine

transformation, and (ii) two lines with slopes that are opposite in sign is a property

preserved by any affine transformation.34

When the Pareto frontier of the bargaining set is linear, the symmetric arbitra-

34See Nash (1953) for a similar geometric explanation for the Nash bargaining solution.
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tion solution outcome coincides with the outcome of “equally splitting the differ-

ence.” When the Pareto frontier of the bargaining set is nonlinear, “equally splitting

the difference” results in an inefficient outcome (point m in Figure 18), while the

symmetric arbitration solution results in an efficient outcome.

2.4 Another Axiomatic Characterization of Symmetric Ar-

bitration Solution35

In this section, we propose a weaker version of the axiom of Symmetry in Offers,

called Weak Symmetry in Offers. It requires that the arbitration solution outcome

be symmetric whenever players’ offers are symmetric and the bargaining set is sym-

metric. It turns out that the symmetric arbitration solution is the unique arbitration

solution that satisfies the following four axioms: Weak Symmetry in Offers, Invari-

ance, Pareto Optimality, and Strong Monotonicity.

Definition 6. Let g be an arbitration solution. The axiom of Weak Symmetry in

Offers and the axiom of Strong Monotonicity are defined as follows:

1. Axiom 1′ (Weak Symmetry in Offers): For any arbitration problem

((x1, y1), (x2, y2), S) ∈ B where x1 = y2, x2 = y1 and S is symmetric, we

have g1((x1, y1), (x2, y2), S) = g2((x1, y1), (x2, y2), S).

2. Axiom 4 (Strong Monotonicity): For any two arbitration prob-

lems ((x1, y1), (x2, y2), S) ∈ B and ((x1, y1), (x2, y2), S
′) ∈ B, if

35I am indebted to an anonymous referee who suggested that I use a weaker symmetry axiom
and some type of monotonicity axiom to characterize the symmetric arbitration solution.
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S ′ ⊃ S, then g1(((x1, y1), (x2, y2), S
′)) ≥ g1(((x1, y1), (x2, y2), S)) and

g2(((x1, y1), (x2, y2), S
′)) ≥ g2(((x1, y1), (x2, y2), S)).

Theorem 7. The symmetric arbitration solution γ is the unique arbitration solution

that satisfies Axiom 1′, Axiom 2, Axiom 3, and Axiom 4.

Proof: It is easy to verify that the symmetric arbitration solution γ satisfies

Axiom 1′, Axiom 2, Axiom 3, and Axiom 4. Now, assume that there is an-

other arbitration solution µ that satisfies all the four axioms. We will show that

µ((x1, y1), (x2, y2), S) = γ((x1, y1), (x2, y2), S) for any ((x1, y1), (x2, y2), S) ∈ B.
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Figure 19: Transformed arbitration problem.

It is without loss of generality to assume that y2 > x2.
36 Similar to part

(i) of proof of Theorem 5, we can find a strictly increasing affine transfor-

mation (A∗1, A
∗
2) such that ((x1, y1), (x2, y2), S) can be transformed to an offer-

symmetric arbitration problem ((x′1, y
′
1), (x2, y2), S

′), where x′1 = y2 and y′1 =

36If y2 ≤ x2, then we can always transform the arbitration problem to a new problem, which has
the property y′2 > x′2.
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x2. Figure 19 illustrates the transformed arbitration problem. Let S ′′ = con-

vex hull {(x′1, y′1), (x2, y2), (x2, y′1), γ((x′1, y
′
1), (x2, y2), S

′)}. Since S ′′ is symmetric,

by Axiom 1′, µ((x′1, y
′
1), (x2, y2), S

′′) = γ((x′1, y
′
1), (x2, y2), S

′). Since S ′ ⊃ S ′′,

by Axiom 4, we must have µ((x′1, y
′
1), (x2, y2), S

′) = µ((x′1, y
′
1), (x2, y2), S

′′), so,

µ((x′1, y
′
1), (x2, y2), S

′) = γ((x′1, y
′
1), (x2, y2), S

′). Now, we can use the inverse of the

transformation (A∗1, A
∗
2) to transform the solution µ((x′1, y

′
1), (x2, y2), S

′) back to the

original problem, and we must have µ((x1, y1), (x2, y2), S) = γ((x1, y1), (x2, y2), S).

�

2.5 Bargaining Games with Symmetric Arbitration

This section will analyze two bargaining games that involve symmetric arbitra-

tion. One is the simultaneous-offer game, and the other is the alternating-offer game.

From this point on, we fix the bargaining set S and we will simply write

γ((x1, y1), (x2, y2), S) as γ((x1, y1), (x2, y2)) whenever there is no confusion. We use

δ ∈ (0, 1] to denote the discount factor, which means 1 unit of utility at the next stage

is equivalent to δ unit of utility at the current stage. Finally, we assume throughout

this section that d(S) = (0, 0).

The following lemma states that a player’s payoff obtained from the symmetric

arbitration solution is strictly increasing in both his own demand and his opponent’s

suggested payoff for him. This implies that, if a player takes a stronger position (i.e.,

demand more) before arbitration, then he will get more payoff from arbitration.37

Lemma 8. For x1, x2 ∈ [0, b1], γ1((x1, f(x1)), (x2, f(x2))) is strictly increasing in

37This is true for any arbitration procedure that allows for compromises between offers.
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x1 and x2; γ2((x1, f(x1)), (x2, f(x2))) is strictly decreasing in x1 and x2.

Proof: see the appendix. �

2.5.1 Simultaneous-Offer Game

Simultaneous-offer game is also known as the Nash demand game. In the original

Nash demand game (Nash 1953), two players make demands (offers) simultaneously.

If their demands are compatible, then each player gets what he demands; otherwise,

each player gets the disagreement payoff. One disadvantage of the Nash demand

game is that it is a one-stage game that does not allow for renegotiation or arbitration.

In the literature, many variants of the Nash demand game have been proposed to deal

with this problem (e.g., Howard, 1992; Anbarci and Boyd, 2011).38 Here, we are going

to propose a new Nash demand game, in which players move to an arbitration stage

whenever their offers are incompatible. In addition, we assume that the symmetric

arbitration solution is used at the arbitration stage. In particular, we define the

simultaneous-offer game (Nash demand game) with symmetric arbitration as follows:

1. Stage 1: player 1 and player 2 submit their offers simultaneously. Let (x1, y1) ∈

PF (S) be the offer submitted by player 1 and (x2, y2) ∈ PF (S) be the offer

submitted by player 2. If (x1, y1) and (x2, y2) are compatible, then (x1, y2) is

the outcome. Otherwise, the game moves to Stage 2.

38Howard (1992) extended the original Nash demand game to a multi-stage game which allows
for “renegotiation”. In Anbarci and Boyd (2011), their second Nash demand game introduced an
arbitration stage, in which the rule of “equally splitting the difference” is utilized to decide the
arbitration outcome.
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2. Stage 2: an arbitrator decides the outcome using the symmetric arbitration

solution, i.e., γ((x1, y1), (x2, y2)) is the arbitrated outcome.

Notice that players’ payoffs obtained at stage 2 are discounted by δ. So,

if the game moves to arbitration, the arbitrated payoffs received by players are

δγ((x1, y1), (x2, y2)). Before characterizing the equilibria in this game, we will make

the following definition (refer to Figure 20).

Definition 9. For any (x, y) ∈ PF (S), define x̃(x) = γ1((b1, 0), (x, f(x))) and

ỹ(y) = γ2((f
−1(y), y), (0, b2)).
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Figure 20: Definition of x̃(x) and ỹ(y).

x̃(x) is player 1’s stage-2 payoff when his opponent’s makes the offer (x, y) ∈

PF (S) while he makes the extreme offer (b1, 0). On the other hand, ỹ(y) is player

2’s stage-2 payoff when his opponent makes the offer (x, y) ∈ PF (S) while he makes

the extreme offer (0, b2). According to Lemma 8, a player’s arbitrated payoff is
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strictly increasing in his own demand. Thus, x̃(x) is player 1’s best possible (stage-

2) arbitrated payoff when his opponent makes the offer (x, y). Similarly, ỹ(y) is player

2’s best possible (stage-2) arbitrated payoff when his opponent makes the offer (x, y).

We will use ((x1, y1), (x2, y2)) to denote the strategy profile in which player 1

submits the offer (x1, y1) and player 2 submits the offer (x2, y2). If a player makes

the offer (x, y), then the other player can choose to make the same offer (x, y) and

obtain x (if he is player 1) or y (if he is player 2), or choose to make the extreme

offer (which will move the game to arbitration) and obtain x̃(x) (if he is player 1)

or ỹ(y) (if he is player 2) at the arbitration stage. Thus, ((x, y), (x, y)) is a Nash

equilibrium if and only if x ≥ δx̃(x) and y ≥ δỹ(y). In addition, ((b1, 0), (0, b2)) is

always a Nash equilibrium regardless of how high the discount factor might be.

The following theorem summarizes the results above. It actually describes all the

possible Nash equilibria in the simultaneous-offer game with symmetric arbitration.

Theorem 10. In the simultaneous-offer game with symmetric arbitration, there are

two possible types of Nash equilibria:

(i) (immediate-agreement equilibrium) ((x, y), (x, y)) ((x, y) ∈ PF (S)) is a Nash

equilibrium if and only if x ≥ δx̃(x) and y ≥ δỹ(y);

(ii) (arbitration equilibrium) ((b1, 0), (0, b2)) is a Nash equilibrium for any δ ∈ (0, 1].

Proof: see the appendix. �

As will be illustrated in the following example, both types of Nash equilibria

described in Theorem 10 appear as the discount factor changes from 0 to 1. Moreover,
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for some range of discount factors, the Nash equilibrium is not unique.

Example 1. Assume that b1 = b2 = 1 and f(x) = 1− x2 for x ∈ [0, 1]. Assume that

the bargaining game is the simultaneous-offer game with symmetric arbitration.

Analysis of the example: Table 2 lists the equilibrium type of the game and Fig-

ure 21 depicts the equilibrium payoff(s) of player 1. When 0 < δ ≤ 0.741, there exist

multiple Nash equilibria which include both the equilibrium with immediate agree-

ment and the equilibrium with arbitration. Notice that although the equilibrium

with arbitration is unique, the equilibrium with immediate agreement is not unique

(except at δ = 0.741). The range of player 1’s payoffs obtained from equilibria with

immediate agreement expands as the discount factor becomes small. As δ approaches

zero, this range approaches [0, 1], which means that any point on the Pareto frontier

can be supported as the payoff of an immediate-agreement equilibrium.
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Table 2: Nash equilibrium of the game in Example 1.

When 0.741 < δ ≤ 1, the unique Nash equilibrium is an equilibrium with arbitra-

tion. Notice that as δ approaches 1, the equilibrium payoff of player 1 converges to

the payoff that he would receive from the Kalai-Smorodinsky (KS) solution outcome

(we will further illustrate this point in Theorem 11). �

In Example 1, when the discount factor is large, the unique Nash equilibrium

is an equilibrium with arbitration; when the discount factor is small, then besides
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Figure 21: Equilibrium payoff(s) of player 1.

the equilibrium with arbitration, the equilibrium with immediate agreement also

appears. These two results turn out to be general properties that are true for any

bargaining set S ∈ B. The next theorem (Theorem 11) summarizes these results.

Define x∗(δ) as the unique x ∈ [0, b1] that satisfies δx̃(x) = x, and y∗(δ) as the

unique y ∈ [0, b2] that satisfies δỹ(y) = y. We have:

Theorem 11. In the simultaneous-offer game with symmetric arbitration, there ex-

ists a δ̂ ∈ (0, 1), such that (i) if δ ∈ (0, δ̂], then for any x ∈ [x∗(δ), f−1(y∗(δ))] (which

is nonempty), ((x, f(x)), (x, f(x))) is a Nash equilibrium;39 and (ii) if δ ∈ (δ̂, 1],

then ((b1, 0), (0, b2)) is the only Nash equilibrium, and the stage 2 arbitrated out-

come for the equilibrium ((b1, 0), (0, b2)), γ((b1, 0), (0, b2)), coincides with the Kalai-

Smorodinsky solution outcome of the Nash bargaining problem ((0, 0), S).

Proof: see the appendix. �

39In addition, notice that ((b1, 0), (0, b2)) is always a Nash equilibrium.
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Figure 22: Equilibrium outcome when δ is close to 1.

According to Theorem 10 (ii), when the discount factor becomes close to 1, the

unique equilibrium outcome of the simultaneous-offer game with symmetric arbitra-

tion coincides with the Kalai-Smorodinsky solution outcome of the Nash bargain-

ing problem ((0, 0), S). To see this, notice that the Kalai-Smorodinsky solution to

the Nash bargaining problem ((0, 0), S) is the intersection point of L((0, 0), (b1, b2))

and the Pareto frontier (Kalai and Smorodinsky, 1975). The unique equilibrium

outcome of our simultaneous-offer game when the discount factor is close to 1

is γ((b1, 0), (0, b2)). Refer to Figure 22. It is obvious that γ((b1, 0), (0, b2)) =

KS((0, 0), S).

The key axiom that leads to the symmetric arbitration solution is the axiom of

Symmetry in Offers and the key axiom that leads to the Kalai-Smorodinsky solution

is the axiom of Individual Monotonicity.40 Those two axioms have totally different

40The Kalai-Smorodinsky solution is the axiomatic solution that satisfies the following four ax-
ioms: Invariance w.r.t Affine Transformation, Pareto Optimality, Symmetry and Individual Mono-
tonicity. The Kalai-Smorodinsky solution differs from the Nash solution by replacing the axiom of
Independence of Irrelevant Alternatives with the axiom of Individual Monotonicity.
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meanings and it is surprising that if we introduce arbitration in the simultaneous-

offer game and require the arbitrator to obey the axiom of Symmetry in Offers (and

the other two axioms), then the equilibrium outcome of the simultaneous-offer game

will be the same as the Kalai-Smorodinsky solution outcome (as soon as δ is close to

1).

Corollary 3 of Anbarci and Boyd (2011) shows that when the continuation prob-

ability is small, the Kalai-Smorodinsky solution outcome must be one of the equi-

librium outcomes. Moreover, the underlying equilibrium is an equilibrium with im-

mediate agreement. Our result shows that when the discount factor is large, the

Kalai-Smorodinsky solution outcome is the unique equilibrium outcome. Moreover,

the underlying equilibrium is an equilibrium with arbitration.

When the bargaining set has a linear Pareto frontier, it can be verified that the

threshold discount factor δ̂ in Theorem 11 is 2
3
, regardless of what the slope of the

Pareto frontier might be. This threshold is the same as the threshold continuation

probability obtained in Anbarci and Boyd (2011).41 This is not surprising because (i)

the continuation probability in Anbarci and Boyd (2011) is equivalent to the discount

factor in our game (see also footnote 31), and (ii) the symmetric arbitration solution

coincides with the rule of “equally splitting the difference” when the Pareto frontier

is linear.

41The proof of corollary 3 of Anbarci and Boyd (2011) suggests that when the Pareto frontier
is linear, the equilibrium with immediate agreement appears only if the continuation probability is
less than 2

3 .
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2.5.2 Alternating-Offer Game

This subsection will propose and analyze an alternating-offer game that involves

symmetric arbitration.42 In particular, we define the alternating-offer game with

symmetric arbitration as the following three-stage procedure:

1. Stage 1: player 1 makes an offer (x1, y1) ∈ PF (S) and player 2 decides whether

to accept the offer, ending the game with (x1, y1), or reject the offer, moving

the game on to the next stage;

2. Stage 2: player 2 makes an offer (x2, y2) ∈ PF (S) and player 1 decides whether

to accept the offer, ending the game with (x2, y2), or reject the offer, moving

the game on to the final stage (arbitration stage);

3. Stage 3: an arbitrator decides the final outcome using the symmetric arbitration

solution, i.e., γ((x1, y1), (x2, y2)) is the arbitrated outcome.43

Players’ payoffs obtained at stage i is subject to a discount of δi−1. We will

characterize the subgame perfect equilibria (henceforth SPE) of this game. We first

impose two tie-breaking rules and make some definitions.

42Our game defined below is a variant of the alternating-offer game proposed by Yildiz (2011).
Yildiz (2011) assumed that two players make offers sequentially and that if both offers are rejected
by opponents, then the final offer arbitration rule is used to decide the final outcome. The fi-
nal offer arbitration rule used by Yildiz (2011) is such that the offer that yields the higher Nash
product is chosen as the arbitration outcome. It turns out that the unique subgame perfect equilib-
rium outcome in his game coincides with the equilibrium outcome in Rubinstein’s infinite-horizon
alternating-offer bargaining game (Rubinstein, 1982).

43We assume that if (x1, y1) and (x2, y2) are compatible, then each player gets what he demands
at stage 2. Notice that in equilibrium, player 2 will never make an offer that is incompatible with
player 1’s offer.
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Tie-breaking rule 1: whenever a player is indifferent between acceptance and

rejection, he always chooses acceptance.

Tie-breaking rule 2: whenever a player is indifferent between the two options that

he will offer his opponent, he always chooses the option that brings a higher payoff

for his opponent.

Definition 12. For any (x1, y1) ∈ PF (S) with (x1, y1) 6= (0, b2) and (x2, y2) ∈

PF (S) with x2 ≤ δx1, define the following points (refer to Figure 23): A = (x2, y2);

B = (x2, f(1
δ
x2)); C = (1

δ
x2, f(1

δ
x2)); D = (1

δ
x2, y1) and E = (x1, y1).

S
1U

2U

2 2( , )x y A=

D

2(0, )b

1 1( , )x y E=

C
B

1
( )y f x
δ

=

( )y f x=

1( ,0)b

Figure 23: Definitions of points A, B, C, D and E.

The points A, B, C, D and E implicitly depend on (x1, y1) and/or (x2, y2).

However, for simplicity, we omit that dependence in the notation. The curve y =

f(1
δ
x) in Figure 23 is obtained by fixing the payoff of player 2 and scaling down

the payoff of player 1 by the discount factor δ.44 Thus, for player 1, he must be

44To see this, note y = f( 1
δx) can be rewritten as x = δf−1(y).
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indifferent between accepting the outcome B at the current stage and accepting the

outcome C at the next stage. It should be noted that the point D is typically not

on the curve y = f(1
δ
x).

Definition 13. For any given (x1, y1) ∈ PF (S) with (x1, y1) 6= (0, b2), define

(x̂2(x1, y1), ŷ2(x1, y1)) as the unique point (x2, y2) ∈ PF (S) that satisfies: (i)

x2 ≤ δx1; (ii) |AB| ∗ |BC| = |CD| ∗ |DE|.

The point (x̂2(x1, y1), ŷ2(x1, y1)) is well-defined because as (x2, y2) ∈ PF (S)

moves along the Pareto frontier from (0, b2) to (δx1, f(δx1)), |AB| ∗ |BC| strictly

increases from zero to some positive number and |CD| ∗ |DE| strictly decreases from

a positive number to zero. If |AB|∗|BC| = |CD|∗|DE|, then the main diagonal of the

rectangle AMEN must intersect the Pareto frontier at the point C (see Figure 24).

That is, we must have C = γ((x1, y1), (x̂2(x1, y1), ŷ2(x1, y1))). Since for player 1,

δC ∼ B, we thus have δγ1((x1, y1), (x̂2(x1, y1), ŷ2(x1, y1))) = x̂2(x1, y1). The follow-

ing lemma further shows that for any given (x1, y1), the point (x̂2(x1, y1), ŷ2(x1, y1)) is

actually the only point on the Pareto frontier that satisfies δγ1((x1, y1), (x2, y2)) = x2.

It also shows that x̂2(x1, y1) is strictly increasing in x1.

Lemma 14. For (x1, y1) ∈ PF (S) with (x1, y1) 6= (0, b2), we have:

(i) δγ1((x1, y1), (x̂2(x1, y1), ŷ2(x1, y1))) = x̂2(x1, y1);

(ii) for any (x2, y2) ∈ PF (S) with x2 < x̂2(x1, y1), we have: δγ1((x1, y1), (x2, y2)) >

x2;

(iii) for any (x2, y2) ∈ PF (S) with x2 > x̂2(x1, y1), we have: δγ1((x1, y1), (x2, y2)) <

x2;
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Figure 24: Definition of (x̂2(x1, y1), ŷ2(x1, y1)).

(iv) if (x′1, y
′
1) ∈ PF (S) and x′1 > x1, then we have: x̂2(x

′
1, y
′
1) > x̂2(x1, y1).

Proof: see the appendix. �

An implication of Lemma 14 (i) (ii) and (iii) is that, if the game were at stage 2

and player 2 made the offer (x2, y2), then whether or not player 1 accepts the offer

depends on whether or not x2 is greater than x̂2(x1, y1). That is, we have:

Corollary 15. Suppose player 1 offers (x1, y1) 6= (0, b2) at stage 1 which player 2

rejects and player 2 makes an offer (x2, y2) at stage 2, then player 1 will accept the

offer (x2, y2) if and only if x2 ≥ x̂2(x1, y1).

The following lemma characterizes the players’ equilibrium behavior at stage 2.

It is essential for our main result in characterizing the SPE of our entire game.

Lemma 16. In equilibrium, if at stage 1, player 1 offers (x1, y1) 6= (0, b2) which

player 2 rejects, then at stage 2, we have:
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(i) player 2 must either offer (0, b2) which player 1 rejects, or offer

(x̂2(x1, y1), ŷ2(x1, y1)) which player 1 accepts.

(ii) if (x1, y1) 6= (b1, 0), then player 2 must be indifferent between offering (0, b2) and

offering (x̂2(x1, y1), ŷ2(x1, y1)), i.e., δγ2((x1, y1), (0, b2)) = ŷ2(x1, y1).

Proof: see the appendix. �

The intuition of Lemma 16 (i) is straightforward. If player 1 offers (x1, y1) 6=

(0, b2) which player 2 rejects, then at stage 2, player 2 can either make an offer that

player 1 will reject or make an offer that player 1 will accept. In the former case,

player 2’s best option is to make the extreme offer (0, b2), because the more demand

he makes in his offer, the more arbitrated payoff he can obtain at the arbitration

stage (according to Lemma 8). In the latter case, player 2’s best option is to make

the offer (x̂2(x1, y1), ŷ2(x1, y1)), because his offer (x2, y2) will be accepted by player

1 if and only if x2 ≥ x̂2(x1, y1) (according to Corollary 15).

Lemma 16 (ii) states that as soon as (x1, y1) /∈ {(0, b2), (b1, 0)} is rejected by player

2 at stage 1, then player 2 must be indifferent between making the extreme offer (i.e.,

offering (0, b2)) and “concession” (i.e., offering (x̂2(x1, y1), ŷ2(x1, y1))) at stage 2. This

is because, if player 2 strictly prefers one option over the other, say, player 2 strictly

prefers offering (x̂2(x1, y1), ŷ2(x1, y1)) over offering (0, b2), then at stage 1, player 1 has

the incentive to deviate to a slightly more extreme offer (x1+ε, f(x1+ε)). Such a small

deviation will not change player 2’s preference over the two options at stage 2, i.e.,

player 2 strictly prefers offering (x̂2(x1+ε, f(x1+ε)), ŷ2(x1+ε, f(x1+ε))) over offering

(0, b2). As a result, after deviation, player 1 obtains a payoff of x̂2(x1 + ε, f(x1 + ε))

which is higher than x̂2(x1, y1), the payoff before deviation (according to Lemma 14
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(iv)).

A direct result of Lemma 16 (i) is the following theorem, which characterizes all

SPE of the game. Note that in equilibrium, player 1 will never offer (0, b2) at stage

1 because the offer (0, b2) is dominated by the offer (b1, 0) which will bring him a

payoff of at least δ2γ((b1, 0), (0, b2)) > 0. In addition, using tie-breaking rule 1 and

tie-breaking rule 2, it can be shown that the SPE of the game must be unique.

Theorem 17. In the alternating-offer game with symmetric arbitration, there exists

a unique SPE and the unique SPE must take one of the following three forms:

(i) (immediate-agreement) at stage 1, player 1 offers (x1, y1) 6= (0, b2) which player

2 accepts;

(ii) (delayed-agreement) at stage 1, player 1 offers (x1, y1) 6= (0, b2) which player 2

rejects; at stage 2, player 2 offers (x̂2(x1, y1), ŷ2(x1, y1)) which player 1 accepts;

(iii) (arbitration) at stage 1, player 1 offers (x1, y1) 6= (0, b2) which player 2 rejects;

at stage 2, player 2 offers (0, b2) which player 1 rejects.

Theorem 17 states that the unique SPE of the alternating-offer game with sym-

metric arbitration is either an equilibrium with immediate agreement, or an equilib-

rium with delayed agreement, or an equilibrium with arbitration. In the following

example, all of the three forms of SPE appear when the discount factor changes from

0 to 1.

Example 2. Assume that b1 = b2 = 1 and f(x) = 1− x2 for x ∈ [0, 1]. Assume that

the bargaining game is the alternating-offer game with symmetric arbitration.
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Table 3: SPE of the game in Example 2.

Analysis of the example: Table 3 lists the equilibrium type of the game. When

the discount factor is small, the unique SPE is an equilibrium with immediate agree-

ment. When the discount factor is large, the unique SPE is an equilibrium with

arbitration. These two properties turn out to be two general properties that hold for

any bargaining set in S ∈ B.45 This point is shown in Theorem 18. �

For any given δ ∈ (0, 1], define x∗∗1 (δ) as the unique x1 ∈ [0, b1] that satisfies

f(x1) = max{δ2ỹ(f(x1)), δŷ2(x1, f(x1))}.46 We have the following theorem which

characterizes the SPE of the alternating-offer game with symmetric arbitration for

the cases where the discount factor is either sufficiently small or sufficiently large.

Theorem 18. There exists a δ∗∗ ∈ (0, 1) and a δ∗ ∈ (0, 1) with 0 < δ∗∗ ≤ δ∗ < 1,

such that (i) when δ ∈ (0, δ∗∗), the unique SPE of the alternating-offer game with

symmetric arbitration is that at stage 1, player 1 makes the offer (x∗∗1 (δ), f(x∗∗1 (δ)))

which player 2 accepts immediately, and (ii) when δ ∈ (δ∗, 1], the unique SPE of the

45These results are similar to the results obtained by Rong (2011) for the alternating-offer game
with equally-split-the-difference arbitration in the sense that in both games, when the discount
factor is small, the equilibrium features immediate agreement, and when the discount factor is
large, the equilibrium features arbitration. This is not surprising because both the symmetric
arbitration and equally-split-the-difference arbitration have the common feature that they allow
compromise between offers. However, the equilibrium outcomes for the two games are different.

46It can be verified that player 2 will accept player 1’s offer (x, f(x)) if and only if x ≤ x∗∗(δ).
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alternating-offer game with symmetric arbitration is that at stage 1, player 1 makes

the offer (b1, 0) which player 2 rejects, and at stage 2, player 2 makes the offer (0, b2)

which player 1 rejects; the equilibrium outcome of the game is thus γ((b1, 0), (0, b2))

which coincides with the Kalai-Smorodinsky solution outcome of the Nash bargaining

problem ((0, 0), S).

Proof: see the appendix. �

When the Pareto frontier of the bargaining set is linear, it can be verified that the

threshold discount factor δ∗ is 0.91. This threshold is much larger than the threshold

discount factor obtained in the simultaneous-offer game for the linear Pareto frontier

case.47 This is because there are three stages in the alternating-offer game, but

only two stages in the simultaneous-offer game. In other words, for a given discount

factor, the arbitration outcome is discounted more severely in the alternating-offer

game. As a result, in the alternating-offer game, players have less incentive to make

extreme offers and the result that players make extreme offers in equilibrium is less

robust.

2.6 Conclusion

This paper defines a class of arbitration problems and characterizes its solution

using the axiomatic approach. We impose three axioms that an arbitrator should

use. They are “Symmetry in Offers”, “Invariance” and “Pareto Optimality”. The

key rule, Symmetry in Offers, requires that whenever players’ offers are symmetric,

47The corresponding threshold discount factor in Example 2 is also greater than that in Example
1.
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the arbitrated outcome should also be symmetric. We show that there is a unique

arbitration solution, called the symmetric arbitration solution, that satisfies all three

axioms. The symmetric arbitration solution has a simple graphical representation.

We then introduce symmetric arbitration in two bargaining games. One is the

simultaneous-offer game and the other is the alternating-offer game. At the arbitra-

tion stage of both games, the arbitrator uses the symmetric arbitration solution to

decide the arbitration outcome. We show that in both games, if the discount factor

is sufficiently small, the equilibrium with immediate agreement will appear. If the

discount factor is sufficiently close to 1, then the unique equilibrium is such that

both players make extreme offers and the corresponding equilibrium outcome is the

Kalai-Smorodinsky solution outcome.

Although the equilibrium outcomes of the two games coincide with that of the

Kalai-Smorodinsky solution (when δ is close to 1), our result is not a typical im-

plementation result. Strictly speaking, a strategic implementation of an axiomatic

bargaining solution requires that the mechanism used for implementation can be

translated into a form that only depends on the physical outcomes of bargaining and

not on the players’ preferences or utility representations (Serrano, 1997; Dagan and

Serrano, 1998). Our games cannot be translated into a form that only depends on

the physical outcomes, because the symmetric arbitration solution is defined on the

basis of players’ utilities. However, compared with the implementation mechanism

on the Kalai-Smorodinsky solution in the literature48, our games are much more

simple. Our games also help us to understand the Kalai-Smorodinsky solution from

48See, for example, the “auctioning fractions of dictatorship” mechanism proposed by Moulin
(1984).
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a new perspective. That is, the Kalai-Smorodinsky solution outcome is the only fair

and efficient arbitration outcome when both players make extreme offers.

Although our model assumes that both players have the same discount factor,

our main result can be extended to the case where the two players’ discount factors

differ. That is, as long as the discount factors of the two players are sufficiently close

to 1, then the unique equilibrium outcome of both the simultaneous-offer game and

the alternating-offer game coincides with the Kalai-Smorodinsky solution outcome.49

2.7 Chapter 2 Appendix

Proof of Lemma 8:

Let’s consider γ1. For any given x1 ∈ [d1, b1] and x′1 ∈ [d1, b1] with x1 < x′1

and any x2 ∈ [d2, b2] with x2 < x1, the line connecting (x1, f(x1)) ∧ (x2, f(x2))

and (x1, f(x1)) ∨ (x2, f(x2)) is strictly above the line connecting (x′1, f(x′1)) ∧

(x2, f(x2)) and (x′1, f(x′1)) ∨ (x2, f(x2)) (see Figure 25). Since the Pareto fron-

tier is strictly downward-sloping, we must have γ1((x1, f(x1)), (x2, f(x2))) <

γ1((x
′
1, f(x′1)), (x2, f(x2))). Thus, γ1((x1, f(x1)), (x2, f(x2))) is strictly increasing in

x1. Similarly, γ1((x1, f(x1)), (x2, f(x2))) is strictly increasing in x2.

The proof for γ2 is similar and is omitted.

Proof of Theorem 10:

(i) The result holds if the following is true:

49If both discount factors are small, then the equilibrium with immediate agreement appears. If
the discount factor of one player is large and the discount factor of the other player is small, then
the equilibrium type may depend on the discount factors and the shape of the bargaining set in a
complex manner.
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Figure 25: γ1((x1, f(x1)), (x2, f(x2))) and γ1((x
′
1, f(x′1)), (x2, f(x2))) where x1 < x′1.

(a) if player 2’s offer is (x, y) ∈ PF (S), then (x, y) is player 1’s best response if

and only if x ≥ δx̃(x); (b) if player 1’s offer is (x, y) ∈ PF (S), then (x, y) is player

2’s best response if and only if y ≥ δỹ(y).

We will only prove (a) in the following. The proof of (b) is similar.

Suppose player 2’s offer is (x, y). If player 1 makes an offer (x′, y′) ∈ PF (S) with

0 ≤ x′ < x, then since (x′, y′) and (x, y) are compatible, player 1’s payoff must be

x′, which is strictly less than x. If player 1 makes an offer (x′, y′) ∈ PF (S) with

x < x′ ≤ b1, then by Lemma 8, his payoff is at most δx̃(x). Thus, we have shown

that (x, y) is player 1’s best response if and only if x ≥ δx̃(x).

(ii) We will show that for any δ ∈ (0, 1], ((b1, 0), (0, b2)) is a Nash equilibrium.

We will first show that (b1, 0) is player 1’s best response to player 2’s offer (0, b2).

Suppose player 2’s offer is (0, b2), then player 1 can either make the offer (0, b2) or

make some offer (x, f(x)) 6= (0, b2). If player 1 offers (0, b2), then his payoff is 0. If

player 1 offers (x, f(x)) 6= (0, b2), then the game will move to the arbitration stage and
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player 1’s payoff is δγ1((x, f(x)), (0, b2)) > 0. Now, by Lemma 8, δγ1((x, y), (0, b2))

is strictly increasing in x, so player 1’s best response to player 2’s offer (0, b2) is

(b1, 0). Similarly, player 2’s best response to player 1’s offer (b1, 0) is (0, b2). Thus,

((b1, 0), (0, b2)) is a Nash equilibrium for any δ ∈ (0, 1].

At last, note that ((x, y), (x, y)) ((x, y) ∈ PF (S)) and ((b1, 0), (0, b2)) are the

only two possible types of Nash equilibria, i.e., any ((x1, f(x1)), (x2, f(x2))) with

((x1, f(x1)), (x2, f(x2))) 6= ((b1, 0), (0, b2)) and x1 6= x2 cannot be the Nash equi-

librium for any δ ∈ (0, 1]. This is because (i) if x1 < x2, then the two offers are

compatible and player 1 has incentive to deviate to (x1 + ε, f(x1 + ε)) with some

x1 + ε ≤ x2; (ii) if x1 > x2, then by Lemma 8, the player who does not make the

extreme offer has the incentive to deviate to making the extreme offer.

Proof of Theorem 11:

S
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Figure 26: x̃(x)− x is strictly decreasing in x and x̃(x) is strictly increasing in x.

First notice that x∗(δ) is well-defined because (i) δx̃(x)− x = (x̃(x)− x)− (1−

δ)x̃(x) is strictly decreasing in x (see Figure 26), (ii) δx̃(x) − x > 0 at x = 0, and
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(iii) δx̃(x)− x ≤ 0 at x = b1. Similarly, y∗(δ) is well-defined.

Since δx̃(x) − x is strictly decreasing in x, x ≥ δx̃(x) if and only if x ≥ x∗(δ).

That is, if player 2’s offer is (x, y) ∈ PF (S), then player 1’s best response is to make

the same offer if and only if x ≥ x∗(δ). Similarly, if player 1’s offer is (x, y) ∈ PF (S),

then player 2’s best response is to make the same offer if and only if y ≥ y∗(δ) (see

Figure 27).

Observing that x∗(δ) → b1 and f−1(y∗(δ)) → 0 as δ → 1, and x∗(δ) → 0 and

f−1(y∗(δ))→ b1 as δ → 0, there exists a unique δ ∈ (0, 1), denoted by δ̂, that satisfies

x∗(δ) = f−1(y∗(δ)).

According to Lemma 10, ((x, y), (x, y)) ((x, y) ∈ PF (S)) is a Nash equilibrium if

and only if x ≥ δx̃(x) and y ≥ δỹ(y). So, ((x, y), (x, y)) ((x, y) ∈ PF (S)) is a Nash

equilibrium if and only if x∗(δ) ≤ x ≤ f−1(y∗(δ)). The remainder of the proof is

straightforward and is omitted. �
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Figure 27: The regions that players will choose “concession” instead of making the
extreme offers.
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Proof of Lemma 14:

(i) Refer to Figure 24. By definition, for any given (x1, y1) with (x1, y1) 6= (0, b2),

the pair ((x1, y1), (x̂2(x1, y1), ŷ2(x1, y1))) satisfies |AB| ∗ |BC| = |CD| ∗ |DE|. This

implies that the point C must be on the line that connects (x1, y1) ∧ (x2, y2) (i.e.,

M) and (x1, y1) ∨ (x2, y2) (i.e., N). In addition, notice that point C is on PF (S).

Then, we must have C = γ((x1, y1), (x̂2(x1, y1), ŷ2(x1, y1))). Since by definition,

C = (1
δ
x̂2(x1, y1), f(1

δ
x̂2(x1, y1))), we have:

δγ1((x1, y1), (x̂2(x1, y1), ŷ2(x1, y1))) = x̂2(x1, y1).

(ii) Refer to Figure 28. Note that for given (x1, y1) with (x1, y1) 6= (0, b2), as

(x2, y2) moves from the lower-right to the upper-left along the Pareto frontier, the

corresponding |AB|∗|BC| strictly decreases and |CD|∗|DE| strictly increases. Thus,

for (x2, y2) ∈ PF (S) with x2 < x̂2(x1, y1), we must have |AB| ∗ |BC| < |CD| ∗ |DE|.

This implies the slope of the line MC is bigger than that of the line MN . Thus, the

point O (the intersection point of the line MN with PF (S)) must be on the right of

the line CD, then we have: γ1((x1, y1), (x2, y2)) >
1
δ
x2, i.e., δγ1((x1, y1), (x2, y2)) >

x2.

(iii) We have three sub-cases here:

(a) x̂2(x1, y1) < x2 ≤ δx1

Refer to Figure 29. Note that for any given (x1, y1) with (x1, y1) 6= (0, b2), as

(x2, y2) moves from the upper-left to the lower-right along the Pareto frontier, the

corresponding |AB|∗|BC| strictly increases and |CD|∗|DE| strictly decreases. Thus,

for (x2, y2) ∈ PF (S) with x2 > x̂2(x1, y1), we must have |AB| ∗ |BC| > |CD| ∗ |DE|.
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Figure 28: The case where x2 < x̂(x1, y1).

This implies the slope of the line MC is smaller than that of the line MN . Thus, the

point O must be on the left of the line CD, then we have: γ1((x1, y1), (x2, y2)) <
1
δ
x2,

i.e., δγ1((x1, y1), (x2, y2)) < x2.

(b) δx1 < x2 ≤ x1

For this case, since x2 ≤ x1, then we must have γ1((x1, y1), (x2, y2)) ≤ x1. Then:

δγ1((x1, y1), (x2, y2)) ≤ δx1 < x2.

(c) x2 > x1

For this case, since x2 > x1, then we have γ1((x1, y1), (x2, y2)) < x2. Thus,

δγ1((x1, y1), (x2, y2)) < x2.

(iv) Refer to Figure 30. Suppose we have (x′1, y
′
1) ∈ PF (S) and x′1 > x1. Now,

for (x1, y1) and (x̂2(x1, y1), ŷ2(x1, y1)), we have:

|AB| ∗ |BC| = |CD| ∗ |DE|
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Figure 29: The case where x̂2(x1, y1) < x2 ≤ δx1.

Since (x′1, y
′
1) is on the lower right of (x, y), we have:

|AB| ∗ |BC| < |CD′| ∗ |D′E ′|.

Again, note that for given (x1, y1), as (x2, y2) moves from the upper-left to the lower-

right along the Pareto frontier, |AB|∗|BC| strictly increases, and |BC|∗|CD| strictly

decreases. So, we must have

x̂2(x
′
1, y
′
1) > x̂2(x1, y1).

Proof of Lemma 16:

(i) The proof is obvious and is omitted.

(ii) Suppose player 1 offers (x1, y1) /∈ {(0, b2), (b1, 0)}. By part (i), we know that

if player 2 rejects (x1, y1) 6= (0, b2), then at stage 2, he must either offer (0, b2) or
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Figure 30: A comparison of x̂2(x
′
1, y
′
1) and x̂2(x1, y1) where x′1 > x1.

offer (x̂2(x1, y1), ŷ2(x1, y1)). The corresponding (stage 1) payoff for player 2 is either

δ2γ2((x1, y1), (0, b2)) or δŷ2(x1, y1). Since player 2 chooses to reject (x1, y1) at stage

1, then we must have:

max{δ2γ2((x1, y1), (0, b2)), δŷ2(x1, y1)} > y1.

Note that the above inequality is strict because we have assumed that whenever a

player is indifferent between “accept” and “reject”, he must choose “accept”. Now,

let’s consider the following two cases:

(a) δ2γ2((x1, y1), (0, b2)) > δŷ2(x1, y1)

In this case, player 2 must offer (0, b2) at stage 2. Player 1 thus obtains a payoff

of δ2γ1((x1, y1), (0, b2)). We will show that player 1 will gain more if he submits a

more extreme offer at stage 1. In particular, since (x1, y1) 6= (b1, 0), we can find an

ε′ > 0 such that x′1 = x1 + ε′ < b1, y
′
1 = f(x′1), δ

2γ2((x
′
1, y
′
1), (0, b2)) > δŷ2(x

′
1, y
′
1)
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and max{δ2γ2((x′1, y′1), (0, b2)), δŷ2(x′1, y′1)} > y′1. That is, if player 1 offers (x′1, y
′
1) at

stage 1, then player 2 must reject it and still offer (0, b2) at stage 2. Thus, player 1

will obtain a payoff of δ2γ1((x
′
1, y
′
1), (0, b2)) by offering (x′1, y

′
1) at stage 1. Now, since

x′1 > x1, we have δ2γ1((x
′
1, y
′
1), (0, b2)) > δ2γ1((x1, y1), (0, b2)). That is, player 1 is

better off by offering (x′1, y
′
1).

(b) δŷ2(x1, y1) > δ2γ2((x1, y1), (0, b2))

In this case, player 2 must offer (x̂2(x1, y1), ŷ2(x1, y1)) at stage 2. Player 1 obtains

a payoff of δx̂2(x1, y1). Again, we will show that player 1 can gain more if he makes

a more extreme offer at stage 1. In particular, since (x1, y1) 6= (b1, 0), we can find an

ε′′ > 0 such that x′′1 = x1 + ε′′ < b1, y
′′
1 = f(x′′1), δŷ2(x

′′
1, y
′′
1) > δ2γ2((x

′′
1, y
′′
1), (0, b2))

and max{δ2γ2((x′′1, y′′1), (0, b2)), δŷ2(x
′′
1, y
′′
1)} > y′′1 . That is, if player 1 offers (x′′1, y

′′
1)

at stage 1, then player 2 must reject it and offer (x̂2(x
′′
1, y
′′
1), ŷ2(x

′′
1, y
′′
1)) at stage 2.

Note (x̂2(x
′′
1, y
′′
1), ŷ2(x

′′
1, y
′′
1)) must be accepted by player 1. Thus, player 1 will obtain

a payoff of δx̂2(x
′′
1, y
′′
1) by offering (x′′1, y

′′
1) at stage 1. Now, by Lemma 14 (iv), since

x′′1 > x1, we have: δx̂2(x
′′
1, y
′′
1) > δx̂2(x1, y1). That is, player 1 is better off by offering

(x′′1, y
′′
1).

Thus, we have proved that if (x1, y1) /∈ {(0, b2), (b1, 0)}, then we must have

δγ2((x1, y1), (0, b2)) = ŷ2(x1, y1) in equilibrium.

Proof of Theorem 18:

In the following, we will prove part (ii). The idea of proof for part (i) is similar

and is thus omitted.

We denote γ((b1, 0), (0, b2)) as (x∗, y∗) for simplicity.

Let δ∗1 be the unique δ ∈ (0, 1) that satisfies δ2 =
2f(δ2x∗)

f(δ2x∗) + b2
. Let δ∗2 =
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max 4
9
x∗≤x1≤b1 δ

∗
2(x1) where δ∗2(x1) is the unique δ ∈ (0, 1) that satisfies δ

f(x1) + b2
2

=

f(
δ
2
x1

1− δ
2

). Let δ∗ = max{δ∗1, δ∗2, 23}. Note since δ∗1 ∈ (0, 1) and δ∗2 ∈ (0, 1), we have

δ∗ ∈ (0, 1).

The proof is divided into two steps.

First step: We will show that, if δ ∈ (δ∗, 1], then player 1 must offer (b1, 0) at

stage 1.

First, we will show that, if δ ∈ (δ∗, 1], then player 1 will never offer (x1, y1) with

x1 ∈ [0, δ2x∗). In particular, We will show that for player 1, any offer (x1, y1) with

x1 ∈ [0, δ2x∗) is strictly dominated by the offer (b1, 0).

Note that if player 1 makes the offer (x1, y1) with x1 ∈ [0, δ2x∗), then his

payoff is at most x1. If player 1 proposes (b1, 0), then by Lemma 16, player 2

may choose to accept, or reject with counteroffer (0, b2) which player 1 rejects,

or reject with counteroffer (x̂2(b1, 0), ŷ2(b1, 0)) which player 1 accepts. If player

2 accepts, then player 1’s payoff is b1; if player 2 rejects with counteroffer (0, b2)

which player 1 rejects, then player 1’s payoff is δ2γ1((b1, 0), (0, b2)) = δ2x∗; if

player 2 rejects with counteroffer (x̂2(b1, 0), ŷ2(b1, 0)) which player 1 will accept, then

player 1’s payoff is δx̂2(b1, 0) = δ2γ1((b1, 0), (x̂2(b1, 0), ŷ2(b1, 0))) (the equality is by

Lemma 14 (i)). Since γ1((b1, 0), (x̂2(b1, 0), ŷ2(b1, 0))) ≥ γ1((b1, 0), (0, b2)), we have:

δx̂2(b1, 0) ≥ δ2γ1((b1, 0), (0, b2)) = δ2x∗. Thus, we have shown that, if player 1 pro-

poses (b1, 0) at stage 1, then his payoff is at least δ2x∗. Hence, player 1 will never

offer (x1, y1) with x1 ∈ [0, δ2x∗).

Second, we will show that, if δ ∈ (δ∗, 1], then player 1 will never offer (x1, y1)

with x1 ∈ [δ2x∗, b1). We have the following two cases:
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(i) (x1, y1) is accepted by player 2.

Note that, if player 2 rejects (x1, y1), then his payoff is at least

δ2γ2((x1, y1), (0, b2)). Since player 2 chooses to accept (x1, y1), then we must have:

δ2γ2((x1, y1), (0, b2)) ≤ y1.

Since δ2γ2((x1, y1), (0, b2)) ≥ δ2

2
(y1 + b2) (using the fact that the Pareto frontier is

strictly “bowed-out”), then we have δ2

2
(y1 + b2) ≤ y1, i.e., δ2 ≤ 2y1

y1 + b2
. Since

y1 = f(x1) ≤ f(δ2x∗) ≤ f(δ∗21 x
∗) and

2y1
y1 + b2

is increasing in y1, we have δ2 ≤

2f(δ∗21 x
∗)

f(δ∗21 x
∗) + b2

= δ∗21 ≤ δ∗2. Contradiction with δ > δ∗.

(ii) (x1, y1) is rejected by player 2.

We will compare δγ1((x1, y1), (0, b2)) and ŷ2(x1, y1).

First, note that by Lemma 14 (i) and the fact that the Pareto frontier is

strictly “bowed-out”, we have: x̂2(x1, y1) = δγ1((x1, y1), (x̂2(x1, y1), ŷ2(x1, y1))) ≥

δ
x̂2(x1, y1) + x1

2
. Then we have: x̂2(x1, y1) ≥

δ
2
x1

1− δ
2

. Then, ŷ2(x1, y1) ≤ f(
δ
2
x1

1− δ
2

).

Therefore,

ŷ2(x1, y1) ≤ f(
δ
2
x1

1− δ
2

) < δ
y1 + b2

2
(8)

The last inequality is because δ > δ∗ ≥ δ∗2 ≥ δ∗2(x1),
50 δ∗2(x1) satisfies f(

δ∗2(x1)

2
x1

1− δ∗2(x1)

2

) =

δ∗2(x1)
f(x1) + b2

2
, f(

δ
2
x1

1− δ
2

) is strictly decreasing in δ, δ
y1 + b2

2
is strictly increasing

in δ and y1 = f(x1).

50The inequality δ∗2 ≥ δ∗2(x1) is true because of the following. Note that δ > δ∗ implies δ > 2/3,
which implies δ∗2 = max 4

9x
∗≤x1≤b1 δ

∗
2(x1) ≥ maxδ2x∗≤x1≤b1 δ

∗
2(x1). So, for any x1 ∈ [δ2x∗, b1), we

have δ∗2 ≥ δ∗2(x1).
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Now, note δγ2((x1, y1), (0, b2)) ≥ δ
y1 + b2

2
. Then, we have:

δγ2((x1, y1), (0, b2)) > ŷ2(x1, y1).

However, by Lemma 16 (ii), if at stage 1, player 1’s makes the offer (x1, y1) /∈

{(0, b2), (b1, 0)} and player 2 rejects it, then we must have

δγ2((x1, y1), (0, b2)) = ŷ2(x1, y1).

Contradiction!

Thus, we have proved that player 1 will never offer (x1, y1) with x1 ∈ [δx∗, 1).

In addition, we have already proved that player 1 will never offer (x1, y1) with x1 ∈

[0, δx∗). Thus, player 1 must offer (b1, 0) at Stage 1.

Second Step: We will show that if δ ∈ (δ∗, 1], and if player 1 offers (b1, 0) at stage

1, then player 1 must reject it and offers (0, b2) at stage 2.

If (b1, 0) is proposed by player 1 at stage 1, then by Lemma 14, player 2 has three

options: (a) accept (b1, 0) – player 2’s payoff is 0; (b) reject (b1, 0) and makes the

counteroffer (0, b2) – player 2’s payoff is δ2γ2((b1, 0), (0, b2)); and (c) reject (b1, 0) and

makes the counteroffer (x̂2(b1, 0), ŷ2(b1, 0)) – player 2’s payoff is δŷ2(b1, 0).

Using a technique similar to that used in deriving inequality 8, we

have: δŷ2((b1, 0)) ≤ δ2
b2
2

. Now since δ2γ2((b1, 0), (0, b2)) > δ2
b2
2

, we have

δ2γ2((b1, 0), (0, b2)) > δŷ2((b1, 0)). Thus, player 2 must choose the second option,

i.,e, player will reject (b1, 0) and offers (0, b2) at Stage 2.
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Chapter 3

Proportional Individual Rationality and

the Provision of a Public Good in a Large

Economy

3.1 Introduction

The problem of public goods is a classic problem in economics. It is well-known

that the voluntary provision of public goods may not attain the first-best efficient

level due to the free-rider problem. How to design a budget-balanced mechanism

that can achieve first-best efficiency is thus a fundamental topic in research in public

economics. In the literature, if the (interim) individual rationality constraint is

not required for any agent, then first-best efficiency can be achieved (d’Aspremont

and Gérard-Varet 1979). If individual rationality is required for all agents, then

first-best efficiency cannot be achieved (Mailath and Postlewaite 1990). This note

considers a model that connects these two cases. Specifically, we consider a model in

which the public good is provided and payments are collected from agents only if the

proportion of agents who obtain nonnegative expected utilities from the mechanism

weakly exceeds a prespecified ratio α for some constant α ∈ [0, 1]. Roughly speaking,

our model imposes individual rationality on a proportion α of agents. We call this

requirement α proportional individual rationality. The parameter α is the required
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agreement rate. If α equals 1, then we return to the case of Mailath and Postlewaite

(1990); if α equals 0, then we return to the case of d’Aspremont and Gérard-Varet

(1979). Hence, both the model in d’Aspremont and Gérard-Varet (1979) and the

model in Mailath and Postlewaite (1990) are special cases of our model.

We consider the public good provision problem in a large finite economy. We are

not only interested in whether first-best efficiency can be achieved or not in a large

economy, but also interested in the speed at which the efficiency or inefficiency is

reached as the economy becomes large. Thus, two basic research questions of this

note are as follows. First, for a given α, can the first-best provision level be achieved

in a large economy? Second, how rapidly does the probability of provision approach

its efficient or inefficient level as the economy becomes large?

We assume agents’ valuations are i.i.d. and the total provision cost of the public

good is proportional to the number of agents in the economy. Our results are as

follows:

(i) If α is less than a threshold α∗, then there exists a sequence of mechanisms

{µnα}∞n=1 such that for each n, µnα satisfies budget balance, incentive compatibility,

and α proportional individual rationality. As n goes to infinity, the probability of

provision in µnα approaches 1 at a speed not slower than 1/n.

(ii) If α is greater than α∗, then for any sequence of anonymous mechanisms satisfying

budget balance, incentive compatibility, and α proportional individual rationality,

the probabilities of provision approach 0 at a speed not slower than 1/n
1
3 as n goes

to infinity.

The above results are summarized in Figure 31.
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Figure 31: Probability of provision under various α as the economy becomes large.

The threshold α∗ equals the probability of an agent’s valuation being higher than

the per capita cost of provision, i.e., 1−F (c), where F is distribution function of an

agent’s valuation and c is the per capita cost of provision.

The implication of our results is as follows. Mailath and Postlewaite (1990)

showed that if we require unanimity, then the public good will not be provided in a

large economy. This implies that some coercion is necessary if the government wants

the public good to be provided efficiently in a large economy. However, from the

literature, it is not clear how much coercion is needed. Our results provide an answer

for this question. In particular, we show that as soon as the required agreement rate

α is less than 1 − F (c), the provision of the public good is asymptotically efficient.

That is, if we want the public good to be provided efficiently in a large economy,

then the proportion of agents that are allowed to be hurt in the mechanism should

be at least F (c). In another words, F (c) is the minimum fraction of agents that the

government must force to participate in order to obtain efficiency asymptotically.

This note is organized as follows. The next section presents the model. Section

3.1 discusses the asymptotic efficiency/inefficiency results. Section 3.2 discusses the

convergence rates that efficiency/inefficiency obtains. Concluding remarks are offered

in Section 3.4.
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3.2 The Model

Assume that a nonexcludable public good can be provided in the quantity of

either 0 unit or 1 unit. The cost of providing 1 unit of the public good is nc, where

n is the number of agents in the economy, or the size of the economy, and c is

a constant.51 We denote agent i’s valuation of the public goods by vi. Agent i’s

valuation vi is known only to agent i. We assume that v1, · · · , vn are independent

and identically distributed.52 The distribution function of vi is denoted by F , which

is common knowledge among all agents and the principal. The support of F is

denoted by [v, v] ⊂ R+. The density function of F is denoted by f . We assume that

f is continuous and strictly positive on [v, v]. Finally, we assume that v < c < v.

We consider direct anonymous mechanisms. A direct mechanism is a function pair

{qn, {tni }ni=1} where qn : [v, v]n → {0, 1} indicates whether or not the public good is

provided and tni : [v, v]n → R is the payment collected from agent i. Note that qn and

tni are functions of reported valuations v = (v1, · · · , vn) of all agents. The anonymity

of the mechanism requires qn and tni to be functions that depend exclusively on the

reported valuations and not on the identities of agents.53 Define qni (vi) = Ev−iq
n(v)

51Here, the cost function is such that the cost of provision increases in proportion to the number
of agents. This assumption is in the spirit of Mailath and Postlewaite (1990), in which the per
capita cost of provision is bounded away from zero.

52We make the i.i.d. assumption for simplicity. Under this assumption, the characterization of
the threshold α∗ will be very simple. In the literature, the i.i.d. assumption also appeared in Rob
(1989) and in Ledyard and Palfrey (2002).

53Formally, the anonymity of the mechanism requires (i) q(v) = q(σ(v)) for any permutation
σ(v) of v, (ii) tni (vi, v−i) = tni (vi, σ(v−i)) for any permutation σ(v−i) of v−i, and (iii) tni (vi, v−i) =
tnj (vj , v−j) where vi = vj and v−j is a permutation of v−i. Anonymity of mechanisms is a key
assumption for the results obtained in this note. In particular, if this assumption is dropped, then
Theorem 3 in the next section will not hold, and we will obtain the efficiency result for any α ∈ [0, 1)
in the large economy, because the principal can always pick an agent and charge him a tax equal
to the total provision cost.
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as agent i’s expected provision function and tni (vi) = Ev−it
n
i (v) as agent i’s expected

payment function. Given agents’ reported valuations v, agent i’s ex-post utility

under the mechanism {qn, {tni }ni=1} is given by viq
n(v) − tni (v). Define Un

i (vi, v̂i) =

Ev−i [viq
n(v̂i, v−i) − tni (v̂i, v−i)] and Un

i (vi) = Un
i (vi, vi). Then Un

i (vi, v̂i) represents

agent i’s (interim) expected utility when he reports v̂i and Un
i (vi) represents agent

i’s (interim) expected utility when he reports truthfully, both conditional on all other

agents reporting truthfully.

We impose three constraints on the mechanism. The first constraint is the (ex

ante) budget balance constraint (BB). The second constraint is the (interim) incentive

compatibility constraint (IC).

(BB) : E{
∑
tni (v)

n
− cqn(v)} ≥ 0 (9)

(IC) : Un(vi) ≥ Un(vi, v̂i) for all vi, v̂i ∈ [v, v̄] (10)

The last constraint is the α proportional individual rationality constraint. This

constraint reflects the requirement that the public good can be provided and pay-

ments can be collected from agents only if the proportion of agents who obtain non-

negative expected utilities from the mechanism is at least α. Define the agreement set

Ṽ n
i of agent i as the set of agent i’s valuations for which the expected utility of agent

i is nonnegative, i.e., Ṽ n
i = {vi ∈ [v, v̄]|Un

i (vi) ≥ 0}. Define rn(v) =

∑n
i=1 1{vi∈Ṽ ni }

n

where 1{•} represents the indicator function. Then, rn(v) is the proportion of agents

who obtain nonnegative expected utilities from the mechanism. The α proportional

individual rationality constraint is:
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(α-PIR) : qn(v) = 0 and tni (v) = 0 (for all i) if rn(v) < α.

In this note, α is exogenously fixed and can be any number between 0 and 1.

If α=0, then the α proportional individual rationality constraint is automatically

satisfied by any mechanism. The following lemma establishes the connection between

α proportional individual rationality and individual rationality (IR).

Lemma 2. A mechanism {qn, {tni }ni=1} satisfies (1-PIR) if and only if it satisfies

(IR).

Proof: The “if” part is obvious. To see the “only if” part, suppose there is a

v∗i ∈ [v, v] such that Un
i (v∗i ) < 0, then we must have rn(v∗i , v−i) < 1 for all v−i, which

implies qn(v∗i , v−i) = 0 and tni (v∗i , v−i) = 0 for all v−i by the α proportional individual

rationality constraint. Thus, Ui(v
∗
i ) must equal zero, which is a contradiction with

Ui(v
∗
i ) < 0. �

We now define the first-best mechanism. The first-best mechanism

{qFB(n), {tFB(n)
i }ni=1} is any budget-balanced mechanism that satisfies the Lindahl-

Samuelson provision rule:

qFB(n) =

 1 if

∑
vi
n
≥ c;

0 otherwise.

We assume that ve > c, where ve = E(vi). This assumption implies that in a large

economy, the average social benefit of the public good is greater than the average

social cost of the public good. As a result, the public good should be provided with
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probability 1 in the large economy, i.e., P (qFB(n)(v) = 1)→ 1 as n→∞.

3.3 Analysis

3.3.1 Asymptotic efficiency/inefficiency results

LetMn
α = {{qn, {tni }ni=1}|{qn, {tni }ni=1} is anonymous and satisfies BB, IC, and α-PIR}

be the set of feasible mechanisms in the n-agent economy, and let

snα = sup{P (qn(v) = 1) : ∃{qn, {tni }ni=1} ∈ Mn
α} be the maximum probability

of provision in the set of feasible mechanisms of the n-agent economy. Let

α∗ = 1− F (c). We have:

Theorem 3.

(i) If α < α∗, then snα goes to one as n→∞;

(ii) If α > α∗, then snα goes to zero as n→∞.

Proof: Theorem 3 follows from Theorem 4 and Theorem 5 in the next subsection.

The proof below is a simple intuitive proof.

When n is large, the probability that an agent is pivotal in any anonymous

mechanism is small. By the incentive compatibility constraint, an agent’s expected

payment function (i.e., tni (vi)) must be nearly constant, independent of the agent’s

valuation.54 By the budget balance constraint, the constant tax t on each agent

54The reason is as follows. Using the incentive compatibility constraint and the fact that [v, v] ⊂
R+, one can show that if an agent reports a low valuation, then he pays a small tax. If he reports
a high valuation, then he pays a large tax. This difference in tax is proportional to the probability
that the agent is pivotal in the mechanism. As the economy becomes large, the probability that an
agent is pivotal in any mechanism becomes small. This means that the agent with low valuation
and the agent with high valuation must pay almost the same tax in a large economy.

105



must be equal to the per capita cost c. This implies that the proportion of agents

who obtain nonnegative expected utilities in a large economy must be approximately

P (vi ≥ c) = 1 − F (c). By the α-proportional individual rationality constraint,

whether or not the public good will be provided in the large economy then depends

on whether or not α ≤ 1− F (c). �

Theorem 3 states that if α is small, then we have the efficiency result, and if

α is large, then we have the inefficiency result. These results are not surprising

considering that we already have the two extreme results in the literature (i.e., the

case α = 0 and the case α = 1). However, Theorem 3 provides us with the exact

threshold that we need. In addition, it shows that the probability of provision is either

0 or 1 in the large economy, i.e., the probability of provision is “discontinuous” in

the required agreement rate α.

3.3.2 Convergence rates

This section will analyze the convergence rates at which efficiency or inefficiency

is attained as the economy becomes large.

The case where α < 1− F (c)

In this case, we will construct a particular mechanism, called the α-referendum,

which attains first-best efficiency asymptotically, and we will find the convergence

rate of the probability of provision in the α-referendum. The α-referendum, which

is denoted by µnα = {q̃n,α, {t̃n,αi }ni=1}, is constructed as follows. If

∑n
i=1 1{vi≥c}
n

≥ α,

then q̃n,α(v) = 1 and t̃n,αi (v) = c for any i. If

∑n
i=1 1{vi≥c}
n

< α, then q̃n,α(v) = 0 and

t̃n,αi (v) = 0. Simply speaking, µnα requires that if there exists at least α proportion
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of agents whose reported valuations of the public good exceed c, then the public

good will be provided and the cost of provision will be distributed equally among all

agents. Otherwise, the public good will not be provided and no payment is collected

from any agent.

One can easily verify that µnα satisfies (BB), (IC), and α-(PIR).55 We have the

following convergence rate result for the α-referendum.

Theorem 4. If α < 1− F (c), then 1− P (q̃n,α(v) = 1) = O(1/n).

Proof: See Appendix 1. �

The probability of provision in µnα converges to 1 as the economy becomes large,

because the proportion of agents whose valuations exceed c approaches P (vi ≥ c) =

1−F (c), which is greater than α by assumption. Using Chebyshev’s inequality, one

can show that the convergence speed of P (q̃n,α(v) = 1) toward 1 is on the order of

1/n.

The performance of α-referenda is illustrated in the following example.

Example 1: Assume that vi is uniformly distributed on [0, 1]. Assume c = 0.4

and α = 0.5.

Table 4 lists the probabilities that the public good will be provided in 0.5-

referenda as n increases from 4 to 200. It also lists the per capita welfare of 0.5-

referenda,56 the per capita welfare of first-best mechanisms and the per capita welfare

55µnα satisfies α-PIR because under µnα, (i) an agent obtains a nonnegative expected utility if and
only if the agent’s valuation exceeds c, and (ii) the public good will be provided and payments will
be collected from agents only if the proportion of agents whose valuations exceed c is greater than
the required agreement rate α.

56The per capita welfare of a mechanism {qn, {tni }ni=1} is defined as the per capita expected value
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losses from using 0.5-referenda instead of first-best mechanisms.

Table 4: Probability of provision and relative efficiency of 0.5-referenda

 

 

 

� 1 − �(���,
.� = 1) �(���,
.�) �(���(�)) 1 −
�(���,
.�)

�(���(�))
 

5 0.3169 0.1097 0.1165 0.0581 

10 0.1662 0.1034 0.1062 0.0266 

20 0.1273 0.0990 0.1016 0.0264 

40 0.0747 0.0981 0.1002 0.0209 

80 0.0267 0.0990 0.1001 0.0095 

160 0.0041 0.0997 0.1000 0.0021 

320 0.0001 0.0999 0.0999 0.0001 

 

 

� �(��� = 1) �(���(�)) �(���) 1 −
�(���)

�(���(�))
 

4 0.8192 0.1213 0.1165 0.9609 

8 0.8263 0.1088 0.1057 0.9710 

12 0.8421 0.1046 0.1018 0.9736 

16 0.8578 0.1027 0.0999 0.9728 

20 0.8727 0.1017 0.0990 0.9735 

50 0.9424 0.1001 0.0983 0.9816 

100 0.9833 0.0999 0.0993 0.9937 

200 0.9982 0.0999 0.0999 0.9993 

 

 

 

  

 

Table 4 shows that as n increases, 1 − P (q̃n,0.5) approaches 0 rapidly. Although

the convergence speed is slower than 1/n when n is small (n ≤ 40), it is eventually

faster than 1/n when n becomes large (n > 40). Table 4 also shows that the per

capita welfare loss from the 0.5-referendum vanishes rapidly as n increases. When

the size of the economy is greater than 80, the per capita welfare loss is less than

1%.

The case where α > 1− F (c)

In the case where the required agreement rate α exceeds the threshold 1− F (c),

we have the inefficiency result. In this case, instead of finding the convergence rate of

a particular mechanism, we will find the convergence rate that holds for all feasible

mechanisms. In particular, we have the following result.57

of the net benefit of the mechanism, i.e., W (qn) =
1

n
E {(

∑
vi − nc)qn(v)}.

57For the special case where α = 1, the convergence rate we obtain in Theorem 5 is the same
as the convergence rate obtained by Al-Najjar and Smorodinsky (2000). The difference between
the two results is that Al-Najjar and Smorodinsky (2000) assumed that the distribution of an
agent’s valuation is discrete at v. They need this assumption because their characterization about
a player’s influence in a mechanism is more suitable for the case where the distribution of an agent’s
valuation is discrete, while we do not need this assumption because our characterization about a
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Theorem 5. For any given α > 1− F (c), we have

snα = O(1/n
1
3 ).

Proof: See Appendix 2. �

The intuition of the proof of Theorem 5 is as follows. The fact that as the

economy becomes large, the probability that an agent is pivotal in any mechanism

becomes small implies that the expected provision function of any agent must be

nearly constant in a large economy. The convergence speed at which snα goes to zero

depends on the convergence speed at which the expected provision function of an

agent approaches the constant function. In Lemma 7 (Appendix 2), we show that

the expected provision function of any agent approaches a constant function at a

speed of 1/
√
n. Based on this result, one can show that the probability of provision

P (qn(v) = 1) ≤ Cα√
ηn

+ η for any sufficiently small η > 0. This implies that snα goes

to zero at a speed of 1/n
1
3 .

The following example illustrates the analytic bound obtained in the proof of

Theorem 5.

Example 2 : Assume vi follows uniform distribution on [0, 1]. Assume c = 0.4,

t̄ = 1 and ε = 0.01.58 Suppose α can take values of 0.67 and 1.

The threshold 1−F (c) = 0.6 is less than the required agreement rates 0.67 and 1.

Figure 32 illustrates the upper bounds for the probabilities of provision as n varies

player’s influence in a mechanism is more suitable for the case where the distribution of an agent’s
valuation is continuous (see also footnote 59 in Appendix 2).

58The parameter ε can be any number between 0 and c−vα, where vα is such that P (vi ≥ vα) = α.
The precise choice of ε will not affect the convergence rate.
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Figure 32: Upper bounds for the probability of provision when α > 1− F (c).

from 50,000 to 50,000,000. For both the case of α = 0.67 and the case of α = 1,

the upper bound for the probability of provision decreases to 0 as n increases. In

particular, when n = 50, 000, the corresponding upper bounds for the probability

of provision are 0.553 for α = 0.67 and 0.077 for α = 1. When n = 50, 000, 000,

the bounds are 0.11 for α = 0.67 and 0.017 for α = 1. Obviously, the bound for

the probability of provision for the case of α = 0.67 is consistently higher than the

bound for the probability of provision for the case of α = 1. This is not surprising

because for any mechanism that satisfies (α1-PIR), it must also satisfy (α2-PIR)

if α2 < α1. Thus, as α decreases, the set of mechanisms that satisfy the α-PIR

constraint becomes larger and the upper bound for the probability of provision is

higher.
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3.4 Conclusion

This note considers the public good provision problem in which the public good

can be provided and payments can be collected from agents only if the proportion of

agents who obtain nonnegative expected utilities from the mechanism weakly exceeds

a required agreement rate α. We show that, if α is less than a threshold, then there

exists a sequence of α-referenda satisfying BB, IC and α-PIR such that as the size

n of the economy becomes large, the probabilities of the public good being provided

in α-referenda approach 1 at a speed not slower than 1/n; and if α exceeds the

threshold, then the probabilities that the public good will be provided in any series

of anonymous mechanisms that satisfy BB, IC, and α-PIR approach 0 at a speed

not slower than 1/n
1
3 . Hence, we not only obtain asymptotic efficiency/inefficiency

results for various required agreement rates settings, but also characterize the speed

at which the probability of provision reaches the efficient/inefficient level.

3.5 Chapter 3 Appendix

3.5.1 Appendix 1: Proof of Theorem 4

Proof: Noting that

∑n
i=1 1{vi≥c}
n

→ 1 − F (c) in pr. and V ar(1{vi≥c}) = (1 −

F (c))F (c), we have:

P (q̃n,α = 1) = P (

∑n
i=1 1{vi≥c}
n

≥ α) ≥ P (

∣∣∣∣1− F (c)−
∑n

i=1 1{vi≥c}
n

∣∣∣∣ ≤ 1− F (c)− α)

≥ 1− (1− F (c))F (c)

n(1− F (c)− α)2
.
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where the last inequality follows from Chebyshev’s inequality. Thus, P (q̃n,α = 1) ≥

1−O(1/n). �

3.5.2 Appendix 2: Proof of Theorem 5

We use the following three lemmas (Lemma 6, Lemma 7 and Lemma 8) to prove

Theorem 5.

Lemma 6 states that the variance of qni (vi) converges to 0 at a speed not slower

than 1/n as n→∞.

Lemma 6. For any anonymous mechanism {qn, {tni }ni=1}, we have V ar(qni (vi)) ≤
V ar(qn(v))

n
. Thus, V ar(qni (vi)) = O(1/n).

Proof: Let V = [v, v]n and Vi = [v, v] for any i. We have:

∫
V

[qn(v)− Eqn(v)−
∑
i

(qni (vi)− Eqni (vi))]
2dF (v1) · · ·F (vn)

=

∫
V

[qn(v)− Eqn(v)]2dF (v1) · · ·F (vn)

− 2
∑
i

∫
V

(qn(v)− Eqn(v))(qni (vi)− Eqni (vi))dF (v1) · · ·F (vn)

+
∑
i

∫
V

[qni (vi)− Eqni (vi)]
2dF (v1) · · ·F (vn)
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=

∫
V

[qn(v)− Eqn(v)]2dF (v1) · · ·F (vn)− 2
∑
i

∫
Vi

[qni (vi)− Eqni (vi)]
2dF (vi)

+
∑
i

∫
Vi

[qni (vi)− Eqni (vi)]
2dF (vi)

=V ar(qn(v))−
∑
i

V ar(qni (vi))

=V ar(qn(v))− nV ar(qni (vi)) (11)

where the first equality follows from the fact that qn1 (v1), · · · , qnn(vn) are independent,

and the second equality follows from the fact that Eqn(v) = Eqni (vi) for any i.

Using equality (11) and the fact that
∫
V

[qn(v) − Eqn(v) −
∑

i(q
n
i (vi) −

Eqni (vi))]
2dF (v1) · · ·F (vn) ≥ 0, we have V ar(qni (vi)) ≤ 1

n
V ar(qn(v)). Notice that

0 ≤ qn(v) ≤ 1 for any n and v ∈ V , so V ar(qn(v)) ≤ 1. Thus, V ar(qni (vi)) = O(1/n).

�

An agent i’s influence relative to the mechanism {qn, {tni }ni=1} can be defined by√
V ar(qni (vi)). Lemma 6 says that as n goes to infinity, an agent’s influence in any

sequence of mechanisms decreases to zero at a speed not slower than 1/
√
n.59

The next lemma is a direct result of Lemma 6. It says that for any ṽ ∈ (v, v̄),

the difference between qni (ṽ) and Eqni (vi) vanishes as n→∞ and is O(1/
√
n).

For any given ṽ ∈ (v, v̄), define m(ṽ) = min(P (vi ≥ ṽ), P (vi ≤ ṽ)) (notice that

m(ṽ) > 0 because the probability density function of vi is positive on [v, v]). We

59This result is similar to the result obtained by Al-Najjar and Smorodinsky (2000), who use the
difference between the maximum and the minimum of the expected provision function to measure
agent i’s influence. They showed that in any mechanism, the average influence of agents is O(1/

√
n).

While the measure of influence in Al-Najjar and Smorodinsky (2000) is more suitable for the case
where the distributions of valuations are discrete, our measure of influence is more suitable for the
case where the distributions of valuations are continuous.
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have:

Lemma 7. Let {{qn, {tni }ni=1}}∞n=1 be any sequence of anonymous mechanisms where,

for each n, {qn, {tni }ni=1} satisfies (IC). Then, for any given ṽ ∈ (v, v̄), we have:

|qni (ṽ)− Eqni (vi)| ≤
1

2
√
m(ṽ)n

.

Proof: First, notice that if {qn, {tni }ni=1} satisfies (IC), then qni (vi) is nondecreasing

on [v, v].

For a given ε > 0, using Chebyshev’s inequality, Lemma 6 and the fact that

V ar(qn(v)) ≤ 1

4
(note qn(v) follows a Bernoulli distribution that can take two values:

0 and 1), we have:

P (|qni (vi)− Eqni (vi)| ≥ ε) ≤ V ar(qni (vi))

ε2
≤ 1

4nε2
.

Fix ṽ ∈ (v, v). If n ≥ 1

4m(ṽ)ε2
, then

P (|qni (vi)− Eqni (vi)| > ε+ ε0) ≤
1

4n(ε+ ε0)2
< m(ṽ) for any ε0 > 0. (12)

Now if |qni (ṽ)− Eqni (vi)| > ε+ε0, then we have either qni (ṽ)−Eqni (vi) > ε+ε0 or

qni (ṽ)−Eqni (vi) < −(ε+ε0). Since qni (vi) is an nondecreasing function, we have either

qni (vi)−Eqni (vi) > (ε+ε0) for all vi ≥ ṽ or qni (vi)−Eqni (vi) < −(ε+ε0) for all vi ≤ ṽ.

Thus, P (|qni (vi)− Eqni (vi)| > ε + ε0) ≥ min(P (vi ≥ ṽ), P (vi ≤ ṽ)) = m(ṽ) which

is a contradiction with (12). As a result, we must have |qni (ṽ)− Eqni (vi)| ≤ ε + ε0

for all n ≥ 1

4m(ṽ)ε2
. Since ε0 > 0 is arbitrary, then |qni (ṽ)− Eqni (vi)| ≤ ε for all
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n ≥ 1

4m(ṽ)ε2
. Hence, for any given N , we have |qni (ṽ)− Eqni (vi)| ≤

1

2
√
m(ṽ)N

for

all n ≥ N . �

In order to obtain the convergence speed that the expected payment function

goes to the constant function, we need the assumption that |tni (v)| is uniformly

bounded in n and v (Assumption 1). We assume that Assumption 1 holds through

the remainder of the appendix. Notice that it is a natural assumption to put a

bound on the payment that an individual agent can be forced to contribute (see,

e.g., Mailath and Postlewaite 1990).

Assumption 1: |tni (v)| is uniformly bounded, i.e., there exists a t̄ > 0 such that

|tni (v)| ≤ t̄ for any n and v ∈ [v, v]n.

For any η ∈ (0,
1

2
), define vη as the only vi ∈ [v, v] such that F (vη) = η and v′η as

the only vi ∈ [v, v] such that 1− F (v′η) = η.

Lemma 8. Let {{qn, {tni }ni=1}}∞n=1 be any sequence of anonymous mechanisms where,

for each n, {qn, {tni }ni=1} satisfies (IC). Then, for any η ∈ (0,
1

2
) and ṽ ∈ (vη, v

′
η), we

have: |tni (ṽ)− Etni (vi)| ≤ v
1
√
ηn

+ 2ηt.

Proof: Fix ṽ ∈ (vη, v
′
η). For any vi ∈ (vη, v

′
η), we have tni (vi) ≤ vi(q

n
i (vi) −

qni (ṽi)) + tni (ṽ) ≤ v
1
√
ηn

+ tni (ṽ), where the first inequality follows from the incentive

compatibility constraint and the second inequality follows from Lemma 7. Thus,

Etni (vi) =
∫
(vη ,v′η)

tni (vi)dFi(vi) +
∫
[v,vη ]

tni (vi)dFi(vi) +
∫
[v′η ,v]

tni (vi)dFi(vi) ≤ v
1
√
ηn

+

tni (ṽ) + 2ηt. That is, tni (ṽ) − Etni (vi) ≥ −v
1
√
ηn
− 2ηt. Similarly, it can be shown

that tni (ṽ)− Etni (vi) ≤ v
1
√
ηn

+ 2ηt. Thus, |tni (ṽ)− Etni (vi)| ≤ v
1
√
ηn

+ 2ηt. �
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Since the prior distribution of vi is the same for all i and the mechanism

{qn, {tni }ni=1} is anonymous by assumption, the function Un
i (vi) must be the same

for all i. In the following, we will use Un(vi) to denote Un
i (vi), whenever there is no

confusion.

It is well-known in the mechanism design literature that if the mechanism

{qn, {tni }ni=1} satisfies incentive compatibility and qn is bounded, then the function

Un(vi) is continuous. This implies that Un(vi) is either (i) equal to zero at some

point in [v, v], (ii) greater than zero for all vi ∈ [v, v], or (iii) less than zero for all

vi ∈ [v, v]. We define v̂n as follows:

v̂n =


min{vi|vi ∈ [v, v̄] and Un(vi) = 0} if Un(vi) = 0 for some vi ∈ [v, v];

v if Un(vi) > 0 for all vi ∈ [v, v];

∞ if Un(vi) < 0 for all vi ∈ [v, v].

Using the definition of v̂n and the fact that Un(vi) is nondecreasing in vi (by

incentive compatibility), we have

Ṽ n
i = {vi ∈ [v, v̄]|Un(vi) ≥ 0} = {vi ∈ [v, v̄]|vi ≥ v̂n}.

For a given α, define vα ∈ [v, v̄] such that P (vi ≥ vα) = α. Note that α > 1−F (c)

implies vα < c.

Now, we can state the proof of Theorem 5.

Proof of Theorem 5:

For any given n and any given ε ∈ (0, c− vα), we have two cases.

116



(i) v̂n < vα + ε.

In this case, since v̂n < vα + ε < v̄, we must have Un(v̂n) ≥ 0 by the definition

of v̂n. The incentive compatibility constraint implies that Un(vi) is nondecreasing in

vi, so Un(vα + ε) ≥ Un(v̂n) ≥ 0. That is:

(vα + ε)qni (vα + ε) ≥ tni (vα + ε). (13)

Since {qni (vi), t
n
i (vi)} satisfies (IC), then by Lemma 7, we have:

qni (vα + ε) ≤ Eqni (vi) +
1

2
√
m(vα + ε)n

(14)

By Lemma 8, for sufficiently small η, we have:

tni (vα + ε) ≥ Etni (vi)− v
1
√
ηn
− 2ηt (15)

(13) (14) and (15) then imply an upper bound for Etni (vi), that is:

Etni (vi) ≤ (vα + ε)Eqni (vi) +
vα + ε

2
√
m(vα + ε)n

+ v
1
√
ηn

+ 2ηt (16)

Now, by the budget balance constraint, we can get a lower bound for Etni (vi),

that is:

Etni (vi) ≥ cEqni (vi). (17)

Inequality (16) and inequality (17) then imply:

Eqni (vi) ≤
1

c− (vα + ε)
(

vα + ε

2
√
a(vα + ε)

1√
n

+ v
1
√
η

1√
n

+ 2ηt). (18)
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Since Eqni (vi) = Eqn(v) = P (qn(v) = 1), then we have:

P (qn(v) = 1) ≤ 1

c− (vα + ε)
(

vα + ε

2
√
a(vα + ε)

1√
n

+ v
1
√
η

1√
n

+ 2ηt). (19)

The bound obtained in (19) implies that P (qn(v) = 1) = O(1/n
1
3 ) for any se-

quence of mechanisms {{qn, {tni }ni=1}}∞n=1 where {qn, {tni }ni=1} ∈ Mn
α for each n and

α > 1− F (c).60

(ii) v̂n ≥ vα + ε.

Define γn(v) =

∑n
i=1 1{vi≥vα+ε}

n
. Note rn(v) =

∑n
i=1 1{vi≥v̂n}

n
, then we must have

γn ≥ rn. By (α-PIR), if rn < α then qn(v) = 0. Thus, we have P (qn(v) = 1) ≤

P (rn ≥ α) ≤ P (γn ≥ α). Since γn → P (vi ≥ vα + ε) := β0 in pr. by the law of large

numbers, we have P (γn ≥ α) = P (γn − β0 ≥ α − β0) ≤ P (|γn − β0| ≥ α − β0) ≤
V ar(γn)

n(α− β0)2
=

β0(1− β0)
n(α− β0)2

, where the second inequality follows from Chebyshev’s

inequality. Hence,

P (qn(v) = 1) ≤ β0(1− β0)
(α− β0)2

1

n
. (20)

For any given n, the probability of provision P (qn(v) = 1) is either bounded by

inequality (19), or bounded by inequality (20). This implies that P (qn(v) = 1) =

O(1/n
1
3 ) for any sequence of mechanisms {{qn, {tni }ni=1}}∞n=1 where {qn, {tni }ni=1} ∈

Mn
α for each n and α > 1− F (c). �

60Notice that the bound obtained in (19) is the tightest when η = ( 4t
v )−

2
3n−

1
3 , which implies that

P (qn(v) = 1) = O(1/n
1
3 ).
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