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Abstract

The control afforded by Feshbach resonance phenomena has enabled the exploration of

strongly interacting degenerate regimes in dilute ultracold atomic alkali-gases. In these

dilute systems, interactions are characterized by a single parameter, the s-wave scattering

length. In this dissertation, we review the physics of quantum degenerate atomic gases from

a theoretical perspective and present the applications of non-perturbative numerical methods

ranging from exact diagonalization to quantum Monte Carlo techniques. Emphasis is given

to the effect of interactions. A major goal of this work is to compare theoretical predictions

with available experimental results.

We begin by introducing the effective interactions in the many-body alkali-gas system. As

simplifications of the real interaction between two alkali atoms, the resonance properties of

various short range models, the zero-range model and the two-channel model are investigated.

The fundamental result is that under appropriate conditions, the true interaction potential

V (r) of two atoms may be replaced by a regularized δ-function of strength 4π~2a/m, where

a is the low-energy s-wave scattering length.

In collaboration with experimentalists in our department, we developed a unique method

to construct localized single-particle wave functions using imaginary time projection and

thereby determine lattice Hamiltonian parameters. Our method enables an efficient coarse-

grained mapping from a continuum system to a lattice model. We apply the method to a

specific disordered potential generated by an optical lattice experiment and calculate for each

instance of disorder the equivalent lattice model parameters. Detailed statistical analysis is

performed on the resulting probability distributions of the Hubbard parameters.

In the final part, we study the pairing and ferromagnetic instabilities in systems of spin-
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1/2 fermions. To interpret a recent experimental study of the possibility of itinerant ferro-

magnetism in cold atom systems, we investigate the energy spectrum of a system of four

spin-1/2 fermions with short range attractive interactions both exactly and within the scat-

tering length approximation. The formation of molecular bound states and the ferromagnetic

transition of the excited scattering state are examined systematically as a function of the

two-body scattering length. We show that an adiabatic ferromagnetic transition occurs, but

at a critical transition point kFa much higher than predictions from the scattering length ap-

proximations. The exact critical interaction strength calculated in the four-particle system

is consistent with that reported by experiment. Finally, by constructing a many-body wave-

function satisfying the Bethe-Peierls boundary conditions, we attempted the first variational

Monte Carlo calculations of the zero-range model of unitary Fermion gases, eliminating the

need for short-range approximations employed by existing QMC calculations.
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Chapter 1

Foreword

1.1 Simulation of cold atom systems

Material properties such as conductivity and magnetism have widespread applications in the

electronic components of everyday modern devices. The ability to understand and explain

these properties is crucial to the exploitation of materials. The advancement in cold atom

experiments in the past decade underlies the potential of ultra-cold atoms as nearly perfectly

controlled model systems to study the properties of various types of complex materials,

such as high-temperature superconductors and novel magnetic materials that could have

applications one day in data storage and improving energy efficiency. This provides an

opportunity to compare quantitatively experimental results with parameter free theoretical

calculations.

Simulation is the only general method for solving many-body problems. Computer sim-

ulation of matter at the atomic scale has been performed since the early days of digital

computing. Over the years, the numerical methods have grown in complexity and accuracy,

from classical molecular dynamics to fully quantum mechanical simulations.

In Sect. (1.2), we briefly describe the physics of cooling and trapping atoms. In Sect. (1.3),

we outline the numerical methods used in this work and the details will be elaborated in

Chapter 4 and Chapter 5.

1.2 Cooling and trapping of alkali atoms

Before describing in detail the White et al. experiment [1] in Chapter 3 and the Jo et al.

experiment [2] in Chapter 5, we introduce the basic concepts related to the experimental
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techniques of cooling and trapping alkali atoms.

Neutral atoms contain equal numbers of electrons and protons, and therefore the statistics

that a neutral atom obey is determined by the number of neutrons N : if N is even, the atom

is a boson, and if it is odd, a fermion. Note that alkalis have odd atomic number Z. In Table

1.1 we list N , Z, the nuclear spin quantum number I for some alkali atoms and hydrogen,

and the associated nuclear magnetic moment µ which is defined as the expectation value of

the z component of the magnetic moment operator in the state where the z component of

the nuclear spin, denoted by mI~, has its maximum value [3][4].

Table 1.1: The proton number Z, the neutron number N , the nuclear spin I, the nuclear magnetic moment

µ (in units of the nuclear magneton µN = e~/2mp), and the hyperfine splitting νhf = ∆Ehf/h for hydrogen

and some alkali isotopes.

Isotope Z N I µ/µN νhf (MHz)
1H 1 0 1/2 2.793 1420
6Li 3 3 1 0.822 228
7Li 3 4 3/2 3.256 804

23Na 11 12 3/2 2.218 1772
39K 19 20 3/2 0.391 462
40K 19 21 4 −1.298 −1286
41K 19 22 3/2 0.215 254
85Rb 37 48 5/2 1.353 3036
87Rb 37 50 3/2 2.751 6835
133Cs 55 78 7/2 2.579 9193

1.2.1 Hyperfine splitting

In the electronic ground state of alkali atoms, all electrons but one occupy closed shells, and

the remaining one is in an s-orbital in a higher shell. For example, the electron configuration

for Li is 1s22s1. The nuclear spin is coupled to the electronic spin by the hyperfine interaction.

The magnetic hyperfine splitting effect is especially noticeable for levels due to an outer

electron in the s-state, owing to the comparatively high probability that such an electron will

be near the nucleus. Since the electrons have no orbital angular momentum (L = 0), there

is no magnetic field at the nucleus due to the orbital motion, and the coupling arises solely

2



due to the magnetic field produced by the electronic spin. The coupling of the electronic

spin, S = 1/2, to the nuclear spin I yields the two possibilities F = I± 1/2 for the quantum

number F for the total spin, according to the rules for addition of angular momentum.

In the absence of an external magnetic field the atomic levels are split by the hyperfine

interaction. A simple model of the coupling is represented by a term Hhf in the Hamiltonian

of the form

Ĥhf = AI · J, (1.1)

where A is called hyperfine constant, while I and J are the operators for the nuclear spin

and the electronic angular momentum, respectively, in units of ~. Denote the total angular

momentum F = I+ J, we find

I · J =
1

2
[F (F + 1)− I(I + 1)− J(J + 1)] . (1.2)

For alkali and hydrogen atoms, J = S = 1/2, the splitting between F = I ± 1/2 states is

therefore given by

∆Ehf = EI+1/2 − EI−1/2 = hνhf =

(

I +
1

2

)

A. (1.3)

For 6Li, we have E3/2 = A/2, E1/2 = −A and thus ∆Ehf = 3A/2. Typical values range

between 1 and 10GHz. Measured values of the hyperfine splitting are given in Table 1.1.

1.2.2 Trapping of atoms

Magnetic trap

The effect of external magnetic field on the energy levels of an atom is taken into account by

adding to the hyperfine Hamiltonian Eq.(1.1) the Zeeman terms arising from the interaction

of the magnetic moment of the electron and the nucleus with the magnetic field. If we take

the magnetic field B to be in the z direction, the total Hamiltonian is

Hspin = AI · J+ CJz +DIz, (1.4)
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where C = gµBB for L = 0 and S = 1/2, and D = −µB/I. Note that the leading radiative

correction to the electron g factor is g = 2(1 + α/2π). Since |C/D| ∼ mp/me ≈ 2000, for

most applications D may be neglected. At the same level of approximation, the electron g

factor may be put equal to 2.

The Hamiltonian Eq.(1.4) can be solved by diagonalization in a basis consisting of (2I +

1) × (2J + 1) states |mI ,mJ〉. Note that Hamiltonian Eq.(1.4) conserves the z component

of the total angular momentum, and therefore it couples only states with the same value of

the sum mF = mI +mJ . We list the eigenenergies E(mF ) and eigenstates |mI ,mJ〉 for the
nuclear spin I = 1 corresponding to 6Li:

|+ 1,+1/2〉 : E =
1

2
+
b

2
,

| − 1,−1/2〉 : E =
1

2
− b

2
,

{|+ 1,−1/2〉, |0,+1/2〉} : E = −1

4
± 1

2

√

9

4
+ b+ b2,

{| − 1,+1/2〉, |0,−1/2〉} : E = −1

4
± 1

2

√

9

4
− b+ b2

and for the nuclear spin I = 3/2 corresponding to 23Na:

|+ 3/2,+1/2〉 : E =
3

4
+
b

2
,

| − 3/2,−1/2〉 : E =
3

4
− b

2
,

{|+ 3/2,−1/2〉, |+ 1/2,+1/2〉} : E = −1

4
±
√

1 +
b

2
+
b2

4
,

{| − 3/2,+1/2〉, | − 1/2,−1/2〉} : E = −1

4
±
√

1− b

2
+
b2

4
,

{| − 1/2,+1/2〉, |+ 1/2,−1/2〉} : E = −1

4
±
√

1 +
b2

4
,

where the energies are in units of hyperfine constant A and the dimensionless quantity

b =
C

A
=

(2I + 1)µBB

∆Ehf
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Figure 1.1: For a simple model of hyperfine splitting in magnetic trap Ĥhf = AI ·J+CJz, where A is called
hyperfine constant and I and J are the operators for the nuclear spin and the electronic angular momentum,
respectively, in units of ~. The magnetic field is characterized by b = C/A. Hyperfine levels are labeled by
(F,mF ). Left: Hyperfine splittings of 6Li in the presence of magnetic field. Right: Hyperfine splittings of
23Na in the presence of magnetic field.

characterizes the strength of the external magnetic field.

Magnetic trapping of neutral atoms is due to the Zeeman effect: the energy of an atomic

state depends on the magnetic field, and therefore an atom in an inhomogeneous magnetic

field experiences a spatially-varying potential. The atoms experiencing a force tending to

drive it to regions of higher field are referred to as high-field seekers, and those experiencing a

force towards regions of lower field as low-field seekers. The task of constructing a magnetic

trap is thus to design magnetic field configurations with either a local minimum in the

magnitude of the magnetic field, or a local maximum. The latter possibility is ruled out by

a general theorem that a local maximum in |B| is impossible in regions where there are no

electrical currents [6].

Many cold atom experiments on alkali atoms are performed in low magnetic fields, for

which the Zeeman energies are small compared with the hyperfine splitting. To first order

in the magnetic field, the energy may be written as

E(F,mF ) ≈ E(F ) + gLmFµBB + · · · (1.5)
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where gL = F (F+1)+J(J+1)−I(I+1)
2F (F+1)

is the Lande factor and E(F ) is the energy in the absence

of magnetic fields. Thus, the energy of an atom in a particular state i may then be written

as E(F,mF ) = Ci−µiB where µi is the magnetic moment of the state and Ci is a constant.

The atoms with a positive magnetic moment are high-field seekers and those with a negative

one are low-field seekers. The rich structure of the atomic levels exhibited by the alkalis

opens the possibilities of trapping atoms in different magnetic states, with the consequent

possibility of generating mixtures of different species of atoms in the same trap, and the

possibility of inducing transitions between trapped and untrapped states, thereby controlling

the mechanism of evaporation, see Sect. (1.2.3).

Optical trap

Optical trap is formed by electromagnetic radiation, especially lasers. However, the fre-

quency of this laser is usually much higher than the hyperfine splittings and tuned faraway

from resonance, so that it does not cause transitions between internal states of the atoms.

The interaction between an atom and the electric field is given in the dipole approximation

by H ′ = −d · E , where d is the electric dipole moment operator and E is a time-harmonic

electric field with frequency ω. The second-order perturbation theory gives the energy shift

of the ground state

∆E0 = −
1

2
α(ω)〈E2(r, t)〉t, (1.6)

where 〈· · ·〉t denotes a time average, and the dynamical polarizability is given by

α(ω) =
∑

i 6=0

|〈i|d · ǫ̂|0〉|2
(

1

Ei − E0 + ~ω
+

1

Ei − E0 − ~ω

)

. (1.7)

Differently from the case of the magnetic interaction energy Eq. (1.5), which is linear in B

due to the intrinsic magnetic moment of the atom, the electric interaction energy Eq. (1.6) is

quadratic in E as a result of the dipole atomic polarizability. In many situations of interest

the frequency of the radiation is close to that of an atomic resonance, and it is then a good

approximation to neglect all transitions except the resonant one. The polarizability then
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reduces to a single term and the finite lifetime due to spontaneous emission of photons can

be taken into account phenomenologically by attributing to the excited state an energy with

both real and imaginary parts

α(ω)
∣
∣
∣
near resonance

≈ |〈i|d · ǫ̂|0〉|2
Ei − i~Γi/2− E0 − ~ω

. (1.8)

The shift of the energy level is thus given by

V0(r) = −
1

2
ℜα(ω)〈E2(r, t)〉t, (1.9)

where the real part of the polarizability is ℜα(ω)
∣
∣
∣
near resonance

≈ − ~−1δ
δ2+Γ2

i /4
|〈i|d · ǫ̂|0〉|2 and the

difference between the laser frequency and the resonant frequency is defined to the detuning

δ ≡ ω − ~
−1(Ei − E0) = ω − ωi,0. (1.10)

Positive δ is referred to as blue detuning and negative δ as red detuning. The rate of loss of

atoms from the ground state is given by

Γ0 =
1

~
ℑα(ω)〈E2(r, t)〉t, (1.11)

where the imaginary part of the the polarizability is ℑα(ω)
∣
∣
∣
near resonance

≈ ~
−1Γi/2

δ2+Γ2
i /4
|〈i|d · ǫ̂|0〉|2.

During an absorption or an emission process the momentum of a photon is imparted to

or removed from an atom. The rate of absorption of photons by an atom in the ground state

is equal to the rate of excitation of the ground state. Therefore if the radiation field is a

traveling wave with wave vector q, the total force on the atom due to the absorption process

is Frad = ~qΓ0. This is referred to as radiation pressure. Both this force and the energy shift

Eq.(1.9) play an important role in optical trapping and cooling. The perturbative treatment

given above is valid provided |〈i|d · ǫ̂|0〉| ≪ ~
√

δ2 + Γ2
i /4. Under most conditions relevant

for experiments in cold atom systems, electric fields are weak enough that the perturbative

approach is adequate.
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By focusing a laser beam it is possible to create a radiation field whose intensity has

a maximum in space. If the frequency of the light is detuned to the red, the energy of

the ground-state atom V0(r) has a spatial minimum, and therefore it is possible to trap

atoms. One advantage of optical traps is that the potential experienced by an alkali atom in

its ground state is essentially independent of the magnetic substates (degeneracy from the

quantum number m). This is due to the outermost electron in the ground state of alkali

atoms being in an s-state. Optical traps are also important in the context of Feshbach

resonances as we shall introduce later. In the vicinity of such a resonance the effective

interaction is a strong function of the magnetic field, and therefore it is desirable that the

magnetic field be homogeneous. This may be achieved by applying a uniform magnetic

field to atoms in an optical trap, but it is not possible with magnetic traps, since without

inhomogeneity of the magnetic field there is no trapping.

Magneto-optical trap

Radiation pressure may also be used to confine atoms in space. In the magneto-optical trap

(MOT) this is done with the combination of laser beams and a spatially-varying magnetic

field. The basic physical effect is that, because atomic levels and the frequencies of transition

between them depend on the magnetic field, and magnetic field depends on position, so

the radiation pressure depends on position. The use of MOT’s is a universal feature of

experiments on cold alkali atoms. Not only do they trap atoms, but they also cool them as

we shall describe below.

1.2.3 Cooling of atoms

Since laboratory magnetic fields are generally considerable less than 1 tesla, the temperature

must be cooled down to T < µBB ≈ 0.67K/T × 1T = 0.67K in order for the atoms to

be trapped by magnetic fields. To reduce heating of atoms by absorption of photons, the

laser frequency in optical traps must be chosen away from atomic resonances. The resulting

optical traps are shallow (∼ µK) and therefore atoms must be cooled in other sorts of traps
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before they can be held by purely optical forces.

Doppler cooling utilizes the laser beams that is tuned to lie just below the frequency of

an atomic transition between an excited state |i〉 and the ground state |0〉. Because the

laser is detuned to the red, the atoms will absorb more photons if they move in the opposite

direction of the laser beam, due to the Doppler effect. Thus if one applies light from two

opposite directions, the atoms will always absorb more photons from the laser beam pointing

opposite to their direction of motion. The result of the absorption and emission process is

to reduce the speed of the atom and the lowest temperature attainable by this mechanism

is given by the decay rate of the excited state |i〉

kBTDoppler =
~Γi

2
. (1.12)

The Doppler cooling limit for lithium is about 140µK.

Sisyphus cooling is a mechanism through which atoms can be cooled using laser beams

below the temperatures expected to be achieved by Doppler cooling. Atoms moving through

the potential landscape created by the standing wave (created by the interference of the two

counterpropagating beams) lose kinetic energy as they move to a potential maximum, at

which point optical pumping moves them to a lower-energy state, thus losing the potential

energy they had. The process of losing kinetic energy followed by optical pumping will be re-

peated and thereby leading to continual cooling of the atoms to temperatures corresponding

to a thermal energy of order the so-called recoil energy

kBTSisyphus = ER =
~
2q2

2m
. (1.13)

This is the energy imparted to an atom at rest when it absorbs a photon of momentum

~q. These temperatures lie several orders of magnitude below the lowest temperature by

the Doppler mechanism. The atomic transitions have energies on the scale of electron volts,

while the rest mass of an atom is ∼ A GeV, where A is the mass number of the atom. The

recoil energy is therefore 6× 10−6(~ω/1eV)2/A K, which is of order 0.1 ∼ 1µK.
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In the experiments performed to date, condensation for bosons is achieved by using

evaporative cooling after laser cooling. The basic physical effect in evaporative cooling is

that, if particles escaping from the system have an energy higher than the average energy

of particles in the system, the remaining particles are cooled. In practice one applies radio-

frequency (RF) radiation that flips the spin state of an atom from a low-field seeker one to a

high-field seeker one, thereby expelling the atom from the magnetic trap. Since the resonant

frequency depends on position as a consequence of the Zeeman effect of an inhomogeneous

magnetic field, the frequency of the RF radiation can be steadily adjusted to allow loss of

atoms with lower and lower energy.

However, the rate of evaporation depends on the energy threshold and the rate of elastic

collisions between atoms in the gas, since collisions are responsible for scattering atoms

into states at energies high enough for evaporation to occur. The elastic collision rate,

which governs the effectiveness of evaporative cooling, behaves differently for fermions and

bosons when gases become degenerate. For identical fermions like 6Li, the requirement of

antisymmetry of the wave function forces the scattering cross section to vanish at low energy

and therefore evaporative cooling with a single species of fermion, with all atoms in the same

internal state, cannot work. This difficulty may be overcome by using a mixture of two types

of atoms, either two different fermions, which could be different hyperfine states of the same

fermionic isotope, or a boson and a fermion. This process is referred to as sympathetic

cooling. The lowest experimentally obtained temperature to date is T/TF ∼ 0.05 [7].

1.3 Numerical methods

1.3.1 Exact diagonalization

Exact diagonalization methods are important tools for studying the physical properties of

quantum many-body systems. These methods typically are used to determine a few of

the lowest eigenvalues and eigenvectors of models of many-body systems on a finite lattice

(grid). From these eigenvalues and eigenstates, various ground state expectation values and

correlation functions are easily computed. The complexity of fully quantum calculations
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grows exponentially with the number of particles involved, so the methods are limited to

small lattice sizes. However, they not only provide useful benchmarks for approximate

theoretical calculations and quantum Monte Carlo simulations, but also provide helpful

insight into the subtle properties of unsolvable many-body problems in the thermodynamic

limit.

The direct diagonalization scheme of a Hermitian matrix, which produces the whole

spectrum of eigenvalues, involves a tri-diagonalization phase followed by an iterative diag-

onalization phase. The complexity of the direct scheme is O(n3), where n is the matrix

dimension, i.e. the total number of sites (grid points) in a lattice model. However, many

quantum many-particle problems lead to a sparse matrix representation of the Hamiltonian,

where only a small fraction of the matrix elements are non-zero. The preferred diagonaliza-

tion methods are iterative, i.e. the Hamiltonian matrix Ĥ is applied repeatedly to a set of

vectors from the Hilbert space. The commonly used projectors include the Lanczos itera-

tion, imaginary time evolution operator e−τĤ and Green’s function operator (I−τĤ). Thus,

the main programming effort is efficiently performing a matrix-vector multiplication. The

complexity of a typical matrix-vector multiply is O(n2), but for a sparse matrix where only

a constant number of elements in each row are non-zero, the complexity of each iteration

step is reduced to O(n) for a single state and O(mn) for a set of m state. In addition,

orthogonalization is required at each step of the iteration with a complexity of O(m2n).

Thus, the computation time of this algorithm is linear in the number of grid points and the

complexity is proportional to

(# of steps)(const×mn+ const×m2n), (1.14)

where m is the number of states and n is the matrix dimension, i.e. the number of grid

points.

The key step to make the problem more tractable is the use of symmetries to block-

diagonalize the Hamiltonian. This step produces sequences of smaller matrices along the

diagonal by similarity transformations. At implementation level, this can be achieved by
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construction of basis states satisfying the prescribed symmetries or by properly symmetrize

the state vectors at each step of the projection. Detailed discussion will be found in Chapter

4.

The main limitation of this method is its restriction to small lattices, and thus properties

in the thermodynamic limit are difficult to obtain. However, the results for the small lattice

might meaningfully represent those of the large systems because many-body interactions

are short-ranged and can lead to phenomena with short coherence lengths. If this length

is smaller than the lattice size accessible by the exact diagonalization method, physically

meaningful results are obtained. In other cases, an extrapolation of results for finite sizes

to infinite system sizes (or for discrete grid to continuum systems) is possible. Such ex-

trapolation processes are used in the exact calculations of the ferromagnetic transition of a

four-fermion system in Chapter 5.

1.3.2 Metropolis Monte Carlo

The concept of Monte Carlo sampling is equally important for classical, statistical and

quantum physical problems. In Metropolis Monte Carlo, a given probability distribution

for the atoms is sampled directly using a stochastic method. More specifically, a random

change in the positions of the atoms is proposed, and the proposed move is then accepted

or rejected based on the ratio of weighting factors of the old and new configurations.

To calculate the expectation value of an observable Ô of a system of N particles in

variational Monte Carlo, the weighting factor is chosen to be the squared-norm of the trial

wavefunction |ΨT |2

〈Ô〉 =
∫ ∏N

i=1 d
3riΨ

∗
T (r1, · · · , rN)ÔΨT (r1, · · · , rN)

∫ ∏N
i=1 d

3ri|ΨT (r1, · · · , rN )|2
. (1.15)

The Monte Carlo algorithm generates a sequence of configurations R(n) = {r(n)1 , · · · , r(n)N }
such that at long time n→∞ the probability distribution converges to |ΨT |2. Monte Carlo

12



integration estimates the mean of an observable,

〈Ô〉 ≈ Ō ±

√

Ō2 − Ō2

N , (1.16)

where the bar notation on the right hand side denotes taking the arithmetic mean over the

N sample points

Ō =
1

N
N∑

n=1

O(R(n)), Ō2 =
1

N
N∑

n=1

O2(R(n)). (1.17)

Here O(R(n)) is called an estimator for the observable Ô. Any properties calculated from a

Monte Carlo simulation necessarily have an associated statistical error, which should always

be quoted with published simulation data. These errors can always be reduced by running

the simulation longer, assuming that the probability distribution being sampled has a finite

variance. It is important to ensure that the sample points are sufficiently uncorrelated,

otherwise the statistical error is underestimated. In Metropolis Monte Carlo, a new sample

point is generated based on the acceptance or rejection of the old one, which makes the

sequence of sample points inevitably correlated. An analysis of auto-correlation time in

Monte Carlo steps is then required and block average is used to estimate the statistical

error. In this case, N in Eq. (1.16) refers to the number independent sample points or

blocks. According to Gauss’ central limit theorem, given enough averaging, the probability

distribution of the mean will approach Gaussian as long as the variance is not infinite.
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Chapter 2

Atomic Scattering

2.1 Basic descriptions

Two-body interactions at low energies are characterized by their scattering lengths. A

qualitative argument [3] shows that, for polarized alkali atoms, these scattering lengths are

typically about two orders of magnitude greater than the size of an atom ∼ a0 = ~
2/(mee

2).

For large atomic separations, there is an attraction due to the van der Waals interaction

caused by the electric dipole-dipole interaction −α/r6, where r is the atomic separation. The

length scale r0 in the Schrödinger equation at zero energy, which sets the basic scale for the

scattering length, may be estimated by dimensional arguments to be r0 = (αm/~2)1/4. On

the other hand, the coefficient α must be of the form of a typical atomic energy, e2/a0, times

the sixth power of the atomic length scale a60, that is α = C6e
2a50, where the dimensionless

coefficient C6 gives the strength of the van der Waals interaction in atomic units. Thus the

length scale r0 is given by

r0 =
4

√

C6m

me

a0. (2.1)

The large scattering lengths for alkali atoms are thus a consequence of two effects: atomic

masses are of order 103A times the electron mass me and van der Waals coefficients for

alkali atoms lie between 103 and 104, so typical scattering lengths are of order 102a0. The

numerical values of C6 are given in [3], C6 ≈ 6.5 for H-H, C6 ≈ 1393 for Li-Li, C6 ≈ 1556 for

Na-Na, C6 ≈ 3897 for K-K, C6 ≈ 4691 for Rb-Rb and C6 ≈ 6851 for Cs-Cs. A microscopic

expression for C6 can be derived based on the electric dipole-dipole interaction between
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atoms

C6 ≈
3

4∆E3
res

. (2.2)

Here ∆E is the energy of the resonance line in atomic units. For the heavier alkali atoms,

the actual value of C6 is greater than the estimate Eq(2.2), while for light atoms hydrogen,

lithium and sodium, the estimate is larger than the actual value.

Here we outline the basic scattering theory and introduce the scattering length, which

characterizes low-energy interactions between a pair of particles. If we neglect the internal

degrees of freedom of the atoms due to the nuclear and electronic spins, at large interatomic

separations one writes the wavefunction for the relative motion as the sum of an incoming

plane wave and a scattered wave

ψ = eikz + f(k)
eikr

r
, (2.3)

where f(k) is the scattering amplitude and k specifies the wave vector of the scattered

wave. At very low energies it is sufficient to consider s-wave scattering. In this limit k → 0

the scattering amplitude f(k) = f(θ) in three dimensions approaches a constant −a, the
wavefunction Eq(2.3) becomes

ψ ∼ 1− a

r
. (2.4)

The constant a is called the scattering length. It can be interpreted as the node, or the inter-

cept of the asymptotic wave function Eq(2.4) on the r-axis. In the presence of interatomic

interactions that give rise to transitions between internal states, scattering becomes a multi-

channel problem. The relative motion of two atoms can be described by the Hamiltonian

Ĥ = Ĥ0 + V̂ , where

Ĥ0 =
p2

2µ
+ Ĥspin(1) + Ĥspin(2). (2.5)

Here the first term in Ĥ0 is the kinetic energy operator for the relative motion, and Ĥspin

is the Hamiltonian corresponding to the internal spin-states, the labels 1 and 2 refer to the
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two atoms. The eigenstates of Ĥ0 may be denoted by |αβk〉 and the eigenenergies are

Eαβ(kαβ) =
~
2k2αβ
2µ

+ ǫα + ǫβ. (2.6)

Two atoms initially in the state |αβ〉 may be scattered by atom-atom interactions to the

state |α′β′〉. The scattering amplitude is introduced to allow for transitions between internal

states,

|ψ〉 = eikαβ ·r|αβ〉+
∑

α′β′

fα′β′

αβ (kαβ,k
′
α′β′)

e
ik′

α′β′
r

r
|α′β′〉. (2.7)

The scattered wave has components in different internal states |α′β′〉 which are referred to

as the exit channels. Because of the coupling of channels, atoms can be scattered between

different magnetic substates.

Two types of resonances play a role in scattering processes: shape or potential resonances

and Feshbach resonances. The first occur when a potential well creates bound states in the

continuum. A Feshbach resonance, of most concern in ultra-cold atomic scattering, results

when true bound states belonging to a closed channel subspace match the energy of open

channels and a coupling exists between them so that temporary transitions are possible

during the collision process. In this chapter, we discuss the shape or potential resonances in

Sect.(2.2) and Sect.(2.3) and Feshbach resonances in Sect.(2.5).

The central postulate of the theory of quantum gases is that the short range details of

the interaction are unimportant, only the low-momentum scattering amplitude fk between

two atoms is relevant. As a consequence, any simplified model for the interaction, leading

to a different scattering amplitude fmodel
k , is acceptable provided that

fmodel
k ≈ fk (2.8)

for the relevant values of the relative momentum k distributed in the gas. It is desirable to

impose similar scattering amplitudes over some momentum range, not just equal scattering

lengths a. For spin-1/2 fermions, typical values of k can be the Fermi wave vector kF , the

inverse scattering length a−1 or the inverse thermal de Broglie wave-length λ−1

dB
. The typical
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value of k depends on the physical situation. The first choice k ∼ a−1 is appropriate for

the case of a condensate of dimers (a > 0) since it is the relative momentum of two atoms

forming the dimer. The second choice k ∼ kF is appropriate for a degenerate Fermi gas of

atoms (not dimers). The third choice k ∼ λ−1

dB
is relevant for a non-degenerate Fermi gas.

2.2 Short range models

For the interaction potential with a short range, the asymptotic expression of s-wave in the

non-interacting region takes the form

ψ (r)
r→∞→ sin (kr + η0)

kr
≡ sin [k (r − as)]

kr

k→0→ 1− as
r
, (2.9)

where we have defined the zero energy s-wave scattering length in terms of zero energy phase

shift as = − limk→0 η0(k)/k. Depending on the details of the potential, as may have either

sign. In the case of positive as one can say that by comparison with the noninteracting

case the relative wave function is repelled from the origin, whereas with negative as the

wave function is attracted; in the repulsive case as may be visualized as the radius of the

hard-sphere potential, which would give rise to the same relative wave function. However,

it should be emphasized that in the original problem ψ (r) does not vanish for r < as.

Even though as has the same dimension as the range of the potential rc, namely, the

dimension of length, as and rc can differ by orders of magnitude and have different physical

meanings. We say rc characterizes the range of the potential while as characterizes the

strength of the “effective” interaction in the sense of scattering. For a repulsive potential,

as > 0 and is roughly of order of rc, as illustrated by the hard sphere problem. However, for

an attractive potential that may support bound states, it is possible for the magnitude of

the scattering length to be far greater than the range of the potential. Furthermore, if we

increase the attraction, the scattering length can change sign [1].
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2.2.1 Examples

Before describing the general behavior of the zero energy (k → 0) s-wave (l = 0) scattering

length related to the s-wave bound states occurring in short-ranged potentials, we start

with several examples of typical short range two-body interactions. The zero-range limit of

short-range models will be discussed in the next section.

Hard sphere

V (r) = 0, r > a,

= ∞, r ≤ a.

This is a purely repulsive potential. In this case, the s-wave scattering length equals to the

range of the potential and has a simple geometric meaning, namely, the radius of the hard

sphere

as = a = rc. (2.10)

Spherical square potential barrier [2]

V (r) = 0, r > a,

= V0, r ≤ a.

This is a repulsive potential and the scattering property is similar to that of a hard sphere.

In this sense, purely repulsive potential is not so interesting for scattering. The s-wave is

given by

as (k) = a− 1

k
cot−1

[κ

k
coth (κa)

]

, (2.11)
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Figure 2.1: Spherical potential barrier.

where κ =
√

2µV0

~2
. In low energy limit k → 0, we have

as = a− tanh (κa)

κ
. (2.12)

Firstly, in free limit V0 → 0, we have

tanh (κa)

κ
→ a, (2.13)

thus the scattering length vanishes as expected. We plot the following function in Fig.(2.1)

as
a

= 1− tanh (κa)

(κa)
. (2.14)

As the potential barrier becomes infinitely high, the result agrees with a hard sphere.
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Spherical square potential well [2]

V (r) = 0, r > a,

= −V0, r ≤ a.

This is an attractive potential. The s-wave scattering length is given by

as (k) = a− 1

k
cot−1

[κ

k
cot (κa)

]

, (2.15)

where κ =
√

2µV0

~2
. In low energy limit k → 0, we have

as = a− tan (κa)

κ
. (2.16)

In the non-interacting limit V0 → 0, the scattering length vanishes as expected. We plot the

following function
as
a

= 1− tan (κa)

(κa)
. (2.17)

in Fig.(2.2) to illustrate the general behavior of low energy s-wave scattering length as a

function of the two-body interaction potential. Magnitude divergences and sign changes are

observed as the potential well deepens. This is due to the formation of a series of bound

states. We consider the emergence of a bound state quantitatively. For as → +∞, the

form of the radial wave function χ = rψ = r − as is approximately e−kr with vanishing

k. Note that e−kr with k ≃ 0 is the bound state wave function for r > a, which is barely

bounded with energy E infinitesimally negative. The wave function inside the interacting

region (r < a) for E = 0+(zero energy scattering state) and E = 0−(bound state with zero

binding energy) are essentially the same because

√

2µ (0+ + V0)

~2
=

√

2µ (0− + V0)

~2
. (2.18)
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Figure 2.2: Spherical potential well.

Because the wave functions inside the interacting region (r < a) are essentially the same

for the two situations, we equate the logarithmic derivative of the barely bound state wave

function with that of the zero energy scattering solution

−ke
−kr

e−kr

∣
∣
∣
r=a

=
1

r − as

∣
∣
∣
r=a

. (2.19)

If the interaction potential is short-ranged, i.e. a≪ as, we have

k =
1

as
, (2.20)

thus as → +∞ when a bound state just emerges. The binding energy reads

ǫ ∼= − ~
2

2µa2s
. (2.21)
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Figure 2.3: van der Waals attraction.

van der Waals attraction with a core [3]

V (r) = − α
r6
, r > rc,

= ∞, r ≤ rc.

where now rc characterizes the interaction range and α characterizes the strength. Define the

length scale which characterizes the strength r0 =
4

√
2µα
~2

, the zero energy s-wave scattering

length is
as
rc

= 0.67×
(
r0
rc

)
J−1/4 (r

2
0/2r

2
c )

J+1/4 (r
2
0/2r

2
c )
. (2.22)

We plot the scattering length as in units of core radius rc as a function of the potential

strength r0/rc in Fig.(2.3). This example has almost the same feature as the spherical

square potential well, except that as the potential is gradually turned on, the scattering

length first becomes positive for a little bit, and then becomes increasingly negative. This

illustrates the sentence in Leggett’s review [4]: “as will initially (or at any rate after a little)
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Figure 2.4: Exponential decay attraction.

take increasingly negative values.” For a plot of the functional dependence of the scattering

length in units of r0 as a function of the core radius rc/r0, see Pethick and Smith [3].

Exponential decay potential [2]

V (r) = −V0 exp
(

−r
a

)

. (2.23)

The asymptotic solution of the scattering wave function at large distance gives

as
a

= 2 log (γκa)− πN0 (2κa)

J0 (2κa)
, (2.24)

where κ =
√

2µV0

~2
and γ = 1.781072381 is the exponential of Euler’s constant. We plot the

scattering length in units of the range of the potential in Fig(2.4).
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Figure 2.5: Attractive Pöshcl-Teller potential.

Pöschl-Teller potential

V (r) = − V0

σ2 cosh2
(
r
σ

) . (2.25)

This cosh−2 potential is particularly useful in quantum Monte Carlo simulations[5, 6]. The

asymptotic solution of the scattering wave function at large distance gives

as
σ

= γ + ψ(s+ 1)− π

2
tan
(sπ

2

)

, (2.26)

where γ = 0.577215665 is Euler’s constant, s(s + 1) = 2µV0/~
2 and ψ is the logarithmic

derivative of the Γ-function. The zero energy s-wave solution is exactly solvable for V0 =

~
2/µ, at which as =∞

ψ (r) ∝ tanh (λr)

r
∼ 1

r
. (2.27)

We plot the scattering length in units of σ in Fig(2.5).
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Separable potential: contact potential on grid

A time-independent separable potential is defined as V̂ = λ |S〉 〈S|. This is in general a

non-local interaction, where λ is the coupling constant. The Schrödinger equation with a

separable potential reads

(E − Ĥ0)|ψ〉 = λ |S〉 〈S|ψ〉 , (2.28)

where Ĥ0 = p2/2m is the kinetic energy operator. The algebraic equation

〈S|(E − Ĥ0)
−1|S〉 = λ−1 (2.29)

determines the bound state solution. It might happen that Eq.(2.29) is not satisfied for

any real E which means that a separable potential does not support any bound state. For

the scattering problem, we introduce the kinetic energy Ek = k2/2 of a particle with the

momentum k and rewrite Eq.(2.28) in Lippmann-Schwinger form

∣
∣ψ+

k

〉
= |k〉+ Ĝ+

0 (Ek) |S〉 〈S|k〉
λ−1 − 〈S| Ĝ+

0 (Ek) |S〉
, (2.30)

where Ĝ+
0 (E) = (E + iǫ− Ĥ0)

−1 corresponds to the incoming and outgoing spherical waves

for large distances from the potential center. To perform an analytic calculation we take an

explicit form of the separable potential,

V̂ = − U

∆3
|0〉〈0| ⇒ V (r) = − U

∆3
δr,0. (2.31)

This is a contact interaction on grid and ∆ is the grid spacing. The zero-energy s-wave

scattering length
m

4π~2as
=

1

U∞
− 1

U
, (2.32)

where the unitarity point U = U∞ occurs at as →∞,

1

U∞
=

1

V

∑

k′

1

ǫk′

=

∫

D

d3k′

(2π)3
1

ǫk′

= γ
m

~2∆
. (2.33)
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Figure 2.6: Contact interaction on grid.

If we choose the parabolic dispersion relation ǫk = ~
2k2/2µ = ~

2k2/m, γ ≈ 0.1944. For

a nearest neighbor hopping model, we have the tight-binding dispersion relation and γ ≈
0.2527; for a long range hopping model including up to the next nearest neighbors, γ ≈
0.2190. We plot the scattering length in units of the grid spacing ∆ in Fig(2.6). The contact

potential on grid differs from the short-ranged potentials in one important aspect that there

exists a single bound state and hence one unitarity point as =∞.

Relation to Hubbard parameters

In nearest neighbor hopping Hubbard model, we have the kinetic energy term −t∑〈i,j〉(c
†
icj+

c†jci) which possesses the eigenvalues ǫk = −2t (cos kx∆+ cos ky∆+ cos kz∆). We identify

the hopping coefficent

t =
~
2

m∆2
, (2.34)

and the scattering length as in terms of Hubbard parameters is given by

1

as
= 4πt

(
1

u∞
− 1

u

)

. (2.35)

Here as is in units of the grid spacing ∆.
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2.2.2 Summary

The general behavior of the scattering length is related to the s-wave bound states occurring

in the potential. If we imagine starting from the noninteracting state (as ≡ 0) and gradually

increasing the strength of the potential (whose shape is taken to be typical of a real atomic

one), then as will initially (or at any rate after a little) take increasingly negative values.

As the point at which the potential is just enough to sustain a bound state is approached,

as will approach −∞, and when the state is just bound, will take a large positive value

(which approaches +∞ as the potential is reduced again to the critical value). In this region

(as ≫ rc) the asymptotic form of the bound-state wave function is r−1 exp(−r/as) and its

energy is −~2/2ma2s ; (the form of the zero-energy scattering state may be viewed as a

consequence of the need to make it orthogonal to the bound state). This general behavior

is expected near the points where further bound states appear in the well [4].

In summary, zero energy s-wave scattering length is a characterization of the strength of

the “effective” interaction, but not the real potential. Phase shift observations in scattering

experiments are made at large distance from the scatterers. We say if the scattered wave

is pushed in, this is an attractive interaction; or pulled out, we say this is a repulsive

interaction. However, while a repulsive potential can only pull out a scattered wave, an

attractive potential can either push it in or pull it out, depending on the formation of bound

states. Thus from the scattering experiments, we can only tell the sign of the effective

interaction, which is indeed characterized by the sign of the scattering length.

2.3 Zero range model

Based on the examples of short range potentials discussed in the previous section, we in-

troduce the zero-range δ-function pseudopotential and briefly recapitulate the derivation.

The Schrödinger equation for the relative motion of two identical particles of mass m which

interact via a finite-range potential V (|r|),

[
−∇2 + V (r)

]
ψ (r) = Eψ (r) . (2.36)
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Here we choose the units m = ~ = 1. Write E = k2 and denote the finite range of the

interaction potential as rc, and one encounters the Helmholtz equation in the outer range,

(
∇2 + k2

)
ψ (r) = 0, r > rc. (2.37)

This equation is solved by spherical Bessel functions and harmonics

ψ (r) =
∞∑

l=0

l∑

m=−l

Alm [jl (kr)− tan (ηl)nl (kr)]Ylm (θ, φ) , (2.38)

where ηl = ηl(k) is called the phase shift of the lth partial wave. Restricting oneself to low

energies k → 0, so that only s-wave matters, this simplifies to

ψ (r) =
A00√
4π

[
sin(kr)

kr
+ tan (η0)

cos(kr)

kr

]

∝ sin (kr + η0)

kr
, r →∞. (2.39)

The decisive step of the pseudopotential method is to extend the validity range of this outer

wave function to all r, even though the actual wave function is affected by the potential, and

therefore differs from the function for r < rc. When extending the outer function to r < rc,

the term proportional to tan(η0), that is, the term which actually “feels” the potential,

becomes singular. It is this singularity which gives rise to the pseudopotential. Since the

outer function solves the Helmholtz equation for all r > 0, and r = 0 is dealt with by the

relation ∇2 (1/r) = −4πδ (r), the extended wave function obeys the operator equation

(
∇2 + k2

)
ψ (r) = −4π A00√

4π

tan (η0)

k
δ (r) . (2.40)

By observing that
A00√
4π

=
∂

∂r
[rψ (r)]

∣
∣
∣
r→0

, (2.41)

we reintroduce the wave function into the differential equation

(
∇2 + k2

)
ψ (r) = −4π tan (η0)

k
δ (r)

∂

∂r
[rψ (r)] . (2.42)
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This equation now holds for all r. In effect, the actual interaction potential has thus been

replaced, for s-wave scattering, by the pseudopotential operator

U (r) = −4π tan (η0)

k
δ (r)

∂

∂r
r. (2.43)

If we insert back the particle mass and Planck constant, we have

U (r) = −4π~2

m

tan (η0)

k
δ (r)

∂

∂r
r = −2π~2

µ

tan (η0)

k
δ (r)

∂

∂r
r. (2.44)

Notice that usually, it is the individual particle mass m instead of the reduced mass µ that

is set to unity. In the special case of a hard sphere interaction of radius a, one has η0 = −ka
and then the commonly quoted zero range interaction

U (r) =
4π~2a

m
δ (r)

∂

∂r
r =

2π~2a

µ
δ (r)

∂

∂r
r. (2.45)

By substitution we can verify the form of the two-body bound state wave function and the

binding energy

ǫ0 = − ~
2

ma2
, (2.46)

ψ0 (r) =
1√
2πa

e−
r
a

r
. (2.47)

Note that for a > 0, the potential is repulsive as long as scattering properties are concerned,

but the regularization of the δ-functions gives rise to a single bound state as if an attracitve

interaction were at work. The corresponding energy 1/a2 tends to ∞ as a → 0+ and

the bound state wave function has a vanishing overlap with any (a-independent) square-

integrable wave function, i.e. this limit exhibits an anomaly that the binding energy grows

without bound and the scattering cross section vanishes. For the reference of a similar

problem but in a trap, see [7]. For attractive case a < 0, no anomaly occurs.
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On the other hand, the exact outgoing scattering states can also be constructed explicitly

ψ
(+)
k

(r) = eik·r + fk
eikr

r
, (2.48)

where

fk = − 1

a−1 + ik
. (2.49)

This result can be verified by substitution into Schrödinger equation in the same way as the

bound state

Ĥψ
(+)
k

= k2ψ
(+)
k
. (2.50)

The incoming scattered wave ψ
(−)
k

can be obtained by a complex conjugation of the outgoing

wave. Together with the single bound state, the scattered waves form a complete basis set of

the given Hamiltonian. One of the possible reasons why this pseudopotential is an important

result in the physics of ultracold alkali gases is that the zero energy s-wave scattering length

is particularly simple in this form,

as = a. (2.51)

Namely, the oefficient in front of the δ-function is identically the scattering length. Histor-

ically, δ-function pseudopotential was introduced to facilitate the perturbative calculation

of many body problem with hard sphere interactions [8], but has a far wider validity and

applications. The regularized δ-function potential actually models attractive potential which

would give rise to positive scattering length by forming bound states. We may say that the

regularized δ-function potential is a simple parametrization of the short-ranged potentials

in terms of the scattering length.

2.4 Bethe-Peierls boundary condition

There are basically two approaches to model the interaction between ultra-cold atoms in a

unitary gas or more generally, for the BEC-BCS crossover.

In the first approach, see Sect(2.2) one takes a model interaction with a finite range rc
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and a fixed (e.g. infinite) scattering length a. This model may be in continuous space or

on a lattice, with one or several channels. Then one tries to calculate the eigenenergies,

the thermodynamic properties from the thermal density operator e−βĤ , etc, and the zero

range limit rc → 0 should be taken the end of the calculation. Typically, this approach is

followed in numerical many-body methods, such as the approximate fixed node Monte Carlo

method or unbiased Quantum Monte Carlo methods [5, 6]. A non-trivial question however

is whether each eigenstate of the model is universal in the zero range limit, that is if the

eigenenergy and the corresponding wavefunction converge for rc → 0.

In the second approach, see Sect(2.3), one directly considers the zero range limit, and one

replaces the interaction by the so-called Wigner-Bethe-Peierls contact conditions on the N -

body wavefunction. This constitutes what we shall call the zero-range model. The advantage

is that only the scattering length appears in the problem, without unnecessary details on the

interaction, which simplifies the problem and allows to obtain analytical results. For example

the scale invariance of the unitary gas becomes clear. A non-trivial question however is to

know whether the zero-range model leads to a self-adjoint Hamiltonian, with a spectrum then

necessarily bounded from below for the unitary gas, without having to add extra boundary

conditions. For equal mass two-component Fermions, it is hoped in the physics literature

that the zero-range model is self-adjoint for an arbitrary number of particles N .

In the Wigner-Bethe-Peierls model, that we also call zero-range model, the Hamiltonian

for a system of particles interacting with δ-function pseudopotentials is simply represented

by the same partial differential operator as for the ideal gas case:

Ĥ =
N∑

i=1

[

− ~
2

2m
∇2

ri
+ U(ri)

]

, (2.52)

where U is the external trapping potential supposed for simplicity to be spin-independent.

As is however well emphasized in the mathematics of operators on Hilbert spaces, an operator

is defined not only by a partial differential operator, but also by the choice of its so-called

domain D(Ĥ). Here the domain does not coincide with the ideal gas one. It includes

the following Wigner-Bethe-Peierls contact conditions: for any pair of particles i, j,when
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rij = |ri − rj| for a fixed position of their centroid Rij = (ri + rj)/2 and all the other

particles, there exists a function Aij such that

Ψ(r1, · · · , ri, · · · , rj , · · · , rN)→ Aij(Rij; rk 6=i,j)

(
1

rij
− 1

a

)

+O(rij). (2.53)

These conditions are imposed for all values of Rij different from the positions of the other

particles rk , k different from i and j. If the Fermionic particles i and j are in the same

spin state, the fermionic symmetry imposes Ψ(· · · , ri = rj, · · ·) = 0 and one has simply

Aij = 0. For i and j in different spin states, the unknown functions Aij have to be determined

from Schrödinger equation, e.g. together with the energy E from the eigenvalue problem

ĤΨ = EΨ. Note that in Eq(2.53) we have excluded the configurations where two particle

positions coincide. Since ∇2
ri
r−1
ij = −4πδ(ri − rj), including these values would require a

calculation with distributions rather than with functions, with regularized delta interaction

pseudo-potential, which is a compact and sometimes useful reformulation of the Wigner-

Bethe-Peierls contact conditions.

An application: two-particle problem in a periodic box

As an application of the Wigner-Bethe-Peierls boundary condition, we construct the explicity

form of the two-body bound-state solution in a periodic box

ψbox0 (r) =
∑

L

e−
|r+L|

a′

|r+ L| ,

where L denotes the integer multiples of lattice vectors corresponding to the lengths of box.

Notice that the above expression is a periodic image summation of solutions in infinite space;

however, each term in the summation has a modified parameter a′. To fix this parameter,

the Bethe-Peierls boundary condition is invoked:

ψbox0 (r)
r→0→ 1

r
− 1

a′
+
∑

L 6=0

e−
|L|

a′

|L| =
1

r
− 1

a
,
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Thus, the parameter a′ is related to the scattering length a

1

a
=

1

a′
−
∑

L 6=0

e−
|L|

a′

|L| . (2.54)

If we write L/L = n1x̂+ n2ŷ + n3ẑ, then

1

a
=

1

a′
−
∑

n 6=0

e−
|n|

a′

|n| , (2.55)

where a and a′ is written in units of L, |n| =
√

n2
1 + n2

2 + n2
3. The unitarity limit a → ∞

corresponds to a value of a′ that satisfies the following transcendental equation

1

a′
−
∑

n 6=0

e−
|n|

a′

|n| = 0. (2.56)

This construction can be verified by substitution into Schrödinger equation with the regu-

larized δ-function interaction. The results are summarized in Fig(2.7). The left part shows

the functional dependence of the effective parameter a′ in the wavefunction on the scattering

length a. As expected, in the tight-binding limit a−1 →∞, we have

lim
a→0

a′/a = 1. (2.57)

The important feature is that in the unitary limit a−1 → 0, the parameter a′ approaches a

non-zero constant L/a′ ≈ 1.95, which in consequence gives rise to a non-zero binding energy

in the box. The right part of Fig(2.7) shows the 2-body binding energy as a function of the

scattering length a−1. This expression is useful for the construction of two-body orbitals in

the many-body wavefunctions in QMC calculations.

2.5 Feshbach resonances: two-channel model

The short range models or the zero-range model are of course dramatic simplifications of

the real interaction between two alkali atoms. At large interatomic distances, much larger
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Figure 2.7: Two particles with a regularized δ-function interaction in a periodic box.

than the radius of the electronic orbitals, one may hope to realistically represent this inter-

actionby a function V (r) of the interatomic distance, with a van der Waals attractive tail

V (r) = −C6/r
6, a simple formula that actually neglects retardation effects and long-range

magnetic dipole-dipole interactions. At short interatomic distances, this simple picture of

a scalar interaction potential V (r) has to be abandoned. Following quantum chemistry or

molecular physics methods, one has to introduce the various Born-Oppenheimer potential

curves obtained from the solution of the electronic eigenvalue problem for fixed atomic nu-

clei positions. For alkali atoms, restricting to one active electron of spin-1/2 per atom, one

immediately gets two ground potential curves, the singlet one corresponding to the total

spin S = 0, and the triplet one corresponding to the total spin S = 1. An external magnetic

field B is applied to activate the Feshbach resonance. This magnetic field couples mainly to

the total electronic spin and thus induces different Zeeman shifts for the singlet and triplet

curves. In reality, the problem is further complicated by the existence of the nuclear spin

and the hyperfine coupling, that couples the singlet channel to the triplet channel for nearby

atoms, and that induces a hyperfine splitting within the ground electronic state for well

separated atoms.

We first take a simplified view depicted in Fig(2.8) the atoms interact via two potential

curves, Vopen(r) and Vclosed(r). At large distances, Vopen(r) conventionally tends to zero,

whereas Vclosed(r) tends to a positive value V∞, one of the hyperfine energy level spacings
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Figure 2.8: A simplified view of a Feshbach resonance.

for a single atom in the applied magnetic field. In the two-body scattering problem, the

atoms come from r = +∞ in the internal state corresponding to Vopen(r), the so-called

open channel, with a kinetic energy E ≪ V∞. Due to a coupling between the two channels,

the two interacting atoms can have access to the internal state corresponding to the curve

Vclosed(r), but only at short distances; at long distances, the external atomic wavefunction

in this so-called closed channel is an evanescent wave that decays exponentially with r since

E < V∞. Assume the closed channel supports a bound state of energy ǫ0 in the absence

of coupling between the channels, called in what follows the molecular state or the closed-

channel molecule. Assume also that, by applying a judicious magnetic field, one sets the

energy of this molecular state close to zero, that is to the dissociation limit of the open

channel. In this case one may expect that the scattering amplitude of two atoms is strongly

affected, by a resonance effect, given the non-zero coupling between the two channels. This

is in essence how the Feshbach resonance takes place.

In the following we briefly review the essential steps in the Feshbach theory of resonances

to calculate the S-matrix element Sji for the transition from an open channel i to anotehr

open channel j in the neighborhodd of a resonance [9]. The total Hilbert space describing

the spatial and spin degrees of freedom is subdivided into a closed-channel subspace Q,
comprising the closed channels and a complimentary open channel subspace P . Feshbach
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resonances occur as a result of transitions from P to Q and back to P during a collision.

Introducing operators P̂ and Q̂, projecting on P and Q, the total Schrödinger equation of

the system is split into two coupled equation

(E − ĤPP )ΨP = ĤPQΨQ, (2.58)

(E − ĤQQ)ΨQ = ĤQPΨQ, (2.59)

with ΨP ≡ P̂Psi,ΨQ ≡ Q̂Ψ, ĤPP = P̂ ĤP̂ , ĤQQ = Q̂ĤQ̂ and ĤPQ ≡ P̂ ĤQ̂. Equation

(2.59) is formally solved by using the Green operator (E+ − ĤQQ)
−1 with E+ = E + i0:

ΨQ =
1

E+ − ĤQQ

ĤQPΨP . (2.60)

Substituting this expression in Eq(2.59) we get

(E − Ĥeff)ΨP = 0, (2.61)

where

Ĥeff = ĤPP + ĤPQ
1

E+ − ĤQQ

ĤQP . (2.62)

The second term in this effective Hamiltonian can be interpreted in terms of a temporary

transition from P space to Q space, propagation in Q space, and then reemission into P
space. The next step is the spectral decomposition of the Green operator

1

E+ − ĤQQ

=
∑

m

|φm〉〈φm|
E − ǫm

+

∫

dǫ
|φ(ǫ)〉〈φ(ǫ)|
E+ − ǫ . (2.63)

If the total energy E is close to a discrete bound state energy ǫ0 we can neglect the remaining

terms and Eq(2.61) reduces to

(E − ĤPP )ΨP =
ĤPQ|φB〉〈φB|ĤQP |ΨP 〉

E − ǫ0
, (2.64)
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with the formal solution

|ΨP 〉 = |Ψ+
i 〉+

1

E+ − ĤPP

ĤPQ|φB〉〈φB|ĤQP |ΨP 〉
E − ǫ0

, (2.65)

where |Ψ+
i 〉 is an eigenstate of ĤPP with an incoming wave in channel i. We can solve for

|ΨP 〉 by multiplication from the left with 〈φB|ĤQP and find

|ΨP 〉 = |Ψ+
i 〉+

1

E+ − ĤPP

ĤPQ|φB〉 ×
〈φB|ĤQP |Ψ+

i 〉
E − ǫ0 − 〈φB|ĤQP

1

E+−ĤPP
ĤPQ|φB〉

. (2.66)

Thus the amplitude Sji for the transition to channel j is determined by the asymptotic

behavior of ΨP

Sji = S0
ji − 2πi

〈Ψ−
j |ĤPQ|φB〉〈φB|ĤQP |Ψ+

i 〉
E − ǫ0 − 〈φB|ĤQP

1

E+−ĤPP
ĤPQ|φB〉

. (2.67)

We see that apart from the direct term S0
ji resulting from coupling within P space alone,

the amplitude of an outgoing wave in channel j will include aterm arising from coupling of

the incoming wave in channel i to the bound state in Q space followed by coupling of this

state to channel j. If we have only one open channel i we can write teh above expression as

Sii = S0
ii

(

1− iΓ

E − ǫ0 −∆+ iΓ
2

)

, (2.68)

where Γ = 2π|〈φB|ĤPQ|Ψ+
i 〉|2 represents teh width and ∆ the so-called resonance shift. Or

in the language of scattering length

4π~2

m
a =

4π~2

m
anr −

|〈φB|ĤPQ|Ψ+
i 〉|2

E − ǫ0
. (2.69)

In the case of ultra-cold collisions of ground state alkali atoms, it is the combination of

single-atom hyperfine and Zeeman interactions that determines the threshold of the various

channels at the specific magnetic field strength and thus determines the open and closed

channel subspaces. Atomic interactions may be tuned by exploiting the fact that the energies

of internal states depend on external parameters. We imagine that the energy demoninator
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in Eq(2.69) vanishes for a particular value of the magnetic field, B = b0. Expanding the

energy denominator about this value of the magnetic field, we find

E − ǫ0 ≈ (µ0 − µα − µβ)(B −B0), (2.70)

where

µα = −∂ǫα
∂B

, µβ = −∂ǫβ
∂B

(2.71)

are the magnetic moments of the two atoms in the open channel, and

µ0 = −
∂ǫ0
∂B

(2.72)

is the magnetic moment of the molecular bound state in the closed channel. The scattering

length is thus given by

a = anr

(

1 +
∆B

B − B0

)

, (2.73)

where the width parameter ∆B is given by

∆B =
m

4π~2anr

|〈φB|ĤPQ|Ψ+
i 〉|2

µ0 − µα − µβ

. (2.74)

Equation (2.73) shows that in this approximation the scattering length diverges to ±∞ as

B approaches B0. Because of the dependence 1/(B − B0), large changes in the scattering

length can be produced by small changes in the external field. It is especially significant

that the sign of the interaction can be changed by a small change in the field.

2.6 Scattering length approximation

As discussed in the previous sections, the shape or potential resonances are accompanied

by the formation of lower-lying bound states and Feshbach resonances take place by the

coupling between an open channel and a closed channel molecular state. The two-body

scattering length approximation (SLA) neglects the low-lying molecular states. Recall that
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Figure 2.9: Scattering length approximation by replacing the attractive contact interaction with a zero
boundary condition

the zero-energy s-wave scattering length a is defined by the long distance form of the out-

going scattering wave

ψ (r →∞) ∝ sin [k(r − a)]
kr

k→0−→ 1− a

r
. (2.75)

For a contact (zero range) potential, a is the radius of the first wavefunction node: ψ (r = a) =

0. The SLA replaces the underlying atomic interaction by a purely repulsive potential which

has the same two-body scattering length. This is illustrated in Fig(2.9).

This is analogous to the idea of pseudo-potentials in electronic structure. A pseudo-

potential can be generated in an atomic calculation to replace the strong Coulomb potential

of the nucleus and the effects of the tightly bound core electrons by an effective ionic potential

acting on the valence electrons and then used to compute properties of valence electrons

in molecules or solids, since the core states remain almost unchanged. The approach is

widely used in electronic structure calculations. However, it leads to an inaccuate model if a

pseudopotential is used for systems compressed to high density and the electron cores start

to overlap.
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Many experiments in cold atomic systems are performed near Feshbach resonance where

the scattering length is comparable to interatomic separation. In this situation, the lower-

lying molecular bound states giving rise to resonance can overlap, causing the scattering

states to distort in order to remain orthogonal to the bound states.
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Chapter 3

Bosons in Disordered Optical Lattice

3.1 White et al. experiment

Understanding the properties of disordered materials has a fundamental significance in con-

densed matter physics. Various kinds of disorder exist in real materials, but their disorder is

difficult to characterize and control experimentally. The optical lattice techniques [1] devel-

oped in recent years have enabled the construction of a nearly perfectly controlled disordered

potential and the measurement of properties of strongly correlated atoms in that potential

provides an opportunity to compare quantitatively experimental results with parameter-free

theoretical calculations.

The White et al. experiment consists of 87Rb atoms trapped in a background cubic lattice

potential created by red lasers with wave vector k = π
a
. The periodic background potential

is:

UL(r) = −SL ×
3∑

i=1

cos

(
2πni · r

a

)

, (3.1)

where ni are three mutually orthogonal unit vectors. The lattice spacing a = 406nm. A

disordered speckle field UD(r) is produced by a laser beam with phases randomized by a

diffuser. There is no closed form for the speckle distribution, however, the method of con-

structing the disordered potential to match the White et al. experiment [1] is approximated

by

UD(r) ∝ SD×
∣
∣
∣
∣
FT
[

Θ
(
d2 − q2x − q2y

)
exp

{

−q
2
x + q2y
w2

+ iγz
(
q2x + q2y

)
+ iφ (qx, qy)

}]
∣
∣
∣
∣

2

, (3.2)

where Θ is an aperture disc with radius d = 0.66k and w = 2.16k is the waist of the Gaussian
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beam, γ = 0.1a characterizes its radius of curvature, φ(qx, qy) is an uncorrelated random

phase uniformly distributed in [0, 2π) and the Fourier transform (FT) is performed in the

two dimensional (qx, qy) space. We normalize the field so that 〈UD(r)〉 = SD. If one wishes

to make the speckles smaller or larger, one can change the aperture diameter d. Detailed

derivations can be found in Goodman [2]. The spatial auto-correlation Γ = 〈UD(r)UD(r
′)〉

is used to quantify the speckle size. By fitting the spatial auto-correlation function to

Γ =
1

2

(

1 + e
2|r−r

′|2

σ2

)

, (3.3)

in the 2D plane r = (x, y), we obtain a correlation length ∼ 1.29a, that is slightly larger

than the lattice spacing. In addition, the orientation of laser speckles in White et. al.[1]

does not coincide with the lattice axes; the z-axis in Eq. (3.2) points along 1
2
n1+

1
2
n2+

1√
2
n3

of the optical lattice. The total external potential is a superposition of the periodic lattice

potential and the speckle potential U(r) = UL(r) + UD(r).

The 87Rb scattering length is chosen to be as = 100a0 = 5.29 nm, where a0 = 0.0529 nm

is the Bohr radius. In units of the lattice spacing, as = 0.013a.

3.2 Wannier representation and lattice model

In this chapter, we consider the problem of mapping a disordered single body potential to

a lattice model. By removing the high energy states associated with the continuum, the

Monte Carlo simulation becomes more efficient. In particular, efficient algorithms have been

developed [3][4] for lattice models. Consider the continuum Hamiltonian of N atoms with

mass m moving in the external potential U(r) and interacting with the pairwise potential

energy V (rα − rβ)

ĤN =
N∑

α=1

[
p2
α

2m
+ U(rα)

]

+
∑

α<β

V (rα − rβ), (3.4)
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x x

Figure 3.1: A sketch of a set of 10 Wannier states in a one-dimensional periodic lattice. Wiggles around
zero can be observed at the tail of a Wannier states, which is essential for the orthogonality condition.

where indices α, β label the atoms. On the other hand, the quantum mechanics of particles

moving in a lattice is conveniently described in a basis of localized wave functions, such as the

Wannier functions associated with a periodic potential. Using these localized functions, we

can define an effective lattice Hubbard Hamiltonian. Written in second quantized notation

it has the form:

ĥ = −
∑

〈ij〉
tija

†
iaj +

∑

i

ǫini +
1

2

∑

i

uini(ni − 1)

−
∑

{ij}
t̃ija

†
iaj +

1

2

∑

〈ij〉
ũijninj + · · · · · · , (3.5)

where i labels the single particle states (lattice sites), 〈ij〉 denotes a nearest neighbor pair and
{ij} a next-nearest neighbor pair, tij and t̃ij are hopping coefficients, ǫi is the on-site energy,

ui is the on-site interaction and ũij is the nearest neighbor off-site interaction. (Terms such

as next-nearest neighbor hopping and offsite interaction are often neglected.) Note that ĤN

refers to the N -body Hamiltonian in continuous space and ĥ to its equivalent on a lattice.

In a periodic potential, Wannier functions of a given band are related to the Bloch

functions ψnk of the same band n by the unitary transformation

wni(r) = wn(r−Ri) =
1√
N

∑

k

ψnk(r)e
−ik·Ri . (3.6)
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wni is localized around the lattice site Ri [5]. A sketch of the Wannier states in a one-

dimenional periodic lattice is shown in Fig. (3.1). However, in the absence of periodicity, the

concept of Wannier functions needs to be generalized. Two main types of generalizations

exist in literature. The perturbative approach [6] assumes the existence of the band struc-

ture and thus is applicable to nearly periodic potentials. The variational approach [7][8][9]

emphasizes the minimization of the spatial spread with respect to unitary transformations

of a starting basis set, for example the Wannier functions of a periodic potential.

In order to be useful, we would like the generalized Wannier functions to have the follow-

ing properties. First, localization is required by the physical picture of particles hopping in

the lattice. Second, a correct description of the low energy density of states is necessary to

capture the low temperature physics. Third, for convenience, the orthogonality of the basis

set is required to use commutation relations of creation and annihilation operators in the

second quantized Hamiltonian. Finally, we would like the lattice Hamiltonian to be free of

the sign problem so that quantum Monte Carlo calculations are efficient. This requires the

off-diagonal elements to be non-positive(i.e. tij ≥ 0). Note that the original Hamiltonian

ĤN has this property.

In section (3.3), we propose a method of constructing localized single particle basis func-

tions based on imaginary time evolution of localized basis functions: wi(0) where i labels

the site.

|wi(τ)〉 ≡ e−τĤ1 |wi(0)〉 , (3.7)

where Ĥ1 denotes the one particle continuum Hamiltonian. This has the effect of suppress-

ing the high energy components but also spreading out the basis states. In section (3.4),

tests of localization and energy convergence are examined for the specific disorder probed

experimentally.

45



3.3 Construction of localized wavefunctions

In constructing a lattice model, our goal is to coarse grain the description of the continuum

system, so that instead of recording the precise position of an atom, we only record which

lattice site it occupies. We match up the lattice and continuum models using the density

matrix; we require that the low temperature single particle density matrix of the lattice

model to be identical to that of the continuum system when one integrates over coordinate

scales smaller than the lattice spacing. Use of the density matrix is motivated by the fact

that the linear response of a system to an external perturbation, either an external field, or

particle insertion, or a coupling to another subsystem is determined by its one-body density

matrix [10][11]. If we match the density matrices, the lattice system is guaranteed to have

not only the same density distribution n(r) and hopping properties, such as diffusion, but

also the same response to external perturbations as the continuum system.

The unnormalized single particle density matrix in the continuum system is defined by:

ρ (r, r′; τ) = 〈r|e−τĤ1|r′〉. (3.8)

Let wi(r; 0) be a localized basis which assigns atoms to lattice sites, e.g. wi(r; 0) = constant if

|r−Ri| is minimized with respect to i, i.e. in the ith Wigner-Seitz cell. Then a course-grained

density matrix is defined as

Sij(τ) = 〈wi(0)|e−τĤ1|wj(0)〉

=

∫

drdr′w∗
i (r; 0)ρ(r, r

′; τ)wj(r
′; 0). (3.9)

Note that if wi(r; 0)’s are chosen to be everywhere positive, all elements of the lattice density

matrix Sij are also positive and can be used directly in a lattice QMC calculation to define the

probability of a path on the lattice. We now want to construct a single-particle Hamiltonian,

which when solved, gives Sij(τ) for large τ , or in matrix notation to determine ĥ such that

Ŝ(τ) = e−τĥ. (3.10)
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(S is Hermitian and positive definite, so h exists uniquely.) Formally, the solution ĥ =

−τ−1 log Ŝ (τ) may have some τ dependance and not necessarily have the other properties

mentioned above. Differentiating Eq. (3.10) with respect to τ and multiplying on the right

and left by Ŝ−1/2, we find an expression for h in terms of S:

ĥ = −Ŝ− 1
2
dŜ

dτ
Ŝ− 1

2 −
∫ τ

0

e(
τ
2
−λ)ĥ

(

dĥ

dτ

)

e(λ−
τ
2 )ĥdλ. (3.11)

If we assume that h becomes τ -independent as τ → ∞, we can neglect the second term on

the right hand side and find:

ĥ = −Ŝ− 1
2
dŜ

dτ
Ŝ− 1

2 . (3.12)

Consider the eigenfunction expansion of the continuum density matrix:

ρ(r, r′; τ) =
∑

α

φ∗
α(r)φα(r

′)e−τEα , (3.13)

where Eα and φα are the 1-particle eigenvalues and eigenfunctions of the continuum Hamil-

tonian. For a sufficiently large τ , and for a system with a gap, only states below the gap

will survive. If there are N such states, it is clear that we will capture the density of states

with exactly N basis functions wi. Now let us define the orthogonalized basis by splitting

up the density operator

exp
(

−τĤ1

)

= exp

(

−1

2
τĤ1

)

exp

(

−1

2
τĤ1

)

(3.14)

and having it act partially to the left and right in Eq. (3.9). Combining Eq. (3.9) and

Eq.(3.12), we obtain the expression for the model Hamiltonian:

hij =
∑

kl

S
− 1

2
ik (τ)〈wk(τ/2)|Ĥ1|wl(τ/2)〉S− 1

2
lj (τ)

= 〈w̃i(τ/2)|Ĥ1|w̃j(τ/2)〉, (3.15)

where wi(τ) = e−τĤ1wi(0) are the non-orthonormalized basis functions at time τ and
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w̃(τ/2) = Ŝ−1/2(τ)w(τ/2) are the orthonormalized basis functions because

Sij(τ) = 〈wi(τ/2)|wj(τ/2)〉 (3.16)

is the overlap matrix. This is known as Löwdin orthogonalization [12]1.

The imaginary time evolution is equivalent to a diffusion process with sinks or sources

determined by the potential U(r) . Without a potential present, an initially localized dis-

tribution will spread out as
√
τ as a function of imaginary time. When the wavepacket

(or basis function) |wi(τ)〉 ≡ e−τĤ1 |wi(0)〉 encounters the regions of high potential energy

separating the lattice sites, its diffusion will stop, until it tunnels through to the next site.

If the assumption of temperature-independence

lim
τ→∞

(

dĥ

dτ

)

= 0 (3.17)

is correct, according to Eq. (3.15), the orthogonalized basis Ŝ−1/2 (2τ) |wi(τ)〉 converges at

large τ . Instead of taking the logarithm of the reduced density matrix Eq. (3.10), we choose

to construct the lattice Hamiltonian from Eq. (3.12) for two reasons. Firstly, numerical tests

show that Eq. (3.12) converges faster than − 1
τ
log Ŝ as τ increases. Secondly, the explicit

construction of basis functions enables us to calculate the interaction terms in the second

quantized many body Hamiltonian. Finally, use of Eq. (3.12) instead of Eq. (3.10) gives

energy levels which lie above their counterparts in the continuum system.

The choice of the initial basis functions wi(r; 0) is to some extent arbitrary, as long as

they are non-negative and localized. It is reasonable to suppose that there should be one

basis function for each lattice site, at least for weak disorder. In this work, where the

disordered potential is an order of magnitude smaller than the lattice potential, we chose to

set wi(r; 0) = σ− 3
2 inside a cube of side σ centered on Ri.

When the disordered potential becomes as strong as the lattice potential, the original

lattice bands can strongly overlap, and this simple choice may be inadequate. Multi-band

1This is mathematically equivalent to the procedure for periodic potentials introduced by Wannier[5].
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effects would necessitate the inclusion of more than one basis functions for each lattice site.

Also one might want to use the freedom to choose the locations of the basis functions, by

concentrating more basis functions in regions of low potential energy. We do not explore

these issues further in this paper because the disorder we consider is weak.

3.4 Numerical algorithm and tests

We proposed a method to construct localized single-particle wave functions using imaginary

time projection. In this section we outline the numerical implementations and apply the

method to a specific disordered potential generated by an optical lattice experiment. Tests of

localization and energy convergence are examined to justify the assumpation of temperature-

independence Eq (3.17).

3.4.1 Algorithm for imaginary time projection and orthogonalization

To apply the imaginary time evolution to the construction of localized wave functions and

thereby to extract microscopic parameters of the corresponding lattice model, we then start

with N initial trial wave functions, each of which is well localized in one lattice cell. Each

wave function is independently evolved over a sufficiently long imaginary time. The set of

N wave functions are then transformed into an orthonormal basis.

To perform the imaginary time evolution, consider the Trotter formula[13]

e−βĤ1 = lim
n→∞

(

e−
β
n
T̂ e−

β
n
Û
)n

. (3.18)

In a coordinate representation, a single step of imaginary time τ can be written as:

w(r, t+ τ) =

∫

d3r′〈r|e−τĤ1|r′〉w(r′, t)

=
( m

2π~τ

)3/2
∫

d3r′e−
m
2~τ

(r′−r)2e−
τU(r′)

~ w(r′, t). (3.19)

49



This integral is a convolution, and can be efficiently evaluated by Fast Fourier Transform

w(r, t+ τ) = FFT
[

e−
τ~k2

2m fk

]

, (3.20)

where fk is defined as an inverse-Fourier transform

fk = FFT−1
[

e−
τU(r)

~ w(r, t)
]

. (3.21)

We can also take advantage of the localization of w(r): it is vanishingly small away from its

initial site, so that we only store its values in a cube enclosing the region in which the wave

function is non-zero. When doing the second FFT, Eq. (3.20), we add a buffer layer outside

the cube with thickness chosen so that the localization region of the evolved function over

one imaginary time step does not exceed the cube in which FFT is performed; the thickness

is proportional to
√

τ/m. We periodically examine the evolved basis set, to determine if the

cube can be made smaller. A common normalization factor is required for all basis functions

occassionally to avoid numerical overflow or underflow.

Eq. (3.12) demands orthogonalization of the basis set. Löwdin orthogonalization pre-

serves, as much as possible, the localization and symmetry of the original non-orthogonal

basis states. In terms of the overlap matrix, we construct a set of orthogonalized states

|w̃i〉 =
∑

j

(S−1/2)ij|wj〉. (3.22)

No other set of orthonormal states generated from the space spanned by the original non-

orthogonal set of states resemble the original set more closely, in the least squares sense, than

does the Löwdin set[14]. Explicitly, Löwdin orthogonalization minimizes the expression

φ(T̂ ) ≡
N∑

i=1

‖T̂wi − wi‖2 (3.23)

over all linear transformations T̂ which transform the original non-orthonormal set of states
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|wi〉 into an orthonormal set of states |w̃i〉

〈w̃i, w̃j〉 ≡ 〈T̂wi, T̂wj〉 = δij . (3.24)

For efficiency, this procedure can be done in an iterative fashion. Because the original

non-orthogonal set of wave functions are localized, the overlap matrix Smn has the form of

the identity matrix plus a small off-diagonal part

Sij = δij + Aij , (3.25)

where the diagonal elements of A are zero and the off-diagonal elements |Amn| ≪ 1. This

enables us to perform Löwdin orthogonalization iteratively by repeated application of the

approximate inverse square root of the overlap matrix

(Ŝ−1/2)ij ≈ δij −
1

2
Aij (3.26)

to the non-orthogonal basis set by updating the overlap matrix at each step [15]. Hence the

basis set is iterated as:

w̃ ←
(

1− 1

2
Â

)

w̃ (3.27)

until convergence is reached, |Â| ∼ 0. The convergence of the overlap matrix to identity

matrix is geometric.

The iterative scheme is efficient for large systems because the basis sets are sparse. The

computation time of this algorithm is linear in the number of lattice sites, i.e. the complexity

is proportional to

(# of steps) ·M · n log n, (3.28)

where M is the number of lattice sites and n is the number of mesh points for each basis

function.
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3.4.2 Hubbard parameters

Once the orthogonalized basis set has been constructed, the effective lattice Hamiltonian is

obtained. For convenience we drop the τ dependance. According to Eq. (3.15), the single

particle Hubbard parameters are calculated as the on-site energies:

ǫi =

∫

w̃∗
i (r)Ĥ1w̃i(r)d

3r, (3.29)

and the hopping coefficients:

tij = −
∫

w̃∗
i (r)Ĥ1w̃j(r)d

3r. (3.30)

The interaction term is computed from first-order perturbation theory in V . In the case of

a contact interaction with the scattering length as we find for u:

ui =
4πas~

2

m

∫

|w̃i(r)|4 d3r, (3.31)

and the off-site interaction

ũij =
4πas~

2

m

∫

|w̃i(r)|2 |w̃j(r)|2 d3r. (3.32)

The problem of a single particle moving in a periodic potential of the form (cos x+ cos y +

cos z) can be solved analytically [16]. We compared the imaginary time pro- jected states

with the results from exact diagonalization; this is shown in Fig. (3.2). We used a spatial

grid with 83 mesh points per lattice cell and an imaginary time step ∆τ = 10−4E−1
R . We

find the error vanishes linearly as the time step goes to zero.

3.4.3 Measures of localization and energy

Several quantities can be used to characterize the localization and accuracy of the basis set.

The spatial spread Ωw ≡ 〈r2〉w − 〈r〉2w quantifies the localization of a wave function.

The off-site integral ũij measures the spatial overlap between a pair of basis states. If it
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the lattice depth SL. The open circles are results obtained from the method of imaginary time projection
proposed in this work and the solid lines correspond to exact solutions. Left: Nearest neighbor hopping
coefficients. Right: Hubbard-U interaction parameter.

is small relative to tij and the Hubbard U , the approximation of keeping only the on-site

interaction in the lattice model is appropriate. Its rms value over all nearest neighbor pairs

measures the whole basis set.

The convergence rate of the N × N matrix of the single particle lattice Hamiltonian is

measured by the time derivatives of its N eigenvalues E
(i)

lattice
’s,

Γ =
1

N

∑

i

∣
∣
∣
∣

d

dτ
E

(i)

lattice

∣
∣
∣
∣
. (3.33)

To determine the accuracy of the basis set we compare E
(i)

lattice
’s with the lowest N eigen-

values E
(i)

exact of the original continuum Hamiltonian Ĥ1 estimated from

E
(i)

exact = E
(i)

lattice
(τ →∞). (3.34)

The worst case error is defined as

elattice ≡ max
i

∣
∣
∣E

(i)

lattice
− E(i)

exact

∣
∣
∣ . (3.35)

We did the same estimate for the lattice Hamiltonian that has only nearest neighbor hopping
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terms.

3.4.4 Test for a disordered lattice

We now test the numerical method on a disordered lattice potential created in the White

et. al. experiment [1]. In the following we express all energies in terms of the recoil energy

ER = ~2k2

2m
= ~2π2

2ma2
and all lengths in terms of the lattice spacing a = 406 nm. In these units

the single particle Hamiltonian is:

H1 = −
∇2

π2
+
U(r)

ER

, (3.36)

where the total external potential is a superposition of the periodic lattice potential and the

disordered speckle potential U(r) = UL(r)+UD(r). The problem of a single particle moving

in U(r) = UL(r) in the absence of disorder can be solved analytically [16]. We compared the

imaginary time projected states with the results from exact diagonalization using the same

spatial grid of 83 mesh points per lattice cell. We find perfect agreement in the limit of zero

time step. We constructed a disordered potential to match the experiment[1] as closely as

possible. In the following, SL and SD are given in units of ER.

To investigate the evolution of lattice Hamiltonian Eq. (3.12), at every step of the imagi-

nary time, the basis set is orthonormalized before constructing the Hamiltonian matrix and

calculating the energies E
(i)
lattice. Then the basis set is evolved using the previous basis set

before orthonormalization; each basis function is evolved independently.

To illustrate the convergence of the matrix elements of the lattice Hamiltonian, the

evolution diagram of an on-site energy on one particular site and a nearest neighbor hopping

coefficient on one particular bond for SL = 14 and SD = 1 are shown in the right panel

of Fig. (3.3). We characterize the localization of the basis functions by the average nearest

neighbor off-site integral ũij, which measures the spatial overlap between a pair of nearest

neighbor basis functions. The right panel of Fig. (3.3) shows the evolution diagrams of

the average on-site interaction ui and the average off-site interaction ũij , which are also

converging at large imaginary time. The limiting value of the off-site interaction is 4 ∼ 5
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Figure 3.3: Left: Evolution diagram of an on-site energy(left scale) and a nearest neighbor hopping
coefficient(right scale) in a lattice for SL = 14 and SD = 1. At large imaginary time τ , these two matrix
elements approach constant values. Right: Evolution diagram of the average on-site interaction u(left scale)
and the average nearest neighbor off-site interaction ũ(right scale) for SL = 14 and SD = 1. Note that ũ
measures the localization of a pair of basis functions. The diagram shows that limiting value of ũ is 4 ∼ 5
orders of magnitude smaller than that of u, which indicates that the basis functions at large imaginary time
are still localized.

orders of magnitude smaller than that of the on-site interaction, which means that the basis

functions are still localized at large imaginary time. Note that although the imaginary time

projection operator e−τĤ1 spreads out the basis states, Löwdin orthogonalization operator

Ŝ−1/2 restores their localization.

To illustrate the effect of Lowdin orthogonalization on localization, the evolution diagram

for SL = 14 and SD = 1 is shown in the left panel of Fig. (3.4) by including the off-site

integral of the set before orthogonalization. It can be seen from the graph that Lowdin

procedure helps to localize the basis functions w(τ).

The localization characterized by the spatial spread Ωw and drift Dw is shown in the

right panel of Fig. (3.4). The maximum value among all basis functions is chosen to measure

the whole basis set. As shown in the graph, the values that these two quantities asymptotes

to at large time are small compared to the lattice constant, which signifies that the basis

functions are localized. This result indicates that for weak disorder, the basis set of wave

functions produced by imaginary time evolution which span the lowest-energy manifold are

indeed sufficiently localized around the original lattice sites of the simple cubic lattice.

The convergence rate Γ of eigen-energies of the lattice Hamiltonian is shown in the left
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Figure 3.4: Left: Evolution diagram of the average nearest neighbor off-site interaction ũ before orthog-
onalization(left scale) and after orthogonalization(right scale) for SL = 14 and SD = 1. Right: Evolution
diagram of the maximum spatial spread and drift(average deviation from the initial position) in units of the
lattice constant for SL = 14 and SD = 1. The values that these two quantities approach at large imaginary
time are small compared to the lattice constant a, which means that the localization the basis functions is
preserved.

panel of Fig. (3.5). It can be seen from the graph that the effective lattice Hamiltonian

becomes temperature-independent at low temperature. It is also illuminating to look at the

evolution diagram of the worst case error Eq. (3.35), as shown in the right panel of Figs. 3.5

where the exact eigen-energies are estimated by

E
(i)
exact = E

(i)
lattice

(
τ = 8E−1

R

)
. (3.37)

We compared the worst case error in energy for the nearest neighbor model (t̃ = 0) versus

the full lattice model. The spatial overlap between basis functions remain negligible at the

early stage so that the nearest neighbor model has almost the same spectrum as the full

lattice model; the error in energy is reduced as imaginary time evolves. The error in the

eigen-energy of the full lattice model decreases as the time step goes to zero, while a finite

error persists in the nearest neighbor model because the next nearest neighbor hopping terms

are neglected. Note that this error is less than 10−4ER, which is the same order of magnitude

of the next nearest neighbor hopping coefficients.

To explain how it is possible to suppress the energy of the original localized basis set

before causing significant delocalization, it is useful to look at the single particle density
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of states(DOS). In particular, we are interested in whether the gap between bands persists

in the presence of disorder. Fig. (3.6) shows the DOS in the disordered lattice. Fifteen

samples each from a 53 lattice for each disorder strength were used to determine the DOS. It

can been seen from the plot that the lowest band is broadened and skewed by the disorder;

there remains a minimum in the density of states between the first band and the second

band(pseudo-gap). It is the existence of such a gap that enables us to project out the high

energy components in the initial set of trial states before delocalization sets in.

For values of SD ≥ 2 (SL = 14), we found rare cases where the highest eigen-energy does

not converge to the lowest possible exact solution. Because each wave function is evolved

independently before the orthogonalization is performed, the basis set becomes numerically

singular at large imaginary time. This problem is more severe for strongly disordered poten-

tial where the highest several lattice eigen-states may fail to converge into the lowest energy

manifold before the instability sets in.
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Figure 3.6: Density of states for a single particle in a disordered lattice with SL = 14 and varying amounts
of disorder: SD = 1, 2, 3.

3.5 Statistics analysis of Hubbard model parameters

We now discuss the statistical properties of the calculated Hubbard parameters. These are

shown in Figs. (3.7) - (3.9) for SL = 14 and SD = 1. About 1000 samples of 63 sites are used

to construct the probability distributions of Hubbard parameters.

Fig. 3.7 shows the probability distribution of the on-site energy ǫi for SD = 1 and SL = 14.

The distribution is skewed with a steep onset at low energy and a tail at high energy. We

fit the distribution to an exponential decay function

P (ε) ∼ exp (−ε/Γ) (3.38)

for ε > −10.5ER finding Γ ≈ 0.97ER for SD = 1 and SL = 14. Note that the disorder

potential is always positive, so that the on site energy is greater than its value for the

periodic lattice which is −10.58ER for this value of SL.

Hopping coefficients tij characterize the mobility of the atoms. Recall that negative

values of t will cause difficulty in quantum Monte Carlo calculations. The left panel of

Fig. (3.8) shows the probability distribution of nearest neighbor hopping coefficients. This

distribution is asymmetrically centered around its value 8×10−3ER for the periodic potential
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Figure 3.7: Probability distribution of the on-site energy for SL = 14 and SD = 1. The line is a fit to an
exponential function.

with a width
δt

〈t〉 = 0.15. (3.39)

In 106 sampled bonds, only positive t〈ij〉 were found. For SL = 14 and for 0.05 ≤ SD ≤ 1,

δt/ 〈t〉 ranges from 10−2 to 10−1.

The right panel of Fig. (3.8) shows the probability distribution of next-nearest neighbor

hopping coefficients. This distribution is symmetrically centered around zero with a width

w = 1.25×10−5ER and about 2 orders of magnitude smaller than nearest neighbor hopping.

Note that in the clean limit, the next nearest neighbor hopping coefficient is exactly zero

for the simple cubic lattice by symmetry. Setting t̃ = 0 changes the resulting single particle

energies by a maximum of 2× 10−5ER.

The left panel of Fig. (3.9) shows the probability distribution of the Hubbard U , which

is characterized by its narrow peak roughly centered around the value of u in the periodic

limit (0.36ER) with a 1% relative width. We fit this distribution to Laplace function

P (u) =
1

2∆
exp

(

−|u− u0|
∆

)

(3.40)

with u0 ≈ 0.36ER and ∆ = 2× 10−3ER. For SL = 14 and for 10−2 ≤ SD ≤ 1, δu/ 〈u〉 ranges
from 10−4 to 10−2. Hence one can assume that the on-site interaction is roughly constant even
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Figure 3.8: Left: Probability distribution of the nearest neighbor hopping with SL = 14 and SD = 1. This
is a predominantly positive asymmetric distribution. Right: Probability distribution of the next nearest
neighbor hopping for SL = 14 and SD = 1. This distribution is symmetrically centered around zero.

in the presence of disorder. The right panel of Fig. (3.9) shows the probability distribution

of nearest neighbor overlap u. We observe that the magnitude of off-site interactions is

almost 4 orders of magnitude smaller than the on-site interaction; evidently negligible in the

many-body interacting Hamiltonian.

On-site energies are usually assumed to be almost uncorrelated between different sites.

We calculated the nearest neighbor covariance function. For SL = 14 and SD = 1, with 〈ij〉
nearest neighbor pairs:

〈εiεj〉 − 〈εi〉 〈εj〉
〈ε2〉 − 〈ε〉2

≈ 0.49. (3.41)

The εi’s are correlated between nearest neighboring sites for this disordered potential.

Fig. (3.10) shows the correlation pattern between the on-site energy difference of nearest

neighboring sites and the hopping coefficient. Fit to this joint distribution gives
〈
t〈ij〉
〉
−t0 ∼

〈|ǫi − ǫj|〉δ with δ = 1.05. Note that in White et. al.[1], the orientation of laser speckles

points along 1
2
n1 +

1
2
n2 +

1√
2
n3. The insert of Fig. 3.10 displays the correlation pattern for

bonds in n3-direction if the longitudinal direction of the speckles is aligned with the n3-axis

of the lattice. This illustrates the anisotropy of laser speckles.

The characteristics of the speckle field is reflected in other aspects of the parameters.

According to the orientation of laser speckles with respect to the lattice axes, we should
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Figure 3.9: Left: Probability distribution of the on-site interaction, i.e. Hubbard U, for SL = 14 and
SD = 1. The line is a fit to a Laplace function. Right: Probability distribution of the nearest neighbor
off-site interaction for SL = 14 and SD = 1.

Figure 3.10: Correlation between the on-site energy difference and hopping coefficient between nearest
neighbor sites for SL = 14 and SD = 1. The insert displays the correlation pattern for bonds in n3-direction
if the longitudinal direction of the speckles is aligned with the n3-axis of the lattice. The line in the insert
is a fit to a power function.
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expect that the average hopping coefficient along n1 and n2 to be equal and the hopping

along n3 to be different. As shown in Table 3.1, 〈tz〉 differs from those of 〈tx,y〉 because of the
cylindrical symmetry of the speckle. However, the difference is small because the correlation

length of the speckle is only slightly larger than the lattice spacing, such that the nearest

neighbor hopping is not sensitive to the anisotropy induced by the speckle.

Table 3.1: Anisotropy of speckles for SL = 14. The speckle strength SD is in units of ER and the hopping
coefficients in units of 10−3ER. Statistical errors are smaller than the number of digits shown.

SD 〈tx〉 〈ty〉 〈tz〉
0.050 8.00 8.00 8.00
0.100 8.02 8.02 8.01
0.250 8.10 8.10 8.07
0.375 8.20 8.20 8.16
0.500 8.32 8.33 8.26
0.750 8.59 8.60 8.48
1.000 8.72 8.73 8.57

In Fig. (3.11) the variation of the distribution widths of all 4 Hubbard parameters versus

speckle intensity is shown for SL = 14. Fig. (3.11)-(a) shows the dependence of the width

σǫ = 〈
√

(ǫi − 〈ǫi〉)2〉 (3.42)

for the onsite energy on the disorder strength SD for SL = 14. It can be seen from the graph

that σ increases linearly with the disorder strength, approximately equal to the speckle

potential shift. Hence, the width is an appropriate measure of the disorder strength. The

linear fit of this functional dependence gives σǫ = 0.95×SD. The distribution width of nearest

neighbor hopping coefficients and Hubbard U are shown in Fig. (3.11)-(b) and Fig. (3.11)-

(c) respectively. In Fig. (3.11)-(d), we show the disorder dependence of the mean value of

Hubbard U . It can be seen from the graph that 〈u〉 is not sensitive to the disorder strength.
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Figure 3.11: The width of the probability distribution for ǫ, tij , ui and 〈u〉 for SL = 14.

3.6 Summary

In this chapter, we developed a method to construct low energy basis states and applied

the method to calculate the probability distributions of Hubbard model parameters in a

disordered lattice created by an optical speckle field. The imaginary time projection method

introduced in this work generates a type of Wannier-like localized basis that satisfies several

conditions imposed by a reasonable coarse-grained, effective lattice Hamiltonian.

We compared the single particle energy levels of the effective Hamiltonian with the ex-

act Hamiltonian and found very good agreement, at least for weak disorder. Because we

matched the single particle density matrix in the continuum and lattice system, we expect

that many-body properties will also be well reproduced. Detailed quantum Monte Carlo cal-

culations using the parameterized Hubbard model is needed to compare with experimental

measurements.

The method can be extended in several directions. When the disorder becomes strong

enough, at some point, the assumption of one basis function per lattice site will be inad-

equate. For example, suppose that the potential in the region around one particular site

gets sufficiently deep that its first excited state has a lower energy than the ground state
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energy of another site so that the bands overlap. Clearly the attractive site needs to be

represented with two basis functions. Of course, if the atom-atom potential is repulsive,

double occupation of the low energy site will not be energetically favored. In this work, we

have not explored the freedom of choosing the number of basis functions, their locations and

their detailed form.

A second extension of the method addresses strongly correlated many-body systems.

In this chapter we calculated the Hubbard U , using perturbation theory, e.g. Eq. (3.31).

However, this will be inadequate when the pair interaction distorts the single particle orbitals.

The formalism based on the thermal density matrix still applies, however, one has to work

in the two-particle space, instead of in the single particle space. This extension allows one

to calculate the Hubbard parameters even when perturbation theory is inaccurate.
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Chapter 4

Exact Diagonalization Techniques

In this chapter we outline the methods of calculating a few eigenstates of the full Hamiltonian

matrix of an interacting quantum system. The numerical implementation of this class of

methods naturally implies that the Hilbert space of the problem has to be truncated. Most

quantum many-particle problems lead to a sparse matrix representation of the Hamiltonian,

where only a small fraction of the matrix elements is non-zero.

4.1 Typical Quantum Many-Particle Model

The Hamiltonian for a system of N interacting particles moving in an external potential has

the form

ĤN =
N∑

i=1

[
p2
i

2m
+ U(ri)

]

+
N∑

i<j=1

V (rij). (4.1)

Typical lattice models in solid state physics are derived from the Hamiltonian in continuum

Eq.(4.1) written in Wannier reprensentation or discretized on a grid. The resulting lattice

Hamiltonian can be expressed in a real space grid basis (1st quantization) or in a particle-

number basis (2nd quantization).

4.2 Symmetries and Classification of States

The solutions of the Schrödinger equation can possess at most as many symmetries as the

equation (the Hamiltonian operator, the domain and the boundary conditions) itself has.

Although the various space symmetries and particle permutations commute with the Hamil-

tonian, they don’t necessarily commute with each other in general.
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4.2.1 Notations

To deal with space symmetries, it is convenient to group the x-coordinates of all particles

together as x = {x1, · · · xN} and similar for y and z coordinates. Later, when dealing with

exchange symmetries, it is convenient to group all coordinates of each particle together as

r1 = {x1, y1, z1}; similar for r2, · · · , rN .

4.2.2 Translations

If we put the system in a finite box with periodic boundary conditions in each direction,

the discrete translations {T̂x, T̂y, T̂z} by the amount of a grid spacing keep the Hamiltonian

invariant. The total momentum operator can always be brought into diagonal form simul-

taneously with the Hamiltonian operator. For a state ψ(x,y, z) with fixed total momentum

K = (Kx, Ky, Kz), the transformation rules under translations are scalar multiplications by

phase factors

T̂xψ(x,y, z) = ψ(x+∆x,y, z) = eiKx∆xψ(x,y, z),

T̂yψ(x,y, z) = ψ(x,y +∆y, z) = eiKy∆yψ(x,y, z), (4.2)

T̂zψ(x,y, z) = ψ(x,y, z+∆z) = eiKz∆zψ(x,y, z).

Note that an eigenstate of Schrödinger equation can always be constructed to be real. If ψ

is an eigenstate with energy E: Ĥψ = Eψ, the complex conjugate ψ∗ is also an eigenstate

with energy E, thus the purely real linear combination ψ + ψ∗ is an eigenstate with energy

E. However, if we insist on the simultaneous diagonalization of total momentum operator

P̂ and Hamiltonian operator Ĥ, the eigenstates of {Ĥ, P̂} are not generally real since the

linear combination ψ + ψ∗ usually breaks the translational invariance. The special case

where both the reality condition and the translational invariance are satisfied is the zero-

momentum mode, i.e. P = 0. Thus even though a set of non-commutative operators cannot

be brought into diagonal form simultaneously, the zero-mode states can still be formed to

be eigenstates of all the non-commutative operators. For example, the three components of
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angular momentum {l̂x, l̂y, l̂z} do not commute and cannot be simultaneously diagonalized,

but the s-state with lx = ly = lz = 0 is an eigenstate of {l̂x, l̂y, l̂z}. This property is frequently

utilized in the symmetrization of states in the following sections.

4.2.3 Reflections

The simplest complete set of observables may be chosen as {Ĥ, R̂x, R̂y, R̂z}, where R̂x is the

reflection with respect to the plane x = 0; similarly for Ry and Rz. By definition,

R̂xψ(x,y, z) = ψ(−x,y, z),

R̂yψ(x,y, z) = ψ(x,−y, z), (4.3)

R̂zψ(x,y, z) = ψ(x,y,−z).

Note [R̂x, R̂y] = [R̂y, R̂z] = [R̂z, R̂x] = 0. The above three reflections reduce a cubic box to

an octant. Another three reflections {R̂xy, R̂yz, R̂zx} also commute with the Hamiltonian,

R̂xy is the reflection with respect to the plane x = y and in effect interchanges the x and y

coordinates; similarly for R̂yz and R̂zx. By definition,

R̂xyψ(x,y, z) = ψ(y,x, z),

R̂yzψ(x,y, z) = ψ(x, z,y),

R̂zxψ(x,y, z) = ψ(z,y,x).

Notice that R̂xy, R̂yz and R̂zx do not commute with each other. Although we can construct

a state that is invariant with respect to the above reflections (states with even parity),

they cannot simultaneously diagonalized in general. For example, we cannot assume every

eigenstate of {Ĥ, R̂xy} to be the eigenstate of R̂yz and R̂zx also.

In one dimension, the only reflection symmetry R̂ implies that if ψ is an eigenstate, Rψ

is also an eigenstate with the same energy. The argument follows that if ψ and Rψ are

nondegenerate,

R̂ψ = C × ψ ⇒ ψ = R̂2ψ = C2ψ ⇒ C = ±1. (4.4)
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Thus ψ is an eigenstate of reflection operator with eigenvalue +1 or −1. In other words,

ψ has an even or odd parity. If ψ and R̂ψ are degenerate with energy E, we can always

construct

ψ1 = ψ + R̂ψ, ψ2 = ψ − R̂ψ. (4.5)

Then ψ1 is even under reflection and ψ2 is odd under reflection. One dimensional case is

particularly simple because R̂ is the only reflection symmetry and we don’t have the issue

of noncommutative symmetries.

In two dimensions, we have two commutative reflections R̂x and R̂y. The fact that they

are symmetries means that, if ψ is an eigenstate with energy E, then R̂xψ, R̂yψ and R̂xR̂yψ

are also eigenstates with the same energy. Note that the set {1, R̂x, R̂y, R̂xR̂y} forms a group.

In general, suppose ψ, R̂xψ, R̂yψ and R̂xR̂yψ are degenerate, we can then form the proper

linear combinations that are either even or odd under reflections R̂x and R̂y:

ψ0 = (1+ R̂x)(1+ R̂y)ψ → s : (+1,+1), e.g. 1

ψ1 = (1+ R̂x)(1− R̂y)ψ → p : (+1,−1), e.g. sin y (4.6)

ψ2 = (1− R̂x)(1+ R̂y)ψ → p : (−1,+1), e.g. sin x

ψ3 = (1− R̂x)(1− R̂y)ψ → d : (−1,−1); e.g. sin x sin y,

where (±1,±1) indicates the even or odd symmetry under the reflections R̂x and R̂y respec-

tively. Free particle solutions in a box are also shown above. This construction enables every

eigenstate to be written in the form

R̂xψ = σxψ, R̂yψ = σyψ, (4.7)

where σx, σy = ±1. The square domain can thus be reduced to an quadrant. Note that R̂x

and R̂y are Hermitian and {ψi : i = 0, 1, 2, 3} is an orthogonal set.

Now consider the reflection R̂xy which is noncommutative with R̂x and R̂y. In general,

the application of R̂xy on {ψi : i = 0, 1, 2, 3} produces a linear combination of them. To
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exploit the additional noncommutative symmetries, we need to find out the transformation

rules. This is related to the group representation theory, but in two dimensions this is fairly

simple.

s-state ψ0 : (+1,+1)

To analyze R̂xyψ0, we simply evaluate the R̂xR̂xyψ0 and R̂yR̂xyψ0,

R̂xR̂xyψ0(x,y) = R̂xψ0(y,x) = ψ0(y,−x) = ψ0(y,x) = R̂xyψ0(x,y). (4.8)

Thus R̂xyψ0 has an even parity σx = +1, and similarly σy = +1. Hence

R̂xyψ0(x,y) ≡ ψ0(y,x) = ±ψ0(x,y) = σxyψ0(x,y). (4.9)

Here σxy = ±1 is obtained by a repeated application of R̂xy. We conclude that ψ0 is even or

odd under the reflection R̂xy. For example, ψ0(x, y) = 1 is even under R̂xy and ψ0(x, y) =

sin(x2− y2) is odd under R̂xy, but both of them are even under R̂x and R̂y. This fact means

that the domain of this function can be reduced to a triangle in two dimensions. The odd

symmetry under R̂xy introduces nodes, so we take σxy = +1 for low-lying eigenstates. We

can call ψ0 an s-state in analogous to the classification by angular momentum.

p-states ψ1(+1,−1), ψ2 : (−1,+1)

R̂xR̂xyψ1(x,y) = R̂xψ1(y,x) = ψ1(y,−x) = −ψ1(y,x) = −R̂xyψ1(x,y),

R̂yR̂xyψ1(x,y) = R̂yψ1(y,x) = ψ1(−y,x) = ψ1(y,x) = R̂xyψ1(x,y),

R̂xR̂xyψ2(x,y) = R̂xψ2(y,x) = ψ2(y,−x) = ψ2(y,x) = R̂xyψ2(x,y),

R̂yR̂xyψ2(x,y) = R̂yψ2(y,x) = ψ2(−y,x) = −ψ2(y,x) = −R̂xyψ2(x,y).

70



Thus we have (σx = −1, σy = +1) for R̂xyψ1 and (σx = −1, σy = +1) for R̂xyψ2. Hence

R̂xyψ1(x,y) ≡ ψ1(y,x) = Cψ2(x,y) = ψ2(x,y),

R̂xyψ2(x,y) ≡ ψ2(y,x) = C ′ψ1(x,y) = ψ1(x,y).

Here CC ′ = 1 by a repeated application of R̂xy and we have taken the convention C = C ′ = 1.

We observe that the p-states ψ1 and ψ2 transform to each other upon the reflection R̂xy,

which means the subspace spanned by {ψ1, ψ2} is invariant under R̂xy.

d-state ψ3(−1,−1)

R̂xR̂xyψ3(x,y) = R̂xψ3(y,x) = ψ3(y,−x) = −ψ3(y,x) = −R̂xyψ3(x,y),

R̂yR̂xyψ3(x,y) = R̂yψ3(y,x) = ψ3(−y,x) = −ψ3(y,x) = −R̂xyψ3(x,y).

Thus we have (σx = −1, σy = −1) for R̂xyψ3. Hence,

Rxyψ3(x,y) ≡ ψ3(y,x) = ±ψ3(x,y). (4.10)

In three dimensions, we have three commutative reflections R̂x, R̂y and R̂z. The collection

{1, R̂x, R̂y, R̂z, R̂xR̂y, R̂yR̂z, R̂zR̂x, R̂xR̂yR̂z} (4.11)

form a closed group. If ψ is an eigenstate with energy E, suppose ψ, Rxψ, Ryψ, Rzψ,

RxRyψ, RyRzψ, RzRxψ and RxRyRzψ are degenerate. We can then form the proper linear

combinations that are either even or odd under reflections {R̂x, R̂y, R̂z}:

ψ0 = (1+ R̂x)(1+ R̂y)(1+ R̂z)ψ → s : (+1,+1,+1) : 1,

ψ1 = (1− R̂x)(1+ R̂y)(1− R̂z)ψ → p : (−1,+1,+1) : sin x,

ψ2 = (1+ R̂x)(1− R̂y)(1+ R̂z)ψ → p : (+1,−1,+1) : sin y,
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ψ3 = (1+ R̂x)(1+ R̂y)(1− R̂z)ψ → p : (+1,+1,−1) : sin z, (4.12)

ψ4 = (1+ R̂x)(1− R̂y)(1− R̂z)ψ → d : (+1,−1,−1) : sin y sin z,

ψ5 = (1− R̂x)(1+ R̂y)(1− R̂z)ψ → d : (−1,+1,−1) : sin x sin z,

ψ6 = (1− R̂x)(1− R̂y)(1+ R̂z)ψ → d : (−1,−1,+1) : sin x sin y,

ψ7 = (1− R̂x)(1− R̂y)(1− R̂z)ψ → f : (−1,−1,−1) : sin x sin y sin z,

where (±1,±1,±1) indicates the even or odd symmetry under the reflections R̂x, R̂y and

R̂z respectively. Free particle solutions in a box are also shown above. This construction

enables every eigenstate to be written in the form

R̂xψ = σxψ, R̂yψ = σyψ, R̂zψ = σzψ, (4.13)

where σx, σy, σz = ±1. The cubic domain can thus be reduced to an octant. Note that

{R̂x, R̂y, R̂z} are Hermitian and {ψi : i = 0, 1, · · · , 7} is an orthogonal set.

The other set of reflections {R̂xy, R̂xz, R̂yz} are noncommutative so that we cannot assume

each eigenstate of {Ĥ, R̂x, R̂y, R̂z} to be even or odd under the reflections {R̂xy, R̂xz, R̂yz}.
In general, the application of R̂xy on {ψi : i = 0, 1, · · · , 7} produces a linear combination

of them. To exploit the additional noncommutative symmetries, we need to find out the

transformation rules.

s-state ψ0 : (+1,+1,+1)

To analyze R̂xyψ0, we evaluate the R̂xR̂xyψ0, R̂yR̂xyψ0 and R̂zR̂xyψ0:

R̂xR̂xyψ0(x,y, z) = R̂xψ0(y,x, z) = ψ0(y,−x, z) = ψ0(y,x, z) = R̂xyψ0(x,y, z). (4.14)

Thus we have R̂xR̂xyψ0 = R̂xyψ0, which means σx = +1, and similarly σy = σz = +1, for

R̂xyψ0. Hence

R̂xyψ0(x,y, z) ≡ ψ0(y,x, z) = ±ψ0(x,y, z). (4.15)
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So we conclude that ψ0 is even or odd under the reflection R̂xy. This fact means that the

domain of ψ0 can be reduced to a wedge in three dimensions without a loss of information.

The odd symmetry under R̂xy introduces nodes, so we usually consider only even symmetry

under R̂xy for low-lying eigenstates. Carry through the similar procedure for R̂zx and R̂yz,

we have

R̂xyψ0(x,y, z) ≡ ψ0(y,x, z) = ψ0(x,y, z),

R̂xyψ0(x,y, z) ≡ ψ0(z,y,x) = ψ0(x,y, z), (4.16)

R̂xyψ0(x,y, z) ≡ ψ0(x, z,y) = ψ0(x,y, z).

We call ψ0 an s-state in analogous to the the classification by angular momentum.

p-states ψ1(−1,+1,+1), ψ2(+1,−1,+1), ψ3(+1,+1,−1)

Take ψ3 for example,

R̂xR̂xyψ3(x,y, z) = R̂xψ3(y,x, z) = ψ3(y,−x, z) = ψ3(y,x, z) = R̂xyψ3(x,y, z),

R̂yR̂xyψ3(x,y, z) = R̂yψ3(y,x, z) = ψ3(−y,x, z) = ψ3(y,x, z) = R̂xyψ3(x,y, z),

R̂zR̂xyψ3(x,y, z) = R̂zψ3(y,x, z) = ψ3(y,x,−z) = −ψ3(y,x, z) = −R̂xyψ3(x,y, z),

R̂xR̂zxψ3(x,y, z) = R̂xψ3(z,y,x) = ψ3(z,y,−x) = −ψ3(z,y,x) = −R̂zxψ3(x,y, z),

R̂yR̂zxψ3(x,y, z) = R̂yψ3(z,y,x) = ψ3(z,−y,x) = ψ3(z,y,x) = R̂zxψ3(x,y, z),

R̂zR̂zxψ3(x,y, z) = R̂zψ3(z,y,x) = ψ3(−z,y,x) = ψ3(z,y,x) = R̂zxψ3(x,y, z),

R̂xR̂yzψ3(x,y, z) = R̂xψ3(x, z,y) = ψ3(−x, z,y) = ψ3(x, z,y) = R̂yzψ3(x,y, z),

R̂yR̂yzψ3(x,y, z) = R̂yψ3(x, z,y) = ψ3(x, z,−y) = −ψ3(x, z,y) = −R̂yzψ3(x,y, z),

R̂zR̂yzψ3(x,y, z) = R̂zψ3(x, z,y) = ψ3(x,−z,y) = ψ3(x, z,y) = R̂yzψ3(x,y, z).
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Thus we have (+1,+1,−1) for R̂xyψ3, (−1,+1,+1) for R̂zxψ3 and (+1,−1,+1) for R̂yzψ3.

Hence

R̂xyψ3(x,y, z) ≡ ψ3(y,x, z) = ψ3(x,y, z),

R̂zxψ3(x,y, z) ≡ ψ3(z,y,x) = ψ1(x,y, z), (4.17)

R̂yzψ3(x,y, z) ≡ ψ3(x, z,y) = ψ2(x,y, z).

Here we have taken all possibly appeared constant coefficients to be unity by suitable normal-

ization convention. The above transformation rules can be understood intuitively. Similar

relations can be derived for ψ1 with (−1,+1,+1):

R̂xyψ1(x,y, z) ≡ ψ1(y,x, z) = ψ2(x,y, z),

R̂zxψ1(x,y, z) ≡ ψ1(z,y,x) = ψ3(x,y, z), (4.18)

R̂yzψ1(x,y, z) ≡ ψ1(x, z,y) = ψ1(x,y, z)

and for ψ2 with (+1,−1,+1):

R̂xyψ2(x,y, z) ≡ ψ2(y,x, z) = ψ1(x,y, z),

R̂zxψ2(x,y, z) ≡ ψ2(z,y,x) = ψ2(x,y, z), (4.19)

R̂yzψ2(x,y, z) ≡ ψ2(x, z,y) = ψ3(x,y, z).

The transformation rules in three dimensions are slightly more complicated than in two

dimensions. The p-states ψ1, ψ2 and ψ3 transform to each other upon the reflections

{R̂xy, R̂zx, R̂yz}. The subspace spanned by {ψ1, ψ2, ψ3} is invariant under {R̂xy, R̂zx, R̂yz}.
Three d-states and one f -state are usually higher excitations. The similar procedure to

derive transformation rules is straightforward.
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4.2.4 Particle Permutations

Particle permutations can always be decomposed into successive interchanges of particle

pairs, and is often called exchange symmetries. Exchange symmetries commute with space

symmetries. The invariance of the Hamiltonian of the system with respect to the interchange

of particles leads to the fact that, if some function is a solution of Schrödinger equation, the

functions obtained from it by various interchanges of the variables will also be solutions.

In the general case, the solutions of Schrödinger equation need not necessarily be either

symmetric or antisymmetric with respect to the interchange of any pair of particles. It is

the principle of indistinguishability of identical particles that dictates the symmetry or an-

tisymmetry of the complete wavefunction (which include the spin factor) when the particles

are interchanged.

By considering a system of only two particles, the coordinate wavefunction ψ(r1, r2) must

be either symmetric or antisymmetric, i.e. P̂12ψ(r1, r2) = ±ψ(r1, r2). For a system of two

spinless bosons, ψ(r1, r2) is symmetric. For a system of two spin-1/2 fermions, ψ(r1, r2) is

symmetric if the spin state is a singlet and antisymmetric if the spin state is a triplet. The

fact that the Hamiltonian Ĥ of the system is symmetric with respect to all the particles

means, mathematically, that Ĥ commutes with all the permutation operators P̂ . These

permutation operators, however, do not commute with one another, and so they cannot be

simultaneously brought into diagonal form. In the general case of a system of N particles,

the wavefunction cannot be chosen that each of them is either symmetric or antisymmetric

with respect to all interchanges separately, which is called mixed-symmetry (except for a

system of two particles, where there is only a single interchange operator, which can be

brought into diagonal form simultaneously with the Hamiltonian). Interchanging a pair of

particles generally leads to a linear combination of a subspace of degenerate states. For a

system of a few particles, the transformation rules under interchanging any pair of particles

can be derived without an explicit use of the irreducible representations of the permutation

group [1].

For a system of three spin-1/2 fermions, the quantum number of the total spin S =
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1/2, 3/2. There exist two sets of spin-1/2 states and one set of spin-3/2 state. The fully

spin-polarized state ψ(123) = ψA(123)⊗ | ↑↑↑〉 are totally symmetric under the interchange

of any pair of spins, and the spatial wave function must be totally-antisymmetric with respect

to the interchange of any pair of cooridnates, i.e.

ψ(r1, r2, r3) = −ψ(r2, r1, r3) = ψ(r2, r3, r1) = −ψ(r3, r2, r1) = ψ(r3, r1, r2) = −ψ(r1, r3, r2).
(4.20)

There are two sets of spin states with S = 1/2 (up to const normalization factors),

|1/2,+1/2〉A ∝ | ↑↓↑〉 − | ↓↑↑〉, |1/2,−1/2〉A ∝ | ↑↓↓〉 − | ↓↑↓〉 (4.21)

are called mixed antisymmetric and

|1/2,+1/2〉S ∝ | ↑↓↑〉+ | ↓↑↑〉 − 2| ↑↑↓〉, |1/2,−1/2〉S ∝ | ↑↓↓〉+ | ↓↑↓〉 − 2| ↓↓↑〉 (4.22)

are called mixed symmetric. Neither of these two sets of states is totally symmetric or anti-

symmetric, the complete wavefunction (including the spin part and the coordinate part) with

S = 1/2 and Sz = +1/2 must be written as ψA(r1, r2, r3) |1/2,+1/2〉S+ψS(r1, r2, r3) |1/2,+1/2〉A
such that the linear combination is totally antisymmetric with respect to the simultaneous

interchanges of the coordinates and spins. The resulting transformation rules are

ψMA(r1, r2, r3) = −ψMA(r2, r1, r3) =
1

2
ψMA(r3, r2, r1)−

√

3

2
ψMS(r3, r2, r1) =

1

2
ψMA(r1, r3, r2) +

√

3

2
ψMS(r1, r3, r2),

ψMS(r1, r2, r3) = ψMS(r2, r1, r3) = −

√

3

2
ψMA(r3, r2, r1)−

1

2
ψMS(r3, r2, r1) =

√

3

2
ψMA(r1, r3, r2)−

1

2
ψMS(r1, r3, r2).

Note that ψA is anti-symmetric under interchanging the first two variables and ψS is sym-

metric. These two states are orthogonal and degenerate. Neither ψA nor ψS is completely

symmetric or anti-symmetric under interchanging particles, only the degenerate subspace

spanned by {ψA, ψS} is invariant. When solving for the eigenstates of a three-particle sys-

tem, it is necessary to maintain the subspace spanned by {ψA, ψS} in order to fully exploit

the permutation symmetries.

For a system of four spin-1/2 fermions, the quantum number of the total spin S = 0, 1, 2.

We consider in the following the fully polarized state S = 2 and the unpolarized state S = 0
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only. The spin polarized state ψ(1234) = ψA(1234) ⊗ | ↑↑↑↑〉 has a totally symmetric spin

part and a antisymmetric spatial part ψA(1234). On the other hand, there are two linearly

independent spin states with zero total spin S = 0 corresponding to unpolarized states:

χMS ∝ |↑↑↓↓〉+ |↓↓↑↑〉 −
1

2
[|↑↓〉+ |↓↑〉]⊗ [|↑↓〉+ |↓↑〉],

χMA ∝ [|↑↓〉 − |↓↑〉]⊗ [|↑↓〉 − |↓↑〉].

The wave function is a linear combination of the above two states ψ(1234) = ψMA ⊗ χMS +

ψMS ⊗ χMA. The symmetries of ψMS and ψMS in coordinate-space are determined by the

total antisymmetry of the completewave function including spins and coordinates:




ψS

ψA



→ Û(P )




ψS

ψA



 , (4.23)

where the 2× 2 matrix U for each permutation P are given by

U(1234) = U(2143) = U(3412) = U(4321) =




1 0

0 1



 ,

U(2134) = U(1243) = U(3421) = U(4312) =




1 0

0 −1



 ,

U(3214) = U(2341) = U(1432) = U(4123) =




−1

2

√
3
2

√
3
2

1
2



 ,

U(2314) = U(3241) = U(1423) = U(4132) =




−1

2
−

√
3
2

√
3
2
−1

2



 ,

U(4231) = U(2413) = U(3142) = U(1324) =




−1

2
−

√
3
2

−
√
3
2

1
2



 ,

U(2431) = U(4213) = U(3124) = U(1342) =




−1

2

√
3
2

−
√
3
2
−1

2



 .

The above rules reduce to, in the special case of any pair of particles occupying the same
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position, the following relations (including the expected nodes of ψA)

ψA = 0, if r1 = r2 or r3 = r4,

ψA =
√
3ψS, if r1 = r3 or r2 = r4, (4.24)

ψA = −
√
3ψS, if r1 = r4 or r2 = r3.

In general, for a system of N = N↑+N↓ spin-1/2 fermions in an Sz = (N↑−N↓)/2 state,

the wavefunction can be decomposed in terms of its spin components as

Ψ =

N !
N↑!N↓!∑

i=1

Fi(r1, · · · , rN )|ξi〉 = A{F1(r1, · · · , rN )|ξ1〉}, (4.25)

where

|ξ1〉 = | ↑ · · · ↑
︸ ︷︷ ︸

N↑

↓ · · · ↓
︸ ︷︷ ︸

N↓

〉. (4.26)

It follows from the antisymmetry of Ψ under the interchange of particles that each spatial

part Fi is antisymmetric under the interchange of like-spin particles and that the Fi are all the

same except for a relabeling of the particle indices and a change in sign for odd permutations.

The full set of permutation symmetries require that the wavefunction Ψ to be an eigenstate

of Ŝ2 and Ŝz. In Eq.(4.25), we employed N↑ spin-up functions and N↓ spin-down functions

in construction of the spin functions, and consequently Ψ is an eigenfunction of Sz . It is

also an eigenstate of S2 if the functions Fi satisfy certain linear relations. The total spin

opterator Ŝ2 can be written in terms of lowering and raising operators of single-particle spin

operators

Ŝ2 = Ŝ2
z − Ŝz + Ŝ+Ŝ− = Ŝ2

z − Ŝz +
N∑

i=1

ŝ+i ŝ
−
i +

N∑

i 6=j=1

ŝ+i ŝ
−
j . (4.27)
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Hence the matrix elements of Ŝ2 in the basis of {ξi} are[2]

〈ξi|Ŝ2|ξj〉 =







S2
z − Sz +N↑, i = j;

1, if ξi and ξj are related by a single exchange of a ↑↓ pair;

0, otherwise.

(4.28)

The eigenvalue equation Ŝ2Ψ = S(S + 1)Ψ gives the linear dependencies among Fi

S(S + 1)Fi =
∑

j

〈ξi|Ŝ2|ξj〉Fj, ∀i. (4.29)

In particular, for example, N↑ = N↓ = 2, we write

Ψ = F1| ↑↑↓↓〉+ F2| ↑↓↑↓〉+ F3| ↑↓↓↑〉+ F4| ↓↑↑↓〉+ F5| ↓↑↓↑〉+ F6| ↓↓↑↑〉 (4.30)

and Ŝ2Ψ = S(S + 1)Ψ gives
∑6

i=1 Fi = 0.

4.3 Real Space Grid Basis

Mapping the hyperdimensional coordinates of a many-particle system on grid into an integer

variable is useful for the numerical implementation of exact diagonalization techniques. By

putting the system on a cubic lattice with n points in each direction, we label each Cartesian

coordinate by an integer. For example, x = i∆ where ∆ denotes the grid spacing in the

x-direction. In a D-dimensional space, the position of a single particle r ≡ (x1, · · · , xD) can
be labeled by a set of integers (i1, · · · , iD) and then mapped onto an integer, for example,

I = i1 + i2n+ i3n
2 + · · ·+ iDn

D−1. (4.31)

If the space domain is restricted to a D-dimensional wedge {r | x1 ≤ x2 ≤ · · · ≤ xD},
the position of a single particle in the reduced domain can be labeled by a set of integers
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(i1 ≤ i2 ≤ · · · ≤ iD) and mapped onto an integer in the following way

I = i1 +
i2(i2 + 1)

2!
+
i3(i3 + 1)(i3 + 2)

3!
+ · · ·+ iD(iD + 1) · · · (iD +D − 1)

D!
. (4.32)

The configuration of anN -particle system can then be labeled by a set of intergers (I1, · · · , IN)
and then mapped onto a single integer

I = I1 + I2n
D + I3n

2D + · · ·+ INn
(N−1)D. (4.33)

The collection of I forms the complete domain of the configuration space. The many-particle

wavefunction Ψ(r1, · · · , rN) can be expressed and stored as an array ΨI . The external

potential and interaction potential
∑

i U(ri) +
∑

i<j V (rij) are also directly expressed and

stored as an array UI + VI . The kinetic energy, on the other hand, can be approximated

by discrete Laplacian operators. A finite-difference expression for the Laplacian operator in

one dimension is

−∇2ψi =
1

∆2

n/2
∑

j=−n/2

cjψi+j, (4.34)

where the coefficients cj are obtained through the Fourier expansion of the eigenvalues of

the Laplacian

k2 = c0 + 2

n/2
∑

j=1

cj cos(kj) (4.35)

and are given in Table I of Ref.[3]. This expression also gives the single particle dispersion

relation ǫk in one dimension. In general, the kinetic energy operator acting on the many-

particle wavefunction at a particular grid point produces a weighted linear combination of

the wavefunction values on the neighboring grid points

−∇2ΨI =
1

∆2

∑

J
cIJΨJ , (4.36)

where the summation is taken over the set of neighboring grid points of I. Commonly used

discrete Laplacian operators are the Hubbard model with nearest neighbor hopping and
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long range hopping models including up to the next nearest neighbors. In grid basis, the

Hamiltonian operator acting on a wavefunction can be written as

ĤΨI = (UI + VI)ΨI +
~
2

2m∆2

∑

J
cIJΨJ . (4.37)

In real space grid basis, the I’th basis function is chosen to be Ψ
(I)
J = δIJ . In matrix

notation,

HIJ = (UI + VI)δIJ +
~
2

2m∆2
cIJ . (4.38)

The external and interaction potential part is diagonal and the kinetic energy part has

off-diagonal elements.

4.4 Symmetry Reduction of Grid and Wavefunctions

Given a group of g symmetry transformations G ≡ {G1, · · ·Gg} (including identity 1) which

leaves the Hamiltonian operator invariant, the application of all the symmetry transforma-

tions in group G on a particular hyperdimensional configuration grid point I produces a

class of configuration grid points

GI ≡ {G1I, · · · , GgI}. (4.39)

which we call an equivalent class of point I. According to the closure property of group

G, the equivalent class is invariant with respect to the symmetry group G, namely, the

application of G on any member of GI yields the same set of grid points. By repeating the

above procedure for every configuration grid point in the complete domain, the complete

domain is decomposed into a series of subdomains {D1, · · · ,Dm}, each consisting of grid

points in the same equivalent class. The number of members Mi (called multiplicity) in a

certain equivalent class (or subdomain) Di is less than or equal to g because two different

symmetry transformations G1 and G2 may map I onto the same point G1I = G2I. The

total number of grid points in the complete domain is natually
∑m

i=1Mi, where Mi ≤ g, ∀i.
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Depending on how the many-particle coordinates are encoded into integers, we are able

to select one grid point, for example the one with the minimum integer label I ′, in each

equivalent class as a representative grid point for the whole class. The collection of repre-

sentative grid points forms the reduced domain and in principle, the Schrödinger equation

can be solved in the reduced domain only. For example, The Schrödinger equation in the

complete configuration grid reads

ĤΨα
I = Eψα

I , ∀I ∈ Complete Domain, (4.40)

and the orthonormality takes the form
∑

I Ψ
α
IΨ

β
I = δαβ. If the wavefuction evaluation is

restricted to the reduced domain

ĤΨα
i = Eψα

i , ∀I ∈ Reduced Domain, (4.41)

whenever the value of the wavefunctions on a grid point outside the reduced domain is

needed in the off-diagonal part of the Hamiltonian matrix, the exterior point is mapped

back into the reduced domain by symmetry transformations. The orthonormality condition

in the reduced domain is more complicated. In the simplest case where the wavefunctions

flip signs upon symmetry transformations, the orthonormality condition can be written as

∑

i

′
MiΨ

α
i Ψ

β
i = δαβ, (4.42)

where the summation is taken over the reduced domain and the weight factor Mi is the

multiplicity of the class. In the general case of an invariant subspace of degenerate wave-

functions, the form of the orthonormality condition in the reduced domain is prescribed

the specific transformation rules of the wavefunctions in the given symmetry sector. For

example, suppose {ψα
S , ψ

α
A} are unpolarized states of a system of N = 4 spin-1/2 fermions

with translational invariance and reflectional even-parity discussed in the previous section,
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the orthonormality condition in the complete domain takes the form

∑

i

(Ψα
S)i(Ψ

β
S)i =

∑

i

(Ψα
A)i(Ψ

β
A)i = δαβ, (4.43)

∑

i

(Ψα
S)i(Ψ

β
A)i =

∑

i

(Ψα
A)i(Ψ

β
S)i = 0. (4.44)

Note that there are two sets of orthogonal relations, within the invariant subspace {ΨS,ΨA}
and betweent he subspaces. In the reduced domain, the orthonormality relations are given

by
∑

i

′Mi

2
[(Ψα

S)i(Ψ
β
S)i + (Ψα

A)i(Ψ
β
A)i] = δαβ. (4.45)

In particular, within the invariant subspace the orthogonal relations are automatically sat-

isfied by the transformation rules Eq.(4.23).

4.5 Iterative Diagonalization Methods

To determine the lowest several eigenvalues and the corresponding eigenstates, we start

from a set of random trial states |ψ0
α〉 where 1 ≤ α ≤ M , and evolve the states |ψi+1〉 =

G(Ĥ, τ)|ψi〉, where the projection operator G(Ĥ, τ) can take different forms. For example,

the imaginary time evolution is

|ψi+1〉 = e−τĤ |ψi〉. (4.46)

This has the effect of suppressing the high-energy components. To perform the imaginary

time evolution, consider the Trotter formula

e−βĤ1 = lim
n→∞

(

e−
β
n
T̂ e−

β
n
Û
)n

. (4.47)

In a coordinate representation, a single step of imaginary time τ can be written as:

ψi+1(R) =

∫

d3R′〈R|e−τĤ|R′〉ψi(R′)

=
( m

2π~τ

)D
2 ×

∫

dDR′e−
m
2~τ

(R′−R)2e−
τU(R′)

~ ψi(R′), (4.48)
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where R = {r1, · · · , rN} denotes the hyperdimensional many-particle configuration. This

integral is a convolution, and can be efficiently evaluated by Fast Fourier Transform

ψi+1(R) = FFT
[

e−
τ~K2

2m fK

]

, (4.49)

where fK is defined as an inverse-Fourier transform

fK = FFT−1
[

e−
τU(R)

~ ψi(r)
]

. (4.50)

For a lattice system with a high energy cut-off Emax, another form of G(Ĥ, τ) = 1 − τĤ
for short time step τ is more convenient to calculate projections in a reduced domain

|ψi+1〉 = (1− τĤ)|ψi〉, (4.51)

where only successive applications of the Hamiltonian operator to the trial-states are needed

to evaluate the projection. To suppress the higher energy components, the time step τ must

be sufficiently small τ < 2~/Emax.

At each step of the evolution, the state vectors are properly symmetrized and orthogo-

nalized. As i → ∞, the states converge to the lowest M eigenstates of the Hamiltonian Ĥ

within a given symmetry sector. The errors are controlled and can be reduced arbitrarily

with increasing the number of grid points or number of iterations. As discussed below, the

computational cost grows rapidly with system size, but significant reduction can be achieved

by invoking symmetries.

4.6 Comments on Particle-Number Basis

The second quantized form of a many-particle Hamiltonian operator is written in the particle-

number basis. For example, the spin-1/2 Fermion Hubbard model

Ĥ = −t
∑

〈ij〉,σ

(

c†iσcjσ + c†jσciσ
)

+ U
∑

i

ni↑ni↓, (4.52)

84



describes a single band of electrons niσ = c†iσciσ with on-site interaction U . In the language

of second quantization, one needs to translate the many-particle Hamiltonian into a sparse

Hermitian matrix. If we want to take into account symmetries of the problem, the con-

struction of symmetric basis set is usually intellectually and technically challenging. Given

a symmetry of the system, i.e. an operator that commutes with Ĥ, the Hamiltonian will

not mix states from different eigenspaces of the symmetry operator. Therefore, the matrix

representation of Ĥ will acquire a block structure, and each block can be handled separately.

The Hubbard Hamiltonian Eq.(4.52) has the following symmetries: translational invariance,

inversion symmetries, conservation of the total number of particles, all components of the

total spin and the particle-hole symmetry for a bipartite lattice[4]. For the task of basis

construction the most important of these symmetries are the translational invariance, the

particle number conservation and the spin-Sz conservation. As in real space grid basis, the

total spin S2 can also be fixsed in addition to Sz, but the construction of the corresponding

eigenstates is too complicated for most practical computations.

In comparison with the real space grid basis described in the previous section, the sec-

ond quantized form in the particle-number basis has the advantage that the permutation

symmetries are incorporated into the basis construction and no explicit antisymmetrization

is needed. The challenging part of the project is to construct the basis states satisfying the

given symmetries. On the other hand, if the problem is formulated in the real space grid ba-

sis, each grid point in the reduced domain is a basis function and the explicit construction of

symmetric basis states is no longer required. The mapping rules from the complete domain

to the reduced doman and the construction of a neighbor list is the challenging part.
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Chapter 5

Pairing and Ferromagnetic

Instabilities of Spin-1/2 Fermions

5.1 BCS-BEC crossover and unitarity limit

Consider a two-component atomic Fermion gas occupying two different spin states, for sim-

plicity, called spin up (σ =↑) and spin down (σ =↓). The many-body Hamiltonian for a

system of N interacting particles moving in an external potential has the form Eq. (4.1) in

Chapter 4:

ĤN =
N∑

i=1

[
p2
i

2m
+ U(ri)

]

+
N∑

i<j=1

V (ri, rj), (5.1)

where the interatomic potential can be modeled as a regularized δ-function:

V (r, r′) =
4π~2a

m
δ(r− r′)

∂

∂|r− r′| |r− r′|, (5.2)

where a is the zero-energy scattering length and m is the mass. As already discussed in

Chapter 2, the effect of the zero-range pseudopotential Eq. (5.2) is accounted for by the

Bethe-Peierls boundary condition Eq. (2.53). There are several important cases in which the

many-body probem for the interacting spin-1/2 Fermion gases are particularly interesting

[1]: (1) the BCS limit; (2) the BEC limit; (3) the unitary limit; (4) the weakly repulsive gas

with no molecules forming; (5) the instability toward a ferromagnetic phase, as shown in

Fig. (5.1) where two energy branches are plotted as functions of the inverse scattering length

(kFa)
−1. In this section, we will be considering the homogeneous system in the absence of

an external potential U(r) = 0.
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Figure 5.1: A sketch of the two interesting energy branches of the spin-1/2 fermion gas as functions of the
inverse scattering length (kFa)

−1: the ground state energy and the upper-branch scattering state with no
molecules forming.

5.1.1 Gas in normal state

A first example is the dilute gas in its normal state, for which standard perturbation theory

can be applied with the small parameter kF |a| ≪ 1 expressing the diluteness condition of

the gas. At zero temperature, the expansion of the energy per particle up to quadratic terms

in the dimensionless parameter kFa yields the following expression [2][3]

Enormal
N

=
3

5
ǫF

[

1 +
10

9π
kFa+

4(11− 2 ln 2)

21π2
(kFa)

2 + · · ·
]

(5.3)

in terms of the Fermi energy ǫF = kBTF = ~
2(2π2n)2/3/(2m) of the non-interacting gas.

Although the above result was first derived with the aid of the δ-function pseudopotential

[2][3], it is universal as it holds for any interatomic potential with a sufficiently small effective

range. Higher-order terms in Eq. (5.3) will depend not only on the scattering length a, but

also on the details of the potential. The above result is the true ground state energy only

in the case of purely repulsive potentials, such as the hard-sphere model. For more realistic

potentials with an attractive tail or the regularized-δ function potential, the above result
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describes the metastable gas-like state of repulsive atoms.

5.1.2 Weakly attractive gas

The dilute Fermion gas interacting with negative scattering length kF |a| ≪ 1 corresponds to

the famous BCS picture first introduced to describe the phenomenon of superconductivity

[4]. In this limit, the many-body problem can be solved both at zero temperature and non-

zero temperature. The main physical feature is the instability of the system in the presence

of even an infinitesimally weak attraction and the formation of bound states, the Cooper

pairs. Exact results are available for the critical temperature [5]

Tc =

(
2

e

)7/3 (γ

π

)

TF e
π

2kF a ≈ 0.28TF e
π

2kF a , (5.4)

where γ = 1.781072381 is the exponential of Euler’s constant. The energy gap ∆gap at zero

temperature in the spectrum of single-particle excitations ǫk =
√

∆2
gap + [~2kF (k − kF )]2/m2

close to the Fermi surface |k − kF | ≪ kF is related to Tc through ∆gap = (π/γ)kBTc ≈
1.76kBTc. Furthermore, the ground-state energy per particle takes the form

EBCS
N

=
Enormal

N
−

3∆2
gap

8ǫF
, (5.5)

where Enormal is the perturbation expansion with a < 0 and the second term corresponds

to the exponentially small energy gain of the superfluid compared to the normal state.

5.1.3 Gas of composite bosons

The positive value of the scattering length is associated with the emergence of a two-body

bound state and the formation of dimers as discussed in Sect. (2.3) in Chapter 2. The size of

the dimer is on the order of the scattering length a and their binding energy is ǫb = −~2/ma2.
These dimers composed of two fermions are bosonic in nature, and if the gas is sufficiently

dilute and cold, can give rise to Bose-Einstein condensation (BEC). Petrov et al. [6] solved

the four-body problem of collisions between two dimers. Using the zero-range δ-function
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pseudopotential, they calculated the dimer-dimer scattering length

add ∼= 0.6a. (5.6)

Including the interactions between molecules, the behavior of the dilute (kFa ≪ 1) gas of

dimers, called the BEC limit, is described by the equation of state

EBEC
N

=
ǫb
2
+
kFadd
6π

[

1 +
128

15
√
6π3

(kFadd)
3/2 + · · ·

]

ǫF . (5.7)

The gas of dimers and the repulsive gas of atoms represent two different branches of the many-

body problem, both corresponding to positive scattering length. If one stays sufficiently away

from the resonance a = ±∞, losses are not dramatic and the many-body state is a repulsive

Fermion gas. Conversely, the gas of dimers is realized by crossing adiabatically the resonance

starting from negative values of a.

5.1.4 Gas at unitarity

The results for the three phases considered above are established in the limiting cases kF |a| →
0. A more difficult problem concerns with the behavior when kF |a| & 1, i.e. when the

scattering length becomes larger than the interparticle spacing. This corresponds to a gas

that is dilute and strongly interacting at the same time. An exact solution of the many-

body problem for kF |a| & 1 is not available. However, approximate schemes and numerical

methods indicate that the gas is stable. The limit kF |a| → ∞ is called the unitary regime

because it is characterized by the universal behavior of the scattering amplitude f(k) =

i/k, the maximum magnitude allowed by the unitarity of the scattering S-matrix. As the

scattering length disappears from the problem, the only remaining relevant length scale is

the Fermi wave vector (and the de broglie thermal wavelength at non-zero temperature). An

important example of this universal behavior is given by the energy ratio

ξN↑N↓
≡
Eunitary

N↑N↓

E0
N↑N↓

, (5.8)
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where E0 is the energy for the non-interacting system. The universal parameter ξ is defined

as the thermodynamic limit for the spin-unpolarized system

ξ = lim
N→∞

ξN,N . (5.9)

A recent QMC calculation [7] found that the energy of the Fermi gas at unitarity and zero

effective range is ξ = 0.372(0.005) using a variety of interactions tuned to unitarity.

There is not at present an exact analytic solution of the many-body problem along the

whole BCS-BEC crossover. A useful approximation is provided by the standard BCS mean-

field theory of superconductivity. This approach, first introduced by Eagles(1969) [8] and

Leggett(1980) [9], provides a comprehensive and qualitatively correct picture of BCS-BEC

crossover at zero temperature.

5.2 Itinerant ferromagnetism: Heisenberg, Bloch and Stoner

Itinerant ferromagnetism refers to the magnetic state created by the same electrons with

aligned spins as the ones responsible for conduction. Heisenberg [10] first recognized exchange

interactions between electrons residing in atomic orbitals that overlap spatially could favor

a spin-aligned state. Exchange interactions appear indirectly as a result of spin-independent

Coulomb interactions combined with Pauli exclusion principle. Consider, for example, a

simplified model of hydrogen molecule by taking the nuclei fixed and their spins ignored.

The two electrons may be described by their positions r1 and r2 and some components of

their spins S1 and S2. If ψa and ψb are eigenstates for a single electron with energies Ea and

Eb, then

ψab(r1, r2) = ψa(r1)ψb(r2) (5.10)

has energy Ea + Eb, neglecting mutual interactions between the electrons. The state

ψba(r1, r2) = ψb(r1)ψa(r2) (5.11)

91



has the same energy. If we add a mutual interaction V (r1, r2) = V (r2, r1) which is spin-

independent between the electrons, then the two-electron eigenstates become

ψS =
1√
2
(ψab + ψba), ψA =

1√
2
(ψab − ψba) (5.12)

with their respective energies

ES = Ea + Eb + I − J, EA = Ea + Eb + I + J, (5.13)

where

I =

∫

ψ∗
abV ψabd

3r1d
3r2, J =

∫

ψ∗
abV ψbad

3r1d
3r2. (5.14)

The spatial wave functions must be multiplied by spinors to describe the spins of electrons,

and the total wave function must be antisymmetric under the simultaneous exchanges of

coordinates and spins. For two spin-1
2
particles, the symmetric spin states have total spin-1,

and the anti-symmetric states have spin-0. Thus total wave functions have the form

ΨS = ψSχ
(0), ΨA = ψAχ

(1), (5.15)

where χ(S) is any two-electron spin state with total spin S. Note that the interaction potential

V is spin-independent so that the energy eigenstates are also eigenstates of the total spin,

we can then write the energy in terms of the spin as follows. If S is the total spin, S · S has

eigenvalues S(S + 1) = 0 and 2. The energy of a state with total spin S can be written in

the form

E = ES + (EA − ES) ·
S(S + 1)

2
. (5.16)

Therefore we can write the mutual interaction Hamiltonian for the system in the form

H = ES + (EA − ES)
S · S
2

= Ea + Eb + I +
1

2
J + 2JS1 · S2. (5.17)
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The splitting term, described by ∆H = 2JS1 · S2 is proportional to the exchange integral J

which depends on how much the wave functions ψa and ψb overlap. We have thus taken a

spin-independent Hamiltonian of two interacting electrons and made it look like a spin-spin

interaction. Note that for higher spins we would get a polynomial in S1 · S2 if we went

through a similar procedure.

Bloch [11] extended Heisenberg’s idea to delocalized electrons in what is now known as

itinerant exchange, and showed that at high density the electron system would be paramag-

netic in order to optimize the kinetic energy cost whereas at low density the system should

spontaneously spin-polarize itself into a ferromagnetic ground state in order to optimize the

exchange energy. In Bloch’s analysis, one writes the total Hartree-Fock energy per-particle as

a sum of the noninteracting kinetic energy and the Fock exchange energy due to unscreened

Coulomb interaction (e2/r) as

E

N
=

3

10
ǫF

[

(1 + η)
5
3 + (1− η) 5

3

]

− 3e2

8π
kF

[

(1 + η)
4
3 + (1− η) 4

3

]

(

in units of
e2

2aB

)

=
1.1

r2s

[

(1 + η)
5
3 + (1− η) 5

3

]

− 0.46

rs

[

(1 + η)
4
3 + (1− η) 4

3

]

, (5.18)

where N = N↑ + N↓ is the total number of particles, n = n↑ + n↓ is the total number

density, kF =
3
√
3π2n is the Fermi momentum when N↑ = N↓ and ǫF is the corresponding

Fermi energy, η =
n↑−n↓

n↑+n↓
characterizes the magnetization, and rs is the dimensionless average

interparticle distance
4π

3
πr3s =

1

a3Bn
, (5.19)

where aB = ~
2/mee

2 is Bohr radius. The above Hartree-Fock energy expression leads to

a first-order ferromagnetic transition at rs ∼= 5.45 (kFaB ∼= 0.35) , i.e. E(η = 1) ferro-

magnetic state is lower in energy than E(η = 0) paramagnetic state for rs > 5.45. This

is called Bloch ferromagnetism. However, the few systems that exhibit such low densities

are not ferromagnetic. In real electron liquids, the exchange-only Hartree-Fock approxi-

mation considered above for Bloch instability is inadequate because correlation effects are

known to be important and must be included in the energetic considerations. In fact, precise
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Monte Carlo calculations suggest [12] that the transition to a ferromagnetic state appears

at rs ∼= 50 (kFaB ∼= 0.04), about one order of magnitude lower than the simple Hartree-Fock

estimate that Bloch used.

Stoner [13] introduced the concept of exchange field that can be viewed as a fluctuating

spin environment acting on a single electron. The simplest version of the model is to consider

a zero-range δ-function-like, spin-independent potential between electrons, leading to

E

N
= ǫF

{
3

10

[

(1 + η)
5
3 + (1− η) 5

3

]

+
2

3π
kFa(1 + η)(1− η)

}

, (5.20)

where a is the scattering length characterizing short-range interactions between two spin

components. The Stoner instability is characterized by the divergence of the spin suscep-

tibility and hence a second order continuous ferromagnetic phase transition. Note that for

short range interaction, the s-wave scattering between fermions in the same spin(hyperfine)

states is inhibited due to Pauli principle. It follows that at low temperature the dilute Fermi

gas, in a fixed hyperfine state, is practically ideal. Nevertheless, the effect of interaction

could be very effective for a Fermi gas with two or more components(hyperfine states). This

model predicts itinerant ferromagnetism for sufficiently strong repulsion or high density.

The phase transition is continuous and occurs when the minimum in energy is at nonzero

magnetization at kFa = π/2.

5.3 Jo et al. experiment

Although a few early experiments conducted on the repulsive side of the resonance hinted at

a ferromagnetic behavior, these investigations were hindered by the challenges posed by the

cold atomic gas setup, with fixed relative populations of particles, trap confinement, atom

loss through three-body interactions, and nonequilibrium physics, rendering the conclusive

identification of ferromagnetism impossible. The control afforded by Feshbach resonance

phenomena in ultracold atomic gases has enabled the exploration of strongly correlated

degenerate Fermi systems. In a recent study of the possibility of itinerant ferromagnetism
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[11, 13, 12, 14], Jo et al. [15] attempted to observe the physics behind the Stoner model in

an atomic gas of 6Li atoms. Evidence for ferromagnetic ordering was seen. To overcome the

obstacle of atom loss through three body interactions, the experiment was carried out under

marginally adiabatic conditions, with the atoms prepared in the disordered nonferromagnetic

state and the magnetic field ramped to the repulsive side of the resonance in 4.5 ms and

then held fixed for a further 2 ms. In this section, we briefly describe the preparation of the

experiment.

5.3.1 Preparation of the ultracold 6Li cloud

(1) The first step is the production of a spin-polarized Fermi gas prepared in the |F,mF 〉 =
|3/2, 3/2〉 hyperfine state by sympathetic cooling [16] with bosonic 23Na atoms in a magnetic

trap.

(2) The 6Li cloud was then loaded into a deep optical dipole trap with a maximum power of

3W and radial trap frequency of ∼ 3.0 kHz, followed by an RF transfer into the lowest hy-

perfine state |F,mF 〉 = |1/2, 1/2〉, as shown in Fig. (1.1) in . Additional axial confinement

was provided by magnetic fields. Note that the state |F,mF 〉 = |1/2, 1/2〉 is a high-field

seeker, thus cannot be magnetically trapped. That’s why the 6Li cloud has to be loaded into

an optical trap before being transfered to the lowest hyperfine state.

(3) An equal mixture of |1〉 and |2〉 spin states (corresponding to the |F,mF 〉 = |1/2,+1/2〉
and |1/2,−1/2〉 states at low magnetic field) was prepared by a Landau-Zener RF sweep at

a magnetic field of 590 G, followed by 1 s for decoherence and further evaporative cooling

at 300 G. Note that transitions between hyperfine states can be induced by radio frequency

radiation, whose frequency (∼ 109 Hz) is of order the hyperfine splitting. The optical dipole

trap is constructed from lasers with much higher frequency (∼ 1014 Hz) which would not

cause the pseudospin to flip.
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(4) Finally, the optical trapping potential was adiabatically reduced over 600 ms, and the

field increased back to 590 G. The trap had a depth of 7.1µK and was nearly cigar shaped

with frequencies νx = νy ≃ 300 Hz and νz ≃ 70 Hz.

5.3.2 Temperature and effective temperature

Jo et al. experiment thus starts with an atom cloud consisting of an equal mixture of

6Li atoms in the lowest two hyperfine states, held at 590 G in an optical dipole trap with

additional magnetic confinement. The number of atoms per spin state is approximately

6.5× 105, which corresponds to a Fermi temperature TF ∼ 1.4µK.

Unlike the situation in condensed matter systems, for ultracold gases, thermometry is less

straightforward. Experimentally, temperature is determined from the spatial profiles of the

cold gas, either in the trap, or following expansion. For weakly interacting Bose and Fermi

gases, where the theoretical density is well understood, this procedure is straightforward.

However, for a strongly interacting gas, the spatial profile has not been understood until

recently [17][18]. For this reason, the temperature is often measured on either side far away

from the Feshbach resonance, where the scattering length is small. A strongly interacting

sample in the unitary regime is then prepared by an adiabatic change of the magnetic field.

The effective temperature T was determined immediately after the field ramp by fitting

the spatial distribution of the cloud with a finite temperature Thomas-Fermi profile and could

be varied between T/TF = 0.1 and T/TF = 0.6. Applying the procedure discussed in [19] to

repulsive interactions, one can estimate that the real temperature T̃ is approximately 20%

larger than the effective one. Denote k0F as the Fermi wave vector of the noninteracting gas

calculated at the trap center. The effective temperature did not depend on k0Fa for k0Fa < 6.

At higher temperatures, additional shot-to-shot noise was caused by large fluctuations in

the atom number.
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5.3.3 Tuning the repulsive interaction

From the starting point at 590 G, the magnetic field was increased toward the Feshbach

resonance at 834 G, thus providing adjustable repulsive interactions. Because of the limited

lifetime of the strongly interacting gas, it was necessary apply the fastest possible field ramp,

limited to 4.5 ms by eddy currents. The ramp time is approximately equal to the inverse of

the axial trap frequency (∼ ν−1
xy ) and therefore only marginally adiabatic. Depending on the

magnetic field during observation, either atoms or molecules were detected by absorption

imaging [20].

5.3.4 Measurement of physical quantities

Several physical quantities are measured during observation to make comparison with the

simple mean-field model of Stoner Hamiltonian as indirect evidences of a ferromagnetic phase

transition. As we mentioned earlier, in contrast to electrons in solids, the number of atoms

in each hyperfine states is conserved. As a result, the total magnetization always vanishes.

In fact, ferromagnetic phase transition cannot occur in a uniform system. However, since

the atomic gas is confined in a trap, the signature of ferromagnetism is the formation of

domains that contain only atoms in one of the hyperfine states.

The emergence of local spin polarization is observed by the suppression of collisions,

because the Pauli exclusion principle forbids collisions in a fully polarized cloud. The inelastic

three-body collisions which convert atoms into molecules are monitored and the atom loss

rate is derived in inelastic scattering theory

Γ = Γ0(T )(kFa)
6

∫

d3rn↑(r)n↓(r)[n↑(r) + n↓(r)]. (5.21)

The annihilation rate per atom is proportional to Γ0(T )(kFa)
6n↑n↓ or Γ0(T )(kFa)

6n2(1−η2),
where η = (n↑ − n↓)/(n↑ + n↓). This rate can be observed by monitoring the initial drop in

the number of atoms during the first 2 ms after the field ramp. The authors avoided longer

observation times, because the increasing molecule fraction could modify the properties of the
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sample. A sharp peak was observed in the atom loss rate around k0Fa
∼= 2.5 at T/TF = 0.12,

which is the lowest temperature achieved in this experiment, indicating a transition in the

sample to a state with local magnetization.

The kinetic energy of the cloud was determined by suddenly switching off the optical trap

and the Feshbach fields immediately after the field ramp and then imaging state | ↑〉 atoms

at zero field using the cycling transition after a ballistic expansion time of ∆t = 4.6 ms. The

kinetic energy was obtained from Gaussian radial width σ as Ekin = 3mσ2/2∆t2, where m is

the mass of the 6Li atom. A minimum of the kinetic energy was observed at k0Fa
∼= 2.2 for

the coldest temperature T/TF = 0.12, nearly coincide with the onset of local polarization.

The peak in the atom loss rate occurs slightly later than the minimum of kinetic energy,

probably because the factor a6 in Eq.(5.21) increases with a.

The cloud size can be measured by imaging and a maximum was observed at the phase

transition. The cloud size may not have fully equilibrated because the ramp time was only

marginally adiabatic.

The suppression of the atom loss rate, the minimum in kinetic energy, and the maximum

in cloud size show a strong temperature dependence between T/TF = 0.12 and 0.22. The

properties of a normal Fermi gas approaching the unitarity limit with k0Fa ≫ 1 should be

insensitive to temperature variations in this range; therefore, the observed temperature de-

pendence provides further evidence for a transition to a new phase. At higher temperatures

(e.g. T/TF = 0.39), the observed nonmonotonic behavior becomes less pronounced and shifts

to larger values of k0Fa for 3 < k0Fa < 6. For all three observed properties, a nonmonotonic

behavior is no longer observed at T/TF = 0.55. One interpretation is that at this temper-

ature and above, there is no longer a phase transition. In a mean-field approximation, a

ferromagnetic phase transition would appear at all temperatures but for increasing values of

k0Fa. The experiment may imply that the interaction energy saturates around k0Fa ≈ 5.
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5.3.5 Molecular admixture

The authors claim that the only difference between the experiment and the ideal Stoner

model is a molecular admixture of 25%. The molecular fraction was constant for k0Fa > 1.8

for all temperatures and therefore cannot be responsible for the sudden change of behavior

of the gas at k0Fa = 2.2 at the coldest temperature T/TF = 0.12. The measurements were

repeated with molecular admixture of 60% and the minimum in the kinetic energy occurred

at the same value of k0Fa within experimental accuracy.

5.3.6 Ferromagnetic domain

The experiment was unsuccessful in imaging ferromagnetic domains using differential in situ

phase contrast imaging. The signal-to-noise level is about 10 and there were at least 100

domains in a volume given by the spatial resolution of ∼ 3µm and by the radial size of

the cloud. This is a cylinder shaped region containing ∼ 50 spin-polarized atoms. The

author suspect that the short lifetime prevented the domains from growing to a large size

and eventually adopting the equilibrium texture of the ground state predicted to have spins

pointing radially outward [21][22]. All measurements in this experiment are sensitive only

to local spin polarization and are independent of domain structure and texture.

5.3.7 Lifetime of the atomic gas

The atomic Fermi gas in the spin-polarized ferromagnetic state should be ideally noninter-

acting and should not suffer from inelastic collisions. However, the typical lifetime were 10 to

20 ms, which were probably related to a small domain size and three body recombination at

domain walls because atoms on different sides of the domain wall occupy different hyperfine

states.
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5.4 Review of Existing Calculations

Little attention has been given to the regime on the repulsive side of the Feshbach resonance,

one possible reason is that this region is an excited branch which is unstable against near-

resonant three body recombination into weakly bound molecules. Nevertheless, many efforts

have been made to improve the simple mean-field model of Stoner before Jo et al. experiment

[15]. Fermi quantum degeneracy first realized experimentally in late 1999 [23][24] renewed

the theoretical study to identify a two-component Fermi gas near a Feshbach resonance as a

model system for itinerant ferromagnetism, assuming that the decay into molecules can be

sufficiently suppressed.

5.4.1 Early considerations in 1997

Houbiers et al. work [25] investigated the superfluid state of spin-polarized aotmic 6Li

confined in a magnetic trap. This work put its emphasis on the critical temperature of the

superfluid phase transition, which is on the BCS (attractive) side of Feshbach resonance. The

authors considered the mechanical stability of both negative and positive scattering length,

which represents one of the earliest attempts to deal with both attractive and repulsive

interatomic interactions in a two-component Fermi gas.

5.4.2 Mean field theory and LDA

Soon after the first experiment that achieved Fermi quantum degeneracy, theorists started

to consider density profiles and spin textures for Fermi vapors in trap. One of the major

approaches is to take into account the interatomic repulsion in the framework of mean field

theory and to use local density approximation (LDA) to deal with inhomogeneity in trap.

The energy functional in LDA is typically written as

E {[ρσ(R)]} =
∫

d3R

[

3

5
α
∑

σ

ρ5/3σ (R) +
∑

σ,σ′

gσσ′ρ↑(R)ρ↓(R) + U(R)
∑

σ

ρσ(R)−
∑

σ

µσρσ(R)

]

,

(5.22)
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where U(R) denotes the external trap potential, ρσ denotes the density profile of spin species

σ, α = (6π2)2/3~2/2m and g = 4πaσσ
′

s ~
2/m.

Salasnich et al. [26] studied the thermodynamical properties of a M -component Fermi

vapors confined in a harmonic external potentials, paying particular attentions to the density

profiles within semiclassical approximation in the conditions of experiments [23][24] with 40K

at that time. It is shown that in calculating density profiles the semiclassical approximation

is good for kBT/~ω ≫ 1 where ω is the trap frequency, or at a fixed temperature, for

a large number of N of trapped particles. The authors considered a dilute Fermi vapor

with M hyperfine states within the mean field approach and semiclassical approximation.

The spatial density profile ni(r) of the ith component of a Fermi vapor is written as nσ =

λ−3/2f3/2

(

eβ[µσ−U(r)−∑M
σ′ gσσ′nσ′ (r)]

)

where i = 1, 2, · · · ,M , λ is de Broglie wavelength and

f3/2(x) is the Sommerfeld function. Thus, the effect of the otherM−1 Fermi components on

the ith component is the appearance of a mean field effective potential. At zero temperature

the kinetic energy assumes the familiar Thomas-Fermi form. Equations (5.22) was then

solved numerically with a self-consistent iterative procedure. If the components of the Fermi

vapor are non-interacting, they can occupy the same spatial region. Instead, if the repulsive

interaction is strong enough or for particle number N very large one finds a phase separation,

i.e. the Fermi components stay in different spatial regions. The authors did not try to locate

the ferromagnetic transition point in this work.

Sogo and Yabu [27] first explicitly analyzed the collective ferromagnetism in a trapped

two-component Fermi-degenerate gas ρσ = [ρ↑, ρ↓] in the framework of local density ap-

proximation at zero temperature. Because zero-range interactions can be neglected between

Fermions with unlike spins, we have a single interaction parameter g = 4π~2a↑↓/m. The

Thomas-Fermi equations for the densities ρσ are derived from the variations of the total

energy E on ρσ with a constraint on the total particle number N : δ/δρσ(E −µN) = 0. The

lagrange multiplier µ is determined from by the total fermion number N , so that N is the

only parameter that determines the ground state properties of the system. The authors thus

reached the conclusion that there exists a critical value µc such that the system ground state
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is Paramagnetic if 0 ≤ µ ≤ µc and ferromagnetic if µ > µc. The specific value of µc is not

important here because the authors did not assume the total magnetization to be conserved,

whereas in most experiments, the total magnetization is conserved as a consequence an ab-

sence of coupling between the effective spin degree of freedom (hyperfine structure) and the

rest of the system.

Berdnikov et al.[21] and LeBlanc et al.[22] reviewed the local density approximation by

taking into account of the conservation of magnetization. Two lagrange multipliers µσ are

introduced to act as chemical potentials for the two spin species and serve to impose the

constrains
∫
d3Rρσ(R) = Nσ. The separate constraint on each spin component arises from

the assumption that the two spin components correspond to the lowest two Zeeman split

hyperfine levels of a Fermi gas. Since the Zeeman splitting near a Feshbach resonance is

typically far greater than all other energy scales and the total energy must be conserved in

these thermally isolated gases, we arrive at the constraint that the population of the two Zee-

man components cannot change for fermionic atoms where the only interaction is between

different spin components. Thus, unlike in solid state ferromagnets, the magnetization can

be conserved on very long time scales. This mean-field calculation in local density approx-

imation captures many qualitative features expected in a ferromagnetic phase transitions,

which are already existing in the simplest Stoner model: as we tune the gas parameter kFa

stronger, there occurs a minimum in kinetic energy, a maximum in potential energy or the

cloud size, the emergence of magnetization or a maximum in atom loss rate and so on. Most

importantly, the mean field calculation predicted a continuous (second-order) ferromagnetic

phase transition at kFa = π/2 or k0Fa ≈ 1.84, with kF being the Fermi wave vector at the

trap center in the interacting cloud and k0F the Fermi wave vector at the trap center for the

unmagnetized noninteracting gas. The inhomogeneity caused by the trap encoded into local

density approximation leads to no correction on this characteristic feature.

The authors [22] also extended the treatment to write the free energy as a functional

not only of the density ρ(r), but also of the magnetization order parameter M(r). This

generalization enables the authors to consider not only the density profiles, but also the
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spin textures of the interacting two-component Fermi gas in a harmonic trap. They wrote

n↑(r) =
1
2
n(r)[1+m(r)], n↓(r) =

1
2
n(r)[1−m(r)] and the energy functional splits into two

parts as E = Ea[n(r)] +Eb[n(r),m(r)] where the first term is the LDA and the second term

represents magnetization effects. Promoting the magnetization to vectors and including gra-

dient terms leading to the Landau-Ginzburg form of free-energy functional which describes

long-wavelength configurations of the magnetization order parameter

Eb =

∫

d3R
ζ

2
|∇M|2 + β

4

(
|M|2 + · · ·

)2
, (5.23)

where the stiffness ζ(R) depends on R only through the density, and it can be computed

in the uniform Fermi gas assuming that the magnetization variation is slow on the scale of

the interparticle spacing but fast on the length scale over which the total density varies.

The above energy functional can then be used to study the energetics of various magneti-

zation patterns in the trapped Fermi gas. The authors compared energies of a hedgehog

configuration and a domain wall configuration [22], and also a twist configuration [21] of the

magnetization. The conclusion the authors have reached is that in 3D, domain walls are

preferred for small traps, while for large traps hedgehog has the lowest energy.

5.4.3 Second order perturbation theory

The pioneering work discussed above suggests that mean field theory predicts a continuous

(second-order) ferromagnetic phase transition at kFa = π/2 in a two-component Fermi gas at

zero temperature and local density approximation leads to negligible qualitative corrections.

Duine and MacDonald [28] evaluated the free energy of a homogeneous spin-polarized Fermi

gas to second order in its interaction parameter. Taking into account all contributions

to second order in g = 4πa~2/m, the energy density of the Hamiltonian for a spatially

homogeneous system is then expressed as

ε =
1

V

∑

k,σ

ǫknσ(ǫk) +
g

V 2
N↑N↓ −

2g2

V 3

∑

k1,2,3,4

nk1↑nk2↓(nk3↑ + nk4↓)

ǫk1
+ ǫk2

− ǫk3
− ǫk4

, (5.24)
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where nσ(ǫk) denotes the Fermi distribution and the second sum is over wave vectors such

that k1 + k2 = k3 + k4. Retaining only the leading interaction correction, one recovers the

conventional mean field theory. The second order correction takes into account the so-called

unitary limit, i.e. the energy dependence of the vacuum scattering amplitude to all orders

in kFa, to second order. Note that the interaction is expressed in terms of the Fermi wave

vector at the center of a trapped noninteracting Fermi gas. The authors found that mean

field theory (or Hatree-Fock theory) underestimates the tendency toward ferromagnetism,

which means in second order perturbation theory, the ferromagnetic transition would occur

at an even smaller interaction parameter. At zero temperature, the system becomes partially

polarized at kFa ≈ 1.054 and fully polarized at kFa ≈ 1.112. Moreover, the authors claim

that the ferromagnetic transition is first order at low temperatures, in contrast to mean field

theory which predicts that the transition remains continuous down to zero temperature.

For higher temperatures, interactions have to be stronger to polarize the system, and for

T > Ttc ≃ 0.2TF , the transition is continuous. The authors argued that the coupling of

the order parameter to gapless modes leads to nonanalytic terms in the free energy and

generically drives the transition first order. Theories of this kind of phase transition are still

qualitative. In the current case, the gapless modes that drive the transition first order are

particle-hole excitations. The coupling of these excitations to the magnetization is neglected

in mean field theory, which therefore always predicts a continuous transition. Eq.(5.24)

takes the coupling between the magnetization and the particle-hole excitations into account

to lowest order.

Conduit et al. [29] revisited the second order perturbation theory and adapted the studies

of Duine and MacDonald [28] to the atomic trap geometry. The authors again invoked the

local density approximation, which allows the variational minimization as in [22]. This leads

to two equations for the particle number density nσ(r) which must be solved self-consistently.

The results obtained by this procedure is again in qualitative agreement with experiment.

The marked divergence still arises in the experimental prediction of the interaction strength

at the onset of ferromagnetism at k0Fa ≈ 2.2 or kFa ≈ 1.9± 0.2. The theoretical prediction
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from mean field theory, as we recall, is k0Fa ≈ 1.9 or kFa = π/2, whereas it is at k0Fa ≈ 1.1

if second order corrections are taken into account. It’s even worse than mean field theory

in comparison with experiment. This discrepancy prevents the authors from drawing a

definitive conclusion on whether the transition is first order or continuous. The authors

then argued that the experiment was carried out under nonadiabatic conditions, with atoms

prepared in the disordered nonferromagnetic state and the magnetic field ramped to the

repulsive side of the resonance in 4.5 ms and then held fixed for a further 2 ms. This

discrepancy motivated a simple nonequilibrium theory that takes account of the dynamics

of magnetic defects and three-body losses. The formalism or argument developed in this

way displays reasonable agreement with experiment.

5.4.4 QMC calculations using SLA

The Jo et al. experiment [15] has generated a great deal of theoretical research [22, 30, 31,

32, 33, 34]. The results have been debated as to whether a ferromagnetic transition or a

strong correlation effect was seen. Predictions of the critical ratio of interaction strength to

interatomic spacing for the ferromagnetic transition from mean field theory [13, 22], second

order corrections [28, 34] and QMC calculations [30, 32, 33] are on the order of kFa ∼ 1;

about two times lower than that from the Jo et al. experiment. Quantitative comparison

with experiment has not been achieved. In almost all calculations, a positive interaction

[30, 32] or a Jastrow factor with two-body nodes [33] is assumed, using the scattering length

approximation(SLA). The earliest Fixed-node diffusion Monte Carlo calculations employed

the repulsive Pöschl-Teller potential (kFa ≈ 0.86) [30], hard spheres or repulsive soft spheres

(kFa ≈ 0.82) [32] and included backflow effects (kFa ≈ 0.96) [33]. For attractive interactions

modeled by spherical square wells or attractive Pöschl-Teller potential, either variational

Monte Carlo (kFa ≈ 0.86) [32] or fixed-node diffusion Monte Carlo [33] (kFa ≈ 0.89) cal-

culates the upper-branch metastable state by imposing a nodal condition in the many-body

wave function. The nodal condition ensures that the calculation consist of unbound fermionic

atoms and no dimers or other bound molecules, by introducing a Jastrow factor in the form
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of the scattering solution of the attractive potential corresponding to positive energy. As

shown in Sec. (5.5.2), the nodal structure obtained this way deviates significantly from the

true nodes in the upper branch. This explains why all these calculations gave results similar

to those from repulsive potentials, and all of them reproduced the predicted behavior of the

mean field theory and second order corrections.

5.5 Exact diagonalization calculations on grid

With more experimental effort expected in the study of related systems, precise and reliable

comparisons from quantum simulations will be important. Yet accurate many-body calcula-

tions will not be possible without a quantitative understanding of the effective interactions

and their effect on the different states. Even the identification of the atomic scattering state

in a dense system requires explanation.

In this section, we explicitly include the molecular bound states and treate the inter-

action exactly. We use the exact matrix diagonalization methods outlined in Chapter 4 to

investigate the energy spectrum of systems of two, three and four spin-1
2
fermions interacting

through a contact interaction both exactly, and within the scattering length approximation.

The energy spectrum as a function of the two-body interaction strength is obtained by us-

ing an exact numerical method on a lattice and then extrapolated to the continuum limit.

The formation of molecular bound states and the ferromagnetic transition of the excited

scattering state are examined systematically as a function of the 2-body scattering length.

Identification of the upper branch (scattering states) is discussed and a general approach

valid for systems with many particles is given. To compare with the exact solutions, calcula-

tions are also made with the SLA by replacing the attractive contact interaction with a zero

boundary condition. We show that an adiabatic ferromagnetic transition occurs, but at a

critical transition point kFa much higher than predicted from previous calculations, almost

all of which use the scattering length approximation. The exact critical interaction strength

calculated in the 4-particle system is consistent with that reported by experiment.

We consider a system of two-component fermions moving in a periodic box with length
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L to model a gas of 6Li atoms with two hyperfine species at non-zero density. All lengths

are expressed in units of L and all energies in units of K0 = ~2

2m
(2π
L
)2. In the case a ≫ r0

(where r0 is a measure of the effective interaction range), the interatomic potential can be

modeled as a regularized δ-function Eq. (5.2). We solve the Schrödinger equation by putting

the system on a lattice with n points in each direction and recover the continuum limit by

extrapolation. We then approximate the kinetic energy by two different discrete Laplacian

operators [35]: (1) the Hubbard model with nearest neighbor hopping and (2) a long range

hopping model including up to the next nearest neighbors. We model the bare two-particle

interaction by a point contact potential on the grid

V grid(r, r′) = − U

∆3
δr,r′ , (5.25)

where ∆ = L/n is the grid spacing. Here U > 0 is the strength of the attractive interaction;

on the repulsive side of resonance U > U∞, we have positive scattering length for unpaired

atoms and the mapping relation between the grid and continuum is [36]

m

4π~2a
=

1

U∞
− 1

U
, (5.26)

where the unitarity point a → ∞ occurs at U−1
∞ = (2π)−3

∫
d3k(2ǫk)

−1 = γm/(~2∆). Here

ǫk is the single particle dispersion relation and γ is a numerical constant defined by the

discrete Laplacian. For choice (1) above, γ ≈ 0.2527; for choice (2), γ ≈ 0.2190. When only

nearest neighbor hopping is included, our Hamiltonian is the standard attractive Hubbard

model, but scaled by 1/∆2. Note our U value scales as ∆, while in the notation of the

Hubbard model, U∞ is a constant.

In the SLA, U has the opposite sign. In particular, when the scattering length a is large,

Eq. (5.25) is replaced by a hard-sphere potential with radius a. If a is smaller than the grid

spacing, a finite but negative value of U can be used in the SLA, leading to the repulsive

Hubbard model, which clearly has a different strongly interacting or large a limit [31] from

that of Eq. (5.25).
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To determine the eigenvalues and eigenstates, we start from a set of random trial states

|ψ0
α〉 where 1 ≤ α ≤ M , and evolve the states |ψi+1〉 = (1 − τĤ)|ψi〉. At each step of the

evolution, the state vectors are properly symmetrized and orthogonalized. As i → ∞, the

states converge to the lowest M eigenstates of the Hamiltonian Ĥ within a given symmetry

sector. The errors are controlled and can be reduced arbitrarily with increasing the number

of grid points or number of iterations. As discussed below, the computational cost grows

rapidly with system size, but significant reduction can be achieved by invoking symmetries.

5.5.1 Two-particle model

The two-body bound state solution has been obtained in Chapter 2 using the Bethe-Peierls

boundary condition and shown in Fig (2.7). To assess the accuracy of iterative diagonaliza-

tion, we test the method on the two-particle scattering state. At nonzero density, the ground

state two-body binding energy and the lowest s-wave two-body scattering energy is plotted

in Fig (5.2) as a function of the dimensionless scattering length kFa, where kF = (3π2ρ)1/3 is

the Fermi wave vector and ρ the particle density. Both discrete representations of the kinetic

energy operator were used and they converge to the same continuum limit: n→∞; the long-

range hopping is found to be less sensitive to the lattice spacing. Solving the two-particle

problem also enables us to construct repulsive pseudo-potentials in the SLA by inverting the

2-particle Schrödinger equation.

5.5.2 Two fixed point potentials

The simplest case where the scattering length approximation may fail is the scattering of

a single particle off of two fixed contact potentials. This problem can be solved exactly in

infinite space [37]. The scattering wave function is written as the sum of the incident plane

wave, a wave scattered from potential one, and a wave scattered from potential two; i.e.

ψ(r) = eik·r + A
eik|r−R1|

|r−R1|
+ B

eik|r−R2|

|r−R2|
. (5.27)
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Figure 5.2: Right: The two-body binding energy as a function of (kFa)
−1. The open circles are numerical

solutions on a grid and the line corresponds to the exact analytic solution in a continuum box. Perfect
agreement is obtained for large scattering length a and deviation can be observed when the scattering length
becomes comparable with the grid spacing. Left: The two-body s-wave scattering energy E1 as a function
of kFa for grid sizes: n = 6, 8, 10, 12, 20, 40. The inset shows the scaling with respect to 1/n at kFa = 2.0
with grid sizes up to n = 90. The long-range hopping model converges to the continuum limit faster than
the Hubbard model.

The outgoing amplitude A is given by in terms of the total wave amplitude at R1 by

A =
η0
k

{

eik·R1 + B
eik|R1−R2|

|R1 −R2|

}

, (5.28)

where η0/k is the s-wave scattering amplitude for potential one: from the assumption of

identical potentials, η0/k is also the s-wave scattering amplitude from potential two. Simi-

larly,

B =
η0
k

{

eik·R2 + A
eik|R1−R2|

|R1 −R2|

}

. (5.29)

This solution can be verified again by invoking Bethe-Peierls boundary condition. The nodal

surface of the zero-energy scattering state is given as the solution of:

1

|r−R1|
+

1

|r−R2|
=

1

a
+

1

|R1 −R2|
, (5.30)

where R1 and R2 are the location of the two fixed scatterers. In the SLA, one would model

the state by the ground state with nodes defined by |r−R1| = a and |r−R2| = a. The nodal
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Figure 5.3: Nodal surface for the scattering wavefunction in a potential generated by two fixed particles
located at (±d/2, 0, 0) in infinite space with a/d = 1/10, 1/3, 1, 5/2 (expanding outward), where d denotes
the distance between the two fixed scatterers. The solid (blue) lines correspond to the nodes in SLA and
the dashed (red) lines to the exact nodes. SLA gives a reasonable approximation to the nodal surface for
a/d < 1 but the deviation becomes significant for large scattering lengths.

surfaces described by Eq. (5.30) are shown in Fig (5.3) in comparison with corresponding

spheres in SLA. Clearly the deviation from SLA becomes significant as a ∼ |R1 −R2|. In

particular, the spherical surfaces in SLA becomes infinitely large at unitarity limit while

Eq. (5.30) gives rise to a finite surface. This result suggests that introducing a node in

the two-body Jastrow factor in the form f(r) ∼ (1 − a/r) is insuffcient to characterize the

effective pairwise repulsion on the upper-branch [38].

To study the effect of the SLA at finite density, we solved the same problem numerically in

a finite periodic box. The results are summarized in Fig (5.4). It can be seen from the graph

that at large scattering length (i.e. at high density), the SLA significantly overestimates the

scattering energy for the 3-body problem, i.e. the effect of low-lying molecular states cannot

be ignored. The exact solution achieves a lower energy by distorting the nodal surfaces away

from the union of two spheres required by the SLA. As we show below, this also applies to

a system of more fermions.
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a/L = 0.1(black), 0.2(red), 0.4(blue). The surfaces become noticeably non-spherical for a/L > 0.1.

5.5.3 Energetics of four particle model

Now consider a minimal model for the ferromagnetic transition: four spin-1/2 atoms in a

cube with periodic boundary conditions and interacting with a contact potential. In short,

the spin polarized state Ψ(1234) = ψA(1234) ⊗ |↑↑↑↑〉 has a totally antisymmetric spatial

part ψA(1234): for a contact interaction it is noninteracting with an energy of 4K0 in a

zero total momentum eigenstate that has translational invariance. On the other hand, the

unpolarized states Ψ(1234) = ψMA ⊗ χMS + ψMS ⊗ χMA are affected by interactions: for a

contact interaction, only particles with like spins can be regarded as noninteracting due to

the antisymmetries. The permutation symmetries and the associated transformation rules

are analyzed in Chapter 4.

For a system of four particles on a grid with n points in each direction, the discretized

configuration space has n12 grid points. Translational symmetries along the three spatial

directions reduce the size of the configuration space by a factor of n3. Cubic symmetry
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of the periodic box reduces the number of independent wavefunction values by a factor

of 48 and permutation symmetries give an additional 24-fold reduction. We evolve pairs

of non-magnetic states {ψMS, ψMA} within the reduced domain, and whenever the value

of the wavefunctions on a grid point outside the reduced domain is needed in off-diagonal

projections, the exterior point is mapped back into the reduced domain by symmetry trans-

formations.

The ferromagnetic transition is identified as the crossing between the lowest singlet scat-

tering state and the fully ferromagnetic state. To investigate the effect of using the SLA

in multi-particle scattering process, the attractive contact interaction is replaced by a zero

boundary condition and the resulting critical ferromagnetic density is estimated.

Fig. (5.5) shows the energy spectrum of a four-particle system for n = 10 as a function

of the inverse scattering length (kFas)
−1. In this calculation, the lowest 30 states were

followed. Note that we only considered states with the same symmetries as the ground

state, i.e. with even parity with respect to reflection in x, y or z. The resulting energy levels

can be classified into three categories by their behavior at strong coupling: two-molecule

states, molecule-atom-atom states and four-atom scattering states. Level avoiding [39] can

be observed between states belonging to different categories.

The formation of molecular bound states is characterized by the binding energy diverging

linearly as U →∞, or equivalently, a→ 0+. In particular, the ground state wavefunction can

be approximately written as ψ0(13)ψ0(24)− ψ0(14)ψ0(23) where ψ0 is the two-body bound

state, and the ground state energy is approximately twice the two-particle binding energy.

As seen in Fig. (5.5) the two-molecule states have an energy slope (∂E/∂U) about twice as

large as the molecule-atom-atom states. As U →∞ molecules become tightly bound; their

energy spacings can be understood in terms of colliding molecules. For a lattice model, in

contrast to a continuum model, the greater the internal binding energy, the greater the total

mass of the molecule [40].

The scattering state of strongly repulsive atoms is an excited branch and all cold atom

experiments performed in this regime are metastable. In Jo et al. experiment, the magnetic
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enlargement of the lowest scattering state and the associated avoided crossings.

field ramp (∼ 4.5ms) marches toward the resonance from the repulsive side a & 0. At low

density or in the weakly interacting regime, the four-atom scattering state approaches the

noninteracting line 2K0 and the SLA is an accurate approximation. But there are some

difficulties in defining the scattering state at high density or in the strongly interacting

regime because of the level avoiding phenomena. As shown in the inset of Fig (5.5), if the

coupling coefficient U is tuned toward the resonance U∞, it is energetically more favorable

to jump through the successive avoided crossings. Thus, the change in the scattering energy

due to an adiabatic tuning of the interaction can then be determined by following the excited

branch curve. It is drawn in bold in Fig (5.5).

There is another way to identify the upper branch (scattering states) quantitatively by

using the momentum distribution and the pairing order. First, consider the wavefunctions

for the relative motion of two particles interacting through a large scattering length of

Eq. (5.2). The zero-energy scattering state in coordinate space ψ(r) ∝ r−1 − a−1 takes the

form ψ(k) ∝ 4πk−2− (2π)3a−1δ(k) in momentum space and diverges at k = 0. By contrast,

113



the bound state ψ(r) ∝ r−1e−r/a takes the form ψ(k) ∝ 4π(k2 + a−2)−1 in momentum

space and remains finite at k = 0. The momentum distribution n(k) for scattering states

is different from bound states at k = 0: scattering states have a larger fraction of particle

occupation at k = 0.

We also consider the pairing order defined by:

g2 ≡ n
〈∑

i<j

δri,rj

〉

α
(5.31)

for each state |ψα〉. The quantity g2 measures double occupancy, and is related to the energy

slope:
∂Eα

∂U
=
〈∂Ĥ

∂U

〉

α
= − 1

∆2L
g2. (5.32)

For the scattering state, double occupancy decreases monotonically as the interaction strength

is increased (see e.g. Ref. [31]). Thus the scattering state in each lattice system is charac-

terized by a vanishing energy slope as U →∞,

g2 → 0,
∂Eα

∂U
→ 0, (5.33)

as can be seen in Fig (5.5). The pairing density is also related to the tail of the momentum

distribution, which describes the short range physics. At large k, the momentum distribution

takes the form n(k)→ C/k4, where the coefficient C is called the contact in the Tan relations

[41]. In the continuum limit ∆ ≪ a, the contact C can be related to the energy slope, and

hence g2, through the adiabatic sweep theorem dE
da−1 = − ~

2

4πm
C, which in our system yields:

g2 = L
[

γ − ∆

4πa

]2

C, (5.34)

where γ is the numerical constant appearing in the definition of U∞. For bound states this

gives a finite g2 and a finite energy slope.

Thus, in addition to the momentum distribution at k = 0, we can identify the scattering

state from the other states by the magnitude of g2: scattering states have a smaller fraction
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g2 compared to the other states. The peak structure at the scattering state diminishes as the interaction
parameter kFa increases.

of double occupation ri = rj. Note that the contact C measures the local density of pairs

[42]. The momentum distribution n(k = 0) and the pair parameter g2 are plotted in Fig (5.6)

as functions of the energy for kFa = 0.8 ∼ 1.3. Scattering states are, by definition, in the

range E/K0 > 2 and can be identified by the peaks of n(k = 0) and low values of g2.

The ferromagnetic transition in the four-atom system occurs when the scattering state

energy equals the noninteracting energy, 4K0. For a n = 10 grid, the transition occurs at

U/U∞ ≈ 1.07, or equivalently, (kFas)
−1 = 0.43 ∼ 0.46. Shown in Fig (5.7) is the energy of

the four-particle unpolarized scattering state as a function of the scattering length kFa on

grids with n = 6, 8, 10, 12 and their extrapolation to the continuum limit, n =∞. Avoided

crossings between levels appear as kinks. The excited scattering state from the solution of

the four-particle problem crosses the ferromagnetic line at kFa ≈ 1.8, which is in remarkable

agreement with the reported experimental value of kFa = 1.9± 0.2 [15].

Also shown is the scattering energy using the SLA; this gives a ferromagnetic transition

at kFa ≈ 1.08 ∼ 1.09 for grid sizes n = 8, 10, 12, consistent with previous calculations

[13, 14, 30, 32, 33, 34].
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The discrepancy between the critical values of kFa reflects the limitations of perturba-

tion theory in the regime of strong coupling. Compared to repulsive potentials, using Jastow

factor with nodes and including backflow effects for attractive potentials improves the result

by making nontrivial modifications to the nodal structure, but still gives answers not quali-

tatively different from the repulsive potential, and fails to reveal the inadequacy of the SLA.

These observations suggest that lower-lying molecular states are responsible for delaying the

formation of the ferromagnetic phase. However, calculations with more than 4 atoms are

needed to determine finite size effects. Such calculations are not feasible with the current

method but might be possible with stochastic methods.

5.5.4 Dynamics of four-particle model

Because of the limited lifetime of the strongly interacting gas, however, the magnetic field

ramp in experiment is not adiabatic and can lead to different explanations[43, 44]. A recent

work [45] takes into account the effect of atom loss by including a fictitious three-body term
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This calculation in done for four particles on a grid with n = 12.

in the effective Hamiltonian of the Fermi gas and found that the critical interaction strength

required to stabilize the ferromagnetic state increases significantly. A full T -matrix analysis

[43] suggests that the pairing instability can prevail over the ferromagntic instability and

the experimentally measured atom loss rate can be qualitatively explained in terms of the

growth rate of the pairing order parameter after a quench.

Thus, it is an interesting problem to study the dynamics of the pairing instability after a

quench using the wave functions obtained in this work. Since the contact C is identified as

the integral over space of the expectation value of a local operator that measures the density

of pairs [42], we characterize the pairing instability by the count of double occupancy g2

in Eq (5.34). To study the dynamics of the pair formation, we choose the initial state

to be the unpolarized four-particle ground-state in the noninteracting limit and expanded

in the basis of the lowest 16 eigenstates with the final interaction after the quench. The

time evolution is then evaluated using the eigenstate expansion |ψ(t)〉 =∑m cme
− i

~
Emt|φm〉.

The pairing density g2(t) = 〈ψ(t)|g2|ψ(t)〉 is used to characterize the pair formation and

the atom loss into molecules. The evolution diagram of g2(t) is shown in Fig (5.8). The
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nonmonotonic dependence of the maximum value of g2(t) in the first oscillation period on

the final scattering length kFa after the quench is in qualitative agreement with experiment

and the full T -matrix theory [43].

5.5.5 Summary

In summary, we have assessed the accuracy of the scattering length approximation at high

density or strong interaction kFa & 1. It is demonstrated that if molecular states mix

with excitations, non-magnetic states are stabilized. Identification of the upper branch

in many-body calculations is discussed. The corresponding nodal structures of the states

are examined. The calculated critical interaction strength kFa for ferromagnetic transition

is shown to be underestimated by a factor of two with respect to the scattering length

approximation. Although we solved the problem only for 4 particles, this minimal model

suffices to show that ignoring the molecular states with the scattering length approximation

leads to inaccurate results in the strongly interacting regime. Hence it leads to severe errors

in many-body calculations. That we get very good agreement with experimental estimates is

encouraging but could be a result of cancellation of errors between the 4 particle system and

the thermodynamic limit. We investigated the dynamics of pair formation. Non-monotonic

behavior of the pairing parameter
∑

i<j δri,rj is observed as a function of the final interaction

strength kFa after a quench.

5.6 VMC calculations for four particles at unitarity

The unitarity limit describes interacting particles where the range of the interaction is zero

and the scattering length is infinite. Quantum Monte Carlo calculations of the ground

state energy of dilute Fermion gases on the BCS-BEC crossover [46][47][48] and at unitarity

[49][50][51][7] have achieved high accuracies. Precise benchmark calcluation has also been

performed to calculate the unpolarized ground state energy of four spin-1/2 fermions [52]. As

discussed in Chapter 2, all these QMC calculations employed the short-range approximation

by taking an interaction model with a finite range and a fixed (finite or infinite) scattering
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length. These models may be in continuous space or on a lattice. Then the zero range

limit rc → 0 should be taken the end of the calculation. In this section, we make the first

attempt of a QMC calculation of the unitary Fermion gases directly in the zero-range limit,

eliminating the need for short-range approximations employed by existing QMC calculations

in literature.

5.6.1 Trial wavefunction

In the zero range model of unitary fermions, one replaces the interaction by Bethe-Peierls

boundary conditions on the N -body wavefunction. Thus to perform a variational Monte

Carlo calculation of the zero range model, the first step is the construction of a trial wave-

function which satisfies the correct boundary conditions Eq. (2.53) in Chapter 2:

Ψ(r1, · · · , ri, · · · , rj , · · · , rN)→ Aij(Rij; rk 6=i,j)

(
1

rij
− 1

a

)

+O(rij). (5.35)

The key requirement is that when two fermions i and j with unlike spins approach each other

with the center of mass position fixed and the positions of all the other particles fixed, the

singular part of the wavefunction diverges like r−1
ij , the constant part must be proportional

to a−1 and all the other terms vanish as rij → 0 at least as rapidly as O(rij).

For short-range models, a commonly chosen form [46] on the BEC side of resonance

(a > 0) is the geminal wavefunction with 2-particle orbitals

Ψ = A{φ(r11′φ(r22′) · · ·φ(rN↑N↓
))}, (5.36)

where the indices i and i′ refer to particles with up-spin and down-spin respectively, and

the function φ(r) is the two-body bound state solution with energy ǫb. This form, however,

fails to satisfy the Bethe-Peierls boundary conditions in the zero-range limit even if the pair

orbital φ does. Take for example a system of four fermions,

Ψ = φ(r1 − r1′)φ(r2 − r2′)− φ(r1 − r2′)φ(r2 − r1′). (5.37)
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Suppose particle r1 and r1′ get close (r1 = r1′ = R11′ ≡ 1
2
(r1 + r1′)), the orbital φ(r1 − r1′)

becomes singular while φ(r2 − r2′) remains finite:

Ψ ∼ φ(r2 − r2′)

(
1

r11′
− 1

a

)

− φ(R11′ − r2′)φ(r2 −R11′)

∼ 1

r11′
− 1

a
− φ(R11′ − r2′)φ(r2 −R11′)

φ(r2 − r2′)
.

In the above expression, the constant term in the limit r1↑1↓ → 0 is

1

a
+
φ(R11′ − r2′)φ(r2 −R11′)

φ(r2 − r2′)
6= 1

a
(5.38)

and violates Bethe-Peierls boundary condition. The boundary condition can be corrected

by introducing Jastrow-like factors f(r) into the geminal wavefunction to suppress the un-

necessary terms

Ψ = φ(r11′)φ(r22)f(r12′)f(r21′)f(r12)f(r1′2′)− φ(r12′)φ(r21′)f(r11′)f(r22′)f(r12)f(r1′2′),
(5.39)

where f(r)→ O(r) as r → 0. For example, take r11′ → 0

Ψ = φ(r11′)
︸ ︷︷ ︸

φ(r22′) f(r12′)f(r21′)f(r12)f(r1′2′)
︸ ︷︷ ︸

−φ(r12′)φ(r21′)f(r11′)f(r22′)f(r21)f(r1′2′)
︸ ︷︷ ︸

(
1

r11′
− 1

a

)

const +O(r211′) O(r11′)

∼ 1

r11′
− 1

a
+O(r11′).

Thus the Bethe-Pierls boundary condition is satisfied. This form can be generalized to an

unpolarized N -body wavefunction N↑ = N↓ = N/2

Ψ = A







N/2
∏

i=1

φii′

fii′







N∏

i<j=1

fij. (5.40)

Note that the antisymmetrized part includes pairs of unlike spins only and the Jastrow part

includes all pairs.

120



5.6.2 Ground state quantum Monte Carlo algorithms

This section outlines the ground state quantum Monte Carlo methods in the continuum. A

basic concept in QMC methods is the walker, a hyper-dimensional particle coordinates:

R = {r1, r2, · · · , rN}. (5.41)

The ground state wavefunction is obtained by repeatedly applying a projector G(Ĥ) which

inverts the spectrum of the Hamiltonian Ĥ to an initial trial wavefunction

|Ψn〉 = G(Ĥ)|Ψn−1〉. (5.42)

The projector may depend on some parameters, for example, the time step τ . In coordinate

representation

Ψ(R, t+ τ) =

∫

dDR′G(R,R′; τ)Ψ(R′, t). (5.43)

If we interpret Ψ(R′, t) as a probability distribution at time t and G(R,R′; τ) as a transition

probability (independent of time) from R to R′, Eq. (5.43) suggests that Ψ(R, t + τ) is

the probability distribution at time t + τ . In both diffusion and reptation algorithms, the

projector takes the form of the imaginary time evolution operator with an energy shift ET

G(R,R′; t) = 〈R|e−t(H−ET )|R′〉. (5.44)

which satisfies the imaginary-time Schrodinger equation

∂G(R,R′; t)

∂t
= (ET − Ĥ)G(R,R′; t) (5.45)

with the initial condition G(R,R′; t = 0) = δ(R−R′). The diffusion method interprets the

projection as a series of diffusion-drift-branching processes. The Trotter decomposition of

the propagator

e−τ(Ĥ−ET ) ≈ e−τT̂ e−τ(V−ET ). (5.46)
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enables us to consider the effect of each factor separately. The propagator corresponding to

the kinetic term G0 ≡ e−τT̂ satisfies the diffusion equation

∂G0(R,R
′; τ)

∂τ
=

1

2
∇2

R
G0(R,R

′; τ) (5.47)

and the solution is given by a Gaussian (m = ~ = 1),

G0(R,R
′; τ) =

1

(2πτ)DN/2
e−

(R−R
′)2

2τ , (5.48)

which describes diffusion process in a DN -dimensional space. The propagator corresponding

to the interaction term G1 ≡ e−τ(V−ET ) satisfies the population equation

∂G1(R,R
′; τ)

∂τ
= [ET − V (R)]G1(R,R

′; τ), (5.49)

and the solution is given by exponential growth or decay

G1(R,R
′; τ) = e−τ [V (R)−ET ]δ(R−R′). (5.50)

The complete propagator, based on Trotter decomposition in the short time limit τ → 0,

takes the form

G(R,R′; τ) ≡ G0(R,R
′; τ)ρ(R,R′; τ), (5.51)

where the symmetric branching factor ρ(R,R′; τ) = e−τ [
V (R)+V (R′)

2
−ET ]. This decomposition

fails for a system with δ-function interactions. A better approach is to determine the exact

propagator for two particles and then use that to construct a many-body propagator. In

three dimensions, the imaginary time evolution operator G12 ≡ e−τĤ12 associated with the

Hamiltonian for the relative motion of two particles interacting through the regularized

δ-function potential

Ĥ12 = −
~
2

m
∇2

r12
+

4π~2a

m
δ(r12) =

~
2

m

[
−∇2

r
+ 4πaδ(r)

]

r=r12
(5.52)
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can be evaluated analytically (m = ~ = 1) [53]

ρδ(r, r
′; τ) ≡ G12(r, r

′; τ)

G0(r, r′; τ)
= 1 +

(
2τ

rr′

)

exp

[

−(r + r′)2 − |r− r′|2
4τ

] [

1 +

√
πτez

2
erfc(z)

a

]

,

(5.53)

where z = r+r′−2τ/a√
4τ

and G0(r, r
′; τ) = (4πτ)−3/2 exp(− |r−r′|2

4τ
) is the propagator associated

with the non-interacting Hamiltonian Eq. (5.48) for relative motion in three dimensions.

There are several noteworthy limiting regimes

lim
a→±∞

G12(r, r
′; τ) = G0(r, r

′; τ) +

(
2τ

rr′

)
1

(4πτ)3/2
exp

[

−(r + r′)2

4τ

]

, unitary limit

lim
a→0−

G12(r, r
′; τ) = G0(r, r

′; τ), BCS limit (5.54)

lim
a→0+

G12(r, r
′; τ) =

1

2πa
exp

( τ

a2

)

exp

(

−r + r′

a

)

, BEC limit.

which agree with the solutions of Schrödinger equation obtained in Chapter 2, Sect. (2.3).

Then the many-body propagator associated with the Hamiltonian Eq. (5.1) for a sys-

tem of spin-1/2 fermions can again be approximated by Eq. (5.51) with ρ(R,R′; τ) =

eτET
∏N↑

i=1

∏N↓

j=1 ρδ(ri − rj, r
′
i − r′j; τ) [54, 55]. This is called the pair-product form of the

propagator or action. The basic diffusion algorithm can be summarized as follows:

• Sample Ψ(0)(R) with the Metropolis algorithm: generate M0 walkers R1, · · · ,RM0 ;

• Diffuse each walker as R′ = R+ ξ, where ξ is sampled from g(ξ) = (2πτ)−DN/2e−ξ2/2τ ;

• For each walker, compute the factor p = ρ(R,R′; τ), and branch the walker:

– If p ≤ 1, the walker survives with probability p;

– If p > 1, the walker continues and new walkers with same coordinates are created;

– Number of copies of the current walker = ⌊p+ η⌋ where η ∈ (0, 1).

• Adjust ET so that the population fluctuates around target M0.

– Population control feedback: ET (t+ T ) = ET (t) +
1
T
ln
(

M0

M(t)

)

.
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• After many iteractions, the walkers are distributed with the ground state distribution

Ψ0(R).

5.6.3 Importance sampling algorithm of variational Monte Carlo

Multiply each side of Eq. (5.43) by a trial wavefunction ΨT and define P (R) = ΨT (R)Ψ(R),

P (R, t+ τ) =

∫

dDR′G̃(R,R′; τ)P (R′, t), (5.55)

where the importance sampled propagator is G̃(R,R′; τ) = ΨT (R)G(R,R′; τ)Ψ−1
T (R′).

Rewrite the logarithmic ratio

log
ΨT (R)

ΨT (R′)
= logΨT (R)− log ΨT (R

′)

≈ (R−R′) · ∇ log ΨT (R
′) +

1

2
[(R−R′) · ∇]2 log ΨT (R

′)

≈ (R−R′) · ∇ log ΨT (R
′) +

τ

2
∇2 log ΨT (R

′)

= (R−R′) ·V(R′)− τ

2
V2(R′)− τΨ−1

T (R′)Ĥ0ΨT (R
′),

where we have defined the quantum velocity V(R) = ∇R log ΨT (R). Combined with

Eq. (5.51),

G̃(R,R′; τ) ≡ G0(R,R
′ + τV′; τ)ρ(R,R′; τ). (5.56)

where ρ(R,R′; τ) = e−τ [
EL(R)+EL(R′)

2
−ET ] and the local energy EL(R) = Ψ−1

T (R)ĤΨT (R).

The importance sampling diffusion algorithm can be summarized as

• Sample initial walkers from |ΨT (R)|2: generate M0 walkders R1, · · · ,RM0 ;

• Drift and diffuse each walker R′ = R + ξ + τV(R), where ξ sampled from g(ξ) =

(2πτ)−DN/2e−ξ2/2τ ;

• For each walker, compute the factor p = ρ(R,R′; τ), and branch the walker:

– If p ≤ 1, the walker survives with probability p;

– If p > 1, the walker continues and new walkers with same coordinates are created;
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– Number of copies of the current walker = ⌊p+ η⌋ where η ∈ (0, 1).

• After many iteractions, the walkers distribute as the ground state ΨT (R)Ψ0(R).

Due to time-step error, even if the trial wavefunction is chosen to be the exact ground state

wavefunction ΨT = Ψ, EL = E0, the probability distribution |Ψ0|2 is actually sampled only

in the continuous time limit τ → 0. This problem can be solved by interpreting the drift-

diffusion part as a Metropolis accept/reject process where T (R,R′; τ) ≡ G0(R,R
′ + τV; τ)

is the so-called proposal probability. Walker drifts, diffuses and the move is accepted with

probability

q = min

{

1,
|ΨT (R

′)|2T (R,R′; τ)

|ΨT (R)|2T (R′,R; τ)

}

. (5.57)

The advantages of the importance sampling algorithm are

• The drift term pushes the walkders where ΨT is large;

• EL(R) is better behaved than the potential V (R);

• As Ψ→ Ψ0(R), ET → E0 and braching factor is smaller.

The importance sampling algorithm of variational Monte Carlo is simply the diffusion algo-

rithm without branching.

5.6.4 VMC energy for four fermions at unitarity

We now present a preliminary VMC calculation on the zero range model of four spin 1/2

unitary fermions moving in a periodic box with length L. Using the notation in Sect. (5.6.1),

we use the following parameterization

φ(r) = φ0(r) + αre−βr2 , (5.58)

where α and β are variational parameters and φ0(r) satisfies the Bethe-Peierls boundary

condition. Possible choices for φ0(r) are the exact solution of the two-body problem in the

same periodic box, or one can use trigonometric substitutions for cartesian coordinates to
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Figure 5.9: The energy expectation value of four spin 1/2 fermions at unitarity as a function of the variational
parameter α for λ = 4.0, 6.0, expressed in units of E0, the energy for the non-interacting system. The results

are fitted to a 4th order polynomial.

impose periodic boundary conditions

φ0(r) =
e−r̃/a

r̃
, (5.59)

where r̃ =
√
∑3

α=1 x̃
2
α and x̃α = L

π
sin(πxα

L
). At unitarity, the scattering length a =∞. The

factors f(r) which vanishes as O(rν) as r → 0 are chosen to take the form

f(r) =

(
λr

1 + λr

)ν exp(−r2/R2
c)

. (5.60)

where λ and ν are variational parameters, and Rc is fixed approximated 15% of the length

of box. We fix the parameter β = 10, ν = 1 and perform a simple optimization of the

energy with respect to parameters α and λ, as shown in Fig. (5.9). The results obtained

from minimization over the two parameters α and λ is about E/E0 ≈ 0.29, where E0 is

the energy for the non-interacting system. The benchmark calculation in literature gives

E/E0 ≈ 0.21 [52]. Optimizations over more parameters are required to obtain improve

the quality of the trial wavefunction before the application of the diffusion or reptation
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algorithm.

5.6.5 Summary

In this section, by constructing a many-body wavefunction satisfying the Bethe-Peierls

boundary conditions, we attempted the first variational Monte Carlo calculations of the

zero-range model of unitary Fermion gases, eliminating the need for short-range approxima-

tions employed by existing QMC calculations in literature. The pair-product form for the

many-body imaginary time evolution operator is also provided to facilitate the ground state

Monte Carlo calculation (diffusion or reptation) if the variational trial wavefunction is fully

optimized.
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