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ABSTRACT

In computational electromagnetics, the second-kind Fredholm integral equa-

tions (IEs) are known to have very fast iterative convergence but rather poor

solution accuracy compared with the first-kind Fredholm integral equations.

The loss of the numerical accuracy is mainly due to the discretization error

of the identity operators involved in second-kind IEs. In the past decade,

although much effort has been made to improve the numerical accuracy of

the second-kind integral equations, no conclusive understandings and final

resolutions are achieved.

In this thesis, the widely used surface integral equations in computational

electromagnetics are first presented along with the discussions of their respec-

tive mathematical and numerical properties. The integral operators involved

in these integral equations are investigated in terms of their mathematical

properties and numerical discretization strategies. Based on such discus-

sions and investigations, a numerical scheme is presented to significantly

suppress the discretization error of the identity operators by using the Buffa-

Christiansen (BC) functions as the testing function, leading to much more

accurate solutions to the second-kind integral equations for smooth objects in

both perfect electric conductor (PEC) and dielectric cases, while maintaining

their fast convergence properties. This technique is then generalized for gen-

erally shaped objects in both PEC and dielectric cases by using the BC func-

tions as the testing functions, and by handling the near-singularities in the

evaluation of the system matrix elements carefully. The extinction theorem

is applied for accurate evaluation of the numerical errors in the calculation of

scattering problems for generally shaped objects. Several examples are given

to investigate and demonstrate the performance of the proposed techniques

in the accuracy improvement of the second-kind surface integral equations in

both PEC and dielectric cases. The reasons for the accuracy improvement

are explained, and several important conclusive remarks are made.
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CHAPTER 1

INTRODUCTION

Surface integral equations (SIEs) are very widely used in modeling electro-

magnetic scattering and radiation problems involving perfect electric con-

ductors (PECs) and dielectric objects. Obtained by using dyadic Green’s

functions [1] as the integral kernels and integrating over the entire surfaces

of the objects under consideration, SIEs can be categorized into the Fred-

holm integral equations [2] of the first and the second kinds. In computa-

tional electromagnetics, the first-kind Fredholm integral equations, or the

homogeneous Fredholm integral equations, are known to have very good ac-

curacy, but rather poor convergence in an iterative solution because of their

unbounded integral operators, which produce system matrices with large con-

dition numbers after discretization. In contrast, the second-kind Fredholm

integral equations, or the inhomogeneous Fredholm integral equations, usu-

ally have a fast convergence rate in an iterative solution since they are in

the form of an identity operator plus a compact integral operator. A com-

pact operator, in functional analysis, is a linear operator transforming from

a Banach space D to another Banach space R, such that the image of any

bounded subset of D under the operator is a relatively compact subset of

R. Such an operator is a well-bounded operator, and produces a system

matrix with eigenvalues clustered around zero. Consequently, the second-

kind Fredholm integral equations give rise to the system matrices that have

bounded eigenvalues clustered around a non-zero point, which makes the

matrices very well-conditioned. However, the second-kind integral equation-

s have a drawback in that their solutions are far less accurate than their

first-kind counterparts; therefore, they are less commonly used for practical

applications.

In computational electromagnetics, the first-kind integral equations in-

clude the electric-field integral equation (EFIE) [3] for the PEC case and

the Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT) equations [4–7]
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for the dielectric case, while the second-kind integral equations include the

magnetic-field integral equation (MFIE) [3] for the PEC case and the Müller

equations [8–10] for the dielectric case. In recent years, much effort has

been devoted to improving the accuracy of the second-kind Fredholm integral

equations, especially the MFIE for the PEC case. Most of these efforts focus

on the accuracy loss caused by the integral operation [11–21]. Among these

studies, some attributed the inaccuracy of the MFIE to the inaccurate evalua-

tion of the impedance elements [11–13], including the logarithmic singularity

in the field integration [14, 15], and the solid angle expression in the MFIE

formulation [16]. Some believed that the inappropriate choice of the basis

functions caused the problem [17], and hence, proposed the use of the linear-

linear basis functions [18, 19] and higher-order vector basis functions [20] to

alleviate this problem. Some showed that the improperly chosen solution

scheme is another important error source, and proposed the Rayleigh-Ritz

scheme for the three-dimensional MFIE to alleviate this error [21].

Other research efforts have investigated the error caused by the identi-

ty operator in the MFIE. It has been shown that there is actually a large

discretization error due to the identity operator [22], which contributes sig-

nificantly to the total error of the MFIE. In order to alleviate the accuracy

loss caused by the identity operator, regularization methods have been pro-

posed for both two-dimensional [23] and three-dimensional [24] cases. The

basic idea is to design a “filter” to filter out the high-frequency content in

the basis functions and to increase their effective smoothness. Such “filter-

ing”, unfortunately, is not easily applicable to the three-dimensional case.

As a result, the regularization method in the three-dimensional case is not

as effective as its two-dimensional counterpart. More recently, a rotated

Buffa-Christiansen (BC) function [25] is adopted as the testing function in

the discretization of the MFIE in order to achieve a better accuracy [26].

However, the use of planar patches limits the improvement of the accuracy.

Moreover, the limitation of discussion of the second-kind integral equation

to the PEC case and the lack of mathematical and numerical explanation of

the accuracy improvement also limit its significance. In sum, with all these

methods, the accuracy of the MFIE solution is still worse than that of the

EFIE solution. Therefore, the EFIE is always preferred over the MFIE in

the analysis of electromagnetic scattering and radiation by a PEC object,

especially when accuracy is important.
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Although much more complicated, a similar issue has been observed in

the dielectric case, where the PMCHWT equations [4–7] are the Fredholm

integral equations of the first kind and the Müller equations [8–10] are the

Fredholm integral equations of the second kind. Their convergence behavior

in an iterative solution and the solution accuracy have been investigated

thoroughly [20] and the first-kind equations (PMCHWT equations) have been

shown to always have a better accuracy and a worse convergence compared

to the second-kind equations (Müller equations). Hence, the PMCHWT

equations are always preferred for an accurate solution of electromagnetic

scattering and radiation by a dielectric object.

Although the accuracy issue of the second-kind integral equations has been

studied for more than a decade, no conclusive understandings and final res-

olutions are achieved [27].

In this thesis, the SIEs for both PEC and dielectric cases are first presented,

and the discretization schemes for different integral operators are discussed.

The discretization error due to the identity operator is then suppressed by us-

ing the rotated BC functions defined on curvilinear triangular patches [28] as

the testing function. It is demonstrated through several numerical examples

that the accuracy of the second-kind Fredholm integral equations (the MFIE

and Müller equations), in both PEC and dielectric cases, can be improved

significantly using this discretization scheme for smooth objects.

The accuracy improvement technique is then generalized to the solution

of electromagnetic problems with generally shaped objects in both the PEC

and the dielectric cases. By using the BC functions as the testing functions

and by carefully handling the near-singularities associated with both the K
and the T operators, the numerical accuracy of the second-kind integral

equations in the solution to a generally shaped object can be improved sig-

nificantly. In order to measure the numerical error in solving problems with

generally shaped objects, null-field problems are presented according to the

extinction theorem, and the root-mean-square (RMS) error of the total field

in the far-zone is defined as the numerical error in the solutions of the in-

tegral equations. Several numerical examples are given to demonstrate the

performance of the proposed techniques in improving the numerical accuracy

of the second-kind integral equations.

Before the conclusion is drawn, the reasons for the accuracy improvement

of the proposed scheme are discussed and attributed to the significant sup-
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pression of the discretization error of the identity operator and the appro-

priate adoption of the Rayleigh-Ritz scheme [21]; the improvement is also

explained in terms of the method of weighted residuals [29] and the accurate

evaluation of the near-singularities. Some important conclusive remarks are

also given to clarify several important issues related to the accuracy of the

integral equations.
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CHAPTER 2

SURFACE INTEGRAL EQUATIONS

In this chapter, the general formulations for electromagnetic problems are

first reviewed. The SIEs for both PEC and dielectric cases are then presented.

Discussion shows how these SIEs can be categorized into the Fredholm inte-

gral equations of the first and second kinds.

2.1 General Formulations

In this section, the electromagnetic problem is first formulated in a general

way where multiple excitations are considered in the physical model. The

problem is then simplified into two special cases in the next section, and the

discussions will be made for each case.

Consider an electromagnetic problem with the incident plane wave (Einc
1 ,

H inc
1 ) coming from an infinite homogeneous background medium Ω1 with

permittivity ε1 and permeability µ1, and illuminating a homogeneous object

Ω2 with permittivity ε2 and permeability µ2. In the meantime, a second

incident wave (Einc
2 , H inc

2 ) comes from the interior of Ω2, and illuminates the

object from inside out. According to the surface equivalence principle [30,31],

the solution can be formulated in terms of an equivalent surface electric

current J = n̂×Htol
1 = n̂×Htol

2 and an equivalent surface magnetic current

M = Etol
1 × n̂ = Etol

2 × n̂ defined on the surface S of the object. Here,

n̂ stands for the outward pointing unit normal vector on S, Etol
j and Htol

j

stand for the total electric and magnetic fields in Ωj (j=1, 2), respectively.

The equivalent surface currents are governed by the EFIEs

T1 (η1J) +

[
I
2
−K1

]
(M ) = −n̂×Einc

1 (2.1)

η2
η1
T2 (η1J)−

[
I
2
+K2

]
(M ) = n̂×Einc

2 (2.2)
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which can be written in a matrix form as T1
I
2
−K1

η2
η1
T2 −I

2
−K2


[
η1J

M

]
=

[
−n̂×Einc

1

n̂×Einc
2

]
(2.3)

and the MFIEs [
−I
2
+K1

]
(η1J) + T1 (M ) = −η1n̂×H inc

1 (2.4)[
I
2
+K2

]
(η1J) +

η1
η2
T2 (M ) = η1n̂×H inc

2 (2.5)

which can be written in a matrix form as−
I
2
+K1 T1

I
2
+K2

η1
η2
T2


[
η1J

M

]
=

[
−η1n̂×H inc

1

η1n̂×H inc
2

]
(2.6)

where ηj=
√

µj/εj stands for the intrinsic impedance in Ωj (j=1, 2), I stands

for the identity operator, and Tj and Kj are the integral operators defined as

Tj(X)=ikjn̂×
∫
S′

(
I +

∇∇
k2
j

)
G(r, r′; kj) ·X(r′)dr′ (2.7)

Kj(X)=n̂× P.V.

∫
S′
∇G(r, r′; kj)×X(r′)dr′. (2.8)

In the above, kj stands for the wavenumber in Ωj, G(r, r′; kj) = eikj |r−r′|/4π|r−
r′| stands for the Green’s function in an infinite homogeneous medium with

the wavenumber kj, and X stands for either the scaled surface electric cur-

rent density η1J or the surface magnetic current density M . In (2.8), P.V.

stands for the Cauchy principal value integration. In (2.1)-(2.6), η1J instead

of J is treated as the unknown function and η1 is multiplied on (2.4) and (2.5)

in order to balance the magnitude of each operator in the above equations

and make the whole system better conditioned. Equations (2.1) and (2.4)

are derived from the formulation of the exterior fields in Ω1, and (2.2) and

(2.5) are derived from the formulation of the interior fields in Ω2. Applying

(2.1) to (2.6) to different scatterers with different boundary conditions, we

can obtain various SIEs.
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2.1.1 SIEs in the PEC Case

If the obstruction is a PEC object, the application of the boundary condition

n̂ × E = 0 results in M = 0, which, when substituted into (2.1)-(2.2) and

(2.4)-(2.5), yields the EFIE for the PEC case as

T1 (η1J) = −n̂×Einc
1 (2.9)

T2 (η2J) = n̂×Einc
2 (2.10)

and the MFIE for the PEC case as

−η1J

2
+K1 (η1J) = −η1n̂×H inc

1 (2.11)

−η2J

2
−K2 (η2J) = −η2n̂×H inc

2 . (2.12)

Although both the EFIE (2.9), (2.10) and the MFIE (2.11), (2.12) can

be solved independently to obtain the equivalent electric current density J ,

they suffer from the “interior resonance corruption” [32] at some discrete fre-

quencies. As a remedy, their convex combination, the combined-field integral

equation (CFIE) [3], can be used. For example,[
α n̂× T1 + (1− α)

(
−I
2
+K1

)]
(η1J)

= −α n̂× n̂×Einc
1 − (1− α) η1n̂×H inc

1 (2.13)

where α ∈ [ 0, 1 ] is a linear combination factor.

As has been studied extensively [20,33], the T operator is a Fredholm inte-

gral operator of the first kind, which has a continuous spectrum distribution

(and the corresponding discrete eigenvalue distribution after discretization)

clustering at origin and infinity, resulting in an unbounded condition num-

ber that approaches infinity when the discretization density is increasingly

refined. However, because of its high accuracy and the capability to handle

objects with open surfaces, the EFIE is still widely used whenever possible.

On the other hand, since the K operator is a compact operator, the whole

MFIE operator is actually an identity operator plus a compact operator,

which makes the MFIE a Fredholm integral equation of the second kind.

As mentioned above, the MFIE has a very good iterative convergence but a

rather poor solution accuracy, and therefore is less commonly used than the
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EFIE. As their combination, the CFIE inherits the characteristics from both

the EFIE and the MFIE. Hence, it has a better iterative convergence but a

worse solution accuracy [34] compared with the EFIE, and its performance

depends on the choice of the combination factor α.

2.1.2 SIEs in the Dielectric Case

If the obstruction is a dielectric object, by solving either (2.3) or (2.6), we

can obtain the solution of the scattering problem. However, since both (2.3)

and (2.6) suffer from the interior resonance corruption, their combinations

are usually used. One approach is to combine (2.1) with (2.4) to form a CFIE

for the exterior region Ω1, and combine (2.2) with (2.5) to form a CFIE for

the interior region Ω2. These two equations then form a complete system

that can be solved for J and M [35]. Another approach is to combine (2.1)

with (2.2) and (2.4) with (2.5) in a general way as

a× (2.1) + b× (2.2), c× (2.4) + d× (2.5) (2.14)

where a, b, c, and d are combination factors. The resulting equations can be

written as aT1 + b
η2
η1
T2

a− b

2
I − aK1 − bK2

−c+ d

2
I + cK1 + dK2 cT1 + d

η1
η2
T2

[η1J
M

]

=

[
−a n̂×Einc

1 + b n̂×Einc
2

−c η1n̂×H inc
1 + d η1n̂×H inc

2

]
. (2.15)

Several well-known equations can be obtained by choosing different combi-

nation factors. For example,

1. by choosing a = b = c = d = 1, the PMCHWT equations [4–6] can be

obtained; and

2. by choosing a = −1, b = εr = ε2/ε1, c = 1, d = −µr = −µ2/µ1, the

Müller equations [8, 9] can be obtained.
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More explicitly, the PMCHWT equations can be expressed asT1 +
η2
η1
T2 −K1 −K2

K1 +K2 T1 +
η1
η2
T2

[η1J
M

]
=

[
−n̂×Einc

1 + n̂×Einc
2

−η1n̂×H inc
1 + η1n̂×H inc

2

]
(2.16)

and the Müller equations can be expressed as−
1+µr

2
I+K1−µrK2 T1−

k2
k1

T2

−T1+
k2
k1

T2 −1+εr
2

I+K1−εrK2


[
η1J

M

]

=

[
−η1n̂×H inc

1 − η1µrn̂×H inc
2

n̂×Einc
1 + εrn̂×Einc

2

]
. (2.17)

Although there are other ways to formulate SIEs for the dielectric case,

such as by using a different combination strategy [36, 37], or even applying

different forms of the equivalence principle [38,39], only the PMCHWT and

the Müller equations are discussed in this thesis since they correspond to the

Fredholm integral equations of the first and the second kind, respectively, as

pointed out in [7, 20], and [10]. As a matter of fact, since in the PMCHWT

equations (2.16), the identity operators are canceled out, leaving only K
operators, which are compact operators, in the off-diagonal blocks, and T
operators in the diagonal blocks, the resulting equations are the first-kind

Fredholm integral equations. In the Müller equations (2.17), on the other

hand, the hyper-singular terms of the T operators are canceled, resulting in

the compact operators ± [T1 − (k2/k1) T2] in the off-diagonal blocks [9, 10],

and the diagonal blocks are in the forms of the identity operators plus the

compact K operators. Therefore, the Müller equations are the second-kind

Fredholm integral equations. Similar to the EFIE and the MFIE in the PEC

case, the PMCHWT equations are known to have a better accuracy than

the Müller equations, while the latter has a faster convergence rate in an

iterative solution [20].

In the following sections, the general formulations for an electromagnetic

problem are simplified into two special cases, one of which is the commonly

solved scattering problem, and the other one is related to the extinction the-

orem [30,31], which can be used for the accurate evaluation of the numerical

errors in the solution of the integral equations.
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2.2 Scattering Problems

If there are only incident waves coming from the exterior region of Ω2, the

aforementioned problem is degenerated into the well-known scattering prob-

lem.

2.2.1 The PEC Case

If the object Ω2 is a PEC, the application of the boundary condition n̂×E = 0

results in M = 0, which, when substituted into (2.1) and (2.4), yields the

EFIE and the MFIE in the PEC case as

T1 (η1J) = −n̂×Einc
1 (2.18)

−η1J

2
+K1 (η1J) = −η1n̂×H inc

1 . (2.19)

2.2.2 The Dielectric Case

If the object is a dielectric with only the exterior excitation, the PMCHWT

and the Müller equations can be simplified toT1 +
η2
η1
T2 −K1 −K2

K1 +K2 T1 +
η1
η2
T2

[η1J
M

]
=

[
−n̂×Einc

1

−η1n̂×H inc
1

]
(2.20)

and −
1+µr

2
I+K1−µrK2 T1−

k2
k1

T2

−T1+
k2
k1

T2 −1+εr
2

I+K1−εrK2


[
η1J

M

]

=

[
−η1n̂×H inc

1

n̂×Einc
1

]
(2.21)

respectively.
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2.2.3 Comments and Remarks

In solving an electromagnetic scattering problem, both (2.18) and (2.19) can

be used to solve for η1J in the PEC case, and both (2.20) and (2.21) can be

used to solve for η1J andM in the dielectric case. Once the unknown surface

currents are obtained, the transverse components of the far-field responses

of the object in the direction of r̂ can be calculated using

r̂ ×Esca
1 (r → ∞) = r̂ ×

(
Etol

1 −Einc
1

)
= [T1 (η1J)−K1 (M )]r→∞ (2.22)

r̂ × η1H
sca
1 (r → ∞) = r̂ ×

(
η1H

tol
1 − η1H

inc
1

)
= [T1 (M ) +K1 (η1J)]r→∞ (2.23)

and the radar cross section (RCS) in the direction of r̂ is defined as

σ (r̂) = lim
r→∞

4πr2
|Esca

1 (r̂)|2

|Einc
1 (r̂)|2

= lim
r→∞

4πr2
|Hsca

1 (r̂)|2

|H inc
1 (r̂)|2

. (2.24)

In computational electromagnetics, the numerical error of an integral e-

quation is often measured in terms of the relative RMS error of the RCS

results, which can be expressed as

RMS (σ) =

√√√√∑N
p=1 |σcal (r̂p)− σref (r̂p)|2∑N

p=1 |σref (r̂p)|2
(2.25)

where σcal (r̂p) and σref (r̂p) stand for the calculated and the reference RCS

in the direction of r̂p, respectively.

After solving the integral equations (2.18)-(2.21) using Galerkin’s method,

and evaluating the RMS error of the RCS using (2.25), it is usually found

that the first-kind integral equations (2.18) and (2.20) produce numerical

results with a much better accuracy than the second-kind integral equa-

tions (2.19) and (2.21). However, in real applications, a sphere is the only

three-dimensional object that has an analytical solution called the Mie series

solution, which can be used as the accurate reference data in the evaluation

of numerical errors. The lack of accurate reference data makes it difficult
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to measure the numerical errors when solving problems for generally shaped

objects. In the next section, the extinction theorem [30,31] is applied in the

other special case of the general formulations, which provides us a robust

and universal approach of evaluating numerical errors for arbitrarily shaped

three-dimensional objects.

2.3 Null-Field Problems

If there are only incident waves coming from the interior region of Ω2, the

electromagnetic problem is degenerated into the so-called null-field problem.

2.3.1 The PEC Case

If the object Ω2 is a hollow PEC cavity filled with a homogeneous medium

with permittivity ε2 and permeability µ2, the application of the boundary

condition n̂ × E = 0 also results in M = 0, which, when substituted into

(2.2) and (2.5), yields the EFIE and the MFIE in the PEC case as

T2 (η2J) = n̂×Einc
2 (2.26)

−η2J

2
−K2 (η2J) = −η2n̂×H inc

2 . (2.27)

2.3.2 The Dielectric Case

If the object is a dielectric with only the interior excitation, the PMCHWT

and the Müller equations can be simplified toT1 +
η2
η1
T2 −K1 −K2

K1 +K2 T1 +
η1
η2
T2

[η1J
M

]
=

[
n̂×Einc

2

η1n̂×H inc
2

]
(2.28)

and −
1+µr

2
I+K1−µrK2 T1−

k2
k1

T2

−T1+
k2
k1

T2 −1+εr
2

I+K1−εrK2


[
η1J

M

]
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=

[
−η1µrn̂×H inc

2

εrn̂×Einc
2

]
(2.29)

respectively.

2.3.3 Comments and Remarks

In solving an electromagnetic null-field problem, both (2.26) and (2.27) can

be used to solve for η2J in the PEC case, and both (2.28) and (2.29) can be

used to solve for η2J andM in the dielectric case. Once the unknown surface

currents are obtained, the transverse components of the far fields radiated

by the equivalent sources in the direction of r̂ can be calculated using

r̂ ×Erad
2 (r → ∞) = [T2 (η2J)−K2 (M )]r→∞ (2.30)

r̂ × η2H
rad
2 (r → ∞) = [T2 (M ) +K2 (η2J)]r→∞ . (2.31)

According to the interior equivalent problem [30, 31], in which the exterior

region Ω1 is filled with the same homogeneous medium as what is inside Ω2,

the object Ω2 can be removed, and its contribution can be replaced by the

equivalent currents η2J and M . The total fields outside Ω2 should vanish

Etol
2 (r) = Einc

2 (r) +Erad
2 (r) = 0 (2.32)

η2H
tol
2 (r) = η2H

inc
2 (r) + η2H

rad
2 (r) = 0 (2.33)

which is known as the extinction theorem. It should be noted that (2.32)

and (2.33) are always true regardless of the shape of the object. This unique

property makes it an excellent measure to evaluate the numerical errors in

the solution of the integral equations. To be specific, define the magnitude of

the transverse components of the total electric field normalized by that of the

incident electric field at infinity as the numerical error due to the numerical

solution of the integral equations

δ (r̂) = lim
r→∞

∣∣r̂ ×Etol
2 (r)

∣∣
|r̂ ×Einc

2 (r)|
(2.34)
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the RMS error can then be defined as

RMS =

√√√√ 1

N

N∑
p=1

δ2 (r̂p). (2.35)

Apparently, (2.35) is a good and universal measurement of the numerical

errors in the solution of the integral equations (2.26)-(2.29) for arbitrarily

shaped objects in both the PEC and the dielectric cases.

More importantly, in the PEC case, if the medium inside Ω2 in the null-

field problem is the same as the medium outside Ω2 in the scattering problem,

i.e., ε2 = ε1, and µ2 = µ1, the left-hand side (LHS) of the EFIE (2.26)

becomes exactly the same as the LHS of the EFIE (2.18), and the LHS of

the MFIE (2.27) also becomes the same as the LHS of the MFIE (2.19)

with only a sign difference before the K operator, which is caused by the

definition of the unit normal vector n̂. Moreover, in the dielectric case, the

LHS of the PMCHWT equations (2.28) in the null-field problem is the same

as that of the PMCHWT equations (2.20) in the scattering problem, and

the LHS of the Müller equations (2.29) in the null-field problem is the same

as that of the Müller equations (2.21) in the scattering problem. The only

difference between the equations in the null-field problem and those in the

scattering problem is the right-hand sides which are related to the incident

fields. Therefore, the numerical error measured by (2.35) in solving a null-

field problem is a good indicator of the numerical error produced by solving

an integral equation in a corresponding scattering problem.
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CHAPTER 3

ACCURACY IMPROVEMENT OF THE
SECOND-KIND INTEGRAL EQUATIONS

FOR SMOOTH OBJECTS

In this chapter, the discretization schemes for different integral operators

are discussed. The discretization error due to the identity operator is then

suppressed by using the rotated BC functions defined on curvilinear triangu-

lar patches [28] as the testing function. It is demonstrated through several

numerical examples that the accuracy of the second-kind Fredholm integral

equations (the MFIE and Müller equations), in both PEC and dielectric

cases, can be improved significantly using this discretization scheme.

3.1 Discretization of Operators

All the preceding statements on the solution accuracy and iterative con-

vergence rate are based on a certain discretization scheme, which will be

described and discussed in this section. The discretization process of an in-

tegral equation mainly contains two major steps. The first step is to expand

the unknown current density in terms of basis functions, and the second

step is to convert the integral equation into a matrix equation through a

set of testing functions. Generally speaking, the basis and testing functions

can be categorized into two different kinds: the divergence-conforming and

the curl-conforming functions. A typical divergence-conforming function is

the curvilinear Rao-Wilton-Glisson (CRWG) function [40,41], denoted as f r.

By rotating it with respect to the normal direction, a commonly used curl-

conforming function n̂ × f r can be obtained. The CRWG function has a

normal component across the shared edge of two adjacent triangles, whereas

the rotated CRWG function has a tangential component along the shared

edge, as shown in Figures 3.1a and 3.1b, respectively. Recently, another

divergence-conforming function called the Buffa-Christiansen (BC) function

has been proposed [25] and successfully adopted in the implementation of the
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Calderón preconditioning technique [42, 43]. As a linear combination of the

CRWG functions defined on a barycentric refinement of the original triangu-

lar mesh, the BC function, denoted as f b, is strictly divergence-conforming

on the barycentric mesh. At the same time, since its main component resem-

bles that of the n̂×f r function, the BC function is also quasi-curl-conforming

on the original mesh. By rotating f b with respect to the normal direction,

the n̂×f b is curl-conforming on the barycentric mesh and quasi-divergence-

conforming on the original mesh. Figures 3.1c and 3.1d illustrate the defi-

nition domains and the main components of a typical BC and rotated BC

functions, respectively.

Next, we discuss the discretization scheme that can be adopted to discretize

the T , I, and K operators, respectively. To this end, the unknown current

density X is first expanded in terms of a set of basis functions, and the in-

tegral operator is then tested by a set of testing functions. It is a physical

requirement that the basis function should be divergence-conforming in order

to model the current (field) continuity correctly and to give a good represen-

tation of the ∇ ·X term which is related to the surface (electric/magnetic)

charge density. Because of its popularity and simplicity in definition, the CR-

WG function f r is employed as the basis function throughout this chapter.

X =
N∑

n=1

anf
r
n (3.1)

where N is the number of interior edges in a triangular mesh of the object,

and an are the expansion coefficients to be determined.

Table 3.1: Comparison of Different Testing Functions in the Discretization
of the T Operator (f r

n as the Basis Function)

Math Property Well-Tested Contour Int.

f r
m Div.-Conf. No Yes

n̂× f r
m Cur.-Conf. Yes No

f b
m Div.-Conf. Yes Yes

n̂× f b
m Cur.-Conf. No No

16



3.1.1 The T Operator

Since the testing procedure is nothing but a mathematical manipulation,

in principle, both divergence- and curl-conforming testing functions can be

used. However, there are some mathematical issues need to be noted. First,

in order to have the T operator well-tested, the testing function should be

orthogonal to the basis function. From this point of view, the good testing

functions are n̂ × f r and f b. Second, the use of the divergence-conforming

testing function will lead to a contour integration in the discretization of

the T operator, which is not easy to be evaluated accurately and hence it is

undesired. Denoting tm as the testing function, the discretization of the T
operator yields

ZT
mn=ikj

∫
Sm

tm · n̂×
∫
Sn

(
I +

∇∇
k2
j

)
G(r, r′; kj) ·f r

ndr
′dr

=ikj

∫
Sm

∫
Sn

tm × n̂ · f r
nG

+
1

k2
j

[∇·(tm×n̂G)−G∇·(tm×n̂)]∇′ ·f r
ndr

′dr. (3.2)

If tm is divergence-conforming, for example, tm = f r
m or f b

m, the surface

integration of ∇·
(
f r,b
m × n̂ G

)
becomes a contour integral, and furthermore,

∇ ·
(
f r,b
m × n̂

)
vanishes within each triangle that supports f r,b

m , yielding

ZT
mn = ikj

∫
Sm

∫
Sn

f r,b
m × n̂ · f r

nGdr′dr

+
i

kj

∮
Cm

∫
Sn

l̂ · f r,b
m ×n̂ G ∇′ ·f r

ndr
′dr (3.3)

where l̂ is the outward-pointing unit normal vector defined on the integral

boundary Cm which comprises the boundaries of the triangles that support

f r,b
m . If tm is curl-conforming, tm= n̂×f r

m or n̂×f b
m, the surface integration

of ∇ ·
(
n̂× f r,b

m × n̂ G
)
= ∇ ·

(
f r,b
m G

)
vanishes as a result of the Gauss

divergence theorem, yielding

ZT
mn= ikj

∫
Sm

∫
Sn

(
f r,b
m ·f r

n−
1

k2
j

∇·f r,b
m ∇′ ·f r

n

)
Gdr′dr. (3.4)
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Obviously, (3.4) is easier to implement than (3.3) since it avoids the eval-

uation of the contour integral. Shown in Table 3.1 is the comparison of

different testing functions used in the discretization of the T operator. From

this table, it is clear that the n̂ × f r
m function is the best candidate for a

testing function, since it will result in a well-tested T operator and a simple

mathematical expression of the integral which can be evaluated accurately.

3.1.2 The I Operator

At the first glance, the identity operator I is usually considered the simplest

operator in terms of discretization. In the testing procedure, the identity

operator is well-tested as long as the testing function lies in the same direction

as that of the basis function. From this point of view, the good testing

functions are f r
m and n̂× f b

m, while the first one is commonly used.

If the discretization of the I operator is considered from a different per-

spective, it can be found out that, although the discretization of the identity

operator may have an analytical expression which allows the evaluation of

the integration to be exact, the integral kernel is actually highly singular.

Since the discretization of the I operator can be expressed as [22]

ZI
mn=

∫
Sm

tm(r) · I
[
f r
n(r)

]
dr

=

∫
Sm

tm(r) ·
∫
Sn

δ(r, r′) f r
n(r

′) dr′dr (3.5)

the implied integral kernel δ(r, r′) is highly singular at r = r′. It finally turns

out that it is the discretization of the identity operator that contributes

significantly to the total error of the second-kind integral equations [22].

Although the regularization methods [23,24] can be employed to reduce this

discretization error, they are not widely used because of the reason mentioned

in Chapter 1. In this chapter, it is shown that the discretization error due to

the identity operator can be reduced greatly by choosing the n̂×f b
m function

instead of the f r
m function as the testing function. It is also demonstrated

that, by using this discretization scheme, the accuracy of the second-kind

Fredholm integral equations can be improved significantly.
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3.1.3 The K Operator

Since in most cases the K operator comes along with the I operator, the

choice of the testing function should be the same as that of the I operator,

which was discussed earlier. Nevertheless, it should be pointed out that,

whatever function is chosen as the testing function, as long as the basis and

testing functions lie in the same plane in a specific geometric discretization

of the object, the impedance element given by

ZK
mn=

∫
Sm

P.V.

∫
Sn

tm ·n̂×∇G(r, r′; kj)×f r
ndr

′dr

=

∫
Sm

P.V.

∫
Sn

(
ikj−

1

R

)
G

R
(n̂×tm) ·(f r

n×R) dr′dr (3.6)

is always zero, because the magnetic (electric) field (at the point r) produced

by the electric (magnetic) current (at the point r′) is perpendicular to the

plane formed by the current vector f r
n and the vector R = r−r′. Clearly, as

long as the surface of the object is smooth, the near-field interaction, where

R = |R| is small, is always very weak, because the singularity in the integral

kernel has been excluded from (3.6). This can be regarded as an algebraic

interpretation of the concept “compact operator”. Consequently, it is also

very clear that the K operator is no longer a compact operator if the surface

of the object is not smooth, for example, if there are corners or sharp tips on

the object.

3.2 Discretization of SIEs

Based on the investigations above, adequate discretization schemes can be

adopted to transform the SIEs into matrix equations. Both the conventional

scheme and the scheme presented in this chapter will be discussed.

3.2.1 SIEs of the First Kind

According to Table 3.1, n̂ × f r
m is the most suitable testing function to

discretize the EFIE (2.18). For the PMCHWT equations (2.20), as long as

the diagonal T operators are well tested, the whole equations can be solved
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accurately. Therefore, the n̂× f r
m function is also a good testing function to

discretize the PMCHWT equations.

3.2.2 SIEs of the Second Kind

Since the different choices of the testing functions will not change the com-

pactness of the K operator, it is sufficient to have a good discretization of the

MFIE (2.19) as long as the I operator is well tested. Based on the discussion

earlier, both f r
m and n̂× f b

m are the adequate testing functions to discretize

the MFIE. However, as will be shown in the following sections, the use of

the f r
m testing function, which is a conventional way to discretize the MFIE,

will produce a much larger error compared to the choice of the n̂×f b
m as the

testing function. Hence, the latter is recommended for the discretization of

the MFIE, as proposed in [26]. It is also necessary to point out that, for the

discretization of the CFIE (2.13), f r
m is also a good testing function since the

T operator is rotated by n̂, which corresponds to the conventional way of

discretizing the CFIE. However, if the n̂× f b
m testing function is applied di-

rectly to (2.13), although both the EFIE and the MFIE parts are adequately

discretized and well tested, there will be a contour integral in the EFIE part

(see Table 3.1). Since the contour of the BC function is very complex, there

is no way to achieve both high accuracy and efficiency in the evaluation of

this integral at the same time. In this chapter, a mixed discretization scheme

is adopted for the discretization of the CFIE, which uses the n̂× f r
m testing

function to discretize the EFIE (2.18) and the n̂ × f b
m testing function to

discretize the MFIE (2.19) before summing them up.

Similarly, since the off-diagonal blocks are compact, it is sufficient to have

a good discretization of the Müller equations (2.21) as long as the diagonal

blocks are well tested. Similar to the MFIE in the PEC case, both f r
m and

n̂ × f b
m are the adequate testing functions. In fact, the f r

m testing function

has been commonly used [9], which resulted in a contour integration in the

evaluation of the T operators. In contrast, the use of the n̂ × f b
m testing

function can not only have a well-tested diagonal blocks, but also avoid the

appearance of the undesired contour integral. More importantly, the use

of the n̂ × f b
m testing function will significantly suppress the discretization

error of the identity operators, and hence improve the accuracy of the Müller
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equations, as will be demonstrated in the next section.

3.3 Accuracy Improvement of the Identity Operator

In this section, the accuracy improved by the use of the rotated BC function

as the testing function is investigated through a well-defined numerical test.

Consider a plane wave (Einc, H inc) traveling in the free space. By defining a

closed mathematical surface with an arbitrary shape, a set of non-radiating

equivalent surface current can be found through the relation [22][
η1J

inc

M inc

]
=

[
I

I

][
η1J

inc

M inc

]
=

[
η1n̂×H inc

−n̂×Einc

]
. (3.7)

Expanding the equivalent currents with two sets of CRWG basis functions f r
n,

and testing the two equations with two sets of testing functions tm, (3.7) can

be transformed into a matrix equation, which can be solved for the expansion

coefficients of the basis functions. Since (η1J
inc, M inc) should not radiate,

their transverse radiated electric field in the far zone

n̂×Erad = T1

(
η1J

inc
)
− M inc

2
−K1

(
M inc

)
(3.8)

where n̂ = r̂, can be regarded as the numerical error due to the discretization

of the identity operators in (3.7). Following the definition in [22], we define

the far-zone electric field as

Erad
∞ (rp) = lim

r→∞

{
r

√∣∣Erad
θ (rp)

∣∣2 + ∣∣Erad
ϕ (rp)

∣∣2} (3.9)

where Erad
θ and Erad

ϕ stand for the θ and ϕ components of the radiated electric

field Erad, the sampling points rp = (r, θ, ϕp) are on the x-y plane with

θ = π/2 and ϕp = (p− 1) π/360 for p = 1, 2, · · · , 720. Then, the root mean

square (RMS) of the radiated field, which is also the RMS error due to the

discretization of the identity operators, can be calculated as

RMS
{
Erad

∞
}
=

√√√√ 1

720

720∑
p=1

{
Erad

∞ (rp)
}2
. (3.10)
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As the numerical test, a 50-MHz plane wave is incident on a closed math-

ematical surface with a shape of a sphere and a cube, respectively. The

radius of the sphere is 1.0 m and the size of the cube is 1.0 × 1.0 × 1.0 m3.

Shown in Figures 3.2a and 3.2b are the RMS error in the calculation of the

far field defined by (3.10) as a function of the discretization density for the

sphere and the cube, respectively. The same test is repeated at 1.0 GHz and

the results are shown in Figures 3.3a and 3.3b. In all these figures, both

the CRWG functions f r
m and the rotated BC functions n̂ × f b

m are chosen

as the testing functions tm for the discretization of the identity operators.

It is very evident that by choosing the rotated BC function as the testing

function, the discretization error of the identity operator can be suppressed

significantly, which serves as the major reason for the accuracy improvement

of the second-kind SIEs, as will be shown in the next section.

3.4 Accuracy Improvement of the Surface Integral

Equations

In this section, the accuracy of the first- and the second-kind Fredholm inte-

gral equations in both PEC and dielectric cases will be compared, using the

discretization schemes discussed in Section 3.2. Although it is understood

that other factors mentioned in Chapter 1, such as the inaccurate evaluation

of the K operator, also contribute to the error of the second-kind SIEs, only

the error due to the discretization of the identity operators is investigated

in this chapter. Therefore, no special treatments such as those described

in [11–19] are adopted here. The numerical model used is a sphere with a

radius of 1.0 m, which has an analytical Mie-series solution that can be used

as the reference data for comparison.

3.4.1 The PEC Case

The first- and the second-kind Fredholm integral equations in the PEC case

are the EFIE (2.18) and the MFIE (2.19), respectively. Shown in Figures 3.4a

and 3.4b are the RMS error in the radar cross section (RCS) of a PEC sphere

calculated by the EFIE and the MFIE under the excitation of a 75-MHz and

a 150-MHz plane wave, respectively. In these two figures, the accuracy of
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the EFIE and those of the MFIE with two different testing schemes are

compared, with respect to the discretization density. Evidently, by using the

CRWG function as the testing function, the MFIE gives a larger error than

the EFIE, as has been commonly observed. However, when the rotated BC

function is employed as the testing function, the MFIE gives a much smaller

error, even smaller than that of the EFIE, thanks to the error suppression in

the discretization of the identity operator.

By setting the combination factor in the CFIE (2.13) to be α = 0.5, its

accuracy is also investigated by using the CRWG testing scheme and the

mixed testing scheme described in the preceding section. From Figures 3.5a

and 3.5b, it is obvious that the accuracy of the CFIE by using the CRWG

testing scheme is between those of the EFIE and the MFIE using the same

testing scheme, and the accuracy of the CFIE by using the mixed testing

scheme is between those of the EFIE and the MFIE using the rotated BC

function as the testing function, as expected.

Since the MFIE under the mixed discretization scheme has both better

accuracy and faster iterative convergence than the EFIE, it is always desired

to set the combination factor in the CFIE (2.13) as small as possible, as

long as the existence of the EFIE part is sufficient to eliminate the spurious

interior resonance. This is in contrast to the traditional CFIE, in which a

compromise has to be made on the choice of the combination factor since a

large value yields a slowly convergent but accurate solution, whereas a small

value yields a fast convergent but inaccurate solution. This is investigated in

Figures 3.6 and 3.7. In Figures 3.6a and 3.6b, the accuracy and convergence

of the CFIE with two different discretization schemes are investigated at 75

MHz, which is far from the interior resonance. The RMS error of the RCS

and the iteration counts needed by the BiCGstab(1) [44,45] iterative solution

to achieve a relative residual error (RSS) of 10−6 are shown as functions

of the combination factor α, where α = 0 corresponds to the MFIE and

α = 1 corresponds to the EFIE. From Figure 3.6a, it can be seen that the

smallest RMS error of the CFIE with the CRWG testing scheme can be

achieved at α = 1 at the expense of a larger iteration number, while the

smallest iteration count can be achieved at α = 0 at the cost of a larger

error. Therefore, a compromise has to be made between the accuracy and

efficiency. From Figure 3.6b, in contrast, both the smallest RMS error and

iteration count are achieved at α = 0, which corresponds to the MFIE with
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the rotated-BC testing scheme. To demonstrate the necessity of the EFIE,

the same comparison is made at the first resonant frequency of the 1.0-m

spherical cavity filled with air. Theoretically, the first resonant frequency

of the unit spherical cavity is 131.016 MHz. However, due to the numerical

discretization process, there is a small shift on the actual numerical resonant

frequency. In this chapter, the numerical resonant frequency is found to

locate at 131.005 MHz by frequency searching using the MFIE with the

rotated-BC testing scheme. Figures 3.7a and 3.7b show the comparison of the

CFIE with two different discretization schemes at this resonant frequency.

It can be seen from both figures that by introducing a small combination

factor, the numerical error of the MFIE due to the interior resonance can be

effectively suppressed. From Figure 3.7a, it is clear that with CRWG used

as the testing function, the optimal combination factor for the RMS error is

α = 1.0, while the optimal choice to achieve the smallest iteration count is

around α = 0.15. Hence a compromise is needed. However, from Figure 3.7b,

it is seen that with the mixed testing scheme, the optimal combination factor

for both the RMS error and the iteration count is around α = 0.2 ∼ 0.3. The

following observations can also be made from Figures 3.6 and 3.7.

1. The accuracy of the CFIE with the mixed discretization scheme is

better than that with the CRWG discretization scheme in the entire

range of α.

2. The convergence of the CFIE with the mixed discretization scheme is

almost the same as that with the CRWG discretization scheme.

3.4.2 The Dielectric Case

The first- and the second-kind Fredholm integral equations in the dielectric

case are the PMCHWT equations (2.20) and the Müller equations (2.21),

respectively. Shown in Figures 3.8a and 3.8b are the RMS error in the RCS

of a dielectric sphere calculated by (2.20) and (2.21), versus the discretization

density. In Figure 3.8a, a 75-MHz plane wave is incident on the sphere

with a radius of 1.0 m and the dielectric parameter εr = 2.6 and µr = 1.0.

In Figure 3.8b, a 100-MHz plane wave is incident on the sphere with the

dielectric parameter εr = 4.0 and µr = 1.0. From these two figures, similar

observations to those in the PEC case can be made. By using the CRWG
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testing scheme, the Müller equations give a larger error than the PMCHWT

equations, as has been commonly observed. When the proposed rotated-BC

testing scheme is employed, the Müller equations give a smaller error than

the PMCHWT equations. The main reasons of the accuracy improvement

of the Müller equations are as follows.

1. The use of the rotated BC testing functions suppresses the discretiza-

tion error of the identity operators significantly.

2. The use of the rotated BC testing functions avoids the contour inte-

gral in T operators, hence resulting in a more accurate and efficient

evaluation of the impedance elements from the discretization of the T
operators.

Figures 3.9a and 3.9b show the iteration counts required by the PMCHWT

and the Müller equations in a BiCGstab(1) iterative solution in order to

achieve a RSS of 10−6. Apparently, the convergence rates of the second-kind

SIEs using CRWG testing scheme and rotated-BC testing scheme are almost

the same, due to the obvious reason that both schemes test the identity op-

erators well and maintain the compactness of the remainder parts, which

yield the matrix equations with condition numbers that are not only small,

but also invariant with respect to the discretization density. On the other

hand, the iteration counts needed by the first-kind SIEs increase exponen-

tially with the increase of the discretization density, similar to that observed

in the EFIE for the PEC case.

An example is next designed to test the performances of the first- and the

second-kind integral equations for the dielectric case at an interior resonant

frequency of an object, which is a dielectric sphere with a radius of 1.0 m

and the relative permittivity and permeability of εr = 4.0 and µr = 1.0,

respectively. The lowest analytical resonant frequency of the corresponding

spherical cavity filled with air is 131.016 MHz. Frequency search has been

applied using the EFIE (2.3) for the dielectric case to locate the numeri-

cal resonant frequency, which is 131.036 MHz under a specific curvilinear

triangular discretization. Figure 3.10a shows the condition numbers of the

impedance matrices obtained by discretizing the EFIE, the PMCHWT, the

Müller with the RWG testing scheme, and the Müller with the rotated-BC

testing scheme, as a function of the frequency in a small band around the

25



analytical resonant frequency. A very small frequency step, which is 1.0 kHz,

is used around 131.016 MHz in the frequency search in order to obtain a

smooth curve for the condition number and the correct numerical resonant

frequency. It can be seen that the rotated-BC testing scheme dose not de-

teriorate the immunity of the interior resonance corruption of the Müller

equations. The convergence histories of the four different formulations at

the numerical resonant frequency are given in Figure 3.10b. It is clear that

the Müller equations with both testing schemes can converge to the desired

RSS of 10−6 much more rapidly than their first-kind counterpart which is the

PMCHWT equations, while the EFIE for the dielectric case has a very slow

convergence due to the interior resonance corruption.

3.5 Summary

In this chapter, the mathematical characteristics of the operators involved

in the integral equations are discussed and the corresponding discretization

strategies are studied. The rotated BC function is shown, both theoretically

and numerically, to be a better testing function for the discretization of the

second-kind integral equations for both the PEC and the dielectric cases.

It is demonstrated through some numerical experiments that by using the

presented discretization scheme, the discretization error of the identity oper-

ator, which is shown to be a major error source of the second-kind integral

equations, can be suppressed significantly. As a result, the overall numerical

error of the second-kind surface integral equations in both the PEC and the

dielectric cases can be reduced significantly, leading to accurate numerical

solutions that are comparable to (or even better than) the existing solutions

of their first-kind counterparts in the solutions of scattering from smooth

objects. At the same time, the fast convergence of the second-kind integral

equations are maintained with the rotated-BC testing scheme. In the PEC

case, the CFIE with a mixed discretization scheme is proposed to eliminate

the spurious interior resonance corruption, and the optimal choice of the com-

bination factor is shown to be around 0.2 to 0.3. In the dielectric case, the

proposed rotated-BC testing scheme maintains the immunity of the spurious

interior resonance corruption of the Müller equations, leading to an accurate

and fast convergent formulation at all frequencies.
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3.6 Figures

(a) (b)

(c) (d)

Figure 3.1: The sketches of the four functions. (a) The RWG function. (b)
The rotated RWG function (n̂×RWG). (c) The BC function. (d) The
rotated BC function (n̂×BC).
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Figure 3.2: RMS of the far field as a function of the discretization density
of the closed surface. The frequency of the incident plane wave is 50 MHz.
Both the CRWG and the rotated BC functions are chosen as the testing
functions in the discretization of the identity operators. (a) A sphere with a
radius of 1.0 m. (b) A cube with a size of 1.0× 1.0× 1.0 m3.
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Figure 3.3: RMS of the far field as a function of the discretization density
of the closed surface. The frequency of the incident plane wave is 1.0 GHz.
Both the CRWG and the rotated BC functions are chosen as the testing
functions in the discretization of the identity operators. (a) A sphere with a
radius of 1.0 m. (b) A cube with a size of 1.0× 1.0× 1.0 m3.
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Figure 3.4: RMS error of the RCS calculated by the MFIE and the EFIE in
the PEC case versus discretization density. Both the CRWG testing scheme
and the rotated-BC testing scheme of the MFIE are shown and compared
with the EFIE. (a) A 75-MHz, V-polarized plane wave is incident on a PEC
sphere with a radius of 1.0 m. (b) A 150-MHz, V-polarized plane wave is
incident on a PEC sphere with a radius of 1.0 m.
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Figure 3.5: RMS error of the RCS calculated by the CFIE with a
combination factor of 0.5 and the EFIE in the PEC case versus
discretization density. Both the CRWG testing scheme and the mixed
testing scheme of the CFIE are shown and compared with the EFIE. (a) A
75-MHz, V-polarized plane wave is incident on a PEC sphere with a radius
of 1.0 m. (b) A 150-MHz, V-polarized plane wave is incident on a PEC
sphere with a radius of 1.0 m.
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Figure 3.6: RMS error of the RCS calculated by the CFIE in the PEC case
with different discretization schemes and the iteration counts required in
the BiCGstab(1) iterative solution to achieve a relative residual error of
10−6, both as a function of the combination factor α. A 75-MHz,
V-polarized plane wave is incident on a PEC sphere with a radius of 1.0 m.
(a) The CFIE with the CRWG testing scheme. (b) The CFIE with the
mixed testing scheme.
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Figure 3.7: RMS error of the RCS calculated by the CFIE in the PEC case
with different discretization schemes and the iteration counts required in
the BiCGstab(1) iterative solution to achieve a relative residual error of
10−6, both as a function of the combination factor α. A 131.005-MHz,
V-polarized plane wave is incident on a PEC sphere with a radius of 1.0 m.
(a) The CFIE with the CRWG testing scheme. (b) The CFIE with the
mixed testing scheme.
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Figure 3.8: RMS error of the RCS calculated by different SIEs in the
dielectric case versus discretization density. Accuracy of the PMCHWT
equations and the Müller equations are compared. Both the CRWG testing
scheme and the rotated-BC testing scheme of the Müller equations are
shown and compared with the PMCHWT equations. (a) A 75-MHz,
V-polarized plane wave is incident on a dielectric sphere with a radius of
1.0 m and the dielectric parameters εr = 2.6 and µr = 1.0. (b) A 100-MHz,
H-polarized plane wave is incident on a dielectric sphere with a radius of
1.0 m and the dielectric parameters εr = 4.0 and µr = 1.0.
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Figure 3.9: Iteration counts required by different SIEs in the dielectric case
versus discretization density. The BiCGstab(1) iterative solver is used to
solve the SIEs to a relative residual error of 10−6. (a) A 75-MHz,
V-polarized plane wave is incident on a dielectric sphere with a radius of
1.0 m and the dielectric parameters εr = 2.6 and µr = 1.0. (b) A 100-MHz,
H-polarized plane wave is incident on a dielectric sphere with a radius of
1.0 m and the dielectric parameters εr = 4.0 and µr = 1.0.
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Figure 3.10: Interior resonance test of the PMCHWT equations, the Müller
equations with the RWG testing scheme, and the Müller equations with the
rotated-BC testing scheme for scattering analysis of a dielectric sphere with
εr = 4.0 and µr = 1.0. The radius of the sphere is 1.0 m. (a) Condition
numbers as a function of the frequency in a small band around the
analytical resonant frequency. The condition number of the EFIE for the
dielectric case is shown as reference. (b) Convergence histories of different
equations to achieve a relative residual error of 10−6 at the frequency of
131.036 MHz. The convergence history of the EFIE for the dielectric case is
shown as reference.
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CHAPTER 4

ACCURACY IMPROVEMENT OF THE
SECOND-KIND INTEGRAL EQUATIONS
FOR GENERALLY SHAPED OBJECTS

In this chapter, the accuracy improvement by using the BC testing tech-

nique is generalized to the solution of electromagnetic problems with gener-

ally shaped objects in both the PEC and the dielectric cases. By using the

BC functions as the testing functions and by carefully handling the near-

singularities associated with both the K and the T operators, the numerical

accuracy of the second-kind integral equations in the solution to a gener-

ally shaped object can be improved significantly. In order to measure the

numerical error in solving problems with generally shaped objects, null-field

problems are solved, and the root-mean-square (RMS) error of the total field

in the far-zone is defined as the numerical error in the solutions of the in-

tegral equations. Several numerical examples are given to demonstrate the

performance of the proposed techniques in improving the numerical accuracy

of the second-kind integral equations.

4.1 Near-Singularity Extraction

As mentioned in the preceding chapters, when discretized using Galerkin’s

method, where the basis and the testing functions are chosen to be the same,

the first-kind integral equations always produce numerical solutions with

a much better accuracy than the second-kind integral equations. In this

section, the method of handling the near-singularities in the evaluation of

the system matrix elements is presented, in order to improve the numerical

accuracy of the second-kind integral equations for generally shaped objects.

By using the n̂×BC testing scheme discussed above, it has been demon-

strated in [46] that the numerical accuracy of the second-kind integral equa-

tions can be improved by one order of magnitude in the solution of smooth

objects. However, the simple application of the n̂×BC testing scheme is
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not sufficient to improve the numerical accuracy of the second-kind integral

equations so drastically when generally shaped objects are considered. The

major reason is that when generally shaped objects are involved, the K op-

erator is no longer a compact operator, and the near-field interaction related

to the K operator is no longer weak. As a result, it is necessary to take into

account the near-field interaction accurately, in order to further suppress the

numerical error in the evaluation of the system matrix elements and improve

the accuracy of the final solution.

The singularities, which occur when an observation point r is located in a

source patch containing r′, are usually extracted by the well-known Duffy’s

transform [47] for the T operator, and the Cauchy’s principal value integra-

tion for the K operator. In this section, the main issue considered is the

so-called near-singularity, which occurs when an observation point r is suffi-

ciently close to a source patch. The near-singularity can be handled using the

near-singularity extraction technique. When r falls into a source patch, the

near-singularity extraction becomes the singularity extraction automatically.

The discussion begins with the handling of the K operator. By expanding

eikR in terms of the Taylor series when R is small

eikR =
∞∑

m=0

(ikR)m

m!

= 1 + ikR− 1

2
k2R2 +O

(
R3
)

(4.1)

the Green’s function and its gradient can be expressed as

eikR

R
=

1

R
+ ik − 1

2
k2R +O

(
R2
)

(4.2)

and

∇eikR

R
= ∇ 1

R
− k2

2
∇R +O (R)

= −R

R3
− k2

2

R

R
+O (R) (4.3)

respectively, where R = r − r′. In the evaluation of the system matrix
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element (3.6), if we fix the observation point to be r0, (3.6) becomes

ZK
mn =

1

4π

∫
Sm

tm (r0) · n̂ (r0)×ZK
mn (r0) dr0 (4.4)

where

ZK
mn (r0) = P.V.

∫
Sn

∇eikR0

R0

× f r
n (r

′) dr′ (4.5)

is the interior integral over the source parch Sn, and R0 = ∥r0 − r′∥.
When r0 is close to the source patch so that R0 is small, we can subtract the

first two terms in the Taylor series expansion of the gradient of the Green’s

function (4.3) from the integrand of (4.5), and add them back. By doing so,

the near-singularity extraction for the K operator can be expressed as

ZK
mn (r0) = P.V.

∫
Sn

∇eikR0

R0

× f r
n (r

′) dr′

= P.V.

∫
Sn

{
∇eikR0

R0

× f r
n (r

′)

−
[
∇ 1

R0

− k2

2

R0

R0

]
× f r

n (r0)

}
dr′

+ P.V.

[
I1 −

k2

2
I2

]
× f r

n (r0) (4.6)

where

I1 =

∫
Sn

∇ 1

R0

dr′ (4.7)

I2 =

∫
Sn

R0

R0

dr′. (4.8)

It should be noted that, in the subtracted and added terms in (4.6), f r
n (r0)

instead of f r
n (r

′) is used. When r0 = r′, the integrand of the first integral

on the right-hand side of (4.6) becomes zero, because f r
n becomes the same,

and

∇eikR0

R0

−∇ 1

R0

+
k2

2

R0

R0

= O (R0) = 0 (4.9)

since R0 = ∥r0 − r′∥ = 0. When r0 ̸= r′, but r0 → r′, such an integrand

becomes well behaved, meaning that after expansion, the denominator and
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the numerator are on the same order of magnitude, which preserves a good

numerical accuracy upon evaluation.

Similarly, the near-singularity extraction for the T operator can be ex-

pressed as

ZT
mn =

ikj
4π

∫
Sm

∫
Sn

F (r0, r
′)
eikR0

R0

dr′dr0

=
ikj
4π

∫
Sm

∫
Sn

[
F (r0, r

′)
eikR0

R0

− F (r0, r0)
1

R0

]
dr′dr0

+
ikj
4π

∫
Sm

F (r0, r0) I3 dr0 (4.10)

where

F (r0, r
′) = f b

m (r0) · f r
n (r

′)

− 1

k2
j

∇ · f b
m (r0)∇′ · f r

n (r
′) (4.11)

F (r0, r0) = f b
m (r0) · f r

n (r0)

− 1

k2
j

∇ · f b
m (r0)∇ · f r

n (r0) (4.12)

and

I3 =

∫
Sn

1

R0

dr′. (4.13)

When r0 = r′, the integrand of the first integral on the right-hand side of

(4.10) becomes ikj F (r0, r0). When r0 ̸= r′, but r0 → r′, such an integrand

also becomes well behaved, which preserves a good numerical accuracy upon

evaluation.

4.2 Analytical Evaluation of Integrals over Planar

Triangles

After the near-singularity extraction, the integrands of the first integrals on

the right-hand sides of (4.6) and (4.10) are both well defined, which allow ac-
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curate numerical integrations to be performed. For I1, I2, and I3, analytical

expressions [48] can be used to evaluate these integrals accurately. For the

sake of completeness and the convenience of implementation, these analytical

expressions are summarized here. It should be pointed out that, although all

expressions can be found in [48], some of them are rewritten here in order to

fit into the context more appropriately.

Define a local rectangular coordinate system (û, v̂, ŵ), where ŵ = û× v̂,

and assume that the source triangular patch Sn locates in the u-v plane. The

local coordinates of the three vertexes of the triangle are P1 = (0, 0, 0), P2 =

(l3, 0, 0), and P3 = (u3, v3, 0), respectively. Under such a coordinate system,

the observation point r0 = (u0, v0, w0). By defining the edge length, the unit

edge tangential vectors, and the unit edge normal vectors as (i = 1, 2, 3)

li = ∥Pi−1 − Pi+1∥ (4.14)

ŝi =
Pi−1 − Pi+1

li
(4.15)

m̂i = ŝi × ŵ (4.16)

respectively, and other auxiliary variables as follows

S+
1 =

(u3 − u0)(u3 − l3) + v3(v3 − v0)

l1

S−
1 = −(l3 − u0)(l3 − u3) + v0v3

l1

S+
2 =

u0u3 + v0v3
l2

S−
2 = −u3(u3 − u0) + v3(v3 − v0)

l2
S+
3 = l3 − u0

S−
3 = −u0

t01 =
v0(u3 − l3) + v3(l3 − u0)

l1

t02 =
u0v3 − v0u3

l2
t03 = v0

t+1 =
√

(u3 − u0)2 + (v3 − v0)2

t−1 =
√

(l3 − u0)2 + v20

t+2 =
√

u2
0 + v20
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t−2 = t+1

t+3 = t−1

t−3 = t+2

R0
i =

√
(t0i )

2
+ w2

0

R±
i =

√(
t±i
)2

+ w2
0

the analytical expressions for I1, I2, and I3 can be expressed as

I1 = −ŵ sgn(w0) β −
3∑

i=1

m̂i f1i (4.17)

I2 = ŵw0 I3 −
1

2

3∑
i=1

m̂i f2i (4.18)

I3 = −|w0| β +
3∑

i=1

t0i f1i (4.19)

where “sgn” in (4.17) stands for the sign function, and

β =
3∑

i=1

[
arctan

t0iS
+
i

(R0
i )

2
+ |w0|R+

i

− arctan
t0iS

−
i

(R0
i )

2
+ |w0|R−

i

]
(4.20)

f1i = ln

(
R+

i + S+
i

R−
i + S−

i

)
(4.21)

f2i =
(
S+
i R

+
i − S−

i R
−
i

)
+
(
R0

i

)2
f1i. (4.22)

When r0 locates in the u-v plane, w0 = 0, and

P.V. I1(w0 = 0) = −
3∑

i=1

m̂i f1i(w0 = 0) (4.23)

P.V. I2(w0 = 0) = −1

2

3∑
i=1

m̂i f2i(w0 = 0) (4.24)

I3(w0 = 0) =
3∑

i=1

t0i f1i(w0 = 0) (4.25)

can be used for the singularity extraction.
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By applying the techniques presented in these two sections, the near-

singularities in the K and the T operators can be handled and evaluated

accurately. In the following sections, numerical examples will be given by

using all the techniques introduced here.

4.3 Numerical Examples: The PEC Case

In this section, the accuracy of the first- and the second-kind integral equa-

tions in both the PEC case are investigated and compared, using the testing

schemes and near-singularity extraction technique discussed in Section 4.1.

In order to evaluate the numerical errors in the solutions of the generally

shaped objects accurately, the null-field problems instead of the scattering

problems are solved, and (2.30)-(2.35) are used in the measurement of nu-

merical errors. The incident fields in the null-field problems come from the

radiation of a vertically oriented infinitesimal Hertzian dipole at the center

of the objects in all numerical examples

Einc (r) = − θ̂
ikη sin θ

4πr

[
1− 1

ikr
− 1

(kr)2

]
eikr

+ r̂
η cos θ

2πr2

(
1− 1

ikr

)
eikr (4.26)

H inc (r) = − ϕ̂
ik sin θ

4πr

(
1− 1

ikr

)
eikr. (4.27)

For all integral equations solved in this section, the near-singularities are

handled properly using the technique discussed in the preceding section, in

order to have a fair comparison.

The first- and the second-kind integral equations for the null-field prob-

lems in the PEC case are the EFIE (2.26) and the MFIE (2.27), respectively.

Calculations are performed for several geometries, including a cube, a tetra-

hedron, a rectangular pyramid, and a pentagonal prism.

4.3.1 Cube

The first object considered here is a PEC cube with the edge length of 2.0

m, under the excitation of a 300-MHz incident wave. Figure 4.1 shows the

43



numerical accuracy of the EFIE and those of the MFIE with two different

testing schemes versus the geometrical mesh density. Evidently, by using

the RWG functions as the testing functions, the MFIE produces numerical

solutions with larger errors than the EFIE, as has been commonly observed.

However, when the n̂×BC functions are employed as the testing functions,

the MFIE gives a much smaller error, even smaller than that of the EFIE.

4.3.2 Tetrahedron

The second object is a tetrahedron, which has a circumscribed sphere with

the radius of 2.0 m. The frequency of the incident wave is 300 MHz. The

RMS errors of three different equations are shown in Figure 4.2. A similar

observation to that in the cube example can be obtained. The reason for a

steeper decrease of the RMS error from the first mesh point to the second

mesh point is because at the first mesh point, the mesh density is too low for

the basis functions to describe the edge singularity of the induced currents

well.

4.3.3 Rectangular Pyramid

Next, a very sharp object, which is a PEC rectangular pyramid, is considered

to demonstrate the capability of the proposed method in handling the sharp

tips. The base of this object is a rectangle with a size of 1.0 m by 1.0 m,

and the height of the pyramid is 4.0 m. The frequency of the incident wave

is also 300 MHz. Figure 4.3 shows the numerical results. With sufficiently

dense geometrical discretizations, the edge and tip singularity of the induced

currents can be described properly. It is very clear that, using the proposed

n̂×BC testing scheme along with the near-singularity extraction technique,

the numerical accuracy of the MFIE can be improved by nearly one order of

magnitude, and is much better than that of the EFIE.

4.3.4 Pentagonal Prism

The last example for the PEC case is the null-field problem of a pentago-

nal prism under the excitation of a 300-MHz incident wave. The geometry
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and the numerical results are shown in Fig. 4.4. The base is a pentagon,

whose circumradius is 1.0 m, and the height of the prism is 2.0 m. Two

observations can be made from this figure. First, as is observed from the

preceding examples, applying the proposed techniques can improve the nu-

merical accuracy of the MFIE significantly, making it even better than the

EFIE, which is traditionally known to have a much better accuracy. Second,

the convergence rate of the RMS error of the EFIE becomes slower when the

mesh density increases. This is because when the mesh is refined, the system

matrix produced by discretizing the EFIE will have an increased condition

number. According to the basic knowledge of the numerical analysis, when

the condition number of a matrix becomes too large, the matrix equation

system becomes very sensitive to the numerical errors in the evaluation of

the matrix elements as well as the right-hand side vector elements; therefore,

the solution accuracy will be deteriorated. This phenomenon can be seen

more clearly in the examples in the dielectric case.

Generally speaking, from the examples shown here, it can be concluded

that in the PEC case, when the MFIE is solved using the proposed techniques,

its numerical accuracy can be improved by 5 to 10 times over the traditional

solution scheme, and is better than that of the EFIE.

4.4 Numerical Examples: The Dielectric Case

The first- and the second-kind integral equations for the null-field problems

in the dielectric case are the PMCHWT equations (2.28) and the Müller

equations (2.29), respectively. In this section, dielectric objects in the shape

of a cube, a tetrahedron, and a rectangular pyramid are considered. The

geometry sizes of these objects are exactly the same as those presented in

the PEC case.

4.4.1 Cube

First, a dielectric cube with εr = 2.0 and µr = 1.0 is solved under the

excitation of a 300-MHz incident wave. Using the PMCHWT equations, the

Müller equations with the RWG testing scheme, and the Müller equations

with the n̂×BC testing scheme, the total electric field in the far zone is

45



calculated, and the numerical errors due to the solution of these equations are

evaluated by (2.35). The RMS errors versus the geometrical mesh density are

shown in Figure 4.5. Clearly, the Müller equations with the n̂×BC testing

scheme produces numerical solutions with the best accuracy, much better

than the other two equations. The numerical accuracy of the PMCHWT

equations is greatly deteriorated when the mesh density is increased, due

to the sharp increase of the condition number of its system matrix. In the

meantime, the RMS errors of the two Müller equations are both in straight

lines, showing the good and stable condition number of the Müller equations,

which is not affected by the mesh density.

4.4.2 Tetrahedron

The second example given in the dielectric case is the null-field problem

for a dielectric tetrahedron with εr = 4.0 and µr = 1.0. The frequency of

the incident wave is 300 MHz. The RMS errors of the far-field calculations

obtained from three equations are shown in Figure 4.6. Again, the Müller

equations with the n̂×BC testing scheme produce numerical solutions with

the best accuracy. The numerical accuracy of the PMCHWT equations is not

only worse than the Müller equations with the proposed technique, but also

deteriorated by the increase of the geometrical mesh density. The RMS errors

of the two Müller equations stay in straight lines, showing the robustness of

the Müller equations with respect to the mesh density.

4.4.3 Rectangular Pyramid

For the last numerical example, the rectangular pyramid is considered again,

in order to show the capability of the Müller equations with the proposed

techniques in handling the geometry with very sharp tips. Under the ex-

citation of a 300-MHz incident wave, this dielectric pyramid has a relative

permittivity εr = 4.0 and a relative permeability µr = 1.0. Similar observa-

tions can be made from Figure 4.7. The Müller equations with the proposed

techniques have the best numerical accuracy among the three equations in-

vestigated. It can be seen that when the mesh density comes to about 10

segments per wavelength, the numerical accuracy of the Müller equations
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with the n̂×BC testing scheme is more than 10 times better than the Müller

equations with the traditional RWG testing scheme, and also significantly

better than that of the PMCHWT equations.

4.5 Summary

In this chapter, the n̂×BC function is shown to be a better testing func-

tion for the discretization of the second-kind integral equations for generally

shaped objects. A near-singularity extraction technique is presented and

applied for both the K and the T operators, in order to reduce the numer-

ical error in the evaluation of the system matrix elements. To measure the

numerical errors in the solution of generally shaped objects accurately, the

null-field problems are presented and the RMS of the total electric field in

the far-zone is defined as the numerical error according to the extinction

theorem. It has been shown, from the numerical examples in both the PEC

and the dielectric cases, that the proposed techniques are able to reduce the

numerical errors of the second-kind integral equations significantly, leading

to accurate numerical solutions that are comparable to (or even better than)

the existing solutions of their first-kind counterparts in solving problems with

generally shaped objects.
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4.6 Figures
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Figure 4.1: Comparison of the numerical accuracy of the EFIE and those of
the MFIE with two different testing schemes versus the geometrical mesh
density in the solution of a null-field problem for a PEC cube under the
excitation of a 300-MHz incident wave.
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Figure 4.2: Comparison of the numerical accuracy of the EFIE and those of
the MFIE with two different testing schemes versus the geometrical mesh
density in the solution of a null-field problem for a PEC tetrahedron under
the excitation of a 300-MHz incident wave.
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Figure 4.3: Comparison of the numerical accuracy of the EFIE and those of
the MFIE with two different testing schemes versus the geometrical mesh
density in the solution of a null-field problem for a PEC rectangular
pyramid under the excitation of a 300-MHz incident wave.
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Figure 4.4: Comparison of the numerical accuracy of the EFIE and those of
the MFIE with two different testing schemes versus the geometrical mesh
density in the solution of a null-field problem for a PEC pentagonal prism
under the excitation of a 300-MHz incident wave.
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Figure 4.5: Comparison of the numerical accuracy of the PMCHWT
equations and those of the Müller equations with two different testing
schemes versus the geometrical mesh density in the solution of a null-field
problem for a dielectric cube with εr = 2.0, µr = 1.0, under the excitation
of a 300-MHz incident wave.
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Figure 4.6: Comparison of the numerical accuracy of the PMCHWT
equations and those of the Müller equations with two different testing
schemes versus the geometrical mesh density in the solution of a null-field
problem for a dielectric tetrahedron with εr = 4.0, µr = 1.0, under the
excitation of a 300-MHz incident wave.
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Figure 4.7: Comparison of the numerical accuracy of the PMCHWT
equations and those of the Müller equations with two different testing
schemes versus the geometrical mesh density in the solution of a null-field
problem for a dielectric rectangular pyramid with εr = 4.0, µr = 1.0, under
the excitation of a 300-MHz incident wave.
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CHAPTER 5

DISCUSSION

From the theoretical investigation and the numerical demonstration provided

in the preceding chapters, it is very clear that by using the proposed tech-

niques, the accuracy of the second-kind integral equations, both in PEC and

dielectric cases, can be improved by orders of magnitude. In this chapter, the

reasons for the accuracy improvement by the proposed techniques are dis-

cussed, and some important concluding remarks are given to clarify several

issues related to the accuracy of the integral equations.

5.1 Accuracy of the Identity Operator

As was shown in Section 3.3, the discretization error due to the identity

operator, which is shown in [22] to be the major error source of the solution

to a second-kind integral equation, is significantly suppressed by the rotated-

BC testing scheme. This is obviously the most important reason for the

accuracy improvement.

5.2 Implicit Rayleigh-Ritz Scheme

The accuracy improvement can also be attributed to the appropriate adop-

tion of the Rayleigh-Ritz scheme [21]. As a result of the variational method, it

is well known that the Rayleigh-Ritz scheme can minimize the physical quan-

tities such as the energy or reaction; therefore, the scheme is able to stabilize

the numerical solution [49]. In [21], it was shown that when the CRWG

function f r is employed as the basis function, a Rayleigh-Ritz scheme can

be constructed for the MFIE by choosing the n̂×f r as the testing function.

Unfortunately, this explicit way of constructing the Rayleigh-Ritz scheme
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results in an ill-conditioned system matrix which is difficult to solve accu-

rately. The proposed discretization scheme in this thesis can also be regarded

as the Rayleigh-Ritz scheme in an implicit sense. In fact, if we notice that

both the CRWG function f r and the BC function f b can be expressed as

the linear superposition of the CRWG functions g defined on the barycentric

refinement of the original curvilinear triangular mesh

f r=
13∑
i=0

cigi (5.1)

f b=d0g0 +

2Nd−1∑
j=1

djgj + d0̃g0̃ +

2Ñd−1∑
j̃=1

dj̃gj̃ (5.2)

where the definitions of the weighting factors ci, dj, dj̃, and Nd, Ñd can be

found in [28], then the MFIE system matrix Z̄ obtained by using f r as the

basis function and n̂× f b as the testing function can be expressed as

Z̄ = P̄ T Z̄baryR̄ (5.3)

where R̄ and P̄ stand for the transformation matrices mapping from the

CRWG functions f r and the BC functions f b defined on the original mesh

to the CRWG functions g defined on the barycentric refinement, while their

columns are composed by cs in (5.1) and ds in (5.2), respectively, and Z̄bary

is the MFIE system matrix obtained on the barycentric refinement by using

g as the basis function and n̂× g as the testing function. Evidently, Z̄bary is

the Rayleigh-Ritz discretization of the MFIE on the barycentric refinement

according to [21], while R̄ and P̄ are nothing but some geometric relations

between the original mesh and its barycentric refinement. As a result, Z̄ is

shown to be the linear combination of the rows and columns of Z̄bary with

some weighting factors defined in R̄ and P̄ . Since Z̄bary is obtained from the

explicit Rayleigh-Ritz scheme, as its linear combination, Z̄ can be regarded

as the implicit Rayleigh-Ritz discretization of the MFIE, and therefore is

able to minimize the functional and stabilize the solution.
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5.3 The Method of Weighted Residuals

As is well known, the method of moments is one of the various forms of the

method of weighted residuals (MWR) [29], which unifies many approximate

methods of solution to the operator equation

F (x) = g (5.4)

where F stands for either a differential or an integral operator and g stands

for the known right-hand side. Once the unknown function x, which has an

infinite number of degrees of freedom, is approximated (expanded) by the

superposition of a set of basis functions x ≈
∑N

i=1 aix̃i, which only has a

finite number of degrees of freedom ai, the residual due to this model order

reduction

R = g −F

(
N∑
i=1

aix̃i

)
(5.5)

is minimized by enforcing its inner products with a set of testing (weighting)

functions wj to be zero. Different choices of the testing functions result in dif-

ferent methods, such as the collocation method, the sub-domain method, the

least squares method, and Galerkin’s method. Clearly, the testing functions

serve as the constraints under which the residual is minimized. Therefore,

the choice of the testing function is crucial to the optimal approximation of

the unknown function.

In the discretization of the identity operator, if the RWG functions are cho-

sen to approximate the unknown electric current J or the unknown magnetic

current M , both the RWG themselves and the n̂×BC functions can be used

as the testing functions, because they both lie in the same direction as that

of the basis functions. However, a closer look at the testing procedure, which

is simply the inner product between a basis and a testing function, reveals

more mathematical insight. Given a specific basis function, Figure 5.1 shows

that there are two different constraints provided by the RWG testing func-

tions. The first constraint assembles 1 entry into the constraint equations,

and the second one assembles 4 entries. As a result, the unknown coefficient

ai of a given basis function is enforced (measured) by 5 conditions. When

the n̂×BC function is used as the testing function, due to its unique defi-
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nition domain, much more constraints are enforced. As illustrated in Figure

5.2, there are six types of constraints with different constraint intensities im-

posed on each basis function, resulting in a total of 19 (in the case of an ideal

triangulation of the geometry where every triangle is equilateral) constraint

conditions (measurements) to each of the unknown coefficient ai.

Figures 5.3a and 5.3b demonstrate the sparse patterns of the system matri-

ces obtained by discretizing the identity operator using RWG and n̂×BC as

the testing functions, respectively. Defined on the triangulation of a sphere,

there are 120 RWG basis functions in total, resulting in a 120-by-120 system

matrix from the discretization of the identity operator. The nonzero entries

of the matrices are shown by dots in these figures, each column of which

represents the constraints imposed by several testing functions. It is very

clear from these figures that the n̂×BC testing scheme gives much more

constraints than the RWG testing scheme, which leads to a more accurate

approximation to the unknown function, as can be seen in the numerical

experiments shown in Section 3.3.

5.4 The Near-Singularity Extraction

Since the major error source of the second-kind integral equations is sup-

pressed by using the n̂×BC as the testing functions, the other error sources

become important in the accurate solution of problems with generally shaped

objects.

The reason why the handling of near-singularity can improve the accuracy

of the second-kind integral equations for generally shaped objects can be

explained as follows. According to (3.6) and the analysis therein, the K
operator is a compact operator only when the surface of an object is smooth;

when the surface is not smooth, but has some geometrical edges, corners,

or tips on it, the K operator is not a compact operator anymore. When K
is a compact operator, the near-field interaction between a source and an

observation patch is very small compared to the interaction imposed by the

I operator in a second-kind integral equation. However, for those source

and observation patches corresponding to the geometrical non-smoothness,

their near-field interactions become significant. As a result, the numerical

accuracy can only be guaranteed if such near-field interactions are taken into
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account accurately.

5.5 Concluding Remarks

From all the techniques, the discussions, and the numerical examples pre-

sented in Chapters 3 and 4, several important conclusive observations can be

made.

1. The numerical accuracy of the second-kind integral equations can be

improved significantly without the change of basis functions which de-

termine the order of accuracy in the approximation of the unknown

surface currents. The increase of the order of the basis functions can

certainly improve the accuracy of the numerical solutions, as suggested

by several research works. But even with the same set of basis functions

as used in the first-kind integral equations, the numerical accuracy of

the second-kind integral equations can be improved remarkably with

the appropriate choice of the testing functions (testing scheme).

2. According to our numerical experiments, the modification of the solid

angle expression does not affect the numerical accuracy of the second-

kind integral equations much. The reason is quite obvious, because

when testing is performed, the quadrature points of the testing func-

tions are always chosen to be located inside a mesh element (a triangu-

lar patch, for example). As a result, 2π is always an appropriate choice

for the solid angle. Therefore, in all the descriptions, the discussions,

and the numerical examples presented in this thesis, the solid angle is

always fixed as 2π.

3. The second most important issue related to the accuracy of the second-

kind integral equations is the near-singularity in the evaluation of sys-

tem matrix elements for both the K and the T operators. The reason

and necessity have been discussed in the preceding section.

4. For the first-kind integral equations, the numerical accuracy will be

deteriorated by the increase of the condition numbers of the system

matrices when the geometrical discretization density increases, which

makes the convergence curves of the RMS errors no longer straight
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lines as can be seen very clearly from the numerical examples. In the

meantime, the convergence curves of the second-kind integral equations

always maintain straight, because the condition numbers of their sys-

tem matrices remain almost the same regardless of the discretization

density.

57



5.6 Figures

(a) (b)

Figure 5.1: Testing of a RWG basis function with a RWG testing function.
The basis function is shown in red, the testing function is shown in green,
and their intersection, where the inner product (test) is actually carried
out, is shown in yellow. The different cases provide (a) 1 and (b) 4
constraint conditions (measurements) to the basis function, respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.2: Testing of a RWG basis function with a n̂×BC testing
function. The basis function is shown in red, the testing function is shown
in green, and their intersection, where the inner product (test) is actually
carried out, is shown in yellow. The different cases provide (a) 1, (b) 4, (c)
4, (d) 2, (e) 4, and (f) 4 constraint conditions (measurements) to the basis
function, respectively.
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(b)

Figure 5.3: Sparse patterns of the system matrices obtained by discretizing
the identity operator using (a) RWG and (b) n̂×BC as testing function.
Different constraint intensities are indicated with different colors.
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CHAPTER 6

CONCLUSION

In this thesis, the surface integral equations that are widely used in computa-

tional electromagnetics are investigated as the Fredholm integral equations

of the first and the second kind. The mathematical characteristics of the

operators involved in these integral equations are discussed and the corre-

sponding discretization strategies are studied. The rotated BC function is

shown, both theoretically and numerically, to be a better testing function for

the discretization of the second-kind integral equations for both the PEC and

the dielectric cases. It is demonstrated through some numerical experiments

that by using the presented discretization scheme, the discretization error

of the identity operator, which is shown to be a major error source of the

second-kind integral equations, can be suppressed significantly.

A near-singularity extraction technique is presented and applied for both

the K and the T operators, in order to reduce the numerical error in the

evaluation of the system matrix elements. To measure the numerical errors in

the solution of generally shaped objects accurately, the null-field problems are

presented and the RMS of the total electric field in the far-zone is defined as

the numerical error according to the extinction theorem. It has been shown,

from the numerical examples in both the PEC and the dielectric cases, that

the proposed techniques are able to reduce the numerical errors of the second-

kind integral equations significantly, leading to accurate numerical solutions

that are comparable to (or even better than) the existing solutions of their

first-kind counterparts in solving problems with generally shaped objects.

At the same time, the fast convergence of the second-kind integral equa-

tions are maintained with the rotated-BC testing scheme. In the PEC case,

the CFIE with a mixed discretization scheme is proposed to eliminate the

spurious interior resonance corruption, and the optimal choice of the com-

bination factor is shown to be around 0.2 to 0.3. In the dielectric case, the

proposed rotated-BC testing scheme maintains the immunity of the spurious
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interior resonance corruption of the Müller equations, leading to an accurate

and fast convergent formulation at all frequencies.

It is also shown that the proposed discretization scheme can be regarded

as an implicit Rayleigh-Ritz scheme, which is able to minimize the system

energy and stabilize the numerical solution. The reason for the accuracy

improvement is also discussed in terms of the method of weighted residuals.

Several important concluding remarks related to the accuracy issue of the

second-kind integral equations are made.
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[15] Ö. Ergül and L. Gürel, “Improved testing of the magnetic-field integral
equation,” IEEE Antennas Wireless Propag. Lett., vol. 15, pp. 615–617,
2005.
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[18] Ö. Ergül and L. Gürel, “Improving the accuracy of the magnetic field
integral equation with the linear-linear basis functions,” Radio Sci.,
vol. 41, pp. 1–15, 2006.
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