
c© 2012 James C. Davidson

EXPLOITING INSENSITIVITY IN STOCHASTIC SYSTEMS TO LEARN APPROXIMATELY

OPTIMAL POLICIES

BY

JAMES C. DAVIDSON

DISSERTATION

Submitted in partial ful�llment of the requirements

for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the

University of Illinois at Urbana-Champaign, 2012

Urbana, Illinois

Doctoral Committee:

Professor Seth A. Hutchinson, Chair

Associate Professor Eyal Amir

Assistant Professor Maxim Raginsky

Assistant Professor Enlu Zhou

ABSTRACT

How does uncertainty a�ect a robot when attempting to generate a control policy to achieve

some objective? How sensitive is the obtained control policy to perturbations? These are

the central questions addressed in this dissertation. For most real-world robotic systems, the

state of the system is observed only indirectly through limited sensor modalities. Since the

actual state of the robot is not fully observable, partially observable information is all that is

available to infer the state of the system. Further complicating matters, the system may be

subject to disturbances that not only perturb the evolution of the system but also perturb

the sensor data. Determining policies to e�ectively and e�ciently govern the behavior of

the system relative to a stated objective becomes computationally burdensome and, for

many systems, impractical for the exact case. Thus, much research has been devoted to

determining approximately optimal solutions for these partially observed Markov decision

processes (POMDPs).

The techniques presented herein exploit the inherent insensitivity in POMDPs based

on the notion that small changes in a policy have little impact on the quality of the solu-

tion except at a small set of critical points. First, a hierarchical method for determining

nearly optimal policies is presented that achieves temporal and spatial abstraction though

local approximations. Through a mixed simulation and analytic representation, a directed

graph is generated to determine the underlying POMDP structure. The result is a multi-

query method for generating the structural representation o�ine. The graph is generated

by randomly sampling vertices. Local policies are then used to connect to the newly added

vertices. A new edge is added if the local policy was successful. By continuing to extend the

ii

graph at each iteration of the algorithm, a sparse representation is obtained. Theoretical

and simulation-based results are provided to demonstrate the e�ectiveness of this approach.

The second technique extends the methodology of the �rst technique to an anytime algo-

rithm. Adaptive sampling is used to quickly and e�ective determine nearly optimal policies.

Between exploitation and exploration sampling, the structural representation is expanded

based on inductive bias on the past performance of the sampling algorithm in the neigh-

borhood of a perspective sample. In this way, we are able to preferentially sample policies

that are both more likely to result in better exploration and also more likely to increase the

connectivity in a region of the space that has a lower cost. Finally, a perturbation analysis

framework is developed. This serves two purposes. First, the derived analysis is used to sup-

port the hypothesis that POMDPs are often insensitive and to identify when they are not.

Secondly, the perturbation analysis framework enables the chaining of forecasted evolutions

together into a compact representation. This compact representation provides even greater

temporal and spatial abstraction in an analytic representation.

iii

To Amaya and Dotti

iv

CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . viii

Chapter 1 INTRODUCTION . 1

Chapter 2 PARTIALLY OBSERVED MARKOV DECISION PROCESSES 8
2.1 Formulation . 8
2.2 The Information Space . 9

Chapter 3 OPTIMIZATION METHODS FOR POMDPS 15
3.1 Control Policies for POMDPs . 15
3.2 Approximation Methods . 17

Chapter 4 HYPERFILTERING . 22
4.1 Hyperbelief Space, Evolution, and Approximations 22
4.2 Hyperbelief Evolution . 24
4.3 Hyper-Particle Filtering . 25
4.4 Discussion . 30
4.5 Hyper�ltering Proofs . 31

Chapter 5 A SAMPLING HYPERBELIEF OPTIMIZATION TECHNIQUE FOR
STOCHASTIC SYSTEMS . 36
5.1 Introduction . 36
5.2 Methodology: Generating the Digraph . 38
5.3 Methodology: Attaining the Approximately Optimal Policy 47
5.4 Analysis: Rate of Convergence . 56
5.5 Results . 69
5.6 Conclusion . 74
5.7 SHOT Proofs and Analysis . 75

Chapter 6 PERTURBATION ANALYSIS OF THE FORECASTED EVOLU-
TION OF POMDPS . 87
6.1 Introduction . 87
6.2 Related Research: Simulation and Optimization of POMDPs 91

v

6.3 Perturbation Analysis . 95
6.4 Chaining Sensitivity Functions . 114
6.5 Results . 126
6.6 Conclusion . 128
6.7 Perturbation Analysis Proofs . 129

Chapter 7 ADAPTIVE SAMPLING-BASED OPTIMIZATION FOR POMDPS . . 154
7.1 Introduction . 154
7.2 Methodology: Adaptive Sampling . 155
7.3 Results . 173
7.4 Conclusion . 174

Chapter 8 DISCUSSION . 176
8.1 Future Research . 176
8.2 Conclusions . 180

Appendix A STOCHASTIC FILTERING . 181
A.1 Formulation . 181
A.2 Filtering Approximation Methods . 185
A.3 The Particle Filter . 187

REFERENCES . 196

vi

LIST OF TABLES

5.1 Veri�cation via comparison to benchmark problems 71

7.1 Veri�cation via comparison to benchmark problems 174

vii

LIST OF FIGURES

2.1 Dependency graph of a partially observed system de�ned by the observa-
tion probability function and the transition probability function 9

2.2 The 2-simplex . 11

4.1 Hyper-particle �ltering process . 26
4.2 Evolution of the hyperbelief for a simple example 32

5.1 Random set of hyperbelief samples in the hyperbelief space Pβ and corre-
sponding vertices in digraph G . 41

5.2 Graph G and associated edge information directed to vertex β9 46
5.3 Sensitivity of distance δj to the target hyperbelief βjas a function of a

perturbation in the distance δi from the source hyperbelief βi 51
5.4 Sensitivity of source hyperbelief sample attaining target hyperbelief sample . 51
5.5 Example least lower-bound and least upper-bound optimal switching policy . 55

6.1 Example of convergence properties of Markov processes 97
6.2 Switching surface for two actions resulting in a change in policy for a large

enough perturbation to the initial belief bk 99
6.3 Forecasted evolution as represented by a series of sample paths {I(i)

4 }i = Ĩ4,
which is generated from vertex b0 under policy π 101

6.4 Delayed projection of predicted beliefs onto the belief simplex 103
6.5 Linear approximation of the normalizing function: 1

µ′k
. 111

6.6 An illustration of the chaining process . 115
6.7 Coupling perturbation between forecasted evolutions 120
6.8 Experimental sensitivity results for two benchmark POMDP systems 127

7.1 An illustration of the digraph G, which includes multi-edge grouping per
r and corresponding vertices in digraph G 159

viii

Chapter 1

INTRODUCTION

Finding ways to more e�ectively cope with the uncertainty ubiquitous to real robotic systems

has been a focus of robotics research for decades. The uncertainty in such robotic systems

can be categorized as

• Process uncertainty, which models uncertainty in the robot's actions; and

• Measurement uncertainty, which models uncertainty in the robot's knowledge of its

own state.1

By explicitly considering both types of uncertainty, we alleviate their e�ect on the robotic

system.

Process uncertainty can be modeled by a Markov decision process (MDP), whereby the

outcome of an action given the system is in some state is modeled by a random vector and

associated probability function. Such a model, however, assumes that the state of the system

is known after each action. This is often not the case in robotic systems. In such cases the

state of the system is only partially observable due to limitations of the sensing capabilities

of the robot. Further, it may be the case that the sensors produce nondeterministic mea-

surements. Partial observability and nondeterministic sensor observations are captured by

the measurement uncertainty model.
1Process and measurement uncertainty can be split into a third, dependent type of uncertainty known

as environment uncertainty. Modeling environment uncertainty explicitly separates uncertainty inherent in
the robotic platform from the uncertainty in the layout of the robot's environment. Addressing this type
of uncertainty is the domain of simultaneous localization and mapping (SLAM) research (refer to [1] for an
overview of SLAM research).

1

Partially observable Markov decision processes (POMDPs) provide a general and ex-

pressive formalism for representing both process and measurement uncertainty (both the

execution of actions and observations from sensor data) with stochastic models. However,

their use for planning in robotics problems has been limited due to problems of scalability

and tractability. Evaluating the optimal policy can be computationally intractable with a

worst case running time that is exponential in both the length of the time horizon and the

number of observations for the exact solution [2].

Given the importance of �nding optimal or nearly optimal solutions for systems subject

to uncertainty, numerous researchers have developed approaches to approximate POMDP

systems (refer to [3, Ch. 15 & 16] and [4] for surveys of such approaches). In recent years,

a number of sampling-based approaches for generating policies have been proposed [5�11]

to �nd e�cient approximation methods. These methods have been used successfully to

approximate the POMDP value function (i.e., the expected cost-to-go function). Several of

these approaches have moved past synthetic experiments to motion planning with real robotic

systems, such as [11, 12]. However, these approaches rely on either a coarse representation

of state or simpli�ed system dynamics and uncertainty models, which likely limit their

capability of solving more di�cult real world robotic tasks.

When described in terms of a system's state space, the evolution of a POMDP is gov-

erned by a set of transition probabilities that describe the e�ects of control actions, and an

observation model that speci�es uncertainty in the sensing process. If, instead, the system

is described in terms of the belief space (i.e., the space of possible a posteriori probability

functions on the state space), the evolution of the system can be modeled as an MDP. This

corresponds to lifting the system description from a lower dimensional state space to a higher

dimensional belief space. Most POMDP optimization algorithms operate, and approximate

the system, at the level of the belief space.

We propose a qualitatively di�erent approach, whereby the analysis is lifted from the

belief space into the higher dimensional space of probability functions that can be de�ned

2

on the belief space. We refer to this lifted space as the hyperbelief space.2 In the hyperbelief

space, the system evolves deterministically, thus eliminating (in some sense) the explicit

consideration of uncertainty during the planning process, at the expense of a much higher

representational cost. Operating in the hyperbelief space produces challenges analogous to

those encountered when operating in the belief space, e.g. exponential growth of reachable

belief states. One of the challenges that manifests when operating in the hyperbelief space

is that, in general, a POMDP system cannot reach arbitrary points in the space, regardless

of the quality of control law. This occurs even though the hyperbelief evolution is determin-

istic. To account for this, we explicitly analyze the sensitivity of both cost and hyperbelief

evolution functions with respect to perturbations in the hyperbelief state. This allows us

to adapt a simulated cost and trajectory starting from one hyperbelief state to a cost and

trajectory starting at a nearby hyperbelief, without re-simulation of the system. However,

moving to a hyperbelief-based representation allows us to apply standard approximation

techniques. For example, because the complexity of hyperbelief states is high, we employ

particle �ltering techniques to approximate the evolution of the system in the hyperbelief

space. The formulation and analysis of the system's evolution in the hyperbelief space is

provided in Chapter 4.

We will present two POMDP learning techniques that use the hyperbelief space and

associated hyper�ltering techniques to forecast the behavior of POMDP systems via a dis-

crete graph representation. The second method is derived from the �rst but deviates from

the �rst in its intent and its approach. Both methods are inspired by the dual purpose of

generating a structural representation while simultaneously generating approximately opti-

mal policies for POMDPs with very large state spaces. The resulting methods achieve this

through a combination of spatial and temporal abstraction. For both methods we construct
2The hyperbelief space refers to the space of probability functions over probability functions. Hyper-

parameters describe a distribution over the parameters of a prior probability function and are often used
as conjugate priors. While both formulations have some similarities, the hyperbelief space and the related
hyper�ltering extends beyond the prior to the uncertainty introduced by the unknown observations of the
POMDP at each iteration.

3

a directed graph that represents the uncertain evolution of the system and can be used to

�nd nearly-optimal policies for POMDP systems. The vertices of the directed graph rep-

resent hyperbeliefs and are generated by sampling. The edges are generated by simulation

of the system for multiple stages, e.g. time steps, using simple local policies. The edges

represent transitions from the hyperbelief represented by the source vertex to a region near

the hyperbelief represented by the target vertex. We can translate a walk through the graph

to a connected path through the hyperbelief space. These paths through the hyperbelief

space correspond to feedback policies for the system. Retaining the sensitivity along edges

of the graph also allows reuse of the data structure without re-simulation of the system.

These spatial and temporal abstractions are key when planning for systems that have not

only increasingly large state, action, and observation spaces, but also require long planning

horizons to �nd su�ciently good policies. These properties give the presented algorithms

advantages in terms of both scalability and practicality as demonstrated by experimental

results and theoretical analysis.

The �rst method, the Sampling Hyperbelief Optimization Technique (SHOT), is a multi-

query technique whereby a structural representation is built o�ine independent of the cost

function. Then, when an objective is speci�ed, the approximately optimal policy can be

found quickly. During the o�ine process, SHOT generates the digraph and stores pertinent

data about the evolution of the system. This includes a representation of the evolution of

the system under the speci�ed local policy as well as the distance to the target hyperbelief.

Vertices are generated by randomly generating hyperbeliefs in the hyperbelief space. Edges

to each newly generated hyperbelief are instantiated by simulating a local, greedy policy

from a set of the neighboring vertices.

In this approach an optimization method adapted from standard graph optimization

methods is used to determine the optimal policy in the generated graph. At the cost of

exactness, this graph representation reduces the set of possibilities to be explored from a

continuum in an in�nite number of dimensions to a �nite set. Moreover, optimizing over

4

the graph can be performed in worst case time complexity that is O(|N | |E|), where |N | is

the number of vertices and |E| is the number of edges in the digraph, using standard graph

optimization algorithms.

An edge between a source hyperbelief sample and a target hyperbelief sample may be

included in the graph even if the target cannot be reached from the source; a measurement

of the distance to the target is included in the edge information. This distance measure

is used during the graph optimization stage to bound the cost between edges. Lipschitz

bounding functions are generated to estimate both the upper and lower bounds around each

sample. These bounds provide a means to evaluate the performance of a local policy in the

region around the starting hyperbelief sample. By generating an approximation for both

the value and the evolution around the starting position for each edge in the graph, we

are able to represent the performance beyond the �nite set of sampled hyperbeliefs, thus

achieving spatial abstraction. However, because the local policy may not attain the exact

position of the target hyperbelief sample, a re�nement algorithm is used to incrementally

select a possible better policy and then simulate this policy to determine the actual cost of

this policy and, thus, if it is better. The result is an algorithm, whereby the di�erence from

the bounding value and the optimal value decreases with every iteration so that the method

will �nd the optimal solution for the given graph in a �nite amount of time (as there are a

�nite number of paths in the digraph). The details of this method are provided in Chapter

5.

The second learning method, Adaptive Exploration/exploitation Sampling-based Opti-

mization for POMDPs (AESOP), is an evolution of the �rst approach. AESOP is an online,

anytime algorithm. This anytime formulation is achieved at the cost of the multi-query

representation. AESOP generates policies whose quality improves with increased planning

e�ort and can be terminated at any point and provide the best policy found thus far. More-

over, AESOP expands the representation of policies from a single edge to multiple edges.

This endows the technique with the ability to balance the computational burden of repre-

5

senting each vertex as a single belief (greater number of vertices) and the required number of

vertices when retaining the complete evolution as a single vertex (greater number of edges).

Unlike SHOT, AESOP explicitly considers both exploration and exploitation. During an

exploration phase, local learning methods are used to predict which of the local policies are

most likely to expand the graph into an unexplored region of the hyperbelief space. After

the local policies are simulated, those that were the most diverse�being the farthest away

from the already explored space�are retained and added to the graph. Conversely, during

an exploitation phase, the di�erential in the neighborhood of each vertex in the graph is

evaluated to predict the most likely source vertex to make the greatest gain in value. The

best source vertex is selected and the policy predicted to make the greatest gain is then

simulated. If the result is similar to that predicted, then the resulting edges and vertices are

added to the graph.

SHOT uses experimentally derived Lipschitz bounds to estimate the e�ect of a pertur-

bation on the value and evolution at each vertex in the graph. AESOP exchanges the

experimentally derived measure for an analytic representation of the perturbation analy-

sis via a Taylor series approximation perturbation, which is presented in Chapter 6. This

formulation enables AESOP to predict more precisely the e�ect of a perturbation on the

value and evolution of the system. We utilize this information to create a composite of the

policy edges in the graph. This representation enables us to predict the likelihood that the

predicted outcome is representative of the actual outcome. We use this likelihood to inform

both the learning methods used in the exploration and exploitation phases.

Both SHOT and AESOP attempt to achieve e�cient optimization over the graph. The

second method goes further by only updating the vertices and edges in the graph that are

a�ected after the graph is expanded. By only updating the source of any edge if the value at

the target vertex changes, a limited number of vertices is updated at each iteration. More-

over, this process more e�ectively back-propagates changes to the source vertex, speeding

up convergence of the algorithm. The presentation and analysis of this method are provided

6

in Chapter 7.

Before presenting these techniques, background concepts are introduced and related re-

search is explored in Chapter 2 and Chapter 3, respectively. In Chapter 4, hyper�ltering is

provided to lay the necessary foundation for the proposed optimization technique. Then the

optimization methods are presented: the o�ine multi-query POMDP optimization technique

is developed in Chapter 5 and the sensitivity derived multi-edge technique is presented in

Chapter 7. Motivation and analysis of the insensitivity of POMDP systems along with a

methodology to chain forecasted evolutions is presented in Chapter 6. The dissertation con-

cludes with some �nal remarks, comments, and a summary of the proposed future research

in Chapter 8.

7

Chapter 2

PARTIALLY OBSERVED MARKOV DECISION

PROCESSES

Relevant background material will be presented before hyper�ltering is formally introduced

in Chapter 4. Hyper�ltering is a method for representing the e�ect of future uncertainty

in POMDP systems. In particular, hyper�ltering is a means of propagating the complete

representation of the uncertainty forward one future stage to the next. Uncertainty is present

in many real-world robotic systems, from motion noise to sensor noise, and the presence of

these uncertainties can plague the motion and sensing of many real-world robotic systems.

By modeling the uncertainty and considering robotic systems as stochastic processes, it

is possible to better design and simulate the evolution of these systems in an attempt to

understand, alleviate, and/or anticipate the e�ect of noise in such systems. First, description

of the speci�c class of system of interest is given in Section 2.1. This is followed by a

discussion of the information space in Section 2.2.

2.1 Formulation

As models, POMDPs incorporate the possibility of incomplete and uncertain knowledge

when mapping states to observations as well as uncertain knowledge as to evolution of the

system from one stage to the next.

POMDPs include at least the following components:

• The state space representing the �nite set of states of the world: X .

• The �nite set of control actions that can be executed: U .

8

x1 x2 xk

y1 y2 yk

u0 u1 uk-1

x0

y0

Figure 2.1: Dependency graph of a partially observed system de�ned by the observation
probability function and the transition probability function

• The transition probability function: pxk|xk−1,uk−1
. This transition probability function

represents the likelihood of the system being in one state and transferring into another

state at stage k given the applied action at stage k − 1.

• The set of all possible observations: Y . The observations represent the information

received by the sensors at each stage k.

• The observation probability function: pyk|xk . The observation probability function

represents the likelihood of a particular observation occurring given the system is in a

speci�ed state.

In addition, a POMDP may be speci�ed with a cost function c(·), which de�nes the objective

to be optimized for the POMDP.

2.2 The Information Space

As a system evolves from one stage to the next, it generates a sequence of random variables

{xk}Kk=0. Because the state is only indirectly observed through the observations, the system

state is represented by a probability function conditioned on the set of observations and past

9

actions. A graphical representation of this process is illustrated in Figure 2.1.

De�nition 2.1. The information state, Ik, at stage k is the set of known information from

the initial stage up to stage k. More precisely,

Ik = {y0, uo, y1, u1, y2, u2, y3, · · · , uk−1, yk} ,

where u0, · · · , uk−1 are the sequenced set of actions executed up to stage k, and y0, . . . , yk are

the sequenced set of observations made. The total information known up to stage k is thus

encapsulated in the information state.

The information space Ik is the set of all possible information states at stage k. The

initial probability function over the state, as represented by px0 , is assumed to be given and

is often assumed that px0(·|y0) = pxo .

At every stage k, pxk|Ik is the conditional probability function for the state given the

information state Ik. The posterior probability function p(xk+1|Ik+1) at stage k + 1 is

p(xk+1|Ik+1) =
p(yk+1|xk+1)

∑
xk∈X p(xk+1|xk, uk)p(xk|Ik)∑

xk+1∈X p(yk+1|xk+1)
∑

xk∈X p(xk+1|xk, uk)p(xk|Ik)
. (2.1)

As a notational device, the concept of a belief is used to represent this conditional probability

function.

De�nition 2.2. The belief bk at stage k is

bk , pxk|Ik . (2.2)

This notation is pervasive in the literature (refer to [3]) and is adopted because, later in

Chapter 4, the formulation of the hyper�lter will be made more clear by using this notation.

The belief space Pb is the set of all possible beliefs for a given system; in particular, it is

the set of all probability mass functions de�ned over the state space X . For discrete state

10

Figure 2.2: The 2-simplex

space systems, where the belief state has |X | states, the belief space can be represented by

a |X | − 1 dimensional simplex ∆|X |−1.

De�nition 2.3. The n-simplex is the subset of Rn+1 given by

∆n = {(x1, x2, . . . , xn+1) :
n+1∑
i=1

xi = 1 and xi ≥ 0 ∀i}.

The n-simplex is essentially a polytope that is an n-dimensional analogue of a triangle.

The 2-simplex is illustrated in Figure 2.2.

The belief, being the conditional probability function over the state space given the

information state, is a representation of the uncertainty of the state of the system. In fact,

the belief is a su�cient statistic for the information vector, which was demonstrated in [13]

(and subsequently in [14]).

A su�cient statistic, T satis�es the property that for the parameter θ, for which is an

observation x is to be inferred from

p(x|T (x) = t, θ) = p(x|T (x) = t).

In other words, the probability function over x is independent of θ when conditioned on

T . Thus, all the information about the unknown parameter θ is captured in the su�cient

11

statistic T (refer to [15] for more on su�cient statistics).

The belief bk is a su�cient statistic in that a control policy that depends on bk will result

in the same behavior as a control policy that depends on the information state for which

the beliefs bk were derived. Most optimization techniques rely directly on bk because it

encapsulates the information state and has a �nite and constant dimensional representation,

whereas the dimension of the information state grows at each stage. Because of the ability

to sequentially evaluate the belief, bk, for the current stage given bk−1 for the previous stage,

the concept of the belief �ts naturally into a dynamic programming (DP) framework (see [14]

for an in-depth discussion about DP).

Filtering methods focus on estimating the current the belief, or an approximation of the

belief, given the past set of observations and actions (e.g., [16�24]). By evaluating the belief

at each stage as observations occur, �ltering determines the behavior of the system as it

evolves from the �rst stage to the current stage. However, �ltering is applied as observations

are received; �ltering is not a method to predict the behavior into future stages for unknown

future observations.

It is convenient to rely directly on bk since it encapsulates the information state and has

a �nite and constant dimensional representation, whereas the dimension of the information

state grows at each stage. Given the belief at stage k, the action applied at stage k and the

observation at stage k + 1, the belief bk+1 is given by the transition function

bk+1 = φ(bk, uk, yk+1). (2.3)

In our case, this is a vector of dimension |X |, and ith component of bk+1 is given by

[φ(bk, uk, yk+1)]i =
p(yk+1|xi)

∑
xk∈X p(x

i|xk, uk)bk(xk)∑
xk+1∈X p(yk+1|xk+1)

∑
xk∈X p(xk+1|xk, uk)bk(xk)

, (2.4)

where xi is the state corresponding to the ith entry of the vector.

12

The transition function φ, given by (2.3), can be represented as a linear operator due

to the �nite cardinality of the state space. De�ne the matrix Tu for each u ∈ U , such that

eTi Tuej = px′|x,u(i | j, u), where ei, ej are elementary vectors for states i and j, respectively.

Thus, the predicted belief bk+1|k from belief bk under control u is

bk+1|k = Tubk. (2.5)

Similarly, de�ne the matrix Oy, such that Oii
y = py|x(y | i), and Oij

y = 0 for i 6= j. Then

Oyej = py|x(y | j). Thus, the updated belief bk+1 given bk+1|k for the observation y is

bk+1 = Oybk+1|k.

Notice that we can determine the probability of an observation y occurring given the belief

bk:

p(yk|bk) =
∑
i

py|x(yk|i)kb(i)

= 1TOybk. (2.6)

Multiplying these matrices together yields the belief transition function

φ(bk, uk, yk+1) =
Oyk+1

Tukbk

1TOyk+1
Tukbk

=
φyk+1,ukbk

ηTy+1,uk
bk
, (2.7)

where φyk+1,uk = Oyk+1
Tuk and η

T
yk+1,uk

= 1Tφyk+1,uk . The row vector ηTy+1,uk
is a normalization

factor that ensures φ(bk, uk, yk+1) maps to a belief on the simplex.

Often, in a POMDP or hidden Markov model (HMM) context, the objective is to com-

pute, estimate, or approximate the current belief given current information state. Filtering

methods, e.g. [16�24], focus on this problem. Refer to Appendix A for a detailed formula-

tion of the �ltering concept as well as a thorough review of approximate �ltering techniques.

13

However, if we need to evaluate the cost of a set of control actions in future stages, we need

to also consider the set of observations which are unknown a priori. The key distinction

is that �ltering is applied as observations are received, and is not a method to predict the

behavior into future stages for unknown future observations.

14

Chapter 3

OPTIMIZATION METHODS FOR POMDPS

In this chapter we present an overview of reinforcement learning methods for POMDPs.

First, we formulate the POMDP optimization problem in Section 3.1. We de�ne the objective

function and the primary methodologies of obtaining optimal policies. In Section 3.2 we

catalog research relating to determining approximately optimal solutions to POMDPs. We

frame the contributions of our work within the context of this related research.

3.1 Control Policies for POMDPs

Ultimately, the goal of much of robotics research is to engineer autonomous or nearly au-

tonomous systems. Within the context robotics, control theory, and AI this concept of

autonomy comes to fruition via the control policy π(·). A control policy maps input to con-

trol actions. If the control policy depends only on the stage, or π : {i}K1 → U , it is referred

to as an open-loop policy [14]. Alternately, a closed-loop/feedback policy takes information

acquired as the system evolves, such as an estimate of the state, the previously applied

actions, and so forth when determining which control action to apply. When the control

policy takes as input the entire information state, or π : Ik → U , it is referred to as an

information-feedback policy [14].

The typical POMDP planning objective is to determine a policy that minimizes the

15

expected total cost1 V (b0) of the system starting from the initial belief b0,

V ∗(b0) = min
π∈Π

E

[
K−1∑
k=0

c(bk, π(bk)) + cK(bK) | b0

]
,

where policy π in the class of feedback policies Π . This formulation is for �nite-time

horizon Bolza cost functions. Without any special structure, �nding the optimal solution for

a POMDP can be impractical, if not impossible, considering that the objective function can

be a nonlinear function of the belief space. However, Smallwood and Sondik [25] established

that �nite-time horizon POMDPs have a special structure when the cost is the expected sum

of rewards: the value function is piecewise linear and convex. POMDPs are still intractable

even with this special structure.

We also consider discounted in�nite horizon models where the total cost under π is

V ∗(b0) = min
π∈Π

E

[
∞∑
k=0

γkc(bk, π(bk))) | b0

]
(3.1)

and γ ∈ (0, 1) is a discount factor. The derivation provided throughout this paper is appli-

cable for such cost functions. The cost function c : Pb×U → R is belief dependent, enabling

the evaluation risk-based cost functions. Risk-based cost functions encapsulate costs that are

dependent on the uncertainty present in the system, which is ideal for localizing a robot at a

goal position. The method presented in Chapter 7 is applicable to this type of cost function.

However, the technique outlined in Chapter 5 considers a more general cost function that is

hyperbelief dependent, which can also minimize this objective or other similarly motivated

objectives.

The two canonical methods for �nding optimal policies are value iteration, a dynamic

programming (DP) approach, and policy iteration. Both of these techniques evaluate over

the entire set of possibilities albeit in di�erent spaces. Value iteration operates backwards
1Many POMDP planners are concerned with maximizing reward, but these two formulations are entirely

equivalent.

16

from the terminal stage to the initial stage. At each stage, value iteration �nds the optimal

value from the current stage to the next stage and thereby the optimal policy for the current

stage to the next stage. This repeats until the initial stage is reached and the optimal solution

is found. Policy iteration, on the other hand, operates by starting with an initial policy.

Then at each iteration the method searches for any change to the policy from the previous

iteration that improves the performance. In either case, whether using policy iteration or

value iteration, �nding the exact solution is intractable, with a best known computational

time complexity that is exponential in both the time horizon K (the number of stages into

the future the process ends) and the number of observations |Y| [2]. However, �nding the

optimal policy for partially observed systems is desired for many real-world problems. Thus,

many researchers have focused on �nding e�cient methods to solve POMDP models.

Because of strict discounting, it is possible to establish a bound on the approximation

error for a given time horizon [2]. Many techniques have been developed to �nd more e�cient

exact solutions to the POMDP problem, such as [2, 26�31]. However, since each of these

techniques is intractable, many researchers have turned their focus to �nding approximate

solutions. A taxonomy of approximation approaches is enumerated in section Section 3.2.

3.2 Approximation Methods

Finding the exact, optimal policy for a POMDP system is intractable [32], with a best known

computational time complexity that is exponential in the time horizon K, i.e. the number

of stages into the future that optimization considers. However, �nding policies for partially

observed systems is desired for many real-world problems, so researchers have focused on

�nding e�cient approximation methods to solve POMDP models.

A variety of approaches exist that search for approximate solutions to POMDP systems.

One popular approach is to reduce the dimensionality of the belief space. Foremost among

techniques explored in the literature are compression [33�35], projection [36], and decompo-

17

sition [37, 38] methods. Each of these techniques takes a unique approach to achieving the

same goal: a reduced representation of the belief space to use for planning. By reducing the

dimensionality of the belief space, one of the curses of dimensionality of POMDPs is abated.

Another popular approach to solving POMDPs focuses on approximating the value func-

tion. These methods typically sample points in belief space and use the Bellman equation

to compute the value function over this subset of the belief space. Thrun in [5] proposed

sampling based on Monte Carlo integration. Soon after, this method was augmented by

retaining a linear function around each sampled belief (referred to as the α-vector) in [6].

Smith and Simmons [7,8] realized that the set of beliefs reached in a small number of stages

typically generate the majority of the cost in discounted in�nite-horizon problems, and thus

biased sampling beliefs accordingly. However, in [11], Kurniawati et al. built on the work of

Smith and Simmons by heuristically choosing beliefs that are reachable after many stages,

selected for their potential impact on the value function. While these approaches have been

successful in many aspects, they generate an approximation of the value function and not a

representation of the structure of the POMDP system.

Our technique is inspired, in one part, by many of the sampling-based techniques devel-

oped in the robotics community. Sampling-based methods have become one of the dominant

methods for planning in the robotics community (refer to [39, Ch. 7] for an overview and

survey of sampling-based techniques). As described in [40], probabilistic sampling-based

roadmap methods generate a series of samples in the con�guration space and simple plan-

ners are used to link the samples together. In this way, a graph of the samples is created

that, in some cases, eventually becomes a roadmap. The majority of these methods focus

on �nding feasible, but not necessarily optimal solutions. However, Kim et al. [41] have

developed a technique to determine the optimal solution over the graph.

The concept of stochastic uncertainty in the process model was �rst introduced into

sampling methods by Apaydin et al. [42]. This method creates a discrete approximation of a

continuous space by creating a graph in the con�guration space, augmented with likelihoods

18

for the graph edges. This simpli�ed planning using this approximation of a continuous

Markov decision process. While Apaydin et al. focused on determining feasible solutions,

Alterovitz et al. [43] added the concept of optimizing over the graph with the Stochastic

Motion Roadmap (SRM). SRM samples a set of points in the con�guration space to generate

the graph. To generate the probability of traversing edges, it samples the process model to

generate a random set of resulting states for a given action.

Another method to build a sampling-based abstraction for partially observed systems

was developed by Prentice and Roy in [44,45]. Prentice and Roy generate a sampling-based

approach for nonlinear Gaussian systems, where beliefs are approximated using the extended

Kalman �lter (refer to [17]). In this approach, a set of mean samples is generated corre-

sponding to points in the workspace. Next, a traditional probabilistic roadmap is used to

generate a roadmap of the system assuming that the certainty equivalent controller is capable

of placing the expected value of the robot's con�guration at any point in the con�guration

space. They generate the transfer function of each edge and compute covariances along the

most likely sample path. Using a standard breadth �rst search, the covariance is generated

for each walk through the graph and is used to �nd an optimal graph path. Like the work

by Prentice and Roy, Platt et al. in [46] develop a motion planning method that assumes

Gaussian noise and relies on the maximum likelihood observation for planning. However,

Platt's approach relies on linear quadratic regulation and a re-planning process to drive the

agent to a goal belief state.

Simultaneously with our work, other methods such as that presented by Kurniawati et al.

in [47] seek to plan speci�cally for POMDPs requiring long time horizons. Their approach

samples points in the state-space as milestones which are used reduce the planning horizon.

Another approach presented in [48] exploits domain knowledge to generate local-policies (or

options). Unlike other approaches, the local policies are feed-back and not open-loop. He

et al. [49] explore a macro-action approach, and establish ε-optimality of their technique,

which outperforms SARSOP [11]�one of the leading state-of-the-art approaches. The multi-

19

resolution compression method developed in [37] achieves abstraction of the problem domain

by grouping together similar portions of the state space to reduce the complexity of planning.

The other core inspiration for this work arose in the arti�cial intelligence community

in parallel with the development of roadmap-based methods in robotics. Arti�cial intelli-

gence researchers have developed the notion of temporal abstraction for optimizing options

(policies) for Markov decision processes [50,51]. Temporal abstraction is the process of rep-

resenting actions as policies or multi-stage actions so that fewer stages need be optimized to

determine e�ective policies. Some of the �rst work on temporal abstraction was performed

by Sutton et al. [50] by formulating the MDP as a Semi-MDP process. Building on this work,

several researchers applied hierarchical representations to POMDPs. Either the structure

of the hierarchical representation is known a priori or it must be learned online. Planning

with a prede�ned hierarchy of tasks has been explored in [52] and [53]. Other methods, such

as [54] and [55], attempt to discover a hierarchy of tasks to use for planning.

Whether to learn a hierarchical representation or to optimize the system, in each of these

approaches a �nite state controller (FSC) representation is applied, where states in the FSC

are abstract � only representative of transitioning from one state to the next. The transitions

themselves are triggered by observations. Thus, the representation is essentially evolving

in the observation space. The drawback to such a representation, which also motivates

the necessity of a hierarchical approach, is that the number of possible observation strings

increases exponentially as the time horizon increases. Our approach builds hierarchical

structural representation in the hyperbelief space of the system. We simultaneously learn

the structure and optimize what has been learned.

The core di�erence between these methods and our work is the space in which the al-

gorithms operate. While the above methods operate in the con�guration (or equivalently

state) space, which is augmented in various ways to handle uncertainty, our method operates

in the hyperbelief space. This means we explicitly consider multiple observations and sample

paths in the evolution of the system. Since the hyperbelief space has not been extensively

20

explored in the literature, in Section 4.1 we discuss the evolution of the system in this space,

and practical approaches for approximating trajectories.

21

Chapter 4

HYPERFILTERING

In this chapter we will present a method for the forward sequential simulation of POMDP sys-

tems into future stages (Section 4.2). A preliminary version of this technique �rst appeared

in [56]. We refer to this process as hyper�ltering, and we present a speci�c computational

approach to hyper�ltering that we call hyper-particle �ltering in Section 4.3. We will use hy-

per�ltering in the forward-based, hierarchical method developed in Chapter 5. Before doing

so, we will explore some insights into the evolution of POMDPs provided by hyper�ltering

to garner an understanding into the behavior of such systems in Section 4.4.

4.1 Hyperbelief Space, Evolution, and Approximations

The sample path evolution of a POMDP can be completely captured by a single trajectory

through the belief space. When the system is in operation it follows a sample path, but the

particular sample path will only be known a posteriori. This is because the next observation

and subsequent controls are random variables. The prediction step, Tukbk, is deterministic in

the belief space since uk is known, but the update step will be uncertain, due the unknown

future observation yk+1. Therefore, the next stage belief is also a random variable: bk+1 =

φ(bk, uk,yk+1). If a closed-loop policy is used to generate actions, subsequent controls will

become random variables that that depend on bk+1. To analyze the complete behavior of

a POMDP in the future, e.g. to evaluate the possible e�ect of a control policy, we must

consider all sample paths that have nonzero probability.

To characterize this complete behavior, we analyze the behavior of the system in the

22

space of probability functions over the belief space, referred to as the hyperbelief space. In

the hyperbelief space, the system evolves deterministically, thus eliminating (in some sense)

the explicit consideration of uncertainty during the planning process, at the expense of a

much higher representational cost.

The probability measure that captures the probability distribution over the belief space

is referred to as a hyperbelief. Speci�cally, the hyperbelief βk at stage k is a functional

βk : Pb → R+ such that
´
Pb
βk(bk)dbk = 1. The hyperbelief space Pβ is the space of possible

hyperbeliefs, de�ned as the set of all probability measures on B(Pb), the Borel σ-algebra

de�ned over the belief space Pb. For discrete state space POMDP systems, the belief space

Pb is represented as the simplex ∆|X |−1. The Borel σ-algebra B(∆|X |−1) exists and, thus, the

hyperbelief space Pβ is well de�ned.

We adopt the convention that βk, the hyperbelief at stage k, is de�ned as a conditional

probability density, given an initial hyperbelief β0 and an information-feedback control policy

π:

βk , pbk|β0,π(·|β0, π), (4.1)

where βk(bk) is the conditional probability density value assigned to bk given β0 and policy

π.

The rest of this section is devoted to discussing the sequential evolution and approxima-

tion of βk. In Section 4.2, we present the hyperbelief transition function and demonstrate

that compositions of this operator are well-de�ned. Thus, we are able to sequentially com-

pute the next stage hyperbelief and evaluate probabilistic system behavior stage-wise. We

refer to this procedure as hyper�ltering.

Of course, we cannot compute this quantity exactly without succumbing to the same

exponential explosion of support points in the belief space from which the general POMDP

planning problem su�ers. However, moving to a hyperbelief-based representation allows us

to use standard, principled approximation techniques to approximate the POMDP's evolu-

23

tion. In Section 4.3, we present a technique called hyper-particle �ltering that sequentially

approximates the hyperbelief.

4.2 Hyperbelief Evolution

In the hyperbelief space, the transition from βk to βk+1 is deterministic. For a given policy

π ∈ Π, the hyperbelief transition function, Φ : Pβ × Π→ Pβ, maps the hyperbelief at stage

k to a hyperbelief at stage k + 1, with βk+1 = Φ(βk, π). Since βk+1 represents a probability

density function (pdf) over the simplex Pb, we use Φ(βk, π)(bk+1) to denote the pdf value

assigned to the speci�c belief bk+1 by the hyperbelief βk+1.

Theorem 4.1. The hyperbelief transition function, Φ : Pβ × Π→ Pβ that maps the hyper-

belief at stage k to a hyperbelief at stage k + 1, with βk+1 = Φ(βk, π) is given by

Φ(βk, π)(bk+1) =

ˆ
Pb

 ∑
yk+1∈Y ∗

∑
xk+1

p(yk+1|xk+1, π(bk))
∑
xk

p(xk+1|xk, π(bk))bk(xk)

 βk(bk)dbk

(4.2)

in which Y ∗ = {yk+1 | bk+1 = φ(bk, uk, yk+1)}.

The transition equation (4.2) can be derived by applying the de�nition of the hyperbelief,

and marginalizing appropriately. For a proof of Theorem 4.1, refer to Section 4.5. The

hyperbelief transition equation (4.2) can be expressed more compactly as

Φ(βk, π)(bk+1) = pbk+1|β0,π(bk+1|β0, π) =

ˆ
Pb
p(bk+1|bk, π)βk(bk)dbk, (4.3)

where p(bk+1|bk, π) is known as the belief transition function [3].

De�ning Π to be the set of all information-feedback policies that depend on the state

and de�ningM(Pb) as the set of all bounded B(Pb)-measurable functions de�ned over Pb,

it is possible to establish a sequential formulation of the hyperbelief.

24

Theorem 4.2. For a system modeled as a POMDP with a discrete state space and with a

given control policy π ∈ Π, the hyperbelief βk ∈ Pβ at stage k given the initial hyperbelief

β0 ∈ Pβ can be evaluated via the recursive application of the belief transition probability

function from stage k to the initial stage. This holds if the belief transition function is

de�ned such that pbk+1|bk,uk(·|bk, uk) ∈ Pβ for all bk ∈ Pb, uk ∈ U and p(bk+1|·, uk) ∈ M(Pb)

(is measurable over the belief space) for all bk+1 ∈ Pb, uk ∈ U .

The proof follows by induction on the application of the belief transition function. Also,

by elementary properties of integrable functions, the hyperbelief can be evaluated and is a

probability function de�ned over the belief space. Refer to Section 4.5 for the full proof.

As a result, the hyperbelief is well-de�ned over an arbitrary number of stages and the

hyper�ltering procedure can be carried out inde�nitely.

4.3 Hyper-Particle Filtering

Because of the highly nonlinear behavior of the hyperbelief transition function and the

exponential growth in the number of feasible beliefs from one stage to the next, we ap-

proximate the hyperbelief transition function using a method analogous to particle �ltering

(e.g, [57�69]). As stated earlier, this process is referred to as hyper-particle �ltering. A

hyperbelief βk is represented by a set β̃k of hyper-particles, each of which includes a sam-

ple belief bik and an associated nonnegative scalar weight, wik. Analogous to particles, each

hyper-particle represents a point in the belief space at which a nonzero probability mass is

concentrated. Thus, β̃k provides a discrete approximation to the hyper-belief βk

β̃k =
{

(wik, b
i
k)
}R
i=1

. (4.4)

The hyper-particle �ltering algorithm takes as input a set β̃k of hyper-particles and a

control policy π, and outputs a new set of hyper-particles β̃k+1, which is obtained using

25

(a) Initial hyperbelief (b) Evolve hyperbelief under the speci�ed control
policy

(c) Generate Posterior for the observations (d) Resample updated hyper-particle set

Figure 4.1: Hyper-particle �ltering process

the hyperbelief transition probability function given by (4.2). The algorithm works by sam-

pling a set of beliefs {blk+1} using particle �ltering methods, and then adjusting the weights

associated to these beliefs to generate the approximated hyperbelief β̃k+1. This process is

illustrated in Figure 4.1.

Directly sampling from the (4.2) is not practical. Instead, we use the transition function

Tu to �rst generate sample beliefs bk+1|k (prediction step). From this set of predicted beliefs,

we then sample observations, propagate the set of beliefs through the observation model

Oy,u, and adjust the weights assigned to each hyper-particle (update step).

These two steps are implemented as follows: At stage k, a traditional particle �ltering

algorithm is applied to each hyper-particle bik = {wik, bik} ∈ β̃k, with R hyper-particles,

to generate a new belief bjk+1|k = Tukbk. Each new hyper-particle is assigned a weight

wjk+1|k = wik. Once the predicted set of R hyper-particles is generated, for each belief

bjk+1|k ∈ β̃k+1|k, we generate at most S sample beliefs. This is done by randomly sampling

from some importance sampling function qbk+1|bk+1|k to create a new set of hyper-particle

26

samples: β̃k+1 = {wlk+1, b
l
k+1}RSl=1 at stage k + 1. The importance sampling function can be

any function that generates belief samples, such as randomly sampling an observation and

the selecting the updated belief as the random sample.

In addition to updating each predicted belief, we must also determine the weight of the

updated belief. The weight of the predicted belief must be distributed to the set of updated

beliefs. Ideally, we would sample each observation for each belief to generate the updated

hyper-particle set. The weight of each updated belief is proportional to the product of the

previous weight and the probability of the new belief for such a technique. Unfortunately,

this causes an exponential growth in the number of hyper-particles as the number of stages

increases. To address this we choose to use an importance sampling function to generate a

subset of the possible updated beliefs instead. Unfortunately, unwanted properties may be

introduced as an artifact of the importance sampling function, which may create a bias in

set of samples generated. This bias needs to be considered when evaluating the weight of

the sampled beliefs, otherwise the result can quickly become erroneous.

By dividing pbk+1|bk+1|k by qbk+1|bk+1|k , we can attenuate the bias. As observed when

performing Monte Carlo integration, for some function c(·),

E[c(b)] =
∑
b∈Pb

c(b)p(b) =
∑
b∈Pb

c(b)
p(b)

q(b)
q(b).

The expectation of a random vector with a probability function p(b) can be represented as

the expectation of another random vector with the probability function q(b) by weighting

c(b) by the ratio of p(b) and q(b). This reduces or eliminates the the bias of the importance

sampling on the expected value.

Considering the e�ect of the bias, we can update the weight wlk+1 for each hyper-particle

blk+1 by

p(blk+1|β̃k, π) ≈ ηk+1

p(blk+1|b
j
k+1|k)

q(blk+1|b
j
k+1|k)

wjk+1|k = wlk+1, (4.5)

27

where ηk+1 is a normalizing constant. This follows from the form of the exact update in

(4.3):

p(blk+1|β̃k, π) =

ˆ
bk∈Pb

p(blk+1|bk, π(bk))p(bk|β̃k, π)dbk (4.6)

=

ˆ
bk∈Pb

p(blk+1|Tπ(bk)bk)β̃k(bk)dbk, (4.7)

which we obtain by marginalizing p(blk+1|βk, π) on bk. We obtain the result in (4.7) because

p(bk+1|bk, uk) = p(bk+1|Tukbk).

At each stage, the hyper-particle set β̃k comprises a �nite set of samples. Thus, (4.7)

reduces to the summation over all the belief samples in β̃k, such that

ˆ
bk∈Pb

p(blk+1|Tπ(bk)bk)β̃k(bk)dbk =
R∑
i=1

p(blk+1|Tπ(bik)b
i
k)w

i
k. (4.8)

The set β̃k+1|k is generated to approximate the output of Tπ(bik)b
i
k for each sample in β̃k, so

substituting β̃k+1|k into (4.8), where wik = wjk+1|k, gives

R∑
i=1

p(blk+1|Tπ(bik)b
i
k)w

i
k ≈

R∑
j=1

p(blk+1|bk+1|k)w
j
k+1|k. (4.9)

Finally, by replacing p(blk+1|bk+1|k) by
p(blk+1|b

j
k+1|k)

q(blk+1|b
j
k+1|k)

to reduce the bias, we arrive at (4.5). The

normalizing constant ηk+1 is given by 1
ηk+1

=
∑RT

l=1w
l
k+1.

Unfortunately, sampling more than one observation per hyper-particle causes an expo-

nential growth in the number of hyper-particles as the number of stages increases. We

therefore resample and normalize the set of hyper-particles to ensure that there are at most

S hyper-particles and the weights of those hyper-particles sum to one. The algorithm de-

scribing computation of one entire stage is described in Algorithm 1. The algorithm for

HPF_sample is given in Algorithm 2. The resampling algorithm performs sampling with-

out replacement by generating a value uniformly and then raising the sampled value by the

28

weight of each hyper-particle sample. The lowest values are then selected to represent the

new hyperbelief. The key to this particular resampling method is that the hyper-particles

are randomly sampled according to their probability of occurring.

Algorithm 1: Hyper-particle �lter

Input: β̃k, where β̃k = {wik, bik}
R

i=1: hyper-particle set,
n: number of output hyper-particles samples
T : number of intermediate hyper-particle samples,
π: a control policy
Output: β̃k+1|k = {w̄ik+1|k, b̄

i
k+1|k}

n

i=1

l← 1 ;
for j ← 1 : R do

predict b̂jk+1|k using the particle �ltering prediction ;
ŵj ← wj ;
for t← 1 : S do

sample b̂lk+1 from the distribution q(·|b̂j) ;
l← l + 1 ;

for l← 1 : RS do

ŵlk+1 ←
p(b̂lk+1|b̂

j
k+1)

q(b̂lk+1|b̂
j
k+1)

ŵjk+1|k ;

wtot ←
∑RS

l−1 ŵ
l
k+1 ;

normalize each ŵlk+1 by wtot ;

β̃k+1 ← {ŵlk+1, b̂
l
k+1}

RS

l=1
;

β̃k+1 ← HPFsample(β̃k+1,n) ;
return β̃k+1

It is important to note that the hyper-particle �ltering procedure is agnostic to belief

representation. Thus, it may also be used as a two-tiered approximation approach where

the exact belief bk is replaced by a parameterized or particle-�ltered approximation. Fur-

thermore, transition and sampling functions may also be approximated. Each additional ap-

proximation added to the algorithm will typically decrease the quality of the overall method.

29

Algorithm 2: HPFsample (Hyper-particle �lter resampling)

Input: β̃: where β̃ = {wi, b̂i}
RS

i=1 a hyper-particle set,
n: number of output hyper-particles samples
Output: β̃upd = {wi, b̂i}

R

i=1

create a set s taking a value v and a hyperparticle {w, b̂} ;
for j = 1 : RS do

r ← uniform random value between (0, 1] ;
vj ← rw

j
;

insert {vj, {wj, b̂j}} into s ;
sort s on v ;
β̃upd ← R lowest valued hyper-particles in s ;
normalize β̃upd ;
return β̃upd

4.4 Discussion

At the most basic level, hyper-particle �ltering is similar to sample path simulation. How-

ever, with the additional ability to selectively sample and resample future beliefs, a more

e�cient representation of the future evolution may be obtained. As an example, under sam-

ple path simulation, if a sampled path is extremely unlikely�a result of sampling unlikely

observations�resources are wasted computing the future evolution even further. With hyper-

particle �ltering, resampling occurs at each stage and the set of possible beliefs are selectively

sampled to (typically) avoid devoting resources to unlikely paths. Moreover, hyper-particle

�ltering enables sampling and resampling based on the forecasted hyperbelief at each stage,

whereas sample path methods rely on a single belief. Because of this, many of the bene�ts,

but also the drawbacks, of particle �ltering are transfered to hyper-particle �ltering [57].

A particle representation enables us to forecast the future evolution using a compressed

representation. As with particle �ltering, however, care must be taken to avoid particle

impoverishment. The particle representation will diverge from the actual hyperbelief if this

occurs.

Insight into the impetus behind hyper-particle �ltering can be realized through a simple

example. Consider a POMDP with three states, three observations, and two actions using

30

policy π, where the objective is to localize the system in 9 stages. Localization in this

context is de�ned as minimizing the uncertainty in the system's position. The evolution of

this system is illustrated in Figure 4.2 by projecting the support points of the hyperbelief

onto the belief space. Thus, the simplex represents the belief space. Each line segment in

the plot corresponds to a belief, with the probability of that belief being proportional to

the height of the line segment. Starting at stage 4 in Figure 4.2a, there are a total of 27

beliefs with nonzero probability. In Figure 4.2b, there are 81 feasible beliefs for stage 5, and

at stage 6 there are 244 feasible beliefs as shown in Figure 4.2c. Although, the number of

feasible beliefs grows exponentially in the number of stages, this example demonstrates that

only a few of the beliefs that have appreciable probability, and that support in the belief

space tends to cluster. The hyper-particles we sample will tend to be the support points

with higher likelihood (refer to Section 4.3), and represent beliefs from the di�erent clusters.

This enables a reasonable representation of the evolution of the system to be maintained

while not dealing with the exponential explosion of support points.

The computational complexity of hyper-particle �ltering varies, depending on the choice

of performance parameters (e.g., the number of particles and hyper-particles), fromO(KR(QL+

M)) to O(RK), where K is the time horizon, R is the number of hyper-particles, Q is the

number of particles approximating the belief (via particle �ltering), O(L) is the computa-

tional time complexity of the particle �ltering sampling, and O(M) is the computational

complexity of performing the hyper-particle sampling.

4.5 Hyper�ltering Proofs

The following proof validates Theorem 4.1.

Proof. [Theorem 4.1] By de�nition, the hyperbelief transfer function Φ evaluated at belief

bk+1 is given by

Φ(βk, π)(bk+1) = pbk+1|β0,π(bk+1|β0, π).

31

r1

b

r3

p(b)

r2

(a) Stage k=4

r1

b

r3

p(b)

r2

(b) Stage k=5

r1

b

r3

p(b)

r2

(c) Stage k=6

Figure 4.2: Evolution of the hyperbelief for a simple example

32

To obtain the hyperbelief value at stage k + 1, we marginalize over the stage k beliefs

pbk+1|β0,π(bk+1|β0, π) =

ˆ
Pb
p(bk+1|bk, β0, π)p(bk|β0, π)dbk (4.10)

=

ˆ
Pb
p(bk+1|bk, π)βk(bk)dbk. (4.11)

We obtain (4.11) from the fact that the belief at stage k + 1 is conditionally independent

of the initial hyperbelief β0 given the belief at stage k, and by applying the de�nition

βk(bk) = p(bk|β0, π). This provides a recursive formulation for βk+1, given in terms of

βk and p(bk+1|bk, π). Thus, we need only �nd an expression for p(bk+1|bk, π). The term

p(bk+1|bk, π(bk)) is typically referred to as the belief transition probability function. Many

approaches in the POMDP optimization literature either explicitly or implicitly use the

belief transition probability function (refer to [3]). The belief transition probability function

can be simpli�ed using a marginalization integral over the observation space at stage k + 1

(i.e., the set of possible observations at the future stage k + 1):

p(bk+1|bk, π) =

ˆ
Y
p(bk+1|yk+1, bk, π)p(yk+1|bk, π)dyk+1. (4.12)

Consider the term p(yk+1|bk, π) in (4.12). By marginalizing �rst over the state at stage k+1,

we obtain

p(yk+1|bk, π) =
∑
xk+1

p(yk+1|xk+1, bk, π(bk))p(xk+1|bk, π(bk)) (4.13)

=
∑
xk+1

p(yk+1|xk+1)
∑
xk

p(xk+1|xk, π(bk))bk(xk). (4.14)

We obtain (4.14) by using the fact that the observation yk+1 is conditionally independent of

past beliefs and actions given the state xk+1, by marginalizing the second term with respect

to the state at stage k, and applying the de�nition of bk(xk).

For the remaining term, p(bk+1|yk+1, bk, π), using (2.3), we have bk+1 = φ(bk, uk, yk+1) for

33

a given bk, π(bk) = uk, and yk+1 Therefore,

p(bk+1|yk+1, bk, uk) =

 1 if bk+1 = φ(bk, uk, yk+1)

0 otherwise.
(4.15)

Because of this, the integral (4.12) need be evaluated only at the speci�c values yk+1 that

satisfy (2.3) for the given bk and uk. We de�ne this set as Y ∗ = {yk+1 | bk+1 = φ(bk, uk, yk+1)}.

Combining the above results yields (4.2).

The following proof establishes Theorem 4.2.

Proof. [Theorem 4.2] The proof follows by induction on the application of the belief transition

probability function. First note that the belief transition function, as a function of a random

belief and a random observation, is Markovian; the future probability of a belief depends

only on the previous belief, and the policy, which depends on the previous belief. At the

second stage, k = 2, the hyperbelief can be formulated by marginalizing the hyperbelief β2

on b1 and substituting u1 = π(b1) to obtain

β2(b2) = p(b2|β1, π) =

ˆ
b1∈Pb

p(b2|b1, β1, π(b1))p(b1|β1)db1

=

ˆ
b1∈Pb

p(b2|b1, π(b1))β1(b1)db1. (4.16)

Because the state space is �nite, the belief space is represented as a �nite-dimensional sim-

plex. The integration therefore is performed over the simplex. In the second equation,

p(b2|b1, β1, π(b1)) is conditionally independent of β1 when conditioned on b1. Because p(b1|β1)

is the probability of b1 conditioned on the hyperbelief β1, by de�nition it is equivalent to

β1(b1). As β1 is the initial hyperbelief, it is assumed to be given. The result is p(b2|b1, π(b1)),

which is just the belief transition probability function. The assumption that β1 ∈ Pβ implies

that β1 is an integrable function. Moreover, by the assumption that p(bk+1|·, uk) ∈ M(Pb)

for all bk+1 ∈ Pb, uk ∈ U , implies (4.16) is integrable as the product of two integrable func-

34

tions is also integrable. Moreover, because pbk+1|bk,uk(·| bk, uk) ∈ Pβ for all bk ∈ Pb, uk ∈ U

is integrable and satis�es the properties to be a probability measure; then, by de�nition of

Pβ, the hyperbelief β2 belongs to Pβ.

Assuming that βk−1 ∈ Pβ and that βk−1 can be evaluated by integrating over the belief

transition probability function the hyperbelief at stage k − 2, the hyperbelief βk at stage k

is expressed as

βk(bk) = p(bk|β1, π) =

ˆ
bk−1∈Pb

p(bk|bk−1, β1, π(bk−1))p(bk−1|β1, π)dbk−1

=

ˆ
bk−1∈Pb

p(bk|bk−1, π(bk−1))βk−1(bk−1)dbk−1. (4.17)

The �rst equation follows from the marginalization of the probability of p(bk|β1, π) on bk−1.

The second equation follows from the belief transition probability function at stage k being

conditionally independent of the initial hyperbelief β1 given the belief bk−1 at stage k − 1

and by substituting uk−1 = π(bk−1) into the belief transition probability function. Again,

because of the assumed form of the belief transition probability function and that βk−1 ∈ Pβ,

(4.17) is integrable and βk ∈ Pβ.

35

Chapter 5

A SAMPLING HYPERBELIEF OPTIMIZATION

TECHNIQUE FOR STOCHASTIC SYSTEMS

In this chapter we propose an anytime algorithm for determining nearly optimal policies

for both �nite-time horizon and in�nite-time horizon POMDPs using a sampling-based ap-

proach. The proposed technique, sampling hyperbelief optimization technique (SHOT), at-

tempts to exploit the notion that small changes in a policy have little impact on the quality

of the policy except at a small set of regions. The result is a technique to represent POMDPs

independent of the initial conditions and the particular cost function. This allows us to vary

the initial conditions and the cost function without having to re-perform the majority of the

computational analysis.

We present our technique as an anytime algorithm and verify our results based on stan-

dard benchmark problems from the POMDP literature. The proposed method will be de-

veloped and analyzed in Section 5.2. However, �rst we provide background information in

Section 5.1. Examples are provided in Section 5.5. We conclude, in Section 5.6, with some

future directions and �nal remarks.

5.1 Introduction

A central theme of almost all approximation techniques is to reduce the set of possibilities to

be evaluated, whether simplifying the representation of the belief or by simplifying the cost

function. Drawing on insights o�ered in [70] about why belief sampling-based techniques

(such as [5�11]) are so e�ective, we develop an alternative method that is inspired by graph-

based sampling methods (e.g., [40]). In Chapter 4, we introduced the notion of hyper�ltering,

36

which evolves forward into future stages the probability function over the belief, or the

hyperbelief. Because the evolution of a system over the hyperbelief space is deterministic, we

can �nd the optimal plan in the hyperbelief space using an approach derived from standard

search techniques.

To do so, we generate a discrete approximation of the structure of the hyperbelief space

via a digraph representation. A set of sample points in the hyperbelief space is randomly

generated, which correspond to the vertices in the digraph. Edge weights between ordered

pairs of samples are then generated using a local planner. The local planner is used to

predict the evolution of the system from one sampled hyperbelief to another. Because of the

stochastic, partially observed nature of the problem, hyper�ltering is used to estimate the

future hyperbelief, under a given policy, from one stage to the next. Instead of requiring that

each source hyperbelief sample reach the target hyperbelief sample, the distance between

the hyperbelief sample and the target sample is included with the edge information between

each pair of samples. This distance is later used to determine the sensitivity of a edge to

variations in the source hyperbelief.

To understand and quantify when our proposed algorithm is e�ective, we characterize

the time complexity to approximation error trade-o� of our approach. This trade-o� is ex-

pressed through conditions necessary to achieve exponential convergence of the probability

of determining an approximately optimal value at the initial con�guration. The convergence

rate relative to the time complexity is investigated to determine when a polynomial time

solution is attainable. The proposed algorithm exploits both spatial and temporal abstrac-

tion; we consider the impact of both on the time complexity of �nding an approximately

optimal value. A preliminary version of this research was presented in [71].

37

5.2 Methodology: Generating the Digraph

A central theme of almost all POMDP approximation techniques is to reduce the set of

possibilities to be evaluated, whether by simplifying the representation of the belief or by

simplifying the cost function. Drawing on insights o�ered in [70] about why belief sampling-

based techniques (such as [5�11]) are so e�ective, we develop an alternative method that

is inspired by graph-based sampling methods (e.g., [40]) and, in particular, the iterative

Rapidly-exploring Random Tree method [72] developed by Ku�ner and Lavalle.

At a high level, RRT methods create a tree representation of the connectivity of the

con�guration space of a system. Starting with a single root con�guration, this is achieved

by iteratively adding edges to expand the tree at each iteration. Edges are created at each

iteration by �rst generating a random sample in the con�guration space of a robot. A

local planner is then used to traverse some distance toward the sampled con�guration from

the nearest neighbor of the sampled con�guration already in the existing tree. The resulting

con�guration is inserted into the tree with an edge from the nearest neighbor to the resulting

con�guration. This process then repeats until a feasible path from the initial con�guration

to goal con�guration is found.

When the process terminates, the RRT provides a representation of the connectivity of

the con�guration space of the robot starting from some initial con�guration. A path through

the con�guration space can be constructed by traversing the edges in the graph. A path is

then the composition of each of the path segments represented by an edge.

Sampling-based approaches including RRTs rely on deterministic evolution of the robotic

system to generate paths in the con�guration space. POMDPs are stochastic systems;

however, the future evolution of the system is stochastic and, as such, sampling-based ap-

proaches are not directly transferable. Several attempts have been made to rectify this issue,

which were discussed in Chapter 3. These approaches vary from sample path simulation for

MDPs [50] to an analytic approximation of the future evolution of a linear Gaussian system

38

using maximum likelihood observations [44].

Our approach is di�erent from sampling-based approaches including RRTs in that we

re-frame the POMDP optimization problem as a deterministic process by lifting the analysis

into the hyperbelief space. In Chapter 4, we introduced the notion of hyper�ltering, which

forecasts the future behavior of a POMDP by evolving the probability function over the

belief into into future stages. Because the evolution of a system over the hyperbelief space

is deterministic, we can �nd the optimal plan in the hyperbelief space using an approach

derived from RRT techniques.

Many aspects of our approach are analogous to RRT techniques. In particular, the

con�guration space of the RRT corresponds to the hyperbelief space in our approach. As

with RRTs, our approach is iterative: we expand the graph at each stage. Instead of sampling

a con�guration, we randomly sample a hyperbelief. We then use a local planner to connect

hyperbelief samples. Our local planner essentially constructs a sequence of intermediate

hyperbeliefs, via hyper�ltering, which we term a path segment. The resulting path segments

are added to the graph as edges.

There are two signi�cant ways in which our approach di�ers from standard RRT tech-

niques. First, an extra step occurs at each iteration whereby an attempt is made to connect

neighbors of the newly created hyperbelief to the graph. Because of this our method gener-

ates a graph (with multiple edges per vertex) not a tree. Secondly, our approach is focused

on optimality and not feasibility. At the end of each iteration we perform graph optimiza-

tion to determine the currently best policy from the initial hyperbelief over the graph. Each

iteration of the algorithm seeks to improve this policy by adding edges to the graph.

A summary of our approach is as follows. Our algorithm iteratively builds a graph

G =< N,E >, in which nodes correspond to samples in the hyperbelief space and edges

correspond to path segments in the hyperbelief space. At each iteration a new node is

generated using an RRT-style expansion step. This requires generating a target hyperbelief

sample, and constructing a local path segment in the hyperbelief space. Following this

39

expansion, our algorithm attempts to connect the new hyperbelief sample to existing nodes

in the graph. Finally, the approximate to the value function is updated over the new graph.

We now describe the graph generation steps in more detail. Th next section (Section 5.3)

will detail the optimization procedure.

5.2.1 Generating vertices: sampling a random hyperbelief

The �rst phase of the graph expansion proceeds by generating a candidate hyperbelief to

add to the graph. Our approach relies on random sampling of the hyperbelief space to gen-

erate new candidates. E�ective random sampling allows us to explore the hyperbelief space

and grants us the ability to quickly and easily generate candidate samples. Unfortunately,

e�ective sampling is a di�cult problem, and an enormous amount of research has gone into

sampling for probabilistic roadmap methods and RRTs [39, Ch. 7]. Sampling from the

hyperbelief space adds new di�culties that are a consequence of the fact that we need to

sample from an in�nite dimensional space.

Similar to RRT techniques, our approach generates a random hyperbelief sample that is

used to expand the graph into the frontier of the hyperbelief space. We begin by randomly

generating a sample hyperbelief βs. For the experimental results presented in Section 5.5,

we use a simple sampling procedure that generates a impulse hyperbelief. An impulse

hyperbelief comprises a single belief that occurs with probability one. So the sampling

procedure reduces to generating a single belief, which we obtain by randomly sampling a set

of particles and weights.

With the sample hyperbelief generated, we determine the nearest neighbor βnear in the

current graph to the sampled hyperbelief βs. A local policy is used to move βnear toward βs

for k stages until the local policy can no longer make any progress. The hyperbelief βneark ,

which represents the �nal hyperbelief achieved by the local planner, is then selected as the

new candidate vertex to add to the graph provided it is not too near any existing n ∈ N .

40

If the candidate is too close, it is rejected and the above process repeats until an adequate

candidate vertex is found, at which point the candidate vertex βnew is added to the graph.

A more detailed description of local planning procedure and how to determine distances in

the hyperbelief space are described in 5.2.2.

An illustration of the sampling process is demonstrated in Figure 5.1, where the bottom-

right side of the image depicts the belief space Pb, the bottom-left depicts the hyperbelief

space Pβ, and the top is a visualization of the graph vertices in G. The sampling we

described ultimately generates hyper-particle sets, which include both a set of beliefs as well

as associated weights. However, the method starts by sampling a single impulse hyperbelief

βs. The sampled impulse hyperbelief is illustrated in the right side of the �gure. Next, the

nearest neighbor β6 is selected and used as the starting hyperbelief. The correspondence

betweenβ6 and its and its hyper-particle representation is shown in the �gure. A local policy

is executed, which progresses for three stages. The �nal simulated hyperbelief (β6
3) is selected

as the new hyperbelief vertex β9 = βnew to add to the graph.

Figure 5.1: Random set of hyperbelief samples in the hyperbelief space Pβ and
corresponding vertices in digraph G

The motivation for our sampling scheme is that the initial condition becomes less rele-

vant as a system evolves into future stages where the e�ect of the process and observation

41

uncertainty will dominate the form of the hyperbelief. Moreover, this sampling approach

has the bene�t that each sampled hyperbelief will always reside in the reachable space. We

will demonstrate later in Section 5.5 that this simple sampling method performs well for

the problems that we have considered. However, this sampling approach is expensive and

generates numerous similar samples which suggests that better sampling methods are needed

to scale to even larger systems.

As is the case with most sampling-based methods, we anticipate that the sampling func-

tion will play a crucial role in the convergence properties of our method. One reason the

choice of a random sampling function is important relates to the fact that a hyperbelief

sample may not be reachable�meaning there is no path from the initial hyperbelief to the

hyperbelief sample. Moreover, the performance of the algorithm will be dictated by how

quickly and e�ectively a representative subset of the hyperbelief space is explored.

Our sampling scheme is just one of a many possible schemes. Methods for sampling the

hyperbelief space may be as simple as representing the hyperbelief as an impulse function

of a single belief, which is sampled uniformly from the belief space�as we have done. Or

more complicated methods can be employed. For example, it may be possible to construct

hyperbeliefs by sampling from a set of basis functions.

The method developed by Roy and Gordon in [34] is an example of a basis function

approach that may be adaptable to sampling the hyperbelief space. In their approach,

a basis function set for representing beliefs is learned based on simulation of the system.

They project the belief space onto set of exponential functions to �nd a more e�cient

representation of the belief space by essentially reducing the dimension of the belief space.

Adapting such a method would involve simulating the system in the hyperbelief space and

then selecting a limited basis set to represent the possible set of hyperbeliefs. A hyperbelief

sample may then be generated taking the sum of the basis functions weighted by randomly

sampling the coe�cients.

There are a number of alternative sampling techniques used for deterministic systems

42

that may be adaptable for sampling in hyperbelief space. These include techniques for

sampling based on improving the connectivity of the graph [73], on biasing sampling based

on information gain [74], �nding the equivalent representation of the medial axis [75], or

the like. E�ective sampling in the hyperbelief space remains as a key area for further

investigation.

5.2.2 Planning between hyperbelief samples

In Section 5.2.1 we introduced the notion of generating a path segment from βnear to βnew. In

this section we describe this process of generating path segments between hyperbelief samples

in greater detail. The local planner relies on a hyperbelief distance measure to determine

the distance between hyperbelief samples. Various hyperbelief measures that may be used

in our approach will be brie�y introduced as well.

Local planning in our approach is considerably more involved than standard RRT plan-

ning methods. Planning is more di�cult because we are evolving in the hyperbelief space,

which is a functional space. Practical POMDP systems are uncontrollable in the hyperbe-

lief space.1 RRT methods are concerned with �nding feasible paths from a speci�c initial

con�guration and a goal con�guration. We are attempting to �nd the optimal path relative

to some cost function. Our approach, therefore, needs to consider the cost along the path

segment.

Our approach, which is hierarchical, relies on local policies to generate the path segments

between edges. Local policies are intended to be only locally optimal or even greedy. This

way the planning process is split into two levels, so at the lower level, the local policy is

planning is myopic�optimizing simple objectives. This reduces the complexity of planning

at the lower level in exchange for having to optimize at the upper level, which selects the

sequence of local policies to execute. One key requirement of the local policies is that they are
1In this context controllability implies that any hyperbelief cannot be driven to an arbitrary point in the

hyperbelief space.

43

independent from one another, which allows composition of neighboring edges in the graph,

which represent a combination of path segments. By composing a series local policies, our

method seeks to obtain global behavior.

In our framework local policies use simple cost functions to plan between hyperbelief

samples. To determine the control for an intermediate hyperbelief, we employ a policy that

minimizes the cost of some function cl : Pβ × K → R. For instance, the cost can be the

distance to the target hyperbelief. Such a cost function is greedy and seeks to move toward

the target hyperbelief at each stage. Alternately, limited time-horizon optimization can be

performed to choose a locally optimal path segment between vertices.

Local policies that minimize the distance to a target hyperbelief require de�nition of an

appropriate distance function d : Pβ × Pβ → R+ in the hyperbelief space. De�ning useful

hyperbelief metrics still remains an open area of investigation. Fortunately, there are various

measures that determine the distance between beliefs such as the Jensen-Shannon divergence

[76], earth mover's distance [77], or the like (see [76] for a catalog of probability distance

functions). We can impose a hyperbelief distance function by applying ensemble metrics such

as the Lukaszyk-Karmowski metric [78] or earth mover's distance by having these methods

incorporate a distance measure over the belief space as their weighting function.

Assuming we want to simulate a path segment from βi to βj, henceforth i→ j. We �rst

select the policy πi→j. For distance minimizing functions this is equivalent to setting the goal

hyperbelief to βj. The source hyperbelief vertex βi is selected and hyper-particle �ltering

is performed to forecast the system forward one stage into the future using a hyper-particle

�ltering approximation of Theorem 4.1:

βi→jk = Φ(βi→jk−1, πi→j),

where we denote βi→j0 = βi. This process repeats, generating a sequence of intermediate

hyperbeliefs {βi→j0 , . . . βi→jK−1, β
i→j
K } until a maximum number of iterations is exceeded or until

44

the greedy policy can no longer make any progress towards the target hyperbelief vertex.

The number of stages a local policy executes, K, varies for each path segment but will not

exceed some de�ned maximum value.

Two sets of data are retained from the local policy simulation:

• The sequence of intermediate hyperbeliefs {βi→j0 , . . . βi→jK−1, β
i→j
K } that represent the

evolution of the system at each instance of time along the path segment representing

the edge. This information will be used to generate the cost along a path segment.

• The distance from the terminal hyperbelief along the path segment to the target hyper-

belief: di→j = d(βi→jK , βj). This distance is used later to generate value and distance

bounding functions.

The optimization procedure in Section 5.3 will utilize this information to compute cost and

bounding functions along the path segment.

5.2.3 Adding edges to the graph

The result of the vertex sampling in Section 5.2.1 is a new vertex βnew and an edge from

βnear to βnew. We are not content to build a tree like RRT methods. Instead, we generate

a graph representation because the cost along an edge is a factor that impacts the overall

optimality of a path a graph. Additional edges are generated by selecting existing vertices

in the graph to join to βnew. Unlike βnew which is reachable from βnear, it is unlikely that

any other hyperbelief vertex βi in the graph G will be able to reach the new vertex βnew.

This is a consequence of the uncontrollability of the POMDP system. Our hypothesis is that

reachability is not necessary; merely getting close to βnew is su�cient for planning purposes.

We use the results of the simulated path segments to determine bounding functions (Section

5.3.3) that compensate for this limitation.

We begin by randomly selecting a set of hyperbelief vertices in the graph Nset. The

sampling method is likely to have a signi�cant impact on the overall e�ectiveness of our

45

algorithm. This issue has not been addressed as we have relied on uniform sampling to

generate the set. To compensate we choose a large sample size, which likely adds unnecessary

computational overhead to our method.

For each βi in Nset, we use the local planning algorithm from Section 5.2.2 to generate

a path segment from βi towards the new vertex βnew. The results of the simulated policy

including the sequence of intermediate hyperbeliefs {βi→newk }Kk=0 and the terminal distance

di→new are retained and the edge i → new is added to the graph. This method is then

repeated where the objective is now to generate a path from βnew to each vertex in Nset.

The result is new edges both to and from the new hyperbelief vertex βnew. This process is

illustrated in Figure 5.2. In this example, the �rst part of this process is illustrated. We are

attempting to connect each of the existing eight vertices to the newly created vertex β9. In

Figure 5.2: Graph G and associated edge information directed to vertex β9

this example, β4 proceeds to plan into the future for �ve stages before the greedy policy is

46

unable to make any additional progress towards β9. The distance from the �nal hyperbelief

to the target is represented by d4→9 . Once the local policy terminates, the distance d4→9

and each of the intermediate hyperbeliefs {β4→9
k }5

k=0 are added to the edge information of

4→ 9. The algorithm for the digraph generation (including both the hyperbelief sampling)

is described in Algorithm 3.

Algorithm 3: Generate hyperbelief sample digraph

Input: Pβ : hyperbelief space, n : number of vertices, K : maximum number of
iterations, π : greedy policy

Output: G =< N,E > : digraph with edge information

N{βi}ni=0 ← Randomly generate samples from Pβ ;
foreach i ∈ N do

foreach j ∈ N do

βi→j0 ← βi ;
k ← 1 ;
dist ← −∞ ;
while k ≤ K and dist ≤ min_dist do

βi→jk ← Φ(βi→jk−1, π) ;
dist ← distance between βi→jk and βj ;
if dist ≤ min_dist then

add βi→jk to Ei→j edge information ;
k ← k + 1 ;

add k and min_dist to edge information Ei→j ;

return G

5.3 Methodology: Attaining the Approximately Optimal Policy

During each iteration, after the new vertex and edges are added, we update the value function

to determine the current best policy over the graph. We approximate the value function by

optimizing our graph representation of the system. Upper and lower bounding functions are

used to estimate the bounds for the cost-to-go for each vertex. The best bounded path in

the graph represents the approximately optimal policy starting from the initial hyperbelief.

To reduce the uncertainty bounds, we perform a re�nement algorithm. The re�nement

47

recursively selects and them simulates the best candidate policy. Each iteration of the

re�nement algorithm seeks to reduce the bounds on the value function.

Constructing the nearly optimal policy using our approach is a hierarchical process.

Starting from the initial hyperbelief node, the optimal edge with the initial hyperbelief as

the source is selected. The local policy associated with this edge, i.e. with the goal being the

target of the edge, is then executed. When the local policy can no longer make any progress

towards the target hyperbelief, the next edge is selected from the optimal path in the graph

and the next local policy is executed. As an example, assume an optimal path from the

initial hyperbelief is 0 → i → j → l. The optimal policy would initiate, starting at β0, by

executing π0→i, which attempts to transition from β0 to βi. Once the local policy terminates,

the next policy is selected: πi→j. This policy executes until the system can no longer make

progress towards βj. Finally, local policy πj→l is executed. It is important to note that our

method does not guarantee optimality for any con�guration�only the policy from the initial

con�guration is nearly optimal. This is a consequence of representing samples as forecasted

hyperbeliefs instead of belief samples.

5.3.1 Cost function

Before we can detail the optimization procedure, we must �rst de�ne the class of cost func-

tions that can be optimized using our approach. As previously described, one of the bene�cial

aspects of hyper�ltering is that the evolution of the hyperbelief from one future stage to the

next is deterministic. This implies that the cost function can be expressed as a deterministic

function of the hyperbelief. We therefore choose to optimize hyperbelief cost functions of

the form c : Pβ × Π × N → R, (where Π is the set of all belief and stage feedback policies)

with terminal cost cK : Pβ → R. The cost function, however, must be a separable function

in the stage number. Thus, it must be either additive, c(βk, πk, k) = c1(k)c2(βk, πk)), or mul-

tiplicative, c(βk, πk, k) = c1(k) + c2(βk, πk)), or a combination of the two. For a �nite-time

48

horizon problem, the value function for a given initial hyperbelief β0 is de�ned as

V (β0) = min
π∈Π

[
K−1∑
k=0

c(βk, πk, k) + cK(βK)

]
. (5.1)

Many practical cost functions are expressed by this cost function representation. Often,

the objective is a weighted sum of independent objectives, which may include minimizing

how long it takes to complete a task. Discounted cost functions are also in this class of cost

functions. The dependence of this cost function on the hyperbelief instead of just the belief

enables a richer class of objectives to be represented. For instance, a cost function that

depends on the hyperbelief itself may penalize deviation from a desired trajectory in Pβ. Or

the cost function could be used to minimize the amount of uncertainty present in the system

as it evolves. Any nonlinear function, not just the linear expectation, over the belief space

may be optimized. However, our approach does have the limitation that we can only enforce

an upper bound on the number of stages executed. Maintaining strict time horizons is not

possible with this technique because the number of stages executed along an edge may vary.

5.3.2 Generating edge costs

We begin the optimization process by generating the cost for each new edge that was added

to the graph based on the intermediate hyperbeliefs. The cost for a given edge i→ j is then

computed as

vi→j =
K∑
k=0

c(βi→jk , πi→j, k),

where K is the number of intermediate hyperbeliefs and where βi→jk is the the intermedi-

ate hyperbelief sample at stage k. The result, vi→j, is the cost along the path segment

represented by the edge.

For discounted cost functions, the discount applied to the cost function for each edge

in G is initialized to start at stage 0. As the evaluation from edge to edge proceeds, the

49

value of each edge is multiplied by the discount factor raised to the total number of stages

performed before reaching the said edge. Thus, if the edge i→ j is reached at stage s, then

γsvi→j = γs
Ki→j∑
k=0

γkc(βi→jk , πi→j, k) =
Ki→j∑
k=0

γk+sc(βi→jk , πi→j, k).

This way the proper discount is applied at each stage. Similar adjustments can be made for

other separable time or additive time cost functions of the form speci�ed in Section 5.3.1.

5.3.3 Generating bounding functions

We are going to approximate the cost along an edge vi→j by deriving an upper and lower

cost bounding function v̄i→j(·) and di→j(·), respectively, as a function of the distance from

the source hyperbelief βi. To do this we will need to determine how the value changes as a

function of distance. Moreover, we need to consider issues that arise when we join multiple

path segments together because a path in the graph is the composition of multiple path

segments. To determine how a variation along a path propagates along path segments, we

will determine how the distance from the source hyperbelief along a path segment a�ects the

ability of the local policy to reach the target hyperbelief sample. Like with the cost function,

we generate upper and lower distance bounding functions d̄i→j(·) and di→j(·), respectively.

By back-chaining the e�ect of these perturbations, we will be able to bound the variation

caused at any path segment based on a perturbation on the initial hyperbelief in the path.

Combining this with the value bounding functions, we will be able to generate bounds for

the value along a path.

The distance bounds can be determined by using the edge information for the digraph.

We generate both a lower bound di→j(·) and an upper bound d̄i→j(·) for each edge i → j

in the graph G. Together the lower and upper bounding functions indicate a range for how

close a hyperbelief sample may get to the target hyperbelief based on the starting distance

to the nominal source hyperbelief (such that d : R → R and d̄ : R → R). This notion is

50

Figure 5.3: Sensitivity of distance δj to the target hyperbelief βjas a function of a
perturbation in the distance δi from the source hyperbelief βi

Figure 5.4: Sensitivity of source hyperbelief sample attaining target hyperbelief sample

illustrated in Figure 5.3, where d̄i→j(δi) =≤ δj .

One method to determine the sensitivity of the hyperbelief space around some source

hyperbelief sample is to use a set of neighboring samples around the source hyperbelief to

determine the ability of the hyperbeliefs in the neighborhood around the source hyperbelief

to reach the target hyperbelief sample. This concept is illustrated in Figure 5.4, where two

sample hyperbeliefs βland βm are examined to determine the sensitivity of βi at reaching

βj. Then a set of linear functions can be �t around the set of samples to generate both the

upper and lower distance bounding functions.

51

Distance information is important because when we derive the optimal solution over the

digraph, we will have to take into consideration the fact that each source hyperbelief sample

may not be able to reach each target hyperbelief sample. To address this issue we will bound,

from above and below, the value as a function of distance from the source hyperbelief sample.

Thus, we assume that in addition to the value function vi→j(·), we derive value bounding

functions that are a function of the distance from the nominal source hyperbelief. We require

both a function giving an upper-bound v̄i→j(·), and a lower-bound function vi→j(·), so that

vi→j(d) ≤ vi→j(d) ≤ v̄i→j(d), ∀d ∈ R+. In practice, a method substantially similar to the

technique used generate distance bounding functions is used to generate the value bounding

functions. Likewise, when a stage dependent cost function is used, e.g. discounted cost, the

the same method is used to determine upper and lower bounding functions for the number

of stages. With the bounding information determined, we can perform graph optimization

to determine the nearly optimal policy.

5.3.4 Digraph optimization

As described in Section 5.2.2, local policies are used to plan between vertex hyperbeliefs;

we now establish what is the optimal choice of hyperbelief samples to visit. In other words,

we need to determine the optimal cost-to-go for each hyperbelief sample in the graph. The

nearly optimal policy for the POMDP will then be represented as the optimal path in the

graph starting from the initial hyperbelief. To do this, we optimize the value function over

the digraph. However, as discussed in Section 5.2.2, each source hyperbelief sample may

not be able to attain a target hyperbelief sample using the applied local policy. To account

for this we use both the distance bounding functions and the value bounding functions to

generate the bounds for a path composed of a plurality of path segments. We express the

perturbation in distance from i to l as the distance from the terminal hyperbelief along i→ j

to the source hyperbelief βl: δj→l = d(βi→jK , βj→l0). The bounds on the value between path

52

i→ j → l, are then given as

vi→j(0) + vj→l(δj→l) ≤ vi→j→l ≤ v̄i→j(0) + v̄j→l(δj→l).

Because there is no perturbation from βi, vi→j(0) = vi→jand v̄i→j(0) = vi→j.

When there is more than two path segments βn1 → βn2 → . . .→ βnm , the upper bound

on the cost along the path becomes

v̄n1→nm = vn1→n2 + v̄n2→n3(δn2→n3) +
m∑
r=4

v̄nr−1→nr(δnr−1→nr
max), (5.2)

where

δnr−1→nr
max = d̄nr−1→nr ◦ . . . ◦ d̄n2→n3(δn2→n3). (5.3)

Because we assume linear bounds, the max distance and maximum cost are always a

product of the maximum functions. The lower bound distance can be de�ned by substituting

max with min in (5.3) and d̄ with d. Similarly, a lower bound on the cost can be found by

substituting max for min and v̄ for v into (5.2). The bound on the distance is determined

at each stage and then passed along the path to the next vertex to be used to estimate the

bounds on the distance at the next stage. These distance bounds are then used to determine

both the upper and lower bounds on the cost for the speci�ed path.

The graph optimization method is based on Dijkstra's algorithm (refer to [79, Ch. 24]).

However, if negative weight cycles are allowed (i.e., the robot receives a reward for traversing

the cycle), then we replace Dijkstra's algorithm with the Bellman-Ford algorithm [79, Ch.

24], which can handle negative weight cycles but only with an increased computational cost.

The basic idea is to start with each vertex βi ∈ N . Update the minimal value for that vertex

as the cost cK(βi). Then for each edge i → j ∈ E, evaluate the minimum upper bound

and the minimum lower-bound on the cost from vertex i to adjacent vertex j and update

the cost of the edge. We then repeat this step for the number of vertices. This method

53

has a computational complexity of O(|N |2 + |N | |E|) (Bellman-Ford has a computational

complexity of O(|N |2 |E|)).

This process is performed to determine the policy that has the least least upper-bound

value. The least upper-bound value corresponds to the worst possible performance of the

optimal policy. In conjunction we determine the least lower bound value, which corresponds

to the policy the best possible performance. We then simulate the system using the least

upper-bounded path to determine the actual cost of the perceived optimal policy. With the

actual value of the selected optimal policy and the absolute best case value for the current

graph, we can provide the range in which the optimal solution may reside, which is the

di�erence between the actual value and the least lower-bound value.

One of the de�ciencies of this approach is that the resulting policy, and the the associated

value function, is not necessarily optimal for the speci�ed digraph due to perturbation along

the path. What is achieved is a bound on the optimal policy and value. To overcome this

shortcoming we present an iterative re�nement algorithm, which will �nd the exact optimal

solution for a given digraph (but not the POMDP) in a �nite amount of time and that each

iteration of the method will only improve the quality of the solution.

5.3.5 Re�nement

The quality of the bounding functions (both the upper and lower bounds) may play a signif-

icant role in producing a suitable solution in the previously outlined optimization technique.

We present a re�nement algorithm to mitigate the e�ects of the bounding function that also

guarantees the optimal solution for a given digraph will be found if enough time is given.

The re�nement algorithm recursively selects the current policy least-upper bound policy

and simulates it to determine whether the actual value for the policy is lower than the bounds

for any other policy. If so, then the optimal policy has been found. Otherwise, the process

repeats with the next least upper-bound policy being selected. This process repeats until

54

(a) Example least lower-bound and least upper-bound optimal
switching policy

Total Cost Total Cost

Thus,

Simulate polices

(b) Possible con�guration of the cost for every possible policy

Figure 5.5: Example least lower-bound and least upper-bound optimal switching policy

the optimal policy over the graph is found or until some approximation threshold is reached.

The process is described in greater detail below.

Re�nement begins after the optimization technique described above is performed to ob-

tain the least upper-bound path with its associated upper-bound V̄ π1
g and lower-bound Vπ1

g

costs. An example least upper-bound path is depicted in Figure 5.5a as π1
g .

Then the least upper-bound path is simulated to obtain the actual value V π1
g . Then the

re�nement begins by determining the second least upper-bound path, e.g., π2
g in Figure 5.5a.

The policy induced by the path π2
g is then simulated to �nd the actual value V π2

g of π2
g . The

55

resulting value is compared to the second least upper-bounded value. If the lower bound

Vπ2
g of the second-to-lowest value is above the actual value of the already simulated value,

then the next least-upper bound path is determined. However, if the actual value V π1
g for π1

g

resides within the bound of this second to least upper-bound path, then the second to least

upper-bounded path is simulated. The cost V π2
g of the resulting simulation is then compared

to the previous lowest value. If the newly simulated cost is the lowest, then it is selected as

the minimum. In Figure 5.5b, after simulation of π2
g , it is determined that the value V π1

g is

greater than Vπ2
g . Thus π2

g is simulated and it is discovered that π2
g achieves a lower value

than π1
g . The process then repeats with the third least upper-bounded path being checked.

This process continues until a maximum number of iterations (less than or equal to the

number of possible paths in the digraph) or minimum threshold on the bound of the value is

met. At any stage of this process the bound on the value is evaluated as the minimum actual

simulated value to the least lower-bounded value of the remaining (non-simulated) paths.

The resulting minimum path comprises a set of path segments. The local policies associated

with the path segments as well as the ordering of path segments de�ne the approximately

optimal policy. The algorithm describing this process is outlined in Algorithm 4.

5.4 Analysis: Rate of Convergence

In this section we will establish the rate of convergence of the SHOT algorithm. We exper-

imentally observed in Section 5.5 that our proposed method performs well for the systems

evaluated. However, the experimental results do not illuminate the conditions necessary

for our method to perform satisfactorily. The fundamental assumption on which we base

our analysis is that the POMDP systems are locally insensitive with respect to both their

optimal policy and value function. We attempt to capture this notion and its impact on

the performance of the SHOT algorithm. Using this framework we establish conditions for

56

Algorithm 4: Re�nement method
Input: optimal_cost: the optimal cost found so far,
optimal_policy: the current best policy,
veri�ed_policies: the list of polices evaluated so far,
k : re�ne iteration
Output: optimal_cost,
optimal_policy,
veri�ed_policies

//Initial values generated optimal_policy ← veri�ed_policies ← Dijkstra(G,
source_event) ;
check_path ← veri�ed_policies.end ;
while check_path is not empty do

i ← Remove and return lowest cost vertex from check_path ;
foreach neighbors j of i do

value_list[j] ← vi.end+ v̄(i, j) ;
value, index leftarrow �nd kth lowest value in value_list ;
append vi ← value ;
append E ← i→ j ;

new_policy ← policy generated from source_event with the kth lowest value ;
append veri�ed_policies ← new_policy ;
new_cost ← simulation result with new_policy ;
if new_cost < veri�ed_cost then

optimal_cost ← new_cost ;
optimal_policy ← new_policy ;

least_bound ← optimal_cost − least lower bound cost //which is generated by
searching the digraph and determining v against the veri�ed_policies ;
if k < maximum re�ne iterations and least_bound ≥ threshold then

k ← k + 1;
optimal_cost, optimal_policy, veri�ed_policies ← re�ne(optimal_cost,
cost_graph, veri�ed_policies, G, source_event, k);

return optimal_cost, optimal_policy, veri�ed_policies

exponential convergence of the probability of determining an approximately optimal value

at the initial con�guration. This implies that, after each iteration, the chances of our al-

gorithm having obtained an approximately optimal solution increase exponentially if some

assumptions are met.

The bounds provided below, however, are both loose and di�cult to establish for speci�c

POMDP systems. Tightening the bounds, providing easier to establish conditions, and

developing adaptive sampling techniques to enhance the convergence rate are topics of future

57

research.

Our analysis is inspired from research from both deterministic sampling-based and point-

based stochastic research. Much of the framework we present is derived from the analysis of

Lavalle and Ku�ner in [72], which establishes the convergence of RRTs. Our method extends

their approach of feasibility in deterministic systems to �nding nearly optimal policies for

POMDPs and develops analysis for the computational gains achieved from both spatial and

temporal abstraction. In [70] Hsu et al. derive theoretical analysis for conditions su�cient

for determining an approximately optimal solution to a POMDP in polynomial time. Their

approach, which is developed for point-based algorithms, determines the relationship be-

tween the covering number of the optimal reachable belief space (essentially the number of

beliefs required to obtain a speci�ed approximation error) and obtaining a polynomial time

solution. Their analysis measures the impact of approximating the value function by utiliz-

ing the piecewise-linear and convex representation of the value function and the discounting

factor for in�nite-horizon POMDP systems. Like Hsu et al.'s analysis, we rely on insensitiv-

ity properties of POMDP systems in the neighborhood around sampled points. Hsu relies

on insensitivity around belief points, we rely on insensitivity around hyperbeliefs.

5.4.1 Exact solution computational complexity

We begin by developing the analysis framework. Then, we demonstrate the computational

complexity of the exact solution using this framework. To understand the gains of our

method over the exact, exhaustive optimization method, we will need to �rst determine the

lower bound on the computation cost for the exact solution. Exact solutions (refer to [2])

have a computational complexity that is exponential in the time horizon. Papadimitriou

and Tsitsiklis [32] prove that POMDPs are PSPACE-Hard and, thus, intractable. To ensure

appropriate comparison, we derive a proof of the exhaustive optimization algorithm in an

anytime framework.

58

To begin this analysis we must �rst know the number of reachable beliefs that can exist

when forecasting K stages into the future. For the duration of our analysis we will assume

that a POMDP system has |X | states, |U| actions, and |Y| observations. It is further assumed

that each belief in the reachable space is unique.

Theorem 5.1. The exhaustive, anytime algorithm for determining the optimal solution to

a K stage POMDP for a given initial belief has time complexity of O(|X |2 (|U||Y|)K).

What we observe from Theorem 5.1 is that the cost of optimization is trivial relative

to the cost of expanding the belief tree. Moreover, the computational complexity grows

exponentially in the time horizon.

5.4.2 SHOT computational complexity

Now that we have established the computational complexity of the exact solution, we will

move to the time complexity and convergence rate of the SHOT algorithm. We start by

establishing that when seeking the exact solution, SHOT will perform better than exhaustive

evaluation under general conditions. The presentation of the proofs is as follows:

1. We establish the assumptions required for our framework. Using the stated assump-

tions, we determine the exact time complexity to discover the optimal solution using

the SHOT technique. Along the way, we establish the expected number of iterations

required to discover the optimal solution as well as the convergence rate.

2. With both the time complexity of SHOT and of the exhaustive solution, we derive the

conditions required for SHOT to be more e�cient than the exhaustive solution.

Like with the exhaustive solution derived above, the following proofs are concerned with

�nding the exact optimal solution. We will relax this requirement in Section 5.4.3�where we

derive the computational gains in approximating the exact solution.

59

The basis of our analysis relies on the existence and size of a set of an optimal sequence of

local goals. Let there exist a �nite sequence of optimal goal subsets Og = {Og0,O
g
1, . . . ,O

g
K}.

For each goal set Ogk , let there also exist a subset Obk, which we denote as a basin subset.

Let these subsets be de�ned such that for all k, 0 ≤ k ≤ K:

1. Each of the subsets has measure, with Ogk ⊆ Pβ and Obk ⊆ Pβ;

2. The initial hyperbelief is contained within Ob0, or β0 ∈ Ob0;

3. The optimal goal setOgk is a subset of the basin set Obk+1;

4. Each local policy π with the target hyperbelief β ∈ Ogk that starts from βstart ∈ Obk

will terminate with the �nal hyperbelief in Ogk;

5. Each local policy π with goal hyperbelief β ∈ Ogk is invariant for any starting hyperbelief

in Obk: the exact same sequence of actions will be executed for each information vector;

6. If there exists a vertex β in the graph G, whereby β ∈ Ogk−1, and a target hyperbelief

βtarget is sampled from Ogk, then the SHOT algorithm will select β as the source vertex

to generate an edge between β and βtarget.

The �rst three assumptions guarantee that there is measurable overlap connecting each goal

set to the previous stage's goal set and to the initial hyperbelief. The fourth assumption

ensures that the local policy is su�cient to link the sequence of goal sets together. Assump-

tion 5 ensures the optimal policy will not change within the set. Assumption 6 ensures that

the the method to expand the graph will select the correct vertex when a target hyperbelief

is sampled.

We could instead make more restrictive assumptions regarding selection of source vertices

that are based on the metric or local value function as an analog to the RRT analysis in [72].

RRT methods typically select the nearest neighbor to expand the graph. We, however, make

no assumption that the nearest neighbor (or only the nearest neighbor) is selected when

60

expanding the graph. For this reason we wish to distill the graph expansion assumption to

the essence of what is required for the algorithm to �nd the optimal policy.

Because we use random sampling in the hyperbelief space, we must determine the likeli-

hood that we eventually sample all of the optimal goal sets to discover the optimal policy.

De�nition 5.1. For some measure µ, let pβ be de�ned as

pβ ≡ min
0≤k≤K

µ(Ogk)
µ(Prβ)

,

where Prβ ⊆ Pβ is the reachable portion of the hyperbelief space starting from the initial

hyperbelief β0.

If a uniform sampling function is used, the probability of sampling a hyperbelief within

any of the optimal goal sets is greater than or equal to pβ. Any POMDP system satisfying

the second assumption will have a nonzero probability of sampling each goal set. Because

each goal set has a non-zero chance of being sampled, the SHOT algorithm's probability of

successfully �nding the optimal solution will increase at each iteration.

Theorem 5.2. Given a POMDP system with pβ > 0 , the probability that the SHOT algo-

rithm �nds the optimal solution after n iterations is 1− 1
2
e−2(npβ−K+1)2/n, where n ≥ Kpβ.

Corollary 5.1. The expected number of iterations required for the SHOT algorithm to �nd

the optimal solution is K/pβ.

We have established the exponential convergence of the probability of sampling the op-

timal policy as well as the expected number of stages required to �nd the optimal solution.

The rate of convergence only tells a portion of the story, however. To fully quantify the

SHOT algorithm we need to establish the time complexity of �nding the optimal solution

and the conditions necessary for the SHOT algorithm to require less computational e�ort

than the exact solution.

61

Lemma 5.1. The SHOT algorithm executing for n iterations on a K stage �nite-horizon

optimization of a POMDP system with a uniform sampling method over the hyperbelief space

has a time complexity of

O(n|X |2|Y|K)

if only a single vertex needs to be expanded at each iteration and, at each of the n iterations,

a new policy edge is added to the graph. It is further assumed that the time complexity of

selecting the vertex is negligible.

Again, as with the case of the exact optimization, the complexity of the expansion is

the primary contributor to the algorithmic complexity. However, if the number of edges in

the graph increases so that n > |X ||Y|K , the complexity of optimization will outweigh the

complexity of expansion. This scenario is unlikely for any practical system, and, as we will

show in Section 5.5, the SHOT algorithm often converges to nearly optimal solutions for

relatively small values of n.

Several di�cult-to-establish assumptions are made, primary of which is the size of the goal

sets. We also neglect the cost of selecting neighbors when expanding the graph. However, if

we assume that a low-dimensional parameterization of the hyperbelief can be constructed,

then an e�cient K-d tree implementation can be used adding a minimal impact to the

algorithm. This analysis is all-or-nothing and the convergence does not take into account

the impact of nearly-optimal policies or samples in the convergence of the algorithm; instead,

only the exact optimal policy is considered and the probability of sampling that policy is

analyzed.

We have established the time complexity of the SHOT algorithm for a given number of

iterations, but it still remains to determine under what conditions the SHOT algorithm will

outperform the exact, exhaustive solution.

Theorem 5.3. For SHOT to have a lower time complexity than the exact solution, the

minimal probability of sampling each goal set must be: pβ ≥ K
|U|K .

62

One interesting observation about the relationship between pβ and the number of actions

is that as the number of possible actions increases, the likelihood of the randomized SHOT

method performing better increases exponentially. Additionally, as the number of stages

increases, the randomized method will outperform the exact method.

5.4.3 Computational complexity gains from approximation

While randomized sampling reduces the time complexity to some degree, �nding the optimal

solution is still expected to take exponential time as a function of the the time horizon.

Furthermore, the speci�cation of the optimal goal sets has obfuscated some of the di�culties

in sampling in the hyperbelief space. We will now present an approximation method that

uses spatial abstraction to reduce the time complexity (with an example that reduces the

complexity to polynomial time if the approximation error is large enough). The presentation

of the proofs is as follows:

1. The assumptions we used for the exact case are modi�ed to broaden the framework to

include approximation error.

2. Using the modi�ed assumptions, we determine the computational requirements to

achieve a speci�ed approximation error using the exact expansion of the hyperbelief,

which has the potential to grow exponentially in the time horizon.

3. To reduce the computational complexity further, the error introduced by using a re-

duced representation of the hyperbelief via a �xed number of samples is investigated.

4. We then identify the approximation error to time complexity trade-o� using the re-

duced hyperbelief approximation with the SHOT technique.

To extend our analysis to approximate solutions, we will need to add additional assump-

tions. The requirement that a policy starts in one goal set and terminates in the next goal

set restricts the size of the goal sets themselves. By reducing the requirement to sample

63

intermediate hyperbeliefs that are on optimal path to sampling hyperbeliefs in the neigh-

borhood around optimal path, we will e�ectively broaden the region around the goal set

to increase the probability of successfully �nding the optimal path at each stage. Imposing

dissipative assumptions on the POMDP system's evolution under the local policy will reduce

the restrictions on the evolution of the system from one goal set to the next. Exploiting the

increased capabilities of the local policy, we can reduce the time complexity of expanding

the graph by approximating the hyperbelief using hyper-particle �ltering by using a limited

subset of beliefs. The error introduced by approximating the hyperbelief is o�set by the

dissipative property of the system under the local policy. The combination of these two

factors, increased probability of �nding the optimal solution at each stage and reduced time

complexity when expanding the graph, can potentially lead to a signi�cant reduction in the

total time complexity required to �nd a nearly optimal solution.

To analyze the gains from approximation, we will assume there exists an ε-goal set Og,εk

around each goal set Ogk, such that the distance between any set of hyperbeliefs β1 ∈ Ogk

and β2 ∈ Og,εk is less than ε: d(β1, β2) ≤ ε. For each ε-goal set Og,εk we de�ne an ε-basin set

Ob,εk all 0 ≤ k ≤ K. The ε-basin set is analogous to the original basin set but now it de�nes

the region for which the local policy will terminate in the ε-goal set. Let εmin represent the

minimum distance of all ε-goal sets Og,εk for 0 ≤ k ≤ K. The updated assumptions are as

follows for all 0 ≤ k ≤ K:

1. The ε-goal setOg,εk is a subset of the ε-basin set Ob,εk+1;

2. Each local policy π with the target hyperbelief β ∈ Og,εk that starts from βstart ∈ Ob,εk

will terminate with the �nal hyperbelief in Og,εk ;

3. For any target hyperbelief β ∈ Og,εk , the POMDP system under the local policy π is

dissipative: if the minimum distance from βk ∈ Ob,εk to Og,εk−1 is dk and the minimum

distance from βk+1 to Og,εk is dk+1, then dk ≤ dk+1.

64

4. If there exists a vertex β in the graph G, whereby β ∈ Og,εk−1, and a target hyperbelief

βtarget is sampled from Og,εk , then the SHOT algorithm will select β as the source vertex

to generate an edge between β and βtarget.

5. Each ε-goal set Og,εk is strictly larger than the goal set Ogk: εmin > 0.

The third assumption represents the largest deviation from the previous assumptions. Now

we no longer restrict the policy to be invariant; instead we empower the local policy to reject

small disturbances. By increasing the capabilities of the local policy we can broaden the

region around a goal set to become the ε-goal set. The larger the region, the faster the

SHOT algorithm will converge. This comes at the cost of exactness: increasing the size the

ε-goal sets increases the approximation error. The maximum value of ε that can be used and

still satisfy the above conditions will depend strongly on the POMDP system and the local

policy.

As discussed in Section 5.3.4, the SHOT algorithm builds both upper and lower bounds

of the value function at each vertex in the graph: we assume that the value function along

each edge is Lipschitz bounded. For the duration of the analysis we will assume that there

exists an ξ, such that the value along edge i→ j for any hyperbelief β̃i ∈ Pβ from hyperbelief

βi is |∆Vi→j| ≤ ξd(β̃i, βi) for any edge i→ j in the graph G. If the cost function is Lipschitz

bounded by ξ, then under the assumptions above, the value along an edge is necessarily

Lipschitz bounded by ξ.

De�nition 5.2. For some measure µ consistent with the assumptions above, let pεβ be de�ned

as

pεβ ≡ min
0≤k≤K

µ(Og,εk)

µ(Prβ)

where Prβ ⊆ Pβ is the reachable portion of the hyperbelief space starting from the initial

hyperbelief β0.

Since pβ has measure, we know for a sample bound εsamp that pεβ ≥ εsamp/dmax,where

the maximum distance between any two hyperbeliefs in Pβ is dmax , which we assume to be

65

�nite.

Theorem 5.4. For the SHOT technique to achieve a nearly optimal policy with error 0 <

Verr ≤ εmin/dmax using exact expansion of the hyperbelief, the total expected time complexity

is of the order of

O(
ξK

Verr
|X |2|Y|K).

It is apparent that the time complexity savings for a speci�ed error Verr is strongly

dependent on the time horizon and the Lipschitz bound.

Reducing the expected number of iterations required to �nd the optimal solution has

a large impact in the overall time complexity of the SHOT algorithm. However, a major

contributor to the time complexity persists as the term that is exponential in the time

horizon: |Y|K . This term results from the computational cost to expand the complete

hyperbelief at each iteration. We propose to approximate the complete hyperbelief using

a hyper-particle approximation. By limiting the number of beliefs within the hyperbelief

at each stage we will restrain the growth of the hyperbelief well below the full exponential

representation.

We demonstrated in Section 4.4 that hyper-particle �ltering with m beliefs has a time

complexity of m|X |2|Y|, if the exact belief is propagated. If m� |Y|K−1 then hyper-particle

�ltering achieves substantial computational savings.

Theorem 5.5. The time complexity of the SHOT algorithm having executed for n iterations

and using hyper-particle �ltering with m beliefs is of the order O(nm|X |2|Y|+ n2).

We use (5.6) instead of the �nal result in Lemma 5.1 because if m is small enough n2

becomes a contributing factor in the overall time complexity.

The error induced from approximating a hyperbelief with a hyper-particle representation

needs to be considered when evaluating the impact on the optimization result. The total

approximation is the combination of the hyper-particle �ltering and the sampling approxi-

mation bounds. This combination is still restricted to be less than εmin. If the bound exceeds

66

εmin, the requirement that any hyperbelief in one ε-goal set will terminate in the next ε-goal

set will be violated.

Theorem 5.6. Let the hyper-particle �ltering approximation be εhpf , then the time complex-

ity of generating a policy with the approximated value error Verr is

O

(
K2(

Kξ

Verr
− 1

εhpf
)2d2

maxm|X ||Y|
)
,

if the sampling approximation error εsamp satis�es εsamp ≤ εmin − εhpf .

The result implies that there is a coupling between the hyper-particle �ltering approxi-

mation and sampling approximation. As a consequence there is a direct trade-o� between

hyper-particle �ltering error and the sampling error. Both can increase to a point, but after

that point an increase in one source of error will require a decrease in the other. The net

e�ect on the overall time complexity is still dependent on two variables: Verr and εhpf .

We can eliminate εhpf by considering the convergence rate of the hyper-particle �ltering

technique. Le Gland and Oudjane [80] demonstrate that, under some mixing assumptions,

particle �ltering has a convergence rate that is inversely proportional to the number of

samples:

E

[(
ϕ(b̃mk)− ϕ(bk)

)2
]
≤ c||ϕ||

m
,

where c is some constant that depends on the system and ϕ ∈ B(R|X |), where ||ϕ|| ≡

supx∈|X | |ϕ(x)|. Experimental results of hyper-particle �ltering [56] support this bound.

Thus, we can consider the hyper-particle �ltering approximation error in terms of the number

of samples.

Corollary 5.2. Let a POMDP system have a hyper-particle �ltering convergence rate

εhpf ≤
Csys
m

,

where Csys is a system dependent and non-negligible constant term. The total time complexity

67

of the SHOT algorithm relative to the number of hyper particle samples m and the desired

error 0 < Verr ≤ εmax/dmax, cost function Lipschitz bound ξ and time horizon K is

O

(
K2(

Kξ

Verr
− m

Csys
)2d2

maxm|X ||Y|
)
.

Under the above convergence rate assumption, the SHOT algorithm is quartic time in the

number of stages K, cubic time in the number of hyperbelief samples m, and linear time in

both the size of the state-space |X | and the observation-space |Y|. The result is polynomial

in all terms but the error term Verr. The inverse relationship is highly nonlinear and quickly

overwhelms all other terms as the error term diminishes. However, as the error term increases

the value stabilizes to near constant value. Thus, for reasonable approximation errors, the

SHOT method will achieve polynomial time complexity.

5.4.4 Temporal abstraction

We conclude with an analysis by establishing the bene�ts of temporal abstraction on the

overall time complexity of the SHOT method. Besides providing spatial abstraction, our

method exploits the fact that a local policy may execute for a plurality of stages. This

enables us to achieve temporal abstraction via the potential to reduce the number of stages

the system optimizes for each policy and the number of iterations required to �nd the optimal

solution.

Theorem 5.7. Let the minimal temporal abstraction be t stages, so that instead of K optimal

goal sets there are dK/te. Let all the other assumptions still hold. The expected number of

stages to �nd the optimal solution reduces to K
tpβ

and the total expected time complexity

reduces to

O

(
K

tpβ
|X |2|Y|K +

(
K

tpβ

)2
)
. (5.4)

It is immediately clear that expansion�right-hand side of (5.7)�does not bene�t from the

68

temporal abstraction. This makes intuitive sense because each policy that is expanded has to

be simulated for each stage. Optimization, conversely, is reduced by the inverse square of the

temporal abstraction. If there is a way reduce the computational burden when simulating

the policy, then more tangible computational savings would be observed.

5.5 Results

To verify the proposed technique, we applied it to several of the benchmark problems found

in the literature: maze20, hallway2, CIT, and Fourth (from [2]). We selected this set of

benchmark systems because they vary in size and represent a variety of systems. These

systems range from small to moderate in size, from low noise to moderate noise, and from

minimal observability to near full observability.

Each of these examples is an expected state cost system. This class of cost function

imparts a simple and elegant structure on the value function in the belief space; namely,

the optimal value function is piecewise-linear and concave over the belief space (it is convex

when considering a reward function instead of a cost function). Traditional value-iteration

methods exploit this structure when determining approximately optimal solutions. This

piecewise-linear and concave form in the value function arises from the fact that the cost

function is linear in the belief space and that the backup from one stage to the next is a

linear function for each action. The optimization function is then the minimum over the set

of linear functions in the belief space, which is a piecewise linear function. Such systems are

ideal for analysis as POMDPs with an expected state cost have been studied extensively.

For these examples, we generate upper bounds experimentally by measuring the sensitiv-

ity of the cost associated with the starting distance of each neighboring edge. For example,

given edge i→ j, we determine the relationship of the cost for vl→j relative to the distance

of edge l to i for each l such that edge l → j exists. We then generate a linear upper and

lower bound for the cost. In a similar manner, bounds for the distance from one edge to the

69

next were determined as well as the bounds on the number of elapsed iterations.

During the expansion phase, each sample hyperbelief is generated as an impulse hyper-

belief, which comprises a single belief. The belief is represented as a set of particles and

weights. To generate the belief, we �rst randomly choose the number of particles, n, by

sampling a Poisson distribution with mean on the order of
√
|X |. A set of s particles are

then uniformly sampled from the state space X . Next, each particle is randomly weighted.

The weight for the �rst state is selected by sampling a uniform distribution. The next state

is weighted as one minus the weight of the �rst sample. This repeats until all states are

weighted. Finally, the weights are normalized to ensure the total weight sums to 1.

The Lukaszyk-Karmowski distance measure [78] was selected as the hyperbelief distance

function. This pseudo-metric is essentially a measure of the expected distance between

each pair of beliefs between two hyperbeliefs, where the probability of each pair is just the

product of the probability of both beliefs. Jensen-Shannon divergence was used as the belief

distance function. Jensen-Shannon divergence is a symmetric version of relative-entropy, or

Kullback-Leibler divergence. In each of the examples below, the local policy function sought

to minimize this hyperbelief distance function.

The selected set of examples are discounted in�nite horizon expected state reward sys-

tems. The discounting factor plays an important role in the value function and, thus, the

resulting policy of the system. The SHOT method as described was derived for �nite-time

horizon problems. Similar to the technique we describe above to generate a bound for the

cost, we generate a bound on the number of iterations that elapse while traversing edges of

the digraph to account for the e�ect of the discounting on cost along an edge. This way

we can propagate the discount from one event to the next via the number of iterations that

elapse between events, which enables to generate an estimate of the discounted cost along

multiple edges.

The results of the the simulations are presented in Table 5.1. The proposed method is

compared against SARSOP [11]. SARSOP is not a temporal/spatial abstraction method.

70

Instead it is a point-based anytime algorithm. However, it is a leading POMDP approxima-

tion method for the benchmark problems presented. For the purposes of our analysis, we

ran our method using a set number of hyperbelief samples: 20 samples for 4x4 and Maze20,

100 samples for Hallway2, 200 samples for CIT; and 300 samples for Fourth. For each of

the examples, SARSOP was executed for the same time duration as SHOT. Each test was

conducted by running both techniques between 10 to16 times to establish the average per-

formance. By performing analysis in this way, we attempted to normalize the e�ectiveness

of the results to obtain an equitable comparison.

Table 5.1: Veri�cation via comparison to benchmark problems

Expected Total Cost

|X | |Y| |U| SARSOP SHOT

4x4 16 2 4 -3.750 -3.705

Maze20 20 8 6 −38.788 -31.000

Hallway2 92 17 5 -0.547 -0.503

CIT 284 28 4 −0.834 -0.850

Fourth 1024 28 4 −0.594 -0.814

As is typical with in�nite horizon problems, there is a reset state that transports the

system back to the initial con�guration once the system enters the goal state. This arti-

�cial structure imposed on the problem to coax the system to be amenable to discounted

cost/reward problems can impart a periodic nature to the control policy. In such cases

there may be correlated policies between system resets, which reduces the burden on the

learner/optimizer. However, the representation is often not as simple as a single period rep-

etition; only the fraction of the probability that is in one of the goal states is redistributed

to the initial con�guration. The system may go through several resets before it has a similar

distribution over the state-space as it has encountered before. As a roadmap method, SHOT

may implicitly bene�t from this aspect present in all of the benchmark problems that we

71

evaluate. A de�nitive evaluation of this e�ect was not performed.

The smallest and simplest example, 4x4, represents a system with no observational dis-

crimination except at the goal state, in which a reward is obtained. The system incurs a

small amount of process noise for each action it takes. The optimal solution is a greedy pol-

icy, which directs the robot directly to the goal state. By evaluating our approach against

this trivial example, we are able to baseline our result and help quantify the inherit loss due

to the abstraction. In this case, we see for our naive sampling procedure that the optimal

is obtained by SARSOP is −3.750, whereas SHOT obtains −3.705. The di�erence is likely

due to a limitation of the metric used by the local policy or a consequence of the sparse

representation hyperbelief space. Regardless, we observe a minimal impact on the value

obtained using SHOT.

The Maze20 example, while only consisting of 20 states and 8 observations, has a com-

plex control policy. The system is unobserved unless certain actions are taken, which either

give a reading of the presence of a wall to the north/south or east/west of the robot. The

other actions enable movement in the four cardinal directions. The robot initially starts

with the possibility of being in three of corners of the maze. Because of the initial uncer-

tainty, the MDP solution is severely sub-optimal. The discount factor is 0.90, which forces

a myopic policy (discount factor is 10% after just 20 iterations). Such strong discounting

entices the system to reach the goal state quickly. The consequence of this e�ect is that

the control policy must balance between localization of the robot and goal seeking behavior.

The disparate starting states also create disparate sample paths, which require a relatively

complex hyperbelief representation (large number of belief samples) to forecast the behavior

of the system. For this example we see that SARSOP's solution outperforms SHOT by a

respectable margin of −7.8 or a 25% improvement. The poor performance of SHOT is likely

due to the complexity of the control policy in comparison to the number of samples use to

generate the policy.

The Hallway2 example makes observations at every iteration and the discount factor is

72

signi�cantly higher at 0.95 (higher implies lower discounting per iteration). This increase

allows the control policy to be less myopic and consider less short term gain. The starting

con�guration for Hallway2 is a uniform distribution over all states. The control actions

include rotation and forward and backward movement. The nonholomic constraints add

additional complexity to the planning process. We can see from Table 5.1 that this is the

�rst example that is non-trivial that SHOT becomes competitive with SARSOP, achieving

a reward within 8%.

The next set of examples represent a system similar to Hallway2: a robot system in a

structured space that is attempting to reach a goal state. Unlike Hallway2, CIT and Fourth

start in a known initial condition (with probability 1) and have a discount of 0.99, which

requires 230 iterations to reach a discount factor of 10%. Essentially, CIT and Fourth are just

scaled versions of the same problem. We see the bene�t of temporal and spatial abstraction

begin with these two examples: SHOT achieves a gain of 2% over SARSOP for the CIT

example and a substantial gain of 37% for the Fourth example.

The experimental results are buttressed by the theoretical results presented in Section

5.4, and establish the validity of the SHOT framework and the potential of the approach.

From the experimental analysis, we see that the potential value of SHOT becomes apparent

as the size of the system increases. The sampling method we used is naive and there is great

potential in selecting better or biased sampling techniques that converge much more quickly,

which will enable SHOT to expand to even larger systems.

Using a technique derived from SHOT, Candido et al. in [48] explore using local poli-

cies (or micro-options) that are constructed from domain knowledge applied to multi-agent

POMDP systems. The problem of interest in their approach is to extinguish a �re using

a plurality of �re�ghters. The exhaustive set of policies for this class of systems grows

exponentially with the number of agents, the number of observations, and the size of the

state-space. While no absolute evaluation of e�ectiveness of the results of their method

is possible, convergence and the development of non-greedy policies was observed. Inter-

73

estingly, their learner developed non-intuitive behavior that succeeded in extinguishing the

�re where user de�ned policies failed. Their work demonstrates the ability of the SHOT

framework to extend to both large and multi-agent systems.

5.6 Conclusion

A method for �nding nearly optimal policies for POMDPs with total cost or �nite time

horizons was presented. The proposed method is a sampling-based technique using a hi-

erarchical planner. The lower level planner executes local, greedy feedback policies, and

the higher level planner coordinates the order of hyperbelief samples that are visited. This

method attempts to capture the connectivity of the POMDP system, while simultaneously

learning the nearly optimal policy for the stated objective function.

Analysis was performed to determine loose upper-bounds on the convergence rate of the

method and to establish several requirements for the method to outperform the exact optimal

method. The computational-to-optimal trade-o� was examined to identify conditions and

scenarios for which dramatic computational savings can be had with only a minor impact

on the quality of the optimal solution. Experimental results not only support the analysis

but exceed the analysis capabilities

Future research includes evaluating alternate sampling schemes, such as generating event

samples from the observation space. Sampling from the observation space has the potential

to alleviate some of the issues that arise from attempting to sample targets from the belief

space directly. Biased sampling techniques may also hasten the convergence of the proposed

algorithm. Another avenue being investigated is sensitivity analysis, which will enable us

to analyze the e�ect of a perturbation on the performance of a local policy. This should

enable us to �eld biased sampling techniques more readily and to represent the e�ect of a

perturbation more precisely than the Lipschitz bounds currently used.

74

5.7 SHOT Proofs and Analysis

5.7.1 Exact solution time complexity

To begin this analysis we must �rst know the number of reachable beliefs that can exist when

forecasting K stages into the future. For the duration of our analysis we will assume that

a POMDP system have |X | states, |U| actions, and |Y| observations. It is further assumed

that each belief in the reachable space is unique.

Lemma A1. Then the total number of reachable beliefs for a POMDP system with a �nite

horizon K is (|U||Y|)K+1−1
|U||Y|−1

.

Proof. A POMDP system proceeds from an initial belief, then each stage of expansion from

stage k to k+ 1 requires that each belief at stage k build out each of the |U| actions, each of

which requires |Y| observations to be added to the tree, thus leading to |U||Y| new beliefs.

The number of beliefs at the kth stage is T ei−1|U||Y|. By induction it is trivial to show that,

starting at stage 0 with a single belief, the total time complexity of expanding the kth stage

is (|U||Y|)k. The total cost of expanding over all k stages is sum of the time complexity for

each of the stages:
∑K

k=1 (|U||Y|)k. The sum of this quantity can be solved explicitly to be

(|U||Y|)K+1−1
|U||Y|−1

(i.e.,
∑K

k=0 ar
k = a r

K+1−1
r−1

). Finally, there is the initial hyperbelief (assuming a

single belief with probability one) at stage 0.

With a bound on the number of possible reachable beliefs, the time complexity of ex-

panding (or simulating) each possible reachable belief can be derived.

Lemma A2. The total time complexity, T etotal, to expand all of the reachable beliefs of a

given POMDP system up to stage K is of the order

T etotal = O(|X |2 (|U||Y|)K).

Proof. Each belief requires O (|X |2) to predict the belief and O (|X |) to update. From

75

Lemma there are a total of (|U||Y|)K+1−1
|U||Y|−1

beliefs expanded up to the stage K (the initial belief

is not expanded). Each belief generated takes O(|X |2) time to generate. Thus, the total

computational e�ort is greater than

|X |2 (|U||Y|)K+1 − 1

|U||Y| − 1
= O(|X |2 (|U||Y|)K).

The inequality results from the fact that, if r ≥ 1 and K ≥ 1,

rK+1 − 1

r − 1
≤ 2rK

rK+1 − 1 ≤ 2rK+1 − rK

−1 ≤ rK(r − 1). (5.5)

The inequality in the last equation holds for r ≥ 1 as the right-hand side is always positive

for nonnegative values of r ≥ 1. The time complexity is proven by substituting |U|||Y| for r

and observing that the quantity is bounded by some constant.

From Lemma A2, we observe that there is an exponential growth in the time complexity

at each stage and that the total time complexity incurred to simulate the entire reachable

set of beliefs is exponential in the time horizon. Now we need to determine the additional

cost incurred when optimizing the graph after each iteration to determine the total time

complexity of �nding the optimal policy for a given POMDP system.

Lemma A3. The total time complexity T o to optimize the the exact solution at each stage

from 0 ≤ k ≤ K, is of the order

T 0 = O((|U||Y|)K).

Proof. At each stage k, the optimal policy must be propagated back to the initial belief,

since the system is a �nite-horizon problem implying a time varying policy. Starting from

76

the set of beliefs at the k − 1 stage (or level of in the reachable belief tree) to stage 0,

the optimal action for each belief must be selected. Thus, each belief must select from |U|

actions, which corresponds to |U|||Y| edges in the tree being evaluated. Total computation

cost then becomes

T 0
k = |U||Y|T ek−1

= O (|U||Y|)k .

The second step follows from the the inequality used in Lemma A1: so the optimization cost

at stage k is O(|U||Y| (|U||Y|)k−1). The total time complexity T o is the sum of the time

complexity to optimize the POMDP system at each stage (starting from stage 1):

T o =
K∑
k=1

T 0
k =

K∑
k=1

O((|U||Y|)k)

=O (|U||Y|)K .

The inequality resulting in the second equation is a direct application of the geometric series

from Lemma A1 and the exponential equation inequality (5.5) in Lemma A2.

We can now state the total cost to both expand and optimize a POMDP system with

the cost to expand the belief tree and the cost to optimize over the tree established.

Theorem 5.1. The exhaustive, anytime algorithm for determining the optimal solution to

K stage POMDP for a given initial belief has time complexity of O(|X |2 (|U||Y|)K).

Proof. For any cost function, the worst case solution will require evaluation of each belief in

the tree of of possibilities up to stage K. There are two factors that contribute to the time

complexity, the cost of expanding the tree of beliefs (T e) and the cost of optimizing over the

tree (T o) at each stage 0 ≤ k ≤ K, such that the total computational e�ort Ttotal is given as

77

Ttotal =
k∑
i=0

[T oi + T ei] = T o + T e

= O(|X |2 (|U||Y|)K) +O((|U||Y|)K)

= O(|X |2 (|U||Y|)K).

The the second equation follows directly from both Lemma A2 and Lemma A3.

5.7.1.1 SHOT time complexity

We start by restating the set of assumptions we assume for the following analysis (from

Section 5.4.2). Let there exist a �nite sequence of subsets optimal goal subsets Og =

{Og0,O
g
1, . . . ,O

g
K}. For each goal set Ogk , let there also exist a subset Obk, which we de-

note as a basin subset. Let these subsets be de�ned such that for all k, 0 ≤ k ≤ K:

1. Each of the subsets has measure, with Ogk ⊆ Pβ and Obk ⊆ Pβ;

2. The initial hyperbelief, be within Ob0, or β0 ∈ Ob0;

3. The optimal goal setOgk is a subset of the basin set Obk+1;

4. Each local policy π with the target hyperbelief β ∈ Ogk that starts from βstart ∈ Obk

will terminate with the �nal hyperbelief in Ogk;

5. Each local policy π with goal hyperbelief β ∈ Ogk is invariant for any starting hyperbelief

in Obk: the exact same sequence of actions will be executed for each information vector;

6. If there exists a vertex β in the graph G, whereby β ∈ Ogk−1, and a target hyperbelief

βtarget is sampled from Ogk, then the SHOT algorithm will select β as the source vertex

to generate an edge between β and βtarget.

78

Theorem 5.2. Given a POMDP system with pβ > 0 , the probability that the SHOT algo-

rithm �nds the optimal solution after n iterations is 1− 1
2
e−2(npβ−K+1)2/n, where n ≥ Kpβ.

Proof. The �fth assumption ensure that the optimal solution does not change for any hy-

perbelief in the sequence of goal sets. The second through fourth assumptions ensure that

a path exists between optimal goal sets. The sixth assumption provides that if the SHOT

graph G has a vertex β ∈ Ogk, then if a target hyperbelief β′ is randomly sampled is in Ogk+1

the SHOT algorithm with connect β → β′. The probability of sampling any of the goal sets

at each stage is at least pβ. From the �rst assumption, pβ is nonzero.

Starting from the initial hyperbelief, the probability of connecting to Og1 is at least pβ.

Once the edge between β0 and a hyperbelief sample in Og1, which we denote as β1, is added

to the graph, the next step is connecting β1 to Og2 . Again, the probability of sampling from

Og2 is at least pβ. This repeats until the entire path from 0 to K has been sampled. In the

worst case, we can assume that any sample not within the next goal set will not be useful

in �nding the optimal solution. Thus, the extending the optimal path at iteration i to the

next goal set is described by a Bernoulli random variable Si: probability of success is pβ and,

conversely, the chance of failure is 1− pβ.

The random process of describing the number successes in extending the optimal path

after n iterations is

S = S0 + S1 + · · ·+ Sn,

where the set of {Si} are i.i.d. Bernoulli distributions with parameter pβ. The random

process describing the chance of extending the path K times to �nd the optimal path is a

Binomial distribution:

pS(S = K;n, pβ) ≡
(
n

K

)
pKβ (1− pβ)n−K .

Now to determine the total probability of having at least K successes in n iterations we note

that the total probability of having at most K − 1 successes is

79

pS(S ≤ K − 1;n, pβ) =
K−1∑
i=0

pS(S = i;n, pβ) =
K−1∑
i=0

(
n

i

)
piβ(1− pβ)n−i.

Applying the Hoe�ding's inequality, the bounds on the probability becomes

pS(S ≤ K − 1;n, pβ) ≤ 1

2
e−2(npβ−K+1)2/n.

The probability of having K or more successes is then

pS(S ≥ K;n, pβ) = 1− pS(S ≤ K − 1;n, pβ)

≥ 1− 1

2
e−2(npβ−K+1)2/n.

This inequality only holds when n ≥ Kpβ.

Corollary 5.1. The expected number of stages for the SHOT algorithm to �nd the optimal

solution is K/pβ.

Proof. The expected number of successes of the SHOT algorithm is E[S] = npβ. Thus

the number of iterations the algorithm must run to have an expected K successes is n =

K/pβ.

Lemma 5.1. The SHOT algorithm executing for n ≤ |X |2|Y|K iterations on a K stage

�nite-horizon optimization of a POMDP system with a uniform sampling method over the

hyperbelief space has a time complexity of

O(n|X |2|Y|K)

if only a single vertex needs to be expanded at each iteration and, at each of the n iterations,

a new policy edge is added to the graph. It is further assumed that the time complexity of

selecting the vertex is negligible.

80

Proof. Using the same terminology for the exact solution in Theorem 5.1, the total time

complexity is

Ttotal =
n∑
i=1

[T ei + T oi]

≤
n∑
i=1

|X |2|Y|K +
n∑
i=1

i

≤ n|X |2|Y|K + n(n− 1)/2

≤ n|X |2|Y|K + n2 (5.6)

≤ 2n|X |2|Y|K .

The �rst equation is the total sum of the time complexity for both the expansion and

optimization of the SHOT algorithm. The time complexity of the expansion, T ei , at each

iteration i, can be bounded above by the assuming that each hyperbelief has the maximum

possible number of beliefs and that the cost of transitioning the hyperbelief is |X |2. We can

bound the optimization cost, T 0
i , at each stage by observing that, in the worst case, each

vertex in the graph has to be updated when a new vertex is added to the graph. The last

equation holds if we assume that n ≤ |X |2|Y|K .

Theorem 5.3. For SHOT to have a lower time complexity cost than the exact solution, the

minimal probability of sampling each goal set must exceed:pβ ≥ K
|U|K/2 .

Proof. To determine the point at which SHOT no longer obtains a lower expected cost than

the exact solution we solve for inequality between Lemma 5.1 and Theorem 5.1:

81

n|X |2|Y|K ≤ |X |2 (|U||Y|)K

K

pβ
|X |2|Y|K ≤ |X |2 (|U||Y|)K

pβ ≥
K|X |2|Y|K

|X |2 (|U||Y|)K

pβ ≥
K

|U|K
.

The second equation results from substituting n for the expected number of iterations as-

suming a planning horizon K. The third follows from solving for pβ.

5.7.2 time complexity gains from approximation

We start by restating the assumptions for the following analysis (from Section 5.4.3). Let

there exists an ε-goal set Og,εk around each goal set Ogk, such that the distance between any

set of hyperbeliefs β1 ∈ Ogk and β2 ∈ Og,εk is less than ε: d(β1, β2) ≤ ε. For each ε-goal set

Og,εk we de�ne an ε-basin set Ob,εk all 0 ≤ k ≤ K. The ε-basin set is analogous to the original

basin set but now it de�nes the region for which the local policy will terminate in the ε-goal

set. Let εmin represent the minimum distance of all ε-goal sets Og,εk for 0 ≤ k ≤ K. The

updated assumptions are as follows for all 0 ≤ k ≤ K:

1. The ε-goal set Og,εk is a subset of the ε-basin set Ob,εk+1;

2. Each local policy π with the target hyperbelief β ∈ Og,εk that starts from βstart ∈ Ob,εk

will terminate with the �nal hyperbelief in Og,εk ;

3. For any target hyperbelief β ∈ Og,εk , the POMDP system under the local policy π is

dissipative: if the minimum distance from βk ∈ Ob,εk to Og,εk−1 is dk and the minimum

distance from βk+1 to Og,εk is dk+1, then dk ≤ dk+1.

82

4. If there exists a vertex β in the graph G, whereby β ∈ Og,εk−1, and a target hyperbelief

βtarget is sampled from Og,εk , then the SHOT algorithm will select β as the source vertex

to generate an edge between β and βtarget.

5. Each ε-goal set Og,εk is strictly larger than the goal set Ogk: εmin > 0.

Theorem 5.4. For the SHOT technique to achieve a nearly optimal policy with error 0 <

Verr ≤ ξεmin/dmax using exact expansion of the hyperbelief, the total expected time complexity

of

O(
ξK2

Verr
|X |2|Y|K).

It is apparent that the time complexity savings for a speci�ed error Verr is strongly de-

pendent on the time horizon and the Lipschitz bound.

Proof. The total approximation error is equal to the sum of the error at each stage:

Verr =
K∑
k=0

ck + δck − V ∗ =
K∑
k=0

δck.

We know that δck = ξd(β̃k, βk). Since by assumption 3, the local policy is dissipative, meaning

d(β̃k, βk) ≤ d(β̃k, βk+1), the total approximation error is

Verr =
K∑
k=0

ξd(β̃k, βk) ≤ Kξd(β̃0, β0) = Kξε

Verr
Kξ
≤ ε.

Taking the result from Corollary5.1 and substituting in the sampling error variable psamp =

εsamp/dmax in for pβ, we obtain

K

psamp
|X |2|Y|K =

K

(Verr
Kξ

)
|X |2|Y|K =

ξK2

Verr
|X |2|Y|K

for the time complexity described in Lemma 5.1.

83

Theorem 5.5. The time complexity of the SHOT algorithm having executed for n iterations

and using hyper-particle �ltering with m beliefs is of the order O(nm|X |2|Y|+ n2).

Proof. If we substitute n|X |2|Y| into equation (5.6) from Lemma 5.1, we obtain

nm|X |2|Y|+ n2.

Theorem 5.6. Let the hyper-particle �ltering approximation be εhpf , then the time complex-

ity of generating a policy with the approximated value error Verr is

O

(
K2(

Kξ

Verr
− 1

εhpf
)2d2

maxm|X ||Y|
)
,

if the sampling approximation error εsamp satis�es εsamp ≤ εmin − εhpf .

Proof. If the hyper-�ltering approximation is εhpf and the sampling approximation is εsamp,

then the total distance from the goal set is less than εsamp + εhpf = εerr. For the system

to obey assumption 2, a hyperbelief sample βk ∈ Ob,εk will need to terminate within Ob,εk+1

under the local policy π with the target hyperbelief in Og,εk+1. Therefore, the approximate

basin region must be at least εerr for the assumptions to hold. The total error in the value

function is proportional to the distance from the goal set at each stage and the Lipschitz

bound (as established in Theorem 5.4):

Verr ≤ Kξεerr = Kξ(εsamp + εhpf).

Solving for εsamp in the above equation we obtain

εsamp ≤
Verr
Kξ
− εhpf .

84

Since the probability of sampling any of the goal sets is psamp ≥ εsamp/dmax, we can substitute

psamp ≥
Verr

Kξdmax
− εhpf
dmax

then the expected number of iterations to �nd the Verr optimal solution is K/psamp, or

K(
Kξ

Verr
− 1

εhpf
)dmax.

Substituting the above as n in Theorem 5.5, we can determine the total expected time

complexity:

n(m|X |2|Y|+ n) = K(
Kξ

Verr
− 1

εhpf
)dmax

(
m|X ||Y|+K(

Kξ

Verr
− 1

εhpf
)dmax

)
≤ K2(

Kξ

Verr
− 1

εhpf
)2d2

maxm|X ||Y|.

Corollary 5.2. Let a POMDP system has hyper-particle �ltering convergence rate

εhpf ≤
Csys
m

,

where Csys is a system dependent constant term. The total time complexity of the SHOT

algorithm relative to the number of hyper particle samples m and the desired error 0 < Verr ≤

εmax/dmax, cost function Lipschitz bound ξ and time horizon K is

O

(
K2(

Kξ

Verr
− m

Csys
)2d2

maxm|X ||Y|
)
.

Proof. Since we are assuming a �nite observation space and a �nite time horizon, all hy-

perbeliefs will consist of a �nite number of beliefs. Thus, we know for any εd ≥ 0 there

must exist m, such that the metric distance is between the hyperbelief approximated with

85

m samples is less than εd.

5.7.3 Temporal abstraction

Theorem 5.7. Let the minimal temporal abstraction be t stages, so that instead of K optimal

goal sets there are dK/te. Let all the other assumptions still hold. The expected number of

stages to �nd the optimal solution reduces to K
tpβ

and the total expected time complexity

reduces to

O

(
K

tpβ
|X |2|Y|K +

(
K

tpβ

)2
)
.

Proof. Following the same steps in Theorem 5.1 the total time complexity of the temporally

abstracted solution is

Ttotal =
n∑
i=1

[T ei + T oi]

≤
n∑
i=1

tm|X |2|Y|+
n∑
i=1

i

≤ nmt|X |2|Y|+ n2. (5.7)

The second equation for the cost of expansion is where the time complexity changes: instead

of just executing a single stage, each policy executes for t stages. Taking the expectation

relative to n = K
tpβ

of (5.7), the total expected computation complexity to �nd the optimal

solution becomes

O

(
K

tpβ
m|X |2|Y|+

(
K

tpβ

)2
)
.

86

Chapter 6

PERTURBATION ANALYSIS OF THE

FORECASTED EVOLUTION OF POMDPS

We derive a representation of the sensitivity of partially observed Markov decision processes

(POMDPs) to determine the e�ect a perturbation on the starting location of the policy has

on the forecasted evolution its associated running cost. Leveraging this analysis, we develop

a methodology to chain forecasted evolution results together. At the cost of approximation

error, the chained representation eliminates the need to simulate each of the component

forecasted evolutions.

We formulate our technique and demonstrate analysis on standard benchmark problems

from the POMDP literature. Our method will be presented in Section 6.3. First we provide

background information: the formulation of POMDPs and related research in Section 6.2.

Examples are provided in Section 6.5. We conclude with some future directions and �nal

remarks in Section 6.6.

6.1 Introduction

Partially observable Markov decision processes (POMDPs) provide a general and expressive

formalism for representing uncertainty in both the execution of actions and observations

from sensor data. However, their use for planning for uncertain systems has been limited

due to problems of scalability and tractability. The time complexity of simulating policies for

discrete-time and -space POMDPs is a direct result of size of the state space compounded by

the number of possible observations. These two factors are the root cause of the intractability

of determining optimal policies for general POMDP systems [2].

87

When described in terms of a system's state space, the evolution of a POMDP is gov-

erned by a set of transition probabilities that describe the e�ects of control actions, and an

observation model that speci�es uncertainty in the sensing process. If, instead, the system is

described in terms of the belief space (i.e., the space of possible a posteriori probability func-

tions on the state space), the evolution of the system can be modeled as a Markov decision

process (MDP). This corresponds to lifting the system description from a lower dimensional

state space to a higher dimensional belief space. Most POMDP algorithms operate, and

approximate the system, at the level of the belief space.

Planning in the belief space amounts to constructing a belief-space policy (i.e., mapping

from beliefs to control inputs), which in turn requires the ability to forecast the evolution

of policies into the future. Forecasting the exact behavior of a POMDP is intractable. The

number of possible beliefs grows exponentially in the time-horizon, which necessitates the

use of approximation methods. Ensemble forecasting is often used in POMDP research

to approximate the forecasted evolution, which is a collection of sample paths. Ensemble

forecasting generates a small, but representative, collection of sample paths instead of the

exhaustive set of possibilities. A sample path is a sequence of beliefs, b0, ..., bk, de�ned by

speci�c sequence of observations and control inputs. POMDPs evolve randomly in the belief

space as a function of the uncertainty in the observation. A sample path is instantiated

by iteratively generating, for a �xed number of stages, a deterministic control action and

a random observation. This process is repeated starting at a speci�ed initial belief b0 to

generate a collection of sample paths that approximate the forecasted evolution.

Simulation using ensemble forecasting requires signi�cant computation. Each sample

path has a time complexity that is, primarily, linear on the planning horizon and quadratic

in number of states in the POMDP system.1 The overall time complexity of ensemble fore-

casting is the product of time complexity of each sample path and the number of sample

paths. If numerous simulations must be performed to evaluate and/or determine a pol-

1Approximate �ltering methods can reduce the time complexity to be sub-quadratic [57].

88

icy, it would be advantageous to derive methods to reuse simulated results because of the

computational requirements.

In this chapter, we do exactly that and derive a method to reuse existing simulations via

a perturbation analysis approach. The contributions of our formulation are

1. a representation of the sensitivity analysis of the running cost2 of a policy in the

neighborhood around the starting belief b0;

2. an approximation of the forecasted evolution at the terminal stage bk due to a pertur-

bation in the initial belief b0; and

3. the framework to chain forecasted evolutions together that does not require re-simulation.

The third contribution is bene�cial when numerous forecasted evolutions from various initial

beliefs must be performed. If it is detected that a terminal belief bk of one forecasted

evolution, which starts at b0, is in the neighborhood of an initial belief b
′
0 of an existing

simulation, we can use the results of the existing simulation to approximate the forecasted

evolution of the policy from the terminal belief bk. When forecasting we simulate forward in

time. However, when optimizing, using a dynamic programming approach, analysis moves

backwards in time. In the simulation case, this memoization reduces the running time

by avoiding re-simulation. In the backward optimization scenario, this enables e�ective

estimation of the cost-to-go of a reference policy starting at some initial belief based on the

cost-to-go of the forecasted evolution of neighboring policies.

Our approach derives the sensitivity using the ensemble forecasting results. For all sample

paths, both sensitivity results for the running cost along the path and the perturbation to

the terminal belief are studied. By evaluating the e�ect of these perturbations over the

collection of sample paths, we estimate the the average running cost and an approximate

distribution over the terminal beliefs. The perturbation analysis we derive collapses the
2The term cost-to-go to represents the cost of the system evaluated from some stage k to the end of the

time horizon K. The term running cost denotes the cost from some initial stage 0 to some intermediate
stage k < K.

89

stage-wise representation of each of the sample paths to represent ∆bk in terms of ∆b0. This

implies that we can simulate the e�ect of a perturbation of ∆b0 has on ∆bk in one iteration

instead of k iterations.

Obtaining a reduction in the running cost over the set of sample paths under a pertur-

bation is more complex than just the deriving the perturbed beliefs for each sample path.

The expectation taken over the collection of sample paths is coupled to the running cost

along each path. Because the probability of each path may vary for a perturbation, there

is a coupling of a normalizing constant to each of the otherwise independent sample paths.

However, we use a generalized version of the chain rule to approximate this relationship to

obtain a collapsed representation along the set of sample paths.

The collapsed representation we derive enables the chaining of the existing forecasted

evolutions without requiring re-simulation. Each path of a new forecasted evolution is joined

to an existing forecasted evolution. Using the same technique that enables us to collapse

sample paths and running costs, each of the new sample paths is joined to the existing

forecasted evolution. The total number of stages increases to the sum of the two paths, but

the perturbation of the running cost and terminal belief is collapsed and can be determined

in a single iteration. This second level abstraction enables e�cient analysis of the behavior

of a system as long as a su�cient number of forecasted evolutions exist at a representative

sampling of initial beliefs. This process can be recursively applied to obtain an approximation

a chained forecasted evolution over a series of existing forecasted evolutions.

There are various considerations that must be weighed when considering our approach.

We derive the sensitivity of the forecasted evolution of a system using a static set of sample

paths. It is not only possible that the actions executed by a policy change due to a pertur-

bation in the initial belief, but it is also almost certain that the likelihood of the sampled

observations that generate the sample path will occur with di�ering probability. Thus, it

is possible that the sampled set of observations from an unbiased simulation would change

as well. However, we postulate that a su�cient number of possible paths for the policy are

90

captured for the neighborhood around each initial belief if a representative set of sample

paths are generated by the ensemble forecasting. In essence, we are assuming that there is

no chaotic behavior in the POMDP dynamics when coupled to the control policy. If this is

the case, then a perturbation can reasonably be approximated by a shift in the probabilities

along each sample path.

Our belief is that our methodology will prove valuable to POMDP temporal and spatial

abstraction optimization techniques [37, 44�49, 56]. Such approaches create global, optimal

policies from local policies, and, as such, are hierarchical techniques. By compressing time

and space, these optimization methods attempt to quickly explore the value landscape.

Recent inroads in solving large, continuous, and multi-agent POMDP systems using temporal

and spatial abstraction methods demonstrate their potential [48,81].

The perturbation analysis we present should enhance temporal and spatial abstraction

techniques by providing analogous gains of the α-vector approach over point-based method

of solving POMDPs. The α-vector representation determines the cost-to-go at each sampled

point as a linear function instead of a constant value. This linear representation of the value

function provides better estimation of the value during each backup stage. The bene�ts of

the α-vector approach in sampling based methods was �rst demonstrated in [6].

6.2 Related Research: Simulation and Optimization of POMDPs

Our approach is built upon a rich set of existing methodologies that are pervasive in the

literature. In particular, our approach sits at the intersection of three primary areas of re-

search: stochastic simulation, perturbation/sensitivity analysis, and POMDP optimization.

We will concisely discuss related research in these three �elds.

91

6.2.1 Stochastic simulation

For systems subject to uncertainty, stochastic simulation techniques may either estimate of

a system's state, known as �ltering, or predict the future evolution, known as forecasting.

Early �ltering techniques relied on mathematical properties of stochastic systems to derive

closed-form solutions. By exploiting system dynamics and uncertainty models that result

in conjugate distributions, solutions to the �ltered state are readily obtained, in closed-

form, and can be iteratively updated. The most widely cited example of such an approach

is Kalman �ltering [16]. Kalman �ltering assumes a linear Gaussian system. As such,

the predicted state at each stage is described by a Gaussian distribution over the state.

However, the restrictions placed on the system dynamics and uncertainty are often too

severe. Researchers expanded Kalman �ltering to nonlinear systems (refer to [17]) and later

to multi-modal uncertainty via mixture of Gaussians [18]. These and related projection-

based approaches, e.g. [22�24, 82], are referred to as parametric approaches because they

restrict the uncertainty model to a parametrized family of distributions.

Nonparametric methods make no such restrictions about the family of distributions and

are often sampling based. Based on Monte Carlo methods, sequential Monte Carlo or parti-

cle �ltering [58�69] recently has come to dominate the stochastic simulation literature. By

retaining a set of samples, a point-based simulation is possible, which alleviates the dif-

�culty of propagating distributions through the process model. However, sampling from

arbitrary distributions may not be feasible and signi�cant research has focused on sampling

methods (see [57]). Provable convergence under general conditions [69] and their ease of

implementation contributed to the quick adoption of particle �ltering.

Our approach utilizes a nonparametric method for forecasting the behavior of a system.

The method we use expands the particle �ltering framework to forecasting. A description of

this approach is provided in Section 4.1. The method we present is not limited to this method

of forecasting; other forecasting methods that generate sample paths may be adapted to our

92

framework. Our method relies on a sequential chain of actions and observations to represent

one possible path, whereby the entire forecasted evolution comprises a set of sample paths.

6.2.2 Perturbation analysis

Perturbation analysis computes power series expansions around a small parameter to obtain

approximations of systems that cannot be solved exactly (refer to [83]). Function approxi-

mation using Taylor's series is related in the sense of approximating an arbitrary function

using a power series. The Stone-Weierstrass theorem [84] established that any continuous

function on a bounded interval can be uniformly approximated to any precision by a poly-

nomial. Local, or neighborhood, sensitivity analysis (refer to [85]) evaluates the derivative

at a sample point to estimate the e�ect a small change has on the output of the system. In

this way, the e�ect of uncertainty in the input on the output can be measured. Such analysis

is a �rst order formulation of perturbation analysis where the parameter of interest is the

input variable.

Signi�cant research has been invested to study the sensitivity of the stationary point of

Markov chains and semi-Markov chains to perturbations in the transition matrix [86,87] or to

the total cost [88]. Research into hidden Markov models, uncontrolled variants of POMDPs,

analyze the the Lyapunov exponents of hidden Markov models to determine their forgetting,

i.e. reduction of the e�ect of a perturbation on the initial condition [89] and entropy rate [90],

which is the average entropy and is a function of the stationary distribution. Much of the

research into sensitivity analysis of POMDPs has been directly towards policy gradient

methods [91�93]. As an extension of policy iteration, policy gradient methods derive an

approximate derivative over the policy space. Using standard optimization methods like

gradient descent, a locally optimal policy can be attained. Using bounds on the parameters

de�ning a POMDP, namely the transition, observation, and cost functions, Ross et al. in [94]

explore the e�ect such changes have on the optimal policy.

93

The technique we present focuses on the e�ect of a perturbation of the initial belief

for a given policy. The e�ect of a perturbation is not only informative in understanding

the sensitivity of the transition function under a given policy, but crucial in composition of

policies.

6.2.3 POMDP optimization

The two canonical methods for �nding optimal policies are value iteration, a dynamic pro-

gramming (DP) approach, and policy iteration. Value iteration operates backwards, propa-

gating optimal value or cost-to-go, from the terminal stage to the initial stage. Conversely,

policy iteration operates in the policy space rather than on the belief (or state) space. It

begins with an initial policy and at each iteration searches for changes to the policy that

improve performance. With either algorithm, �nding the exact solution is intractable [32],

with a best known time complexity that is exponential in the time horizon K, i.e. the

number of stages into the future optimize considers.

However, �nding policies for partially observed systems is desired for many real-world

problems, so researchers have focused on �nding e�cient approximation methods to solve

POMDP models. Many recent approximation methods sample points in belief space and

use the Bellman equation to compute the value function over this subset of the belief space.

Thrun in [5] proposed a sampling based on Monte Carlo integration to estimate the one

stage Bellman backup. Soon after, this method was augmented by retaining a linear func-

tion around each sampled belief (referred to as the α-vector) in [6]. Because of the better

representation of the value function over the entire of the belief space, this technique was

adopted in most of the subsequent sampling-based methods, e.g. [6, 8, 10,11].

Sampling-based methods, however, su�er from the computational burden of performing

the Bellman backup for a single stage. This requires a signi�cantly more dense sampling of

the belief space to obtain a representative set of meaningful beliefs. To overcome this limi-

94

tation, temporal and spatial abstraction techniques have been developed. Researchers �rst

developed the notion of temporal abstraction for optimizing options (policies) for Markov

decision processes [50�55]. Methods to build a sampling-based abstraction for partially ob-

served systems soon followed [37,44�49,56]. While varied in their approaches and aims, each

of these methods use a hierarchical representation to sparsely sample both the temporal and

spatial domain of POMDP systems.

The approach we present in Section 6.3, attempts to bring the same gains of α-vectors

to spatially and temporally abstracted techniques. Furthermore, the sensitivity analysis

developed may further enhance active learning techniques that use adaptive sampling to

e�ectively explore the belief space Chapter 7.

6.3 Perturbation Analysis

The technique we present enables simulations from various initial positions in the belief

space to be generated and then connected together to build chained simulations. Because it

is unlikely that any terminal belief of any simulation will coincide exactly with the starting

beliefs of other simulations, we characterize the e�ect a perturbation from the starting belief

has on both the running cost of a policy as well as the set of terminal beliefs. Using this

result, we can chain forecasted evolutions together regardless of whether the terminal beliefs

of one simulation attain the starting beliefs of other simulations. We note, however, that the

e�ectiveness of the chaining process is directly related to the richness of the set of sampled

simulations, including the locations of initial belief; a poorly sampled set of initial beliefs

will produce poor approximations of chained simulations.

On the surface, such an approach may appear dubious: it seems the error will compound

from one stage to the next, from simulation to simulation, and, thus, the resulting error will

grow rapidly, quickly rendering the analysis meaningless. This, however, is not the case.

Both Markov chains as well as hidden Markov models, which consider partial observability

95

for uncontrolled systems, are naturally insensitive. Insensitivity in our context refers to

systems for which there is a non-strict contraction of the distance between pairs of beliefs

from one stage to the next. This de�nition encapsulates both conservative and dissipative

systems. Locally, insensitivity refers to systems for which the non-strict contraction only

holds in the neighborhood around some reference belief. Global insensitivity holds when

the non-strict contraction is observed for any pair of beliefs in the belief space. Irreducible

ergodic3 Markov chains (MCs) and HMMs are globally insensitive.

To establish the global insensitivity of MCs and HMMs, we must �rst de�ne the mea-

sure for which the contraction is evaluated. Information theoretic analysis often uses the

Kullback-Leibler divergence, or relative entropy, as a measure in the belief space.

The Kullback-Leibler (KL) divergence between two beliefs b and b′, both from Pb is

de�ned as

dKL(b′||b) =
∑
x

b′(x) ln
b′(x)

b(x)
,

where b(x) > 0 for any x such that b′(x) > 0.

KL-divergence is a non-symmetric measure of the similarity of two probability functions.

For Markov chains (see [95, pg. 34]), it has long been established that the KL divergence

between beliefs is greater or equal to the KL-divergence of their predicted beliefs:

dKL(b′||b) ≥ dKL(Tub
′||Tub).

This property holds for any transition function Tu that is ergodic and for any pair of beliefs

b′ and b in the belief space. Because of this property, every ergodic Markov chain has a

stationary distribution. An illustration of this is depicted in Figure 6.1a. KL-divergence

between each pair of updated beliefs taken over all observations will not increase relative to
3A Markov chain is said to be ergodic if every state is aperiodic (the transition back to a state occurs at

irregular times) and positive recurrent (transition back to a state occurs with positive probability in �nite
time).

96

(a) The distance between beliefs at stage dk can only decrease after prediction, i.e,
dk+1|k ≤ dk

(b) The expected distance dk+1 of the updated hyperbelief (taken with respect to
the random observations) can only be less than dk|k+1

Figure 6.1: Example of convergence properties of Markov processes

the KL-divergence between two beliefs b and b′ :

dKL(b′||b) ≥ Ey

[
dKL

(
Oyb

′

1TOyb′
|| Oyb

1TOyb

)]
.

In Figure 6.1b the updated beliefs for several observations are illustrated. While the distance

may grow between updated beliefs for a particular observation (as shown for y3), the expected

distance taken over all possible observations is non-increasing. The combination of these two

results implies that expectation over all pairs of future beliefs is non-strictly decreasing from

one stage to the next:

dKL(b′k||bk) ≥ Eyk+1

[
dKL

(
Oyk+1

Tukb
′

1TOyk+1
Tukb

′ ||
Oyk+1

Tukb

1TOyk+1
Tukb

)]
(6.1)

= Eyk+1
[dKL (φ(b′k, uk,yk+1)||φ(bk, uk,yk+1)]. (6.2)

Boyen and Koller [24] build on these two properties to de�ne a minimal mixing rate

97

between states in the transition model of a dynamic Bayesian network, which is a generalized

version of an HMM. All properties they prove extend to HMMs, and POMDPs are controlled

HMMs. They then show that if the minimal mixing rate is nonzero, then the expected

distance between two initial beliefs will strictly decrease from one stage to the next. Methods

that derive a similar notion of mixing demonstrate the exponential uniform convergence (or

forgetting) of the initial belief [96]. The mixing assumption of Boyen and Koller is quite

strong. Weaker assumptions including pseudo-mixing in [97] were established that broadened

the analysis to more general systems. Our approach was developed to take advantage of these

properties.

When considering controlled partially observed systems (i.e., POMDPs), we must also

consider the e�ect of the policy on the insensitivity of the system's evolution. Fortunately,

it is often the case that feedback policies attenuate disturbances such as variation in the

initial condition. The coupling of the inherent insensitivity of stochastic systems with the

attenuating property of feedback policies supports the notion that perturbations ∆bk from

the reference belief bk at each stage k will in fact decrease from stage to stage along a sample

path, so that d(bk||bk + ∆bk) ≤ d(bk−1||bk−1 + ∆bk−1).

While feedback policies typically attenuate disturbances, bifurcations in the forecasted

evolution are still possible for small perturbations. Bifurcation occurs when sample paths

between two beliefs diverge because the policy executed by the system selects actions that

pull the beliefs at each stage further from one another. Consider the example illustrated in

Figure 6.2. The switching surface between u4 and u7 is shown. While the initial action for

both bk and b′k were both u7, the action changes between b′k+1 and bk+1. Because there may

exist an arbitrary region for each control action, it is possible that the paths between b′0 and

b0 to diverge when executing a general feedback policy.

However, such bifurcations will often only occur in a small set of regions of the belief

space. For the duration of our analysis we will assume these regions are negligible and that,

for some speci�ed policy, local insensitivity holds within some measurable neighborhood

98

around every belief in the belief space. In Section 5.5, experimental results of the sensitivity

of various benchmark problems will be presented to support this claim.

The policy set Π comprises all policies π for a given POMDP system, with belief transition

function φ (refer to (2.7) in Section 2.1), such that, for some δ > 0,

Eyk+1
[d(φ(b′k, π(b′k),yk+1) ||φ(bk, π(bk),yk+1)] ≤ d(b′k||bk), or

Eyk+1
[d(b′k+1 || bk+1)] ≤ d(b′k||bk)

for all b ∈ Pb and b′ ∈ Pb such that d(b′||b) ≤ δ. The measure d(·||·) is KL-divergence or

another appropriately de�ned measure over the belief space.

By restricting policies thusly we adapt the contraction of the expected distance of beliefs

under the same action in (6.2) to the contraction of the expected distance of beliefs under the

same policy. This assumption eliminates the possibility of bifurcations occurring for a policy

within some local neighborhood, which ensures that insensitivity is retained. The results

obtained by our perturbation analysis and chaining process, therefore, will be representative

of the chained forecasted evolution. This is a strong assumption/limitation. Relaxing this

restriction is an important future step for this research.

Instead of restricting the policy space, we could perform perturbation analysis on the

policy itself. Policy gradient methods [91�93] are one such approach. These methods modify

the policy to be a continuous function of the belief space. This formulation would allow us

Figure 6.2: Switching surface for two actions resulting in a change in policy for a large
enough perturbation to the initial belief bk

99

to perform perturbation analysis on the policy itself, which could then be integrated into

the perturbation analysis we present below.

We present the perturbation analysis in three parts. First, we determine the sensitivity of

the evolution of the system as represented by a set of sample paths. Next, we determine the

sensitivity of the running cost for a sample path set. Finally, we outline the method to chain

forecasted evolutions together, so we can represent the running cost along an arbitrarily long

chain of forecasted evolutions.

6.3.1 Policy sensitivity

As a forecasted evolution is being simulated, a set of representative sample paths under a

given policy originating from the initial belief is generated. Each sample path represents

a possible evolution of the system. In our analysis, we use hyper-particle �ltering [56]4 to

generate the sample paths. Each k-stage sample path is characterized by an information

vector I(i)
k = {u(i)

0 , u
(i)
0 , . . . , u

(i)
k−1, u

(i)
k }.5 We use the notation I(i)

k to denote the information

vector at stage k of the i-th sample path in the ensemble forecast. Each stage of evolution

appends an action generated by policy π and observation to the information vector.

The complete set of sample paths Ik from b0 under π represents the complete set of

possible evolutions of the POMDP system. There are in actuality |Y|k possible sample paths

(if all actions are considered the number grows to (|U||Y|)k.We will assume, henceforth, that

a small subset of possible paths has been simulated, which we will denote as Ĩk. The set

of information vectors represents likely sample paths the system follows under the policy

π. Thus, we de�ne a forecasted evolutions as the collection of sample paths Ĩk. As an

example, in Figure 6.3, the information vector I(3)
4 evolves from b0 under {u(3)

0 , y
(3)
1 , . . . , y

(3)
4 }

to terminate at b(3)
4 .

We desire a representation of the e�ect of a perturbation to an initial belief b(i)
0 has on

4An overview of hyper-particle �ltering is provided in Section 4.1.
5We remove b0 from the information vector because we will be analyzing the e�ect perturbations ∆b0 to

the sample path represented by I
(i)
k .

100

Figure 6.3: Forecasted evolution as represented by a series of sample paths {I(i)
4 }i = Ĩ4,

which is generated from vertex b0 under policy π

the belief b(i)
k for the sample path represented by I(i)

k for all I(i)
k in Ĩk. To achieve this we will

�rst determine, the e�ect a perturbation of a belief on the next stage, e.g. the e�ect ∆b
(i)
k−1

has on ∆b
(i)
k . Next, we use this result to derive a formulation of ∆b

(i)
k directly in terms of

∆b
(i)
0 . Finally, we derive the e�ect a perturbation in the initial belief has on the probability

of a sample path occurring.

The sensitivity ∆bk, for a single stage, due to perturbation ∆bk−1 to bk−1, subject to

control action uk−1 and observation yk is

bk + ∆bk =
φyk,uk−1

(bk−1 + ∆bk−1)

1Tφyk,uk−1
(bk−1 + ∆bk−1)

(6.3)

∆bk =
φyk,uk−1

(I− bk1
Tφyk,uk−1

1Tφyk,uk−1
bk−1

)∆bk−1

1Tφyk,uk−1
(bk−1 + ∆bk−1)

. (6.4)

We arrive at this simply by substituting bk−1 with bk−1 + ∆bk−1 and bk with bk + ∆bk into

(2.7), from Section 2.1, and then solve for ∆bk. The derivation of this result is in Remark

6.1 from Section 6.7.1.

Because the transition function for any observation and action is a ratio of linear functions

we can recursively represent the evolution along a sample path represented by the information

101

vector Ik at stage k as

bk =
φIkb0

1TφIkb0

, (6.5)

where the composite belief transition function is de�ned as

φIk = φyk,uk−1
φyk−1,uk−2

· · ·φy1,u0 .

This is established in Proposition 6.1 in Section 6.7.1. To derive the perturbation at stage

k relative to the initial stage 0, we substitute b0 + ∆b0 for b0 and bk + ∆bk for bk into (6.5)

and solve for ∆bk to obtain:

∆bk =
φIk(I−

b01TφIk
1TφIk b0

)∆b0

1TφIk (b0 + ∆b0)
. (6.6)

The denominator in (6.5) is a normalization factor. If we neglect this normalization term

and instead propagate the unnormalized perturbation b̄k, where bk = b̄k
1T b̄k

=
φIk b0

1TφIk b0
, we

observe that the projection is a linear function. Essentially, we analyze the evolution of the

system in the Euclidean space the belief space is embedded within, rather than projecting b̄k

onto the simplex at every stage along the sample path, we delay normalization until stage k.

This notion is illustrated in Figure 6.4, for a simple example comprising three states. As we

can see in the �gure the vector b̄k = φIkb0 transforms b0 to a new location b̄k ∈ R3. However,

the predicted belief is not a true probability function. In fact, it will necessarily sum to less

than one (the eigenvalues of both Tu and Oy are less than or equal to one for all u ∈ U and

y ∈ Y). Normalization projects the predicted belief onto the belief simplex to produce bk.

We can extend this insight to (6.6). Neglecting the denominator, the unnormalized

perturbation becomes

∆b̄k = φIk

(
I− b̄01

TφIk
1TφIk b̄0

)
∆b0

102

Figure 6.4: Delayed projection of predicted beliefs onto the belief simplex

103

When propagating the unnormalized perturbation, we can scale the perturbation arbitrarily,

i.e, bk = αb̄k
1T (αb̄k)

= b̄k
1T b̄k

, where, α 6= 0. Scaling by 1TφIkb0, so that

∆bk ≈
φIk(I−

b01TφIk
1TφIk b0

)

1TφIkb0

∆b0

=
φIk

1TφIkb0

(I− b01
TφIk

1TφIkb0

)︸ ︷︷ ︸
∇b0η(φIk b0)

∆b0, (6.7)

brings the unnormalized delta closer to the surface of the simplex and, thus, the perturbed

belief nearer to the normalized belief. Interestingly, this result in (6.7) is identical to the �rst

derivative ∇b0η(φIkb0) along sample path Ik taken with respect to b0 (as derived in Theorem

A1 in Section 6.7.1).

By evaluating the perturbation in the evolution this way, we will need to normalize the

belief at stage k before evaluating the cost. The unnormalized belief is just a linear function

of the initial unnormalized belief. This property will become useful when chaining forecasted

evolutions, which we will demonstrate below in Section 6.3.2.

To determine the perturbation of the the forecasted evolution of the system, we need

the formulation of not only the e�ect of the perturbation of the initial belief b0 on b
(i)
k at

each stage k, but also the probability of the sample path I(i)
k occurring for each I(i)

k ∈ Ĩk.

We show in Proposition 6.2 in Section 6.7.1 that if each sample path produces a unique

belief (so that no two sample paths produce the same belief), the probability of a belief bk

occurring starting from b0 is equal to the probability of the sample path for which the belief

was generated, or

p(b
(i)
k) = p(I

(i)
k | b0) = 1Tφ

I
(i)
k
b0. (6.8)

This probability of a sample path is de�ned over all possible paths at stage k, i.e Ik. Using

ensemble forecasting we approximate the forecasted evolution with only a subset Ĩk of the

possible sample paths. The result is an approximation of the forecasted evolution whereby

104

the total probability of the subset of sample paths is less than one. To account for this, we

normalize the resulting weight by

µk =
∑
I
(i)
k ∈Ĩk

p(I
(i)
k |b0).

The approximated sampling weight, which approximates the probability of belief bk, being

sampled is

w
(i)
k =

1Tφ
I
(i)
k
b0

µk
.

Weighting each sample path this way only holds when the sampling method used to gen-

erate sample paths is an unbiased sampling method, which is an assumption of Proposition

6.2 in Section 6.7.1. If a di�erent sampling function is used, such as an arbitrary importance

sampling function, then the sensitivity of the sampling function generating the sample path

must also be considered, as any other sampling function biases the probability of a sample

path occurring.

If the sampling of Ĩk is unbiased, by retaining the same set of sample paths for a perturbed

belief, we are biasing the simulation for the perturbed belief. We address this bias using

methods derived from importance sampling techniques. The existing set of sample paths

will not occur with the same probability for a perturbed initial belief. The perturbation

of the probability of the sample path is similar to the weighting of typical particle �ltering

methods (refer to [57] for a survey of particle �ltering techniques).

Importance sampling techniques reduce bias by dividing the true probability distribu-

tion by probability of the importance sampling function generating the sampled value. For

instance, consider a true distribution p(·) and some function g(·),

E[g(b)] =
∑
b∈Pb

g(b)p(b).

However, we will approximate the expectation using a set of samples generated from q(b),

105

known as the importance sampling function. We denote the set of samples as P̃b ⊂ Pb. The

approximated expectation evaluated over P̃b becomes

E[g(b)] ≈
∑
b∈P̃b

g(b)
w(b)∑
b∈P̃b w(b)

,

where

w(b) =
p(b)

q(b)
.

This result is established in [98, p. 54]. We can simplify notation by de�ning µ =
∑

b∈P̃b w(b)

and expressing expressing w(b) directly in terms of p(b)/q(b):

E[g(b)] ≈
∑
b∈P̃b

1

µ
g(b)

p(b)

q(b)
. (6.9)

The expectation of a function of a random variable with a probability function p(b) can be

represented as the expectation of another random variable with the probability function q(b)

by weighting g(b) by the ratio of p(b) and q(b). The weighting of each sample by the ratio

p(b)/q(b) reduces the bias of the importance sampling on the expected value:

E[g(b)] ≈
∑
b∈P̃b

1

µ
g(b)

p(b)

q(b)
q(b) =

∑
b∈P̃b

1

µ
g(b)p(b).

The expectation above is taken over q(b) because q(b) is the probability function used to

sample P̃b.

Thus, to alleviate the bias introduced by reusing the same set of sample paths, we adjust

the weight of each sample. Observing that p(I(i)
k |b0 + ∆b0) plays the role of p(b) in (6.9)

and the importance sampling function, q(b) = p(I
(i)
k |b0), the adjusted weight of each path

106

becomes

1

µ

p(b)

q(b)
=

1

µ

(
p(I

(i)
k |b0 + ∆b0)

p(I
(i)
k |b0)

)
(6.10)

=
1

µ

(
1Tφ

I
(i)
k

(b0 + ∆b0)

1Tφ
I
(i)
k
b0

)

=
1

µ

(
1 +

1Tφ
I
(i)
k

∆b0

1Tφ
I
(i)
k
b0

)
.

To ensure we are taking the expectation, we normalize the weights sum to one via 1
µ
, where

µ =
∑
I
(i)
k ∈Ĩk

p(I
(i)
k |b0 + ∆b0)

p(I
(i)
k |b0)

.

In essence, we scale the weight of each path to account for the changing likelihood of a

sample path occurring.

The forecasted evolution under a perturbation in the initial belief can be approximated

using this biased set of sample paths. What we see from the perturbation analysis is that

the unnormalized belief (6.7) and belief probability (6.8) are linear functions of the initial

belief. We will demonstrate below in Section 6.3.2 that we can reformulate the problem to

avoid weighting each belief at each stage.

Each perturbed belief along a sample path is a ratio of a�ne function of the initial be-

lief b0, where the numerator is a vector and the denominator is a scalar. The denominator

normalizes the vector to project the product of φIkb0 onto the belief simplex. This normaliza-

tion is the only nonlinear factor and is the only complication when predicting the perturbed

evolution along a sample path. However, because the normalization is an inverse value of

a scalar �eld, as we show in Theorem A3 from Section 6.7.3 , higher order approximations

do not require an exponential increase in the number of parameters describing the Taylor's

series approximation.

The composite belief transition function under information vector I(i)
k can by be obtained

107

iteratively through the product of φ
I
(i)
s−1
φys,us−1 for s = 1 . . . k. If X is the number of states

in X , the product at each stage is e�ectively a matrix multiplication, which has O(X2.38)

time complexity [99] for the exact solution and an approximate solution can be obtained in

O(X2) [100]�both using O(X2) space. If the transition matrix is su�ciently sparse so that

the number of nonzero entries is O(X
1
2). If the composite matrix remains sparse (which we

can enforce via approximation methods), the time complexity of matrix multiplication can

be reduced to sub-quadratic time complexity. This process must be performed for each of

the P sample paths representing the forecasted evolution, which requires storage of φ
I
(i)
k
, for

each I(i)
k ∈ Ĩk.

We de�ne O(S) as the time complexity of sampling an observation, K as the time horizon,

P as the number of sample paths in Ĩk, and O(M) as the time complexity required for the

policy to select an action. If we consider approximate matrix multiplication, both standard

ensemble forecasting and the perturbation analysis we present have a time complexity of

O(KP (X2 +M +S)). However, once simulated our approach requires only O(PX2) to eval-

uate the e�ect of a perturbation. Unfortunately, the additional space complexity increases

from a constant, O(1), to O(PX2). Both this time complexity and space requirement may

indicate that further compression/approximation of the sample paths should be performed.

This remains an area of future research.

6.3.2 Running cost sensitivity

Besides generating the e�ect of a perturbation on the set of terminal beliefs, we need to

represent the e�ect a perturbation has on the running cost of a forecasted evolution. For the

duration of the analysis, we assume an expected-state cost function, so the cost is a linear

function over the belief space. We will denote the expected-state cost function c(b(i)
k , u

(i)
k) as

cT
u
(i)
k

b
(i)
k , where cT

u
(i)
k

is a row vector. We derive results for general nonlinear cost functions in

Section 6.7.3.

108

The total cost for a time horizon K under policy π for an expected state cost, from 3.1

in Section 3.1 with γ = 16, is given by

V (b0) = E

[
K∑
k=0

c(bk, π(bk)) | b0

]
(6.11)

=
K∑
k=0

∑
I
(i)
k ∈Ik

cT
u
(i)
k

b
(i)
k p(I

(i)
k |b0) (6.12)

=
K∑
k=0

∑
I
(i)
k ∈Ik

cT
u
(i)
k

φ
I
(i)
k
b0

1Tφ
I
(i)
k
b0

1Tφ
I
(i)
k
b0 (6.13)

=

 K∑
k=0

∑
I
(i)
k ∈Ik

cT
u
(i)
k

φ
I
(i)
k

 b0. (6.14)

The �rst equation is the de�nition of the total cost from b0. In (6.12), we give the explicit

formulation of the expected cost. The probability p(I(i)
k |b0) = 1Tφ

I
(i)
k
b0 from Proposition 6.2

and b(i)
k =

φ
I
(i)
k

b0

1Tφ
I
(i)
k

b0
from Proposition 6.1 are used to obtain (6.13). Finally, (6.14) is achieved

by simplifying (6.13).

The important observation is that b0 can be pulled outside both summations. Thus,

each of the vectors, cT
u
(i)
k

φ
I
(i)
k
, can be summed together into one vector αT , so that the total

running cost is simply:

V (b0) = αT b0.

The running cost for a perturbed belief b0 + ∆b0 is simply: Vπ(b0 + ∆b0) = αT (b0 + ∆b0).

Unfortunately, this result only holds if all possible sample paths are simulated. When

only a subset of sample paths are simulated, the e�ect of the approximation has to be

considered. To avoid re-simulation, we use the existing sample paths, which act as the

importance sampling function for the perturbed initial belief. We must, therefore, attenuate

bias introduced when using the existing sample paths for a perturbed initial belief. For
6By setting γ = 1, we derive an expression for inde�nite, �nite-time horizon problems. Simply substituting

γ back into the following equations produces a formulation for discounted in�nite horizon problems.

109

simplicity we will denote b0 + ∆b0 = b′0 and µk + ∆µk = µ′k. The bias adjusted running cost,

derived from (6.11), becomes:

V (b′0) =E

[
K∑
k=0

c(bk, π(bk)) | b′0

]
(6.15)

K∑
k=0

1

µ′k

∑
I
(i)
k ∈Ĩk

cT
u
(i)
k

b
(i)′

k

p(b
′

k|b
′
0)

q(b
′
k|b
′
0)

(6.16)

K∑
k=0

1

µ′k

∑
I
(i)
k ∈Ĩk

cT
u
(i)
k

b
(i)′

k

p(I
(i)
k |b′0)

p(I
(i)
k |b0)

(6.17)

=
K∑
k=0

 ∑
I
(j)
k ∈Ĩk

1Tφ
I
(j)
k
b′0

1Tφ
I
(j)
k
b0


−1 ∑

I
(i)
k ∈Ik

cT
u
(i)
k

φ
I
(i)
k
b′0

1Tφ
I
(i)
k
b′0

1Tφ
I
(i)
k
b′0

1Tφ
I
(i)
k
b0

(6.18)

=
K∑
k=0

( ∑
I
(j)
k ∈Ĩk

1Tφ
I
(j)
k

1Tφ
I
(j)
k
b0


︸ ︷︷ ︸

ξTk

b′0

)−1

 ∑
I
(i)
k ∈Ik

cT
u
(i)
k

φ
I
(i)
k

1Tφ
I
(i)
k
b0


︸ ︷︷ ︸

αTk

b′0 (6.19)

=
K∑
k=0

1

ξTk b
′
0

αTk b
′
0. (6.20)

The second equation, (6.16), follows from the formulation of the e�ect of biased sampling

on the expected cost from (6.9). Next, (6.17), follows from 6.9 where p(b) is represented as

p(b
′

k|b
′
0) and q(b) is represented by q(b

′

k|b
′
0). We use the existing set of sample paths for the

importance sampling function so q(b
′

k|b
′

k) = p(bk|b0). From Proposition 6.2 in Section 6.7.1,

we observe that p(b
′

k|b
′
0) = p(I

(i)
k |b

′
0) and p(bk|b0) = p(I

(i)
k |b0). The term 1/µ

′

k is a normalizing

factor de�ned as the sum of the weights of each belief at stage k, where

µ
′

k =
∑
I
(i)
k ∈Ĩk

p(I
(i)
k |b′0)

p(I
(i)
k |b0)

.

Because we generated the sample path set from b0 using the true probability function, the

110

Figure 6.5: Linear approximation of the normalizing function: 1
µ′k

biased probability the sample path occurring is p(I(i)
k |b0) = 1Tφ

I
(i)
k
b0, which was derived

from Proposition 6.2 in Section 6.7.1 and substituting b(i)′

k =
φ
I
(i)
k

b
′
0

1Tφ
I
(i)
k

b
′
0

. The perturbed initial

belief ∆b0 is pulled out of the summations to arrive at (6.19).

Unfortunately, the result (6.20) is a ratio of linear functions. The inverse dependence on

b′0 infringes upon our ability to reduce the expression into a compact form that is expressed as

a single term. Instead, (6.20) is expressed as a summation over all stages. We note, however,

a linear approximation of 1/µ′k is often reasonable for perturbations within a neighborhood

of b0, which suggests we can approximate the ratio of linear functions as a linear function.

We can sum the components of a linear representation to obtain a compact form.

For perturbations within a neighborhood of b0, µ′k ≈ P , which is the number of sample

paths, i.e.

∑
I
(i)
k ∈Ĩk

p(I
(i)
k |b0 + ∆b0)

p(I
(i)
k |b0)

≈
∑
I
(i)
k ∈Ĩk

p(I
(i)
k |b0)

p(I
(i)
k |b0)

=
∑
I
(i)
k ∈Ĩk

1 = P,

which is strictly greater than one. This notion is illustrated in Figure 6.5. As depicted, where

µ′k = ξTk b
′
0, the approximation due to a perturbation is better bounded as µ′k increases. The

111

illustration in Figure 6.5 is for a scalar value�not a scalar �eld�but the concept extends to

higher dimensions. As can be seen a perturbation ∆µ′k results in a small perturbation in

1
µ′k+∆µ′k

in the neighborhood around µ′k = P .

A linear approximation is a reasonable representation as long as ξTk b
′
0 is not signi�cantly

less than one. Fortunately, this is the case as

ξTk (b0 + ∆b0) =
∑

I
(j)
k ∈Ĩk

1Tφ
I
(j)
k

(b0 + ∆b0)

1Tφ
I
(j)
k
b0

=
∑

I
(j)
k ∈Ĩk

[
1 +

1Tφ
I
(j)
k

∆b0

1Tφ
I
(j)
k
b0

]
.

Dividing by 1Tφ
I
(j)
k
b0 shifts 1TφI(j)k

(b0 + ∆b0) closer to one (or greater than one). Moreover,

the sum is taken over all the sample paths which further increases the total weight.

To determine the �rst order Taylor series approximation, we �rst need to determine the

�rst order derivative of (6.20) at each stage k:

∇b0

(
1

ξTk b
′
0

αTk b
′
0

)
=

1

ξTk b
′
0

∇b0

(
αTk b

′
0

)
+∇b0

(
1

ξTk b
′
0

)
αTk b

′
0

=
1

ξTk b
′
0

αTk −
ξTk

(ξTk b
′
0)2
αTk b

′
0 (6.21)

=
αTk
ξTk b

′
0

− αTk b0ξ
T
k

(ξTk b
′
0)2

. (6.22)

Now, the �rst order Taylor series expansion, which becomes our approximated running cost,

is given by

112

V (b0 + ∆b0) =
K∑
k=0

1

ξTk b
′
0

αTk b
′
0. (6.23)

≈
K∑
k=0

[
αTk b0

ξTk b0

+
1

1!
∇b0

(
1

ξTk b
′
0

αTk b
′
0

)
∆b0

]
(6.24)

=
K∑
k=0

αTk b0

ξTk b0︸ ︷︷ ︸
V sim

+
K∑
k=0

(
αTk
ξTk b0

+
αTk b0ξ

T
k

(ξTk b0)2

)
︸ ︷︷ ︸

αT

∆b0 (6.25)

=V sim + αT∆b0, (6.26)

where V sim denotes the simulated result for the reference belief b0. The �rst equation

is a restatement of (6.20) for b′0 = b0 + ∆b0. The �rst order Taylor series expansion is

the simulated value αTk b0
ξTk b0

plus the �rst order derivative derived in (6.22) weighted by ∆b0.

Substituting this �rst order approximation into (6.23) to obtain (6.25). The �nal result in

(6.26) is a linear function of ∆b0. Note that αT is the running cost Jacobian that is the

weighted sum of each Jacobian αTk at stage k.

The result with (6.26) is that the running cost over all stages and sample paths is approx-

imated by a single linear equation. This compact representation comes at the trade-o� of

exactness. To achieve, we assume that the same set of actions and observations occur for a

perturbed belief. While locally this is likely the case, the question remains to the size of the

neighborhood around the sampled belief b0 for which this is the case. This issue is somewhat

mitigated by the fact that stochastic systems are generally insensitive and perturbations are

attenuated over time.

Using (6.26), computing the running cost for a forecasted evolution under a perturbed

belief is reduced from O(KP (X2+M+S)) to O(PX2), where O(M) is the time complexity of

determining the next control action for each belief, O(S) is the time complexity of generating

the sample observation, P is the number of sample paths in ĨK , andX is the number of states

in the system. If a �rst-order approximation is used instead, the time complexity reduces to

113

O(X), which results from computing a dot product, which has O(X) time complexity, and

and adding a constant value. We note, however, that generating (6.26) requires simulating

the system which has time complexity O(KP (X2 +M +S)), as described earlier. Once this

term is calculated, re-evaluation of the running cost has the reduced O(X) time complexity

.

We can see that if there are U actions and the policy function takes minimally O(X2U)

time complexity to determine the next best action, e.g., expected distance from goal state,

the savings is substantial when the time horizon is long. However, as with the transition

sensitivity function. The savings in time complexity is o�set by space complexity. Each

sample path requires the running cost Jacobian to be retained requiring O(X) space. Thus,

the total space complexity for each forecasted evolution is O(X).

6.4 Chaining Sensitivity Functions

Once a su�cient set of forecasted evolutions has been simulated, the chaining process may

proceed. The intent of the chaining process is to extend forecasting of a POMDP's behavior

beyond a single forecasted evolution. This way, forecasted evolutions for long time-horizons

that start from a variety of initial beliefs can be approximated by leveraging the existing set

of forecasted evolutions. In Figure 6.6 we illustrate this concept. Up to this point, we have

only discussed a single forecasted evolution as represented by ĨK . Now, however, we will

consider a set of forecasted evolutions. For clarity we drop the time index and add notation

to index the forecasted evolution, so that set of forecasted evolutions is denoted as {Ĩ(s)}s.

The initial belief for the forecasted evolution Ĩ(s) is denoted as b(s) with no time index.

Suppose that we have an existing set of forecasted evolutions {Ĩ(s)}s (Figure 6.6a). Con-

sider, for example, the case when we want to forecast the system starting from the new

belief b(4). First, we simulate the system from b(4) for a number of stages to create a new

forecasted simulation Ĩ(4). The result of this process is depicted in Figure 6.6b. Then, the

114

(a) Existing set of forecasted evolutions: Ĩ(1),Ĩ(2), andĨ(3).

(b) Adding a new forecasted evolution and selecting the forecasted
evolutions to chain.

Figure 6.6: An illustration of the chaining process

terminal beliefs of the new forecasted evolution are compared to the starting beliefs of the

existing forecasted simulations. The nearest starting belief b(s) to each terminal belief b(i)
K is

selected to join with the new forecasted evolution. We can see in Figure 6.6b that b(1)
K and

b
(2)
K are closest to b(1) and b

(3)
K is closed to b(2). Thus, Ĩ(4) is to be joined with Ĩ(1) and Ĩ(2).

To ease description, we will henceforth, describe the new forecasted evolution as a source

forecasted evolution and each of the forecasted evolutions to be joined as a target forecasted

evolution. In this example Ĩ(4) is the source forecasted evolution and Ĩ(1) and Ĩ(2) are target

forecasted evolutions.

Chaining forecasted evolutions together using our approach relies on a set of forecasted

evolutions having already been simulated, whose initial beliefs cover a representative portion

of the belief space. If the set of forecasted evolutions is too sparse, then the quality of the

chaining approximation will su�er. We do not present any analysis of the error of sparsity

on the chaining process beyond the residual error of the perturbation approximation (refer

to Theorem A6 from Section 6.7.3).

115

6.4.1 Chaining sample paths

Once the set of forecasted evolutions to be chained are selected, the next step is to generate

the chained representations of the sample paths that comprise the chained forecasted evolu-

tion. Chained sample paths are easily computed; joining paths is equivalent to joining the

information vectors of two sample paths. For instance, suppose we are generating a chained

forecasted evolution from the source Ĩ(s). We denote the resulting chained forecasted evolu-

tion as Ĩ(w). If we combine I(i) ∈ Ĩ(s) with target I(j) ∈ Ĩ(s) to generate I(l) ∈ Ĩ(w) , then

the chained information vector is

I(l) = I(i) ∪ I(j) ≡ {u(i)
0 , y

(i)
1 , . . . u

(i)
K−1, y

(i)
K , u

(j)
0 , y

(j)
1 , . . . u

(j)
K−1, y

(j)
K },

where both I(i) and I(j) execute for K stages7. The chained sample path transition matrix

under the joined information vector is just the product of the transition matrices: φI(l) =

φI(j)φI(i) . The resulting terminal belief along the joined path becomes

b
(l)
K =

φI(j)φI(i)b(s)

1TφI(j)φI(i)b(s)

,

where the combined path represents the system evolution for K +K stages.

Each source sample path is chained with all sample paths of the target forecasted evolu-

tion. For example, Figure 6.6 illustrates a case where I(1) ∈ Ĩ(4) is joined with each path in

Ĩ(1), i.e {I(1), I(2), I(3)}, which produces three new sample paths. This results in geometric

increase in the number of sample paths for each chaining operation. Assuming that there are

P sample paths for each forecasted evolution, then the chained representation will comprise

P 2 sample paths. To stem the potential exponential growth of chained sample paths, we

use a sampling technique to retain a representative subset. Each path has the unbiased
7Each forecasted evolution may execute for a varying number of stages. However, to keep our formulation

simple, we assume that they execute for the same number of stages.

116

probability

p(I(l)|b(w)) = 1TφI(l)b(w).

If we sample each path according to the probability of the path occurring, we generate an

unbiased subset of chained sample paths. Alternate sampling methods may be employed to

achieve even better representation, but we leave that as a future area of research.

6.4.2 Chaining the running cost

Given this approach to chaining sample paths, we now derive the corresponding chained

running cost along the set of sample paths. To obtain the running cost along chained

forecasted evolutions, we sum the running cost of the source forecasted evolution with the

running cost of each target forecasted evolution. The running cost for each existing forecasted

evolution will be denoted as

VĨ(s)(b(s) + ∆b(s)) = V sim
(s) + αT(s)∆b(s),

which is obtained from (6.26). To keep notation as simple as possible, we denote Ĩ(∗) as the

target forecasted evolution for each I(i) ∈ Ĩ(s). As an example, in Figure 6.6, I(1) and I(2)

have target Ĩ(∗) = Ĩ(1), while I(3) has the target Ĩ(∗) = Ĩ(3). The resulting chained running

cost is denoted by VĨ(w)
. Expanding from the de�nition of the running cost for 2K stages

(assuming each forecasted evolution executes for K stages), we obtain

VĨ(w)
(b(s)) = E[

2K∑
k=0

c(bk, uk)|b(s)] (6.27)

= E[
K∑
k=0

c(bk, uk)|b(s)]︸ ︷︷ ︸
≈VĨ(s) (b(s))

+ E[
2K∑

k=K+1

c(bk, uk)|b(s)]. (6.28)

117

The �rst equation, (6.27), is the de�nition of the running cost for 2K stages starting from

b(s). The running cost is split into to summations in (6.28) and we observe from (6.11) that

VĨ(s)(b(s)) ≈ E[
∑K

k=0 c(bk, uk)|b(s)].

Next, we recognize E[
∑2K

k=K+1 c(bk, uk)|b(s),] as the portion of the running cost being

approximated by the target forecasted evolutions. Each target contributes a portion of the

sample paths, and, hence, a portion of the running cost. Together the target forecasted

evolutions approximate the expected cost starting after stage K. Since we have already

determined the running cost for each target, we just need to evaluate the running cost for

each target at the terminal belief of the source sample path. However, we must also weight

the contribution of each target by the probability of the source sample path. Since we use

importance sampling, we must weight each contribution by the true probability of the source

sample path by the biased probability:

E[
K∑

k=K+1

c(bk, uk)|b(s)] ≈
1

µ

∑
I(i)∈Ĩ(s)

VĨ(∗)(b
(i)
K)

p(b
(i)
K |b0)

q(b
(i)
K |b0)

,

which is a consequence of (6.9), where we adapt the notation to b(i)
K conditioned on b0, so

p(b
(i)
K |b0) denotes p(b) and p(b

(i)
K |b0) denotes q(b). From Proposition 6.2 in Section 6.7.1,

we observe that p(b(i)
K |b0) = p(I(i)|b(s)). Likewise, p(b(i)

K |b0) = p(I(i)|b(s)) since we are not

evaluating the e�ect of a perturbation to b(s) yet. Substituting these results into (6.28), we

obtain

VĨ(w)
(b(s)) ≈ VĨ(s)(b(s)) +

1

µ

∑
I(i)∈Ĩ(s)

VĨ(∗)(b
(i)
K)

p(I(i)|b(s))

p(I(i)|b(s))
(6.29)

= VĨ(s)(b(s)) +
1

P

∑
I(i)∈Ĩ(s)

VĨ(∗)(b
(i)
K). (6.30)

To normalize the result, we divide by the number of sample paths 1
µ

= 1
P
. This is analogous

118

to standard sample weighting used in particle �ltering and other Monte Carlo methods.

Finally, we arrive at (6.30).

The above result holds when evaluating the chained solution from b(s). To keep the form

in (6.26) that allows the result of a chaining process to be used in future chaining processes,

we must consider the e�ect of a perturbation ∆b(s) in the chaining process. Starting with

6.29 and substituting b(s) + ∆b(s) into the equation and noting that q(I(i)|b(s)) = p(I(i)|b(s)),

the chained running cost becomes

VĨ(w)
(b(s) + ∆b(s)) = VĨ(s)(b(s) + ∆b(s)) +

∑
I(i)∈Ĩ(s)

1

µ
VĨ(∗)(b

(i)
K + ∆b

(i)
K)

p(I(i)|b(s) + ∆b(s))

p(I(i)|b(s))
, (6.31)

where

µ =
∑

I(i)∈Ĩ(s)

p(I(i)|b(s) + ∆b(s))

p(I(i)|b(s))
=

∑
I(i)∈Ĩ(s)

1TφI(i)

1TφI(i)b(s)︸ ︷︷ ︸
ξT

b
′

(s). (6.32)

Here the true probability for the sample path is p(I(i)|b(s) + ∆b(s)), but we use the existing

set of sample paths to approximate the result, which were generated from p(I(i)|b(s)).

Yet again, we are presented with a ratio of linear functions. Fortunately, yet again, the

ratio is well approximated by a linear function, as the denominator is often much greater

than one. The �rst order Taylor series approximation of the expectation of future sample

paths from (6.31) is

∑
I(i)∈Ĩ(s)

1

µ
VĨ(∗)(b

(i)
K + ∆b

(i)
K) ≈

∑
I(i)∈Ĩ(s)

[
1

P
VĨ(∗)(b

(i)
K) +∇b

′
(s)

(
1

ξT b
′
(s)

VĨ(∗)(b
(i)′

K)
1TφI(i)b

′

(s)

1TφI(i)b(s)

)
∆b

(i)
K

]
,

(6.33)

where we substitute µ = ξT b
′

(s) from (6.32). The �rst term in the summation is obtained the

119

Figure 6.7: Coupling perturbation between forecasted evolutions

unperturbed value: VĨ(∗)(b
(i)
K)

1Tφ
I(i)

b(s)

1Tφ
I(i)

b(s)
= 1

P
Vs∗(b

(i)
K), where there are P sample paths. In the

second term in the summation, the �rst order derivative is taken with respect to b
′

(s), which

we use to denote the perturbed belief b
′

(s) = b(s) + ∆b(s) and the perturbed terminal belief

along sample path I(i) as b(i)′

K = b
(i)
K + ∆b

(i)
K .

We want to analyze the sensitivity of this function under the perturbation ∆b(s). Fur-

thermore, we need to express the running cost Ĩ(∗) as a function of the perturbation ∆b(∗),

or VĨ(∗)(b(∗) + ∆b(∗)). To achieve this we �rst to express ∆b(∗) in terms of b(i)
K and ∆b

(i)
K :

b
(i)
K + ∆b

(i)
K = b(∗) + ∆b(∗)

∆b(∗) = b(∗) − b(i)
K︸ ︷︷ ︸

bdiff

−∆b
(i)
K . (6.34)

However, to achieve a compact representation, we need to express the perturbation in terms

of ∆b(s). In (6.7) from Section 6.3.1, we determined the �rst order approximation to be:

∆b
(i)
K ≈ ∇b

′
(s)
φI(i)∆b(s). (6.35)

This coupling is illustrated in Figure 6.7, where the geometric interpretation of ∆b(∗) is made

clear.

Replacing (6.35) in (6.34), we produce: ∆b(∗) = bdiff−∇b(s)φI(i)∆b(s). All monomial terms

120

are now expressed relative to ∆b(s). Inserting this result into the second term of (6.33), we

obtain

∑
I(i)∈Ĩ(s)

1

1!
∇b
′
(s)

(
1

ξT b
′
(s)

VĨ(∗)(b
(i)′

K)
1TφI(i)b

′

(s)

1TφI(i)b(s)

)

=
∑

I(i)∈Ĩ(s)

VĨ(∗)(b
(i)
K)

1TφI(i)b(s)

1TφI(i)b(s)

∇b
′
(s)

(
1

ξT b
′
(s)

)
︸ ︷︷ ︸

(A)

+

∑
I(i)∈Ĩ(s)

1

P

1TφI(i)b(s)

1TφI(i)b(s)

∇b
′
(s)

(
VĨ(∗)(b

(i)′

K)
)

︸ ︷︷ ︸
(B)

+

∑
I(i)∈Ĩ(s)

1

P
VĨ(∗)(b

(i)
K)∇b

′
(s)

(
1TφI(i)b

′

(s)

1TφI(i)b(s)

)
︸ ︷︷ ︸

(C)

(6.36)

=
∑

I(i)∈Ĩ(s)

−(V sim
(∗) + αT(∗)∆bdiff)

ξT

(ξT b(s))2︸ ︷︷ ︸
(A)

∆b(s)+

∑
I(i)∈Ĩ(s)

1

P

αT(∗)φIk

1TφIkb0

(
I− b01

TφIk
1TφIkb0

)
︸ ︷︷ ︸

(B)

∆b(s)+

∑
I(i)∈Ĩ(s)

1

P
(V sim

(∗) + αT(∗)∆bdiff)
1TφI(i)

1TφI(i)b(s)︸ ︷︷ ︸
(C)

∆b(s) (6.37)

=
∑

I(i)∈Ĩ(s)

[(A) + (B) + (C)]

︸ ︷︷ ︸
αT
(w)

∆b(s). (6.38)

The �rst equation, (6.36), is a representation of each of the components that from application

of the product rule. The result of the �rst order derivative of each component are captured

in (6.37). There are several key observations that help us simplify the expression. First, in

both (A) and (C), we have the term VĨ(∗)(b
(i)
K). However, our representation for each running

121

cost is relative to a perturbation: VĨ(∗)(b(∗) + ∆b(∗)) = V sim
(∗) + αT(∗)∆b(∗) as de�ned in (6.26).

To evaluate this term, we substitute b(i)
K = b(∗)+bdiff to obtain VĨ(∗)(b

(i)
K) = V sim

(∗) +αT(∗)∆bdiff .

In component (B) we have

∇b
′
(s)

(
VĨ(∗)(b

(i)′

K)
)

= ∇b
′
(s)

(
VĨ(∗)

(
φI(i)b

′

(s)

1TφI(i)b
′
(s)

))
(6.39)

= ∇b
′
(s)
VĨ(∗)∇b

′
(s)

(
φI(i)b

′

(s)

1TφI(i)b
′
(s)

)
(6.40)

= ∇b′
(s)
VĨ(∗)∇b

′
(s)
η(φI(i)b

′

(s)) (6.41)

= αT(∗)
φIk

1TφIkb0

(
I − b01

TφIk
1TφIkb0

)
︸ ︷︷ ︸

∇
b
′
(s)

η(φ
I(i)

b
′
(s)

)

. (6.42)

The �rst equation results from just substituting b(i)′

K =
φ
I(i)

b
′
(s)

1Tφ
I(i)

b
′
(s)

. Next, in (6.40) we apply

the chain rule. Using the result from (6.7) to expand obtain (6.41). Finally, we obtain (6.42)

by observing that the term ∇b′
(s)
VĨ(∗) is the Jacobian of the running cost, which is precisely

αT(∗) from (6.26).

Because we can pull out ∆b(s) from each component (i.e. (A), (B), and (C)), we arrive

at the simpli�ed expression in (6.38) as a representation of the second term in (6.33). We

obtain a simpli�ed expression of the �rst term in (6.33) by substituting b(i)
K = b(∗) + bdiff :

∑
I(i)∈Ĩ(s)

1

P
VĨ(∗)(b

(i)
K) =

∑
I(i)∈Ĩs1

1

P
VĨ(∗)(b(∗) + bdiff)

=
∑

I(i)∈Ĩs1

1

P

[
V sim

(∗) + αT(∗)∇b(s)φI(i)bdiff

]
︸ ︷︷ ︸

V sim
(w)

.

Now, if we insert the above results into (6.33), we arrive at the chained representation of the

122

running cost:

VĨ(w)
(b(s) + ∆b(s)) ≈ V sim

(w) + αT(w)∆b(s). (6.43)

The chained running cost is a linear approximation, with no increase in the degree or com-

plexity of the representation over the individual running costs.

While generating a running cost sensitivity function eliminates the need to simulate

running cost sensitivity functions along a forecasted evolution to determine the cost along a

policy due to perturbations, it does so with some trade-o�s. A perturbation may cause the

closest belief between the terminal belief to switch to the initial belief of another forecasted

evolution. However, the chained function is not �exible in this regard and all associations

are static. As discussed above, the impact of perturbations in stochastic systems generally

decrease as POMDPs under some general conditions are naturally dissipative systems. This

implies the e�ect of a perturbation early on should decrease further along the policy/sample

path evolution.

Compositing the running cost sensitivities of a policy with the running cost sensitivity

has O(PX2) time complexity. Each of the constant, vector, and matrix terms are summed

for the P sample paths. Approximate matrix-matrix multiplication has O(X2) time com-

plexity, where X is the number of of states and, hence, the dimension of the matrices. The

computational savings of the perturbation analysis presented is signi�cant. However, the

potential application to temporally and spatially abstracted POMDP optimization methods

may prove to be of even greater utility.

6.4.3 Selecting target forecasted evolutions

The methodology of selecting which of the forecasted evolutions are chained together is appli-

cation dependent. If the same policy is used throughout, with only the initial belief varying,

then selecting forecasted evolutions that minimize the distance between the terminal beliefs

123

of the forecasted evolution being expanded to the initial belief the remaining forecasted evo-

lutions will minimize the e�ect of perturbations along the chained forecasted evolution. In

Figure 6.6b, this corresponds to selecting Ĩ(2) and Ĩ(3) when expanding Ĩ(4) as each of the

terminal beliefs of forecasted evolution evolution Ĩ(4) , i.e. {b(i)
K }i, fall closest to b(2) and b(3).

However, if di�erent policies are simulated and the goal is to choose the best running, then

the method for selection would be to weight both the distance and running cost along the

existing forecasted evolutions. Such a scenario corresponds to temporally abstracted version

of the Bellman backup as each forecasted evolution is representative of multiple stages.

Our instantiation generates a chained representation that expands a source forecasted

evolution to a set of target forecasted evolutions. Thus, the chained forecasted evolution

begins from the source's belief. It is conceivable that the chaining process might be reversed

for some applications (e.g., rare event detection), in which case the chaining would join the

starting belief of a target to the terminal belief of a source. However, we will not address

methodologies of constructing chained paths for such applications.

6.4.4 Application to POMDP optimization

The need for so much infrastructure may seem unwarranted�especially when considering

expected-state cost functions. However, most current POMDP value iteration methods

retain a representation of the value function around a belief sample via what is often referred

to as α-vectors. For expected-state cost functions, the value function is piecewise linear and

convex [25]. Most methods represent the value function as the minimum over a set of α-

vectors, which correspond to the cost-to-go for the set of sampled beliefs. The α-vectors

are de�ned over the entire belief space and correspond to sensitivity around a belief sample,

which is an exact representation not an approximation. However, such derivation only holds

for single stage optimization techniques wherein all observations are considered. This is a

result of the expectation over all observations canceling out the probability of the observation,

124

which reduces the formulation to a linear function of the cost:

V ∗(b) = min
u∈U ,α∈A

[
cTu b+

∑
y∈Y

(
αT

φu,y
1Tφu,yb

b

)
p(y|b, u)

]

= min
u∈U ,α∈A

[
cTu b+

∑
y∈Y

(
αT

φu,y
1Tφu,yb

b

)
1Tφu,yb

]

= min
u∈U ,α∈A

[(
cTu +

∑
y∈Y

αTφu,y

)
b

]
.

The cost function Cu under action u is a linear function of belief. The �rst equation is the

de�nition of the Bellman backup. The second equation follows from substituting p(y|b, u) =

1Tφu,yb. The third equation pulls b out side of the constant terms.

For systems with a large number of observations, this requirement to evaluate all obser-

vations becomes excessively burdensome�even for one stage. Such a representation is not

practical for temporal abstraction as it would require the consideration of an exponential

number of observations in the number of stages temporally abstracted. However, if only a

subset of sample paths are considered, there is a normalization term µk at each stage k as

derived above in (6.17), that transforms the simple linear function above to into a ratio of

linear function.

Because temporal abstraction introduces the need to sample a subset of the possible

paths, the method we propose, which uses a linear form to derive an approximation of the

cost-to-go, can be used as the replacement for the α-vector representation that obtained when

performing the exact single stage backup. The trade-o� for extending from point-based to

perturbation analysis comes at the cost of approximation error and increased time complex-

ity. The majority of the time complexity in this analysis is a result of the matrix-matrix

multiplication to generate φ
I
(i)
K

. As alluded to earlier, approximate matrix multiplication

is one potential tool that to increase the e�ciency of this approach. Another method could

be to drop full expressiveness of the perturbation in all dimensions and use the primary

Lyapunov exponent, or a subset of the largest Lyapunov exponents to approximate the

125

sensitivity in all dimensions.

For POMDP optimization the objective is to build a value function, which does not re-

quire chaining of perturbed beliefs. Policies are composed similar to the Bellman backup for

one stage but for a plurality of stages, so only the running cost perturbation for each policy

needs to be retained. A �rst order approximation of the running cost requires matrix-vector

multiplication instead of matrix-matrix multiplication. Reducing the time complexity with

this approach results in a running time for backup that is similar to the backup time complex-

ity for single-stage backup of typical sampling-based value iteration POMDP optimization

methods.

6.5 Results

One of the tenets of the presented approach is that, under general conditions, local feedback

policies along with the inherent convergence, or forgetting, conditions of stochastic processes

result in locally insensitive systems. We take advantage of this assumption to generate

a temporal and spatial abstraction technique. To validate these properties, we present

experimental sensitivity results for various benchmark problems.

In the following results, a random hyperbelief was selected as a target for a greedy

feedback policy. Then a initial hyperbelief was generated that was able to reach within

the neighborhood of the target hyperbelief. Then 100 perturbed source hyperbeliefs were

generated. The local policy was executed for each of the perturbed hyperbeliefs. The result

of these simulations are depicted in Figure 6.8. The x-axis represents the result of the

perturbed hyperbelief and their distance to the initial source hyperbelief sorted by initial

distance. Lukaszyk-Karmowski metric [78] was used as the distance measure. This is a

pseudo metric�it fails to satisfy the identity of the indiscernibles. Thus, the minimum

distance is just a relative measure between two hyperbeliefs. The y-axis represents the

distance to the target hyperbelief.

126

(a) First target hyperbelief for the Maze20 example (b) First target hyperbelief for the CIT example

(c) Second target hyperbelief for the Maze20
example

(d) Second target hyperbelief for the CIT
example

(e) Third target hyperbelief for the Maze20
example

(f) Third target hyperbelief for the CIT example

Figure 6.8: Experimental sensitivity results for two benchmark POMDP systems

127

There are two key observations regarding this result. First, the majority of the samples

demonstrate pronounced insensitivity to the starting hyperbelief. Second, there are evident

perturbed hyperbeliefs that fail to make signi�cant progress towards the target. It is rea-

sonable to assume that there are regions in the space that the greedy policy is insu�cient

to reach the target over the entire space. The perturbed hyperbelief may fall into one of

these regions under a large enough perturbation. The discontinuities in the graph are likely

due to sampling into several of these regions. It is interesting to note that the system is

insensitive for similar distances, which implies are large perturbations for which the system

is dissipative while simultaneously chaotic. The insensitivity for these examples for large

perturbations demonstrates the a dense representation of the space is likely unnecessary..

In the following section will will provide support for this via several benchmark POMDP

systems.

6.6 Conclusion

The perturbation analysis we presented establishes not only an approximation of the sensi-

tivity of a forecasted evolution but also a methodology to chain existing forecasted evolutions

together into a combined representation. The combined representation can be used to esti-

mate the running cost and evolution without re-simulating each of the forecasted evolutions.

Computational time complexity is the greatest hindrance to the proposed method. Each

perturbation analysis retains a linear approximation of the running cost and perturbation to

set of terminal beliefs. A formulation for higher order approximations was also provided, but

computational requirements suggest that approximations greater than quadratic are likely

of little use.

Even a linear approximation has a time complexity that is quadratic in the number of

states describing the POMDP system. However, a linear approximation will be more e�-

cient than resimulation if the stages of the forecasted evolution is large enough. Methods

128

to approximate the transition function, which requires matrix-matrix multiplication, may

alleviate this to some extent. Future work may focus on developing a more e�cient ap-

proximation using a subset of the Lyapunov exponents to estimate both an upper and lower

bound on the running cost and perturbation of the forecasted evolution. Finally, we will

investigate the e�ect of perturbations in the policy itself, via policy gradient methods, which

may extend the presented analysis to fully capture the e�ect of perturbations on the system

evolution.

6.7 Perturbation Analysis Proofs

We now present the analysis forecasted evolutions of POMDPs. First, we demonstrate

how to generate a compact representation of the forecasted evolution that reduces the the

formulation of a forecasted evolution to be expressed only in terms of the initial belief�not

the beliefs from one stage to the next. This formulation is then used to analyze the e�ect of

perturbations in the initial belief on the forecasted evolution. This core analysis is used earlier

in Section 6.3.1. Next, we introduce tensor notation. The perturbation analysis that follows

evaluates derivatives of vector �elds. Formulating the derivative of vector �elds using tensor

notation simpli�es the expression of these derivatives. Finally, using the tensor notation

introduced, we derive results for the running cost sensitivity of forecasted evolutions, which

is a generalized derivation of what we presented in Section 6.3.2 to nonlinear cost functions

and higher order approximations.

6.7.1 Belief transition sensitivity

To determine the e�ect of a perturbation of an initial belief on the terminal belief for a given

sample path, we will �rst determine the e�ect a perturbation has on a belief from one stage

to the next. Then, we will determine the perturbation of the probability of a belief occurring

from one stage to the next.

129

Remark 6.1. The sensitivity of for a single stage (from k to k+ 1) due to perturbation ∆bk

starting from bk, subject to control action uk and observation yk+1, is given by

bk+1 + ∆bk+1 =
φuk,yk+1

(bk + ∆bk)

1Tφuk,yk+1
(bk + ∆bk)

⇒ ∆bk+1 =
φuk,yk+1

(bk + ∆bk)

1Tφuk,yk+1
(bk + ∆bk)

−
φuk,yk+1

bk

1Tφuk,yk+1
bk

(6.44)

=
φuk,yk+1

(bk + ∆bk)−
φuk,yk+1

bk1
Tφuk,yk+1

(bk+∆bk)

1Tφuk,yk+1
bk

1Tφuk,yk+1
(bk + ∆bk)

(6.45)

=
φuk,yk+1

(bk + ∆bk)− φuk,yk+1
bk −

φuk,yk+1
bk1

Tφuk,yk+1
∆bk

1Tφuk,yk+1
bk

1Tφuk,yk+1
(bk + ∆bk)

(6.46)

= =
φuk,yk+1

∆bk −
φuk,yk+1

bk1
Tφuk,yk+1

∆bk

1Tφuk,yk+1
bk

1Tφuk,yk+1
(bk + ∆bk)

(6.47)

=
φuk,yk+1

(I− bk1
Tφuk,yk+1

1Tφuk,yk+1
bk

)∆bk

1Tφuk,yk+1
(bk + ∆bk)

. (6.48)

The �rst equation is the de�nition of the updated belief bk+1 + ∆bk+1 from bk + ∆bk for the

observation yk+1 and action uk as given in (2.7) in Section 2.1. Solving for the perturbation

∆bk+1, we obtain (6.44). Solving for a common denominator results in (6.45). Simplifying

the equation to cancel out 1Tφuk,yk+1
bk that appears in both the numerator and denominator

of the right hand side of the equation results in (6.46). Next, we obtain (6.47) by canceling

like terms. Finally, (6.48) is obtained by pulling out like terms. Thus, we are able to

represent of the perturbation ∆bk+1 relative to the perturbation ∆bk.

The derivation above is for a single stage. We want, however, to derive the e�ect of a

perturbation along the entire sample path from stage 0 to stage k. The evolution under an

information vector Ik can be derived as a ratio of linear functions dependent on b0. First,

we introduce the notion of the composite belief transition function.

130

The composite belief transition function φIk for information vector Ik is de�ned as

φIk = φyk,uk−1
φyk−1,uk−2

· · ·φy1,u0 .

The belief at stage bk can be expressed relative to b0 using the composite belief transition

function.

Proposition 6.1. The belief bk under the information vector Ik = {b0, u0, y1, . . . , uk−1, yk}

can be computed as

bk =
φIkb0

1TφIkb0

.

Proof. This elementary result follows by induction. First at stage 1,

b1 =
φy1,u0b0

1Tφy1,u0b0

=
φI1b0

1TφI1b0

.

At stage k, we can represent the bk relative to bk−1 =
φIk−1

b0

1TφIk−1
b0
as

bk =
φyk,uk−1

bk−1

1Tφyk,uk−1
bk−1

=
φyk,uk−1

φIk−1
b0

1TφIk−1
b0

1Tφyk,uk−1

φIk−1
b0

1TφIk−1
b0

=
φIkb0

1TφIkb0

,

where φIk is from De�nition 6.7.1. Thus, the result holds for all k.

With a representation of the perturbation along a path, we now determine the probability

of the sample path occurring. If each belief b is unique for each stage up to and including

k, then the probability of belief bk occurring is equal to the probability of the information

vector Ik ∈ Ik occurring (i.e., the sample path along Ik), where Ik at stage k generated bk.

The probability of a belief under a given information vector evolves as a linear function of

the initial belief. In fact the denominator in Proposition 6.1 is precisely p(Ik | b0).

Lemma A1. Assuming that each sample path Ik produces a unique belief so that no belief

ever occurs more than once, the probability of the information vector Ik+1 occurring given

131

policy π and belief bk is

p(Ik+1|bk) = 1TOyk+1
Tukbk.

Proof. Expanding the de�nition of p(Ik+1|bk), we obtain:

p(Ik+1|bk) = p(yk+1, uk, Ik|bk) (6.49)

= p(yk+1|uk, Ik, bk)p(uk, Ik|bk) (6.50)

= p(yk+1|uk, Ik, bk)p(uk|Ik, bk)p(Ik|bk) (6.51)

= p(yk+1|uk, bk) (6.52)

=

ˆ
b∈Pb

p(yk+1|b, uk, bk)p(b|uk, bk) (6.53)

= p(yk+1|bk+1|k)p(bk+1|k|uk, bk) (6.54)

= 1TOyk+1
Tukbk. (6.55)

The �rst equation, (6.49), is the result of splitting Ik+1 into yk+1, uk, and Ik. By conditioning

on p(uk, Ik|bk) and using properties of conditional probability the result in (6.50) is obtained.

We then condition on Ik to obtain p(uk, Ik|bk) = p(uk|Ik, bk)p(Ik|bk). Next, using the fact

that bk is a su�cient statistic for Ik, we observe that p(yk+1|uk, Ik, bk) = p(yk+1|uk, bk).

Furthermore, p(uk|Ik, bk) = p(uk|bk) = 1 because we assume a deterministic policy, π(bk) =

uk with probability one. Also, by assumption of the uniqueness of bk, p(Ik|bk) = 1. Next,

we marginalize over b in (6.53). The prediction step is deterministic, so

p(bk+1|k|uk, bk) =


1 if b = bk+1|k

0 else

where, from (2.5) in Section 2.1,

bk+1|k = Tukbk.

Inserting this result into (6.53) produces (6.54). Finally, p(yk+1|bk+1|k) = 1TOyk+1
bk+1|k from

132

(2.6) in Section 2.1. By joining these two terms together we obtain the stated result in

(6.55).

As the action is deterministic, the only new unknown in Ik+1 over Ik is yk+1. Thus, the

result is the probability of the observation yk+1 occurring for the predicted belief bk+1|k. Using

this result along with the assumed uniqueness8 of each belief, we can obtain the probability

of the belief bk occurring under the policy π.

Proposition 6.2. Assuming that each belief is unique (implying that no other path reaches

bk except Ik), the probability of bk occurring under policy π can be expressed as

wk = p(bk|π, b0) = p(Ik | π, b0) = 1TφIkb0,

where bk =
φIk b0

1TφIk b0
and Ik is the unique sample path that results in bk under the deterministic

policy π.

Proof. First we marginalize the probability of the belief on the information vector Ik:

p(bk|π, b0) =
∑
I∈Ik

p(bk|I, π, b0)p(I|π, b0)

= p(Ik|π, b0)

as we already assumed that bk is unique for a single information vector Ik, thus

p(bk|I, π, b0) =


1 if I = Ik

0 else
.

For notation purposes, we denote p(Ik|π, b0) = p(Ik|b0).

8The analysis we present can be extended to the case where beliefs are not unique. However, including
this capability unnecessarily complicates our analysis.

133

Now, using this result we show how to obtain p(Ik | b0) = 1TφIkb0. This basic result

follows from induction. Starting at stage 1,

p(I1 | b0) = 1TOy1Tu0b0 = 1TφI1b0

from Lemma A1. Then at stage k, the probability of bk occurring is provided by

p(Ik | b0) =

ˆ
bk−1

p(Ik | bk−1)p(bk−1 | , b0)

= p(Ik | bk−1)p(bk−1 | , b0) (6.56)

= 1Tφyk,uk−1
bk−11

TφIk−1
b0 (6.57)

= 1Tφyk,uk−1

φIk−1
b0

1TφIk−1
b0

1TφIk−1
b0 (6.58)

= 1Tφyk,uk−1
φIk−1

b0 (6.59)

= 1TφIkb0. (6.60)

The �rst equation is obtained by marginalizing on bk−1. Since we assume each belief is unique,

the integral reduces to a single instance in (6.56). Substituting p(Ik | bk−1) = 1Tφyk,uk−1
bk−1

from Lemma A1 and p(bk−1 | , b0) = 1TφIk−1
b0 from Proposition 6.2 into (6.56), we obtain

(6.52). The result in (6.58) follows from substitution of Proposition 6.1 for bk−1 in terms of

b0 along sample path Ik−1. Simplifying we obtain (6.54) and, �nally, (6.55) follows from the

de�nition of φIk . Thus, the result holds for all k.

When only a subset of the possible sample paths are generated, i.e., Ĩk, the total proba-

bility of the sample paths does not sum to one. The weight for the set of beliefs must then

be normalized:

w
(i)
k =

1Tφ
I
(i)
k
b0∑

I
(j)
k ∈Ĩk

1Tφ
I
(j)
k
b0

.

The notation I
(i)
k represents the i-th sample path to stage k (and b

(i)
k the corresponding

belief along the same path) taken from the set Ĩk. This normalization process results in a

134

dependence of the probability of each sample path on every other sample path. Moreover,

the weight is no longer a linear function of the initial belief. Because we are evaluating the

expected cost over the forecasted evolution, we can evaluate evolution and cost of the system

relative to the probability of each sample path, as we demonstrate below in Section 6.7.3,

instead of the expected cost at each stage k taken over all beliefs {b(i)
k } .

When chaining forecasted evolutions together, we can add the cost along multiple sam-

ple paths and then evaluate the normalization relative to the composited sample paths.

This formulation enables us to pull the normalization term, which is nonlinear, out of the

approximation and the compositing process, which simpli�es the analysis. However, this

consideration of the normalization term is merely delayed until we chain running costs.

From Proposition 6.1, it can be seen that the belief at stage k is normalized along the

sample path Ik. Normalization is an inverse sum over the probability of each belief occurring:

η(b0) ≡ b0

1T b0

.

To simply the expression of the belief at stage k by eliminating the denominator, we ap-

proximate the evolution along the path relative to the unnormalized belief using a �rst order

Taylor series approximation.

Theorem A1. For the belief normalizing function:

η(φIkb0) ≡ φIkb0

1TφIkb0

,

the �rst order derivative taken for the belief φIkb0 is given by

φIk
(1TφIkb0)

(
I− b01

TφIk
1TφIkb0

)
.

135

Proof. We will establish via induction. First note that ∇b0φIkb0 = φIk . Then

∇b0(η(φIkb0)) = ∇b0

(
φIkb0

1TφIkb0

)
=

1

1TφIkb0

∇b0 (φIkb0) + φIkb0∇b0

(
1

1TφIkb0

)
=

φIk
1TφIkb0

− φIkb01
TφIk

(1TφIkb0)2

=
φIk

(1TφIkb0)

(
I− b01

TφIk
1TφIkb0

)
.

The second equation is just the de�nition of the product rule. The result of which is the

third equation. Finally, simplifying the expression results in the last equation.

Having established the e�ect perturbations have on the evolution of a POMDP, we now

move to understanding the e�ect a perturbation has on the running cost of a POMDP.

Analysis for �rst order approximations of linear cost functions is presented in Section 6.3.2.

A general analysis for nonlinear cost functions an higher order approximations is presented

below. However, before we can present this analysis, we must �rst introduce tensor notation,

which will be used extensively in the following analysis.

6.7.2 Introduction to tensors

Tensors are multi-linear transformations de�ned over an underlying �nite dimensional vector

space. Tensors are a generalization of scalars, vectors, and matrices into higher dimensional

spaces. Tensor representation is often used to express derivatives of vector �elds. The

following de�nitions and their properties can be found in [101].

Before we de�ne tensors, we �rst introduce the notion of a dual space for vector �elds.

De�nition 6.1. If given a �nite vector space S over a �eld F , then the dual space S∗ is

the set of all linear maps from S to F . S∗ has the same dimension as S.

136

De�nition 6.2. Given a basis {e1, . . . , en} in S and �eld F , the dual basis S∗ is a set

{ε1, . . . , εn}

εi(ζ1e1 + · · ·+ ζnen) = ζi, i = 1, . . . , n

for any choice of coe�cients ζi ∈ F . This can be simpli�ed by de�ning for each i the

coe�cient ζi equal to one and the rest of the coe�cients equal to zero to obtain:

εi(ej) = δij =


1, if i = j

0, if i 6= j

,

where δ is the Kronecker delta function.

This form has a natural interpretation: if we de�ne the vector space S in Rn as the space

of column vectors, the dual space is expressed as the row vectors (covectors).

With the de�nition of a dual space for a vector �eld established, we can now de�ne

tensors.

De�nition 6.3. A type (n,m) tensor A, with order n+m, is de�ned as

A : S∗ × · · · × S∗︸ ︷︷ ︸
n times

× S × · · · × S︸ ︷︷ ︸
m times

→ R

where S is a vector space and S∗ is the dual space of S. The result is linear in each of

the arguments. A tensor can be represented as a multi-linear map. Given the multi-linear

map A of type (n,m) to a basis {ej} for S and a canonical dual basis {εi} for S∗ an n+m

dimensional array of components can be obtained:

Ai1...inj1...jm
≡ A(εi1 , . . . , εin , ej1 , . . . , ejm).

Note, that A is a linear functional and A(·) denotes the function taken with respect to the

input arguments. Di�erent choices of basis will yield di�erent components.

137

The tensor product produces the tensor A ⊗ D from the tensors A and D, which have

order n and m, respectively. The new tensor has an order that is the sum of the two orders:

n + m. When described as multi-linear maps, the tensor product simply multiplies the two

tensors, i.e.

(A⊗D)(v1, . . . , vn, vn+1, . . . , vn+m) = A(v1, . . . , vn)D(vn+1, . . . , vn+m).

The result is a map that is linear in all its arguments. When expressed in the component

form, the e�ect similarly is to multiply the components of the two input tensors:

(A⊗D)
i1...ilil+1...il+m
j1...jgjg+1...jg+n

= Ai1...ilj1...jg
D
il+1...il+m
jg+1...jg+n

.

If A is of type (g, l) and D is of type (n,m), then the tensor product A⊗D is type (g+n, l+m).

While all properties of order zero tensors do not apply to higher order variations, several

key properties hold for tensors of arbitrary order. In particular, both the associative and

distributive laws hold:

associative:
{

(A⊗D)⊗H = A⊗ (D ⊗H)

distributive:


A⊗ (D +H) = A⊗D + A⊗H

(A+D)⊗H = A⊗H +D ⊗H,

whenever A, D, and H are de�ned such that these operations make sense. We will make

extensive these two properties in the analysis that follows.

In the following analysis we will also use the generalized dot product, or contraction

operator for tensors.

De�nition 6.4. Let A be a type (g, l) tensor andD be a type (n,m) tensor. Then the dot

138

product A ·B results in a type (g −m, l− n) tensor, which, as given in component form, is

A ·D = A
i1...ig
j1...jl

D
il−m+1...il
jg−n+1...jg

,

which holds when n ≤ g and m ≤ l. Thus, the order of the tensors subtract, reducing the

overall order of the resulting tensor.

Having established the core principles of tensor theory that we use in the analysis in

the following sections, we now move to understanding the sensitivity of the belief transition

function.

6.7.3 Running cost sensitivity for nonlinear and higher order approximations

Besides generating the e�ect of a perturbation on the set of terminal beliefs, we need to

represent the e�ect a perturbation has on the cost of a forecasted evolution. The total cost

for a time horizon K under policy π is given by

Vπ(b0) = E

[
K∑
k=0

c(bk, π(bk)) | b0

]

=
K∑
k=0

∑
I
(i)
k ∈Ik

c(b
(i)
k , u

(i)
k)p(I

(i)
k |b0).

In Section 6.3.2, we derived a formulation that approximates the running cost at each stage.

However, to derive the running cost sensitivity for general, nonlinear cost functions, we �rst

select a form of the total cost that enables us take the expectation over the set of sample

paths.

139

Theorem A2. The expected total cost

V (b0) = E

[
K∑
k=0

c(bk, π(bk)) | b0

]

=
K∑
k=0

∑
I
(i)
k ∈Ik

c(b
(i)
k , u

(i)
k)p(I

(i)
k |b0)

for a time horizon K under policy π can alternately be de�ned as

V (b0) =
∑

I
(i)
K ∈IK

K∑
k=0

c(b
(i)
k , u

(i)
k)p(I

(i)
K |b0).

Proof. To prove this we will reduce one form to the other. Before we begin, we use the

note that I(i)
k+1,K = {uk, yk+1, . . . uK−1, yK}. Starting with the sample path representation,

we observe:

∑
I
(i)
K ∈IK

K∑
k=0

c(b
(i)
k , u

(i)
k)p(I

(i)
K |b0) =

∑
I
(i)
K ∈IK

K∑
k=0

c(b
(i)
k , u

(i)
k)p(I

(i)
K |I

(i)
k)p(I

(i)
k |b0)

=
K∑
k=0

∑
I
(i)
k+1,K

∑
I
(i)
K ∈IK

c(b
(i)
k , u

(i)
k)p(I

(i)
K |I

(i)
k)p(I

(i)
k |b0)

=
K∑
k=0

∑
I
(i)
K ∈IK

c(b
(i)
k , u

(i)
k)

 ∑
I
(i)
k+1,K

p(I
(i)
K |I

(i)
k)

 p(I(i)
k |b0)

=
K∑
k=0

∑
I
(i)
K ∈IK

c(b
(i)
k , u

(i)
k)p(I

(i)
k |b0).

The �rst equation follows from Bayes rule: p(c|d)p(d) = p(c, d). In the second equation,

we break the summation into two parts: stage 0 to stage k and stage k + 1 to stage K.

Each I(i)
k is summed over all permutations of I(i)

k+1,K . Next, in third equation, the summation

of
∑

I
(i)
k+1,K

p(I
(i)
K |I

(i)
k) is independent of bkand p(I

(i)
k |b0), so we pull the summation into the

140

inside of the equation. Since we are summing over all possible I(i)
k+1,K ,

∑
I
(i)
k+1,K

p(I
(i)
K |I

(i)
k) = 1.

Thus, we arrive at the �nal equation, which is common representation of the expect total

cost.

This formulation is a direct result of the Markov property of POMDPs.

We approximate the complete forecasted evolution using ensemble forecasting, which

generates only a subset of sample paths ĨK . To approximate the expectation over ĨK we

need to normalize the results because the total probability of the subset of sample paths is

less than one:

V (b0) ≈ 1

P

∑
I
(i)
K ∈ĨK

v
I
(i)
K

(b0), (6.61)

which follows when using unbiased sampling and there are P sample paths.

When evaluating the e�ect of a perturbation ∆b0 of the initial belief b0 has on the

running cost Vπ(b0 + ∆b0), the bias introduced by reusing the existing sample paths must

be considered. In Section 6.3.1 we derived the bias for each belief at each stage. However,

we have reduced the formulation to just weighting each sample path (and not each belief at

each stage). Thus, we only need to reduce the bias for each sample path.

V (b0 + ∆b0) ≈ 1

µ

∑
I
(i)
K ∈ĨK

v
I
(i)
K

(b0 + ∆b0)

(
p(I

(i)
K |b0 + ∆b0)

p(I
(i)
K |b0 + ∆b0)

)

=
1

µ

∑
I
(i)
K ∈ĨK

v
I
(i)
K

(b0 + ∆b0)

(
1Tφ

I
(i)
K

(b0 + ∆b0)

1Tφ
I
(i)
K
b0

)

=
∑

I
(i)
K ∈ĨK

v
I
(i)
K

(b0 + ∆b0)

(
η

(i)
K

)T
(b0 + ∆b0)

ηT (b0 + ∆b0)
, (6.62)

where the row vector
(
η

(i)
K

)T
=

1Tφ
I
(i)
K

1Tφ
I
(i)
K

b0
is the perturbed weight for each sample path and

141

ηT =
∑

I
(i)
K ∈ĨK

(η(i))T is a normalizing factor.

By choosing to represent the expected running cost in this manner, we are able to nearly

decouple the analysis along sample paths. The only coupling between sample paths occurs

through µ+ ∆µ. Alternately, if the expectation of the running cost is taken as the average

along every stage (verses every path), coupling occurs at each stage through a normalization

term. By reducing the coupling to just the normalization along the set of paths, we can derive

a compact representation of the running cost along the set of sample paths that is a function

of the initial belief�not all the beliefs at each stage in the sample path. This formulation

enables a simple and e�ective method for chaining forecasted evolutions together.

To determine the sensitivity of the forecasted evolution, we �rst determine the sensitivity

of a single sample path. To do that we need to derive the sensitivity of the cost function

relative to each belief along the path. From Proposition 6.1, it can be seen that the belief

at stage k is normalized along the sample path Ik. To simplify the analysis of perturbations

on the running cost, speci�cally for determination of the sensitivity functions associated

with each sample path, we will decompose the cost function into a modi�ed form that is

the composition of the original cost function and the belief normalization function. Thus,

for any c(·, ·) and belief normalizing function η(b̄) = b̄
1T b̄
∈ Pb, we represent the cost as

(c ◦ η)(b̄, u) = c(b, u) for any action u ∈ U and b = b̄
1T b̄

, b̄ ∈ R|X |+ (positive quadrant of the

R|X |, where |X | is the number of states in the state-space).

Before we continue with analysis of the cost, we establish properties of the belief normal-

izing function that will be useful later. The following is a generalization of Theorem A1 to

higher order derivatives.

Theorem A3. For the belief normalizing function:

η(b̄) ≡ b̄

1T b̄
,

142

where b̄ ∈ Rm
+ , the n-th order derivative is given by

(−1)nn!(
1 · b̄

)n (I− b̄⊗ 1

1 · b̄

)
⊗ 1⊗(n−1),

where 1⊗n = 1⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
n times

.

Proof. We will establish via induction. First note that ∇b̄(b̄) = I, and that ,∇n
b̄
(b̄) = 0 for

n > 1 (as b̄ is a linear function). Then for n = 1,

∇b̄(η(b̄)) = ∇b̄

(
b̄

1 · b̄

)
=

1

1 · b̄
∇b̄b̄+ b̄⊗∇b̄

(
1

1 · b̄

)
=

1

1 · b̄
I− b̄⊗ 1(

1 · b̄
)2

=
1

1 · b̄

(
I− b̄⊗ 1

1 · b̄

)
.

Assume that the form holds for the n-th derivative. Then

∇n+1
b̄

(η(b̄)) = ∇b̄

[
∇n
b̄ (η(b̄))

]
= ∇b̄

[
(−1)n−1n!(

1 · b̄
)n (

I− b̄⊗ 1

1 · b̄

)
⊗ 1⊗(n−1)

]

= −(−1)n−1n!n(
1 · b̄

)n+1 I⊗ 1⊗(n−1) ⊗ 1− (−1)n−1n!(
1 · b̄

)n+1 I⊗ 1⊗ 1⊗(n−1)

+
(−1)n−1n!(n+ 1)(

1 · b̄
)n+2 b̄⊗ 1⊗(n−1) ⊗ 1

=
(−1)n(n+ 1)!(

1 · b̄
)n+1

(
I− b̄⊗ 1

1 · b̄

)
⊗ 1⊗n.

Applying the chain rule to the �rst equation we arrive at the second equation. The simpli�ed

formula of the third equation is the stated result. Therefore, the form holds for n + 1 and,

thus, for all n.

Corollary A1. The n-th derivative of normalization of a belief under the sample path gen-

erated by Ik is

143

∇n
b̄φIk = ∇n

b̄

(
φIk b̄

1TφIk b̄

)
=

(−1)n−1n!(
1 · φIk · b̄

)nφIk · (I− b̄⊗ 1 · φIk
1 · φIk · b̄

)
⊗ (1 · φIk)

⊗(n−1) .

This follows from substituting φIk b̄ for b̄ in Theorem A3.

Corollary A2. If the n-th derivative of normalization function is taken relative to a nor-

malized belief such that |b̄| = 1, then Theorem A3 reduces to

(−1)n(n+ 1)!
(
I− b̄⊗ 1

)
⊗ 1⊗(n−1).

The result in Theorem A3 is a speci�c instantiation of the generalized Leibniz rule, which

describes the nth order derivative of the product of two functions. We can see that there is

little additional information added as we increase the rank of the derivative�all that occurs

is that the tensor is copied into a higher dimensional space (via 1⊗(n−1)) and scaled (via

(−1)n−1(n + 1)!). Intuitively this makes sense as the nonlinearity is the result of a scalar

value in the denominator.

Approximating the running cost along the path relative to the unnormalized belief using

a Taylor series approximation, requires that we have the representation of the n-th order

derivative of the normalizing function. To determine the e�ect of a perturbation on the

running cost for each sample path, we must determine the e�ect of the perturbation at

each stage along the sample path. Each perturbation must be normalized. Thus, we will

derive a represent ion of the n-th derivative of the cost c(·) with respect to b̄k relative to the

normalization function:

∇n
b̄k
c = ∇n

b̄k
(c ◦ η).

Unfortunately, there exists no tensor extension or the composite derivative (via the chain

rule) of two vector �eld functions. There exist various multivariate representations, specif-

ically [102] generates a multi-index, combinatorial formulation. However, this assumes a

144

scalar function composed with a scalar �eld.

Theorem A4. Faà di Bruno's formula: Let y = g(x). Then the following identity holds,

assuming all necessary derivatives are de�ned,

dn

dxn
f(g(x)) =

∑ n!

m1!m2! · · ·mn!

dm1+m2+···+mn

dym1+m2+···+mn
f(g(x))

n∏
j=1

(
1

j!

dj

dxj
g(x)

)mj
,

where mi are the order of the monomial terms for the derivative taken with respect to xi and

where
∑n

i=1 imi = n.

Unfortunately, we cannot formulate the tensor representation relative to the composite

representation for scalar functions as de�ned above. Instead, we derive the formulation

manually.

Fortunately, the composite of the cost function with the belief normalizing function has

speci�c properties that simplify the representation of the n-th derivative.

Lemma A2. The product of the the r-th and s-th derivative of the belief normalizing function

is such that

∇rη · ∇sη =


−1

(1·b̄)
∇sη if r = 1

0 otherwise

.

Proof. First we will explore the case where r = 1. From Theorem A3, we can derive

∇η · ∇sη =
−1(
1 · b̄

) (I− b̄⊗ 1

1 · b̄

)
(−1)s−1s!(
1 · b̄

)s (
I− b̄⊗ 1

1 · b̄

)
⊗ 1⊗(s−1),

=
−(−1)s−1s!(
1 · b̄

) (
1 · b̄

)s
(
I− 2

b̄⊗ 1

1 · b̄
+
b̄⊗ 1 · b̄⊗ 1(

1 · b̄
)2

)
⊗ 1⊗(s−1),

=
−(−1)s−1s!(
1 · b̄

) (
1 · b̄

)s (I− b̄⊗ 1

1 · b̄

)
⊗ 1⊗(s−1)

=
−1

1 · b̄
∇sη.

145

Now, for when r > 1:

∇rη · ∇sη =
(−1)r−1(
1 · b̄

)r (I− b̄⊗ 1

1 · b̄

)
⊗ 1⊗(r−1) · (−1)s−1(

1 · b̄
)s (I− b̄⊗ 1

1 · b̄

)
⊗ 1⊗(s−1),

=
(−1)r+s−2(
1 · b̄

)r+s (I− b̄⊗ 1

1 · b̄

)
⊗ 1⊗(r−2) ⊗ 1 ·

(
I− b̄⊗ 1

1 · b̄

)
⊗ 1⊗(s−1).

By pulling out one of the tensor products with the one vector we can see that

1 ·
(
I− b̄⊗ 1

1 · b̄

)
= 1− 1 = 0.

Therefore, for r > 1, the product of the rth and sth derivative is the zero vector, or

∇rη · ∇sη = 0.

The stated result is thus proved.

Lemma A3. The product of r = {r1, . . . , rs} derivatives of the belief normalizing function

is

s∏
i=1

∇riη =


(−1)s

(1·b̄)
s∇rsη if r1, . . . rs−1 = 1

0 otherwise

.

Proof. From Lemma A2 it follows that if any rs−1 > 1 for 1 ≤ i ≤ s − 1 then the product

of ∇ri∇ri+1 = 0 and, thus, that the total product equals zero. This implies only rs can be

greater than one. The product then reduces to the product of s − 1 �rst order derivatives,

yielding
(−1)s−1(
1 · b̄

)s−1∇η.

The product of this result is then ∇rsη taken:

(−1)s−1(
1 · b̄

)s−1 (∇η∇rsη) =
(−1)s−1(
1 · b̄

)s−1

(
(−1)(
1 · b̄

)∇rsη

)
.

146

And so we arrive at the stated result.

The results from both Lemma A3 indicates that the combinatorial explosion of terms

does arise in the derivation of the chained cost analysis. Thus, we can obtain a more compact

representation of the derivative of the normalized cost using the above result of Lemma A3

in combination with Corollary A1.

Theorem A5. The n-th derivative of the normalized cost along path Ik and action uk is

∇1
b0
c(φIkb0, uk) = ∇cuk · (φ) · ∇φIk ,

when n = 1. Otherwise for n > 1 the derivative is

∇n
b0
c(φIkb0, uk) = ∇ncuk · (∇φ)n +∇cuk · (φ) · ∇nφIk .

We will abuse notation and represent ∇nc(φIkb0, uk) = ∇n
b0
cuk , where the dependence of the

derivative on the information vector Ik is implicit.

Proof. First, the Jacobian is given by

∇b0c(φIkb0, uk) = ∇cuk∇φIk ,

which follows from the chain-rule. The second derivative is

∇2
b0
c(φIkb0, uk) = ∇2cuk · (∇φIk)2 +∇cuk · ∇2φIk ,

which again follows from direct application of the chain-rule. Now, we will proceed by

147

induction. Assuming that the the result holds for n, then for n+ 1 we have

∇n+1
b0

c(φIkb0, uk) = ∇
[
∇n
b0

(cuk ◦ φ(b0, Ik))
]

= ∇ [∇ncuk · (∇φIk)n +∇cuk · ∇nφIk]

= ∇n+1cuk · (∇φIk)n+1 + n∇ncuk · (∇φIk)n · ∇φIk

∇2cuk · ∇nφIk · ∇φIk +∇cuk · (φ) · ∇n+1φIk

= ∇ncuk · (φ)n · ∇nφIk +∇cuk · (φ) · ∇nφIk .

All terms that are the product of ∇sφIk · ∇rφIk = 0 from Lemma A3 as s+ r > 1. Thus, we

arrive at the stated result.

Corollary A3. The Jacobian of c(φIkb0, uk) is

∇b0c(bk, uk) = ∇bcuk ·
1

1TφIkb0

(
I− φIkb0 ⊗ 1

1TφIkb0

)
.

Corollary A4. The Hessian of c(φIkb0, uk) is

∇2
b0
c(bk, uk) =

1

(1TφIkb0)2

[
∇2cuk ·

(
I− φIkb0 ⊗ 1

1TφIkb0

)
−∇cuk ·

(
I− φIkb0 ⊗ 1

1TφIkb0

)
⊗ 1

]
.

To achieve the desired compact representation along each sample path we represent the cost

function via a polynomial approximation, which leverages Theorem A5. Polynomial approx-

imation is selected because the coe�cients of the monomial terms can be summed over each

stage to generate a polynomial representation of the running cost over all stages.

Remark 6.2. The cost c(b̄k, uk) at stage k around b̄k under the control action uk can be

approximated by the n-th degree polynomial of the the form

148

c(b̄k + ∆b̄k, uk) = c(b̄k, uk) +
N∑
n=1

1

n!
∇n
b̄k
cuk ·

(
∆b̄k

)n
+ cerr(∆b̄k), (6.63)

where cerr,k(·) is the residual for the higher order, greater than n, approximation terms. The

tensor product recursively taken n times with ∆b̄k is denoted as Thus, ∇n
b̄k
cuk · (∆b̄k)n. This

follows directly from application of Taylor's theorem�assuming all necessary derivatives exist.

The result from (6.63) enables the analysis of the perturbation ∆b̄k at each stage. How-

ever, to generate a compact representation we need to formulate the perturbation at every

stage k relative to the perturbation at the the initial stage 0 via ∆b0. This will be used

to create an analytic representation along each sample path, thus enabling us to achieve

temporal abstraction. In this context, temporal abstraction denotes the ability to represent

the future evolution at some future stage k relative to the initial stage 0 without having to

iterate through each intermediate stage 1, . . . k − 1.

Theorem A6. The cost function along the information vector IK = {b0, u0, y1, · · · , yK} can

be approximated by the n-th order polynomial relative to ∆b̄0 as

vIK (b0 + ∆b0) ≈ vIK ,sim +
n∑
n=1

1

n!
∇nvIK ·

(
∆b̄0

)n
+ vIK ,err(∆b̄0)

from the set of n-th order approximations of the cost at each stage k = 0, . . . , K represented

by (6.63).

Proof. Using a Taylor series expansion, we can approximate the cost c(b̄k, uk) at stage k

around b̄k under the control action uk as (6.63), where we use the notation c(b̄, u) as shorthand

notation for c(η(b̄), u). The n-th order derivative is represented by n-tensor.

149

The approximated cost along the sample path IK can then be approximated with

vIK (∆b̄0) =
K∑
k=0

c(b̄k + ∆b̄k, uk) (6.64)

=
K∑
k=0

{
c(b̄k, uk) +

n∑
n=1

1

n!
∇n
b̄k
cuk ·

(
∆b̄k

)n
+ cerr(∆b̄k)

}
(6.65)

by summing over all stages k = 0, . . . , K.

The unnormalized belief transition function from stage 0 to stage k is b̄k = φIkb0. The

unnormalized perturbation of each belief at stage k can be represented as a linear function

of the perturbation at the initial stage, i.e. ∆b̄k = φIk∆b0. Substituting this into the

approximated cost function at stage k (6.65), we obtain

c(b̄k + ∆b̄k, uk) = c(b̄k, uk) +
n∑
n=1

1

n!
∇n
b̄k
cuk ·

(
φIk∆b̄0

)n
+ c̄err(φIk∆b̄0),

which is now a function of the initial perturbation ∆b0. Now, by replacing the cost at each

stage k in (6.65) with the representation in equation above, the sensitivity

running cost function along the sample path IK becomes

vIK (b̄0 + ∆b̄0) =
K∑
k=0

{
c(b̄k, uk) +

n∑
n=1

1

n!
∇n
b̄k
cuk · (φIk∆b0)n + c̄err(φIk∆b0)

}

=
K∑
k=0

c(b̄k, uk)︸ ︷︷ ︸
vIK,sim

+
n∑
n=1

1

n!

[
K∑
k=0

∇n
b̄k
cuk · (φIk)

n

]
︸ ︷︷ ︸

∇nb0vIK

· (∆b0)n +
K∑
k=0

c̄err(φIk∆b0)︸ ︷︷ ︸
vIK,err(∆b0)

.

The second equation follows from grouping like terms to obtain: vIK ,sim, ∇n
b0
vIK , and

vIK ,err(∆b0). The base cost, vsim, which is the simulated cost under no perturbation along

the sample path IK , is a constant at each stage, therefore, the sum over all stages can be

performed to generate a single constant term. The n−th order derivative at each stage

k = 0, . . . K is product of n times φIk . The n-th order derivative of the cost function ∇n
b̄k
cuk

150

is n+ 1 dimensional and is symmetric in the 2 to n+ 1 dimensions. The product of n times

φIk multiply on all the symmetric dimensions and produces a symmetric function. Then the

product of ∆b̄k taken n times produces the n-th order inner-product. Thus, we can sum the

set of tensors at each stage to generate a single tensor representation. For example in the

quadratic case:

K∑
k=0

∇2
b̄k
cuk ·

(
φIk∆b̄0

)2
=

K∑
k=0

(
∆b̄0

)T
φTIk∇

2
b̄k
cukφIk∆b̄0

=
K∑
k=0

(
∆b̄0

)T [K∑
k=0

φTIk∇
2
b̄k
cukφIk

]
∆b̄0

=

[
K∑
k=0

∇2
b̄k
cuk · (φIk)

2

]
·
(
∆b̄0

)2
.

The second equation follows from sum of the inner-product of symmetric tensors. The

third equation follows from the de�nition of the tensor product. The end result is that the

coe�cients of each monomial terms, as represented as entries of the ranks 1 to n tensors,

can be added together while retaining a nth order approximation. Thus we arrive at the

stated result

The simulated running cost along the unperturbed trajectory is vIK ,sim and ∇nvIK repre-

sents the n-th order derivative of the cost along IK with respect to b0. The approximation er-

ror is captured by the residual term vIK ,err. Each of the terms of the �rst equation a function

of ∆b0 only. We exploit the fact that the sum of polynomials is equivalent to the sum of the

coe�cients of the monomial terms, e.g.
∑

i (aix
2 + bix+ ci) = (

∑
i ai)x

2+(
∑

i bi)x+(
∑

i ci).

This same property holds for tensors. This collapses the representation to be independent

of the the stage. The result is a function that maps perturbations to the initial belief ∆b0

to a perturbation on the running cost.

The the residual (error) vI,err is di�cult to quantify but Taylor series provides loose

bounds. The approximation error generally decreases as n increases.9 An increase in the
9However, when the small divisor problem occurs, high order terms can dominate, which leads to chaotic

151

order of the approximation, however, has a signi�cant impact on the time complexity. We

must, therefore, consider the trade-o� between the error of the analytical approximation

and the cost of re-simulation. It is possible for the computation requirements to grow

exponentially with the order of the approximation.

We note, however, that the actual time complexity is problem dependent and so the

order of the approximation should be considered at design time. For example, the overall

complexity is limited by the complexity of the n-th order derivative of the cost at each

stage. Thus, if the n-th order derivative is sparse�few of the coe�cients of the monomial are

nonzero�then a higher order approximation may be utilized without incurring a signi�cant

increase in time complexity. Furthermore, there is little additional information added as we

increase the order of the derivative�all that occurs is that the tensor is copied into a higher

dimensional space (refer to CorollaryA1 in Section 6.7.1). Intuitively this makes sense as

the nonlinearity is the result of a scalar value in the denominator. The implication is that

there may exist a more e�cient representation of high dimensional tensor terms.

With the cost along a sample path v
I
(i)
k

determined, all that remains is taking the expec-

tation over the set of the sample paths to obtain V . Substituting b
′
0 = b0 + ∆b0 into (6.62),

we obtain

V (b
′

0) =
1

µ

∑
I
(i)
K ∈ĨK

v
I
(i)
K

(b
′

0)
p(I

(i)
K |b

′
0)

p(I
(i)
K |b0)

=
∑

I
(i)
K ∈ĨK

v
I
(i)
K

(b
′

0)
(η(i))T b

′
0

ηT b
′
0

, (6.66)

where (η(i))T =
1Tφ

I
(i)
K

b
′
0

1Tφ
I
(i)
K

b0
, ηT =

∑
I
(i)
K

(η(i))T , and µ = ηT b
′
0. We can approximate the im-

portance weight and normalization factor using a n-th order Taylor series approximation of

(6.66) via the generalized chain rule, where we take the derivative of b
′
0 around b0. This keeps

behavior.

152

the order of the polynomial approximation �xed. Again, we can collect monomial terms to

obtain a compact formulation. An analogous derivation is performed in Section 6.3.2 to

obtain a linear approximation. The result is a n-th order polynomial approximation:

V (b0 + ∆b0) = Vsim +
n∑
n=1

1

n!
∇n
b0
vIK · (∆b0)n + Verr(∆b0),

where b
′
0 = b0 + ∆b0.

This compact representation comes at the trade o� of exactness. To achieve this we

approximate the cost around the generated sample path. More critically, we assume that

the same set of actions and observations occur for a perturbed belief. While locally this is

likely the case, the question remains to the size of the neighborhood around the sample for

which this holds. This issue is somewhat mitigated by the fact that stochastic systems are

generally insensitive and perturbations are attenuated over time.

The process of chaining multiple forecasted evolutions together is discussed in Section

6.4. The derivation in Section 6.4 obtains a linear approximation of the chaining process.

The main di�erence with the general non-linear formulation derived in this section is that

a higher order approximation (beyond linear) may be derived. This process is analogous to

the methodology reproduced throughout this paper, and, in particular, with the derivation

of this section. First, the generalized product rule is used to generate a the �rst through n-th

order derivative of the running cost function V (b0 + ∆b0), which is expressed as the already

derived Taylor series approximation, i.e. Vsim +
∑n

n=1
1
n!
∇n
b0
vIK · (∆b0)n +Verr(∆b0), and the

weighting function (η(i))T b′

ηT b′
. Gathering coe�cients of the monomial terms, we again obtain a

n-th degree Taylor series approximation. In this way, the complexity of the chaining process

is irrespective with the number of forecasted evolutions that have been chained together.

153

Chapter 7

ADAPTIVE SAMPLING-BASED OPTIMIZATION

FOR POMDPS

In this chapter, we propose the Adaptive Exploration/Exploitation Sampling-based Opti-

mization for POMDP (AESOP) algorithm. The proposed method, AESOP will be developed

in Section 7.2. Examples are provided in Section 7.3. We conclude with some future direc-

tions and �nal remarks Section 7.4.

7.1 Introduction

When described in terms of a system's state space, the evolution of a POMDP is governed by

a set of transition probabilities that describe the e�ects of control actions, and an observation

model that speci�es uncertainty in the sensing process. If, instead, the system is described

in terms of the belief space (i.e., the space of possible a posteriori probability functions on

the state space), the evolution of the system can be modeled as a Markov decision process

(MDP). This corresponds to lifting the system description from a lower dimensional state

space to a higher dimensional belief space.

In general we cannot reach arbitrary points in this space, regardless of the quality of

control law. In order to develop a sampling-based planner, we explicitly analyze the sensi-

tivity of both cost and hyperbelief evolution functions with respect to perturbations in the

belief. This allows us to adapt a simulated cost and trajectory starting from one hyperbelief

state to a cost and trajectory starting at a nearby hyperbelief, without re-simulation of the

system.

AESOP applies temporal and spatial abstraction to locally approximate large POMDP

154

systems. Through a mixed simulation/analytic representation, a directed graph is generated

to determine the underlying structure of the POMDP via an anytime algorithm, which

enables the re�nement of the best optimal policy at each iteration of the technique. The

vertices of the directed graph represent beliefs and are generated by sampling. The edges are

generated by simulation of the system for multiple stages, e.g. time steps, using simple greedy

policies de�ned on the belief space. They represent transitions from the belief represented

by the source vertex to a region near the belief represented by the target vertex. Utilizing

our characterization of the e�ect of perturbations (sensitivity), we can translate a walk

through the graph to a connected path through the belief space. These paths correspond

to feedback policies for the system. Retaining the sensitivity along edges of the graph also

allows reuse of the data structure without re-simulation of the system. These spatial and

temporal abstractions are key when planning for systems that not only have increasingly

large state, action, and observation spaces, but also require long planning horizons to �nd

su�ciently good policies.

AESOP uses inductive bias to sample temporally abstracted policies to e�ectively explore

the belief space based on previous experience. To leverage information garnered thus far, an

exploitation sampling function is alternately applied that too uses inductive bias to predict

which policies will perform the best to incrementally improve the current value. After a

policy is added to the graph, an iterative optimization algorithm is then used to update the

value function over the graph by selectively updating only the beliefs predicted to improve

based on the newly added policy. We believe they give our algorithm advantages in terms

of both scalability and practicality.

7.2 Methodology: Adaptive Sampling

Given POMDP system, our objective is to determine a policy π that minimizes the expected

total cost V (b0) starting from the initial belief b0, such that

155

V ∗(b0) = min
π∈Πfb

E

[
K−1∑
k=0

c(bk, π(bk)) + cK(bK) | b0

]
,

where policy π in the class of all feedback policies Πfb.1 The cost function c : Pb × U → R

may be belief dependent, enabling the evaluation risk-based cost functions. Risk-based cost

functions encapsulate costs that are dependent on the uncertainty present in the system,

which is ideal for localizing a robot at a goal position.

Our approach seeks to produce a tractable approximation by

• sampling a meaningful and representative portion of the belief space;

• approximating the predicted evolution of the POMDP system though hyper-particle

�ltering; and

• e�ectively connecting portions of the belief space to reduce optimization computation

cost.

Many methods, as cited in Chapter 3, �nd approximate solutions by reducing the complexity

or dimensionality of the belief space. Our approach is not contrary to such approaches. In

fact, it may be possible to combine approaches to achieve even greater results.

To determine the optimal, or nearly optimal, policy, our method generates a hierarchical

representation by constructing a directed graph (digraph), G =< N,E >. The vertices,

N , of the digraph correspond to a sampled belief. The forecasted evolution of the system

initiating from one of the vertices in the graph under a given policy is represented by a set of

edges. Each policy is represented as a multi-edge set πi→j, where each edge, E, corresponds

to a multi-stage path terminating at one of the vertices (belief samples) in the digraph

1This formulation is for �nite/inde�nite-time horizon Bolza cost functions. However, we also consider
discounted in�nite horizon models where the total cost under π is V (β0) = E

[∑∞
k=0 γ

kc(bk, π(bk)) |β0
]
, and

0 < γ < 1 is a discount factor. The derivation provided throughout this paper is applicable for such cost
functions and examples of in�nite horizon problems are provided in Section 7.3.

156

(edges carry a label to indicate the policy that it generated from). Accordingly, each edge

has associated with it the probability that policy reaches each such terminal belief. The set

of edges from a vertex represent the forecasted evolution of the system from the initial belief

under the given policy. Numerous aspects of this representation are shared with point-based

POMDP methods discussed in Chapter 3. The key di�erence is that edges are temporal

abstraction of policies over a plurality of stages�not just a single action for a single stage.

At each iteration of our algorithm, we expand the digraph. Graph expansion proceeds

by generating a new set of vertices and edges to add to the graph. During the expansion

phase, the running cost and perturbation analysis along each of the new edges is determined.

After expansion, an iterative graph optimization algorithm is applied to update the current

optimal cost-to-go for each vertex in the graph. The process then repeats�starting with

the expansion phase again. The proposed method is an anytime algorithm, which can be

terminated at any point to provide the best policy determined thus far. The result is a

structural representation of the system's behavior in conjunction with nearly optimal policy

with respect to the stated objective function. The pseudo code describing these steps is

provided in Algorithm 5, where the newly added policy edges are denoted by E ′. The set

of new edges to the graph E ′ inform the optimization routine of which beliefs to initiate the

backup procedure with. The functions ExpandGraph and OptimizeGraph are described in

detail in the following sections.

When we derive the optimal solution over the graph, we will have to take into consid-

eration the fact that each source belief sample likely will be unable to reach each target

hyperbelief sample exactly. To address this issue, we perform perturbation analysis (see

Chapter 6 for an in-depth description), which generates a sensitivity function representing

a local approximation of the e�ect of a perturbation has on both the cost and the evolution

along each edge. This eliminates the need to re-simulate the system when evaluating the

approximate path and cost for perturbed beliefs as well as enabling spatial abstraction by

providing a representation of the performance in the region around each of the sampled

157

hyperbeliefs.

The formulation we provide also enables the chaining of perturbation functions along

edges to join the forecasted evolution of the system along multiple edges. In the same way

that the sensitivity function eliminates the need to simulate paths stage-to-stage along edges,

the composite of multiple edges eliminates the need to simulate the system from edge-to-edge

along a composite policy. Representing the sensitivity of the optimal cost-to-go policy from

each vertex greatly reduces computational requirements to update the optimal policy each

iteration when a new vertex and set of edges are added to the graph. The process will be

described in more detail in the following sections.

Algorithm 5: Anytime Graph Optimization
Input: b0 : initial belief
Output: cost: the optimal cost for each vertex in the graph
G =< N,E > : digraph
Γ : mapping of optimal local policy edges to visit for each vertex in G

Insert b0 into graph G ;
Initialize FIFO queue edge_opt to be empty;
while s = 0 to anytime do

E ′, G ← ExpandGraph(G) ;
Push each policy edge set in E ′ into edge_opt ;
cost, Γ ← OptimizeGraph(G, edge_opt) ;

return cost, Γ, G ;

7.2.1 Digraph expansion

As our technique iterates, the digraph G is expanded adding edges and vertices at each

iteration. Each vertex i ∈ N corresponds to a belief b(i). 2 For notational convenience we

will label the vertices with the same label as the belief samples. Each forecasted evolution

for policy πs starting from b(i) is captured by a set of edges {πi→js }j, which represent the

evolution to vertex j. We begin with a digraph containing a single vertex 0 representing the
2Throughout this paper, we use subscript whenever possible to denote indices. The subscript for beliefs

is reserved as a time index, i.e. bk represents a belief at stage k.

158

initial belief. An illustration of the process of expanding the digraph is depicted by Figure

7.1, where a total of 5 forecasted evolutions.

Legend

Figure 7.1: An illustration of the digraph G, which includes multi-edge grouping per r and
corresponding vertices in digraph G

There are a total of three di�erent policies (π1,π2, and π3) used to generate the forecasted

evolutions. Each of the forecasted evolutions are represented by a set of edges, e.g., π1

from b(0) comprises three edges, which terminate at b(1), b(2), and b(3). Multiple edges may

terminate at the same vertex as illustrated by vertex b(8), which is reached from both vertices

b(3) and b(6).

In this hierarchical approach, we restrict the lower level to be a local policy within

the set of feedback policies Πfb. The class of policies chosen for analysis in Section 7.3

are belief target policies where a gradient is provided that directs the policy towards a

speci�ed goal belief. However alternate policy functions may be used. For instance, Candido

et al. in [48] suggest local policies can be provided by the system designer inform the

optimization algorithm to hasten convergence. The upper level policy γ(·) selects the local

policy based which edge in G is being traversed and on the current stage to produce a closed-

loop policy. The complete policy is a switching-based controller (see [103] for an overview

159

of hybrid/switching-based methods), whereby the local policy being executed is determined

based on some termination condition. This condition is variable, for instance it may depend

on policy executing for a maximum number of stages or policy no longer being able to make

progress via some value function. The set of all possible switching policies is denoted as Γ.

We therefore can represent the value function for a given system as

V (i)∗(b0) ≈ min
γ∈Γ

E

[
K−1∑
k=0

c(bk, πγ) + cK(bK) | b0

]
.

We denote the value of the digraph at each vertex as V (i)(·), where i is the vertex so that

the optimal value at the initial belief is given by V (0)(b(0)). The set of policies that have

already been evaluated for a vertex b(i) is denoted by the set Π(i) ⊆ Πfb. Each vertex

also has the the cost-to-go function for each policy π ∈ Π(i) , denoted as V (i)
π (b), which

holds for any belief b. The value function is just de�ned as V (i)∗(b(i)) = Vπ∗i
(i)(b(i)), where

π∗i = argminπ∈Π(i) V
(i)
π (b(i)).

Expansion occurs by either exploration-based sampling or by exploitation-based sam-

pling. During an exploration phase, the system to expands into the unexplored space by

attempting to anticipate which policies will make the most progress. Otherwise, during an

exploitation expansion, a vertex policy pair is selected based on the predicted impact on the

optimal value of the system. The policy is simulated and the policy edges are added to the

digraph. The sampling function is then updated based on the results of the simulation. The

sampling method is selected randomly from a binomial distribution that is static learning

rate q, so that exploration is chosen randomly, on average, q percent of the time, with ex-

ploitation selected the remaining 1 − q percent of the time. Adaptively selecting when to

explore and when to exploit remains an area of future research.

For e�ciency, we retain a set of the explored belief set Bexp
t , which comprises all the be-

liefs in the graph at iteration t. The explored belief set is stored in a K-d tree [104], where the

high dimensional beliefs are projected into much lower dimensional space by approximating

160

the belief by a small number of moments. This ensures quick distance comparisons can be

performed without having to perform brute force comparison with all possible beliefs. Each

vertex also retains a list of the n-nearest neighbors B(i)
near. This list is iteratively updated

as the graph is expanded to keep the computational burden minimized. This neighbor set

B
(i)
near also contains all values needed to perform the sampling in the following sections. The

iterative update of the neighbor set ensures that it is unnecessary to regenerate the sampling

distribution for every belief at each iteration.

7.2.2 Exploration sampling

The purpose of exploration-based sampling is 1) to expand the into the reachable portion of

the belief space and 2) to build a sparse representation of the POMDP system's structure.

This proceeds in two steps. First we sample a vertex belief to expand. Next, we select which

of the policies to simulate starting at the sampled vertex. Policy sampling seeks to eliminate

local policies that are similar to one another and to preferentially select policies for which

accumulated evidence in the local region around the reference belief suggest are likely to

provide satisfactory exploration. This inductive bias is generated by seeking the behavior

of the policies of the n-nearest neighbors. Policy sampling is biased by the likelihood of the

policy to make gains, weighted by the inverse distance from the reference belief sample.

E�ective means to preferentially sampling beliefs include adaptive sampling. A naive

approach to adaptively sample would be to just to take a frequency distribution over the

neighboring beliefs of each vertex. Then one could just sample policies that are used less

frequently. This, however, is no more than averaging the policy sampling over the belief

space. A simple frequency distribution of the sampled policies the neighborhood of a belief

is likely not capable as more nuanced sampling methods. In particular, we seek to incorporate

the e�ectiveness of the the policies when simulated: both a policy's success and failure should

be weighed when sampling.

161

We de�ne the chance of a policy succeeding if sampled with the binomial random variable

Sexp, where Sexp indicates success and ¬Sexp represents failure. If a policy π has not been

simulated at b(i) we extrapolate the likelihood a policy succeeding from neighborhood around

b(i). The simple indicator variable Ssim denotes if a policy has been simulated (Ssim implies

it has and ¬Ssim indicates that it has not been simulated) :

p(Ssim|b(i), πm) =


1 if simulated at b(i)

0 else

.

Initially, p(Sexp|b(i), π,¬Ssim) = 1
εexp

for all b(i) and π. This value, εexp, can vary between

zero and one. If near zero, the sampling method will avoid sampling policies that have

not been simulated previously. Conversely, if initialized to near one, the sampling method

will prefer to sample unexplored policies. After simulating policy π, the probability of π

successfully exploring starting at b(i), updated to become

p(Sexp|b(i), π, Ssim) =
d
β
(i)
K

dmax
.

The ratio
d
β
(i)
K

dmax
is a measure of how much progress policy π made in exploring a new portion

of the space. The denominator dmax is the theoretical maximum distance between beliefs.

We obtain d
β
(i)
K

after simulating the policy π from b(i). It is the expected distance from

the explored space is generated for its terminal hyperbelief of the forecasted evolution.

The expected distance is computed by weighting the probability of each belief b ∈ β(i)
K in

the terminal hyperbelief by the distance to the closest belief bexp in the explored belief set

Bexp
t , so that

d
(i)
βK

=
∑
b∈β(i)

K

min
bexp∈Bexpt

d(b||bexp)p(b),

where d(·||·) is a belief distance function that measures the similarity between probability

162

functions.3

Our objective is to use neighboring information to update p(Sexp|b(i), πm,¬Ssim) based

on the actual performance of the POMDP system. In particular, we are interested in is

the probability that a policy will be successful in exploring the space given it has not been

simulated yet. We capture this concept in the policy sampling probability function:

p(Sexp|b(i), πm,¬Ssim) =
1

µ

∑
b∈Bneigh(i)

∑
Ssim

p(Sexp|b, πm, Ssim)

d(b(i)||b)
, (7.1)

where

µ =
∑

b∈Bneigh(i)

∑
Ssim

p(Sexp|b, πs, Ssim)

d(b(i)||b)

is a normalizing factor.

The formulation of the policy sampling function above in (7.1) leverages local policy

information to extrapolate which policies at belief b(i) are most likely to achieve greatest

exploration. However, before we sample a policy, we need to sample the belief b(i) that will

be expanded. After a belief sample is generated, we sample a policy from (7.1) conditioned

on b(i). We derived the policy sampling probability function �rst because we will use the

marginalized probability function over all policies as a weighting factor when sampling beliefs.

When sampling beliefs to expand the graph, there are three major factors we weigh:

• The likelihood of the remaining policies starting from b(i) expanding into an explored

region of the belief space: P (Sexm|b(i),¬Ssim);

• The reachability of the the belief: r(b(i)); and

3There are various measures than can be employed to determine the distance between beliefs. For instance,
if there is an implied measure on the state space, then metrics such as Mallows distance (or earth mover's
distance) [77] and the probability metric [105] may be applied. Alternatively, when no state space measure is
applicable, probability distribution measures such as such as Jenson-Shannon divergence, Hellinger distance,
or the 1-norm are often used (refer to [76] for a catalog of probability distance functions).

163

• The discounted factor α raised by the minimum number of stages, K, it takes to get

from b(i) from the initial belief b(0): αK , where 0 < α ≤ 1.

The �rst term is precisely the marginal of the policy sampling probability function:

P (Sexp|b(i),¬Ssim) =
∑
π

P (Sexm|b(i), π,¬Ssim)P (Sπ).

We assume a uniform prior over the policies Sπ ∼ Uniform(Π). This is essentially equivalent

to assuming that there is no a priori knowledge about which policies will perform better

throughout the belief space. Reachability is determined by the maximum of the probability

of a belief b(j) occurring starting from b(i), or r(b(i)) = maxb(J)∈N p(b
(i)|b(l)). Each time a

vertex is reached, the reachability is updated�this includes when the vertex is �rst added to

the graph. The probability of a belief being reached is the weighted sample path probability

p(b(i)|b(l)) ∝ P (Ib(l)π|b(l)), which we derive in Section 6.3.1.

These three factors are combined to generate belief sampling probability function:

p(Sexp,b) = ξexpP (Sexp|b(i),¬Ssim) + ξrr(b
(i)) + ξγγ

K .

The above is a convex combination of the three independent factors, where ξexp+ξr+ξα = 1.

At each iteration, both the policy sampling probability function and the belief sampling

probability function are updated. Then a belief b(i) is sampled from p(Sexp,b) and for that

belief a policy π is sampled from p(Sexp|b(i), πm,¬Ssim)p(Sπ), which is weighted by the prior

over the policies. Evaluation of the candidate local policy set is simulated using hyper-

particle �ltering (refer to Chapter 4), which continues until either the policy is unable to

make any more progress or when a maximum number of stages has elapsed. We assume for

the duration of this paper that each local policy selects actions by choosing the best next

stage action relative to a policy speci�c value function. For instance, the value function may

specify a gradient directing the system to a speci�c belief. Once the policy π terminates,

164

the resulting forecasted evolution is added to the graph as a new set of vertices and edges.

Pseudo code for the exploration sampling procedure is outlined in Algorithm 6. The process

of simulating a policy and then adding the resulting forecasted evolution to the graph, as

encapsulated by update_graph, is described below in Section 7.2.3

After the new vertices and edges are added to the graph, the nearest neighbors and

all associated weights are updated based on the newly added vertices to the graph. It is

interesting to note that we use a �xed number of n-nearest neighbors around each vertex.

Because of this, when the process starts out, the neighborhood approximation starts as

coarse representation. But as the number of beliefs increase the size of the neighborhood

shrinks, a �ner grained analysis is obtained. This automatic tuning of the resolution of a

adaptive sampling has the bene�t of allowing greater variance in the policy sampling early

on, which will converge to essentially the the in�nitesimal neighborhood around a sample

belief as the number of samples goes to in�nity.

7.2.2.1 Exploitation sampling

When exploitation-based sampling is selected, the objective is to increase the connectivity in

an area predicted to decrease the cost of the system. This is necessary as our optimization

algorithm does not perform a full backup; only a subset of beliefs are updated at each

iteration. Increasing the connectivity ensures that low cost vertices are maximally leveraged.

Exploitation sampling serves the purpose of biasing policy sampling to select policies that

have a high potential of decreasing the cost of the system. As with exploration sampling,

spatial cues are used to both select a vertex b(i) to be expanded as well as the policy to be

simulated. The selection process is similar to the method presented above in Section 7.2.2.

First we derive a distribution over the policies that predicts the potential of a policy to

decrease the value at a given vertex.

To derive a good predictor for impact of a policy, we want a measure of the region's

value to the theoretical lower value bound. This gap de�nes the value range that the policy

165

Algorithm 6: ExploreSample
Input: G =< N,E > : current digraph
Output: Eset : edge policy set

foreach vertex i ∈ N do

foreach π ∈ Π do

foreach neighbor j ∈ B(i)
near do

if π ∈ Π(j) then

p(Sexp|b(i), π,¬Ssim)← p(Sexp|b(j),π,Ssim)

d(b(i)||b(j)) ;

else

p(Sexp|b(i), π,¬Ssim)← p(Sexp|b(i),π,¬Ssim)

d(b(i)||b(j)) ;

µ←
∑

π p(Sexp|b(i), π,¬Ssim) ;
Normalize each p(Sexp|b(i), π,¬Ssim) by µ ;

p(Sexp|b(i),¬Ssim)←
∑

π P (Sexm|b(i), π,¬Ssim)P (Sπ)
p(Sb)← ξexpp(Sexp|b(i),¬Ssim) + ξrr

(i) + ξγγ
K ;

µ←
∑
p(Sexp,b) ;

Normalize each p(Sexp,b) by µ ;
sample b(l) from p(Sexp,b) ;
sample π from p(Sexp, b

(l),¬Ssim) ;
βK ← simulate π from b(l) using hyper-particle �ltering ;
Eset ← update_graph(βK ,π) ;
return Eset

potentially can reduce. The larger the gap, the greater the possibility to decrease the value.

We obtain the theoretical lower bound from the MDP solution to the POMDP. Because

of additional uncertainty and partial observability, POMDPs are lower bounded by the

MDP value function. This observation is a key component in many contemporary POMDP

approximation techniques including [7, 8, 11]. Each of these methods use the value gap to

bias their sampling. Kurniawati et al. in [11], in particular, use the gap to selectively

perform depth-based sampling. Our approach does not hard code any bias but instead seeks

to discover it through the adapting optimization process. Gap-based sampling preferentially

selects policies that make incremental progress towards the lower bound optimal value over

incremental progress over the nominal value.

We de�ne the value gap as the di�erence between V (l)
π , the lowest value function in the

166

neighborhood around b(l) using π evaluated at b(l), and V (l)
MDP , the expected MDP solution

at b(i) :

∆V (i)
π = V (i)

π − V
(i)
MDP .

The expected MDP value is

V
(i)
MDP = VMDP (x)b(i)(x),

where VMDP is obtained by solving the equivalent MDP version of the POMDP where the

system is fully observable. E�cient methods exist to �nd exact or approximate solutions to

MDPs. Refer to [3] for an overview of such approaches. Even the naive exact optimization

has a time complexity O(KX2), where K is the time horizon and X is the number of states.

The approximate value for b(i) relative to the value at b(j) for policy π is bounded above

by minimum the value over all the neighbors:

V (i)
π / min

b(j)∈B(i)
near

V (j)
πm (b(i)).

This follows directly from the fact that V (i)
π (b(i)) / V

(j)
π (b(i)) for all b(J) because the optimal

value function is piecewise linear and convex. The linearity assumption of the value function

holds for the exact single stage backup, but our perturbation analysis will su�er increased

error the further a neighbor b(j) is from the reference belief b(i). Furthermore, we want

a direct way to weight when the exploitation sampling procedure has an unsatisfactory

outcome. For this reason we take the average value for b(i) under π between neighbors

weighted by the inverse distance to each neighbor. This is analogous to our derivation above

for the exploration bias. We, therefore, de�ne the lowest value function as

V (i)
π =

∑
b(j)∈B(i)

near

V
(j)
π (b(i))

d(b(i)||d(j))
.

To create the policy sampling probability function SMDP (where SMDP and ¬SMDP indicate

167

success and failure, respectively), we just normalize the result over all policies:

p(Sval|b(i), π, Ssim) =
∆V

(i)
π

µ
,

where µ =
∑

π∈Π ∆V
(i)
π . Unlike the exploration sampling, exploitation sampling only con-

siders policies that have executed. Therefore, p(SMDP |b(i), π,¬Ssim) = 0 for all b(i) ∈ N and

π ∈ Π.

Again, as was the case with exploration sampling, the result is a probability function

over policies for each belief, which cannot be used to sample beliefs directly. To obtain a

belief sampling probability function, we marginalize the policy value over the set of policies

to obtain a prediction of the likelihood a given belief will produce tangible gains in the value

function. The marginalized probability function is

p(Sval|b(i), Ssim) =
∑
π∈Π

p(Sval|b(i), π, Ssim)p(Sπ).

The prior over the set of policies Sπ is the same as what was used in Section 7.2.2, which

assumes a uniform distribution over the set of policies.

Beyond the adaptive exploitation sampling technique, we also want to further bias the

sampling of beliefs based on the potential impact the belief will have on the value function.

For instance, we know that if the reachability is low, i.e. the belief has a low probability

of occurring, then it will likely not contribute as much as a higher probability neighboring

belief. Similarly, if there is a high discount factor, then there is little impetus to sample long

time horizons, as the discounting will quickly attenuate the value function the greater the

number of stages. To address these concerns, we combine the exploitation sampling method

with both additional terms used for the exploration sampling: a reachability bias r(b(i)) and

discount bias αK . These three factors are combined to generate belief sampling probability

168

function:

p(Sval,b) = ξvalP (Sval|b(i),¬Ssim) + ξrr(b
(i)) + ξγγ

K ,

where ξval + ξr + ξγ = 1. The weighting functions *i.e. ξval, ξr, and ξγ) are just heuristic

values used to ensure that a balance between sampling methods is obtained. The algorithm

for performing exploitation sampling is substantially similar to the method described in

Algorithm 6, with the only di�erence being the weighting of Sval instead of Sexp.

In addition to exploitation sampling probability function, every new vertex added to the

graph, a greedy cost policy, which selects the one stage look-ahead action minimizing the

cost function c(·) at each stage, is also executed. This local exploitation policy provides local

value information for each new vertex in the graph, which is initially a terminal leaf vertex

until it is expanded. This method is also useful for systems that are nearly fully observable

as the solution to the underlying MDP can be used as the greedy value function. We will

demonstrate later in Section 7.3 that this representation can speed up convergence for nearly

fully observed system. For practical reasons we determine the local diversity value of each

vertex at each stage of the optimization algorithm. Because the optimization algorithm

searches the n-nearest neighbors during the backup of a vertex, we can easily adjust the

local diversity value during this operation.

7.2.3 Generating edge and vertex information

Once a policy π is simulated starting from b(i) the complete hyperbelief is split into a set

of sample paths: {I(s)

b(i),π
}s = Ĩb(i),π. Each sample path I(s)

b(i),π
corresponds to an information

vector starting from b(i). The terminal belief b(s)
K of each sample path I(s)

b(i),π
is added as a new

vertex b(j) to the graph unless a terminal belief is near an existing vertex. In which case,

no new vertex is added. An edge πi→j is created for each sample path with the source b(i)

and target b(j). When a terminal belief is near an existing vertex b(l), a new edge is added

from b(i) to b(l). In this way, we are able to capture the forecasted evolution under policy π

169

starting from b(i).

The set of sample paths simulated, and hence the set of edges added to the graph, is a

subset of the complete set of sample paths: Ĩπ,b(i) ⊂ Iπ,b(i) . The set of edges then represent

the likely sample paths the system follows under the policy π, which we use to estimate the

sensitivity of the evolution of the system under the given policy due to perturbations in the

initial starting belief. Each edge πi→j has associated to it a transition sensitivity function,

which is is a chained representation of the e�ect of a perturbation in the initial belief ∆b
(i)
0

on the target belief of an edge ∆b(j). From (6.7) in Section 6.3.1, the perturbation along an

edge is be approximated by

b
(j)
0 + ∆b

(j)
0 ≈ b

(i)
0 +

φIK

1TφIKb
(i)
0

(
I− b

(i)
k 1TφIK

1TφIKb
(i)
0

)
∆b

(i)
0 ,

where ∆b(i) is a perturbation to the to b(i).

Each vertex has associated with it the running cost sensitivity function for each policy and

the optimal cost-to-go sensitivity function. The running cost sensitivity function represents

the change in value along the edge due to a perturbation ∆b(i) from the initial belief b(i).

Using a linear representation via a �rst order Taylor series, the running cost sensitivity for

a policy is approximated as (6.26) from Section 6.3.2:

V (i)
π (b(i) + ∆b(i)) ≈ V

(i)
π,sim + αTb(i),π∆b(i).

Each vertex b(i) of the graph comprises the the set of edges for each policy π in the set

of simulated policies Π(i) from vertex b(i). The optimal policy is identi�ed as π(i)∗ and the

optimal chained cost sensitivity function is retained as V (i)∗. Initially each vertex simulates

a greedy policy and assigns the initial optimal path and cost functions the resulting cost

sensitivity and path sensitivity. As the optimal policy is updated, the vertex information is

updated so that each vertex contains the optimal policy, cost, and chained value functions

170

found so far.

The advantages of this sensitivity-based formulation are two fold. First, we achieve

temporal abstraction. The chained representation of policies allows us to avoid re-simulation

of multi-stage policies as well as use previously simulated policies to predict performance

in one step during exploitation-based sampling. Secondly, we achieve spatial abstraction by

extrapolating performance of the local policy in the neighborhood around b(i). However, these

bene�ts are not free: additional space complexity is required for each edge and vertex to store

the sensitivity cost function as well as the transition sensitivity functions. Both the running

cost sensitivity function and the belief transition sensitivity function are approximations of

the exact e�ect a perturbation ∆b(i) has on the running cost of the policy and the terminal

belief, respectively. Refer to Chapter 6 for additional information this perturbation analysis

technique.

7.2.4 Updating the approximately optimal policy

After expanding the digraph G and determining the sensitivity functions and cost for each

new edge, we can perform digraph optimization on the directed graph to update the optimal

path for each vertex in G. The resulting minimum path imposes a switching order for

the local policies. The set of local policies along with the switching order describes the

approximately optimal policy. The optimal order of edges Γ : G → Π (and, thus, local

policies) from any initial hyperbelief de�nes the higher level policy, which we denote as

γ ∈ Γ. The local policy between edges π ∈ Π de�nes the lower policy.

The policy (with associated edges and new vertices) added to the graph at each stage has

the potential to a�ect the optimal cost-go-to of its adjacent edges in the graph. We can avoid

full graph optimization by recursively evaluating only the parents of each a�ected policy edge

set and their neighbors. This pseudo code for this process is provided in Algorithm 7.

Each new policy edge set{πi→j}j that is generated during the expansion phase is push

171

Algorithm 7: OptimizeGraph
Input: G : digraph

edge_opt = : set of initial edges to update
Output: G : digraph with the updated vertex information

while edge_opt not empty or a maximum number of iterations have occurred do
E ← pop front of edge_opt ;
π ← policy of E ;
foreach target vertex j ∈ E not already optimized do

Nlocal ← �nd n nearest neighbors of j ;
foreach l ∈ Nlocal do

val[l] ← V l∗(βj) ;
best_val[j] ← minl{val[l]} ;

Qi(·, π) ← Chain(vi→jπ , best_val) ;
if V i(βi, π) < V i∗(βi) then

π∗i ← π ;
V i∗(·) ← V i(·, π) ;
foreach E ′ parent policy edge set of i do

push E ′ and its n-nearest neighbors onto edge_opt ;

return G;

onto a �rst-in-�rst-out queue edge_opt of edges to be evaluated. Then, for each entry in

edge_opt the cost of the parent vertices of b(i) (any incoming edge to b(i)) are to be evaluated

along πi→j to the best value at target vertex b(j) and the chained cost-to-go sensitivity

function determined. If the new cost reduces the cost the parent vertex b(i) then the parent's

vertex is pushed onto the queue edge_opt and the optimal cost-to-go sensitivity function is

assigned the updated composite function. The next edge in the queue edge_opt is selected

and the process repeats. At most each of the policy edge sets in the graph being updated

at each iteration, which has the same cost as Dijkstra's algorithm (refer to [79, Ch. 24])

over the graph. One appealing aspect of this approach is that often only a small subset of

the edges are a�ected and the subsequent optimization at each iteration. For reward-based

systems, where negative weight cycles are present, cycle detection is preformed to avoid

in�nite looping.

172

7.3 Results

POMDPs with an expected state cost have been studied extensively. This class of cost

function imparts a simple and elegant structure on the value function in the belief space;

namely, the optimal value function is piecewise-linear and concave (it is convex when con-

sidering a reward function instead of a cost function). Traditional value-iteration methods

exploit this structure when determining approximately optimal solutions (e.g., [6, 8, 11]).

This piecewise-linear and concave form in the value function arises from the fact that the

cost function is linear in the belief space and that the backup from one stage to the next is

a linear function for each action. The optimization function is then the minimum over the

set of linear functions in the belief space, which is a piecewise linear function.

The unnormalized cost function is a ratio of linear function given by

cu
(
b̄
)

=
cTu b̄

1T b̄
,

for each u ∈ U . We use a �rst order approximation of the cost:

∇cu =
cTu
1T b̄
− cTu b̄1

T(
1T b̄
)2

=
cTu
1T b̄

(
I− b̄1T

1T b̄

)
.

This implies that we retain a �rst order approximation throughout. In this way, we retain

some of the original structure of piecewise linearity. The nonlinearity is a result of the

limited set of sample paths that are considered via the temporal abstraction. In single stage

techniques, the e�ect of every observation is considered so the normalization term disappears

and, thus, the nonlinearity of the normalization disappears as well.

To verify the proposed technique, we applied it to several of the benchmark problems

found in the literature: maze20, hallway2, and CIT (from [2] and [11]). These methods are

173

Table 7.1: Veri�cation via comparison to benchmark problems

Expected Total Cost Time (s)
|X | |Y| |U| SARSOP AESOP

Maze20 20 8 6 −47.27 −48.965 50
Hallway2 92 17 5 −0.465 -0.435 100

CIT 284 28 4 −0.831 −0.664 200

discounted in�nite horizon expected state reward systems. Just as with generating a bound

for the cost, we generate a bound on the number of iterations that elapse while traversing

edges of the digraph. This way we can propagate the discount from one event to the next via

the number of iterations that elapse between events. The result of the the simulated results

of the presented method are presented in Table 7.1. The proposed method is compared

against SARSOP [11]. SARSOP is not a temporal/spatial abstraction method. However, it

is the leading POMDP approximation method for the benchmark problems presented. We

can see that the proposed method is competitive with SARSOP for the small systems and the

proposed method exceeds SARSOP for several of the large systems. For each example, we ran

each method 100 times to evaluate the e�ectiveness of the method. We note that there are

several future improvements to the proposed method that will enable further improvements

that should allow the method to expand to the larger systems. Speci�cally, approximation

the sensitivity function is crucial to scale further.

7.4 Conclusion

A method for �nding nearly optimal policies for POMDPs was presented. The proposed

method is a sampling-based technique using a two-level hierarchical planner, whereby the

lower level planner executes local, greedy feedback policies and the higher level planner

coordinates the which of the local policies to execute. This method attempts to capture

the connectivity of the POMDP system, while simultaneously learning the nearly optimal

policy for the stated objective function. The method presented explicitly weighs the explo-

174

ration/exploitation trade-o� through two sampling algorithms. One algorithm uses inductive

bias to preferentially sample vertices, as represented by beliefs, and policies that are most

likely to explore the reachable belief space most e�ectively. The other algorithm selects ver-

tices and local policies for the sole purpose of decreasing the value function over the graph.

The e�ectiveness is demonstrated on a set of benchmark problems.

The proposed method demonstrates the utility in including inductive bias in sampling-

based methods. However, there are many opportunities to improve the performance of the

algorithm. One promising method is to bootstrap the results of a similar system when

optimizing a new system. Both the bias in exploration and exploitation used as a prior

should drastically improve convergence of the proposed method. Further research could also

focus on tuning the inductive bias algorithms to maximize their performance.

175

Chapter 8

DISCUSSION

We catalog potential future research directions in Section 8.1. In Section 8.2, we conclude a

summary of contributions of the proposed research.

8.1 Future Research

8.1.1 Improved sampling methods

While sampling may be an e�ective method to approximate the set of feasible hyperbeliefs,

the set of generated hyperbeliefs may not be indicative of sensitive regions in the hyperbelief

space where the local policy changes and the value of fundamentally shifts. An adaptive

sampling approach therefore may be bene�cial. Numerous researchers have approached

sampling from an adaptive framework (refer to [39, Section 7.1.3]). In fact, RRTs [72] are

in some sense adaptive sampling methods. Many of these techniques either implicitly or

explicitly search for points analogous to such sensitive regions. Searching for a path narrow

gap [106], sampling near obstacles [107], or sampling based on manipulation constraints [108]

are analogous in some ways to searching for a fundamental shift in a policy.

Adaptive sampling may performed either in the digraph generation stage or during the

graph optimization stage. If performed during the digraph generation stage, numerous

possible options exist. If one hyperbelief sample is incapable of simulating near another

hyperbelief sample, a set of intermediate sample between the two hyperbeliefs can be sampled

to determine if a better strategy can be found. Another possibility is to expand, for a limited

176

time horizon, the set of all possible actions, to determine if a better policy exists to transition

one hyperbelief to the next. Adaptive sampling can also be used to connect under sampled

portions of the hyperbelief space in a manner similar to that of PRMs.

8.1.2 Improved local planners

The techniques presented presume no information or guidance in selection of the local policy

set. However, as we demonstrated in [109], often limited operator input in the local pol-

icy selection process can drastically speed convergence of the optimization algorithm when

learning su�cient and e�ective policies. In particular, we observed that in a distributed

multi-agent POMDP system, a semi-supervised controller that was endowed with only a

limited number of local policies was capable of achieving non-intuitive and satisfying results.

In this system, the local policies were informed by the problem description as well as the

presumed optimal local behavior of each agents.

It has been observed that often the MDP policy is nearly optimal for POMDP systems

when there is little uncertainty in the observation model. In fact both [8] and [11] explicitly

take advantage of this fact. Interestingly, the observed behavior is a mixture between uncer-

tainty minimization (exploration) and following the MDP trajectory (exploitation). Further

streamlined by leveraging a limited set of local policies that can exploit the MDP solution

while simultaneously reduce the uncertainty in the system is one potential method to select

and improve local planners.

8.1.3 Sensitivity analysis for variations in the model description: evaluation

for an entire class of systems

By analyzing the sensitivity of the system model to variations we wish to �nd an e�cient

and compact representation of the optimal policies over the entire space of system models.

Just as the neighborhood around optimal policies is often nearly optimal, an optimal policy

177

for a given system is often nearly optimal for a similar system. This is a concept we wish

to investigate further as future research. However, just as there are sensitive regions in the

hyperbelief space where the policy changes, it stands to reason that so to there exist regions in

the space de�ning the class of systems whereby the policy fundamentally changes as well. By

investigating the e�cient representations of the con�guration space, Leven and Hutchinson

in [110] found an e�cient compression of the con�guration space based on critical regions. In

a similar fashion, we wish to derive a method based on the hyperbelief sampling to determine

an entire set of approximately optimal policies, for an entire canonical class of systems. To

do this, we propose de�ning a parametrized class of transition and observation probability

functions. We would then seed the space with a representative set of parameterizations and

explore the space around the solution until a sensitive region is found. We would then make

sure there is a su�cient number of vertices in the digraph to capture the insensitive regions

between this sensitive region.

We are also interested in exploring the sensitivity to see if we can derive the relationship

between the value of the optimal policy and the interplay between the process model, the

observation model, and the cost function. In particular we are interested in the impact of

the relative uncertainty in the process model to the uncertainty in the observation model

has on achieving some given objective. For instance, if the process model is subject to a

great amount of uncertainty and the observation model is nearly uninformative, then it is

likely that the evolution of the system spirals to the center of the belief space. However if the

observation is informative and, thus, subject to a small amount of uncertainty, the system will

be pushed to the boundary of the belief space. These two scenarios are drastically di�erent

and will likely lead drastically di�erent values. The questions are: How does the value

change between these two extremes? and Are there sensitive regions where the value changes

suddenly? If so, is there anything we can derive from these regions that tells us something

fundamental about the system in general, such as the maximal amount of uncertainty that

can be tolerated by a system to still be able to perform a task satisfactorily? Evaluating

178

such insights into POMDP system remains as a topic of future research.

8.1.4 Extension to continuous, parametrized spaces

Unfortunately, it may not be possible to directly apply hyper-particle �ltering to continuous

state spaces. The hyperbelief space for �nite state systems is itself an in�nite dimensional

space. The set of probability functions over a continuous space, on the other hand, resides

in an in�nite dimensional space. The space of probability functions de�ned on that in�nite

dimensional space may be poorly de�ned. Because of this current limitation of hyper-particle

�ltering to discrete state spaces, hyper-particle �ltering fails to be applicable to signi�cant

portion of robotics problems. Speci�cally, motion planning in real world environments reside

in continuous state spaces. Approximating the continuous state space by discretizing the

space into a �nite grid is often done in robotics. However, the number of cells required grows

exponentially with the dimension of the state space. And the quality of the solution depends

on the resolution of the cells. We are interested in better approximations than simply cutting

the world into hypercubes of constant volume�that give a better approximation with fewer

parameters.

To address this issue we propose turning to parametrized transition and observation

probability functions, whereby the parameter space is �nite dimensional. Thus, we can then

look at the space of probability functions over the parameter space much in the same way

we analyzed the space of probability functions de�ned over the belief simplex. Ideally, we

wish to devise a formulation that has certain, bene�cial properties: 1) the description of the

beliefs requires only a �nite number of parameters at each stage, 2) the number of parameters

is either a constant from stage to stage or only increases by a linear to sub-linear amount

from one stage to the next and 3) the parametrization is rich enough to approximate most

practical systems of interest in robotics.

179

8.2 Conclusions

The development of techniques to learn nearly optimal policies for �nite-time horizon and

in�nite-time horizon POMDPs was presented. The proposed methods use a bi-level hier-

archical planner, whereby the lower level planner executes local feedback policies and the

higher level planner coordinates the order of hyperbelief samples that are visited. They

attempt to capture the structure of the POMDP system. The �rst method is independent

of the starting hyperbelief (or belief) and the cost function, so that an e�cient multi-query

technique can be utilized for any initial hyperbelief or cost function for a given POMDP

system. The second technique is derived from the �rst. As an anytime algorithm, it applies

a multi-edge formulation and implements perturbation analysis to achieve both spatial and

temporal abstraction. Finally, a method using a mixed information representation via be-

lief and direct sensing data is presented. This method demonstrates the utility in a mixed

representation as well exposing limitations of direct sensing implementations.

The resulting methods and analysis support the notion that POMDPs are inherently

insensitive. When coupled to feedback policies the inherent sensitivity is ampli�ed even

further. The proposed techniques are not only are comparable in performance to existing

approximation methods, but exceed existing methods for long time-horizon systems and for

systems subject to a greater uncertainty in the observation model. Further, the structure-

based formulation should enable a principled analysis of the e�ect changes in the system

description have on the system's performance. Exploiting this should enable the development

of a compact policy representation for a variety of system parameters.

180

Appendix A

STOCHASTIC FILTERING

For systems subject to uncertainty, �ltering describes the process whereby an estimate of the

state and its uncertainty are propagated from one stage to the next. Filtering is a sequential

or recursive method whereby an estimate from the previous stage is used to determine an

estimate for the current stage. Hyper�ltering is also a sequential method, but, while �ltering

evolves an estimate of the state and its uncertainty from previous stages to the current stage,

hyper�ltering propagates the uncertainty and estimate of a system forward into future stages.

The concept of �ltering is presented as well as the relevant background material needed to

motivate the development of hyper�ltering. Filtering is formulated in Section A.1 and is

followed, in Section A.2, by a taxonomy of �ltering approximation methods. The particle

�lter, the approximation technique on which the hyper-particle �lter is based is presented

in Section A.3.

A.1 Formulation

Filtering is a general term for processing sequential systems that are either causal or non-

causal, whereby the likelihood of the system being in a particular state is estimated or

"�ltered" from one stage to the next. In this way the unlikely states are "�ltered" out. For

stochastic systems, �ltering refers to a sequential technique that generates an estimate of

the state and uncertainty from one stage to the next. Conveniently, �ltering minimizes the

amount of information that must be retained from previous stages because only the previous

stage is used to estimate the current stage. Having an estimate of the state and a repre-

181

sentation of the uncertainty from one stage to the next is immensely useful in �nding and

implementing robust and even optimal control policies.

When dealing with partially observable systems, a construct is needed to encapsulate

the known information. Unfortunately, the state is only indirectly known through the infor-

mation state Ik. The information state is an accumulation of all of the information about

a system that is directly known. This includes the set of actions performed and the set of

observations collected up to time k. The question is how to incorporate all of the information

into an estimate of the state of the system and its uncertainty. While some �ltering meth-

ods take advantage of certain properties of r.v.'s, the essential nature of �ltering Markovian

systems is best described by the precise method known as the Bayesian �lter.

A.1.1 Bayesian �lter

Because of Markov properties, Bayes rule can be applied to perform sequential �ltering. This

method, known as Bayesian �ltering was �rst introduced in [13]. Bayesian �ltering estimates

the belief at the current stage k from the previous belief at stage k − 1. The evolution of

the belief can be split into two stages: prediction and update. The prediction stage takes

the previous belief, pxk−1|Ik−1
, and pushes it through the transition probability function to

obtain the predicted current belief, pxk|Ik−1,uk . The prediction step evaluates the e�ect of an

action on the belief of the system. This is achieved by simply marginalizing p(xk|Ik−1, uk−1)

on xk−1, which becomes

p(xk|Ik−1, uk−1) =
∑

xk−1∈X

p(xk|xk−1, Ik−1, uk−1)p(xk−1|Ik−1, uk−1) (A.1)

=
∑

xk−1∈X

p(xk|xk−1, uk−1)p(xk−1|Ik−1). (A.2)

182

In (A.1) the current belief is marginalized on xk−1. The transition probability function is

independent of Ik−1 given xk−1. Therefore, (A.1) reduces to (A.2). Likewise, because the

previous belief is conditionally independent of uk−1, p(xk−1|Ik−1, uk−1) becomes p(xk−1|Ik−1)

as shown in (A.2). The current belief is now represented in terms of the previous belief and

the transition probability function.

After the prediction stage, the update stage is executed. The update stage incorporates

an observation to condition the belief on new information to generate pxk|Ik . After applying

Bayes rule, the system of interest becomes

p(xk|Ik) = p(xk|yk, Ik−1, uk−1) (A.3)

=
p(yk|xk, Ik−1, uk−1)p(xk|Ik−1, uk−1)

p(yk|Ik−1, uk−1)
(A.4)

= ηkp(yk|xk)p(xk|Ik−1, uk−1) (A.5)

where ηk is the normalizing constant

1

ηk
=
∑
xk∈X

p(yk|xk)p(xk|Ik−1, uk−1). (A.6)

In (A.3), p(xk|Ik) is rewritten so that the yk and uk−1 are pulled out of Ik. As shown

in (A.4), Bayes rule is applied so that the probability of yk is conditioned on xk. The

probability of yk is independent of other terms when conditioned on xk, thus the other terms

are eliminated in (A.5). Also in (A.5), p(yk|uk−1, Ik−1) is a normalizing constant that can be

determined as the sum of the probability of yk over all possible xk as is shown in (A.6).

By combining both the prediction (A.2) and update (A.5), the Bayesian �lter is obtained:

p(xk|Ik) = ηkp(yk|xk)
∑

xk−1∈X

p(xk|xk−1, uk−1)p(xk−1|Ik−1), (A.7)

where ηk is as de�ned by (A.6). From (A.7), it is shown that pxk|Ik can be evaluated directly

183

from pxk−1|Ik−1
and uk−1 using both the transition and observation probability functions.

Likewise, if Bayes rule is applied to pxk−1|Ik−1
, the belief at stage k − 1 requires only the

belief and action at stage k − 2. By continuing to expand (A.7), it becomes apparent that

the Bayesian �lter can be recursively applied up to the initial belief. This inductive step is

crucial in understanding that the Bayesian �lter can be sequentially applied to continuously

evaluate the current belief given the previous belief.

Interestingly, by analyzing �ltering from the belief perspective, the problem reduces to

a deterministic function that transitions one belief into another. Thus, the belief at stage k

can be determined from the belief at stage k − 1.

De�nition A.1. The belief transition function B(·), where B : Pb ×U ×Y → Pb, transfers

one belief bk−1 into another bk given some particular action uk−1 and observation yk, or

bk = B(bk−1, uk−1, yk),

where, with xk(i) ∈ X for i = 1, . . . , |X | representing the set of states,

B(bk−1, uk−1, yk) ,



ηkp(yk|xk(1))
∑

xk−1∈X p(x(1)|xk−1, uk−1)bk−1(xk−1)

ηkp(yk|xk(2))
∑

xk−1∈X p(xk(2)|xk−1, uk−1)bk−1(xk−1)

...

ηkp(yk|xk(|X |))
∑

xk−1∈X p(xk(|X |)|xk−1, uk−1)bk−1(xk−1)


and

1

ηk
=

∑
xk∈X

∑
xk−1∈X

p(yk|xk)p(xk|xk−1, uk−1)bk−1(xk−1).

The Bayesian �ltering description derived above was for discrete space systems. The

continuous state analog is generated by replacing the summations with integrals. Many

robotic systems evolve over continuous spaces. The di�culty with extending from discrete

184

to continuous spaces is the lack of closed form solutions to the integral equivalent of (A.2).

It becomes necessary to �nd tractable approximations to the Bayesian �lter to proceed.

Fortunately, there exist a plethora of techniques focused on approximating the Bayesian

�lter for both continuous and discrete systems.

A.2 Filtering Approximation Methods

Most general �ltering problems have no known analytical solution or an unacceptable running

time, also known as computational time complexity. Because of inherent di�culties in

�ltering for general systems, approximation methods are typically the only feasible choice.

For discrete systems di�culties arise from the O(|X |2) computational time complexity in

the evolution from one stage to the next, where |X | is the number of states. This means

the worst case running time grows quadratically in the size of the state space. Often for

realistic systems, there can be millions of states, and the square of this quantity can make

the exact derivation of the next belief state prohibitively expensive. Reducing the running

time to linear or sublinear computational time complexity is often desired for such systems.

While computational time complexity can be an issue with continuous time systems, it

is more often the lack of a known closed form solution that makes approximation techniques

necessary. As an exception, the Kalman �lter (KF) [16], the most popular method for

continuous state systems, is an exact �lter for linear Gaussian systems. Taking advantage

of the property that a random variable that is the superposition of jointly Gaussian random

variables is itself a Gaussian random variable, Kalman derived a formulation to evolve the

mean and covariance describing the probability function. This method's popularity holds

even to this day.

The extended Kalman �lter (EKF) was developed in an attempt to expand the KF

method to general nonlinear systems (refer to [17]). The EKF linearizes the system around

the current estimate and then applies the KF on the linearized system to update the esti-

185

mated parameters. The EKF has become especially popular in SLAM applications.

Numerous alternative methods, based directly on Bayesian �ltering, have been developed.

To expand past the Gaussian limitation of the KF, the Gaussian mixture method [18] was

developed for linear systems subject to non-Gaussian noise. The mixture method works

by approximating a non-Gaussian probability function by a sum of Gaussian probability

functions. A major drawback to this method is the possible exponential growth, in the time

horizon, of the number of Gaussians representing the belief.

Researchers in [19] tackle the problem of nonlinear Gaussian systems with the unscented

�lter. The unscented �lter samples a Gaussian to estimate the belief and then passes the

samples through the transition probability function. Once completed, a new Gaussian prob-

ability function is generated to �t the newly evolved samples. Set-theoretic methods are used

to �lter systems when no model besides the support of the noise is known. These systems

are evaluated using forward projection techniques [111]. The approach of Hanebeck [20] and

Stump et al. [21] is to employ sequential elliptical approximations to evaluate the uncertainty

sets.

While some research has occurred for the class of problems listed above, the majority of

work has focused on solutions to general nonlinear, non-Gaussian systems. The vast major-

ity of this work has been for parametrized family solutions, including [22�24, 82]. Several

researchers have researched mixture methods for parametrized families (e.g., [112,113]) that

meld the parametrized solution with the Gaussian mixture method.

More recently, sampling-based methods have become popular. Sampling methods take a

computational approach to solving the �ltering problem, whereby at each stage a �nite set

of points is used to evaluate an approximation to the exact �ltering outcome. A grid-based

method introduced in [114] deterministically samples the sample space by using a grid-based

approximation over the state space. For continuous systems, using this approach makes it

possible to reduce a possibly unknown analytical solution to an approximate computational

solution. For discrete systems, sampling can reduce the computational time complexity sig-

186

ni�cantly by considering only a limited number of the states in the state space. A major

drawback of this deterministic approach is that the computational burden grows exponen-

tially with the dimension of the state space. To alleviate this drawback, motivated by the

convergence properties of random sampling, an alternative random sampling method known

as particle �ltering has become the defacto standard when �ltering nonlinear, non-Gaussian

systems. Particle �ltering is used as a basis for an approximation for the hyper�lter and, for

this reason, particle �ltering is described in detail below.

A.3 The Particle Filter

Unlike deterministic sampling, e.g. grid based methods, the particle �lter [58�69] randomly

samples the space. Particle �ltering is a sequential method that is simple to implement

and has many desirable properties. Particle �ltering is based on Monte Carlo Markov chain

(MCMC) simulation, which is in�uenced by Monte Carlo integration. Unlike particle �lter-

ing, MCMC is an iterative method requiring the re-evaluation of all information at every

stage [58]. At each stage k, MCMC methods sample a series of states from the initial stage

to the current stage. The probability of the sample is then evaluated by simulating the

system forward from the initial stage until the current stage k. At the next stage k + 1, the

MCMC methods, again, generate a new set of state samples for each stage from the initial

stage to stage k+ 1. This process is an iterative technique whereby no information from the

previous stage is retained. Iterative techniques have worst-case running times that are geo-

metric in the number of states at each stage. Because of this, the entire computational time

complexity burden for estimating the system from an initial stage to a given time horizon

results in a computational time complexity that is exponential in the time horizon. Particle

�ltering, on the other hand, is sequential in nature. At each stage the approximation of the

current belief is evaluated from the approximation of the previous belief.

Particle �ltering approximates the probability function by a �nite set of samples instead

187

of performing exact �ltering. Each sample consists of a two elements: a weight (probability)

and a point in the state space. Because the representation is discrete, the evolution through

the Bayesian �ltering equations becomes computational in nature. Hence, particle �ltering

allows for the evaluation of a broad class of nonlinear, non-Gaussian systems.

Particle �ltering is known as bootstrap �ltering [60], condensation [65], sequential Monte

Carlo [66], interacting particle approximations [67], and survival of the �ttest [68]. Regardless

of the name, one of the bene�ts of particle �ltering is that, under general conditions, the

convergence or the error is de�ned in the number of samples, not the dimension of the

state space. Furthermore, as was shown in [69] (and subsequently in [58]), particle �ltering

converges under fairly weak assumptions.

Unlike most derivations, the formulation of the particle �ltering algorithm, to be pre-

sented in this section, is speci�cally separated into a prediction and an update step. The

reason for this is to facilitate the adaptation of the particle �ltering method into the hyper-

particle �ltering approach (see Chapter 4). Particle �ltering can also be applied to discrete

state systems as will be done when exploring the hyper-particle �lter. The following deriva-

tion is based on the sequential importance resampling method (SIR) (see [57] for further

description). There are numerous other adaptations to particle �ltering that can be applied;

however, the fundamental approach in all of these methods is the same.

Particle �ltering approximates the probability function of a system with a �nite set of

particles S = {si}. Each particle si = (xik, w
i
k) comprises as a point xi in the state space X

and a scalar weight wi, where 0 < wi ≤ 1 and
∑

iw
i = 1. At any given stage, k, the belief

of the system is approximated by the set of particles Sk = {sik} as

p(xk|Ik) ≈
|Sk|∑
i=1

wikδ(xk − xik).

Particle �ltering begins by taking m random samples of the initial belief and giving

them equal weight of 1/m. The primary portion of the method, repeated at each iteration,

188

performs the approximated Bayesian �ltering on the set of particles Sk for each stage k.

Instead of calculating each possible future state from each current state, particle �ltering

works by randomly sampling a set of next states using an importance sampling function q(·).

Because state and observation spaces are �nite and the observation yk is already known, it

is possible to sample from the optimal choice of importance sampling function, which is

q(xk|xik−1, yk, uk−1) , p(xk|xik−1, yk, uk−1), (A.8)

as was shown in [66]. The importance sampling function (A.8) can be expanded by applying

Bayes rule to become

q(xk|xik−1, yk, uk−1) = p(xk|xik−1, yk, uk−1)

=
p(yk|xk, xik−1, uk−1)p(xk|xik−1, uk−1)

p(yk|xik−1, uk−1)

=
p(yk|xk)p(xk|xik−1, uk−1)

p(yk|xik−1, uk−1)
,

where the later equation follows from the conditional independence of yk on previous states

(i.e., xik−1). Often q(xk|xk−1,uk−1) is chosen as the importance sampling function because it

is often simple to generate samples from xk−1 and uk−1.

From the previous set of particle samples, Sk−1 = {(xik−1, w
i
k−1)}mi=1, a set of new state

samples {xjk}mj=1 are randomly generated using q(xk|xk−1,uk−1) as the importance sampling

function, where one sample xjk is generated for each xik−1 in Sk−1. The weight, ŵ
j
k, represent-

ing the probability of each new sampled state, xjk, is then determined to generate the new

particle set Sk = {(xjk, ŵ
j
k)}mj=1. The probability of any state xk ∈ X at time k is obtained

189

from the previous belief at stage k − 1 and the transition probability function as

p(xk|Ik−1, uk−1) =
∑

xk−1∈X

p(xk|xk−1, uk−1)p(xk−1|Ik−1) (A.9)

≈
m∑
i=1

p(xk|xik−1, uk−1)wik−1. (A.10)

In (A.11), the exact predicted belief is approximated from the particle set at stage k − 1.

The weight wik−1 is the approximated probability of p(xik−1|Ik−1) for each xik−1 in Sk−1.

To simplify the analysis, particle �ltering methods assume that the transition probability

of each particle xjk is nonzero for only the sample xik−1 used to generate it. For discrete

systems this approximation reduces the computational time complexity signi�cantly. Taking

this approximation into account, (A.11) reduces to

p(xjk|Ik−1, uk−1) ≈ ηpp(x
j
k|x

i
k−1, uk−1)wik−1, (A.11)

where ηp is a normalizing constant. Because each sample xjk was sampled randomly from

an importance sampling function, an adverse e�ect is introduced. Because the samples are

generated from an importance sampling function and not the actual probability transition

function, the random samples are not representative of the random samples that would

be generated if the probability transition function was sampled directly and therefore the

representation of the posterior probability function is skewed. Without taking into account

this e�ect, the result can quickly become erroneous.

The issue is that, on one hand, if one samples from the transition function the weight

should be identical for each sample, as the sampled set will approximate the probability

function itself. However, if one sampled the space uniformly, each sample should be weighted

according to the probability of each sample. The question is then how to take into account

the adverse e�ect when performing quasi-random or random sampling from a probability

function other than the transition probability function. If each sample is just given equal

190

weight, the approximation becomes that of the importance sampling function and not the

transition probability function. However, if each sample is weighted only according to the

transition probability function, the approximated probability function becomes erroneous.

Imagine sampling from an importance sampling function that is a Gaussian centered in the

state space. If the transition probability function has a low probability of occurring around

the center of the state space so that each sample receives a low weight, the samples get

assigned a higher weight when normalized and the set of samples are focused in the center

of the space. The result is an inaccurate representation of the true probability function.

Particle �ltering researchers rely on insights from Monte Carlo integration to deal with

this issue. When approximating the expectation of some bounded function c(·) relative to

some probability function p(·) by a randomly generated, �nite set of samples, the set of

samples generated can adversely e�ect the result. It turns out that this adverse e�ect can

be eliminated by weighting each sample by the ratio of the probability of the sample being

generated by the transition probability function divided by the probability of the sample

being generated by the importance sampling function. More precisely, as observed in Monte

Carlo integration, for some function c(·),

E[c(xk)] =
∑
x∈X

c(x)p(x) =
∑
x∈X

c(x)
p(x)

q(x)
q(x).

The expectation of a r.v. with a probability function p(x) can be represented as the expec-

tation of another r.v. with the probability function q(x) by weighting c(x) by the ratio of

p(x) and q(x) for each x ∈ X . Thus, as can be seen, the adverse e�ect of the importance

sampling on the expected value of any bounded function c(·) is eliminated. As the e�ect

of the bias relative to any c(·) is attenuated, any measure over the probability function has

the e�ect of the bias attenuated. By dividing by pxk|xk−1,uk−1
by qxk|xk−1,uk−1,yk , the expected

adverse e�ect in (A.11) relative to any bounded function c(·) is therefore attenuated and the

191

weight ŵjk associated with xjk becomes

p(xjk|Ik−1, uk−1) ≈ ηp
p(xjk|xik−1, uk−1)

q(xjk|xik−1, uk−1, yk)
wik−1 (A.12)

= ŵjk. (A.13)

When the transition probability function is selected as the importance sampling function

and is substituted into (A.12), the updated weight becomes ŵik = wik−1. Thus the adverse

e�ect is eliminated so that weight for each new particle is just the weight with the previous

particle. The precise particle �ltering prediction algorithm is given in Algorithm 9. Because

the systems of interest are discrete, it is always possible to sample from pxk|xk−1,uk−1
directly.

Thus, the e�ect of sampling from an importance sampling function becomes moot.

Algorithm 9: Particle �lter prediction
Input: S = {wi, xi}mi=1 : Set of particles and weights,
u : Applied control action ,
y : Observationn
Output: Ŝ : Updated particle set

for i = 1, · · · ,m do

Sample x̂i from q(· | xi, u, y) ;
ŵi ← wi p(x̂

i|xi,u,y)
q(x̂i|xi,u,y)

;
1
ηp
←
∑m

i=1 ŵ
i ;

for i = 1, · · · ,m do

ŵi ← ηpŵ
i ;

Ŝ ← {ŵi, x̂i}mi=1 ;
Ŝ ←PF_update(Ŝ,y) ;
return Ŝ

The update procedure weights of each particles according to the probability of each

192

sample given the observation yk. With ηu, a normalizing constant, the new weight becomes

p(xik|Ik) =
p(yk|xik)p(xik|Ik−1, uk−1)

p(yk|Ik−1, uk−1)

≈ ηup(yk|xik)ŵik

= wik

by using (A.13) as an approximation of p(xik|Ik−1, uk−1). The particle location does not

change in the update step of the particle �ltering algorithm. Instead, the weight is only

ampli�ed or attenuated. The update algorithm is described in Algorithm 10.

Algorithm 10: Particle �lter update (PF_update)

Input: Ŝ = {ŵi, x̂i}mi=1 : Predicted particle set,
y : Observation
Output: S : Updated particle set

for i = 1, · · · ,m do

wi ← ŵip(y | x̂i) ;
1
ηu
←
∑m

i=1 w
i ;

for i = 1, · · · ,m do

wi ← ηuw
i ;

S ← {wi, xi}mi=1 ;
Estimate particle divergence of S ;
if particle divergence greater than threshold then
S ← PF_resample(S) ;

return S

Once the new weight is generated, a resampling algorithm is executed. The resampling

algorithm selects a set ofm random samples from the belief approximated by the particle set.

Resampling avoids particle degeneracy, which occurs when low weight, or low probability,

particles continue to be utilized. Particle degeneracy can, and usually does, cause prob-

lems because higher probability regions are undersampled and lower probability regions are

oversampled, resulting in a poor representation of the actual probability function. However,

resampling has the potential side e�ect of causing particle impoverishment, whereby parti-

cles with high weights are selected many times. This is especially a concern in cases when

193

the system is subject to a small process noise [57]. The resampling algorithm is described

in Algorithm 11.

Algorithm 11: Particle �lter resample (PF_resample)
Input: S = {wi, xi}mi=1 : Particle set before resample,
y : Observation
Output: S̄ : Resampled particle set

for j = 1, · · · ,m do

cj+1 ← cj + wj ;
Draw initial sample u0 from uniform density over [0, 1

m
] ;

i← 2 ;
for j = 1, · · · ,m do

uj ← uj + j−1
m

;
while uj > ci do

i← i+ 1 ;
w̄j ← 1

m
;

x̄j ← xi−1 ;
S̄ ← {w̄j, x̄j}mj=1 ;
return S̄

The prediction stage has an O(lm) computational time complexity, where m is the num-

ber of samples, and l is the computational time complexity of drawing a random sample

from qxk|xk−1,uk−1,yk . The update stage has a computational time complexity of O(m), which

includes the O(m) computational time complexity of the resampling procedure. The algo-

rithmic complexity of the particle �lter up to the time horizon K is therefore O(Kml). This

computational time complexity includes all stages including the prediction, update, and re-

sampling. When samples are generated from pxk|xk−1,uk−1
, the computational time complexity

of the sampling procedure is O(|X |). This occurs because the sampling procedure requires

that a sample be generated from an uniform probability function. The sample is then in-

dexed into the cumulative distribution function generated from the transition probability

function, which has |X | possibilities. This process is similar to the resampling procedure

outlined in Algorithm 11. Thus, when the importance sampling function is chosen as the

transition probability function, particle �ltering has a computational time complexity of

194

O(Km|X |). While particle �ltering was originally derived for continuous space systems, it

can be applied as an approximation to discrete systems to reduce the computational burden

of �nding the exact solution. The exact solution for the discrete case is O(K|X |2). In many

robotics applications there can be tens of millions of states. Evaluation of such a system

is not practical with today's computational means and the O(Kml) time complexity of the

particle �lter is preferable to the exact solution.

195

REFERENCES

[1] G. Grisetti, R. Kummerle, C. Stachniss, and W. Burgard, �A tutorial on graph-based
slam,� Intelligent Transportation Systems Magazine, IEEE, vol. 2, no. 4, pp. 31�43,
2010.

[2] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, �Planning and acting in partially
observable stochastic domains,� Arti�cial Intelligence, vol. 101, pp. 99�134, Jan 1998.

[3] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. Cambridge, MA: The MIT
Press, 2005.

[4] R. Kaplow, �Point-based pomdp solvers: Survey and comparative analysis,� Ph.D.
dissertation, McGill University, 2011.

[5] S. Thrun, �Monte Carlo POMDPs,� in Advances in Neural Information Processing
Systems, 2000, pp. 1064�1070.

[6] J. Pineau, G. Gordon, and S. Thrun, �Point-based value iteration: An anytime algo-
rithm for POMDPs,� in Proceedings of the International Joint Conference on Arti�cial
Intelligence (IJCAI), 2003, pp. 1025 � 1032.

[7] T. Smith and R. Simmons, �Heuristic search value iteration for POMDPs,� in Pro-
ceedings of the 20th Conference on Uncertainty in Arti�cial Intelligence, 2004, pp.
520�527.

[8] T. Smith and R. Simmons, �Point-based POMDP algorithms: Improved analysis and
implementation,� in Proceedings of the Conference on Uncertainty in Arti�cial Intel-
ligence, 2005.

[9] M. T. Spaan and N. Vlassis, �A point-based POMDP algorithm for robot planning,�
in IEEE International Conference on Robotics and Automation, 2004, pp. 2399�2404.

[10] M. T. Spaan and N. Vlassis, �PERSEUS: Randomized point-based value iteration for
POMDPs,� in Journal of Arti�cial Intelligence Research, vol. 24, 2005, pp. 195�220.

[11] H. Kurniawati, D. Hsu, and W. Lee, �SARSOP: E�cient point-based POMDP plan-
ning by approximating optimally reachable belief spaces,� in Proc. Robotics: Science
and Systems, 2008.

196

[12] R. He, A. Bachrach, and N. Roy, �E�cient planning under uncertainty for a target-
tracking micro-aerial vehicle,� in IEEE International Conference on Robotics and Au-
tomation, 2010.

[13] K. J. Astrom, �Optimal control of Markov decision processes with incomplete state
estimation,� Journal of Mathematical Analysis and Applications, vol. 10, pp. 174�205,
1965.

[14] D. P. Bertsekas, Dynamic Programming and Optimal Control. Cambridge, MA:
Athena Scienti�c, 2007.

[15] G. Casella and R. L. Berger, Statistical Inference (2nd Edition). Paci�c Grove, CA:
Thomson Learning, Inc., 2002.

[16] R. E. Kalman, �A new approach to �ltering and prediction problems,� Journal of Basic
Engineering, vol. 82D, pp. 35�45, 1960.

[17] H. W. Sorenson, Kalman Filtering: Theory and Applications. New York, NY: IEEE
Press, 1985.

[18] D. L. Alspach and H. W. Sorenson, �Nonlinear Bayesian estimation using Gaussian sum
approximation,� IEEE Transactions on Automatic Control, vol. 17, no. 4, pp. 439�448,
1972. [Online]. Available: http://www.cs.rpi.edu/~isler/new/pub/pubs/tr-04-13.pdf

[19] S. Julier and J. Uhlmann, �Unscented �ltering and nonlinear estimation,� Proceedings
of the IEEE, vol. 92, no. 3, pp. 401�422, March 2004.

[20] U. Hanebeck, �Recursive nonlinear set-theoretic estimation based on pseudo ellipsoids,�
in International Conference on Multisensor Fusion and Integration for Intelligent Sys-
tems, 2001, pp. 159�164.

[21] E. Stump, B. Grocholsky, and V. Kumar, �Extensive representations and algorithms
for nonlinear �ltering and estimation,� in International Workshop on the Algorithmic
Foundations of Robotics, 2006.

[22] U. D. Hanebeck, K. Briechle, and A. Rauh, �Progressive Bayes: A new framework for
nonlinear state estimation,� in Proceedings of SPIE, 2003, pp. 256�267.

[23] V. M. Klumpp, D. Brunn, and U. D. Hanebeck, �Approximate nonlinear Bayesian
estimation based on lower and upper densities,� in The 9th International Conference
on Information Fusion, 2006, pp. 1�8.

[24] X. Boyen and D. Koller, �Tractable inference for complex stochastic processes,� in
Proceedings of the 14th Conference on Uncertainty in Arti�cial Intelligence, 1998, pp.
33�42.

[25] R. D. Smallwood and E. J. Sondik, �The optimal control of partially observable Markov
processes over a �nite horizon,� Operations Research, vol. 21, no. 5, pp. 1071�1088,
Sep. 1973.

197

[26] E. Sondik, �The optimal control of partially observable Markov processes,� Ph.D. dis-
sertation, Stanford University, 1971.

[27] E. J. Sondik, �The optimal control of partially observable Markov processes over the
in�nite horizon: Discounted costs,� Operations Research, vol. 26, no. 2, pp. 282�304,
March 1978.

[28] G. E. Monahan, �A survey of partially observable Markov decision processes: Theory,
models, and algorithms,� Management Science, vol. 28, no. 1, pp. 1�16, Jan. 1982.

[29] H. T. Cheng, �Algorithms for partially observable Markov decision processes,� Ph.D.
dissertation, University of British Columbia, Vancouver, BC, Canada, 1988.

[30] N. L. Zhang and W. Liu, �Planning in stochastic domains: Problem characteristics and
approximation,� Department of Computer Science, Hong Kong University of Science
and Technology, Tech. Rep. HKUST-CS96-31, 1996.

[31] A. Cassandra, M. L. Littman, and N. L. Zhang, �Incremental pruning: A simple, fast,
exact method for partially observable Markov decision processes,� in Proceedings of
Uncertainty in Arti�cial Intelligence, 1997, pp. 54�61.

[32] C. Papadimitriou and J. Tsitsiklis, �The complexity of Markov decision processes,�
Mathematics of operations research, pp. 441�450, 1987.

[33] P. Poupart and C. Boutilier, �Value directed compression of POMDPs,� in Advances
in Neural Information Processing Systems, 2003.

[34] N. Roy and G. Gordon, �Exponential family PCA for belief compression in POMDPs,�
in Advances in Neural Information Processing Systems, 2002, pp. 1�8.

[35] X. Li, W. Cheung, and J. Liu, �Improving POMDP tractability via belief compression
and clustering,� Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transac-
tions on, vol. 40, no. 1, pp. 125�136, 2010.

[36] E. Zhou, M. Fu, and S. Marcus, �Solving continuous-state POMDPs via density pro-
jection,� IEEE Transactions on Automatic Control, vol. 55, no. 5, pp. 1101�1116,
2010.

[37] R. Kaplow, A. Atrash, and J. Pineau, �Variable resolution decomposition for robotic
navigation under a pomdp framework,� in Robotics and Automation (ICRA), 2010
IEEE International Conference on. IEEE, 2010, pp. 369�376.

[38] X. Li, W. Cheung, and J. Liu, �Decomposing large-scale POMDP via belief state
analysis,� in IEEE Conference on Intelligent Agent Technology, 2005, pp. 428�434.

[39] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki,
and S. Thrun, Principles of Robot Motion: Theory, Algorithms, and Implementations.
Cambridge, MA: MIT Press, 2005.

198

[40] L. E. Kavraki, P. �vestka, J. C. Latombe, and M. H. Overmars, �Probabilistic roadmaps
for path planning in high-dimensional con�guration spaces,� IEEE Transactions on
Robotics and Automation, vol. 12, no. 4, pp. 566�580, June 1996.

[41] J. Kim, R. Pearce, and N. Amato, �Extracting optimal paths from roadmaps for mo-
tion planning,� Robotics and Automation, 2003. Proceedings. ICRA '03. IEEE Inter-
national Conference on, vol. 2, pp. 2424�2429 vol.2, 14-19 Sept. 2003.

[42] M. Apaydin, D. Brutlag, C. Guestrin, D. Hsu, J. Latombe, and C. Varm, �Stochastic
roadmap simulation: An e�cient representation and algorithm for analyzing molecular
motion,� Journal of Computational Biology, vol. 10, pp. 257�281, 2003.

[43] R. Alterovitz, T. Simeon, and K. Goldberg, �The stochastic motion roadmap: A
sampling framework for planning with Markov motion uncertainty,� in Proceedings
of Robotics: Science and Systems, Atlanta, GA, USA, June 2007.

[44] S. Prentice and N. Roy, �The belief roadmap: E�cient planning in belief space by
factoring the covariance,� International Journal of Robotics Research, vol. 28, no. 11-
12, pp. 1448�1465, 2009.

[45] R. He, E. Brunskill, and N. Roy, �E�cient Planning under Uncertainty with Macro-
actions,� Journal of Arti�cial Intelligence Research, vol. 40, pp. 523�570, 2011.

[46] R. Platt Jr, R. Tedrake, L. Kaelbling, T. Lozano-Perez, and J. Higuera, �Belief space
planning assuming maximum likelihood observations,� in Proceedings of Robotics: Sci-
ence and Systems, 2010.

[47] H. Kurniawati, Y. Du, D. Hsu, and W. Lee, �Motion planning under uncertainty for
robotic tasks with long time horizons,� International Journal of Robotics Research,
vol. 30, no. 3, p. 308, 2011.

[48] S. Candido, J. Davidson, and S. Hutchinson, �Exploiting domain knowledge in planning
for uncertain robot systems modeled as POMDPs,� in IEEE International Conference
on Robotics and Automation, Anchorage, AK, USA, May 2010, pp. 3596�3603.

[49] R. He, E. Brunskill, and N. Roy, �PUMA: Planning under uncertainty with macro-
actions,� in Proceedings of the American Association for Arti�cial Intelligence, 2010,
pp. 1089�1095.

[50] R. Sutton, D. Precup, and S. Singh, �Between MDPs and semi-MDPs: A framework
for temporal abstraction in reinforcement learning,� Arti�cial Intelligence, vol. 112,
no. 1, pp. 181�211, 1999.

[51] N. Melchior and R. Simmons, �Particle RRT for path planning with uncertainty,� in
IEEE International Conference on Robotics and Automation, 2007, pp. 1617�1624.

[52] E. Hansen and R. Zhou, �Synthesis of hierarchical �nite-state controllers for POMDPs,�
in Proceedings of the Thirteenth International Conference on Automated Planning and
Scheduling, 2003, pp. 113�122.

199

[53] J. Pineau, G. Gordon, and S. Thrun, �Policy-contingent abstraction for robust robot
control,� 2003, pp. 477�484.

[54] M. Toussaint, L. Charlin, and P. Poupart, �Hierarchical POMDP controller optimiza-
tion by likelihood maximization,� 2008.

[55] L. Charlin, P. Poupart, and R. Shioda, �Automated hierarchy discovery for planning
in partially observable environments,� in Advances in Neural Information Processing
Systems, 2007, pp. 225�232.

[56] J. Davidson and S. Hutchinson, �Hyper-particle �ltering for stochastic systems,� in
IEEE International Conference on Robotics and Automation, 2008, pp. 2770�2777.

[57] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, �A tutorial on particle �lters
for on-line non-linear/non-Gaussian Bayesian tracking,� IEEE Transactions on Signal
Processing, vol. 50, no. 2, pp. 174�188, 2002.

[58] A. Doucet, N. de Freitas, and N. Gordon, Sequential Monte Carlo Methods in Practice.
New York, NY: Springer Verlag, 2001.

[59] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, �A tutorial on particle �lters for
online nonlinear/non-Gaussian Bayesian tracking,� IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. 50, no. 2, pp. 174�188, February 2002.

[60] N. Gordon, D. Salmond, and A. Smith, �Novel approach to nonlinear/non-Gaussian
Bayesian state estimation,� Radar and Signal Processing, IEE Proceedings F, vol. 140,
no. 2, pp. 107�113, 1993.

[61] C. Kwok, D. Fox, and M. Meila, �Real-time particle �lters,� Proceedings of the IEEE,
vol. 92, no. 3, pp. 469�484, March 2004.

[62] S. Thrun, �Particle �lters in robotics,� in Proceedings of the 17th Annual Conference
on Uncertainty in Arti�cial Intelligence, 2002.

[63] D. Fox, �Adapting the sample size in particle �lters through kld-sampling,� Interna-
tional Journal of Robotics Research (IJRR), vol. 22, pp. 985�1003, 2003.

[64] J. H. Kotecha and P. M. Djuric, �Gaussian sum particle �ltering,� IEEE Transactions
on Signal Processing, vol. 51, pp. 2602�2612, Oct. 2003.

[65] M. Isard and A. Blake, �Condensation � conditional density propagation for visual
tracking,� International Journal of Computer Vision, vol. 29, no. 1, pp. 5�28, 1998.
[Online]. Available: citeseer.ist.psu.edu/isard98condensation.html

[66] A. Doucet, �On sequential simulation-based methods for Bayesian �ltering,� Depart-
ment of Engineering, University of Cambridge, Tech. Rep. CUED/F-INFENG, TR.
310, 1998.

200

[67] D. Crisan, P. D. Moral, and T. Lyons, �Discrete �ltering using branching and interact-
ing particle systems,� Markov Processes and Related Fields, vol. 5, no. 3, pp. 293�318,
1999.

[68] K. Kanazawa, D. Koller, and S. Russell, �Stochastic simulation algorithms for dynamic
probabilistic networks,� in Proceedings of the 11th Annual Conference on Uncertainty
in Arti�cal Intelligence, 1995, pp. 346�351.

[69] D. Crisan and A. Doucet, �Convergence of sequential Monte Carlo methods,� Cam-
bridge University, Tech. Rep. CUED/FINFENG, TR381, 2000.

[70] D. Hsu, W. S. Lee, and N. Rong, �What makes some pomdp problems easy to approx-
imate?� in Advances in Neural Information Processing Systems, J. Platt, D. Koller,
Y. Singer, and S. Roweis, Eds. Cambridge, MA: MIT Press, 2008.

[71] J. Davidson and S. Hutchinson, �A sampling hyperbelief optimization technique for
stochastic systems,� in International Workshop on the Algorithmic Foundations of
Robotics, 2009, pp. 217�231.

[72] S. M. LaValle and J. J. Ku�ner, �Rapidly-exploring random trees: Progress and
prospects,� in New Directions in Algorithmic and Computational Robotics, B. R. Don-
ald, K. Lynch, and D. Rus, Eds. AK Peters, 2001, pp. 293�308.

[73] M. Morales, S. Rodriguez, and N. M. Amato, �Improving the connectivity of PRM
roadmaps,� in IEEE International Conference on Robotics and Automation, 2003, pp.
4427�4432.

[74] R. He, S. Prentice, and N. Roy, �Planning in information space for a quadrotor heli-
copter in a GPS-denied environment,� in Robotics and Automation, 2008. ICRA 2008.
IEEE International Conference on. IEEE, 2008, pp. 1814�1820.

[75] C. Holleman and L. E. Kavraki, �A framework for using the workspace medial axis in
PRM planners,� in IEEE International Conference on Robotics and Automation, 2000,
pp. 1408�1413.

[76] A. L. Gibbs and F. E. Su, �On choosing and bounding probability metrics,� Interna-
tional Statistical Review, vol. 70, pp. 419�435, 2002.

[77] E. Levina and P. Bickel, �The earth mover's distance is the mallows distance: some in-
sights from statistics,� Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE
International Conference on, vol. 2, pp. 251�256 vol.2, 2001.

[78] S. �ukaszyk, �A new concept of probability metric and its applications in approxima-
tion of scattered data sets,� Computational Mechanics, vol. 33, no. 4, pp. 299�304,
2004.

[79] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms.
MIT Press, 2002.

201

[80] F. Le Gland and N. Oudjane, �Stability and uniform approximation of nonlinear �lters
using the Hilbert metric and application to particle �lters,� The Annals of Applied
Probability, vol. 14, no. 1, pp. 144�187, 2004.

[81] S. Candido and S. Hutchinson, �Minimum uncertainty robot path planning using a
POMDP approach,� in IEEE International Conference on Intelligent Robots and Sys-
tems, Taipei, Taiwan, October 2010, pp. 1408�1413.

[82] X. Boyen and D. Koller, �Exploiting the architecture of dynamic systems,� in Proceed-
ings of the 16th National Conference on Arti�cial Intelligence, 1999, pp. 313�320.

[83] N. Berglund, �Perturbation theory of dynamical systems,� Arxiv preprint math.
HO/0111178, 2001.

[84] M. Stone, �The generalized weierstrass approximation theorem,� Mathematics Maga-
zine, vol. 21, no. 5, pp. 237�254, 1948.

[85] D. Cacuci, Sensitivity and uncertainty analysis: Theory. CRC Press, 2003, vol. 1.

[86] C. Meyer, �Sensitivity of the stationary distribution of a Markov chain,� SIAM Journal
on Matrix Analysis and Applications, vol. 15, no. 3, pp. 715�728, 1994.

[87] G. Cho and C. Meyer, �Comparison of perturbation bounds for the stationary distri-
bution of a Markov chain,� Linear Algebra and its Applications, vol. 335, no. 1-3, pp.
137�150, 2001.

[88] X. Cao, �A uni�ed approach to Markov decision problems and performance sensitivity
analysis,� Automatica, vol. 36, no. 5, pp. 771�774, 2000.

[89] F. Le Gland and L. Mevel, �Exponential forgetting and geometric ergodicity in hidden
Markov models,� Mathematics of Control, Signals, and Systems (MCSS), vol. 13, no. 1,
pp. 63�93, 2000.

[90] P. Jacquet, G. Seroussi, and W. Szpankowski, �On the entropy of a hidden Markov
process,� Theoretical computer science, vol. 395, no. 2, pp. 203�219, 2008.

[91] R. Sutton, D. McAllester, S. Singh, and Y. Mansour, �Policy gradient methods for
reinforcement learning with function approximation,� Advances in neural information
processing systems, vol. 12, no. 22, 2000.

[92] J. Baxter and P. Bartlett, �In�nite-horizon policy-gradient estimation,� J. Artif. Intell.
Res. (JAIR), vol. 15, pp. 319�350, 2001.

[93] X. Cao, �A basic formula for online policy gradient algorithms,� IEEE Transactions
on Automatic Control, vol. 50, no. 5, p. 697, 2005.

[94] S. Ross, M. Izadi, M. Mercer, and D. Buckeridge, �Sensitivity analysis of pomdp value
functions,� in Machine Learning and Applications, 2009. ICMLA'09. International
Conference on. IEEE, 2009, pp. 317�323.

202

[95] R. B. Ash, Information Theory. New York, NY: Dover Publications, 1990.

[96] R. Atar and O. Zeitouni, �Exponential stability for nonlinear �ltering,� in Annales de
l'Institut Henri Poincare (B) Probability and Statistics, vol. 33, no. 6. Elsevier, 1997,
pp. 697�725.

[97] R. Douc, G. Fort, E. Moulines, and P. Priouret, �Forgetting the initial distribution for
hidden Markov models,� Stochastic processes and their applications, vol. 119, no. 4,
pp. 1235�1256, 2009.

[98] M. A. Tanner, Tools for statistical inference: methods for the exploration of posterior
distributions and likelihood functions. Springer Verlag, 1996.

[99] D. Coppersmith and S. Winograd, �Matrix multiplication via arithmetic progressions,�
Journal of symbolic computation, vol. 9, no. 3, pp. 251�280, 1990.

[100] P. Drineas and R. Kannan, �Fast monte-carlo algorithms for approximate matrix multi-
plication,� in Annual Symposium on Foundations of Computer Science, vol. 42. IEEE
Computer Society Press, 2001, pp. 452�459.

[101] R. Bishop and S. Goldberg, Tensor analysis on manifolds. New York, NY, USA:
Dover Publications, 1980.

[102] T. Ma, �Higher chain formula proved by combinatorics,� the electronic journal of com-
binatorics, vol. 16, no. 21, p. 1, 2009.

[103] D. Liberzon, Switching in Systems and Control. Boston, MA: Birkhäuser, 2003.

[104] J. Bentley, �Multidimensional divide and conquer,� Communications of the ACM,
vol. 23, no. 4, 1980.

[105] S. Kukaszyk, �A new concept of probability metric and its applications in approxi-
mation of scattered data sets,� Computational Mechanics, vol. 33, no. 4, pp. 299�304,
2003.

[106] D. Hsu, L. E. Kavraki, J. C. Latombe, R. Motwani, and S. Sorkin, �On �nding narrow
passages with probabilistic roadmap planners,� in Robotics: The Algorithmic Perspec-
tive, e. a. P. Agarwal, Ed. Wellesley, MA: A.K. Peters, 1998, pp. 141�154.

[107] N. M. Amato, B. Bayazit, L. Dale, C. Jones, and D. Vallejo, �OBPRM: An obstacle-
based PRM for 3d workspaces,� in Robotics: The Algorithmic Perspective, P. Agarwal,
L. E. Kavraki, and M. Mason, Eds. AK Peters, 1998, pp. 156�168.

[108] P. Leven and S. Hutchinson, �Using manipulability to bias sampling during the con-
struction of probabilistic roadmaps,� IEEE Transactions on Robotics and Automation,
vol. 19, no. 6, pp. 1020�1026, Dec. 2003.

203

[109] S. Candido, J. Davidson, and S. Hutchinson, �Exploiting domain knowledge in planning
for uncertain robot systems modeled as POMDPs,� in IEEE International Conference
on Robotics and Automation, Anchorage, AK, USA, May 2010, pp. 3596�3603.

[110] P. Leven and S. Hutchinson, �Real-time path planning in changing environments,�
International Journal of Robotics Research, vol. 21, no. 12, pp. 999�1030, Dec. 2002.

[111] S. M. LaValle, Planning Algorithms. Cambridge, MA: Cambridge University Press,
2006.

[112] M. Huber, D. Brunn, and U. D. Hanebeck, �Closed-form prediction of nonlinear dy-
namic systems by means of Gaussian mixture approximation of the transition density,�
in International Conference on Multisensor Fusion and Integration for Intelligent Sys-
tems, 2006, pp. 98�103.

[113] J. Li and A. Barron, �Mixture density estimation,� in Advances in Neural Information
Processing Systems, 2000, pp. 279�285.

[114] W. Lovejoy, �Computationally feasible bounds for partially observed Markov decision
processes,� in Operations Research, vol. 39, 1991, pp. 162�175.

204

