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ABSTRACT

Linking network flows is an important problem in several security-related

applications including intrusion detection and anonymity. The flows of inter-

est in these applications are commonly relayed by several low-latency nodes,

and each node adds an extra/different layer of encryption to the traffic pay-

load. As a result, in such applications it is infeasible to link network flows by

correlating their packet headers and payloads. Traffic analysis is a powerful

tool in this scenario, as it correlates network flows based on their commu-

nication patterns, which are not changed due to encryption and low-latency

communications.

Traditional traffic analysis is performed in a passive manner; flow patterns

are only observed and correlated among different flows to find flow relations.

The patterns used more commonly for traffic analysis are packet timings,

sizes, and counts. The main shortcoming of passive traffic analysis is not

being scalable to large-size applications. For a network with n ingress flows

and m egress flows passive traffic analysis needs to perform O(mn) flow

correlations, and O(n) flows need to be communicated among traffic analysis

entities. To overcome this limitation, recent research introduces an active

form for traffic analysis, called flow watermarking. Flow watermarking works

by first perturbing network flows and then observing network flows, looking

for the specific perturbation patterns in order to link flows. This reduces

the computational overhead to O(n) (from O(mn) for non-targeted passive

analysis) and the communication overhead to O(1) (from O(n) in the case

of non-targeted passive analysis), since the information used for flow linking,

the watermark, is self-contained in each flow. In addition to being more

scalable (in the case of non-targeted traffic analysis), active traffic analysis

can provide lower false-positive rates than passive traffic analysis in linking

network flows. This is because passive analysis works by correlating flow

patterns that can be intrinsically correlated among non-linked flows, whereas
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active traffic analysis correlates artificial patterns that are tailored to be

highly uncorrelated among non-linked flows.

In this thesis we study the design, analysis, and implementation of network

flow watermarks. Our research is motivated by two main issues with exist-

ing flow watermarks: i) previous flow watermarks are not efficient, meaning

that they need very long network flows in order to successfully detect water-

marked flows, and, ii) previous watermarks are not invisible, meaning that

non-watermarking entities (e.g., users, attackers) can tell if a flow has been

watermarked. In particular, we design an attack, called multi-flow attack,

that works on several previously proposed flow watermarks. Our multi-flow

attack is able to distinguish watermarked flows and remove the watermark

by observing a handful of watermarked flows.

We also design two new flow watermarking systems. We design RAIN-

BOW, a non-blind network flow watermark. RAINBOW is able to perform

very reliable traffic analysis by applying tiny perturbations to packet timings.

We also design a blind flow watermark, SWIRL, that inserts watermarks that

are flow-dependent. For both of the proposed schemes, we analyze their de-

tection performance both theoretically and through experiments. We also

evaluate watermark invisibility for both of the schemes.

A flow watermark inserts a single bit of information on flows, carrying the

message that these flows have been observed previously. However, in some

applications more information needs to be piggybacked on network flows,

giving information about the location they were observed, the entity who

tagged them, etc. We call such tags composed of several bits of information

flow fingerprints. We design a flow fingerprinting system, called Fancy, that

is able to send tens of bits of information reliably using fairly short length of

network flows.

Finally, we introduce two new applications for network flow watermarking.

The first application uses flow watermarks to detect botmasters and infected

machines corresponding to a centralized botnet, i.e., an IRC botnet. We also

propose to use our SWIRL watermark to mitigate a threat against the Tor

anonymity system, the Tor congestion attack.
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CHAPTER 1

INTRODUCTION

Traffic analysis is the practice of inferring sensitive information from commu-

nication patterns instead of traffic content, and as more traffic is becoming

encrypted traffic analysis is becoming more relevant to security. Traffic anal-

ysis has been particularly well studied in the context of intrusion detection

to trace back attackers relaying their traffic through intermediate machines,

i.e., stepping stones [1–3]. Traffic analysis has also been used in the realm

of anonymous communication systems, where features of network flows are

used to link two flows and break anonymity guarantees [4, 5].

Traditional traffic analysis schemes link network flows by only observing

the network flows, trying to correlate related flows using features like packet

timings, sizes, and counts [2, 3, 6–8]; we call theses schemes passive traffic

analysis. More recently, an active approach called watermarking has been

studied for traffic analysis. In this approach, traffic patterns of one flow

(usually packet timings) are actively modified to contain a special pattern.

If the same pattern is later found on another flow, the two are considered

linked. Watermarking significantly reduces the computation and commu-

nication costs of traffic analysis, and also leads to more precise detection

with fewer false positives. Watermarking has been considered for different

applications of traffic analysis, i.e., detection of stepping stones [9–11] and

compromising anonymous networks [12–14]. More recently, watermarking

has also been studied as a traceback mechanism for botnets [15, 16].

Watermarking schemes are evaluated based on different features. Detec-

tion accuracy of a watermarking scheme expresses the probability of detecting

a watermarked flow; this is always considered along with the false positive

error rate, i.e., the probability of declaring a non-watermarked flow as water-

marked. A watermark should be efficiently detectable after certain amounts

of modifications have been applied on the watermarked flows, which is re-

ferred to as watermark robustness. In this thesis we only consider robustness
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to channel perturbations, e.g., network delays, but not to active attackers1

who try to destroy the watermark by introducing additional delays. In fact,

in the watermark applications discussed in this thesis such an active at-

tack is either impractical or inefficient. Another important feature of a flow

watermarking system is the watermark invisibility ; the watermark insertion

should be imperceptible for the legitimate users by not interfering with their

regular communication. Moreover, in some watermark applications an at-

tacker should not be able to distinguish watermarked and non-watermarked

flows through different statistical/analytical tools. For instance, if the wa-

termark is used by a cybercriminal to de-anonymize network flow entering

an anonymity system the cybercriminal needs to keep the watermark modi-

fications invisible to the anonymity system to conceal her activity.

In this thesis, I investigate the design, analysis, and implementation of

efficient network flow watermarks for different applications. In Section 1.1, I

briefly mention how watermarking is used in different traffic analysis applica-

tions. Section 1.2 reviews the literature on traffic analysis, and in Section 1.3

I overview the thesis outline.

1.1 Applications of flow watermarking

1.1.1 Stepping stone detection

A stepping stone is a host that is used to relay traffic through a network to

another remote destination. Stepping stones are used to disguise the true

origin of an attack. Detecting stepping stones can help trace attacks back to

their true source. Also, stepping stones are often indicative of a compromised

machine. Thus detecting stepping stones is a useful part of enterprise security

monitoring.

Generally, stepping stones are detected by noticing that an outgoing flow

from an enterprise matches an incoming flow. For example, in Figure 1.1a,

flow 2 will have the same characteristics as flow 5, allowing someone to link

them by correlating such characteristics. Since the relayed connections are

1In different uses of network flow watermarking, the roles of watermarker and wa-
termark attacker are assigned to different entities, e.g., security defenders, and security
attackers. Throughout this thesis by attacker we refer to the watermark attacker, not the
security attacker.
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Figure 1.2: An anonymous system.

often encrypted (using SSH [17], for example), only characteristics such as

packet sizes, counts, and timings are available for such detection. And even

these are not perfectly replicated from an incoming flow to an outgoing flow,

as they are changed by padding schemes, retransmissions, and jitter. As a

result, statistical methods are used to detect correlations among the incoming

and outgoing flows. Such detection can also be made in an active manner, i.e.,

using flow watermarks. As Figure 1.1b shows a watermarker can manipulate

traffic characteristics of network flows entering the network, which are then

looked for by some watermark detector.

1.1.2 Anonymous networks

At a very high level, an anonymous system maps a number of input flows

to a number of output flows while hiding the relationship between them, as

shown in Figure 1.2. The internal operation can be implemented in various

manners, e.g., using onion routing [4], or a simple proxy [18]. The goal of an

attacker, then, is to link an incoming flow to an outgoing flow (or vice versa).

A watermark can be used to defeat anonymity protection by marking cer-
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tain input flows and watching for marks on the output flows. For example,

a malicious website might insert a watermark on all flows from the site to

the anonymizing system. A cooperating attacker who can eavesdrop on the

link between a user and the anonymous system can then determine if the

user is browsing the site or not. Similarly, a compromised entry router in

Tor can watermark all of its flows, and cooperating exit routers or websites

can detect this watermark.

Note that this does not enable a fundamentally new attack on low-latency

anonymous systems: it has been long known [19] that if an attacker can

observe a flow at two points, he can determine if the flow is the same, unless

cover traffic is used. (In fact, deployed low-latency systems such as Onion

Routing [4], Freedom [20], and Tor [21] have all opted to forego cover traffic

due to it being expensive, hoping instead that it will be difficult for an

attacker to observe a significant fraction of incoming and outgoing flows.)

However, watermarking makes the attack much more efficient, as will be

discussed in Section 1.2.2.

1.1.3 Other applications

Previous research on flow watermarking mostly focuses on the two problems

of stepping stone detection and compromising anonymous networks, as in-

troduced above. In fact, we can think of using flow watermarks in other

networking scenarios that exhibit low-latency communication mechanisms,

as high-latency communication renders flow watermarking inefficient by de-

stroying the tiny watermark patterns. In Chapter 6 we introduce two new

applications for network flow watermarks, which are botnet detection and

mitigating an attack on the Tor network.

1.2 Literature review

In this section, we review the literature on passive traffic analysis and watermark-

based traffic analysis schemes.
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1.2.1 Passive traffic analysis

In general, passive traffic analysis techniques operate by recording charac-

teristics of incoming streams and then correlating them with outgoing ones.

The right place to do this is often at the border router of an enterprise in the

case of stepping stone detection, so the overhead of this technique is the space

used to store the stream characteristics long enough to check against corre-

lated relayed streams, and the CPU time needed to perform the correlations.

In a complex enterprise with many interconnected networks, a connection

relayed through a stepping stone may enter and leave the enterprise through

different points; in such cases, there is also some communication overhead

for transmitting traffic statistics between border routers. This communica-

tion overhead is also essential to the entities collaborating to compromise

anonymity of an anonymous network.

The passive schemes have explored using various characteristics for corre-

lating streams. Staniford-Chen and Heberlein were the first to target detec-

tion of stepping stones through statistical analysis of character frequencies [1].

This was followed by other works, all using packet contents to match connec-

tions composing a stepping stone. Looking at the average lag between two

connections, Yoda et al. devise a quadratic time deviation-based scheme try-

ing to discriminate stepping stone connections from ordinary connections [2].

Zhang and Paxson model interactive flows as ON/OFF processes and detect

linked flows by matching up their ON/OFF behavior [3]. Wang et al. focus on

inter-packet delays, and consider several different metrics for correlation [6].

More recently, He and Tong used packet counts for stepping stone detec-

tion [22].

Passive traffic analysis has also been considered for anonymous communi-

cations. Syverson et al. analyse the security of onion routing [4] in [19]. Back

et al. describe generic attacks that apply to Freedom [20] and PipeNet [23]

anonymous networks, e.g., counting packets, and latency attack [24]. In [25]

Raymond presents the traffic analysis problem with an emphasis on mix-

based systems [26]. Danezis also considers the traffic analysis of continuous-

time mixes in [27].

Donoho et al. were the first to consider intruder evasion techniques [7].

They defined a maximum-tolerable-delay (MTD) model of attacker evasion

and suggested wavelet methods to detect stepping stones while being robust

5



to adversarial action. Blum et al. used a Poisson model of flows to create a

technique with provable upper bounds on false positive error rates [8], given

the MTD model. However, for realistic settings, their techniques require

thousands of packets to be observed to achieve reasonable rates of false errors.

1.2.2 Network flow watermarks

To address some of the efficiency concerns of passive traffic analysis, Wang

et al. proposed the use of watermarks [9]. In this scenario, a border router

will modify the inter-packet delays (IPD) of the incoming flows to contain

a particular pattern—the watermark. If the same pattern is present in an

outgoing flow, a stepping stone is detected. This can be seen in Figure 1.1b.

Watermarks improve upon passive traffic analysis in two ways. First, by

inserting a pattern that is uncorrelated with any other flow, they can im-

prove the detection efficiency, requiring smaller numbers of packets to be

observed (hundreds instead of thousands) and providing lower false-positive

rates (10−5 or lower, as compared to 10−2 with passive watermarks). Sec-

ond, they can operate in a blind fashion; with passive traffic analysis, if one

monitor observes n input flows and another observes m output flows, most

current techniques [7–9] for passive traffic analysis use O(mn) computation

by comparing each ingress flow with each egress flow, and the best known

techniques [28] improve upon that to O(n +
√
mn), whereas blind water-

marking only needs O(n) computation. The passive schemes also require

O(n) communication. With blind watermarking, on the other hand, no com-

munication needs to take place between the two monitors after they have

established a shared secret key, and the computation cost is O(n) and O(m)

at the watermarker and detector, respectively, as the watermarker marks

each input flow and the detector checks each output flow for the presence of

a mark. The detection is also potentially faster, as there is no need to com-

pare each outgoing flow to all the incoming flows within the same time frame.

Note that this is only true for “non-targeted” traffic analysis: for “targeted”

traffic analysis, where an attacker tries to find the egress flow linked to a

single specific ingress flow, the correlation and communication requirements

of passive traffic analysis are O(n) and O(1), respectively, which are similar

to that of blind watermarking.
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The IPD-based watermark of [9] was later shown to be detectable [29],

in addition to being susceptible to packet modification, e.g., packet ad-

ditions/removals. To be robust against repacketization, Pyun et al. pro-

posed an interval-based watermarking scheme in [10] by delaying packets of

some intervals based on the watermark value. Dealing with intervals instead

of packets themselves makes the detection scheme robust to packet addi-

tion/removal. Some of the schemes target anonymous communication [13,14]

rather than stepping stones as the application area, but the techniques for

both are comparable. In [13] Wang et al. use an interval-based watermarking

scheme similar to [10] aiming to compromise anonymity of Anonymizer [18].

Yu et al. suggested another interval-based watermark [14] by changing the

packet rates of flow intervals using direct sequence spread spectrum (DSSS).

Recently, Jia et al. have shown how this watermark is detectable exploiting

statistical attacks against DSSS [30]. Another watermark focused on anony-

mous networks was proposed by Wang et al. which tracks anonymous peer-to

peer VOIP calls over Internet [12].

The mentioned watermarking schemes insert large watermark delays in or-

der to provide an efficient detection. This results in watermark visibility and

is used to design attacks against them. Motivated by this, we intend to de-

sign efficient watermarking schemes that are robust, invisible, and efficiently

detectable.

1.3 Thesis outline

The rest of this thesis is as follows: in Chapter 2 we design an attack that

targets several interval-based flow watermarks by observing a handful of wa-

termarked flows. This attack, multi-flow attack (MFA), is shown to be ef-

fective against previous interval-based watermarks of [10, 13, 14]. We also

suggest a number of countermeasures to make the existing interval-based

schemes robust to our MFA attack. In Chapter 3 we design the first non-

blind watermark for network flows, called RAINBOW. RAINBOW works

by inserting tiny spread spectrum watermarks on packet timings, in a man-

ner that is undetectable by third-parties using statistical tools. We find the

optimum detectors for RAINBOW under different traffic models using the

theory of hypothesis testing, and compare its detection performance with a
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similar passive traffic analysis scheme. We also validate the analysis using an

implementation running on PlanetLab. Even though RAINBOW performs

a robust, yet invisible, watermarking it has scalability limitations similar to

passive traffic analysis, as a side effect of being non-blind. In Chapter 4,

we design SWIRL, a blind watermark that performs robust and invisible

watermarking. SWIRL uses an interval-based approach to provide robust-

ness to packet modifications, yet using a flow-dependent structure it also

provides robustness to the MFA attack despite being an interval-based wa-

termark. We assess SWIRL’s performance using a theoretical analysis, as

well as by performing simulations and prototype implementation. Also, we

evaluate SWIRL’s invisibility to different statistical metrics. In Chapter 5,

we propose a flow fingerprinting scheme, called Fancy. Fancy uses a main

structure similar to that of RAINBOW, but uses coding algorithms to be

able to send several information bits reliably by perturbing flow patterns.

This is contrast to flow watermarks that intend to send a single bit of infor-

mation. We investigate the use of several popular coding algorithms in the

design of Fancy. In Chapter 6, we investigate the use of flow watermarking in

low-latency applications other than stepping stone detection and anonymity

systems. In particular, we design a botnet-detection system that uses wa-

termarking to trace back botmasters, and to detect machines infected by

IRC-based botnets. As another novel application, we propose the use of our

SWIRL watermark to mitigate a threat against the Tor anonymity network,

called the Tor congestion attack. We conclude this thesis in Chapter 7 along

with some insights into future research directions.

8



CHAPTER 2

MULTI-FLOW ATTACK ON NETWORK

WATERMARKS

In Section 1.2, we mentioned several attacks that aim to break through flow

watermarking schemes. In this chapter, we introduce a new attack that

compromises a large group of flow watermarks by obtaining a handful of

watermarked flows.

Early flow watermarks have been applied to two problems of attacking

anonymity systems [12–14] and detecting stepping stones [9, 10]. In both

contexts, many flows must be watermarked in order to learn new information.

In our work, we consider whether an attacker1 can learn enough information

to defeat the watermark by observing multiple watermarked flows [31]. We

apply this multi-flow threat model to the latest generation of interval-based

watermarks [10, 13, 14]. These watermarks subdivide the flow to be marked

into discrete time intervals and perform transformative operations on an

entire interval of packets. This approach is more robust to packet losses,

insertions, and repacketizations, than previous approaches that focused on

individual packets [9, 12], because the time intervals allow the watermarker

and detector to retain synchronization. However, the same synchronization

property can be exploited by attackers by “lining up” multiple watermarked

flows and observing the transformations that were inserted.

We show through experiments that the interval-based watermark schemes

are completely vulnerable to an attacker who can collect a small number of

watermarked flows—about 10. This is sufficient to not only detect that a

watermark is indeed present, but also to recover the secret parameters of

the watermark scheme and to be able to remove the watermark at a low

cost. Furthermore, our attack works even if different watermarked flows

The research presented in this chapter is done in a collaboration with Prof. Negar
Kiyavash, from UIUC.

1We use “attacker” here to refer to someone attacking the watermarking scheme; in
the case where watermarks themselves are used by attackers, these will be the “counter-
attackers.”
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contain different embedded “messages” with only about twice the number of

watermarked flows necessary. We also analytically estimate the false-positive

rates for our attack and find them to be very low.

We also consider some countermeasures to such attacks. We show that

by using multiple “keys” (time interval assignments) to watermark different

flows, it is possible to defeat our attack. This countermeasure comes at a

cost of higher computation overhead at the detector and a higher rate of false

positives. However, this increased cost is only linear, whereas the increased

cost of the attacker is superexponential, thus providing an effective defense.

The rest of the chapter is organized as follows. We next introduce three

recent interval-based flow watermarks that are the targets of the MFA attack

presented in this chapter. Section 2.2 describes the theoretical foundation

for our attack, and Section 2.3 implements the attack. We discuss potential

countermeasures to the attack in Section 2.4. Section 2.5 concludes the

chapter.

2.1 Interval-based watermarks

We next introduce three recent interval-based network flow watermarks.

2.1.1 Interval Centroid-based Watermarking (ICBW)

We next review the scheme proposed by Wang et al. [13]; for more details of

the scheme as well as some analysis we refer the reader to [13]. The scheme

is based on dividing the stream into intervals of equal lengths, using two pa-

rameters: o, the offset of the first interval, and T , the length of each interval.

A subset of 2n of these intervals is randomly selected which is subsequently

randomly divided into two further subsets A and B each consisting of n = rl

intervals. Each of the sets A and B are randomly divided to l subsets denoted

by {Ai}li=1 and {Bi}li=1 each consisting of r intervals. The i-th watermark

bit is encoded using the sets {Ai, Bi}. Therefore, a watermark of length l

can be embedded in the flow. Figure 2.1 depicts the random selection and

grouping of time intervals of packet flow for watermark insertion.

The watermarker and detector agree on the parameters o, T and use a

pseudorandom number generator (PRNG) and a seed s to randomly select

10




� 
�


�
�

������ �

�


 
 
 



 
 
 








Figure 2.1: Random selection and assignment of time intervals of packet
flow for watermark insertion.

and assign intervals for watermark insertion. To keep the watermark trans-

parent, all of these parameters are kept secret. Depending on whether the

i-th watermark bit is 1 or 0, the watermarker delays the arrival times of the

packets at the interval positions in sets Ai or Bi respectively, by a maximum

of a. Figure 2.2 illustrates the effect of this delaying strategy over the distri-

bution of packets arrival time in an interval of size T (this operation is called

“squeezing” by Wang et al.) Finally, the overall watermark embedding is

illustrated in Figures 2.3 (a) and (b).

As the result of this embedding scheme, the expected value of aggregate

centroid, i.e., the average of the arrival time of the packets modulo the length

of the interval T , in either the intervals Ai (when watermark bit is 1) or Bi

(when watermark bit is 0) corresponding to bit i is increased by a
2
. The

expected difference between the aggregate centroid of Ai and Bi now will be
a
2
when watermark bit is 1 or −a

2
when watermark bit is 0.

The detector checks for the existence of the watermark bits. The check

on watermark bit i is performed by testing whether the difference of the

aggregate centroid of packet arrival times in the intervals Ai and Bi is closer

to a
2
or −a

2
. If it is closer to a

2
, then the watermark bit is decoded as 1 and if

it is closer to −a
2
, the bit is declared a 0. By focusing on the arrival times of

many intervals (r of them for each bit of watermark) rather than individual

packet timings, ICBW approach is robust to repacketization, insertion of

chaff, and mixing of data flows. Network jitter can shift packets from one

interval into another, but the suggested parameters for a and T (350ms and

500ms respectively) are large enough that few packets will be affected.
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Figure 2.2: Distribution of packets arrival time in an interval of size T
before and after being delayed.

The secrecy of the interval positions Ai and Bi make the mark difficult to

detect or remove, as it is hard to distinguish the patterns generated by the

mark from natural variation in traffic rates. We show in Sections 2.2 and 2.3,

however, that a simple technique allows an observer to effectively recover the

watermark positions and values. This technique is applicable to any water-

marking scheme that creates periods of clear or low traffic at specific parts

of the flows across many flows. Next, we briefly describe Interval-Based Wa-

termarking (IBW), a flow watermarking scheme proposed by Pyun et al. [10]

to detect stepping stones. Our attacks also applies to this scheme.

2.1.2 Interval-Based Watermarking

Similar to ICBW, the watermarking scheme of Pyun et al. [10] manipulates

the arrival times of the packets over a set of preselected intervals. The water-

mark embedding is achieved by manipulating the rates of traffic in successive

intervals. There are two manipulations: an interval Ii may be cleared by de-

laying all packets from interval Ii until interval Ii+1, or it may be loaded by

delaying all packets from interval Ii−1 until interval Ii. A loaded interval will

therefore have twice the expected number of packets, and a cleared one will

have none. To send a 0 bit in position i, the interval Ii is cleared and Ii+1 is

loaded; to send a 1, Ii is loaded and Ii+1 is cleared. (Note that since clearing
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one interval implicitly loads the next, it takes 3 intervals to send a bit.)

The watermarker and detector agree on the parameters o, T and a list

of positions S = {s1, . . . , sn}; all of these parameters are secret. The wa-

termarker encodes the watermark bits at the interval positions si and the

detector checks for the existence of the watermark. The check is performed

by testing whether the data rate in interval Isi differs from the rate in in-

terval Isi+1 by a factor exceeding a threshold; if it does, then a 0 or 1 bit

is considered detected. By focusing on data rates rather than individual

packet timings, the interval-based approach is robust to repacketization of

data flows.

The detection process may generate false positives due to natural varia-

tion in packet rates, or false negatives, as delays between the watermarker

and repacketization at the relay cause rates in intervals to shift. To ensure

reliable transmission, each watermark bit is encoded in several positions in

the stream. Pyun et al. show that this technique operates with very low

false-positive and false-negative rates.

2.1.3 Spread-Spectrum Watermarking

In DSSS watermarking technique of Yu et al. [14], each bit of a length-n

binary watermark is embedded in an interval of length Ts. Hence the whole

watermark is inserted in some part of the flow of length nTs. To embed a

watermark bit 1, the rate of the packets in its length-Ts designated interval

are manipulated according to a pseudo-noise (PN) code. The PN code is a

fast varying signal that switched between +1 and −1; the duration of each

±1 period is Tc. In particular, Yu et al. choose a length-7 PN code for their

implementation. When PN code is +1, the rate of flow remains intact, but

when PN code is −1, the rate of flow is decreased for a duration of Tc. The

flow rate is manipulated by creating an interfering flow and relying on TCP

congestion control. (Note that this approach works only with bulk flows

where the sending rate is indeed limited by TCP congestion control.) On the

other hand to embed a watermark bit 0, the flow is manipulated using the

complement of the PN code. Figure 2.4 depicts the embedding of watermark

110 for a PN code of length 5.

The watermarker and detector agree on the parameter Ts, the watermark,
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Figure 2.4: A length-5 PN code and insertion of DSSS watermark 110.

and a pseudo-noise code. The detector recovers the watermark by first ap-

plying a high-pass filter to the received signal and subsequently passing it

through despreading and a low-pass filter. The details of the detector’s struc-

ture are inconsequential to our attack and the interested reader is referred

to [14].

Given that the watermark insertion technique in DSSS reduces the flow

rates over certain intervals across all flows, it is vulnerable to our averaging

attack, which is analysed in this paper. More recently, Huang et al. suggest

to change the DSSS watermark to use different PN codes for watermarking

different flows in order to defend against the multi-flow attack presented in

this paper [32]. This approach results in increasing the false-positive rates of

the watermark detection as well as the complexity of the watermark detector,

since a detector needs to correlate any received flow against all possible PN

codes that might have been used for watermarking; unfortunately, this has

not been considered by the authors.

2.2 Attack analysis

In this section, we present a probabilistic analysis of our attack using a model

for interactive traffic. Though some watermarked traffic may consist of non-

interactive bulk transfer traffic, we will show in Section 2.3.1 that interactive
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traffic presents a more difficult case for our attack, and thus we analyze it

here. As DSSS watermarks work well only against non-interactive traffic,

our analysis here applies only to IBW and ICBW, but as we demonstrate

experimentally, our attack will work on DSSS watermarks as well.

2.2.1 Probabilistic model of interactive traffic

We first present a model for interactive traffic, as it is essential to our analysis.

Let fm denote the m-th flow in a pool of interactive traffic flows. Given that

the traffic might be encrypted, we do not consider the content of the packets;

likewise, the sizes of packets representing keystrokes are likely to be uniform.

We thus consider only the arrival time of the packets in the flow, allowing us

to model the flow as a point process.

Suppose we observed packet arrivals at times t1 < t2 < · · · < tn in a fixed

interval (0, τ ] such that ti is the time the i-th packet arrived. The collec-

tion of arrival times tm = (t1, t2, . . . , tn) specifies a flow fi. Furthermore,

we model the interactive connection as a Markov-modulated Poisson pro-

cess (MMPP) [33, 34]. The set of possible states are {0, 1}, where state 0

corresponds to user typing characters and state 1 corresponds to periods of

silence. Figure 2.5 depicts this two-state MMPP.

Let X(t) denote the state of the process at time t. When the process is at

state 0, packet arrivals are modeled as a renewal process; i.e., the interarrival

times are independent and identically distributed (i.i.d.). In case of interac-

tive traffic flow this renewal process is often modeled as Poisson [7, 8]. The

Poisson assumption means that the interarrival time of the packets, denoted

by θ, are exponentially distributed. Hence its probability density function

(PDF) is given by:

fθ(t) = λe−λ0t

where λ0 denotes the rate of the Poisson process. When the process is in

state 1, the arrivals are again modeled as Poisson but with rate λ1 < λ0.

Given that state 1 corresponds to a period of silence (no packet arrivals), as

soon as a packet arrives the embedded Markov chain transitions to state 0.

Therefore, the transition probabilities {Pij , i ≥ 0, j ≥ 0} of the embedded
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Figure 2.5: The embedded two-state Markov chain.

Markov chain {Xn, n ≥ 0} are as follows:

P00 + P01 = 1,

P01 = 1, P11 = 0 (2.1)

and the embedded Markov chain is defined by the matrix:

[

P00 1

1− P00 0

]

The steady state probabilities π0, π1 of the embedded chain Xn are given by:

[

π0

π1

]

=

[

P00 1

1− P00 0

][

π0

π1

]

or:

π0 =
1

2− P00

, π1 =
1− P00

2− P00

The steady state probabilities P0, P1 of the Markov process X(t) are given

by ( [34]):

Pi =
πi

λi
∑

k
πk

λk

or:

P0 =
λ1

λ1 + (1− P00)λ0
, P1 =

(1− P00)λ0
λ1 + (1− P00)λ0

(2.2)

The significance of the steady state probabilities of (2.2) is that they capture

the probability of each of the states 0 and 1 at any given point in time.

Recall that ICBW encodes the watermark bits “1” or “0” by delaying the

arrival times of the packets at the set of intervals Ai or Bi respectively and

IBW encodes the watermark bits “0” or “1” by transferring the traffic of an
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interval of length T to some adjacent interval. Therefore, they both create

periods of time with no arrivals in the flow. This period for ICBW is of

length a and for IBW is of length T . When the embedded Markov chain is

in state i, we can compute the probability of zero occurring in a period of

length ℓ starting at any given point as:

Pf i
m
(0; ℓ) = e−λiℓ (2.3)

since the waiting times are exponentially distributed and therefore memory-

less.

In general given a flow fm generated from an MMPP, from (2.3) probability

of having a period of length ℓ with no arrivals Pfm(0; ℓ) is:

Pfm(0; ℓ) = P0Pf0
m
(0; ℓ) + P1Pf1

m
(0; ℓ)

= P0e
−λ0ℓ + P1e

−λ1ℓ (2.4)

where the steady state probabilities {P0, P1} are given by (2.2).

A good watermarking scheme requires that the watermarked stream should

not reveal any clues of the presence of the watermark to unauthorized ob-

server. Therefore, it is desirable that Pfm(0; ℓ) above should be reasonably

large so that presence of silent periods does not give away the watermark.

We next present parameters of our two-state MMPP and show that for those

parameters the watermark indeed cannot be detected with observing a single

stream watermarked with ICBW or IBW. However, we will show that if the

attackers have access to multiple copies of a marked signal, they can defeat

the two watermarking schemes both when multiple flows are watermarked

with the same key and when they are watermarked using various keys.

2.2.2 Parameter selection and goodness of fit

We estimated the parameters P00, λ0, and λ1 of our MMPP model by us-

ing network traces of SSH connections taken at a wireless access point in

our institution. For a trace, we first estimated the underlying state of the

embedded Markov chain by choice of a threshold η. If the interarrival time

between two packets exceeded the threshold η, we assumed that the process

was in state 1 and if the interarrival time between two packets was less than
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the threshold η, we assumed that the user was typing and therefore she/he

was in state 0. Once the states {Xn, n ≥ 0} of the underlying chain are

determined, by concatenation of the parts of the interactive traffic that came

from same underlying state, we could extract two Poisson flows with rates

λ0 and λ1 from the original flow.

Given that the expected number of arrivals of a Poisson process distribu-

tion with parameter λ in time interval (0, t] is λt, we estimated the rate λ0

and λ1 by calculating the arrival rates of each of the two extracted flows.

Parameter P00 was estimated as the portion of the time the chain spent at

state 0. Our estimated values for the transition probability P00 and the rates

λ0 and λ1 were as follows:

P00 = .96 λ0 = 5.6 λ1 = 0.57. (2.5)

To assess the goodness of fit of our MMPP with parameters of (2.5), we used

a quantile-quantile (q-q) plot [35]. Using the theoretical CDF of the model,

the observations are mapped into values in interval [0, 1]. If the underlying

statistical model of the data is consistent with the observations, the values

obtained from the mapping are uniformly distributed in the interval [0, 1].

To assess the uniformity of the mapped values or equivalently assessing the

goodness of the theoretical model an empirical CDF of the mapped values is

compared against the theoretical CDF of a uniform distribution which is a

45-degree reference line. The closer the CDF to this reference line, the greater

the evidence that the statistical model captures the underlying phenomenon.

The q-q plot of Figure 2.6 for our model shows that the MMPP model for the

interactive traffic with parameters (2.5) provides a good fit for the data and

significantly outperforms a simpler Poisson model, or a Pareto distribution

that has been previously proposed to fit interactive traffic [36].

2.2.3 Multi-flow attack

Regardless of whether the ICBW or IBW watermarking schemes are im-

plemented using the same message across all interactive flows or they use

multiple message for different flows, they are subject to an averaging attack.

This is because both schemes embed watermarks by emptying the same parts

across various flows. Next, we will explain our attack for both the single-
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Figure 2.6: Q-Q plot of Poisson and MMPP models with our sample data.

message and multiple-message watermarks.

Averaging Attack against Single-Message Watermarks

When ICBW or IBW watermarking schemes are implemented using the same

message across all interactive flows, if the attacker has access to k water-

marked flows, he can form an aggregate of all the flows by taking the sorted

union of all the arrival times of packets in all flows. We denote this ag-

gregated stream by fk, where the subscript k denotes the total number of

streams involved in forming the aggregate flow.

Given that each interactive stream is independent of all the other streams,

the probability of having a period of length T with no arrivals in the flow fk

is given by:

P{Nfk
(ta + ℓ)−Nfk

(ta) = 0} =
k
∏

i=1

Pfi(0; ℓ) = Pfm(0; ℓ)
k (2.6)

Equation (2.6) shows that probability of having period of length ℓ with no

arrivals decreases exponentially in k, the total number of copies used to form

the aggregate flow fk. Therefore, if the streams are not watermarked there is

a very small probability that the aggregate stream has periods of no arrivals.

However, if ICBW or IBW use the same key and message across all interactive
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flows, the aggregated copy of the watermarked flows always exhibits patterns

of no arrivals of length ℓ that give away the location of the watermark as well

as the maximum delay parameter a of ICBW and the period T of IBW.

Substituting the parameters of (2.5) into (2.4), assuming ℓ = 350ms, as

suggested by Wang et al. [13], we have Pfm(0; 0.35) = 0.33. Therefore, in an

aggregate of as few as 10 flows probability of a periods of 350ms without any

arrivals is as low as Pfm(0; 0.35)
10 = 1.6 × 10−5. Similarly for ℓ = 900ms,

as used by Pyun et al. [10], we have Pfm(0; 0.9) = 0.17 and Pfm(0; 0.9)
10 =

2.4× 10−8.

This, of course, shows us the probability of finding an empty interval in a

particular spot; we next consider the possibility of finding empty intervals at

any position in the flows. To do so, we use a discrete approximation. Given

an aggregate flow of length L, we are interested in finding the probability

of having an empty interval of length ℓ at any position. For this, we divide

the aggregate flow into non-overlapping intervals with length ℓM = ℓ/M (a

total of N = ⌊L/ℓM⌋ intervals). Finding M (or M − 1) consecutive empty

intervals of length ℓM gives lowerbound (upperbound) of this probability.

Since P00 = 0.96, the process is nearly memoryless and we can approximate

the discrete version of the problem as a Bernoulli process, where each interval

is empty with probability pM = Pfk
(0;LM). For a total of n intervals let us re-

fer to the probability of finding s consecutive empty intervals as PE(s, pM , n).

We can compute this using a recurrence.2 Let y[n] = PE(s, pM , n)
c, i.e., the

probability of finding no consecutive runs of s empty intervals among the

first n intervals. Then, for n ≥ s, we have:

y[n] = y[n− 1]− (1− pM)psM · y[n− s− 1]

This is because the probability of having no runs of s empty intervals

among n is the probability that there aren’t any empty intervals among the

first n− 1, less the probability that there is exactly one run among the last

s intervals. This recurrence has the characteristic polynomial:

p(x) = xs+1 − xs + (1− pM)psM

Any solution to the recurrence can be expressed in terms of the roots of

the polynomial p(x); given roots ri with respective multiplicities mi, we have

2This solution is adapted from [37].
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that:

y[n] =
∑

i

pi(n)r
n
i

where pi is a polynomial of degree at most mi − 1. (See, for example, [38,

Theorem 4.5.6].) Note that y[n] = 1 for n < s, which allows us to solve for the

coefficients of the polynomials. Finally, we compute PE(s, pM , n) = 1− y[n].

Note that the schemes above will create multiple blank intervals, so we

compute the probability of finding e blank intervals of length ℓ in a flow of

length L, P ′
E(L, ℓ, e). Modeling the process as approximately memoryless,

we can see that, for e > 1 and L > ℓ:

P ′
E(L, ℓ, e) = P ′

E(L, ℓ, 1)P
′
E(L− ℓ, ℓ, e− 1)

Therefore:

P ′
E(L, ℓ, e) =







∏e−1
i=0 P

′
E(L− iℓ, ℓ, 1) L ≥ eℓ

0 otherwise

where P
′

E(L− iℓ, ℓ, 1) is approximated by the method above, i.e.,

PE(M − 1, pM , ⌊(L− iℓ)/ℓM⌋) ≤ P
′

E(L− iℓ, ℓ, 1) ≤ PE(M, pM , ⌊(L− iℓ)/ℓM⌋)

We apply these computations to parameters, taken from the evaluation

of the ICBW scheme by Wang et al. [13]. They used a 32-bit watermark,

with a redundancy between 12 and 20, and flow lengths between 394 and

650 seconds. In Figure 2.7, we plot PE′(394 s, 350ms, 12× 32) as a function

of the number of aggregated flows. We can see that, even for small numbers

of flows, the false-positive probability of our attack is quite low. This graph

was computed usingM = 40, which is sufficient to give an approximate error

of less than 10−45 for k > 4, computed by comparing the upper and lower

bounds.
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Figure 2.7: False positive errors of MFA for different number of aggregated
flows.

2.2.4 Impact of timing perturbations

Our analysis above assumed that the attacker sees the timings of the wa-

termarked stream directly. In reality, these timings will be perturbed by

network delays. As a result, the intervals cleared by the watermark may

have some packets from previous intervals shifted into them and no longer

appear completely empty. Note that what is relevant here is not the mag-

nitude of the network delay but its variance, or jitter, since delaying all

packets by an equal amount does not affect our attack. And if the jitter is

much less than ℓ, our attack will work equally well: if jitter is < ǫ with

high probability, then we will find clear intervals of length at least ℓ − ǫ in

the k averaged watermarked streams, whereas the probability of seeing such

an interval in unwatermarked streams is Pfm(0; ℓ − ǫ)k ≈ Pfm(0; ℓ)
k, which

is vanishingly small. We observe that the studied parameters of the ICBW

and IBW schemes have ℓ = 350ms or 900ms, in order to resist traffic pertur-

bations, repacketization, etc. The network jitter, on the other hand, is two

orders of magnitude smaller. Our experiments on PlanetLab [39] show it to

be on the order of several milliseconds for geographically distributed hosts,

and this matches the results of previous studies [40]. Therefore, it is indeed
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the case that the jitter is < ǫ≪ ℓ, and so it will not significantly affect our

attack.

2.3 Implementation

Having shown the theoretical background behind our attack, we now show

the result of implementing it in practice. We developed algorithms to detect

the presence of a watermark, recover the secret parameters, and to remove the

watermark from new streams. We evaluated the algorithms using both real

flows gathered from traces and synthetic flows generated using our MMPP

model, presented in Section 2.2.1. We first present our attacks for same-value

watermarks, and then extend it to multi-valued watermarks.

2.3.1 Watermark detection

As above, our attack relies on collecting a series of flows that are watermarked

with the same value. These flows are combined into a single flow and exam-

ined for large gaps between packets. Figure 2.8a shows the packet arrivals for

10 combined flows before and after an ICBW watermark has been applied.

The watermark pattern is clearly visible in the combined flows, alerting about

the watermark presence. Figure 2.8b shows the same process working with

the IBW watermark scheme.

We also performed the same analysis for non-interactive, bulk transfer

traffic by applying the watermark to packet traces we collected from web

downloads across a DSL connection. Figure 2.9a shows the packet timings

for 10 combined flows before and after a watermark. Bulk transfers have

a somewhat more regular behavior, since they are controlled by the TCP

algorithms, rather than by individual users. This can be seen at the beginning

of the 10 combined flows before watermark: the TCP slow start period results

in a much lower rates for the first few seconds of the connection. However,

this regularity quickly gets out of sync due to irregular network delay and

response times. In the graph of 10 watermarked flows, the intervals squeezed

by the watermark are readily visible. In fact, because data transfer flows are

much more dense than interactive flows, the watermark is visible even on a

single flow (Figure 2.9b).
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Figure 2.8: 10 flows before and after watermarking.
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Figure 2.9: Watermark detection on bulk traffic.
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Figure 2.10: Average rate of 10 flows after DSSS watermark.

The DSSS watermark is intended to be applied to bulk transfer traffic

such as FTP, since it interferes with traffic rate, rather than changing packet

timings. A similar muiti-flow attack works against DSSS as well, as shown

in Figure 2.10. (We used the parameters of chip length 0.4s, chip sequence

length of 7, and code length of 7.) In this case, periods of high interference

are clearly seen as low-rate periods in the flows, allowing one to recover the

chip sequence and then decode the watermark.

2.3.2 Watermark removal

Based on the combined graphs, it is easy to recover the watermark parameters

as well. We can build a template of clear intervals by selecting all intervals

larger than a threshold; for example, Figure 2.11a shows the template derived

from 10 flows watermarked by ICBW. The estimated template is somewhat

imprecise, due to network jitter, as well as the fact that small (10–20ms) gaps

may precede or follow the clear intervals even when 10 flows are combined.

However, this imprecision is not a problem since the watermark can still be

effectively removed. The template also lets us estimate the values of T and a.

We can average the lengths of clear intervals and the distance between two

consecutive clear intervals to obtain a relatively precise estimate. Armed with

this information, we can then modify a new flow to remove the watermark.

For ICBW, we have two choices: we can either shift traffic into the clear
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Figure 2.11: Watermark removal.

intervals in the template, thereby negating the squeezing action of the wa-

termark, or find intervals that have not been squeezed and squeeze them.

We decided to implement the former approach since it does not require as

precise an estimate of T . Also, it leaves the flow looking more natural. Our

shift is implemented as shown in Figure 2.11b, by shifting all packets in a

period α before the clear interval into an interval of length β inside the clear

interval. Larger values of α and smaller values of β will more significantly

shift the interval centroid back in a different direction; however, very small

values of β may not have the desired effect, since the template is imprecise

and too many packets may get shifted without arriving into the correct in-

terval. Experimentally, we found that α = 0.9(T̂ − â) and β = 0.8(T̂ − â)

provides best results, where T̂ and â are estimated values of T and a.

Table 2.1 shows the results of watermark removal. We reimplemented the

ICBW detection mechanism and computed the Hamming distance of the

encoded watermark to the detected one, collected over 100 flows. (We show

the average distance, with range shown in parentheses.) With as few as 10

flows, we are able to get a reasonably good estimate of T and a and remove

the watermark in most cases—the ICBW detection scheme uses a Hamming

distance threshold of 5–8 to decide when a watermark has been detected.

With 15 flows, we get a more accurate template and estimate, and all 100

flows will clear the template.

A similar approach can be used to attack the IBW watermark; by delaying

packets so that they fall into the clear intervals, the clear intervals become

indistinguishable from loaded ones. Table 2.2 shows the effect of applying our

attack on the IBW watermark, where 24 bits are encoded at different levels
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Table 2.2: Watermark bits detected before and after applying the attack
(watermark length is 24).

Rep. Bits detected Marked
Before attack After attack packets

1 7 3 53
5 14 5 156
10 24 4 505
15 24 2 754
20 24 2 967
24 24 2 1209
30 24 2 1440
35 24 2 1724
41 24 2 2008
45 24 2 2307
50 24 2 2697
55 24 2 3083
60 24 2 3296
65 24 2 3623
70 24 2 3876
75 24 2 4090
80 24 2 4343

of redundancy. Even with a redundancy of 80, most bits are not recovered

correctly. These results were obtained by using the code provided by the

authors of [10].

We expect a similar technique should work against DSSS watermarks; a

template of low rates can be inferred from several flows. An attacker can

then decrease rates in the non-interference section of the template by drop-

ping packets, or increase the rate in the high-interference section by delaying

packets into the template. We do not have experimental results for DSSS

since the detection algorithm is fairly complex and we did not have access to

an implementation of it.

2.3.3 Multiple values

So far we have assumed that the watermarks on all of the aggregated flows are

the same. Here, we consider the case where each watermark uses multiple,

different values. We can still execute our attack by relying on the fact that
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Figure 2.12: Searching subsets of flows by MFA.

within a collection of 2k − 1 flows, for any given bit b, we can find k flows

where this bit has the same value (we have further discussed this in [31]

and [41]).

Figure 2.12a plots the result of such a subset search. By inspection, we can

see that in the first subset of flows, the interval (4.5,4.85) has been cleared.

In the second subset, this interval remains cleared and the interval (0,0.35)

becomes clear as well. The third subset has no packets in (2.0,2.35) and the

fourth in (3.5,3.85). Note that this pattern immediately lets us detect the

presence of a watermark; Figure 2.12b shows the same flow subsets on an

unwatermarked section.

Recovery of the secret parameters can proceed largely as in the single-
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Table 2.3: Blank intervals from subset of flows

(a) All blank
intervals

Start End
2.08 2.32
3.50 3.85
4.03 4.25
5.13 5.33
11.59 11.85
18.14 18.37
19.56 19.79
25.58 25.82
30.06 30.34
34.08 34.35
... ...

(b) Largest blank
intervals

Start End
130.98 131.35
140.49 140.86
151.99 152.36
161.99 162.35
235.99 236.37
306.49 306.86
334.49 334.86
368.49 368.86
43.99 44.36
51.98 52.35
... ...

value case. One difficulty is that with the flow subsets, we may encounter

large intervals that are not precisely aligned with the interval positions. For

example, Table 2.3a lists the blank intervals longer than 0.2s in the last

subset. There are a lot of wrong-size intervals that result from the case when

8 or 9 of the flows in the subset have had an interval squeezed, but the

last one or two add a few packets to the mix. To address this concern, we

can select the largest empty intervals in any subset, as shown in Table 2.3b.

These will correspond to intervals that have been squeezed on every flow.

This can be used to recover the watermark parameters of T and a.

Once these are obtained, the next step is to scan through all subsets and

determine which intervals are always squeezed at the same time and call such

lists Si; these will correspond to either Ab or Bb for some bit b. Then, for

each Si, we find Sj such that Si and Sj are never squeezed at the same time.

This will tell us that Si and Sj correspond to the same bit. Armed with

this knowledge, we can remove the watermark by observing the watermarked

stream for a short while, and when we see intervals from Si that are being

squeezed, we proceed to artificially squeeze intervals in Sj (or unsqueeze

further intervals in Si, or both).
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2.4 Countermeasures

We next consider several countermeasures to our attack.

2.4.1 Multiple offsets

A watermark can be inserted at an offset o from the start of the stream.

This offset is picked randomly from the range [0, omax]; [10] suggested to

use omax = T . An offset watermark can still be detected by enumerating

different offsets and choosing the one with the highest detection result. This

will increase the false positives, in proportion to omax, but overall [10] reports

that such a scheme still has good performance.

Since an offset is chosen randomly for each stream, it complicates the

multi-flow attack because the watermark insertion points no longer line up

with one another. It becomes necessary to search for optimal alignments by

trying multiple offsets for different streams. A simple approach is to select

a step value δ and choose offset values from: (0, δ, 2δ, ..., ⌈omax/δ⌉δ). The

attacker will need to enumerate through each of these values for each stream

out of k, evaluating (⌈omax/δ⌉+ 1)k possibilities in all.3

Each target alignment might be imperfect, but it is easy to see that, for

some choice of offset for each stream, the misalignment will be bounded by

δ/2. Therefore, we must search for clear intervals of length ℓ = T − δ/2. We

can therefore bound the probability of false positives in the overall process

by:

PFP ≤
(⌈omax

δ

⌉

+ 1
)k

P
′

E(L, ℓ, e) (2.7)

where L is the maximum length of the streams and e is number of re-

quired empty intervals for watermark detection (P
′

E(L, ℓ, e) is analyzed in

Section 2.2.3).

Figure 2.13 illustrates the corresponding false positive error rate for differ-

ent number of flows k when the maximum offset value is omax = 10T and the

step value is δ = T . Comparing with using only a single offset (Figure 2.7),

3The computational requirements can be reduced by eliminating from consideration
any combinations that can be shown to lack the necessary clear intervals in a subset of
all streams. E.g., if the first two streams have no intersecting clear intervals that are long
enough with offsets (0, 0), it is not necessary to consider combinations with other stream
at offsets (0, 0, . . .).
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Figure 2.13: False positive errors of MFA for different number of aggregated
flows when multiple offsets are used (omax = 10T , δ = T ).

we can see that the multi-flow attack is still effective, at the cost of more

computation for the attacker and requiring more (approximately twice) wa-

termarked flows for the same performance. It should also be mentioned that

this also increases the false positive of the watermark detector by a factor

of omax/δ = 10. Note that larger omax increases the attacker’s false positive

and also the computation, but requires longer flows to insert the watermark.

2.4.2 Multiple positions

Another alternative is to choose different positions, in the case of ICBW and

IBW, and different PN codes in the case of DSSS [41]. Let us consider the

case of ICBW. A watermarker and detector must use the same assignment of

intervals to the sets Ai and Bi, as determined by the random seed s, in order

for the watermark to be successfully recovered. However, a watermarker may

decide to use multiple seed values, s1, . . . , sn, and pick one of them at random

for each flow.

To deal with this, the detector would need to try to recover the watermark

with each possible si and pick the best match. Once again, the probability of
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error grows with n, but increased redundancy can again be used to make up

for it. Note that the probability of error falls exponentially with increased

redundancy, but grows only roughly linearly with n.

We can once again use the subset attack to try to find k flows that use

the same seed value si; however, the complexity grows quickly out of control.

The probability of a given set of k flows using the same seed is
(

1
n

)k−1
, which

falls quite quickly even when k = 10. By the pigeon hole principle, within

n(k− 1)+ 1 flows we can always find a subset of k flows with the same seed,

but the search space of all
(

n(k−1)+1
k

)

subsets grows superexponentially in n.

For example, with n = 6 and k = 10,
(

51
10

)

> 1010, resulting in an infeasible

number of subsets to enumerate.

The same principle can apply to IBW, by picking multiple sets of positions

{si}, and to DSSS by using multiple PN codes [32].

2.5 Conclusions

We have demonstrated an attack on three recent network flow watermarking

schemes that is highly successful, while requiring a low amount of resources.

Our attack, MFA, is based on a solid theoretical grounding, and has been

validated with a prototype implementation tested against the original pro-

totypes. MFA can detect the presence of the watermark on a watermarked

flow and remove it successfully. Additionally, in case of IBW scheme we can

also recover the watermark parameters and values, allowing us to modify the

watermark or insert it into other streams, confusing the detector. We have

also suggested two countermeasures to our attack — switching bit positions

and using different offset values. These countermeasures can impose a very

high computation cost and therefore disable the attack.

While the use of network flow watermarking techniques for various security

applications is quite new [9–11, 13, 14, 42], digital watermarking and specif-

ically multimedia watermarking is a nearly mature field. Indeed most of

network flow watermarking schemes are inspired by multimedia watermarks.

To name a few: Wang and Reeves’s [9] scheme is a special instance of QIM

watermarking, a well-understood multimedia watermarking technique [43].

IBW scheme of Pyun et al. [10] that we have broken is based on patchwork

watermark of Bender et al. [44] and the scheme of Yu et al. [14] is based on
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spread spectrum watermarking [45].

The current approach for designing network flow watermarks suffers from

the fact that while watermarking schemes are inspired by the digital water-

marking schemes, little attention is given to the entirety of the watermarking

design problem. For example, statistical characteristics of the underlying me-

dia are always an important consideration in digital watermarks, but network

watermark research does not adequately model the effect that network traffic

characteristics have on watermarks; as we showed, the density of bulk traffic

makes it very difficult to insert a transparent watermark. Likewise, digital

watermarks have long considered the possibility that multiple watermarked

documents can be used to attack watermarks [45,46], but we are unaware of

previous work looking at the multi-flow threat model for watermarking. We

thus hope that future work on watermarks will be informed by our work and

perform a broader analysis.
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CHAPTER 3

NONBLIND WATERMARKING

Linking network flows is an important problem in intrusion detection as well

as anonymity. Passive traffic analysis can link flows but requires long periods

of observation to reduce errors. Watermarking techniques allow for better

precision and blind detection, but they do so by introducing significant delays

to the traffic flow, enabling attacks that detect and remove the mark, while at

the same time slowing down legitimate traffic. We propose a new, non-blind

watermarking scheme called RAINBOW that is able to use delays hundreds

of times smaller than existing watermarks by eliminating the interference

caused by the flow in the blind case. As a result, our watermark is invisible to

detection, as confirmed by experiments using information-theoretic detection

tools.

We analyze the error rates of our scheme based on a mathematical model

of network traffic and jitter. We also validate the analysis using an imple-

mentation running on PlanetLab. We find that our scheme generates orders

of magnitude lower rates of false errors than passive traffic analysis, while

using only a few hundred observed packets. We also extend our scheme so

that it is robust to packet drops and repacketization and show that flows can

still be reliably linked, though at the cost of somewhat longer observation

periods.

3.1 Introduction

Internet attackers commonly relay their traffic through a number of (usually

compromised) hosts in order to hide their identity. Detecting such hosts,

called stepping stones, is therefore an important problem in computer secu-

The research presented in this chapter is done in a collaboration with Prof. Negar
Kiyavash, from UIUC.
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rity. The detection proceeds by finding correlated flows entering and leaving

the network. Traditional approaches have used patterns inherent in traffic

flows, such as packet timings, sizes, and counts, to link an incoming flow to an

outgoing one [1,3,6–8]. More recently, an active approach called watermark-

ing has been considered [9,10]. In this approach, traffic characteristics of an

incoming flow are actively perturbed as they traverse some router to create

a distinct pattern, which can later be recognized in outgoing flows. These

techniques also have relevance to anonymous communication, as linking two

flows can be used to break anonymity, and both passive traffic analysis [27,47]

and active watermarking [12–14] have been studied in that domain as well.

The choice between passive and active techniques for traffic analysis ex-

hibits a tradeoff. Passive approaches require observing relatively long-lived

network flows, and storing or transmitting large amounts of traffic character-

istics. Watermarking approaches are more efficient, with shorter observation

periods necessary. They are also blind : rather than storing or communicating

traffic patterns, all the necessary information is embedded in the flow itself.

This, however, comes at a cost: to ensure robustness, the watermarks intro-

duce large delays (hundreds of milliseconds) to the flows, interfering with the

activity of benign users, and making them subject to attacks [29, 31].

Motivated by this, we develop a new scheme for linking flows, called RAIN-

BOW. As with passive techniques, our scheme will record traffic timings of

incoming flows and correlate them with outgoing flows. However, we also

insert a watermark value by delaying some packets. As the watermark is

generated independently of the flows, this will diminish the effect of natural

similarities between two unrelated flows, and allow a flow linking decision

to be made over a much shorter time period. We use spread-spectrum tech-

niques to make our delays much smaller than previous work. We use delays

that are on the order of only a few milliseconds; this means that our water-

marks not only do not interfere with traffic patterns of normal users, they are

also virtually invisible, since the delays are of the same magnitude as natural

network jitter.

We thoroughly analyze the detection performance of the RAINBOW non-

blind watermark, and compare it with that of passive traffic analysis schemes.

By using hypothesis testing mechanisms from the detection and estimation

theory [48], we find the optimum detection schemes for RAINBOW as well

as the optimum passive approach for different models of the network traffic.
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Modeling the real-world network traffic is a complicated problem as it de-

pends on many different parameters; as a result, we only consider two extreme

models of the network traffic depending on the degree of traffic correlations:

1) independent flows where each flow is modeled as a Poisson process (traffic

model A), and 2) fully correlated flows where all flows are considered to have

similar timing patterns (traffic model B). As models A and B correspond

to the most correlated and the least correlated traffic types, we assume that

any real-world traffic, e.g., web traffic, lies in the middle of these two extreme

models. Since false positive error rates of traffic analysis depend on intrinsic

flow correlations, we argue that the detection performance of a given traffic

analysis scheme is upper-bounded by its performance under traffic models A

and lower-bounded by its performance under traffic model B. Hence, in this

chapter we only analyze a scheme’s performance under two models A and

B. Our analysis shows that even though the optimum passive detector per-

forms as well as a watermark detector for uncorrelated traffic (traffic model

A), it results in large false positive error rates in the case of correlated flows

(model B). This is while the optimum watermark detector performs well for

both of the traffic models A and B. This justifies the use of non-blind wa-

termarks over passive traffic analysis, as a main conclusion of this research.

We validate our analysis through simulating the detection schemes on real

network traces. In particular, we show that for highly correlated traffic, e.g.,

same webpage downloads, passive traffic analysis performs very poorly while

a RAINBOW watermark is highly effective.

We validate our analysis by building a prototype implementation of our

scheme. We test it by generating flows with timings taken from real SSH [17]

traffic traces, and linking flows that traversed the Internet between Planet-

Lab [49] nodes. Our scheme performed quite well in this setting as well. Note

that PlanetLab introduces significantly more jitter than would be present

in an enterprise network, so in practice, much lower watermark delays, or

smaller packet sizes, can be used. We also analyze the invisibility of our

scheme by subjecting it to several information-theoretic detection tools [29,

50].

We also extend our scheme to handle dropped or inserted packets. Such

changes to flows will occur naturally due to packet losses, retransmissions,

or repacketization. By adjusting our scheme to perform selective correlation,

where packets that do not match up between the incoming and outgoing
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flows are dropped, our scheme can be made robust to packets being inserted

and deleted, though at the cost of either longer observation periods or higher

watermark amplitude.

The rest of this chapter is organized as follows: The proposed RAINBOW

scheme is presented in Section 3.2. In Section 3.3, we use the detection

and estimation theory to analyze performance of the proposed scheme. Sec-

tion 3.4 provides simulations results for RAINBOW, and we provide the

implementation results in Section 3.5, validating the analysis. In Section 3.6

we extend RAINBOW by introducing selective correlation to make it robust

to flow modifications. Discussions on watermark invisibility are presented in

Section 3.7, and the chapter concludes in Section 3.8 along with some future

research directions.

3.2 RAINBOW Watermark

We next present the design of a new watermark scheme we call RAINBOW,

for Robust and Invisible Non-Blind Watermark. Our scheme is robust (to

passive interference) and invisible. However, to achieve invisibility while

maintaining detection efficiency, we make the scheme non-blind ; that is, in-

coming flow timings are recorded and compared with the timings of out-

going flows. This allows us to make a robust watermark test with even

low-amplitude watermarks.

The RAINBOW watermark embedding process is shown in Figure 3.1.

Suppose that a flow with the packet timing information {tui |i = 1, .., n + 1}
enters the border router where it is to be watermarked (we use the superscript

u to denote an “unwatermarked” flow). Before embedding the watermark,

the inter-packet delays (IPDs) of the flow, τui = tui+1 − tui are recorded in an

IPD database, which is accessible by the watermark detector. The watermark

is subsequently embedded by delaying the packets by an amount such that

the IPD of the ith watermarked packet is τwi = τui + wi. The watermark

components {wi}ni=1 take values ±a with equal probability. The value a is

chosen to be small enough so that the artificial jitter caused by watermark

embedding is invisible to ordinary users and attackers.1

1Throughout this chapter, by attacker we mean the attacker to the watermarking
scheme.
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Figure 3.1: Model of RAINBOW network flow watermarking system.

In order to apply watermark delays on the flow, output packet ti is delayed

by w0 +
∑i−1

j=1wi, where w0 is the initial delay applied to the first packet.

This results in τwi = τui + wi, as desired. Since we cannot delay a packet for

a negative amount of time, w0 must be chosen large enough to prevent this

from happening. Since the sequence wi is generated from a random seed,

the watermarker can calculate all of the partial sums
∑i−1

j=1wi in advance

and adjust w0 accordingly. If a particular random seed requires a very large

initial delay w0, a different seed can be chosen.

As the flow traverses the network, it accumulates extra delays. Let di be

the delay that the packet accumulates by the time it reaches the watermark

detector; i.e., the packet is received at the detector at time tri = twi + di. The

IPD values at the detector are then:

τ ri = tri+1 − tri = τui + wi + δi (3.1)

where δi = di+1 − di is the jitter present in the network.

As mentioned before, the RAINBOW scheme is non-blind and therefore

the detector has access to the IPD database where the unwatermarked flows

are recorded. Given an observed flow at the detector with IPDs τ r and a

previously recorded flow τu, the detector must decide whether the two flows

are linked or not. In the next section we derive the optimum detectors for the

RAINBOW watermaks according to the LRT ruls. We also derive the op-

timum passive detectors, showing that the RAINBOW watermark performs

significantly better than passive traffic analysis for correlated network flows.
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3.3 Detection approaches

RAINBOW is the first non-blind flow watermarking scheme. Non-blind wa-

termarking inherits similar scalability issues from the passive traffic analysis.

In this section, we show how non-blind watermarking improves the traffic

analysis performance as compared to the traditional passive traffic analysis.

We derive optimum Likelihood Ratio Test (LRT) detectors for the RAIN-

BOW watermarking scheme for different traffic models, and compare its de-

tection performance with those of optimum passive detectors. We show that

RAINBOW outperforms passive traffic analysis for different traffic models;

this confirms what we expect intuitively from information theory, as a non-

blind watermark detector has access to more information (the watermark and

the IPDs), compared to a passive detector which only has access to the IPDs.

We also show that the RAINBOW detector is reliable in different models,

while the optimum passive detector fails in some scenarios.

As the extreme models, we perform our detection analysis for two traffic

models:

• traffic model A: independent flows with i.i.d. inter-packet delays, and,

• traffic model B: completely-correlated flows.

As it is infeasible to evaluate the detection performance for all different

traffic models, we discuss the detection performance for these two traffic

models, and consider any real-world network flow to lie between these two

extreme models. We show that an active detector, i.e., RAINBOW, is reliable

for different models, while a passive detector fails for certain traffic models.

3.3.1 Detection primitives

We use hypothesis testing [48] to analyze the detection performance of active

and passive detectors. For an active detector, we aim to distinguish between

the two following hypotheses:

• H0 (null hypothesis): the received flow with IPDs τ r is a new, unwa-

termarked flow, unlinked to the flow with IPDs τ , and,
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• H1: τ
r is the result of a flow with original IPDs τ being watermarked

and passed through the network.2

Also, for a passive detector we consider the following hypothesis testing

problem:

• H0 (null hypothesis): the received flow with IPDs τ r is a new flow,

unlinked to τ (the IPDs of another received flow), and,

• H1: τ
r is the result of τ passing through the network.

We find the optimum likelihood-ratio tests (LRT) of these hypothesis test-

ing problems. For any received flow with τ r IPDs, an LRT test evaluates a

test metric for the IPDs, T [τ r], and compares it with a detection threshold η;

if T [τ r] ≥ η, the received flow is said to be linked to the one in the detector’s

database (with IPDs of τ). We can therefore express the false positive and

false-negative rates of the detector as:

PFP = P (T [τ r|H0] ≥ η) (3.2)

PFN = P (T [τ r|H1] < η) (3.3)

3.3.2 Network jitter model

We will model network delays as i.i.d. exponential, which implies that the

jitter (difference of two delays) is i.i.d. according to a zero-mean Laplace

distribution denoted by Lap(0, bδ), where 2b
2
δ is the variance of the jitter. Of

course, in a real network, delays will have some correlation; we compare the

probability density function (PDF) of real observed jitter on a connection

over PlanetLab [49] with a best-fit Laplace distribution in Figure 3.2. We

can see that the real PDF has greater support at 0, and the Laplace distri-

bution has a heavier tail. This means that our analysis of error rates will be

conservative, since 0 jitter will result in no error for our detection scheme.

We have also conducted similar experiments with the same results on Tor

anonymous network [5] to consider the other application of watermarking.

2Note that there is another possibility, namely that τ r is a watermarked flow, but not
corresponding to τ . However, we ignore this case because errors in this scenario do not
matter: if the flow is said to be watermarked, then the detection algorithm is correct, and
if it is said to be unwatermarked, it will later be tested against the correct τ .
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Figure 3.2: A comparison of observed jitter and a fitted Laplace
distribution.

3.3.3 Traffic model A: independent flows, i.i.d. IPDs

In this model, we assume that the candidate flows are independent. Also,

each flow has i.i.d. IPDs, i.e., the flow is modeled with a Poisson process.

This represents a good model for non-interactive network flows.

Passive detection (PASSV scheme)

In this section, we find the optimum likelihood ratio (LRT) passive detector

for the traffic model A. Suppose that the flow with IPDs τ is known to the

detector. Detector will need to check if it is correlated with some received

flow τ ∗, where τ and τ ∗ are independent. So, in this case the hypothesis

testing problem is:

{

H0 : τ ri = τ ∗i + δ0i

H1 : τ ri = τi + δ1i
(3.4)

where δ0 and δ1 represent the network jitter. Based on our measurements over

the Planetlab we model the network jitter with an i.i.d. Laplace distribution

Lap(0, b) (see Section 3.3.2).

In order to find the optimum LRT detector, we first need to find the PDF

function of τ ri in different hypotheses, i.e., pi(·) for hypothesis Hi . As the

model A suggests, we model the IPDs τ ∗ as i.i.d. exponential distribution.

So, in hypothesis H0 the received signal τ ri is the summation of a Laplace

and an exponential random variable. We have that the summation of an

exponential random variable X ∼ Exp(λ) and a Laplace distribution Y ∼
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Lap(0, b), i.e., Z = X + Y , is given by [51]:

fZ(z) =

{

λ
2(λb−1)

e−
z
b + λ

1−λ2b2
e−λz z ≥ 0

λ
2(λb+1)

e
z
b z < 0

(3.5)

We use this to find p0(·):

p0(τ
r
i ) =







λ
2(λb−1)

e−
τri
b + λ

1−λ2b2
e−λτri yi ≥ 0

λ
2(λb+1)

e
τri
b yi < 0

(3.6)

In the case of H1, since the τi is known to the detector, we can model τ ri

as a Laplace distribution with mean τi. So:

p1(τ
r
i ) =

1

2b
e−

|τri −τi|

b (3.7)

Note that even though the real-world IPDs can never be negative, the

densities p0 and p1 return a non-zero density for negative values of the IPDs.

In fact, this is due to the approximation we make in modeling the network

jitter as a two-sided Laplace distribution, and its effect is very small for

ordinary network flows based on our simulations [11].

Having the densities p0 and p1, we derive the optimum detector based on

the likelihood ratio test to be:

L(τ r) ≷H1

H0
eη (3.8)

where η is the LRT detection threshold and

L(τ r) =
∏

Li(τ
r
i ) (3.9)

Li(τ
r
i ) =

p1(τ
r
i )

p0(τ ri )
(3.10)

We define ηn = η/n as the normalized detection threshold. A value of of

ηn = 0 results in a MiniMax detector.

Detection performance Let us consider the case where the detector uses

the PASSV detection scheme in order to link a received flow with IPDs τ r to a

known flow with IPDs τ , i.e., a registered flow. Considering the assumptions
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made in the traffic model A, i.e., the IPDs being i.i.d., we use the Chernoff

bound for i.i.d. signals [48] to find the false positive (PFP ) and false negative

(PFN) error rates of the PASSV detector:

P τ

FP ≤
n
∏

i=1

e−(sηn−µ
τi
0,i(s)) (3.11)

P τ

FN ≤
n
∏

i=1

e−((s−1)ηn−µ
τi
0,i(s)) (3.12)

where 0 < s < 1 and:

µτi
0,i(s) = ln

∫

p1−s
0 (τ ri )p

s
1(τ

r
i )dτ

r
i (3.13)

The error probabilities of P τ

FN and P τ

FP correspond to a fixed known IPDs

sequence, τ . The overall false errors are evaluated by averaging P τ

FP and

P τ

FN with respect to τ :

PFP = Eτ{P τ

FP} (3.14)

≤
n
∏

i=1

Eτi

{

e−(sηn−µ
τi
0,i(s))

}

(3.15)

=

(
∫ ∞

0

e−(sηn−µ
τ1
0,1(s))λe−λτ1dτ1

)n

(3.16)

PFN = Eτ{P τ

FN} (3.17)

≤
n
∏

i=1

Eτi

{

e−((s−1)ηn−µ
τi
0,i(s))

}

(3.18)

=

(
∫ ∞

0

e−((s−1)ηn−µ
τ1
0,1(s))λe−λτ1dτ1

)n

(3.19)

We can represent the upper bounds of these false errors as:

PFP ≤ e−n·EFP (s,ηn) (3.20)

PFN ≤ e−n·EFN (s,ηn) (3.21)
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Figure 3.3: Error exponents E∗
FP (ηn) and E

∗
FN(ηn) of the PASSV detection

scheme for different values of ηn (traffic model A). (b = 10−2sec, λ = 5pps)

where

EFP (s, ηn) = − ln

(
∫ ∞

0

e−(sηn−µ
τ1
0,1(s))λe−λτ1dτ1

)

(3.22)

EFN(s, ηn) = − ln

(
∫ ∞

0

e−((s−1)ηn−µ
τ1
0,1(s))λe−λτ1dτ1

)

(3.23)

(0 < s < 1)

For each detection threshold ηn, we find the tightest exponent bounds

E∗
FP (ηn) and E

∗
FN(ηn) such that:

E∗
FP (ηn) = max

0<s<1
EFP (s, ηn) (3.24)

E∗
FN(ηn) = max

0<s<1
EFN(s, ηn) (3.25)

Analysis results We use Mathematica 7.0 to evaluate the false error ex-

ponents of (3.24) and (3.25). The parameters used for the simulations are

b = 10−2sec and λ = 5pps, borrowed from [11]. Figure 3.3 plots the tightest

bounds for the error exponents of E∗
FP (ηn) and E

∗
FN(ηn) for different thresh-

olds of ηn. Note that the optimum s varies with the decision threshold. For

ηn = 0 the false positive and false negative errors are equal; we name this er-

ror rate as the Cross-Over Error Rate (COER). For the mentioned setting of

the variables the COER exponent of the PASSV detector is equal to 1.06396.
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Active detection (ACTV scheme)

In this section, we find the optimum LRT detector for the RAINBOW non-

blind watermark for the traffic model A. We have the following hypothesis

testing problem:

{

H0 : τ
r
i = τ ∗i + δi

H1 : τ
r
i = τi + wi + δi

(3.26)

where τi’s are the IPDs registered in the IPD database, and τ ∗i ’s are the

IPDs of an independent flow. As before, in order to find the optimum LRT

detector we need to find the distribution of τ ri in different hypotheses. Using

(3.5) we find the corresponding PDF function under H0 as:

p0(τ
r
i ) =







λ
2(λb−1)

e−
τri
b + λ

1−λ2b2
e−λτri τ ri ≥ 0

λ
2(λb+1)

e
τri
b τ ri < 0

(3.27)

Since τi and wi are known to the detector, we find the PDF in hypothesis

H1 as the following:

p1(τ
r
i ) =

1

2b
e−

|τri −τi−wi|

b (3.28)

So, the optimum detector based on the likelihood ratio test is:

L(τ r) ≷H1

H0
eη (3.29)

where η is the LRT detection threshold and

L(τ r) =
∏

Li(τ
r
i ) (3.30)

Li(τ
r
i ) =

p1(τ
r
i )

p0(τ ri )
(3.31)

Detection performance As before, considering the independence of the

IPDs and also the watermark bits we use the Chernoff bound [48] to find the
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error probabilities of the ACTV detector for a given τ and w:

P τ ,w
FP ≤

n
∏

i=1

e−(sηn−µ
τi,wi
0,i (s)) (3.32)

P τ ,w
FN ≤

n
∏

i=1

e−((s−1)ηn−µ
τi,wi
0,i (s)) (3.33)

where 0 < s < 1, and:

µτi,wi

0,i (s) = ln

∫

p1−s
0 (τ ri )p

s
1(τ

r
i )dτ

r
i (3.34)

As P τ,w
FN and P τ,w

FP correspond to a fixed IPDs sequence τ and the watermark

w, we evaluate the overall false errors by averaging P τ,w
FP and P τ,w

FN with

respect to τ and w:

PFP = EwEτ{P τ,w
FP } (3.35)

≤
n
∏

i=1

Ewi
Eτi

{

e−(sηn−µτ,w
0,i (s))

}

(3.36)

=

(

1

2

1
∑

w1=0

∫ ∞

0

e−(sηn−µ
τ1,w1
0,1 (s))λe−λτ1dτ1

)n

(3.37)

PFN = EwEτ{P τ,w
FN } (3.38)

≤
n
∏

i=1

Ewi
Eτi

{

e−((s−1)ηn−µτ,w
0,i (s))

}

(3.39)

=

(

1

2

1
∑

w1=0

∫ ∞

0

e−((s−1)ηn−µ
τ1,w1
0,1 (s))λe−λτ1dτ1

)n

(3.40)

The approximated upperbounds can be formulated as:

PFP ≤ e−n·EFP (s,ηn) (3.41)

PFN ≤ e−n·EFN (s,ηn) (3.42)
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Figure 3.4: Error exponents E∗
FP (ηn) and E

∗
FN(ηn) of the ACTV detection

scheme for different values of ηn (traffic model A). (b = 10−2sec, λ = 5pps)

where

EFP (s, ηn) = − ln

(

1

2

1
∑

w1=0

∫ ∞

0

e−(sηn−µ
τ1,w1
0,1 (s))λe−λτ1dτ1

)

EFN(s, ηn) = − ln

(

1

2

1
∑

w1=0

∫ ∞

0

e−((s−1)ηn−µ
τ1,w1
0,1 (s))λe−λτ1dτ1

)

(0 < s < 1)

Finally, the tightest bounds for each ηn are found by maximizing the error

exponents with respect to the parameter s:

E∗
FP (ηn) = max

0<s<1
EFP (s, ηn) (3.43)

E∗
FN(ηn) = max

0<s<1
EFN(s, ηn) (3.44)

Analysis results Using Mathematica 7.0 we evaluate the false error ex-

ponents of (3.43) and (3.44). As before, we use the parameters b = 10−2sec,

a = 10−2sec, and λ = 5pps for the simulations. Figure 3.4 plots the tightest

bounds for the error esponents of E∗
FP (ηn) and E

∗
FN(ηn) for different thresh-

olds of ηn. The COER exponent occurs for ηn = 0 and is equal to 1.06828,

which is slightly better compared to that of the PASSV detector evaluated

before, (1.06396).
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3.3.4 Traffic model B: correlated flows, correlated IPDs

As the other extreme of traffic models we investigate the traffic model with

correlated IPDs. We consider the case where all of the network flows have

the same IPDs, e.g., for any two flows with IPDs τ ∗ and τ we have that

τ ∗i = τi = Ci for all i. In particular, this model captures the behavior of

a number of widely used traffic types, including file transfers, browsing the

same websites, etc.

Passive detection

In this model, a passive detection faces the following hypothesis testing prob-

lem:

{

H0 : τ ri = τ ∗i + δi

H1 : τ ri = τi + δi
(3.45)

where τ ∗i = τi = Ci. The optimum LRT detector for this problem is the

random guessing:

L(τ r) = RND (3.46)

where RND is a uniform random variable. The detection rule is:

L(τ r) ≷H1

H0
eη (3.47)

Detection performance Since the detector is based on random guessing,

the false errors are as followed:

PFP = p (3.48)

PFN = 1− p (3.49)

where 0 ≤ p ≤ 1 is determined by the choice of η.

51



Active detection (SLCorr scheme)

In this case, we have the following hypothesis testing problem:

{

H0 : τ ri = τ ∗i + δi

H1 : τ ri = τi + wi + δi
(3.50)

Since τ ∗i = τi = Ci, this can be reduced to the following hypothesis testing:

{

H0 : yi = δi

H1 : yi = wi + δi
(3.51)

where yi = τ ri −τi. The optimum LRT detector for this problem can be found

considering the distribution of yi in different hypotheses:

pi0(yi) =
1

2b
e−

|yi|

b (3.52)

pi1(yi) =
1

2b
e−

|yi−wi|

b (3.53)

So, we can derive the LRT detection metric as:

Li(yi) =
pi1(yi)

pi0(yi)
(3.54)

which can be expressed as:

lnLi(yi) =
1

b
(|yi| − |yi − wi|) (3.55)

=
2

b
fSL

(

yi −
wi

2

)

.sgn(wi) (3.56)

fSL(·) is a soft-limiter with breakpoints at −a
2
and +a

2
(a is the watermark

amplitude as defined before):

fSL(x) =















+a
2

x ≥ +a
2

x −a
2
< x < +a

2

−a
2

x ≤ −a
2

(3.57)
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Figure 3.5: Block diagram of the SLCorr detection scheme.

We can reformulate the optimum detection rule as:

D(y) ≷H1

H0
η (3.58)

where

D(y) =
n
∑

i=1

Di(yi) (3.59)

and

Di(yi) =
b

2
lnLi(yi)

= fSL
(

yi −
wi

2

)

.sgn(wi) (3.60)

We call this detector SLCorr, as it is composed of a soft limiter followed

by a correlation block. From a communications point of view, the soft-

limiter is useful in reducing the signal detection noise in channels with a

Laplacian distributed noise. We will use this as the detection scheme for the

RAINBOW watermark, as would be discussed later. Figure 3.5 shows the

block diagram of the SLCorr detector. SLCorr is a MiniMax detector for a

detection threshold of η = 0.

Detection performance The SLCorr test metric is given in (3.58) to

(3.60). Let us define f i
0(·) and f i

1(·) as the PDF of xi = yi − wi

2
in hypothesis

H0 and H1, respectively. We have that:

f i
0(xi) =

1

2b
e−

|xi+
wi
2

|

b (3.61)

f i
1(xi) =

1

2b
e−

|xi−
wi
2

|

b (3.62)

Based on these, we can evaluate p0(·) and p1(·), namely the PDF of Di(yi)
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under hypothesis H0 and H1, respectively:

p0(Di) =















1
2
e−

a
b Di = +a

2

1
2b
e−

Di+
a
2

b −a
2
< Di <

a
2

1
2

Di = −a
2

(3.63)

p1(Di) =















1
2

Di = +a
2

1
2b
e

Di−
a
2

b −a
2
< Di <

a
2

1
2
e−

a
b Di = −a

2

(3.64)

Considering that the distributions p0(Di) and p1(Di) are i.i.d. with i we

use the Chernoff bound [48] to find the error probabilities of the SLCorr

detector:

PFP ≤ e−n(sηn−µ0(s)) (∀s > 0) (3.65)

µ0(s) = µDi|H0
(s)

PFN ≤ e−n(sηn−µ1(s)) (∀s < 0) (3.66)

µ1(s) = µDi|H1
(s)

where ηn = η/n is the normalized detection threshold. We have that:

µ0(s) = µDi|H0
(s) = ln

∫ ∞

−∞
esxp0(x)dx

= ln

[

sb

2(sb− 1)
e−

a
b es

a
2 +

sb− 2

2(sb− 1)
e−sa

2

]

(3.67)

and,

µ1(s) = µDi|H1
(s) = ln

∫ ∞

−∞
esxp1(x)dx

= ln

[

sb

2(sb+ 1)
e−

a
b e−sa

2 +
sb+ 2

2(sb+ 1)
es

a
2

]

(3.68)

54



−5 −4 −3 −2 −1 0 1 2 3 4 5

x 10
−3

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

ηn
F
a
ls

e
E
rr

o
r

E
x
p
o
n
e
n
t

 

 

  E
FP

 E
FN

Figure 3.6: Error exponents E∗
FP (ηn) and E

∗
FN(ηn) of SLCorr for different

values of ηn (traffic model B). (b = 10−2sec, a = 10−2sec)

We can express the above PFP and PFN false errors as:

PFP ≤ e−n·EFP (s,ηn) (3.69)

PFN ≤ e−n·EFN (s,ηn) (3.70)

where

EFP (s, ηn) = sηn − µ0(s) (s > 0) (3.71)

EFN(s, ηn) = sηn − µ0(s) (s < 0) (3.72)

Finally, the tightest bounds for each ηn are found by maximizing error

exponents with respect to the s parameter:

E∗
FP (ηn) = max

s>0
EFP (s, ηn) (3.73)

E∗
FN(ηn) = max

s<0
EFN(s, ηn) (3.74)

Analysis results We use Mathematica 7.0 to evaluate the false error ex-

ponents of (3.73) and (3.74). The parameters used for the simulations are

b = 10−2sec and a = 10−2sec. Figure 3.6 plots the tightest bounds for the

error exponents of E∗
FP (ηn) and E

∗
FN(ηn) for different thresholds of ηn. The

COER exponent occurs for ηn = 0 and is equal to 0.0945.
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3.3.5 Discussion

Above, we derived the optimum passive and active detectors for the traffic

analysis problem and evaluated their performance by finding the Chernoff

upperbounds of their false error rates. In this section, we use the asymptotic

relative efficiency (ARE) as a tool to compare their detection performances.

The asymptotic relative efficiency (ARE) is a measure for comparing two

discrete-time detection schemes. For two discrete detection schemes S1 and

S2 the ARE metric is defined as ARES1,S2
= limn→∞ n2/n, where n is the

number of S1’s samples. The n2 parameter is the smallest number of S2

samples that results in S2’s error rate to be smaller than or equal to the

error rate of S1 (with n samples). An ARE metric of ARES1,S2
> 1 depicts

that S1 is asymptotically more efficient than S2. Chernoff [52] finds the ARE

metric of two detectors S1 and S2 using their Chernoff error upperbounds as:

ARES1,S2
= E1/E2 (3.75)

where E1 and E2 are the error exponents of the Chernoff upperbounds for

S1 and S2 detectors, respectively.

Using the analysis results from Sections 3.3.3 and 3.3.4 we can derive the

ARE metric of the optimum passive and active detectors for the two traffic

models as:

AREPASSV,ACTV |A = 1.06396/1.06828 ≈ 0.996 (3.76)

ARERND,SLCorr|B = 0/0.0945 = 0 (3.77)

This asserts that the optimum active detector outperforms the optimum

passive detector in both traffic models A and B (which is intuitively ex-

pected from information theory). As an important observation, we see that

the active detector’s advantage is very small for the traffic model A, however,

the active detector significantly outperforms the optimum passive detector

in traffic model B, i.e., the correlated traffic. In other words, the active de-

tector provides very good detection performance for different traffic models,

however, the passive detection is very poor for the more correlated network

traffic.

In the rest of this section we analyze the performance of the SLCorr scheme

under the traffic model A, showing that even though SLCorr is not the opti-

56



mum detector for the traffic model A, however, it provides very good detec-

tion performance under this model. Based on this, we choose SLCorr as the

sole detector for RAINBOW, regardless of the behavior of the network flows.

This simplifies the watermark detection, as real-world traffic are combina-

tions of the models A and B, and the detection can be performed regardless

of the type of the received traffic. We also analyze the performance of PASSV

and ACTV detectors under traffic model B, showing their inefficiency in this

model.

SLCorr Detection performance for traffic model A

The SLCorr scheme is the optimum active detector for traffic model B, but

not the traffic model A. In this section we show that SLCorr achieves a good

detection performance even under traffic model A, allowing a system designer

to use it as the sole detection scheme regardless of the type of the traffic.

SLCorr faces the following hypothesis testing under the traffic model A:

{

H0 : τ
r
i = τ ∗i + δi

H1 : τ
r
i = τi + wi + δi

(3.78)

Considering SLCorr’s detection metric, given in (3.58) to (3.60), one can

rewrite the hypothesis testing problem as:

{

H0 : yi = τ ∗i + δi − τi

H1 : yi = wi + δi
(3.79)

where yi = τ ri − τi. Let us assume f 0
i (·) and f 1

i (·) as the PDF functions of

yi|H0 and yi|H1, respectively. We have that:

yi|H1 ∼ Lap(wi, b) (3.80)

f 1
i (yi) =

1

2b
e−

|yi−wi|

b (3.81)

Also, based on the summation of two Laplace distributions given in [51]
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we have that:

δi ∼ Lap(0, b) (3.82)

(τ ∗i − τi) ∼ Lap(0, 1/λ) (3.83)

f 0
i (yi) =

bλ

2(1− b2λ2)

(

1

b
e−λ|yi| − λe−

1

b
|yi|
)

(3.84)

Now, let us define p0(·) and p1(·) as the PDF functions of Di(yi) under

hypotheses H0 and H1, respectively. We derive p(·) as:

p0(Di) =



























b2λ2

2(1−b2λ2)

(

1
b2λ2 e

−λa − e−
a
b

)

Di = +a
2

bλ
2(1−b2λ2)

(

1
b
e−λ(Di+a/2)

−λe− 1

b
(Di+a/2)

)

−a
2
< Di <

a
2

1
2

Di = −a
2

(3.85)

Also, using (3.81) we derive p1(·) as:

p1(Di) =















1
2

Di = +a
2

1
2b
e

Di−
a
2

b −a
2
< Di <

a
2

1
2
e−

a
b Di = −a

2

(3.86)

Based on the p0(·) and p1(·) distributions and using the Chernoff bound [48]

for signal detection we find the error probabilities of the detector to be:

PFP ≤ e−n(sηn−µ0(s)) (∀s > 0) (3.87)

µ0(s) = µDi|H0
(s)

PFN ≤ e−n(sηn−µ1(s)) (∀s < 0) (3.88)

µ1(s) = µDi|H1
(s)
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where we have:

µ0(s) = µDi|H0
(s) = ln

∫ ∞

−∞
esxp0(x)dx (3.89)

= ln

[

b2λ2

2(1− b2λ2)

[

s

b2λ2(s− λ)
esa/2e−λa

+
sb

1− sb
esa/2e−a/b

+
−2λbs+ 2λ+ sb2λ2 − b2λ3 + s2b− s

(s− λ)(sb− 1)b2λ2
e−sa/2

]]

(3.90)

and,

µ1(s) = µDi|H1
(s) = ln

∫ ∞

−∞
esxp1(x)dx (3.91)

= ln

[

sb

2(sb+ 1)
e−

a
b
−sa

2 +
sb+ 2

2(sb+ 1)
es

a
2

]

(3.92)

As before, we can express the above PFP and PFN false errors as:

PFP ≤ e−n·EFP (s,ηn) (3.93)

PFN ≤ e−n·EFN (s,ηn) (3.94)

where

EFP (s, ηn) = sηn − µ0(s) (s > 0) (3.95)

EFN(s, ηn) = sηn − µ0(s) (s < 0) (3.96)

Finally, the tightest bounds for each ηn are found by maximizing the error

exponents with respect to the parameter s:

E∗
FP (ηn) = max

s>0
EFP (s, ηn) (3.97)

E∗
FN(ηn) = max

s<0
EFN(s, ηn) (3.98)

Analysis results We use Mathematica 7.0 to evaluate the false error ex-

ponents of (3.97) and (3.98). The parameters used for the simulations are

b = 10−2sec, λ = 5pps and a = 10−2sec. Figure 3.7 plots the tightest bounds

for the error exponents of E∗
FP (ηn) and E∗

FN(ηn) for different thresholds of

ηn. The COER exponent occurs for ηn = 9.6×104s which is equal to 0.0228.
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Figure 3.7: Error exponents E∗
FP (ηn) and E

∗
FN(ηn) of SLCorr for different

values of ηn (traffic model A). (b = 10−2sec, λ = 5pps, a = 10−2sec)
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Figure 3.8: The COER error exponent of SLCorr in traffic model A for
different watermark amplitudes.

Also, Figure 3.8 shows the COER exponent with respect to different values

of the watermark amplitude, a. As we can see, increasing the watermark

amplitude improves the detection performance (but reduces the watermark

invisibility as discussed in [11]).

Detection performance of PASSV and ACTV schemes for the traf-

fic model B: As derived before, the PASSV and ACTV schemes are the

optimum passive and active detectors for the traffic model A. We show that

PASSV and ACTV perform very poorly under the traffic model B, i.e., the

correlated traffic. This is unlike the SLCorr detector that works well for both

of the traffic models.

Under the traffic model B, the PASSV detector faces the hypothesis testing
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problem of (3.45) with τ ∗i = τi = Ci. One can see that in this case the PASSV

detection rule described in Section 3.3.3 is exactly the same for both H0 and

H1 hypotheses. This means that the false positive error rate of PASSV

scheme for correlated flows is equal to its true positive rate, which makes

the PASSV scheme equivalent to a random guessing detector. Similarly,

for the traffic model B the ACTV scheme deals with the hypothesis testing

problem of (3.50) with τ ∗i = τi = Ci. Our analysis and simulations on

Mathematica confirm that the ACTV detection metric results in very close

values for the two hypothesis of H0 and H1, rendering the ACTV detection

scheme ineffective for network flows in traffic model B (we skip the details

due to the space constraints).

3.4 Simulation results

In this section, we evaluate the performance of the three detection schemes in-

troduced before, i.e., SLCorr, ACTV, and PASSV, through simulating them

over real-world traffic. We show that SLCorr outperforms the other detec-

tors dealing with real-world network flows, due to the intrinsic correlations

among the real-world network flows. We use the CAIDA network traces

gathered January 2009 [53] for our simulations. For our simulations, we have

implemented the detection schemes in C++. From the CAIDA traces we

extract three types of network flows for our simulations: TCP ports of 443

(HTTPS), 25 (SMTP), and 22 (SSH). We only select flows with rates lower

than 30pps (this is because the parameters of the optimum detectors depend

on the rate of the flows). In all of the simulations, the detectors use the

detection thresholds derived through analysis in the previous sections, i.e.,

0.001 for SLCorr, 0 for ACTV, and 0 for PASSV.

In the first set of our simulations, we evaluate the false positive error rate

of the three detection schemes for network flows mentioned above. For each

detection scheme, we run the detection algorithm for 10000 different pairs

of network flows. In order to show the effect of number of packets in the

detection performance, we run the experiments for four different values of

the N parameter, i.e., 25, 50, 100, and 200. Tables 3.1, 3.2, and 3.3 show

the false-positive rates of the experiments along with some statistics on the

detection metrics for three TCP ports of 443, 25, and 22, respectively. Re-
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Table 3.1: False-positive rate of different detection schemes for port 443
network flows. Each experiment is run for 10000 different pairs of flows.

N Scheme
Detection metric False

Min Avg Max Positive

25
SLCorr -0.005 -0.0031 0.00012 0.0068
ACTV -457.385 -37.8203 14.1698 0.0151
PASSV -245.249 -35.6167 2.8426 0.0054

50
SLCorr -0.005 -0.0039 0.0012 0.0002
ACTV -503.655 -36.8637 3.9970 0.0159
PASSV -567.917 -45.5303 2.8297 0.0009

100
SLCorr -0.005 -0.0042 -0.0004 0
ACTV -515.555 -33.2478 -2.2095 0
PASSV -555.857 -44.0783 2.9567 0.0023

200
SLCorr -0.005 -0.0042 -2.5E-5 0
ACTV -608.838 -33.5721 0.9735 0.0005
PASSV -559.164 -43.2514 2.9535 0.0018

sults show that in most of the cases the SLCorr scheme results in smaller

false positive errors compared to the ACTV and PASSV schemes. This is

because the real network flows are deviated from the Poisson model of the

traffic, due to the intrinsic dependencies among the packets of real network

flows. The SLCorr detector, on the other hand, is the optimum detector

for correlated network flows, which also results in reasonable detection per-

formance for Poisson-modeled network flows. Comparing the results for the

three different traffic types (Tables 3.1, 3.2, and 3.3), we observe that the

ACTV and PASSV schemes perform the worst for the SSH traffic (TCP port

22); we explain this by the fact that SSH flows are more correlated compared

to HTTPS and SMTP flows, as they are based on the typing behaviors of

the human entities. Another general observation from the simulations is that

the detection performance improves as the number of packets, N , increases.

In the second set of experiments, we run the simulated detection schemes

to measure the false negative error rates. Again, we use the detection thresh-

olds derived through the analysis in previous sections. In each simulation of

the SLCorr and ACTV schemes, the candidate network flow is watermarked

using the RAINBOW scheme (Section 3.2) and then a network delay is ran-

domly selected and applied to that flow from a large pool of network delays

measured over the Planetlab infrastructure [49] (the average standard de-

viation of the network delay is around 10ms). Likewise, for the PASSV
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Table 3.2: False-positive rate of different detection schemes for port 25
network flows. Each experiment is run for 10000 different pairs of flows.

N Scheme
Detection metric False

Min Avg Max Positive

25
SLCorr -0.005 -0.0039 0.0018 0.0008
ACTV -461.182 -50.3404 6.1398 0.0003
PASSV -364.275 -49.6125 1.8952 0.003

50
SLCorr -0.005 -0.0042 0.0004 0
ACTV -359.413 -35.2567 -0.3314 0
PASSV -364.652 -53.7937 1.5171 0.0015

100
SLCorr -0.005 -0.0037 -0.0007 0
ACTV -352.581 -31.3738 0.0420 0.0001
PASSV -368.304 -55.4709 1.4271 0.0013

200
SLCorr -0.005 -0.0041 -0.0014 0
ACTV -190.366 -29.6399 -1.2917 0
PASSV -375.012 -56.3069 1.3936 0.0012

Table 3.3: False-positive rate of different detection schemes for port 22
network flows. Each experiment is run for 10000 different pairs of flows.

N Scheme
Detection metric False

Min Avg Max Positive

25
SLCorr -0.005 -0.0029 0.0026 0.0024
ACTV -495.125 -18.3825 6.8506 0.0269
PASSV -88.1381 -8.7786 3.3239 0.1031

50
SLCorr -0.005 -0.0038 0.0011 0.0001
ACTV -628.45 -20.1249 4.5654 0.0144
PASSV -80.5081 -9.3516 3.3204 0.0879

100
SLCorr -0.005 -0.0037 0.0005 0
ACTV -522.241 -23.434 2.8119 0.0142
PASSV -101.337 -9.8241 3.3202 0.0861

200
SLCorr -0.005 -0.0039 1.67E-5 0
ACTV -487.594 -26.357 4.7264 0.0212
PASSV -104.547 -9.7138 3.3195 0.0896
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Table 3.4: False-negative rate of different detection schemes for port 443
network flows. Each experiment is run for 10000 different pairs of flows.

N Scheme
False Negative

10 ms 15 ms 20 ms 30 ms

25
SLCorr 0.039 0.005 0.0004 0.0003
ACTV 1E-04 1E-04 0 0.0004
PASSV 0.0002

50
SLCorr 0.0137 0.0004 0 0
ACTV 0 0 0 0
PASSV 0

100
SLCorr 0.0028 0 0 0
ACTV 0 0 0 0
PASSV 0

200
SLCorr 0.000977 0 0 0
ACTV 0 0 0 0
PASSV 0

simulations the candidate network flow is delayed similarly to simulate the

network interference. The delayed flow is then correlated with the origi-

nal flow (non-delayed, and non-watermarked) using each of the detection

schemes. Tables 3.4, 3.5, and 3.6 show the false negative of the experiments

for the three different detection schemes, evaluated for three different TCP

ports. For the watermark detection schemes of SLCorr and ACTV the ex-

periments are repeated for four different values of the watermark amplitude,

i.e., a = 10ms, 15ms, 20ms, 30ms. Also, all of the simulations are run for

different values of the watermark length, N . Results show that by choos-

ing reasonable parameters for the RAINBOW watermark, the SLCorr and

ACTV detection schemes result in very small false-negative rates, compa-

rable to those of the passive detection. Again, we see that increasing N

improves the detection performance.

In the third set of experiments, we evaluate the false positive error rate

of the three detection schemes over highly correlated network flows. More

specifically, we use flow traces corresponding to web browsing activities of

human entities that target the same destination websites at different times

and from different network locations.3 Table 3.7 shows the false positive error

rates for different detection schemes for different websites and for different

values of N (each simulation is averaged over 100 runs). As can be seen, in

3The traces are generated and provided to us by Xun Gong from UIUC
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Table 3.5: False-negative rate of different detection schemes for port 25
network flows. Each experiment is run for 10000 different pairs of flows.

N Scheme
False Negative

10 ms 15 ms 20 ms 30 ms

25
SLCorr 0.0346 0.0035 0.0007 0
ACTV 0.0003 0.0002 0.0004 0.0002
PASSV 0.0001

50
SLCorr 0.0154 0.0005 0.0003 0
ACTV 0 0 0 0.0006
PASSV 0

100
SLCorr 0.002636 0 0 0
ACTV 0 0 0 0
PASSV 0

200
SLCorr 0 0 0 0
ACTV 0 0 0 0
PASSV 0

Table 3.6: False-negative rate of different detection schemes for port 22
network flows. Each experiment is run for 10000 different pairs of flows.

N Scheme
False Negative

10 ms 15 ms 20 ms 30 ms

25
SLCorr 0.028879 0.001775 0 0
ACTV 0 0 0.00062 0.005727
PASSV 0.0002

50
SLCorr 0.009671 0 0 0
ACTV 0 0 0 0
PASSV 0

100
SLCorr 0 0 0 0
ACTV 0 0 0 0
PASSV 0

200
SLCorr 0 0 0 0
ACTV 0 0 0 0
PASSV 0
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most of cases, the ACTV and PASSV detection schemes result in very high

false-positive rates, while the SLCorr scheme results in no false positive error

in all of the cases. This confirms what we expect intuitively: the PASSV

and ACTV scheme are optimum passive and active detection schemes for

independent network traffic models, but they perform poorly as the network

flows get more correlated. The SLCorr scheme, however, is the optimum

detection scheme for correlated network flows, and it also performs good

enough in the case of independent network flows.

3.5 Implementation results

We implemented the watermarking scheme and tested it by using replayed

SSH connections, using timings collected from real traces at the North Car-

olina State University, as well as at the University of Illinois. Our tests were

carried out over the PlanetLab infrastructure.

In the first experiment, we watermarked SSH flows between two specific

nodes for different values of watermark amplitude (1, 3, 5, 7, 10, 20msec). We

show the test statics for both true correlation (hypothesis one) and false cor-

relation (hypothesis zero), along with their standard deviations in Figure 3.9

(each experiment is run for 20 times and the average jitter standard devia-

tion over the link is about δb = 10msec). As we expect from analysis, false

detection metric has a mean of around zero, and a variance steadily constant

(because n is fixed). For hypothesis one, the statistic mean increases linearly

with watermark amplitude (recall that mean of true correlation is a√
2bδ

), and

variance shows not much change for different experiments.

In the second experiment we watermarked 100 SSH flows of length N =

5000 packets with fixed watermarked amplitude of a = 10ms between two

specific nodes (and also the same watermark bits). The high number of

flows helps to measure the variance of metrics with more confidence. Fig-

ure 3.10a shows true detection metric, and false detection metric along with

their standard deviation for different number of packets n. Mean of true

correlation does not vary with n because watermark amplitude is fixed and

network jitter does not vary that much; mean of false correlation is almost

zero as we expect from analysis. Fortunately, false correlation shows a slightly

smaller standard deviation which results in even fewer false positives. This
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Figure 3.9: Normalized correlation test statistic for different watermark
amplitudes.

is because we considered the worst case in analysis, i.e., equal rate unwa-

termarked flows. Figure 3.10b shows the COER estimated by fitting the

errors rates to a Laplace distribution. The COER exponent varies linearly

with n, as expected from the analysis. Based on this, we can achieve the

tiny COER of 10−6 with fewer than 400 packets, which means that a typical

SSH connection can be classified as a stepping stone or not within about 3

minutes. Similar passive and watermarking schemes require much more time

to achieve similar error rates.

Comparing error rates of RAINBOWwith those of previous passive schemes

and blind watermarking schemes, RAINBOW outperforms them by orders of

magnitude. The passive scheme of [6], which uses similar correlation mech-

anisms as RAINBOW, achieves false errors of 10−2 for different parameters.

IPD-based watermarking scheme of [9] achieves false-negative rates of 10−2

and false-positive rates of at most 10−5. These are far worse than what

RAINBOW achieves. It should be mentioned that such a superior perfor-

mance is expected from RAINBOW as its non-blind detector has access to

important side information, i.e., original IPDs, that are not available to blind

detectors.
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Figure 3.10: Experimental detection performance for different watermark
lengths.

3.5.1 Resource constraints

In this section we evaluate the required resources for RAINBOW in the case

of stepping stone configurations. Of course, the resources required will be

dependent on the number of low-rate connections, which in turn will depend

on the size of the organization. We estimate the parameters needed to detect

stepping stones in an organization such as the Coordinated Science Labo-

ratory (CSL) at the University of Illinois at Urbana–Champaign. CSL has

about 400 members, so we will assume as a worst-case that each member is

performing a low-rate connection from the outside. Using a C++ implemen-

tation of RAINBOW, running on a 1.6 GHz Linux server with 1 GB of RAM,

we can perform selective correlation (a more resource-intensive method that

is robust to packet deletions and insertions, discussed in the next section)

with 400 flows, using a watermark length of n = 5000, in 0.4µs. Table 3.8

lists the storage requirements for the IPD table for various choices of n.

Given the small size of the CPU and memory constraints, and the fact that

they scale linearly with the number of flows, it is easy to see that much larger

organizations can be supported using a commodity PC. For extremely large

organizations, stepping stone detection can be partitioned among routers

within sub-networks; e.g., in an organization such as the University of Illinois,

each department can run its own stepping stone detection.

The choice of n presents a tradeoff between detection accuracy, watermark

amplitude, and resource constraints. However, as we saw earlier, RAIN-

BOW is effective with only a few hundred packets, whereas other passive

schemes require many more packets [1,3,6–8], hence the resource constraints
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Table 3.8: Maximum memory usage of the RAINBOW watermarking
system for a medium-size network.

n parameter Memory (MB)
50 0.15
100 0.3
200 0.6
500 1.5
1000 3.1

of RAINBOW will be significantly lower.

3.6 Selective correlation

In the previous sections we analyzed the performance of the detector based

on normalized correlation. In our analysis and implementation, we assumed

that there is a one-to-one relation between packets of watermarked flow and

received flow; i.e., no packets are added to or removed from the flow between

watermark insertion and watermark detection. This is often not the case,

however, as real-world implementations introduce several causes for packets

removal and insertion. For example, retransmissions at the TCP layer will

introduce packets into one of the streams.4 Applications may also repacketize

flows while relaying them. Setup packets, such as TCP SYN/ACK packets

and packets sent to initialize an SSH connection will also show up in only

one of the two flows.

So, a practical watermark detector should be robust to packet addition

and removal, i.e., work efficiently despite them. Among existing work, only

recent schemes have considered repacketization and other natural pertur-

bations [10, 14], while other work has looked at the presence of adversarial

packet insertion and removal, or chaff [7, 8, 13]. Our normalized correlation

scheme analyzed thus far is fragile to packet addition and removal, but with

a modification we call Selective Correlation it shows promising performance

dealing with packet addition and removal carried out at a relatively high

rate.

Selective Correlation scheme: For selective correlation, we add amatch-

4Though proper parsing of the TCP packets can be used to detect such retransmissions
and remove them from consideration.
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Figure 3.11: Selective correlation performance for different ratio of
add/drop packets (r).

ing step to the detector, which will pre-process τu, τ r, and w, before they are

passed to the normalized correlation step. The aim of this step is to find and

remove packets that do not have a corresponding match in the other flow.

The main idea is to use sliding windows to match IPD values of one flow

by those of the other flow. For any IPD value of the received flow, τ ri ,

if the absolute difference from the corresponding IPD in database, τuj , is

smaller than ηM , packets are passed through as matched, along with the

corresponding watermark bit. If not, the matching block tries to find an IPD

in a [j − L, j + L] window of τu with the smallest IPD difference from τ ri

that is also smaller than ηM . If no match is found the packet is dropped. L

is the maximum expected change in number of packets and ηM depends on

jitter variance.

To account for the case where too many packets are not matched, the

detector also monitors the percentage of matched packets and declares the

received flow as unwatermarked if this number is smaller than a threshold

ηR.
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Implementation results: We implemented selective correlation scheme

over the same watermarked connections in PlanetLab, after adding and re-

moving different percentages of packets to the flows. We set ηM to be twice

the average standard deviation of jitter; i.e., ηM = 20ms, and L twice the

maximum number of packets expected to be added or removed. Figure 3.11

illustrates true selective correlation and false selective correlation along with

the percentage of packets matched in each case. If the percentage of matched

packets falls below some reasonable ηR, the detector decides that the flow is

not watermarked.

For the case that we do not have packet count changes (Figure 3.11a), se-

lective correlation outperforms the simple correlation scheme (Figure 3.10a).

This is because selective correlation removes IPDs with high jitter added. As

fraction of packets added and/or removed increases, mean of true selective

correlation decreases as shown in Figures 3.11b and 3.11c. This leads de-

tection performance to decrease, but even for 20 percent of packets changed

(10% added and 10% removed), detection can be performed efficiently.

3.7 Watermark invisibility

An efficient network flow watermarking scheme needs to be invisible to pre-

vent the watermark from being detected and possibly removed by an active

attacker. This also prevents the watermark from interfering with normal

users traffic. Because of embedding large amplitude watermarks, previous

flow watermarking schemes are not invisible; several interval-based water-

marking schemes [10, 13, 14] have shown to be subject to detection and re-

moval [31] (it should be mentioned that changing some watermarking pa-

rameters, e.g. interval length, in these schemes from the original values in

the corresponfing papers improves invisibility, but drastically ruins false de-

tection errors which make the schemes practically useless). Peng et al. [29]

show how the Kolmogrov–Smirnov test (K–S test) is efficient in detecting

large amplitude QIM watermarks applied to inter-packet delays. We use the

Kolmogorov–Smirnov test to discuss invisibility of RAINBOW flow water-

marking scheme.

The K-S test is used to determine whether two samples from a sequence

of two observations (or one observation and samples drawn from a references
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probability distribution function) belong to the same distribution by mea-

suring the maximum distance between empirical distribution functions (or

the empirical distribution function and the reference distribution function).

In case of a given reference distribution function F (x), the value of the K–S

test is:

sup
x

|Fn(x)− F (x)|,

where Fn(x) denotes the empirical distribution function from a sample of n

observations.

In the first experiment we ran the K–S test against the non-watermarked

and watermarked version of a SSH flow, transmitted in the same network

(with similar network delay). The average K–S distance between them (av-

eraged over 10 connections) is 0.0082 which results in a 98% confidence in

declaring them to be from the same distribution. In other words, watermark

presence on the flows would be transparent to normal users and (limited)

attackers.

In the second experiment we considered a more intelligent/powerful at-

tacker who sends a flow to the watermarker and receives it on another com-

promised host. Since the attacker has the original flow, he only needs to

discriminate between w + δi and δj , where δi and δj are different jitters

(measured over PlanetLab). We compared two scenarios: K–S test between

w + δ1 and δ2 and K–S test between δ3 and δ4. Figure 3.12 shows the differ-

ence between K–S statistics in the two different scenarios for different values

of γ. As γ decreases, the attacker loses his chance to distinguish between wa-

termarked and unwatermarked flows. Comparing with results of Section 3.3,

we see that there is a tradeoff between different watermarking attributes, i.e.,

invisibility and robustness. A similar K–S experiment on other flow water-

marking schemes returns much higher differences, which makes them suspect

to attacks [31].

Gianvecchio et al. use information theory tools to invent new metrics

for efficient detection of covert timing channels [50]. We use their entropy-

based tools, EN and CCE tests, on a number of watermarked SSH flows

(each 5000 packets) and their corresponding unwatermarked (but jittered)

flows. Table 3.9 shows the averaged test metrics for regular (unwatermarked)

and watermarked SSH flows. As results show, even for large values of γ,

watermarking does not change EN and CCE test results significantly (the
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Table 3.9: Entropy test results to evaluate invisibility of RAINBOW.

γ
EN test CCE test

Regular Watermarked Regular Watermarked
0.25 13.7191 13.7499 2.2475 2.2514
0.50 13.8061 13.7661 2.2476 2.2493
0.75 13.7651 13.7590 2.2471 2.2526
1.00 13.7711 13.7903 2.2484 2.2498
2.00 13.7545 13.6533 2.2496 2.2498

decision thresholds for EN and CCE tests are 21.20 and 2.17, respectively).

This shows that RAINBOW remains invisible in the face of these information-

theoretical tools.

3.8 Conclusions

We proposed a novel non-blind network flow watermarking scheme called

RAINBOW, for linking flows. RAINBOW combines some of the advantages

of passive traffic analysis with watermarking schemes. Like passive traffic

analysis, RAINBOW does not interfere with regular users by inserting large
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delays that are used in existing watermarking schemes; in fact, we show that

RAINBOW is invisible to detection by an attacker. Like other watermarking

schemes, RAINBOW achieves very low false error rates. In fact, we show,

both through analysis and by means of experiment, that the false error rates

of RAINBOW are orders of magnitude lower for short observation periods

than existing passive and active schemes. RAINBOW can also be made

robust to high rates of packet addition and removal by introducing selective

correlation, at the cost of somewhat increased observation period lengths. In

our future work, we intend to explore coding tools to increase the efficiency

of RAINBOW and explore the possibility of a blind or semi-blind watermark

scheme that remains invisible.
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CHAPTER 4

EFFICIENT BLIND WATERMARKING

Network flow watermarks have been proposed as an active alternative to per-

form traffic analysis more efficiently. Watermarks are more scalable (than the

traditional passive schemes [1–3, 6–8, 24, 25, 27]), as they require asymptoti-

cally less communication and computation; they also can operate on shorter

flows and provide lower error rates than passive analysis. Previous watermark

designs can be divided into two main categories: packet-based watermarks

that operate on individual delays between packets [9,54], and interval-based

watermarks that perform an operation on an entire interval [10,13,14]. The

former category is not robust to packet losses, reorderings, and insertions;

the latter are subject to a multi-flow attack [31] that can recover and remove

the watermark. In addition, these watermarks introduce large delays, making

them not suitable for practical applications. Ezzeddine and Moulin [54] study

timing stegocodes using queue-based encoders [55] and Shannon’s encoding

functions [56] for channels with causal side information at the transmitter.

More specifically, the authors model the communication network as a noise-

less channel with discrete-valued inter-packet delays and use a stegocoder

that perturbs inter-packet delays in order to embed stego messages. This

approach provides theoretical invisibility for the stego traffic as the utilized

encoders do not change the probabilistic distribution of inter-packet delays.

The authors also derive the achievable rates for the designed stegocodes and

compute the maximum achievable rates for certain network parameters. In

Chapter 3 we introduced RAINBOW, a packet-based watermark that pro-

vides strong invisibility by using a non-blind approach for watermark inser-

tion. RAINBOW [11] is a packet-based watermark that is robust to lost

or reordered packets; however, RAINBOW takes a non-blind detection ap-

proach to achieve high detection accuracy over short flows while using very

small delays. Our goal is to build a blind and therefore scalable watermark,

at the cost of potentially requiring longer watermarked flows.
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Table 4.1: Watermark scheme comparison

Scheme Invisible?
Robust Resilient

Scalable?
to losses? to MFA?

IPD-based watermark [9] no no yes yes
Interval-based watermarks

no yes no yes
[10, 13, 14]

RAINBOW [11] yes yes yes no
SWIRL yes yes yes yes

We introduce SWIRL, a Scalable Watermark that is Invisible and Resilient

to packet Losses. SWIRL is an interval-based watermark, but it uses a novel

approach to resist multi-flow attacks. The watermark pattern is chosen based

on the characteristics of the flow being marked; as a result, each flow is

marked with a different pattern. SWIRL watermarks introduce small delays

to the network flows, and thus are practical to deploy in real-world scenarios.

The small amount of distortion also makes SWIRL invisible to state-of-the-

art information-theoretic tools for covert channel detection [50]. Table 4.1

summarizes the properties of previous work.

We perform a mathematical analysis of the error rates of SWIRL, showing

that it can achieve very low false error rates on short flows. We validate our

analysis against simulations and an implementation running on the Planet-

Lab testbed [49]. We show experimentally that SWIRL is resistant to the

multi-flow attacks.

SWIRL provides the first practical approach to large scale traffic analysis;

it therefore extends the reach of traffic analysis attacks in both anonymous

systems and network attack attribution. We also consider a novel application

of watermarks to defend against a congestion attack in the Tor anonymizing

network [21]. We show that a watermark, normally a privacy-invasive tool

used to link anonymous flows, can actually help protect users’ privacy by

preventing attackers from creating routing loops. The properties of SWIRL

provide a practical defense where previous traffic analysis approaches would

not be appropriate.

The rest of this chapter is organized as follows. In Section 4.1 we describe

the design of the SWIRL watermarking scheme. We analyze SWIRL by mod-

eling the network flow behavior in Section 4.2 to provide false errors analysis

of the scheme. We evaluate SWIRL with simulations as well as implemen-
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tation in Section 4.3. We discuss watermark invisibility and resilience to

multi-flow attacks in Section 4.4. Finally, we conclude in Section 4.5. Also,

in Section 6.2 we provide a novel application of SWIRL to Tor congestion

attacks.

4.1 SWIRL watermarking scheme

SWIRL is an interval-based watermark; therefore, it considers the flow as

a collection of intervals of length T , with an initial offset o; i.e., the ith

interval includes packets during time period [o+ iT, o+ (i+ 1)T ). We first

describe our approach to flow-dependent marking and then describe the over-

all SWIRL scheme.

4.1.1 Flow-dependent marking

To perform flow-dependent marking, we select two intervals: a base and a

mark interval. The positions of these intervals will be fixed for all flows, but

is otherwise arbitrary, with the restriction that the base interval must come

earlier. During watermarking, we will use the base interval to decide which

pattern to insert on the mark interval; the detector will correspondingly look

for the pattern it computes using its version of the base interval.

The property of the base interval that we use is the interval centroid, which

is the average distance of the packets from the start of the interval. I.e., if

the interval i contains packets arriving at times t1, . . . , tn, the centroid is:

C =
1

n

n
∑

j=1

(tj − (o+ iT )) (4.1)

To decide on the pattern to be used on the mark interval, we quantize

the centroid to a symbol s in the range [0,m) for some m ∈ Z+. Since

the range of the centroid is [0, T ), a simple approach would be to set s =

⌊mC/T ⌋. However, this would result in a non-uniform distribution for s,

since a centroid is more likely to be in the center than at the interval. The

actual distribution of centroids is heavily dependent on the rate of the flow as

well as the distribution of packet delays. In order to approximate a uniform
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distribution for s, we take the approach of using finer partitioning. Namely,

we set:

s = ⌊qmC/T ⌋ mod m (4.2)

for q > 1. The quantization multiplier q helps smooth out the distribution:

a larger value of q makes the value of s more sensitive to the value of C,

i.e., a smaller change in C is needed for s to change its value. This effect

is also shown in the invisibility analysis of Section 4.4.3. To see this effect

better, note that C ∈ [0 T ], based on the definition of C in (4.1). The

way (4.2) works is that for any q, it divides the rage of C (i.e., [0 T ]) into

⌈qm⌉ subsequent, non-overlapping subintervals, with equal length ⌊T/(mq)⌋
(except for the very last subinterval. Let us give a number in {1, .., ⌈qm⌉}
to each subintervals based on its order of appearance. The value of s = k

is returned by (4.2) if C appears in any of the intervals with numbers αk,

where α ∈ N. We can see that for q = 1 there is only a large subinterval

that results in s = k; however, for larger q, the values of s = k result from

a number of smaller subintervals in the range [0 T ]. As a result, for larger

q the value of each symbol comes from different parts of C’s range, which

smoothes out the distribution of s.

The value s is then used to transform the mark interval. We first subdi-

vide the mark interval into r subintervals of length T/r each. The subinter-

vals are then further subdivided into m slots each, with the slots numbered

0, . . . ,m−1, see Figure 4.1. We select a slot in each subinterval i by applying

a permutation pi(i) to s; each packet is then delayed such that it falls within a

selected slot, possibly moving into the next subinterval. (Any packets at the

end of the interval past the last selected slot are not delayed.) This produces

a distinct pattern in the mark interval; see Figure 4.2 for an illustration. Note

that we must use distinct permutation for each subinterval; otherwise we risk

creating a periodic pattern that can easily be observed. The permutations

π(0), . . . , π(r−1) are part of the secret watermark key.

4.1.2 Detection

To detect the watermark presence, the detector analyzes packets in the base

interval to compute the centroid Ĉ. It then derives ŝ from Ĉ using (4.2).

It then counts the fraction of packets in the mark interval that are in the
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Interval (T)

Subinterval (T/r)

Slot

(T/mr)

Slot # 0 1 2 0 1 2 0 1 2 0 1 2

Figure 4.1: Slot numbering (m = 3, r = 4)

(a) Original flow

π
(1)(s) = 0π

(0)(s) = 1 π
(2)(s) = 1 π

(3)(s) = 0

(b) Watermarked flow

Figure 4.2: Delaying packets to insert a watermark (m = 3, r = 4).

correct slot (π(i)(ŝ)). If this ratio, ρ, is greater than a packet threshold τ ,

then the watermark is considered to be detected successfully.

Note that the centroid of the interval may have shifted due to network

noise. We therefore consider an alternate quantization of it, ŝ′, to be the

next nearest quantization to Ĉ:

ŝ′ =







⌈mqĈ/T ⌉ mod m if {mqĈ/T} ≥ 0.5

⌊mqĈ/T ⌋ − 1 mod m otherwise
(4.3)
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Table 4.2: Watermark parameters

System parameters
r Number of subintervals

m
Number of slots per subinter-
val

τ Packet detection threshold
η Mark detection threshold

n
Number of base and mark in-
tervals

T Interval length
q Quantization multiplier

Secret Parameters
o Initial offset

bj
Location of base intervals,
j = 0, . . . , n− 1

mj
Location of mark intervals,
j = 0, . . . , n− 1

π
(i)
j ∈ Sm

Permutations for each mark
subinterval, j = 0, . . . , n −
1, i = 0, . . . , r

where {x} = x − ⌊x⌋ denotes the fractional part of x. We then repeat the

detection using ŝ′ to compute ρ′. If ρ′ > τ , the watermark is also considered

to be detected.

4.1.3 SWIRL design

A single watermark instance is likely to produce too high a rate of false er-

rors. To improve detection, SWIRL uses n base and mark interval pairs. Let

d be the number of intervals where the watermark was detected; then the

entire watermark is considered to be detected if d > η for some threshold

η. The full list of parameters for SWIRL is summarized in Table 4.2. These

parameters must be shared between the watermarker and detector. The sys-

tem parameters are chosen to achieve a particular performance based on the

properties of the original flows and the noisy channel. The secret parameters

are chosen randomly and can be thought of as a secret key shared between

the watermarker and the detector. In Section 4.4.1 we analyze the security

of the SWIRL watermark by deriving the entropy of its watermark key.
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4.2 System analysis

4.2.1 False-positive errors

The false-positive error rate is the probability of detecting a non-watermarked

flow as watermarked. To calculate this, first consider the probability that a

single packet in some mark interval is in the “correct” slot. If we assume a

Poisson distribution for the flows, it is easy to see that:

FPp =
1

m
(4.4)

Of course, actual flows might have different distributions; however, unless

the traffic patterns in a flow are correlated with the distances between slots

(randomized by π
(i)
j ), this will remain a good approximation.

Given a mark interval with P packets, the number of packets in “correct”

slots will follow a Binomial distribution of P trials with probability of suc-

cess PFp, B(P, FPp). The cumulative distribution function of a Binomial

distribution with v trials and success probability h, B(v, h) is given by the

regularized incomplete beta function (which is the cumulative distribution

function of the Beta distribution [57]), I(·), as:

P (X ≤ k) = I1−h(v − k, k + 1) (4.5)

It follows that the odds of getting at least τ fraction of packets in the correct

slots can be computed as:

I1/m(⌈τP ⌉, 1 + P − ⌈τP ⌉) (4.6)

Since we perform the detection for both ŝ and ŝ′, the probability of an interval

with P packets being considered detected is:

FP P
I ≤ 2I1/m(⌈τP ⌉, 1 + P − ⌈τP ⌉) (4.7)

Modeling the flow as a Poisson process of rate λ, the number of packets in an

interval of length T is distributed according to a Poisson distribution with

parameter λT . Therefore, the overall probability of a false positive detection
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in an interval is:

FPI = EλT
P [FP P

I ] =
∞
∑

P=1

e−λT (λT )P

P !
FP P

I (4.8)

where EλT
P computes the expected value with respect to P according to a

Poisson distribution with parameter λT . Finally, the total number of de-

tected intervals will once again follow a Binomial distribution B(n, FPI),

thus the overall false-positive rate is:

FP ≤ IFPI
(η, 1 + n− η) (4.9)

4.2.2 False-negative errors

Now we consider the false-negative errors, i.e., the probability that a water-

marked flow is considered not to be watermarked by the detector.

Again, we start by considering a single mark interval. The probability that

it is considered not detected is:

FNI ≤ FNs + (1− FNs)FNpr (4.10)

where FNs represents the probability that neither ŝ nor ŝ′ correspond to the

original quantization s, and FNp represents the probability that more than

(1-τ) fraction of packets have shifted out of the “correct” slot, s.

Note that for the quantization to be misdetected, the centroid must shift

by at least T/(2mq); thus:

FNs ≤ P

(

∣

∣

∣
Ĉ − C

∣

∣

∣
>

T

2mq

)

(4.11)

Note that, given Q packets in the base interval, with delay of δj for packet

j, we can calculate:

Ĉ − C =
1

Q

Q
∑

j=1

δj (4.12)

We adopt a Gaussian approximation for the distribution of packet delays,

as suggested in previous work [29]. In fact, the rationale behind using this

model is the following: the delay applied to each packet between the wa-
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termarker and the detector is the accumulation of delays applied to that

packet by several network entities (e.g., routers, firewalls). This allows us to

model packet delays with a Gaussian distribution based on the Central Limit

Theorem [48], which states that the summation a large number of random

variables will have an approximately normal distribution. Using synchro-

nization described in Section 4.3.4, we can ensure that the distribution has

mean 0. We thus model delay as i.i.d. Gaussian: δj ∼ N(0, σ2). Then:

Ĉ − C ∼ N(0, σ2/Q) (4.13)

FNs ≤ P

(

|Ĉ − C| > T

2mq

)

= EλT
Q

[

2

(

1− Φ0,1

(

T
√
Q

2mq · σ

))] (4.14)

where Φ0,1(·) is the CDF of N(0, 1), and EλT
Q averages with respect to the

Poisson distributed variable Q. Note that the Central Limit Theorem is not

suitable for approximating the tail of the summation distribution, however in

our analysis we have used the middle part of the approximated distribution:

in (4.14) T
2mq

is not far away from the center of the distribution. More

specifically, for the parameters used in this paper (Table 4.3) T
2mq

is between 2

to 4 times the standard deviation of network delay, depending on the network

conditions. Also, note that decreasing T
2mq

(i.e., decreasing T or increasing

m and q) makes the approximation more accurate.

To compute FNp, we first need to consider the probability that each in-

dividual packet would have shifted out of the assigned slot. Suppose that

the packet pj was distance x from the center of the slot (−T/(2rm) ≤ x ≤
T/(2rm)). Given the Gaussian distribution of δj, the probability of the shift

is:

P (pj shifted|x) = 1− Φ0,1

(

(T/2rm)− x

σ

)

+ Φ0,1

(

−(T/2rm) + x

σ

)

(4.15)

Given that x will have a uniform distribution within the slot, we can integrate

to find:

FNpj =
rm

T

∫ T/(2rm)

x=−T/(2rm)

P (pj shifted|x)dx (4.16)
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The number of packets that are misdetected, out of P packets in the mark

interval, is given by the Binomial distribution B(P, FNpj). Correspondingly:

FNp = EλT
P

[

IFPpj
(1 + P − ⌈τP ⌉, ⌈τP ⌉)

]

(4.17)

Using equations (4.14) and (4.17), we can compute FNI in (4.10) and

correspondingly:

FN = IFNI
(n− η + 1, η) (4.18)

4.3 Evaluation

We evaluate SWIRL watermarking scheme for the application of stepping

stone detection. Our evaluation is also valid for Tor congestion attack pre-

vention application, discussed in Section 6.2. For the application of linking

flows in anonymous networks, a new set of parameters would need to be

derived following the methodology described in this section.

4.3.1 Parameter choices

Table 4.3 shows the tradeoffs that result from choosing different parameters

of the watermarking scheme, along with the chosen values for our implemen-

tation. The choice of q represents a tradeoff; on one hand, larger q increases

the false-negative rate by increasing FNs of (4.14). On the other hand,

smaller q may result in an uneven distribution of s, resulting in a multi-flow

attack (MFA). We will defer a full examination of this tradeoff until our MFA

analysis in Section 4.4.3; for the subsequent simulations and experiments, we

set q = 2.5.

Likewise, r represents a tradeoff between false negatives and the amount

of delay. The maximum inserted delay is bounded by T/r(2 − 2/m). We

experiment with different choices of r in the design.

In our experiments, we pick n = 32, i.e., 32 base and mark intervals are

selected. This means that the watermark sequence must be at least 64T long;

however, this ensures a low overall rate of errors.

The parameter T should be chosen based on the rate of the flow, since the

false positive rate is proportional to Tλ. In our experiments, we use flows
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Table 4.3: Tradeoffs in selecting watermark system parameters

Param.
Tradeoffs Selected

Increasing improves: Decreasing improves: value
r Delay, invisibility False-negative errors 20
m False positives False negatives 5
τ False positives False negatives 0.5
η False positives False negatives 12
n Detection performance (FP,FN) Detection time 32
T False-positive errors Detection time 2 sec
q MFA invisibility False-negative errors 2.5

that have a rate of 4–7 packets per second (pps), thus we set T to be 2s. For

flows with rates lower than 3pps, we suggest doubling the T parameter to

compensate for the smaller number of packets in each interval.

Both τ and η can be used to control the rates of false positive and false

negative errors. For a fixed η, increasing the τ threshold improves the false

positives while it worsens the false negatives. Likewise, having the η threshold

fixed increasing the τ threshold improves the false positives and worsens the

false negatives.

Note that given a choice of η, it is possible to find the value of τ that

results in an equal rate of false-positive and false-negative errors; this occurs

at τ = 0.5 for our parameter setting. The corresponding error rate is called

the cross-over error rate (COER); in this case, it is approximately 10−7. We

can use this to optimize the joint choice of τ and η by computing the COER

that can be achieved at any given choice of η. Figure 4.3 shows this for flows

with average λ of 4.4pps. As can be seen, η = 12 minimizes the COER while

the corresponding value of τ where the COER is achieved is approximately

0.5. Note that some applications will benefit from a different optimization

target; e.g., lowest false-negative rate given a false-positive rate of at least

10−6. In this case, the analytical1 false error rates can be used to find the

optimal values of η and τ .

We also compute the η threshold that achieves the minimal COER for

different flow rates. Figure 4.4a shows the results; the corresponding COER

is shown in Figure 4.4b.2 This shows that, for optimal detection, η should

1By “analytical” we mean the estimates obtained from the analysis presented in Sec-
tion 4.2.

2The non-monotonic behavior in the graph corresponds to changing the value of T for
flows below 3pps.
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Figure 4.3: Cross-Over Error Rate (COER) for different detection
thresholds η (λ = 4.4pps).

be chosen based on the flow rate. The analytical computations, however,

are based on approximate models of traffic and delays, and compute upper

bounds of error rates. For simplicity of implementation, one might choose

to use a single detection threshold regardless of the flow rate. Figure 4.5

shows the false positive and false negative error rates for a detector using

a fixed η = 12, with the corresponding optimal η COER rates shown for

comparison. As can be seen, for flows with smaller rates the fixed detection

threshold improves the false negative errors rates at the price of increasing

the false positive errors; this is opposite for the higher rate flows, but offers

reasonable error performance overall.

4.3.2 Simulations

We simulated the SWIRL watermarking system in Matlab. A watermark

key is generated using the random number generators. We use n = 32,

and use the system design parameters described in the previous section

(see Table 4.3). We use traces collected by the CAIDA project from its

equinix-chicago monitor—an OC192 link of a Tier 1 ISP—in January

2009 [58]. We selected SSH (port 22) flows out of the traces, since SSH

is frequently used with interactive stepping stones; we used flows that were

at least 2nT = 128 s long, for a total of 304 flows. In every run of the simula-

tion, an SSH flow is randomly selected from the database and is watermarked

using the designated watermarking key. Since the analysis in Section 4.2 pre-
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dicts that error rates are dependent on the rate of the flow, we chose flows

that have similar rates for our simulations (9 pps < λ < 10 pps).

To simulate the effect of network delays, we captured traces of round-

trip delays between pairs of randomly chosen PlanetLab nodes [49]; each

trace captures the jitter properties of the relevant Internet path.3 The traces

have standard deviations ranging from σ = 6.2ms to σ = 12ms. For every

run of the simulations a network delay sequence is selected at random and

applied to the watermarked flow. Finally, the watermarked flow affected by

network delay is evaluated by the simulated watermark detector to check

for the shared watermark. We run this experiment 1000 times, each time

with the same watermark key but random selection of network flows and

network delays. Figure 4.6b shows the histogram of the number of watermark

intervals (out of n = 32) that the detector successfully detects by evaluating

a watermarked flow, namely true detected intervals. We compare this to the

expected errors as predicted by the analysis in Section 4.2. The simulations

show better than predicted error behavior due to the use of upper bounds in

the analysis.

To consider false-positive errors, we perform the same simulations to eval-

uate the number of watermark intervals detected when the detector inspects

non-watermarked flows. Similar to the previous experiment, we randomly

select network flows from the database and apply a network delay trace to

the selected flows using the same scenario. We then pass the flows through

the watermark detector to check for the watermarked intervals. This exper-

iment is also run for 1000 times. Figure 4.6a illustrates the experimental

and analytical histograms of false detected intervals, namely, the number of

watermark intervals detected by the SWIRL detector from non-watermarked

flows. Again, the simulations result in fewer errors than predicted by the up-

per bounds in the analysis. Comparing the two figures, it is easy to see that

there is a strong separation between the two distributions; thus we should

be able to achieve a low false error rate by choosing the detection threshold

appropriately. Using a threshold of η = 12, we observed no false-positive or

false-negative errors in our simulations.

3We approximate the one-way jitter by the round-trip properties.
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(a) False detected intervals

(b) True detected intervals

Figure 4.6: Histogram of watermark intervals detected by the simulated
SWIRL detector for T

r
= 100 (1000 random runs), as well as expected

histogram values from the analysis.

4.3.3 Implementation

We implemented the SWIRL watermarking scheme over the PlanetLab in-

frastructure to evaluate its performance. We used the same data set of SSH

flows from the CAIDA traces, but we explored a wide range of flow rates.

In each experiment, the watermarker reads the timings of packets in a flow

read from the trace and then applies the watermark to them to generate a se-

quence of packets. These packets are then sent over the wide area to another

PlanetLab node running the detector. Both the watermarker and detector

are written in C++. As in simulations, we use the system parameters from

Table 4.3. We also generate the watermarking key randomly as described be-

fore. To obtain false-positive rates, we fed flow timings from traces directly
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Table 4.4: Watermark detection results for the PlanetLab experiments.

Group r
True detected False detected

Flow rate λ range T intervals intervals
(packet/sec) (sec) Mean Range Mean Range

A 6–10
10 2 31.6 30–32 3.5 0–6
20 2 30.56 28–32 2.6 0–5
30 2 31.4 29–32 2.8 2–4

B 3–6
10 2 30.89 29–32 2.87 1–5
20 2 31.25 27–32 2.87 2–4
30 2 29.4 24-32 2.87 1–4

C 0–3
10 4 25.25 15–31 1.4 0–2
20 4 22.75 14–30 1.4 0–2
30 4 20.66 14-27 1.1 0–3

into the detector.

Table 4.4 summarizes the PlanetLab experiment results. Since the analy-

sis suggests different detection performance for different flow rates, the flows

are selected such that their rates lie in one of the three ranges shown in Ta-

ble 4.4; we used about 100 flows per group. Since the detection performance

drastically improves with flow rate we skip data rates higher than 10 pps in

our experiments. Also, in order to illustrate the effect of r parameter on the

system performance each group of flows are watermarked with three different

values of r. As the results show, in all cases a choice of η = 12 results in zero

errors.

We notice that detection performance improves for higher rate flows, e.g.,

group A results in the best detection results. For a given group of flows,

increasing r degrades detection performance, but improves watermark delay

and invisibility as discussed in Section 4.4. Note that, as mentioned before,

for the lower-rate flows, SWIRL detector uses a higher value for the T pa-

rameter, in order to compensate for the smaller number of packets in each

interval. One can show that increasing T significantly improves the detection

performance at the expense of longer watermark detection times.

4.3.4 Detector synchronization

As shown in Table 4.2, the offset o is shared between the watermarker and the

detector. In fact, this is not necessary, as the scheme is self-synchronizing:
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Figure 4.7: Synchronization at watermark detection.

the detector can perform detection using multiple offset value and return the

best result. For example, Figure 4.7 shows a detector trying offset values in

the range [0, T ] using steps of T/100. This approach allows the detector to

use a randomized offset; this can serve as an additional countermeasure for

the multi-flow attack, as discussed in [31]. It also ensures that two flows that

exhibit similar behavior (e.g., repeated downloads of the same web page) will

nevertheless be marked with different patterns.

4.4 Watermark invisibility

In this section, we start by showing that the very high entropy of the SWIRL

watermark key makes is infeasible for an attacker to guess the watermark

key. This is important to show, since an attacker who has access to the

watermark key (e.g., through guessing the key) can easily verify if a flow

has been watermarked. Then, we show that without having access to the

watermark key an attacker is unable to detect the SWIRL watermark from

a single watermark flow, as well as from multiple watermarked flows.

4.4.1 Watermark key entropy

To maintain invisibility, the watermark key must remain secret. We therefore

estimate the size of the key space for the secret parameters used in SWIRL,

92



1 intervals = range(2*n) # 0,...,2n-1

2 for i in range(n):

3 b[i] = intervals[0]

4 intervals.remove(b[i])

5 # pick m[i] uniformly at random

6 # out of remaining intervals

7 m[i] = random.choice(intervals)

8 intervals.remove(m[i])

Figure 4.8: Algorithm to generate interval assignments (shown in Python).

as listed in Table 4.2.

First, we consider the space of permutations π
(i)
j . Each permutation is

a random member of Sm, and each permutation is chosen independently.

Therefore, the total space of permutations is (m!)rn. Next, we must consider

the space of parameters bj and mj. Note that it is possible to create equiva-

lent keys by renumbering the intervals, therefore, we must count the number

of non-equivalent interval assignments; we do so by defining a canonical or-

dering scheme such that bi < bj for any i < j.

We can consider a recursive algorithm for generating a random assignment

of 2n intervals into base–mark pairs, shown in Figure 4.8. It is easy to

see that this algorithm generates every assignment with canonical ordering

exactly once. The only random choice is on line 7 of the algorithm; at

iteration i(= 0, . . . , n−1), there are 2(n− i)−1 choices available. Therefore,

the space of choices is:

(2n− 1)(2n− 3) . . . (3)(1) =
(2n)!

2n(n!)
(4.19)

For a conservative analysis, we can assume that o = 0 and that the first 2n

intervals are chosen for watermarking; this results in the minimal required

watermark duration of 2nT (= 128 s using the parameters in Table 4.3). We

can thus estimate the entropy of the key choice as:

log2
(m!)rn((2n)!)

2(n!)
= rn log2(m!) + log2(2n!) − log2(n!) − n (4.20)

Using the parameters from Table 4.3, the key entropy is over 4000 bits. We

conjecture that the key equivocation is very high too and thus it is completely
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Table 4.5: Average watermark delay (per packet) for different values of T/r
along with the detection performance (σ = 10 msec, results averaged over
500 runs).

Mean true Mean false

r
T/r Average delay Maximum delay intervals intervals

(msec) (msec) (msec) (out of n=32) (out of n=32)
10 200 53.77 200 29.56 2.67
20 100 17.91 100 26.3 2.70
30 66.7 11.84 66.67 23.40 2.43
40 50 9.05 50 20.26 2.45

infeasible for an attacker to guess the secret key.

4.4.2 Single flow invisibility

In this section we demonstrate the infeasibility of distinguishing between

SWIRL watermarked flows and benign flows by an attacker who does not

have access to the watermark key.

Delay. As mentioned in Chapter 1, a flow watermark is required to be in-

visible. The magnitude of delays makes a scheme easier or harder to identify.

The maximum delay inserted by SWIRL is:

Dmax =
T

r

(

2− 2

m

)

(4.21)

Table 4.5 shows the average watermark delay over the packets for different

values of the redundancy parameter r, with T fixed at 2s. As evident from

(4.17) and (4.14), lower r will reduce the number of false negatives at the

cost of higher delay.

Information-theoretic tests. We also test the invisibility of the SWIRL

using the information-theoretic tools designed by Gianvecchio et al. [50] for

the detection of covert timing channels. We use two entropy tests of EN

and CCE and apply them over a database of SSH flows, collected from real

traces at the North Carolina State University (the average rate of the flows

is 4.4pps). The tests are evaluated for two classes of flows: a) regular non-

watermarked flows, and, b) the same flows watermarked with SWIRL (each
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Figure 4.9: The ROC curves for the EN and CCE tests.

flow is 2000 packets long), with 10 tests per class. We then try different

decision thresholds to decide whether a test metric corresponds to a water-

marked flow. Figure 4.9 draws the ROC curves for the EN and CCE test

metric, where the true positive is the odds of detecting a watermarked flow

and the false positive is the odds of declaring a non-watermarked flow to

be watermarked. As can be seen, the test metrics are not able to provide

a confident separation between non-watermarked and SWIRL watermarked

flows.

4.4.3 Multiple flow invisibility

Kiyavash et al. [31] show how multi-flow attacks (MFA) can be applied to

compromise invisibility of interval-based flow watermarking schemes [10, 13,

14]. The main idea of the MFA attack is to collect a number of network flows

watermarked by an interval-based watermarking scheme, using the same wa-

termark key, and aggregate these flows to extract watermarking parameters

and the watermark key. More specifically, the MFA attacker evaluates the

aggregate histogram of a number of watermarked flows in order to find the

watermark patterns, e.g., empty intervals, that are similar for all of the wa-

termarked flows. The MFA attack has been shown to be highly effective in

compromising previous interval-based watermarking schemes [10,13,14]. We

analyze the resilience of SWIRL to multi-flow attacks.

The flow-dependent approach taken by SWIRL is designed to resist multi-

flow attacks. In particular, since different flows have different watermarks,

an aggregated histogram should not exhibit any repeated patterns. However,
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Figure 4.10: Cumulative histogram of 10 flows, non-watermarked and
watermarked with different values of q.

if the distribution of quantized values s is not uniform, an MFA attack may

be able to identify the watermark. For example, if all watermarked flows use

the same value of s for some interval, this will have a pronounced effect on

the histogram.

The parameter q helps smooth out the distribution. In Figure 4.10, we

plot the histogram of 10 non-watermarked flows, and 10 watermarked flows,

using different choices for q. With q = 5, the variance of the watermarked

flows is similar to the unwatermarked case. However, with q = 1.25, the

histogram exhibits a clear pattern, since the number of quantification steps

is too small and thus the distribution of s is heavily skewed.

In this scenario, we watermarked all flows using the same offset. By choos-

ing randomized offset, we can destroy the synchronization between flows:

any shift of at least T/(mr) will result in completely unaligned flows. As

discussed by Kiyavash et al. [31], an adversary could still examine different

potential alignments; however, when parameters from Table 4.3 are used, it

would be necessary to examine 640k alignments to find the correct alignment

of k flows; this is both computationally expensive and is also deleterious to

the false-positive detection rate for an MFA attack.

Note that, although increasing the q parameter improves resilience to the

multi-flow attack, it also increases the false-negative rate. We demonstrate

this in Table 4.6 by plotting the number of intervals counted as detected

among a sample of both watermarked and non-watermarked flows. We note

that the true detection rate falls with increasing q, whereas the false positives

remain unaffected (for a given threshold η); this is consistent with the analysis

in Section 4.2, where q factors into the false-negative but not the false-positive
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Table 4.6: Detected intervals for varying values of q (λ = 4.1pps, 1000 runs).

q
Watermarked Non-watermarked
Mean Range Mean Range

5 29.16 21–32 1.71 0–7
2.5 29.44 23–32 1.69 0–6
1.6 29.61 22–32 1.82 0–8
1.25 29.78 23–32 1.77 0–7

calculations.

Based on these results and the effect seen in Figure 4.10, we pick q = 2.5

to balance detection performance and susceptibility to the MFA attack.

4.4.4 Active attacks

An adversary may use a more active approach to detecting and removing

watermarks; e.g., by sending packets with embedded timestamps [29] to de-

tect extra delays, or by introducing extra delays at the stepping stone. It

is easy to see that, in the limit, the attacker can defeat any traffic analy-

sis scheme by generating an independent packet schedule for a relayed flow,

using dummy packets and introducing potentially large delays [8]. Previous

work on stepping stone detection has considered limiting an attacker by a

maximum tolerable delay [7]; however, we expect that a normal user would

be less tolerant of added delays than a determined attacker, and a blind wa-

termarking scheme that introduces delays that are much shorter than those

it tolerates remains elusive and is an apt area for future research. We note

that SWIRL will work well at detecting stepping stones and other relays over

which the attacker does not have full control, as is the case in the application

described in Section 6.2.

4.5 Conclusions

We proposed SWIRL, a novel flow-dependent watermarking scheme for net-

work flows. SWIRL uses an interval-based structure in order to provide ro-

bustness to network perturbations, while evading multi-flow attacks by mak-

ing the watermark dependent on the containing flow. SWIRL performs blind
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watermarking, reducing the communication overhead and computation over-

head compared to passive traffic analysis or non-blind watermarking schemes.

We show through analysis, simulation, and experiments that SWIRL is able

to link related flows using flow lengths as short as 2 minutes, while providing

error rates on the order of 10−6 or less. SWIRL introduces short delays on

average and it is undetectable using existing covert channel detection tools.

We also show in Section 6.2 that SWIRL can be used to address a congestion

attack on the Tor network.
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CHAPTER 5

CODING-BASED FLOW

FINGERPRINTING

The main objective of network flow watermarking is to identify flows that

have been tagged (by a watermark) at a certain point in the network. In

simpler words, for any observed network flow a watermark detector seeks the

answer to the following question: Has this flow been tagged by any of the

watermarking agents? However, in some scenarios it does not suffice to just

check whether a flow has been tagged (i.e., watermarked), but additional

information needs to be checked about the observed flow. We call the mes-

sage containing such additional information a flow fingerprint and the act of

inserting fingerprints inside a network flow as flow fingerprinting. Flow fin-

gerprints can provides information about the origin of the observed flow, its

relation to other observed flows, the identity of its tagger, and other informa-

tion depending on the specific application. Example questions targeted by

flow fingerprinting are: Which specific fingerprinter (out of all fingerprint-

ers) tagged this flow? Which specific flow is related to the observed flow?

In which part of the network was this flow tagged? and so on. Flow water-

marking has been well studied in the past decade and several watermarking

schemes have been proposed and analysed by researchers [10, 11, 13, 14, 42].

However, the importance of flow fingerprinting has been overlooked. In fact,

in some applications, the use of flow watermarks is insufficient to achieve the

objectives of traffic analysis, as more information needs to be inferred from

an intercepted flow rather than the fact that the flow has been tagged. For

instance, consider a case where attackers aim to break anonymity by find-

ing the sender/receiver relations among the users of an anonymity network.

Flow watermarking has long been considered as a tool to conduct this attack

by having the attacker insert a watermark on flows entering the anonymous

network and to check for the same watermark on flows leaving the anonymity

network. Unless the attack is targeted on a specific pair of sender and re-

ceiver, the attackers need to be able to distinguish between the tags that
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have been placed on the flows of different users (in order to be able to link

a receiver to the right sender); the tags tailored for different flows are flow

fingerprints.

In this chapter, we study fingerprinting of network flows by modifying

flow patterns; to the best of our knowledge we are the first to delve into

this area.1 Our fingerprinting approach is similar to flow watermarking in

that fingerprinting is performed by making slight modifications to the pat-

terns of network flows. This pattern modification embeds a message inside

the network flow, the flow fingerprint, that is later extracted from the flow

after passing through a possibly noisy network. Flow fingerprinting embeds

various tags, i.e., fingerprints, on different flows, so that each fingerprinted

flow contains a different message. This is in contrast to flow watermarking,

where all watermarked flows contain the same message of “this flow has been

tagged.” From an information theoretical point of view, a flow watermarking

system embeds a single bit of information on each network flow, whereas a

fingerprinting system embeds multiple bits of information on each flow. As

a result, extracting fingerprints from an observed flow is a more challenging

problem as compared to watermark detection. It should be noted that several

flow watermarking systems work by tagging flows with a watermark that con-

tains a sequence of binary numbers, called “watermark bits” [10, 11, 42, 59].

Even though these schemes provide mechanisms for detect ing flows that con-

tain a particular sequence of watermark bits they are not able to extract

these bits from a target flow reliably, so we do not consider them as flow

fingerprinting schemes. For instance, Ling et al. [59] propose a Tor-specific

flow watermark that works by embedding a secret watermark sequence on

a Tor flow through making modifications to cell [60] counters. More specif-

ically, a compromised/malicious Tor relay manipulates the number of Tor

cells being sent together on a Tor circuit so that each single cell denotes a

“0” bit and each triple cell denotes a “1” bit. As network congestion and

network delay can separate and merge cells in a circuit, the authors in [59]

use a “recovery mechanism” to detect the distorted bits for a given (i.e.,

fixed) sequence of watermark bits. This mechanism, however, is not able

to reliably extract watermark bits from a candidate flow, hence it can not

1By fingerprinting we mean fingerprinting in network pattern, which is suitable for
encrypted traffic. Payload fingerprinting of non-encrypted flows have been studied before
in the literature.
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distinguish between different watermark sequences. For instance, consider a

Tor flow watermarked by [59] with a watermark sequence of “010”. If the

triple cells containing the “1” bit are split due to the network, a watermark

detector will return a positive correlation against both “010” and “00000”

watermark sequences (for “010” the detector would assume that the flow has

been perturbed, and for “00000” it would assume a perturbation-free connec-

tion). [59] does not study the extent of such cross-watermarks false positive

errors (it only analyzes false positives against non-watermarked flows).

A fingerprinting system consists of two main entities: one (or more) finger-

printer(s) and one (or more) fingerprint extractor(s). A fingerprinter slightly

modifies the pattern of an observed network flow, such that it carries a finger-

print message, e.g., a sequence of information bits. A fingerprint extractor

tries to extract the embedded fingerprint message from the flow after it has

passed through a noisy network. A fingerprint should be invisible, meaning

that an entity not part of the fingerprinting system should not be able to dis-

tinguish between a fingerprinted flow and a regular flow. Also, fingerprints

should be robust to noisy networks, meaning that a fingerprint should not

vanish even after its carrying flow has passed through a low-latency com-

munication network that delays packets. To ensure robustness, the patterns

used for fingerprinting should keep the fingerprint even after passing through

low-latency communication networks and after (re-)encryption of packet pay-

loads. The possible patterns for such intent are packet timings, flow rate,

number of packets in specified intervals, and so on. In this chapter, we design

fingerprinting systems that are based on modifying timing patterns of flows.

In this chapter, we design a class of flow fingerprinting schemes, called

Fancy, that use coding algorithms in their design. Fancy uses a topology

similar to the RAINBOW flow watermarking system (Chapter 3), and lever-

ages communication codes to be able to insert multiple bits of information on

each flow reliably. Several flow watermarks have used simple coding schemes,

such as spread-spectrum [14] and repetition codes [10,13], to improve detec-

tion performance of flow watermarks; however, flow fingerprinting has been

largely underexplored. We investigate the use of several powerful coding

schemes in the design of our Fancy flow fingerprint. In particular, we de-

sign and evaluate Fancy using codes from three main classes of linear error-

correcting codes, i.e., block codes, convolutional codes, and turbo codes [61].

We simulate Fancy and evaluate its fingerprinting performance using different
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Figure 5.1: The main model of Fancy fingerprinting system.

coding algorithms.

The rest of this chapter is organized as follows: in Section 5.1 we describe

the design of our proposed flow fingerprinting scheme, Fancy. We provide

simulation results of Fancy in Section 5.2. Finally, the chapter is concluded

in Section 5.3.

5.1 Fancy fingerprinting scheme

In this section, we detail the design of our flow fingerprinting system, Fancy.

The high-level design of Fancy fingerprinting system is similar to that of

RAINBOW flow watermarking system (Chapter 3), but it differs in the way

embedded messages are generated and shaped, as discussed in the following.

A flow fingerprinting system should consist of two main elements: a finger-

printer that embeds fingerprint messages inside intercepted flows by slightly

modifying their timing patterns, and a fingerprint extractor (extractor in

short) that analyzes the timing pattern of intercepted flows, trying to extract

fingerprint messages inserted by the fingerprinters. Similar to the RAINBOW

watermark, our Fancy fingerprinting scheme is non-blind : the fingerprinter

communicates with fingerprint extractors some information about the flows

being fingerprinted. To perform this communication, Fancy uses a third el-

ement in its design, IPDs registrar, that is accessible by fingerprinters and

fingerprint extractors. Fancy fingerprinter store some information on the

IPDs registrar, whihc are used by Fancy extractors for fingerprint extrac-

tion. Figure 5.1 shows the high-level block diagram of Fancy.
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Figure 5.2: Fingerprinting scheme of Fancy.

5.1.1 Embedding fingerprints

Fancy fingerprinter’s design is shown in Figure 5.2. Suppose that a network

flow, n, with packet timings of t = {ti|i = 1, ...} enters the fingerprinter

(e.g., a router) where it is to be fingerprinted. The fingerprinter generates

an ℓ-bits fingerprint sequence, f = {fi|fi = ±1, i = 1, .., ℓ}, that especially

corresponds to the intercepted flow n. That is, a different fingerprint sequence

is generated for each intercepted flow, however a fingerprint sequence can be

re-used for another flow once the first flow has terminated. This fingerprinter

records n’s fingerprint message, f , along with the last ℓc inter-packet delays

(IPDs) of n, i.e., τ = {ti|i = 1, .., ℓc, τi = ti+1 − ti}, in the IPDs registrar (ℓc

is the length of the fingerprinted flows, as described later). In addition to

recording the flow’s fingerprint in the IPDs registrar, the fingerprinter embeds

f on the intercepted flow n, as described in the following (in Section 5.1.3

we discuss the reason for both embedding the fingerprint into the flow, and

recording it in the IPDs registrar).

The fingerprinter embeds the fingerprint f into the intercepted flow n by

delaying its packets by an amount such that the IPD of the i-th fingerprinted

packet is

τ ci = τi + a · f c
i (5.1)

The constant a is the fingerprint amplitude and f c = {f c
i |f c

i = ±1, i =

1, ..., ℓc} is the encoded fingerprint sequence, which is generated from f as

described in the following. The value a is chosen to be small enough so that

the artificial jitter caused by fingerprinting is invisible to non-fingerprinting

parties and to the users.

Fingerprint generation: Suppose that Fancy intends to insert an ℓ-bits

fingerprint f = {fi|i = 1, ..., ℓ} on a candidate flow. Since each fingerprint bit

takes one of +1 and -1 values the number of all possible, distinct fingerprint

sequences is 2ℓ. A fingerprinter encodes an ℓ-bits fingerprint sequence, f ,
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into and ℓc-bits encoded fingerprint f c by passing f through the encoder

block of Fancy fingerprinter. For a given encoding algorithm, we define the

redundancy of our fingerprinting system, r, to be the redundancy of the

encoder being used, i.e.,

r = ℓc/ℓ. (5.2)

5.1.2 Extracting fingerprints

Suppose that a Fancy extractor recieves the fingerprinted flow n after passing

the noisy network, e.g., the Internet. Let us consider that τ c,r = {τ c,ri |i =
1, .., ℓc} are the IPDs of n as observed by the extractor (the superscript c

denoted being encoded/fingerprinted and the superscript r denoted being

received after passing the noisy network). As described above, the Fancy

fingerprinter has recoded n’s IPDs before getting fingerprinted, i.e., τ , in

the IPDs registrar, along with the embedded fingerprint message f . The

extractor uses this recorded information to perform fingerprint extraction,

by accessing the IPDs registrar.

The IPDs registrar contains flow records, which are generated by finger-

printers. Each flow record is a pair Rk = (τ k,f k), where k is the index of

the record in the IPDs registrar, τ k is the original IPDs sequence of a fin-

gerprinted flow, and fk is the fingerprint embedded into that flow. For each

received flow, the extractor loops through the IPDs registrar to find the right

flow record corresponding to it (if any).

For any flow record in the IPDs registrar, e.g., (τ k,f k), the extractor

performs the following steps:

1. The extractor derives the following sequence:

f r,k
i = (τ c,ri − τ ki )/a i = 1, .., ℓc (5.3)

where τ c,ri are the i-th IPD of the received flow.

2. Then, the extractor passes the ℓc-bits f r,k = {f r,k
i |i = 1, .., ℓc} through

a decoder block that outputs an ℓ-bits sequence f d,k = {fd,k
i |fd,k

i =

±1, i = 1, .., ℓ}. This decoder is the corresponding decoder of the en-

coder block used by Fancy fingerprinters.
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3. The extractor declares that the received flow contain the fingerprint

sequence fk if it is the same as the decoder’s output, i.e., if we have

that:

fd,k
i = fk

i , ∀i ∈ {1, .., ℓ} (5.4)

Otherwise, the extractor uses the next flow record from the IPDs reg-

istrar and repeats the steps above.

We claim that the described algorithm results in a reliable extraction of

Fancy fingerprints. Let us consider the follwoing two cases:

• Case 1: Suppose that the extractor has picked the flow record that

corresponds to the received flow, i.e.,τ k = τ and fk = f . We have

that

τ c,ri = τ ci + δi (5.5)

where δi is the network jitter applied on the i-th IPD and τ ci is the

fingerprinted IPD. In this case, using (5.1), (5.5), and (5.3) we get

that:

f r,k
i = (τ c,ri − τ ki )/a (5.6)

= (τi + δi + af c
i − τi)/a (5.7)

= f c
i + δi/a (5.8)

In other words, using the right flow record from the registrar the step 1

will generate a perturbed version of the coded fingerprint. As a result,

passing this perturbed coded fingerprint through the decoder (step 2)

can return the embedded fingerprint, depending on the noise conditions

and decoder performance (in Section 5.2 we design decoders that per-

form very well in our application). Since this decoded fingerprint is the

same as the one contained in the flow record, step 3 of the algorithm

will result in a correct fingerprint extraction.

• Case 2: Now, let us consider a case where the extractor is using a non-

relevant flow record from the registrar. In this case, the second step

of the algorithm will result in a non-relevant fingerprint sequence. The

odds that this non-relevant fingerprint is the same as the one contained

in the flow record is 2−ℓ. For the values of ℓ used in our design (e.g.,
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25) this results in a very tiny false extraction rate, so we neglect this

case in the performance evaluation of Fancy.

Filtering flow records In order to speed up the extraction process, the

extractor can leave out a large number of flow records in the registrar by

using simple filters. One very simple, yet efficient, filter is the packet count

of the registered flows: the extractor does not consider flow records whose

corresponding flows have packet counts much larger or much smaller that

the packet count of the received flow. A second filter that we use is a IPDs-

distance metric, to leave out the records with non-similar IPDs. In particular,

we evaluate the distance between a received flow with IPDs τ r and a flow

record Rk = (τ k,f k) as:

d(τ r, τ k) =
1

ℓc

ℓc
∑

i=1

(τ ri − τ ki − f c
i ) (5.9)

If Rk is the right record corresponding to the received flow this distance

metric gives the average network jitter on the path. The extractor considers

only those records from the registrar whose distance from a received flow are

smaller than a threshold, η. By putting η equal to four times the standard

deviation of network jitter the odds that the right record will be left out is

around 10−4 (assuming a Laplace distribution for network jitter as in [11]).

5.1.3 Alternative designs

As described in this section, in order to fingerprint a flow n with the fin-

gerprint message f , the fingerprinter performs two tasks: a) it records the

fingerprint f in the IPDs registrar, along with the IPD values of the flow,

and, b) it embeds f into the network flow n. Alternatively, one could suggest

to only record the fingerprint in the registrar, or only embed it into the flow.

In the following we back our design decision (i.e., putting the fingerprint in

the registrar and on the flow), by discussing the performance degradation of

the two alternatives.

Passive fingerprinting An alternative approach to Fancy is to only record

fingerpint sequences in the IPDs registrar, along with their corresponding

IPDs sequences, however do not embed the fingerprints into the flows. In fact
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this approach is passive traffic analysis, which has extensively been studied

in the literature [7–9]. Unfortunately, this approach may result in high-rate

of false extractions, especially when the evaluated flows are cross-correlated.

The common examples for correlated network flows are web traffic (to the

same websites), and file transfers. In fact, our simulations of real web traffic

in Chapter 3 shows that even an optimum passive traffic analysis scheme can

produce very large false correlations (see Table 3.7).

Only embedded into flows As another alternative, one could only embed

fingerprints in network flows, without recording them in the IPDs registrar.

This, also, results in high rates of false extraction errors. For a received

flow at the extractor, the use of a non-corresponding flow record from the

registrar will most likely lead the extractor to extract a fingerprint sequence

that is different from what is really embedded into that flow. By recording

the fingerprints in the registrar as well, which is done in Fancy, the extractor

can easily identify such error extraction by simply comparing the extracted

fingerprint from the one recorded in the IPDs registrar.

5.2 Simulation results

We investigate the use of different coding algorithms as the encoder/decoder

block of Fancy. In particular, we investigate the use of several linear block

codes [61] considering the conditions of our communication channel. Based

on our measurements over Planetlab [39] the standard deviation of net-

work jitter (δ) between randomly selected nodes varies between 6ms and

12ms. For a fingerprinting amplitude of a = 10ms, the SNR [62], given by

SNR = 20log(a/δ), varies between -1.5836 and 4.4370 (i.e., an average of

1.4267). Also, we aim at having a flow length of around n ≈ 100 for finger-

printing, since larger lengths would result in higher latencies in extracting

fingerprints from the flows. For these parameters, we look for appropriate

coding algorithms to be used by Fancy’s encoder. Dolinar et al. [63] compare

the performance of several block codes for different lengths of information

bits, along with the theoretical capacity limits. In particular, they illustrate

the appropriate block size values for different coding algorithms, i.e., the

range of block sizes that a coding algorithm performs close enough to the
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channel capacity. Based on such evaluations (Figure 12 in [63]) we identify

several codes that are expected to work well for our system parameters. In

particular, we investigate the use of three types of linear codes in our simula-

tions, which are Reed-Solomon (RS) Codes, convolutional codes, and turbo

codes. The simulations are done in Matlab using network traces gathered

over Plabetlab [49], and by using Matlab’s built-in coding functions and the

CML coding library [64].

Evaluation metrics We define the following metric to evaluate the ex-

traction performance of Fancy.

Extraction Rate (PE): This metric is the rate of fingerprinted flows that

are successfully extracted by Fancy extractor.

Miss Rate (PM): This is the rate of fingerprinted flows that Fancy extrac-

tor is not able to extract correctly, and considers them as non-fingerprinted

flows. We have that PM = 1− PE

The goal of a Fancy extractor is to maximize the extraction rate (i.e.,

minimize the miss rate).

5.2.1 Reed-Solomon (RS) codes

Reed-Solomon (RS) codes [61] are a class of linear block codes that are max-

imum distance separable (MDS), i.e., they meet the equality criteria of the

singleton bound [61]. In fact, the RS codes are the only known instances

of the MDS codes. The encoding structure of the RS codes makes them

suitable for M -ary communication schemes, where the noise is applied in

bursts over the message bit stream. This makes them a good candidate for

our application since bursty noise may happen to inter-packet delays due to

temporal network congestions. In particular, the RS codes have been used

in satellite communications for many years because of their strength facing

bursty errors. We use the notation (n, k)-RS for an RS code that encodes

each k message symbols into n encoded symbols, where each symbol is m

bits and m = log2(n+ 1) (e.g., an n-bit RS coded message consists of m× n

binary bits).

We design a Fancy fingerprint, called Fancy-RS, that utilizes RS encoders

as part of its encoding algorithm. More specifically, Fancy-RS generates an
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Figure 5.3: Extraction rate of Fancy-RS for different RS encoders.
(a = 10ms, and ℓ = mk)

ℓc-bits coded fingerprint f c from an ℓ-bits fingerprint sequence f by passing

itf through an (n, k)-RS encoder. We have that ℓc = n/kℓ.

We simulate Fancy-RS in Matlab. We use traces of network jitter gath-

ered over Plabetlab [49] to simulate the effect of the noisy network over the

fingerprinting performance. Note that we do not include the original IPDs

in our simulations, since as discussed in Section 5.1.2 the extractor is able to

reliably pick the original IPD sequence from the IPDs registrar, and subtract

it from the received flow before performing the extraction. In the first exper-

iment, we measure and compare the performance of our fingerprint extractor

for different parameters of the (n, k)-RS encoder. We set a = 10ms, and

p = 2. We also set ℓ = mk (generally, ℓ should be an integer multiplication

of mk) and vary the m and k parameters of our RS encoder (each experiment

is run for 1000 times with different randomly generated fingerprints and dif-

ferent network jitter). Figure 5.3 shows the extraction rate (PE) for different

values of m and k (the bars show the 95% confidence intervals). As can be

seen, for a given m, decreasing k improves the extraction performance, since

it increases the redundancy of our RS encoder, i.e., (2m − 1)/k. Figure 5.4

shows the coding redundancy of Fancy-RS for different parameters of the RS

code. Finally, the number of distinct fingerprints, N , that can be embedded

and extracted reliably by Fancy-RS is given by

N = 2mk (5.10)

For instance, for k = 5, and m = 5 (i.e., ℓ = 25) we have that N ≈ 107.

In order to evaluate the effect of the fingerprint amplitude (a), we measure

the extraction rate for different values of a. This is illustrated in Figure 5.5,
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Figure 5.4: Coding redundancy of Fancy-RS for different RS encoders.
(a = 10ms, p = 2, and ℓ = mk)
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Figure 5.5: Extraction rate of Fancy-RS for different fingerprint amplitudes.
(m = 5, k = 5, i.e., the redundancy is 6.2)

where m = 5, and k = 5. As intuitively expected, increasing a rapidly

improves the true detection and miss rate, such that for a = 20ms we have

that PT = 1 and PM = 0. Note that increasing a makes the fingerprint less

invisible, as discussed in Chapter 3.

5.2.2 Convolutional codes

Convolutional codes are another class of linear error-correcting codes that

have use in several different applications [61]. In this chapter we design

a flow fingerprint, Fancy-Conv, that uses convolutional codes. An (n, k)

convolutional code, (n, k)-Conv, is a function with k inputs and n outputs.

The input stream, i.e., f = {fi|fi ∈ {0, 1}, i = 1, 2, ...}, is split into k

streams entering the inputs of the encoder. Each of the n output streams

of this encoder is evaluated by convolving some of the input streams with

a generator function G. The length of the generator function is called the

constraint length v, and u = v − 1 is the memory of the encoder. An easy-

to-implement decoder for convolutional codes is an ML decoder based on the
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Figure 5.6: Extraction rate of Fancy-Conv for different encoder
redundancies. ( a = 10ms)

Viterbi algorithm [61].

We design a variant of Fancy fingerprint, called Fancy-Conv, that uses

convolutional coding for its encoding process. More specifically, an ℓ-bits

fingerprint sequence f passes through the (n, k)-Conv encoder of Fancy-Conv

that generates the final encoded fingerprint f c consisting of ℓc bits.

We implemented Fancy-Conv in Matlab using the CML [64] coding li-

braries. We use a constraint length of v = 9, and a randomly created gener-

ator function G. We run several experiments to measure the performance of

Fancy-Conv for different parameters, where each experiment is run for 1000

randomly generated fingerprints. In the first experiment, we measure the

effect of our encoder’s redundancy on the fingerprinting performance, where

a = 10ms, and ℓ = 24. Figure 5.6 shows the extraction rate (with bars show-

ing the 95% confidence intervals) for different redundancies of (n, k)-Conv.

As can be seen, increasing the redundancy, r, improves the extraction rate;

this, however, increases the flow length required to embed the fingerprint,

which is linear with the redundancy, i.e., ℓc = rℓ.

We also measure the effect of the fingerprint amplitude on the detection

performance. As can be seen from Figure 5.7, increasing the fingerprint

amplitude improves the extraction rate (ℓ = 18, and the convolutional code’s

redundancy is 8). This comes at the price of less fingerprint invisibility as

discussed before. A fingerprint amplitude of a = 20ms results in a very good

extraction rate, while at the same time provides a promising invisibility.

Finally, the number of distinct fingerprints, N , that can be embedded and

extracted reliably by Fancy-Conv is given by N = 2ℓ. For instance, for

ℓ = 24, we have that N ≈ 107.
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Figure 5.7: Extraction performance of Fancy-Conv for different fingerprint
amplitudes. (ℓ = 18, and the convolutional code’s redundancy is 8)

5.2.3 Turbo codes

Turbo codes are a class of high-performance error correction codes and are

the first practical capacity-approaching codes [65]. A turbo code is generated

by concatenating two or more constituent codes, where each constituent code

can be a convolutional or a block code. Usually some interleaver reorders the

data at the input of the inner encoders. Turbo codes are decoded through

iterative schemes. There are two types of Turbo codes: Block Turbo Codes

(BTC), and Convolutional Turbo codes (CTC).

In this paper, we consider the use of BTC codes in the design of Fancy

fingerprints. A BTC code works by encoding a kx × ky matrix of data, D,

into a nx × ny matrix C as follows: a (nx, kx) systematic code encodes each

row of D, a block interleaver reorders the rows of the resulted matrix, and

finally, a (ny, ky) systematic code encodes the columns of the resulted matrix

to generate the final nx × ny dimensional matrix C. The systematic codes

used for BTC codes are the cyclic codes, e.g., Hamming, Single Parity Check,

and Extended Hamming [65]. The constituent block codes can be generated

using polynomials.

We design Fancy-BTC, a fingerprint that uses BTC codes as its encoding

block. Our BTC code uses two convolutional codes as its horizontal and

vertical constituent codes.

We use the CML [64] coding library to simulate Fancy-BTC in Matlab.

We randomly create the generator functions of the convolutional codes that

constitute our BTC encoder (with constraint lengths of vx and vy for the hori-

zontal and vertical codes, respectively). To encode a fingerprint f with length

ℓ our encoder reorders f into a kx×ky matrix D, where kx = ky = round(
√
ℓ)

and round(·) rounds to the nearest larger number. The encoder also fills the
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Figure 5.8: Extraction rate of Fancy-BTC for different values of maximum
decoder iteration. (a = 10ms, ℓ = 25, and r = 5.95)

first B = kx × ky − ℓ bits of this matrix with zeros. We use an iterative de-

tector that stops only if either a maximum number of iterations has reached,

or the additional iterations do not change the decoded fingerprint.

In our first experiment, we measure the effect of the number of iterations

on the extraction performance (each experiment is run for 1000 randomly

generated fingerprints). We use a fingerprint amplitude of a = 10ms, a fin-

gerprint length of ℓ = 25, and our code is designed such that vx = vy = 6,

kx = ky = 5, B = 0 and the code redundancy is 5.95. Figure 5.8 shows the

extraction rate for different values of maximum decoder iteration, along with

the 95% confidence intervals. As can be seen, even though the detection per-

formance improves rapidly for small numbers of iterations it does not change

significantly after several iterations. Considering the added processing over-

head for more iterations, we choose 8 as the maximum number of iterations

performed by our detector, being used in all of our consecutive simulations.

In the second experiment, we keep vx = vy = 6 and a = 10ms, but vary the

fingerprint length ℓ. Figure 5.9 shows the length of the coded fingerprint for

different values of the fingerprint length. As before, the number of distinct

fingerprints, N , is exponential with ℓ. As can be seen from the figure, in-

creasing ℓ only linearly increases the length of the encoded fingerprint, while

it exponentially increases N . Note that in the figure the code redundancy is

around 6, but varies a bit with ℓ since our BTC encoder can not produce all

redundancy values for any given ℓ.

In the third experiment, we evaluate the performance of Fancy-BTC using

BTC codes with different redundancies. More specifically, we set a = 10ms,

ℓ = 25, and kx = ky = 5 and try BTC codes with different constraint

lengths (vx and vy), resulting in various redundancies. Figure 5.10 shows
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Figure 5.9: The length of the coded fingerprint for different fingerprint
lengths for Fancy-BTC.
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Figure 5.10: Extraction rate of Fancy-BTC for different redundancies of the
BTC code. (a = 10ms, ℓ = 25)

the extraction rate for codes with different redundancies. As can be seen,

the Fancy-BTC does not perform well for small values of code redundancies,

however increasing the code redundancy rapidly improves its performance. In

fact, such an improved performance comes at the price of longer fingerprinted

flows.

Finally, we illustrate the effect of the fingerprint amplitude on the extrac-

tion performance. As can be seen from Figure 5.11, increasing a rapidly

improves the extraction, such that a = 20ms results in an extraction rate of

in 1000 runs of the experiment.

5.2.4 Comparison

We also compare the performance of the three versions of Fancy, i.e., Fancy-

RS, Fancy-Conv, and Fancy-BTC. Figure 5.12 shows the extraction rate of

the three schemes for different values of encoder redundancy (for all three

schemes we have that ℓ = 25, and a = 10ms). As can be seen, for very small

redundancies the Fancy-RS outperforms the other two, even though all of
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Figure 5.11: Extraction rate of Fancy-BTC for different values of
fingerprint amplitude. (ℓ = 25, and r = 4)
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Figure 5.12: Comparing the extraction performance of Fancy-RS,
Fancy-Conv, and Fancy-BTC for different code redundancies.

the schemes perform poorly for such small values of redundancy. As the re-

dundancy increases, all scheme improve their performance and, in particular,

the Fancy-BTC outperforms the other two schemes for high redundancies.

We also compare the three schemes for different fingerprint amplitudes.

Figure 5.13 shows the extraction performance of Fancy-RS, Fancy-Conv, and

Fancy-BTC for different values of a, with ℓ = 25. Also, the redundancies of

Fancy-RS, Fancy-Conv, and Fancy-BTC are 6.2 , 6, and 5.96, respectively

(note that it is not possible to produce an exact value of r for any given ℓ).

As intuitively expected, increasing the fingerprint amplitude significantly im-

proves the extraction performance at the cost of more perturbations applied

to the fingerprinted flows.

5.3 Conclusions

We designed a reliable flow fingerprinting system, called Fancy, which can be

used to send additional information about the flows being tagged. Fancy uses
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Figure 5.13: Comparing the extraction performance of Fancy-RS,
Fancy-Conv, and Fancy-BTC for different fingerprint amplitudes (with a
similar redundancy of around 6).

a design similar to Rainbow flow watermark, and uses coding algorithms to

ensure reliable communication of fingerprint bits. We simulate Fancy using

several popular coding algorithms. Our simulations show that Fancy can

reliably send tens of fingerprint bits over flows with only about 100 packets.
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CHAPTER 6

OTHER APPLICATIONS OF FLOW

WATERMARKS

In the previous chapters we discussed how network flow watermarking, which

is an active approach for traffic analysis, improves the performance of traffic

analysis as compared to the traditional passive traffic analysis. In particular,

we described the use of network flow watermarking for two specific appli-

cations: detection of stepping stone attacks, and compromising anonymity

networks. These applications share a common objective that lets flow wa-

termarking be used as a solution for them: to link network flows that have

traversed low-latency communication networks. In other words, what makes

the use of network flow watermarking effective is the fact that flows that are

being linked have passed through low-latency networks that do not destroy

the watermark pattern. Based on this, we can make the following general

statement regarding the application of network flow watermarking: flow wa-

termarking can be used in any networking application in which linking flows

is desired, but is not feasible by analyzing the communication contents due

to encryption or other means of evasion, and in which the communication

network affecting the flows of interest is low-latency.

In this chapter, we seek alternative applications for flow watermarks, other

than the two applications that are well-known in the literature and that are

described in the previous chapters. In particular, we introduce two novel

applications for flow watermarking: one targets the detection of centralized

botnets and the other targets solving an open-challenge against the availabil-

ity of the Tor [4] anonymous network.
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6.1 BotMosaic: botnet detection using flow

watermarks

A botnet is a network of compromised machines, bots, that is controlled by

one or more botmasters to perform coordinated malicious activity. Botnets

are among the most serious threats in cyberspace due to their large size [66].

This enables the bots to carry out various attacks, such as distributed denial

of service, spam, and identity theft, on a massive scale.

Botnets are controlled by means of a command-and-control (C&C) chan-

nel. A common approach is to use an Internet Relay Chat (IRC) channel for

C&C: all the bots and a botmaster join a channel and the botmaster uses the

channel to broadcast commands, with responses being sent back via broad-

cast or private messages to the botmaster. The IRC protocol is designed to

support large groups of users and a network of servers to provide scalabil-

ity and resilience to failures, thus it forms a good fit for providing a C&C

infrastructure. Because of their simple design and deployment, IRC botnets

have been widely used by cybercriminals since 2001 [67]. Some botnets use a

more advanced structure, with bots communicating directly with each other

in a peer-to-peer fashion, but recent studies show that many existing botnets

use the IRC model because of its simple-yet-effective structure [67, 68]. In

this research we focus on the IRC botnets.

Much research has been devoted to the detection of IRC botnets [69–74].

However, most effective detection techniques are complex and have potential

to generate false positives. This means that organizations with a large secu-

rity budget are able to find potential bot infections and disable, investigate,

and disinfect affected machines. Organizations with less developed IT prac-

tices, as well as home users, however, remain vulnerable to bot infections and

provide a fertile ground for botnets, allowing them to remain strong.

We propose a technique that follows a service model. It leverages the

efforts of one organization to capture and instantiate bot instances to provide

low-cost detection of bots in other networks. We develop BotMosaic—a

watermark that, when inserted into the communication between the captured

bots and an IRC server, creates a pattern that is observable at other sites

hosting botnets. The pattern can be recognized simply by observing the

timings of the packets in a given flow, thus the detection can be carried out

at a large scale by border routers. By inserting an artificial pattern, we
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can ensure that false-positive rates are very low, enabling automated actions

to disconnect infected bots. Since only packet timings are used, BotMosaic

works even when the botnet uses encrypted connections to the IRC server.

The watermark will be visible on all connections between the bots and the

IRC server. It will likewise appear in the connection from the botmaster to

the IRC server. Botmasters typically use stepping stones [3] to hide their

true location. The watermark can be used to detect such stepping stones

and aid in botmaster traceback.

A novel and unique feature of our watermark is that it is collaborative: the

watermark is inserted simultaneously into the flows of all captured bots. This

is in contrast to past watermarks that affect a single flow at a time [9–15]. The

collaborative feature amplifies the effect of the watermark and is necessary

to create a timing pattern that is recognizable among the noise generated by

traffic from other bots. In fact, none of the previous flow watermarks [9–15]

can be used for the botnet detection application targeted in this thesis: a

bot connection watermarked using a non-collaborative scheme gets destroyed

once it is mixed with flows from other bots in the C&C channel, whereas the

collaborative watermarking of BotMosaic is able to persist in the mixed C&C

traffic of a botnet.

In summary, BotMosaic has the following unique features as compared to

previous approaches: 1) BotMosaic is implemented by one organization, and

can be used as a low-cost service by other organizations, i.e., clients. A

client organization only needs to deploy the low-cost watermark detectors of

BotMosaic on their border routers. This is in contrast to other approaches

that suggest each organization to deploy its own, resource-intensive botnet

detection mechanism. 2) A client organization can use BotMosaic to de-

tect various instances of bots simultaneously, without the need to modify

its BotMosaic detectors for different botnets. The BotMosaic watermarkers

use different watermark signals for different instances of botnets. 3) Each

client organization can detect not only the bot infected machines, but also

the botmasters and stepping stones hosts residing inside their networks.

We analyze our scheme using simulations and experiments on Planet-

Lab [39]. We find that we can achieve a high rate of detection with few

false positives using a watermark applied to captured/imitated bots that

comprise a small fraction of the botnet, with a detection time of about a

minute.
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The rest of the chapter is organized as follows: Section 6.1.1 describes

previous work on IRC botnet detection. Section 6.1.2 describes the overall

detection framework used by BotMosaic. Section 6.1.3 describes the detailed

structure of the BotMosaic collaborative watermark. Simulations and im-

plementation results are presented in Section 6.1.4. Section 6.1.5 offers a

brief discussion of some additional issues, and Section 6.1.6 concludes the

discussion.

6.1.1 Related work and motivation

The primary goal of the BotMosaic is to detect bot-infected machines inside

a network of interest, e.g., an ISP. The literature on this can be divided into

host-based and network-based approaches. Host-based approaches analyze

the information on hosts of the network; this is not easy to deploy on all

hosts, especially in organizations where computers are not centrally managed.

BotMosaic falls in the network-based category.

Network-based detection mechanisms aim to detect bot infected machines

by analyzing the network traffic information. These mechanisms mainly are

classified into two categories: traffic signature schemes and traffic classifi-

cation schemes. The traffic signature approaches use the captured bots to

develop signatures for each botnet instance; they have widely been used for

IRC botnet detection [69, 71, 75]. As an example, Blinkley and Singh [69]

combine IRC statistics and some TCP metrics to generate signatures that

can be used to detect the infected machines. Traffic classification approaches

are based on gathering network traces and clustering them in order to detect

botnets based on their behavioral difference with the normal traffic [70,72,73].

As an example, Villamar et al. use Bayesian methods to isolate centralized

botnets, based on the similarity of their DNS traffic with those of some known

DNS botnet traces [73].

In this chapter we consider a third approach for performing network-based

bot detection. BotMosaic uses network flow watermarking to mark the bot-

net traffic, resulting in low-cost mechanisms for the detection of bots and

botmasters. Network flow watermarking is a technique that actively perturbs

the traffic patterns of a network flow to insert a watermark inside them that

can later be detected. Flow watermarking has been used to detect stepping
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stones, as well as to compromise anonymous communication [9–14]. Exist-

ing techniques, however, cannot be applied to the problem of bot/botmaster

traceback for two reasons. First, they are designed to work on long-lived

flows; typically, hundreds of packets are necessary to detect the presence

of a watermark. Botnet communication, however, tends to be short-lived,

with only a few packets sent from each bot. Furthermore, a watermark that

is applied to a single bot-to-botmaster/botnet communication will be over-

whelmed by traffic from other bots that will be aggregated along the same

stepping stone connection. Although some of the existing watermarks are

designed to resist a reasonable level of chaff, they do so by increasing the

length of the watermark and thus cannot be used for botnet traceback in

practice.

More recently, Ramsbrock et al. [15] designed a watermark specifically

targeted to the task of botmaster traceback. Their watermark works by

adding extra whitespace at the end of IRC messages sent by the bots. They

also adjusted the timings of packets in order to improve detection ability.

Though an important first step, the whitespace watermarking approach has

several serious limitations. Whitespace watermarking only works well in the

presence of low rates of chaff—less than 0.5 packets/second—whereas even

in a small-size botnet, an aggregate response from all the bots would create

a significantly higher chaff rate. Whitespace watermarking is also fragile

to repacketization or retransmission of packets, as such events can cause it

to lose timing synchronization. Finally, whitespace watermarking relies on

modifying the contents of the messages sent by the bots, which can be be

difficult if encrypted connections are used.

6.1.2 BotMosaic detection framework

In this section we describe the features of IRC botnets exploited by BotMo-

saic and its deployment scenarios.

IRC botnets

Internet Relay Chat (IRC) is a network protocol designed for Internet text

messaging or synchronous conferencing [76, 77]. In order to use an IRC net-

work, clients join an IRC channel created by an IRC server, providing a
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nickname (the server may also require client authentication). The clients

then send broadcast messages to the channel, or private messages to specific

nicknames inside that channel.

During the last decade, IRC channels have been used as a common way to

construct the C&C channel of botnets; the rationale behind this traditional

decision by cybercriminals is the low weight of IRC client software, the sim-

plicity of the IRC protocol, and the existence of many public IRC servers

over the Internet that can be used by the botnets [67,68]. Some examples of

IRC-based botnets are SdBot, Virut, SpyBot, and RBot [68]. The infected

bot hosts act as IRC clients and join a specific channel used by the botnet.

Some botnets use fixed channels, while other change them dynamically in

order to avoid detection and shutdown. The bot then communicates with

the botmaster and other bots using the IRC channel.

The botmaster sends commands to the bots by sending a broadcast mes-

sage to the channel, or by sending private messages to individual bots. For

example, a botmaster might send messages such as “send me recorded pass-

words” or “start DDoS on target X.” The bot will send responses back either

as private messages (for sensitive data, such as credit card information) or

public broadcasts (for, e.g., status updates). To avoid detection, bots may

encrypt the contents of the messages and/or use an encrypted connection to

the IRC server.

BotMosaic Architecture

In BotMosaic, a service provider inserts watermarks using captured bots that

are then detected by a number of client organizations (shortly, clients). The

service provider performs the majority of the work, whereas the clients run

low-cost detection. The service provider may either charge clients to use the

watermark, by selling a subscription to the watermark secret keys, or provide

it as a public service.

Captured Bots: BotMosaic relies on a number of bot instances that are

controlled by the service provider. These bots will be used to insert the

watermark pattern into the IRC channel. To capture these bots, the service

provider may deploy a honeynet [78] or manually infect a number of (possibly

virtual) machines with the bot.

Watermarker: The watermarker mediates the traffic between the cap-
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Figure 6.1: Topology of the BotMosaic traceback system.

tured bots and the outside world to insert the watermark. In particular, it

delays network packets to create a particular timing pattern. The water-

marker will delay packets from all captured bots simultaneously to ensure

that the watermark signal is strong enough to be detected. Note that the wa-

termark is content-agnostic; BotMosaic will work even if the traffic between

the bots and the IRC server is encrypted.

Detector: A detector, run by the client, watches network traffic for the

watermark pattern. Typically it would be deployed at or near border routers,

to examine all the traffic entering and leaving the client’s organization. It

only needs to examine packet timings and headers (the latter to group packets

into flows) to detect the mark; importantly, it does not need to perform deep

packet inspection. The detection algorithms can thus be run efficiently on

high-speed network links.

Value Proposition

The BotMosaic clients will benefit from the scheme in several important ways,

creating incentives for deployment of the scheme by ISPs and enterprises.

Detecting Bots When the watermarker inserts a mark onto broadcast

messages from the captured bots, this watermark will be observed on the

traffic from the IRC server to other bots. A client running a BotMosaic

detector can, therefore, detect bots hosted in its own network by monitoring

incoming traffic for watermarks, such as in network A in Fig. 6.1. The

detector is much lower cost than other methods of botnet detection, and the
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watermark parameters can be configured to ensure an acceptably low rate of

false positives.

Detecting Stepping Stones A botmaster will typically use a number of

stepping stones to connect to the IRC channel, in order to disguise his or

her identity [3]. The stepping stones will carry the watermark as well; a

client can discover a stepping stone hosted within its network by observing

the watermark on an outgoing flow, as in network B in Fig. 6.1.

A stepping stone is usually a compromised computer, thus detecting step-

ping stones is valuable to the client. This information can also be used to

help locate the botmaster: if the first stepping stone used by the botmaster

is in an organization running BotMosaic detection, the IP address of the bot-

master will be revealed. Note that this remains true even if all of the other

stepping stones are on networks not covered by BotMosaic.

Our approach is a variant on other techniques that use watermarks for

stepping stone detection [10, 11, 13]. However, previous work required an

organization to insert watermark on all inbound traffic. BotMosaic, in con-

trast, does not require clients to modify or delay traffic flows and thus will

not interfere with the level of service provided to legitimate users. It can be

deployed on a mirrored port, whereas watermark insertion must be performed

inline, creating a potential point of failure.

Detecting the Botmaster Finally, a client hosting the botmaster will

be able to observe the watermark on its inbound connection, as in network

C in Fig. 6.1. The botmaster will receive the watermark both on broadcast

messages and on private responses from bots (as long as the private responses

are sent by all bots in response to a command). Thus, one way to distinguish

the botmaster from ordinary bots is that, in some instances, the botmaster

will be able to observe the watermark even though other bots did not.

6.1.3 BotMosaic watermarking scheme

In this section, we describe the watermarking scheme that we devise to be

used for the BotMosaic botnet traceback system. The watermark is novel in

being collaborative: the BotMosaic service provider uses multiple captured

bots for watermark insertion, which makes the scheme specialized for the
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Figure 6.2: BotMosaic service provider structure.

problem of botnet watermarking. Multiple captured bots allow us to spread

the watermark power over a larger amount of traffic, compensating for the

small amount of traffic each individual bot sends to the botmaster/botnet.

BotMosaic adopts an interval-based design used in other watermarks [10,13,

14] to provide robustness to packet losses, delays, and reordering as well as

chaff introduced by the traffic of the other bots in the botnet.

Watermark insertion

Fig. 6.2 shows the structure of the BotMosaic service provider. The BotMo-

saic service provider starts R captured bots, joining and communicating with

the botnet through the IRC C&C channel. Such connections are intercepted

by a watermarker, as described later. Using virtual machines [79], R can be

made reasonably large while using modest amounts of resources. Let B be

the number of active real bots connecting through the same C&C channel.

Increasing the ratio R/B improves watermark detection efficiency, as will be

shown in the following sections.

Fig. 6.3 illustrates the collaborative watermark insertion on the communi-

cation of captured bots. Each of the flows contain a share of the watermark

so that the mixture of the packets of these flows, combined in the botnet C&C

channel, generates the watermark pattern, whereas any single captured bot

flow is insufficient to detect the watermark.

The watermarker inserts a watermark sequence of length l into the cap-
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Figure 6.3: Collaborative watermark insertion using multiple flows.

tured bots flows. The watermarker divides the time axis into 2l non-overlapping

intervals with equal length T. The intervals are labeled as HI1, . . . , HIl and

LO1, . . . , LOl using a random assignment. The interval mappings form the

secret watermark key that is necessary to detect the watermark; the service

provider can therefore sell watermark key subscriptions to clients.

The basic idea of the watermark is to send more packets in HI interval

compared to its corresponding LO interval in the mixture of all captured

flows. For each HI-LO pair, the watermarker assigns the timing of R captured

flows so that in the mixture of all R captured flows the number of packets

appearing in the HIi interval of that is larger than the number of packets in

the corresponding LOi interval by some threshold η (see Fig. 6.3). In other

words, we should have:

R
∑

f=1

Nf (HIi)−
R
∑

f=1

Nf (LOi) ≥ η i = 1, . . . , l (6.1)

where Nf (·) gives the number of packets showing up in the given interval of

f th captured flow

For the manipulation of the captured flows the watermarker first deter-

mines the total number of packets in each interval of the aggregated water-
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marked flow and then assigns the number of packets to each captured flow,

namely watermark shares. Based on IRC standards [77] the rate of the flows

from IRC client to the server should not exceed 0.5 packets per second (ex-

ceeding this threshold causes the client to be penalized by extra delays on its

packets). So, in an interval with length T seconds we expect to have at most
T ·R
2

packets accumulated over all R captured flows. For each i, we randomly

select the cumulative packet number for HIi interval to be:

N(HIi)ǫ

[

T ·R
4

,
T ·R
2

]

(6.2)

We then assign the total number of packets in the LOi interval to be:

N(LOi) = N(HIi)− η − ψ (6.3)

where η is the detection threshold and ψ is the confidence threshold. Doing

so for all of the HI-LO pairs we find the cumulative number of packets N(j)

for any interval j. We then randomly distribute the N(j) packets within the

jth interval of all R captured flows so that the overall rate of each flow does

not exceed the 0.5 packets per second constraint mentioned above. For each

captured flow, the watermarker buffers a number of packets before starting

the watermark insertion, to make sure it has an adequate number of packets

for its manipulations.

Detection Scheme

The watermark detectors deployed on the border routers of the BotMosaic

clients monitor network traffic to detect the watermark patters inserted by

the BotMosaic service provider (see Section 6.1.2). The detectors are pro-

vided with watermark key(s) by the BotMosaic service provider:

Key = (T, {∀i = 1, . . . , l : HIi, LOi}) (6.4)

As mentioned before, the flows watermarked by the BotMosaic service

provider get mixed with other flows, resulting in a single mixed (and usually,

encrypted) flow. We assume that the target mixed-encrypted flow contains

packets from R captured bots and B real bots. A watermark detector breaks

up a candidate flow into intervals, and then computes N(HIi) and N(LOi).

127



The detector then calculates the following:

∆(i) = N(HIi)−N(LOi), for i = 1, . . . , l (6.5)

The detector uses two thresholds to decide whether a watermark is present.

First, if ∆(i) > η (η is the detection threshold in (6.3)), the detector calls the

ith pair in the sequence detected. Note that the confidence threshold ψ used

during the watermark insertion ensures that natural variations in numbers

of packets do not destroy the watermark.

Finally, the detector declares the candidate flow to be watermarked if the

total number of detected pairs nc (out of l) is greater than or equal to some

threshold θ, Hamming threshold. It is easy to see that by increasing η and

θ, we can decrease the number of false positives at the cost of creating more

false negatives. We will discuss parameter choices in Section 6.1.4. Due

to the delays applied to the mixed watermarked flows passing through the

network, the detectors need to perform synchronization. This is done using

sliding windows, as will be discussed in section 6.1.5.

6.1.4 Simulations and experiments

In the simulations and experiments of this section we only consider the de-

tection of BotMosaic watermarks being inserted into the traffic towards the

botmaster. The detection of watermarks on traffic to bots is similar; how-

ever, botmaster detection is more difficult as the botmaster traffic is relayed

through a number of stepping stones, resulting in more delays affecting the

watermark pattern.

Simulations

We simulated BotMosaic in Matlab to evaluate its performance. We used

the traces of botnets for SpyBot and SdBot botnets that were also used

in BotMiner research [80]. The SdBot trace belongs to a botnet with a

botmaster and four real bots. Since we needed a larger botnet to evaluate our

scheme, we extended the trace to have 100 real bots. Based on analyzing the

trace, bots listen on the IRC channel for the commands, and upon receiving

a command they respond to it appropriately. To extend the botnet trace
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from the existing 4-bot trace to a 100-bot trace, we sent a response to the

channel on behalf of the newly added bots after a random delay whenever a

command was issued and the existing bots responded to it.

To simulate the watermarking scheme, we added watermarked flows gen-

erated by the rogue bots to the trace for different settings of watermark

parameters. For each run of the simulations, we generated a new extended

trace, selecting a different part from the real trace randomly and extending

the trace for 100 bots as discussed above. We insert the watermark into the

trace and calculate the number of pairs that are detected by the detection

scheme (true positive pairs); we also run detection on the unwatermarked

version of the trace to and count the number of detected pairs (false positive

pairs). This lets us estimate the error rates for a given threshold θ; namely,

how many watermarked flows would not be detected (false-negative rate)

and how many non-watermarked flows would be misdetected (false-positive

rate). We then adjust θ so that false-positive and false-negative error rates

are equal; the resulting rate is called the crossover error rate (COER) and

we call the corresponding threshold θ̂.

We also add delay and jitter to the botnet traffic, based on measurements

we have performed on PlanetLab [39]. In Section 6.1.5 we will discuss how

to synchronize our detector with the watermarker. However, non-uniform

delay for different bots, as well as network jitter, will decrease the accuracy

of our detection and thus we include it in our simulation. Each experi-

ment is run 100 times (each time with the same watermark parameters but

different watermark key and different bot traces) to get the mean and vari-

ance of true-positive and false-positive parameters. Using these statistics

we estimate the COER for each experiment by approximating the false er-

ror rate distributions with normal distributions. The Kolmogorov-Smirnov

(K-S) test indicates that the true-positive and false-positive parameters are

fitted to normal distributions with average significance levels of 0.0121 and

0.045, respectively. The average K-S distances from a normal distribution

are 0.0808 and 0.0680, respectively. In our experiments, we set the number

of (active) real bots to be B = 100, and vary the number of rogue bots, R.

Fig. 6.4a illustrates the estimated COER versus the watermark length, for

different values of the parameter T . The R/B value is fixed to 10%. In all

of the simulations, the detection threshold η and the confidence threshold ψ

are set to 1.
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Figure 6.4: COER error of the detection scheme over SdBot botnet traces
along with 95% confidence intervals.

We also estimated the COER for different values of R/B ratio. Fig. 6.4b

shows the COER for different watermark lengths having different ratios of

R/B. As expected, increasing R/B improves the COER at the expense of

requiring more resources to run a larger number of instances.

Table 6.1 shows the results of the experiment for two different settings

of the watermark parameters (each experiment is run 500 times). For the

interval length of T = 500ms and using 64 pairs and for R/B = 10%, a

watermark can be inserted into a 64 second connection with the botmaster,

and the resulting COER is on the order of 10−8, which is very promising.

Increasing the T parameter improves the COER, at the expense of needing

more time for the botmaster to be online. We find that θ̂ is approximately

l/2.

We also performed similar experiments over SpyBot traces from [80], lead-

ing to similar results. Table 6.1 also shows the detection results for two

sample sets of watermarking parameters for the SpyBot traces. As can be

seen the watermark can be detected in as few as 64 seconds with a COER

of about 10−8. Similar to SdBot simulations, we can trade elapsed time for

COER, using different values of the watermarking parameters.

Implementation

We tested BotMosaic on PlanetLab by creating synthetic bots that use an

IRC channel to communicate with the botmaster. The captured bots are
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Table 6.1: Two sample runs of the detection scheme over SdBot and
SpyBot traces, for R/B = 10% and a watermark sequence of length 64
(averaged over 100 random runs).

Botnet
T

True False
θ̂ COER

Elapsed
type pairs pairs time (s)

SdBot
250 43.9 22.4 33 2.8 ∗ 10−3 32
2000 51.3 12.9 32 3.52 ∗ 10−13 256

SpyBot
500 48.0 16.2 32 2.32 ∗ 10−8 64
2000 50.3 13.5 32 7.55 ∗ 10−11 256

implemented over physically separate hosts in PlanetLab. Watermark proxies

are installed in front the captured bot hosts, and are controlled by a controller

to insert the watermark. We route all the bot traffic through the watermark

proxy. Watermark proxies are responsible for watermarking the bot traffic on

all the captured bot machines, so that the accumulated traffic makes the final

watermarked traffic. By using a proxy, we avoid having to reverse engineer

and modify the bot code to insert watermarks.

We implemented the BotMosaic watermarking scheme over the PlanetLab

infrastructure using randomly selected nodes as different entities in the ex-

periment. Fig. 6.5 shows the structure of our experiment. A botmaster is

controlling botnet through the IRC C&C. To hinder detection, the botmaster

relays his traffic to the IRC server through 5 stepping stone nodes located in

geographically different locations, and also encrypts the connections between

stepping stones.

There are 100 real bots (B = 100) connected to the IRC C&C channel,

listening for the commands from the botmaster and sending appropriate re-

sponses to the channel. The real bots are chosen randomly, and are located

in geographically diverse locations. We set up R = 10 captured bots to send

watermarked flows to the C&C channel (R/B = 10%). The captured bots

are also chosen randomly and are located in different places. A controller

node commands the captured bots to join the C&C channel. Once all the

captured bots have joined the channel, the controller commands all of them

to start sending packets on the C&C channel containing corresponding shares

of the watermark.

Again, we only provide the results for the watermark inserted on the bot-

net traffic to the botmaster, i.e., through PRIVMSG to the botmaster; the

detection performance is the same for the watermark inserted into the traffic
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Figure 6.5: Testbed structure of BotMosaic implementation over PlanetLab.

directed to the bots.

We set up several watermark detectors across the network to look for the

inserted watermark in network flows. The detector deployment is described

in Section 6.1.2. We set up 5 detectors on the way to the botmaster to check

the true detection rate, and also 3 detectors on the paths not leading to the

botmaster to evaluate the false detection rate.

Fig. 6.6 shows detection results for different detectors. We set the T pa-

rameter of the watermarking system to be T = 500ms and use watermarks

with sequence length l equal to 32, 64, and 128. According to the simulations

in the previous section, we set the Hamming threshold θ to be l/2 in each

case. Results are normalized by the sequence length.

As the results show, detectors on the path from IRC server to the botmas-

ter (MN#1 to MN#5) are able to detect the watermark from the mixed-

encrypted flows, as soon as only 32 seconds. On the other hand, detectors

placed on the paths not containing the botmaster watermark do not detect

the watermark on the innocent flows.

6.1.5 Discussion

We briefly discuss several other issues regarding the BotMosaic scheme.
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Figure 6.6: Watermark pairs detected by different detectors across the
testbed (normalized by total number of pairs).

Detector synchronization

Watermark detectors need to synchronize the received watermarked flow with

the watermark sequence, i.e., minimize the offset between intervals of water-

marked flow and those of the watermark, in order to successfully detect the

watermark. To find the right offset of the watermarked flow, we run the

watermark detection scheme over the received flow applying different offset

values from 0 to T in T/100 steps, and select the offset maximizing the num-

ber of detected pairs as the right offset for that flow. Our experiments show

that running the synchronization mechanism over an non-watermarked flow,

the number of detected pairs remains below the hamming threshold θ for

different offset values. The use of this synchronization mechanism makes

detection scheme tolerate different network delays (though variable network

jitter still impacts the detection accuracy).

Resources

In order to study the processing and memory costs of BotMosaic detection

scheme, we ran the watermark detector over a 21GB network trace gathered

from the routers of an anonymous US university. The utilized trace contains
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Table 6.2: Resources required for BotMosaic.

l Processing Time Total Memory Total Memory
(µsec/flow) per flow (KB) (MB)

32 28.0 0.16 3.46
64 49.3 0.27 6.06
128 86.9 0.48 10.49

21 744 concurrent flows, with a total of 2.1GB of timing information. Since

the detection scheme should be implemented over border routers, this volume

of traffic is representative of a highly loaded border router.

The experiment is done using a Unix system with a 1.6GHz Intel CPU and

2GB of memory. Table 6.2 illustrates the result of the experiment over the

university traces. Even for a watermark of length 128, which would provide

very low error rates, the total memory needed for watermark detection is

about 11MB, and the processing time for each flow is as only 87µs. The time

and processing resources are even smaller for shorter watermarks. Thus we

expect that it may be possible to deploy BotMosaic even in high-performance

routers used by large ISPs, to provide a better vantage point for bot detection

and botmaster traceback.

Watermark evasion

As with any flow watermarking scheme, an attacker who wishes to foil water-

mark detection can do so by inserting large delays and other modifications

to the flow structure. Therefore, an adversary with full control over an IRC

server can render a botnet immune to BotMosaic. There are other evasion

avenues available to the botnet designer, including the use of a peer-to-peer

structure or covert communication [81] for C&C. Our goal, however, is to cap-

ture a class of existing bots that, despite using simple and well-understood

C&C techniques, still comprises a large fraction of current botnets seen in

the wild [67,68]. Forcing botnet operators to use more advanced C&C mech-

anisms imposes new costs and affects the profitability of the entire criminal

enterprise.
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Other issues

Traditional flow watermarking schemes consider issues like chaff, repacketi-

zation, and packet addition/removal on the performance of watermark de-

tection. BotMosaic is designed to be robust to interfering traffic from non-

captured bots and the corresponding mechanisms likewise address the above

issues.

Interval-based watermark schemes are subject to a multi-flow attack dis-

covered by Kiyavash et al. [31]. This might allow a non-subscriber to recover

the secret watermark key; if this is a concern, we can use the mechanisms

proposed by Houmansadr et al. [41], for example, by changing the watermark

key (the set of HI and LO intervals) over time.

Finally, it might be the case that the botmaster puts limitations on the

number of packets each bot can send. In this case, watermarking will still

be feasible by using more captured bots to collaborate in the generation of

BotMosaic watermarks.

6.1.6 Conclusions

We have presented a new botnet traceback scheme, BotMosaic, that detects

bot infected machines and helps to track down the botmasters controlling

the centralized botnets. BotMosaic uses a service-based approach where de-

tector clients perform fast and low-cost watermark detection, which is much

cheaper and easier to deploy than existing signature- and classification-based

detectors. We presented a new collaborative flow watermarking structure,

making it suitable for the botnet detection problem. We showed through

experiments that our watermark can be quite effective when 5%-10% of the

bots are captured/imitated by a service provider, and that our detection is

simple enough to be able to handle large volumes of traffic. Any individual

organization deploying the low-cost BotMosaic detectors can realize bot de-

fense benefits, providing an incremental path to widespread deployment of

the BotMosaic architecture and potential detection of botmasters.
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6.2 Mitigating the Tor congestion attack

Watermarks have been traditionally seen as privacy-invasive tools, since they

can be used to link relayed flows and thus compromise anonymity systems

such as Tor [21]. We show that our watermark design of SWIRL, presented

in Chapter 4, enables a new, privacy-enhancing use of watermarks in order

to prevent a certain type of attack against Tor.

Evans et al. [82] demonstrated an attack on Tor that uses active probing

to detect which Tor routers are used to forward a particular tunnel, thus

breaking anonymity. Unlike watermarks or passive traffic analysis, their at-

tack works even when the routers being used are not under the control or

observation by the adversary. The basis of the attack comes from an earlier

congestion attack, explored by Murdoch and Danezis [83]. However, a key

feature of the new attack is the use of bandwidth amplification to create

sufficient congestion to make this attack practical on today’s Tor network.

The bandwidth amplification exploits the fact that paths in Tor can be

constructed to have an arbitrary length. This, coupled with the fact that

each hop on a path knows only the previous and the next hop, makes it easy

to construct a path that loops through a set of routers many times. This,

in turn, ensures that a single packet sent by a user will result in k packet

transmissions at each of the routers in the loop, for near-arbitrary values of

k.

A potential defense described by Evans et al. is to modify the Tor protocol

to restrict the number of circuit extensions it allows, and thus the maximum

path length. However, they point out that this is not sufficient to completely

prevent such congestion attacks, as loops can still be created by going outside

the Tor network and then returning. In particular, a client can create a Tor

tunnel, which forwards its traffic over Tor to TCP connection from an exit

node to some destination on the Internet. This TCP connection can then

be used to connect back to Tor as a client, and repeat the circuit again.

Iterating this process yields the same functionality as the long-path attack.

Although a naive approach may be foiled by exit and entrance policies in

Tor, the attacker can instead use proxies, other anonymizers, or hidden Tor

entry and exit points. Evans et al. leave defense to such external routing

loops as an open problem.

We propose to use SWIRL as a solution. The basic strategy is to configure
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Tor exit nodes to insert a SWIRL watermark on all outgoing TCP traffic.

Note that this labels the traffic as coming from Tor, but given that the list

of exit nodes is published in the Tor directory, this does not significantly de-

grade privacy. Each entry guard, correspondingly, tries to detect the SWIRL

watermark on an incoming TCP connection and rejects the stream if the

watermark is found. This way, the congestion attack is restricted to internal

paths only, which can be solved using the solution described above.

Note that this application can tolerate a significant rate of false positives

(say, 10−3 or even higher). This is because a false positive will simply cause

a legitimate user to retry a connection; given that the current Tor network

does not provide very reliable service, an occasional extra failed connection

is unlikely to significantly affect usability. This means that SWIRL param-

eters can be tuned to be able to mark shorter flows as compared with other

settings. Additionally, full invisibility is not needed, as the open proxies are

unlikely to be adversarial (if they were, they could simply generate the traffic

themselves). Thus, the q parameter can be reduced to decrease false-negative

errors.

It is important to realize that, although in principle any traffic analy-

sis technique could be used, the properties of SWIRL make it particularly

suitable for this task. Passive traffic analysis techniques (and non-blind wa-

termarks) would require each exit node to communicate timing patterns of

each exiting flow to each entry node. In addition to being very expensive,

such an approach would completely defeat the protection provided by the

Tor network, as each entry node would be able to detect which exit node

each of its flows was using! A watermark, on the other hand, marks only the

exiting flow and cannot be linked to the entry node. (Each exit node could,

in fact, use the same watermark.) Additionally, other watermarking schemes

introduce large delays, affecting the usability of the Tor network. The delays

used by SWIRL, on the other hand, are significantly smaller than the typical

latency of a Tor tunnel [84] and are unlikely to be noticed.

To study this attack, we simulated SWIRL being applied to Tor traffic

flows. We used a set of flow timings observed by a Tor middle node1 in our

tests. We used a total of 14 flows that were long enough for our watermark.

We then ran tests using both watermarked and non-watermarked versions of

1This data set was provided to us by Steven Murdoch.
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Table 6.3: Watermark detection results for Tor flows.

Flow rate True intervals False intervals
(pps) mean range mean range

3.25–3.57 27.51 17–32 5.89 2–11
11.58-14.33 28.76 21–32 6.88 3–14

the flows to compute the number of true and false intervals detected. The

results are shown in Table 6.3. The rates of the flows had a natural separation

into two classes and we present the results for each class separately. Note

that our tests are most representative for a direct connection from an exit to

an entry node; any proxies or other relays may introduce extra delays that

affect parameter choices. (However, the large and highly variable delays in

the actual Tor network do not matter here, since the watermark is being

transmitted over a channel external Tor.) Prior to implementation, it would

be necessary to do a survey of proxy mechanisms available for congestion

attacks and tune the parameter choices appropriately; we leave this to future

work.
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CHAPTER 7

CONCLUSIONS

In this thesis, we investigated the problem of network flow watermarks. In

short, this thesis shows that it is possible to design effective flow watermarks

that aid traffic analysis for different application scenarios.

We proposed two novel flow watermarks: the non-blind scheme of RAIN-

BOW and the blind scheme of SWIRL. In designing these watermarks we

tried to achieve the following two objectives simultaneously: i) watermark

robustness to network perturbations, and ii) watermark invisibility from non-

watermarking entities. Previous research fails to achieve both of these prop-

erties at the same time and tends to sacrifice one for the other. For instance,

several watermarks provide robustness to network perturbations by apply-

ing large-value delays to network flows, compromising the invisibility of the

inserted watermark. The watermarks designed in this thesis ensure water-

mark invisibility through performing statistical tests that try to distinguish

between watermarked flows and regular non-watermarked flows. Also, the

designed watermarked are able to perform watermark detection after observ-

ing short lengths of network flows, providing real-time identification of linked

flow.

Flow watermarking literature has only considered two applications: the use

of flow watermarks by security defenders to detect stepping stone attacks, and

its use by cyber criminals to compromise anonymity networks. In this thesis

we show that it is possible to use flow watermarks in other applications where

linking network flows is challenging due to traffic obfuscation. In particular,

we propose two new applications for network flow watermarks.

Finally, this thesis also investigated flow fingerprinting, an underexplored,

yet important, kind of flow tagging. In contrast to watermarking, flow fin-

gerprinting aims at inserting several bits of information over network flows

reliably. As a result, effective extraction of flow fingerprints is a more chal-

lenging problem than watermark detection. This thesis shows the possibility
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of designing reliable flow fingerprints by utilizing coding techniques. I believe

that more advances can be made in the realm of flow fingerprinting, which

requires additional research in the future.
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