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Abstract

This thesis consists of an introduction and two independent chapters.

In Chapter 2, we show that the group of all homeomorphisms of the Cantor set H(2N) has ample

generics, that is, we show that for every m the diagonal conjugacy action g · (h1, h2, . . . , hm) =

(gh1g
−1, gh2g

−1, . . . , ghmg
−1) of H(2N) on H(2N)m has a comeager orbit. This answers a question

of Kechris and Rosendal. We prove that the generic tuple in H(2N)m can be taken to be the limit

of a certain projective Fraïssé family. We also give an example of a projective Fraïssé family, which

has a simpler description than the one considered in the general case, and such that its limit is a

homeomorphism of the Cantor set that has a comeager conjugacy class. These results will appear

in [26]. Additionally, using the perspective of the projective Fraïssé theory, we give examples of

measures on the Cantor set such that the generic measure preserving homeomorphism exists and is

realized as a projective Fraïssé limit.

In Chapter 3, we prove that each measure preserving Boolean action by a Polish group of isome-

tries of a locally compact separable metric space has a spatial model or, in other words, has a

point realization. This result extends both a classical theorem of Mackey and a recent theorem of

Glasner and Weiss, and it covers interesting new examples. In order to prove our result, we give

a characterization of Polish groups of isometries of locally compact separable metric spaces which

may be of independent interest. The solution to Hilbert’s fifth problem plays an important role

in establishing this characterization. This work is joint with Sławomir Solecki and is published in

[28]. Additionally, using our characterization, we give an alternative proof of the result by Gao

and Kechris saying that no continuous action by a Polish group of isometries of a locally compact

separable metric space is turbulent.
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Chapter 1

Introduction

1.1 Polish groups

A Polish group is a separable and completely metrizable topological group. This class includes

separable locally compact groups (in particular, Lie groups), but there are many more examples.

An important class of Polish groups are permutation groups, that is, closed subgroups of the group

of all permutations of the natural numbers equipped with the pointwise convergence metric. This

class is equal to the class of automorphism groups of countable (model theoretic) structures. To

study permutation groups we often use tools coming from model theory or Ramsey theory, see

for example [25] or [39]. Permutation groups on the one hand share some properties with locally

compact groups (they do not have whirly [14] or turbulent [20] actions), but, on the other hand,

there are important phenomena that do not occur among locally compact groups and that do occur

for some permutation groups (for example, extreme amenability [25]).

Polish groups come up in many areas of mathematics. Among important Polish groups are: the

group of all unitary operators of the separable infinite-dimensional Hilbert space with the strong

operator topology, the group of all measure preserving automorphisms of the standard Lebesgue

space with the weak topology, groups of all isometries of Polish metric spaces (for example, of

the Urysohn metric space), and groups of all homeomorphisms of compact metrizable spaces (for

example: of the Cantor set, or of the pseudo-arc).

In Chapter 2, we study the group of all homeomorphisms of the Cantor set. This is an important

example of a permutation group, studied in topological dynamics. In Chapter 3, we explore the

structure and dynamics of Polish groups of isometries of locally compact separable metric spaces.

This class includes locally compact separable groups, permutation groups, and many more (for

instance, countable products of locally compact separable groups).
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1.2 Ample generics

In this section we give an overview of results proved in Chapter 2.

A group G acts on itself by conjugation g · h = ghg−1. Orbits of this action are conjugacy

classes. A classical result by Halmos asserts that Aut(X,µ), the group of all measure preserving

transformations of the Lebesgue space, has a dense conjugacy class; his proof uses the fundamental

lemma due to Rokhlin. Motivated by this result, we say that a topological group has RP (the

Rokhlin property) if it has a dense conjugacy class. It has SRP (the strong Rokhlin property) if

it has a comeager (“large” in a topological sense) conjugacy class. A comeager conjugacy class

necessarily has to be a Gδ (that is, an intersection of countably many open sets).

Hodges, Hodkinson, Lascar, and Shelah [18], and later Kechris and Rosendal [24], studied a much

stronger notion of “largeness” of conjugacy classes. A topological group G has m-ample generics if

it has SRP in dimension m, that is, if the diagonal conjugacy action of G on Gm:

g · (h1, h2, . . . , hm) = (gh1g
−1, gh2g

−1, . . . , ghmg
−1)

has a comeager orbit. It has ample generics if it has m-ample generics for every m.

We will call a tuple from this comeager orbit a generic tuple.

Groups with ample generics come up naturally in various contexts. Examples of such groups are:

• the group of all automorphisms of the random graph (Hrushovski [20]);

• the group of all isometries of the rational Urysohn space (Solecki [35]);

• the group of all Haar measure-preserving homeomorphisms of the Cantor set (Kechris-Rosendal

[24]).

All known examples of groups with ample generics are permutation groups.

Polish groups with ample generics share many properties connecting their algebraic and topologi-

cal structure. Kechris and Rosendal [24] showed that if G is a Polish group that has ample generics,

then the conditions (1)-(3) below hold. See also [18] for earlier results.

(1) Every subgroup of G of index less than 2ℵ0 is open (the small index property).
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(2) The group G is not a union of countably many cosets of non-open subgroups.

(3) Every algebraic homomorphism from G to a separable topological group is continuous. (This

condition implies that there is exactly one Polish group topology on G.)

A permutation group is oligomorphic if it has finitely many orbits on each Nn. Equivalently,

it is oligomorphic when it is an automorphism group of an ℵ0-categorical structure. Kechris and

Rosendal [24] showed that for an oligomorphic group G with ample generics the following condition

holds.

(4) The group G has the Bergman property, that is, every action of G by isometries on a metric

space has bounded orbits.

Denote the Cantor set by 2N and the group of homeomorphisms of the Cantor set by H(2N).

Akin, Hurley, and Kennedy [4] and independently Glasner and Weiss [15] showed that H(2N) has

the Rokhlin property. Later, this result was strengthened by Kechris and Rosendal [24] who showed

that H(2N) has the strong Rokhlin property. Akin, Glasner, and Weiss [3] gave a different proof of

this result. Moreover, they gave an explicit description of a generic homeomorphism of the Cantor

set (that is, a homeomorphism with comeager conjugacy class).

The main result that is proved of Chapter 2 is the following.

Theorem 1.2.1. The group of homeomorphisms of the Cantor set has ample generics.

The main tool we use in the proof is the projective Fraïssé theory developed by Irwin and Solecki

(see [21]). This is a dualization of the Fraïssé theory from model theory.

As H(2N) is (isomorphic to) an oligomorphic permutation group, as a consequence, we immedi-

ately get the following corollary.

Corollary 1.2.2. The group of homeomorphisms of the Cantor set has properties (1)-(4).

There is a common reason why all three above mentioned groups have ample generics. They

all have the Hrushovski property. This property is absent in H(2N). We say that a structure X

has the Hrushovski property if for every k, a finite substructure A of X, and a tuple of partial

automorphisms f1, f2, . . . , fk of A (a partial automorphism of A is an automorphism between two

substructures of A), there exists a finite substructure B ⊇ A of X together with automorphisms
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g1, g2, . . . , gk of B such that gi � A = fi. A permutation group G has the Hrushovski property if

there exists a structure X with the Hrushovski property such that G = Aut(X).

It may be interesting to compare our results with the results by Hochman [17]. Let Γ be a

countable discrete group. Let Rep(Γ, H(2N)) be the set of all representations of Γ into H(2N) (we

can also think of it as the set of all actions of Γ on 2N by homeomorphisms). This is a closed subset

of H(2N)Γ. The group H(2N) acts on Rep(Γ, H(2N)) by conjugation. When Γ = Fm, the free group

on m generators, Rep(Γ, H(2N)) can be identified with H(2N)m, and the action is the diagonal

conjugacy action. Therefore, saying that H(2N) has m-ample generics is equivalent to saying that

the action of H(2N) on Rep(Fm, H(2N)) has a comeager orbit. In contrast, Hochman [17] showed

that all orbits in the action of H(2N) (m > 1) on Rep(Zm, H(2N)) are meager.

1.3 Groups of isometries

In this section we first discuss groups of isometries and then we give an overview of results proved

in Chapter 3.

Given a metric separable space (X, d), by Iso(X)(= Iso(X, d)) we understand the group of all

isometries of (X, d) with composition as group operation and with the topology of pointwise con-

vergence. The group Iso(X) is a separable metrizable topological group. We say that a topological

group G is a group of isometries of X if there exists an isomorphism that is also a homeomorphism

between G and a subgroup of Iso(X).

Viewing Polish groups as isometry groups of metric spaces provides a natural stratification of the

class of all Polish groups. The starting point here is the observation that if X is a Polish metric

space, then Iso(X) is a Polish group. Furthermore, the following relevant results are known:

(i) (Uspenskij [40]) G is a Polish group of isometries of a Polish metric space if and only if G is

a Polish group;

(ii) (Gao–Kechris [12, Theorem 6.3]) G is a Polish group of isometries of a locally compact Polish

metric space, or equivalently, of a locally compact separable metric space, if and only if G is
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a closed subgroup of a group of the form

∏
n∈N

S∞ nMN,

where S∞ is the group of all permutations of N, M is a locally compact second countable

group, and the semidirect product is formed by viewing each σ ∈ S∞ as an automorphism of

MN which acts on h ∈MN by returning σ(h) ∈MN given by

σ(h)(i) = h(σ−1(i));

(iii) (folklore) G is a Polish group of isometries of a proper metric space, that is, a metric space

in which all balls are compact, if and only if G is a locally compact second countable group;

(iv) (folklore) G is a Polish group of isometries of a compact metric space if and only if G is a

compact second countable group.

Moreover, in the conditions on the left hand side in each of the points above, one can replace the

phrase “Polish group" by “closed group." Also, the conditions on the left hand side in each of the

points above can be replaced by the condition that G be isomorphic to the whole group Iso(X)

in (i) for a Polish metric space X [12, Theorem 3.1(i)], in (ii) for a locally compact Polish metric

space X [12, Theorem 6.3], in (iii) for a proper metric space X [31, Theorem 2.1], and in (iv) for a

compact metric space X [32], respectively.

Of primary interest to us will be Polish groups that are groups of isometries of locally compact

separable metric spaces. Both locally compact Polish groups and permutation groups are Polish

groups of isometries of locally compact separable metric spaces. This can be deduced from the

above mentioned theorem due to Gao and Kechris [12] or, we can observe directly that a locally

compact Polish group acts faithfully on itself by left translations preserving a left invariant metric,

and a permutation group has a natural faithful action on N preserving the metric assigning distance

1 to each pair of distinct points in N.

In a joint work with Sławomir Solecki we explore the following problem:

Question. For which topological groups G, does each Boolean action of G have a spatial model?
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Let (X,B(X), µ) be a standard Lebesgue space (i.e., there is a Polish topology on X whose family

of Borel sets is B(X) and µ is a Borel probability measure on B(X)). For B ∈ B(X), let [B]µ be

the µ-equivalence class of B. By B(X)/µ we denote the Boolean algebra of all [B]µ, B ∈ B(X),

with the usual Boolean operations. Let Aut(µ) denote the Polish group of all measure preserving

automorphisms of (X,B(X), µ).

Let G be a Polish group. Assume we are given a continuous homomorphism G→ Aut(µ), which

we will view as a continuous action of G on B(X)/µ:

G× B(X)/µ 3 (g, [B]µ)→ g · [B]µ ∈ B(X)/µ.

We call such an action a (measure preserving) Boolean action of G on B(X)/µ. By a spatial model of

such a Boolean action we mean a Borel action G×X → X of G on X such that for each B ∈ B(X)

and g ∈ G, we have

[g(B)]µ = g · [B]µ.

In Section 3.1 we discuss two alternative, and equivalent, definitions of a Boolean action, and we

precisely describe the topology on Aut(X,µ).

By the classical theorem of Mackey [29] every Boolean action of a locally compact Polish group

admits a spatial model. By the theorem of Glasner–Weiss [15, Theorem 2.3] every Boolean action

of a permutation group admits a spatial model. There are also examples of Polish groups and their

measure preserving Boolean actions without a spatial model. The natural Boolean action of Aut(µ)

on B(X)/µ does not admit a spatial model. In Theorem 1.3.1, we extend the two results above to

all Polish groups of isometries of locally compact separable metric spaces.

Theorem 1.3.1. Let G be a Polish group of isometries of a locally compact separable metric space.

Then each measure preserving Boolean action of G has a spatial model.

The following characterization of Polish groups of isometries of locally compact separable metric

spaces will be crucial in proving Theorem 1.3.1 and is of independent interest. Recall that if H is

a subgroup of a group G, N(H) stands for the normalizer of H, that is,

N(H) = {g ∈ G : gHg−1 = H}.

6



Theorem 1.3.2. Let G be a Polish group. Then G is a group of isometries of a locally compact

separable metric space if and only if each neighborhood of the identity contains a closed subgroup H

such that the space G/H is locally compact and N(H) is open.

The proof of Theorem 1.3.2 uses the work of Gao and Kechris [12] on isometry groups of locally

compact separable metric spaces, mentioned above. The main technical difficulty in our proof of

Theorem 1.3.2 is showing that the property stated in that theorem is preserved under taking closed

subgroups. Curiously, the argument establishing this preservation property uses the solution of

Hilbert’s fifth problem.

As a by-product of Theorem 1.3.2 we obtain the following corollary.

Corollary 1.3.3. Let G be a Polish group of isometries of a locally compact separable metric space,

and let N be a closed normal subgroup of G. Then G/N is also a Polish group of isometries of a

locally compact separable metric space. In other words, the class of Polish groups of isometries of

locally compact separable metric spaces is closed under taking images of continuous homomorphisms

onto Polish groups.
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Chapter 2

Ample generics of the homeomorphism
group of the Cantor set

2.1 Projective Fraïssé theory

We recall here basic notions and results on the projective Fraïssé theory developed by Irwin and

Solecki in [21]. The projective Fraïssé theory is a dualization of the classical (injective) Fraïssé

theory. Instead of countable (discrete) structures, we consider compact zero-dimensional second-

countable structures. The Hereditary Property in the definition of the injective Fraïssé family is

replaced by the condition (L2) in the definition of the projective Fraïssé limit.

Given a language L that consists of relation symbols {Ri}i∈I , and function symbols {fj}∈J ,

a topological L-structure is a compact zero-dimensional second-countable space A equipped with

closed relations RAi and continuous functions fAj , i ∈ I, j ∈ J . A continuous surjection φ : B → A

is an epimorphism if it preserves the structure, more precisely, for a function symbol f of arity n

and x1, . . . , xn ∈ B we require:

fA(φ(x1), . . . , φ(xn)) = φ(fB(x1, . . . , xn));

and for a relation symbol R of arity m and x1, . . . , xm ∈ B we require:

(x1, . . . , xm) ∈ RA

⇐⇒ ∃y1, . . . , ym ∈ B
(
φ(y1) = x1, . . . , φ(ym) = xm, and (y1, . . . , ym) ∈ RB

)
.

By an isomorphism we mean a bijective epimorphism.

For the rest of this section fix a language L. Let F be a family of finite topological

L-structures. We say that F is a projective Fraïssé family if the following two conditions hold:

(F1) (joint projection property: JPP) for any A,B ∈ F there are C ∈ F and epimorphisms from
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C onto A and from C onto B;

(F2) (amalgamation property: AP) for A,B1, B2 ∈ F and any epimorphisms φ1 : B1 → A and

φ2 : B2 → A, there exist C, φ3 : C → B1, and φ4 : C → B2 such that φ1 ◦ φ3 = φ2 ◦ φ4.

A topological L-structure L is a projective Fraïssé limit of F if the following three conditions

hold:

(L1) (projective universality) for any A ∈ F there is an epimorphism from L onto A;

(L2) for any finite discrete topological space X and any continuous function f : L→ X there are

A ∈ F , an epimorphism φ : L→ A, and a function f0 : A→ X such that f = f0 ◦ φ.

(L3) (projective ultrahomogeneity) for any A ∈ F and any epimorphisms φ1 : L→ A and φ2 : L→

A there exists an isomorphism ψ : L→ L such that φ2 = φ1 ◦ ψ;

Here is the fundamental result in the projective Fraïssé theory:

Theorem 2.1.1 (Irwin-Solecki, [21]). Let F be a countable projective Fraïssé family of finite topo-

logical L-structures. Then:

(1) there exists a projective Fraïssé limit of F ;

(2) any two topological L-structures that are projective Fraïssé limits are isomorphic.

In the propositions below we state some properties of the projective Fraïssé limit.

Proposition 2.1.2. (1) If L is the projective Fraïssé limit the following condition (called the

extension property) holds: Given φ1 : B → A, A,B ∈ F , and φ2 : L → A, then, there is

ψ : L→ B such that φ2 = φ1 ◦ ψ.

(2) If L satisfies projective universality, the extension property, and (L2), then it also satisfies

projective ultrahomogeneity, and therefore is isomorphic to the projective Fraïssé limit.

The projective Fraïssé limit is the inverse limit of certain topological L-structures from F . More

precisely, we have the following:

Proposition 2.1.3. Let F be a countable projective Fraïssé family of finite topological L-structures.

Let L be its projective Fraïssé limit. Then, there are D1, D2, D3, . . . ∈ F and πi : Di+1 → Di such

that L is the inverse limit of

D1
π1←−−−− D2

π2←−−−− D3
π3←−−−− . . . ,
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and moreover, the following two properties hold:

(1) For each A ∈ F there is i and there is an epimorphism φ : Di → A.

(2) For all pairs of epimorphisms φ1 : B → A and φ2 : Di → A there is j > i and ψ : Dj → B

such that φ1 ◦ ψ = φ2 ◦ πji , where π
j
i = πi ◦ . . . ◦ πj−1.

For more background information on the projective Fraïssé theory and for proofs see [21] (the

proof of Proposition 2.1.3 is included in the proof of Theorem 2.4 in [21], and the proof of Proposition

2.1.2 (ii) goes along the lines of the proof of the uniqueness of the projective Fraïssé limit in [21]).

For a category-theoretic approach to related issues we refer the reader to [8].

Below we present several examples of projective Fraïssé families.

Example 2.1.4. Let F0 be the family of all finite sets (no structure). This is a projective Fraïssé

family. The projective Fraïssé limit is the Cantor set.

Example 2.1.5 (Irwin-Solecki, [21]). Take the language L1 that consists of one binary relation sym-

bol R. Let F1 be the set of all finite reflexive linear graphs. We say that A = ({a1, a2, . . . , an}, RA)

is a finite reflexive linear graph if A is finite, and RA(x, y) if and only if x = y, or x = ai, y = ai+1

for some i = 1, 2, . . . , n − 1, or x = ai+1, y = ai for some i = 1, 2, . . . , n − 1. It was shown in [21]

that F1 is a projective Fraïssé family, its limit is a Cantor set equipped with a relation which is

an equivalence relation with only one and two-element equivalence classes, and that the quotient of

the limit is the pseudo-arc.

Example 2.1.6. Let L = {F}, where F is an unary function symbol. Consider

F2 = {(A,FA) : A is finite , FA is a bijection}.

This is a projective Fraïssé family. We check JPP and AP.

JPP: Take (A,FA), (B,FB) ∈ F2. Then (A×B,FA × FB) together with projections works.

AP: Take (A,FA), (B,FB), (C,FC) ∈ F2, φ1 : (B,FB) → (A,FA), and φ2 : (C,FC) → (A,FA).

Then (D,FD), where

D = {(b, c) ∈ B × C : φ1(b) = φ2(c)}
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and FD = FB × FC , together with projections works.

Denote the limit by L = (L, FL). The underlying set L is (homeomorphic to) the Cantor set.

Since for every (A,FA) ∈ F , FA is a bijection, it follows that FL is a homeomorphism.

In fact, we can describe precisely the limit (L, FL). The projective Fraïssé limit (L, FL) is

isomorphic to (Θ× 2N, τ × id), where (Θ, τ) is the universal adding machine. The universal adding

machine is the inverse limit of the inverse system (Zn!, p
n+1
n )n, where Zn! is the ring of integers

modulo n!, pn+1
n (k) = k mod n!, and τ is the coordinatewise translation by the identity element.

To show this, one can observe that (Θ× 2N, τ × id) satisfies conditions (L1), (L2), and (L3) in the

definition of the projective Fraïssé limit.

2.2 Spiral structures form a projective Fraïssé family

The goal of this section is to show that a generic homeomorphism of the Cantor set can be realized

as a projective Fraïssé limit of the class of spiral structures (defined below). Many ideas in this

section are motivated by [3].

Definition of a spiral structure. Let R be a binary relation symbol. We define a spiral

N = (N,RN ) to be the set N = {1, 2, . . . , n} with two distinguished points xN and yN such that

1 < xN < yN < n (we will be referring to them, respectively, as the left node of N and the right

node of N), equipped with the relation RN such that RN (i, i + 1) for every i = 1, 2, . . . , n − 1,

RN (xN , 1), and RN (n, yN ). See also Figure 1.

x y
2

3

4                5                6                7

1

 

9

8

Figure 2.1: A spiral

We will call the interval [1, xN ] the left circle of N and denote it by lN , we will call the interval

[yN , n] the right circle of N and denote it by rN , and we will call the interval [xN , yN ] the middle
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line of N and denote it by sN . Denote by |lN | the number of elements in the left circle in N , by

|sN | the number of elements in the middle line of N , and by |rN | the number of elements in the

right circle in N .

Spirals come up when we consider a homeomorphism of the Cantor set acting on clopen sets

of the Cantor set. Take any f ∈ H(2N) and a clopen partition P of 2N. For p0, p1 ∈ P with

f(p0)∩p1 6= ∅ we can choose (usually, in many ways) a bi-infinite sequence (pi)i∈Z with f(pi)∩pi+1 6=

∅, i ∈ Z, which is eventually periodic as i → +∞ and i → −∞; say . . . , pk−1, pk has period

K, and pl, pl+1, . . . has period L, where k < 0 < 1 < l. Then, we can identify the sequence

pk−K+1, . . . , pk−1, pk, . . . pl, pl+1, . . . pl+L−1 with a spiral (pl and pk become the left and the right

node, respectively). Notice that f(pi)∩pi+1 6= ∅ for every i = k−K+1, . . . , l+L−2, f(pl)∩pl−L+1 6=

∅, and f(pk+K−1) ∩ pk 6= ∅.

By a spiral structure we mean a disjoint union of spirals. Let G be the collection of all spiral

structures. The main goal of this section is to show:

Theorem 2.2.1. (1) The class G of spiral structures is a projective Fraïssé family.

(2) The projective Fraïssé limit of G is a generic homeomorphism of the Cantor set.

Maps between spiral structures. We want to understand epimorphisms between two spiral

structures. First note that:

Remark 2.2.2. Let φ : N →M be an epimorphism between spiral structures. Then, the image of

each spiral in N is contained in some spiral of M . Even more, it is either equal to a spiral in M , or

it is equal to the left circle of a spiral in M , or it is equal to the right circle of a spiral in M .

It is therefore enough to describe only relation preserving maps (not necessarily surjective) be-

tween spirals. Before doing this precisely, let us see a typical example of a relation preserving map

between spirals.

Example 2.2.3. Take M = {1, 2, 3, 4, 5, 6} with xM = 3 and yM = 5. Take

N = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} with xN = 3 and yN = 7. The map f : N →M satisfying: f(1) = 2,

f(2) = 3, f(3) = 1, f(4) = 2, f(5) = 3, f(6) = 4, f(7) = 5, f(8) = 6, f(9) = 5, and f(10) = 6 is

relation preserving.

12



In the proposition below we collect information about relation preserving maps between spirals.

Proposition 2.2.4. Let M = {1, 2, . . . ,m} and N = {1, 2, . . . , n} be spirals. Let f : N → M be a

relation preserving map. Let x be the left node of M and let y be the right node of M .

(1) Suppose that f is onto M . Then, there are a, b ∈ sN such that a < b, f(a) = x, f(b) = y, and

b− a = |sM | (there is exactly one such a pair (a, b)).

Conversely, suppose that |sM | ≤ |sN |, |lM | divides |lN | and |rM | divides |rN |. Given a, b ∈ sN

such that a < b and b − a = |sM |, then, there is exactly one relation preserving f : N → M

that is onto M , and such that f(a) = x and f(b) = y.

(2) Given f : N → M that is onto the left circle of M , then, there is c ∈ lN such that f(c) = x

(there is more than one such c).

Conversely, suppose that |lM | divides |lN | and |lM | divides |rN |. Given c ∈ lN , then, there

is exactly one relation preserving f : N → M that is onto the left circle of M and satisfies

f(c) = x.

(3) Given f : N →M that is onto the right circle of M , then, there is d ∈ rN such that f(d) = y

(there is more than one such d).

Conversely, suppose that |rM | divides |rN | and |rM | divides |lN |. Given d ∈ rN , then, there

is exactly one relation preserving f : N → M that is onto the right circle of M and satisfies

f(d) = y.

Proof. In each of 1,2, and 3 the first statement is immediate, we just use that f is relation preserving.

For the second statement in 1, we define f in the following way: f(b+k) = y+(k mod (m+1−y)),

for k = 0, 1, . . . , n − b; f(a − k) = x − (k mod x), for k = 0, 1, . . . , a − 1; f(k) = x + (k − a), for

a ≤ k ≤ b. (Intuitively, everything to the left of a we wrap around the left circle of M , and

everything to the right of b we wrap around the right circle of M .)

For the second statement in 2, we define f in the following way: f(c + k) = k mod x, for

k = 0, 1, . . . , n− c (here we identify 0 with x); f(c− k) = x− (k mod x), for k = 0, 1, . . . , c− 1.

For the second statement in 3, we define f in the following way: f(d+k) = y+(k mod (m+1−y)),

for k = 0, 1, . . . , n− d; f(d− k) = (m+ 1)− (k mod (m+ 1− y)), for k = 0, 1, . . . , d− 1 (here we

13



identify m+ 1 with y).

Joint projection property. We check that G has the JPP. First take two spirals K and L. We

want to find a spiral N that can be mapped both onto K and onto L. For this, let N be any spiral

such that |lN | divides both |lL| and |lK |, |rN | divides both |rL| and |rK |, and |sN | > |sK |, |sL|. We

describe a relation preserving map from N onto K: Choose a, b ∈ sN with a < b and b− a = |sK |;

map a to the left node of K, map b to the right node of K, and extend this to the map on the

whole N . We similarly find a relation preserving map from N onto L.

In general, when K and L are spiral structures, for every pair of spirals in K and L we find

a spiral that can be mapped onto both of them. The disjoint union of these spirals gives us the

required spiral structure.

Amalgamation property. We check that G has the AP.

The general situation and strategy: We have a spiral structure K1 ∪ . . . ∪ Kn (we have here a

disjoint union of spirals), an epimorphism φ1 : L1 ∪ . . .∪Ln1 → K1 ∪ . . .∪Kn, and an epimorphism

φ2 : M1 ∪ . . .∪Mn2 → K1 ∪ . . .∪Kn. Take Li, and consider φ1 � Li. Its image is contained in some

Kj . There are three possibilities: the image is equal to Kj , or it is equal to the left circle of Kj , or

it is equal to the right circle of Kj .

For this fixed Li, take any Mk such that φ2 � Mk is onto Kj . We find a spiral N , a relation

preserving map φ3 : N → Li that is onto, and a relation preserving map φ4 : N →Mk (we just want

φ4 to be into) such that φ1 ◦ φ3 = φ2 ◦ φ4. We do this with all of L1, L2, . . . , Ln1 . Next, we proceed

similarly with M1,M2, . . . ,Mn2 .

Therefore, it is enough to show the following:

Proposition 2.2.5. Let K,L,M be spirals. Given a relation preserving map f1 : L → K and

a relation preserving map f2 : M → K that is onto K, then, there exists a spiral N , a relation

preserving map f3 : N → L that is onto L, and a relation preserving map f4 : N → M such that

f1 ◦ f3 = f2 ◦ f4.

Proof. Let x and y denote the left and right nodes of K, respectively. We consider the following

three cases.
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Case 1. The map f1 is onto K. Here we will get f4 that is onto M .

Take any spiral N such that |lN | divides both |lL| and |lM |, |rN | divides both |rL| and |rM |, and

|sN | > 3(|sM |+ |sL|). Take a1, b1 ∈ sL such that a1 < b1, b1−a1 = |sK |, f1(a1) = x, and f1(b1) = y.

Take a2, b2 ∈ sM such that a2 < b2, b2 − a2 = |sK |, f2(a2) = x, and f2(b2) = y. Choose a, b ∈ sN

such that a < b and b− a = |sK |. Declare f3(a) = a1, f3(b) = b1, f4(a) = a2, f4(b) = b2. Extend f3

and f4 (in a unique way) to the whole N . We do this similarly as in the proof of Proposition 2.2.4

1. Above, we also have to make sure that our chosen a and b satisfy a1 − xL, a2 − xM ≤ a − xN

and yL − b1, yM − b2 ≤ yN − b.

Case 2. The map f1 is onto lK . Here we will get f4 that is onto lM .

Take any spiral N such that |lN | divides both |lL| and |lM |, |rN | divides both |rL| and |lM |, and

|sN | > |lL| + |sL|. Take c1 ∈ lL such that f1(c1) = x. Take c2 ∈ lM such that f2(c2) = x. Choose

c ∈ lN . Declare f3(c) = c1 and f4(c) = c2. Extend f3 (in a non unique way) to the whole N so that

f3 is onto L. Extend f4 (in a unique way) to the whole N so that f4 is onto lM .

Case 3. The map f1 is onto rK . Here we will get f4 that is onto rM .

Here we proceed as in Case 2.

Let (L, RL) denote the projective Fraïssé limit of G.

Proposition 2.2.6. The underlying set L is (homeomorphic to) the Cantor set.

Proof. The underlying set L is compact, zero-dimensional, and second-countable, as (L, RL) is

a topological L-structure (where L = {R}). We show that L has no isolated points as follows.

Suppose, towards a contradiction, that p ∈ L is an isolated point. Using (L2) find A ∈ F and an

epimorphism φ : L→ A such that the open cover {{p},L \ {p}} is refined by {φ−1(a) : a ∈ A}. Set

a0 = φ(p). We can find B and φ̄ : B → A such that there are distinct b0, b1 with φ̄(b0) = φ̄(b1) = a0

(for example, take B equal to two disjoint copies of A, and require φ̄ restricted to each copy to be

the identity). Using the extension property, find ψ : L→ B such that φ = φ̄ ◦ψ. Note that φ̄−1(b0)

and φ̄−1(b1) are disjoint non-empty clopen subsets of {p}. This gives a contradiction.

Proposition 2.2.7. The closed relation RL is the graph of a homeomorphism of the Cantor set.

Proof. Suppose, towards a contradiction, that there are α, β1, β2 ∈ L, β1 6= β2, such that RL(α, β1)

and RL(α, β2). Take A ∈ F and ψ1 : L → A such that ψ1(β1) 6= ψ1(β2). Using the description of
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epimorphisms between spirals (Proposition 2.2.4) we observe that there is B ∈ F and φ : B → A

such that whenever x is such that φ(x) = ψ1(α), then there is exactly one y ∈ B such that RB(x, y).

Using the extension property find ψ2 : L → B such that ψ1 = φ ◦ ψ2. We have RB(ψ2(α), ψ2(β1))

and RB(ψ2(α), ψ2(β2)). By the choice of φ, we get ψ2(β1) = ψ2(β2), and therefore ψ1(β1) = ψ1(β2).

This gives a contradiction.

We similarly show that there are no α, β1, β2 ∈ L, β1 6= β2, such that RL(β1, α) and RL(β2, α).

As (L, RL) is a topological L-structure, RL is closed and L is compact, and therefore, the function

induced by RL, and its inverse, preserve the topology.

Denote by FL the function induced by RL. Below, we will be writing (L, FL) rather than (L, RL).

Proposition 2.2.8. The conjugacy class of (L, FL) is a dense Gδ in H(L) = H(2N).

Proof. The proof goes along the lines of proofs of Propositions 2.3.14 and 2.3.15, presented in the

next section.

2.3 H(2N) has ample generics

In this section we prove our main result saying that the homeomorphisms group of the Cantor

set, H(2N), has ample generics.

Theorem 2.3.1. The group of all homeomorphisms of the Cantor set has ample generics.

First, we translate the question about the largeness of conjugacy classes in H(2N)m into a com-

binatorial question about a family of finite directed graphs. More precisely, for a fixed m, the

combinatorial question will concern a family Fm0 of finite structures, each equipped with m con-

nected directed graphs with an extra surjectivity property, with structure preserving epimorphisms

between structures in Fm0 . Then, we show that there exists a subfamily Fm of Fm0 which satisfies

the JPP (joint projection property) and the AP (amalgamation property), and is coinitial in Fm0 .

The properties JPP and AP make it possible to take a limit (the projective Fraïssé limit) of Fm.

Finally, we show that this limit can be viewed as a tuple in H(2N)m and that its diagonal conjugacy

class is comeager.
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Let s be a symbol for a binary relation. Following [4] (Chapter 8) we say that sA is a surjective

relation on a set A if sA ⊆ A2 and for any a ∈ A there are b, c ∈ A such that sA(a, b) and sA(c, a).

Note that sA is a directed graph with an additional surjectivity property.

Surjective relations come up naturally as restrictions of homeomorphisms of the Cantor set to

clopen partitions of the Cantor set. If P is a clopen partitions of 2N and f ∈ H(2N), then {(p, q) ∈

P 2 : f(p) ∩ q 6= ∅} is a surjective relation. We can think of a surjective relation as a partial

homeomorphism of the Cantor set. Note also that spiral structures considered in the previous

section are surjective relations.

To get a generic m-tuple of homeomorphisms, we will consider a certain family F of m-tuples

of surjective relations (Theorem 2.3.2). After taking the limit, we obtain an m-tuple of closed

relations on the Cantor set, which are surjective (that is, projections on both coordinates are onto).

We show that every relation in this tuple is necessarily a permutation (Proposition 2.3.11), and

therefore, is a graph of a homeomorphism of the Cantor set. Finally, we show that this m-tuple of

homeomorphisms is generic.

Let L = {s1, s2, . . . , sm}, where s1, s2, . . . , sm are symbols for binary relations. Let

F0 = {(A, sA1 , . . . , sAm) : A is a finite non-empty set, sA1 , . . . , s
A
m are surjective relations }.

It is straightforward to show that F0 has the JPP. Take (A, sA1 , . . . , s
A
m), (B, sB1 , . . . , s

B
m) ∈ F0.

Then (A×B, sA1 × sB1 , . . . , sAm × sBm) together with projections as epimorphisms works.

We want to find a coinitial subfamily F of F0 (that is, such that for every A ∈ F0 there is B ∈ F

and an epimorphism φ : B → A), which is a projective Fraïssé family. From the coinitiality of F0 it

will follow that F has the JPP as well. The main difficulty is to take care of the AP.

We start with some notation. Let s−1
1 , s−1

2 , . . . , s−1
m be symbols for the inverses of s1, s2, . . . , sm.

For R equal to s1, s
−1
1 , . . . , sm, s

−1
m , R−1 denotes s−1

1 , s1, . . . , s
−1
m , sm, respectively. Given A =

(A, sA1 , . . . , s
A
m), then (s−1

1 )A, . . . , (s−1
m )A are surjective relations too. LetR be one of s1, s

−1
1 , . . . , sm, s

−1
m .

Given x ∈ A, we say that x is RA-outgoing if there is more than one z ∈ A with RA(x, z), and

there is exactly one y ∈ A with RA(y, x). We say that x is RA-incoming if there is more than one

y ∈ A with RA(y, x), and there is exactly one z ∈ A with RA(x, z). Note that x is RA-outgoing iff

it is (R−1)A-incoming.
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For A ∈ F0 we say that we can amalgamate over A if for any B,C ∈ F0, φ1 : B → A, and

φ2 : C → A there are D ∈ F0, φ3 : D → B, and φ4 : D → C such that φ1 ◦ φ3 = φ2 ◦ φ4.

Let F be the collection of all structures from F0 that satisfy (i) and (ii) of Theorem 2.3.2 below.

From the coinitiality of F in F0 (Theorem 2.3.7 below) and Theorem 2.3.2 it will follow that F is

a projective Fraïssé family.

Theorem 2.3.2. Given A = (A, sA1 , . . . , s
A
m), suppose that A satisfies the following conditions.

(1) Every point in A is outgoing for exactly one of sA1 , (s
−1
1 )A, . . . , sAm, (s

−1
m )A.

(2) Let R be one of s1, s2, . . . , sm. Suppose that RA(x, y). Then either x is RA-outgoing or y is

RA-incoming.

Then we can amalgamate over A.

Remark 2.3.3. Condition 2 of Theorem 2.3.2 implies that if R is one of s−1
1 , s−1

2 , . . . , s−1
m and if

RA(x, y), then either x is RA-outgoing or y is RA-incoming.

Proof of Theorem 2.3.2. Given A = (A, sA1 , . . . , s
A
m), B = (B, sB1 , . . . , s

B
m), C = (C, sC1 , . . . , s

C
m),

φ1 : B → A, φ2 : C → A, we want to find D, φ3 : D → B and φ4 : D → C such that φ1◦φ3 = φ2◦φ4.

We start with some definitions. We let

D0 = {(b, c) ∈ B × C : φ1(b) = φ2(c)}.

For R equal to one of s1, s
−1
1 , . . . , sm, s

−1
m we let

RD0 = {((b, c), (b′, c′)) ∈ D0 ×D0 : (b, b′) ∈ RB, (c, c′) ∈ RC}.

Let π1 : D0 → B and π2 : D0 → C be the projections. (We will also write π1, π2 for restrictions of

π1, π2 to subsets of D0.) The surjectivity of π1 and π2 follows from the surjectivity of φ1 and φ2.

The relations sD0
1 , . . . , sD0

m do not have to be surjective. We find D ⊆ D0 so that sD1 = sD0
1 �

D, . . . , sDm = sD0
2 � D are surjective. For n = 1, 2, 3, . . . we let

Dn ={(x′, x′′) ∈ Dn−1 : for every R = s1, s
−1
1 , . . . , sm, s

−1
m there is

(y′, y′′) ∈ Dn−1 such that RD0((x′, x′′), (y′, y′′))}.
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Let D =
⋂
nDn. Clearly sD0

1 � D, . . . , sD0
m � D are surjective. We show that π1 : D → B and

π2 : D → C are epimorphisms (Lemma 2.3.6).

Define E0 = D0. Let x ∈ A. Let R be such that x is RA-outgoing. For n = 1, 2, 3, . . . we define

Exn ={(x′, x′′) ∈ En−1 : x = φ1(x′) = φ2(x′′) and there is (y′, y′′) ∈ En−1

such that RD0((x′, x′′), (y′, y′′))},

and let En =
⋃
x∈AE

x
n.

Lemma 2.3.4. Let x ∈ A. Let R be such that x is RA-outgoing. Let n be a positive natural number.

Suppose that (x′, x′′) ∈ E0 with φ1(x′) = φ2(x′′) = x, (y′, y′′) ∈ En−1, and RD0((x′, x′′), (y′, y′′)).

Then (x′, x′′) ∈ En.

Proof. We have (x′, x′′) ∈ E0 and (y′, y′′) ∈ Ei, for every i = 0, 1, . . . , n − 1. Furthermore, for

every natural number j, if (x′, x′′) ∈ Ej and (y′, y′′) ∈ Ej , then (x′, x′′) ∈ Ej+1. This gives us

(x′, x′′) ∈ En.

Lemma 2.3.5. We have En = Dn for every n.

Proof. This is clear for n = 0. Suppose it holds for n, and we prove it for n+1. ClearlyDn+1 ⊆ En+1.

We show En+1 ⊆ Dn+1. Take (x′, x′′) ∈ En+1. So (x′, x′′) ∈ En = Dn.

First let R be such that x = φ1(x′) = φ2(x′′) is RA-outgoing. Then, from the definition of Exn+1,

there is (y′, y′′) ∈ En = Dn such that RD0((x′, x′′), (y′, y′′)).

Now let R be such that x is not RA-outgoing. Take y ∈ A such that RA(x, y). Since x is not

RA-outgoing, y is RA-incoming. Take any y′ ∈ B and y′′ ∈ C such that RB(x′, y′) and RC(x′′, y′′).

Again, since x is not RA-outgoing, y = φ1(y′) = φ2(y′′), so (y′, y′′) ∈ E0. From the fact that y is

(R−1)A-outgoing and (R−1)D0((y′, y′′), (x′, x′′)), by Lemma 2.3.4, we get (y′, y′′) ∈ En+2. Therefore

(y′, y′′) ∈ En = Dn. We have proved that (x′, x′′) ∈ Dn+1.

Lemma 2.3.6. For every n = 0, 1, 2, . . .:

(i)n π1[En] = B;

(ii)n for x′, y′ ∈ B with RB(x′, y′), where R is one of s1, s
−1
1 , . . . , sm, s

−1
m , there are x′′, y′′ ∈ C such

that RC(x′′, y′′), φ1(x′) = φ2(x′′), φ1(y′) = φ2(y′′), and (x′, x′′), (y′, y′′) ∈ En.
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of Lemma 2.3.6. Proof of (i)0: Clear.

Proof that (ii)n implies (i)n+1: Let x′ ∈ B be given. Let R be such that x = φ1(x′) is

RA-outgoing. Take any y′ ∈ B such that RB(x′, y′). Now from (ii)n we get x′′, y′′ ∈ C such that

(x′, x′′), (y′, y′′) ∈ En and RC(x′′, y′′). From the definition of Exn+1 we get (x′, x′′) ∈ En+1.

Proof that (i)n implies (ii)n: Let R and x′, y′ ∈ B with RB(x′, y′) be given. Let x = φ1(x′) =

φ2(y′). We can assume that x is RA-outgoing. (Otherwise, y is (R−1)A-outgoing and the proof is

the same.)

If y is RA-incoming, then take any x′′, y′′ ∈ C with φ2(x′′) = x, φ2(y′′) = y, and RC(x′′, y′′). So

RD0((x′, x′′), (y′, y′′)). Since x is RA-outgoing and y is (R−1)A-outgoing, from Lemma 2.3.4 we get

(x′, x′′), (y′, y′′) ∈ En.

If y is not RA-incoming, use (i)n to find y′′ ∈ C such that (y′, y′′) ∈ En. Now take any x′′ ∈ C

such that RC(x′′, y′′). Then since y is not RA-incoming, we have φ2(x′′) = x. Note further that

since RD0((x′, x′′), (y′, y′′)), from the definition of Exn+1, we get (x′, x′′) ∈ En+1 ⊆ En. This shows

(ii)n.

Since there clearly is n such that D = En, Lemma 2.3.6 implies that π1 is an epimorphism. We

similarly show that π2 is an epimorphism. Therefore φ3 = π1 � D and φ4 = π2 � D work.

Theorem 2.3.7. The collection of all B = (B, sB1 , . . . , s
B
m) satisfying the hypotheses of Theorem

2.3.2 is coinitial in F .

Proof. GivenA = (A, sA1 , . . . , s
A
m), we take 4m disjoint copies ofA. Call themA+si , Â+si , A−si , Â−si ,

i = 1, 2, . . . ,m. Now we define B = (B, sB1 , . . . , s
B
m). Let

B =
⋃
i

(
A+si ∪ Â+si ∪A−si ∪ Â−si

)

be the underlying set.

First some notation. Let R be one of s1, . . . , sm. For a ∈ A, the copy of a in A+R will be denoted

by a(A+R), etc. For b ∈ B, by p(b) we denote the corresponding element in A.

Now we define RB.
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(1) For every (x, y) ∈ RA we put (x(A+R), y(A−R)), (x(Â+R), y(A−R)), (x(A+R), y(Â−R)), and

(x(Â+R), y(Â−R)) into RB.

(2) For every b ∈ B choose exactly one a ∈ A such that (a, p(b)) ∈ RA, and put (a(A+R), b) into

RB.

(3) For every b ∈ B choose exactly one a′ ∈ A such that (p(b), a′) ∈ RA, and put (b, a′(A−R))

into RB.

The relations sB1 and sB2 are surjective and the natural projection from B onto A is an epimor-

phism. We show that (B, sB1 , . . . , s
B
m) is as needed.

Claim 2.3.8. The structure B satisfies the hypotheses of Theorem 2.3.2.

Proof. Let i = 1, 2, . . . ,m. From the definition of sBi , the s
B
i -outgoing points are exactly a(A+si)

and a(Â+si), a ∈ A, and (s−1
i )B-outgoing points are exactly a(A−si) and a(Â−si), a ∈ A. From

this we get 1 of Theorem 2.3.2. From (i), (ii) and (iii) in the definition of RB it is clear that 2 of

Theorem 2.3.2 is also satisfied.

In the rest of this section we show:

Theorem 2.3.9. The projective Fraïssé limit of F is a generic tuple in H(2N)m.

Denote the projective Fraïssé limit of F by L = (L, sL1 , . . . , sLm). First we show that closed

relations sL1 , . . . , sLm are graphs of homeomorphisms of the Cantor set, and then we show that the

homeomorphisms induced by sL1 , . . . , sLm form a generic tuple, that is, the diagonal conjugacy class

of this tuple is comeager. We borrow some ideas from [3] (from the proofs of Proposition 3.2 and

Theorem 3.3 in [3]).

Let

G0 = {(A, sA) : A is a finite set and sA is a surjective relation}.

Lemma 2.3.10. The family G of spiral structures (defined in Section 2) is coinitial in G0.
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Proof. Take any A ∈ G0. Take x0, x1 ∈ A with RA(x0, x1). Note that the pair (x0, x1) can be

extended to a bi-infinite sequence (xi)i∈Z with RA(xi, xi+1), i ∈ Z, which is eventually periodic as

i → +∞ and i → −∞. From this we get a spiral M = M(x0,x1) and a relation preserving map

f : M → A such that for some x′0, x′1 ∈ M with RM (x′0, x
′
1), f(x′0) = x0 and f(x′1) = x1. The

required spiral structure is the disjoint union

⋃
{(x0,x1)∈A2 : RA(x0,x1)}

M(x0,x1).

Proposition 2.3.11. The closed relations sL1 , . . . , s
L
m are graphs of homeomorphisms of the Cantor

set.

Proof. In Proposition 2.2.7 we showed that the projective Fraïssé limit of G0 is the graph of a

homeomorphism of the Cantor set. In Lemma 2.3.10 we showed that G is coinitial in G0. Let

G′ = {(A, sA1 ) : there are sA2 , . . . , s
A
m such that (A, sA1 , . . . , s

A
m) ∈ F}.

This also is a coinitial in G0 projective Fraïssé family.

The projective Fraïssé limits of G and G′ are isomorphic to each other, and they are also isomorphic

to (L, sL1 ), (L, sL2 ), . . . , (L, sLm). In particular, sL1 , sL2 , . . . , sLm are graphs of homeomorphisms of the

Cantor set L.

Remark 2.3.12. One can give a more direct, not referring to Section 3, proof of Proposition 2.3.11.

For example, one can adapt the proof of Proposition 2.2.7 to our situation.

We denote the homeomorphisms whose graphs are sL1 , . . . , sLm by FL
1 , . . . , F

L
m, respectively. We

also write (L, FL
1 , . . . , F

L
m) rather than (L, sL1 , . . . , sLm).

By P or Q we denote partitions of 2N. All partitions will be clopen partitions. For f ∈ H(2N)

and a partition P we define

f � P = {(p, q) ∈ P 2 : f(p) ∩ q 6= ∅}.
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This is a surjective relation. Let (f1, . . . , fm) � P = (f1 � P, . . . , fm � P ). Define

[P, sP1 , . . . , s
P
m] = {(f1, . . . , fm) ∈ H(2N)m : f1 � P = sP1 , . . . , fm � P = sPm}.

Lemma 2.3.13. Sets of the form [P, sP1 , . . . , s
P
m] are clopen in H(2N)m. Moreover, they form a

topological basis in H(2N)m.

Proof. Clearly they are clopen sets. Take any (g1, . . . , gm) ∈ H(2N)m, and take ε > 0. Let U =

{(f1, . . . , fm) : ∀i∀x d(fi(x), gi(x)) < ε} (here d is any metric on 2N). This is an open set. We want

to find a clopen neighborhood of (g1, . . . , gm) that is of the form [P, sP1 , . . . , s
P
m] and is contained

in U . For this, take first an arbitrary partition Q of 2N of mesh < ε, and P = {q0 ∩ g−1
1 (q1) ∩

. . . ∩ g−1
m (qm) : q0, q1, . . . , qm ∈ Q}. For i = 1, 2, . . . ,m, we let sPi = {(p, r) : gi(p) ∩ r 6= ∅}.

Clearly (g1, . . . , gm) ∈ [P, sP1 , . . . , s
P
m]. Now take any (f1, . . . , fm) ∈ [P, sP1 , . . . , s

P
m], and p ∈ P ,

say p = q0 ∩ g−1
1 (q1) ∩ . . . ∩ g−1

m (qm). Then gi(p) ⊆ qi for every i = 1, 2, . . . ,m. For any r ∈ P ,

fi(p) ∩ r 6= ∅ iff gi(p) ∩ r 6= ∅ (i = 1, 2, . . . ,m). Therefore fi(p) ⊆ qi, i = 1, 2, . . . ,m. Since

diam(qi) < ε, for every i = 1, 2, . . . ,m and x ∈ p, d(fi(x), gi(x)) < ε. Since p ∈ P was arbitrary,

this shows (f1, . . . , fm) ∈ U .

Proposition 2.3.14. The conjugacy class of (FL
1 , . . . , F

L
m) is dense in H(L)m = H(2N)m.

Proof. For a partition P and a tuple of surjective relations (sP1 , . . . , s
P
m) on P we consider

D(P, sP1 , . . . , s
P
m) = {(f1, . . . , fm) ∈ H(L)m : ∃g (g−1f1g, . . . , g

−1fmg) ∈ [P, sP1 , . . . , s
P
m]}.

Let D be the intersection of all sets of the form D(P, sP1 , . . . , s
P
m). From Lemma 2.3.13 it follows

that if (f1, . . . , fm) ∈ D, then it has a dense conjugacy class.

We show that (FL
1 , . . . , F

L
m) ∈ D. Fix a partition P and a tuple (sP1 , . . . , s

P
m) of surjective

relations on P . From the projective universality of the limit and the coinitiality of F in F0, there

are a partition Q and an isomorphism i : (P, sP1 , . . . , s
P
m)→ (Q,FL

1 � Q, . . . , FL
m � Q). Now take any

g ∈ H(L) that extends i, and notice that (g−1FL
1 g, . . . , g

−1FL
mg) ∈ [P, sP1 , . . . , s

P
m].

Proposition 2.3.15. The conjugacy class of (FL
1 , . . . , F

L
m) is a Gδ in H(L)m = H(2N)m.
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Proof. We show that the set of (f1, . . . , fm) ∈ H(2N)m such that (2N, f1, . . . , fm) satisfies (L1), the

extension property, and (L2), is a Gδ. From Proposition 2.1.2 (ii), these are exactly structures that

are isomorphic to the projective Fraïssé limit (L, FL
1 , . . . , F

L
m), that is, structures that are conjugate

to (L, FL
1 , . . . , F

L
m).

1. Given A ∈ F , we notice that

UA = {(f1, . . . , fm) ∈ H(2N)m : there is an epimorphism from (2N, f1, . . . , fm) onto A}

is open.

2. Given A = (A0, s
A
1 , . . . , s

A
m), B = (B0, s

B
1 , . . . , s

B
m) ∈ F , φ : B → A, and a continuous surjection

g : 2N → A0, consider

Eφ,g ={(f1, . . . , fm) ∈ H(2N)m : if g : (2N, f1, . . . , fm)→ A is an epimorphism,

then there is h : (2N, f1, . . . , fm)→ B such that g = φ ◦ h}.

We show that this set is open.

For A and g : 2N → A0 as above we define

H(g,A) = {(f1, . . . , fm) ∈ H(2N)m : g : (2N, f1, . . . , fm)→ A is an epimorphism}.

This is a clopen set in H(2N)m. Therefore

Eφ,g =
(
H(2N)m \H(g,A)

)
∪

(⋃
h

H(h,B)

)
,

where the union is taken over continuous surjections h : 2N → B0 such that g = φ ◦ h, is an open

set. Since there are only countably many clopen decompositions of 2N, there are only countably

many continuous surjections g : 2N → A0.

3. Clearly, every (2N, f1, . . . , fm) satisfies (L2).

Hence, (⋂
A

UA

)
∩

⋂
φ,g

Eφ,g


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is a Gδ set. It consists exactly of (f1, . . . , fm) ∈ H(2N)m such that (2N, f1, . . . , fm) satisfies (L1),

the extension property, and (L2).

Proof of Theorem 2.3.1. This follows from Theorems 2.3.2, 2.3.7, and 2.3.9.

2.4 Measure preserving homeomorphisms of the Cantor set

In this section we give examples of measures on the Cantor set such that a generic measure

preserving homeomorphism exists and is realized as a projective Fraïssé limit. The main result of

this section is Theorem 2.4.6.

Define a family

A ={(A,µA, FA) : A is a compact zero-dimensional second countable topological space,

µA is a probability measure on A,FA is a µA-preserving homeomorphism of A}.

Let (A,µA, FA), (B,µB, FB) ∈ A. We say that φ : (B,µB, FB)→ (A,µA, FA) is an epimorphism

if it is a continuous measure preserving surjection satisfying φ ◦FB(b) = FA ◦ φ(b) for every b ∈ B.

Denote by C the category whose collection of objects is equal to A and epimorphisms are as

described above. For this category, and any subcategory of it, we define, in an obvious way, a

projective Fraïssé family and a projective Fraïssé limit.

For a multiplicative subgroup of real numbers G, let

FG ={(A,µA, FA) ∈ AG : A is finite,

µA is a probability measure on A such that for every a ∈ A,µA(a) ∈ G,

FA is a µA-preserving bijection of A}.

Proposition 2.4.1. The family FG is a projective Fraïssé family.

Proof. JEP: Take (A,µA, FA), (B,µB, FB) ∈ FG. Then (A×B,µA × µB, FA × FB) together with

projections work.

AP: Take (A,µA, FA), (B,µB, FB), (C, µC , FC) ∈ FG, φ1 : (B,µB, FB)→ (A,µA, FA) and
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φ2 : (C, µC , FC)→ (A,µA, FA). Then (D,µD, FD), where

D = {(b, c) ∈ B × C : φ1(b) = φ2(c)},

µD is such that µD(b, c) = µB(b)µC(c)
µA(φ1(b))

, and FD = FB × FC , together with projections φ3 : D → B

and φ4 : D → C work.

It can be checked that the proof of Theorem 2.1.1, given in [21], can be adapted to show the

existence and the uniqueness of the projective Fraïssé limit of FG. This checking reduces to verifying

that the two lemmas stated below are true in our generalized setting. The proof of each of this

lemmas is straightforward and we omit it.

Lemma 2.4.2. Let A,B,C ∈ FG. Let f : B → A, g : C → A and φ : C → B be functions such that

g = f ◦ φ. Assume that φ is an epimorphism. Then f is an epimorphism iff g is an epimorphism.

Lemma 2.4.3. Inverse limits of structures in FG exist in the category C.

Fix G, a multiplicative subgroup of real numbers. Let L = (L, µL, FL) denote the projective

Fraïssé limit of FG (it will be clear all the time which G we are working with, therefore we will be

writing L rather that LG). We concentrate now on the existence of a comeager conjugacy class in

H(L, µL), the group of all measure preserving homeomorphisms of L (in fact, the underlying set L

will typically be the Cantor set). In Proposition 2.3.15 we show that the conjugacy class of FL is

always a Gδ.

For a partition P and a µL � P preserving bijection FP on P define

[P, µL � P, FP ] = {f ∈ H(L, µL) : ∀p, q ∈ P f(p) = q ⇐⇒ FP (p) = q}.

Similarly as in Proposition 2.3.15, we have the following.

Proposition 2.4.4. The conjugacy class of FL is a Gδ in H(L, µL).

Proof. We show that the set of measure preserving homeomorphisms that satisfy (L1), the extension

property, and (L2) is a Gδ.
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1. Let A ∈ FG. Notice that

UA = {f ∈ H(L, µL) : there is an epimorphism from (L, µL, f) onto A}

is open.

2. Given A = (A0, µ
A, FA), B = (B0, µ

B, FB) ∈ FG, φ : B → A, and a continuous measure

preserving surjection g : (L, µL)→ (A0, µ
A), consider

Eφ,g ={f ∈ H(L, µL) : if g : (L, µL, f)→ A is an epimorphism,

then there is h : (L, µL, f)→ B such that g = φ ◦ h}.

We show that this set is open.

For A and g : (L, µL)→ (A0, µ
A) as above we define

H(g,A) = {f ∈ H(L, µL) : g : (L, µL, f)→ A is an epimorphism}.

This is a clopen set in H(L, µL). Therefore

Eφ,g =
(
H(L, µL) \H(g,A)

)
∪

(⋃
h

H(h,B)

)
,

where the union is taken over continuous measure preserving surjections h : (L, µL)→ (B0, µ
B) such

that g = φ ◦ h, is an open set. Since there are only countably many clopen decompositions of L,

there are only countably many continuous measure preserving surjections h : (L, µL)→ (B0, µ
B).

3. For a clopen partition P let

RP =
⋃
Q,FQ

[Q,µL � Q,FQ],

where the union is taken over all clopen subpartitions Q of P and all µL � Q preserving bijection

FQ on Q.
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Hence

F =

(⋂
A

UA

)
∩

⋂
φ,g

Eφ,g

 ∩(⋂
P

RP

)

is a Gδ set.

The set F consists exactly of f ∈ H(L, µL) such that (L, µL, f) satisfies (L1), the extension

property, and (L2), and these are exactly structures that are isomorphic to the projective Fraïssé

limit (L, µL, FL), that is, structures that are conjugate to (L, µL, FL).

Below, we give examples of G such that the projective Fraïssé limit FL is a generic measure

preserving homeomorphism. First, we need a proposition.

Proposition 2.4.5. Suppose that the collection of clopen sets [P, µL � P, FP ] form a π-basis (that

is, for every open set U there is some [P, µL � P, FP ] such that [P, µL � P, FP ] ⊆ U). Then the

conjugacy class of FL is dense in H(L, µL).

Proof. Fix an open set U ⊆ H(L, µL). Let [P, µL � P, FP ] ⊆ U . From the projective universality

there is a partition Q and an isomorphism i : (P, µL � P, FP )→ (Q,µL � Q,FL � Q). Now take any

g ∈ H(L, µL) that is an extension of i, and notice that g−1FLg ∈ [P, µL � P, FP ] ⊆ U .

Summarizing, we have shown the following theorem.

Theorem 2.4.6. Suppose that G is a multiplicative subgroup of real numbers and moreover suppose

that the collection of clopen sets [P, µL � P, FP ] form a π-basis. Then there is F ∈ H(L, µL) with a

comeager conjugacy class. Moreover, F can be realized as a projective Fraïssé limit of FG.

Example 2.4.7. Let M be a subset of positive natural numbers. Let

G = { 1

ml1
1 m

l2
2 . . .m

ln
n

: m1,m2, . . . ,mn ∈M, l1, l2, . . . , ln ∈ Z}.

Then FG satisfies the hypotheses of Theorem 2.4.6.

Proof. We show that the collection of clopen sets [P, µL, FP ] is a π-basis. Fix U , take an arbitrary

h ∈ U , and take an ε > 0 such that B(h, ε) ⊆ U (here B(h, ε) denotes the ball centered at h
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with radius ε). Fix a clopen partition Q such the diameter of each clopen is < ε. Next, consider

the finer partition Q′ = {h−1(A) ∩ B ∩ h(C) : A,B,C ∈ Q}. Note that the clopen of the form

h−1(A) ∩ B is mapped by h onto the clopen A ∩ h(B). Let P be a refinement of Q′ into clopens

of equal measure. We note that the number of clopens from P that are in h−1(A) ∩ B is equal to

the number of clopens from P that are in A∩ h(B). Let FP be a bijection of P such that for every

K1,K2 ∈ P and A,B ∈ Q, if FP (K1) = K2 and K1 ⊆ h−1(A) ∩ B, then K2 ⊆ A ∩ h(B). We

conclude [P, µL � P, FP ] ⊆ B(h, ε) ⊆ U .

Let us compare our results to known results about the existence of a generic measure preserving

homeomorphism of the Cantor set. Call a measure µL rational when it is obtained whenM = N\{0},

call it dyadic rational when M = {2} (the notation comes from Example 2.4.7). Kechris and

Rosendal [24] showed that there exists a comeager conjugacy class when µ is a dyadic rational or

rational measure. Akin [1] showed that for every good and Q-like measure µ, there is a comeager

conjugacy class. We say that a Borel probability measure µ on 2N is good if for every clopen sets U

and V in 2N such that µ(U) < µ(V ), there is a clopen subset U1 of V such that µ(U) = µ(U1). We

say that it is Q-like if {µ(U) : U is a clopen } + Z is a Q vector subspace of R. In particular, the

rational measure is good and Q-like.
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Chapter 3

Isometry groups of locally compact
separable metric spaces

3.1 Boolean actions

Let (X,B(X), µ) be a standard Lebesgue space (i.e., there is a Polish topology on X whose family

of Borel sets is B(X) and µ is a Borel probability measure on B(X)). For B ∈ B(X), let [B]µ be

the µ-equivalence class of B. By B(X)/µ we denote the Boolean algebra of all [B]µ, B ∈ B(X),

with the usual Boolean operations. Let Aut(µ) denote the Polish group of all measure preserving

automorphisms of (X,B(X), µ). We view Aut(µ) as a closed subgroup of the orthogonal group

O(L2(µ)), where the latter group is equipped with the strong operator topology, by associating

with T ∈ Aut(µ) an orthogonal operator OT ∈ O(L2(µ)) given, with some abuse of notation, by

OT (f) = f ◦ T−1.

(By L2(µ) we understand the real valued L2(µ).)

Let G be a Polish group. Assume we are given a continuous homomorphism G→ Aut(µ), which

we will view as a continuous action of G on B(X)/µ:

G× B(X)/µ 3 (g, [B]µ)→ g · [B]µ ∈ B(X)/µ.

We call such an action a (measure preserving) Boolean action of G on B(X)/µ. By a spatial model of

such a Boolean action we mean a Borel action G×X → X of G on X such that for each B ∈ B(X)

and g ∈ G, we have

[g(B)]µ = g · [B]µ.

Let us introduce one more notion. Let G be a Polish group and let (X,B(X), µ) be a standard
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Lebesgue space. By a near-action of G on (X,B(X), µ) we mean a Borel map G × X → X;

(g, x)→ g · x with the following properties:

(1) for the identity element of 1 ∈ G, 1 · x = x for almost every x;

(2) for each pair g, h ∈ G, g · (h · x) = (gh) · x for almost every x;

(3) each g ∈ G preserves the measure µ.

Glasner and Weiss [15] showed the following proposition.

Proposition 3.1.1 (Glasner-Weiss). The following three notions are equivalent:

(1) a near action of G on (X,B(X), µ);

(2) a continuous homomorphism from G into Aut(µ);

(3) a Boolean action of G on (X,B(X), µ).

3.2 Lie groups

Recall that a Lie group is a topological group which is also a manifold, and such that the group

operations are smooth.

In Proposition 3.2.1 we collect some well known properties of Lie groups that will be used.

Important to us will be the notion of dimension of a Lie group, which can be understood as the

linear dimension of its Lie algebra or, equivalently, as the dimension of the underlying manifold.

Proposition 3.2.1. (i) Connected components of a Lie group are open and the connected com-

ponent of the identity is a Lie group.

(ii) If M is a Lie group and N a closed subgroup of M , then N is a Lie group; if, additionally,

N is normal, then M/N is a Lie group.

(iii) Let M,N be Lie groups and let f : M → N be a continuous homomorphism. If f is injective,

then dim(M) ≤ dim(N); if f is surjective, then dim(M) ≥ dim(N).

(iv) Let M,N be Lie groups with dim(M) = dim(N) and with N connected. If f : M → N is a

continuous injective homomorphism, then f is surjective.
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Proof. (i) The first statement is clear from the definition of manifold. The second statement follows

from the first one and the general fact that the connected component of the identity of a topological

group is a subgroup.

(ii) See [41, Theorem 3.42] for the proof that N is Lie and [41, Theorem 3.64] for the proof that

M/N is Lie.

(iii) This point follows from [41, Theorem 3.32].

(iv) By [41, Theorem 3.32], f(M) is an open, so closed and open, subgroup of N . Since N is

connected, f(M) = N .

We say that a locally compact Polish group G′ is Lie projective if for every open U ⊆ G′ there is

a compact normal subgroup K of G′ such that K ⊆ U and G′/K is a Lie group. We will use the

following deep theorem about locally compact groups.

Theorem 3.2.2. [33, Theorem 4.6, p.175, Lemma 2.3.1, p.54] Suppose that G is a locally compact

group. Then there is an open subgroup G′ < G that is Lie projective.

A second countable group G is pro-Lie if it is Polish and each neighborhood of the identity

contains a normal subgroup N such that G/N is Lie. In [27] we gave a short and self-contained

proof of the following result of Hofmann and Morris [19] in the case of second countable groups.

Theorem 3.2.3 (Hofmann-Morris). A closed subgroup of a countable product of Lie groups is pro-

Lie.

All ideas in our proof of Theorem 3.2.3 come from Lemma 3.3.3 below.

3.3 A characterization of isometry groups

The goal of this section is to present a proof of the following characterization of groups of isome-

tries of locally compact separable metric spaces. We will use this characterization in the next

section to prove Theorem 3.4.1. The theorem below is a restatement of Theorem 1.3.2 stated in the

introduction. Recall from the introduction that a topological group G is called a group of isometries

of X if there exists an isomorphism that is also a homeomorphism between G and a subgroup of

Iso(X).
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Theorem 3.3.1. Let G be a Polish group. Then G is a group of isometries of a locally compact

separable metric space if and only if each neighborhood of the identity contains a closed subgroup H

such that the space G/H is locally compact and N(H) is open.

We state explicitly the property from Theorem 3.3.1:

(∗) for every open neighborhood of the identity U ⊆ G there is a closed subgroup H < G such

that H ⊆ U , N(H) is open, and G/H is locally compact.

We will be later referring to this property of G as property (∗).

First we show that if a Polish group G0 has property (∗), then it has the following stronger version

of that property.

Lemma 3.3.2. Suppose a Polish group G0 has property (∗), then each neighborhood of 1 contains

a closed group H such that N(H) is open and N(H)/H is a Lie group.

Proof. To prove this property let U 3 1 be open. Let V 3 1 be open such that

V 2 ⊆ U. (3.3.1)

By property (∗) there exists a closed group

H0 ⊆ V (3.3.2)

such that N(H0) is open and N(H0)/H0 is locally compact. By Theorem 3.2.2 there exists an open

subgroup N of N(H0) such that H0 < N and N/H0 is Lie projective. We can assume without

loss of generality (by decreasing V ) that V ⊆ N . Let π : N(H0) → N(H0)/H0 be the quotient

homomorphism. Then π(V ) is open. Take

K ⊆ π(V ) (3.3.3)

a compact normal subgroup of N/H0 such that (N/H0)/K is Lie. Let

H = π−1(K).
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By (3.3.1), (3.3.2), (3.3.3), H ⊆ U . Since K is normal in N/H0, H is normal in N , and so we have

N(H) ⊇ N , implying that N(H) is open. Finally, since we have the homeomorphism

N(H)
/
H = N(H)

/
π−1(K) ∼= (N(H)/H0)

/
K,

there is an open subgroup of N(H)/H that is isomorphic to the Lie group (N/H0)/K. Thus,

N(H)/H is Lie.

Lemma 3.3.3. A closed subgroup of a Polish group with property (∗) has property (∗).

Proof. It may be beneficial first to follow this proof in the concrete setting where one assumes that

the subgroup in question is a closed subgroup of a countable product of Lie groups and one argues

that it has property (∗). Many of the essential difficulties of the proof remain in this special case.

Let a Polish group G0 with property (∗) be given. Then G0 has the stronger version of property

(∗) stated above. Fix closed subgroups Hn < G0 and open subgroups Mn < G0, n ∈ N, so that

Hn ⊆Mn and Hn is normal in Mn, Mn/Hn is a Lie group, and each open neighborhood of 1 in G0

contains Hn for all but finitely many n. We assume, as we can, that Mn+1 ⊆ Mn. Let πn be the

product of the natural quotient functions G0 → G0/Hi

πn : G0 →
∏
i≤n

G0/Hi,

and let πn,N , n ≤ N , be the projection

πn,N :
∏
i≤N

G0/Hi →
∏
i≤n

G0/Hi.

Note that for N ≥ n

πn,N ◦ πN = πn.

Let Ln =
∏
i≤nMi/Hi. We point out that Ln is a Lie group and that

πn �Mn : Mn → Ln and πn,N � LN : LN → Ln.

are continuous group homomorphisms.
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Let G < G0 be closed. We will show that G has property (∗). Fix an open neighborhood of 1 in

G. Find n such that G ∩Hn is included in that neighborhood. Note that the normalizer in G of

G∩
⋂
i≤nHi includes G∩Mn and is, therefore, open in G. Thus, to prove that G has property (∗),

it will suffice to show that for each n, G/(G ∩
⋂
i≤nHi) is locally compact.

By Proposition 3.2.1(ii), the closure in LN of the subgroup πN (G ∩MN ) is a Lie group, and, by

Proposition 3.2.1(i), the connected component of the identity of this closure is a Lie group as well.

So if we let

AN = the connected component of 1 of πN (G ∩MN ),

then AN is a Lie group. For n ≤ N , let

Bn,N = ker (πn,N � AN ) .

Note that sinceMN+1 ⊆MN , πN,N+1(AN+1) is a connected subgroup of πN (G ∩MN ), and therefore

we have

πN,N+1(AN+1) ⊆ AN . (3.3.4)

For N ≥ n, AN/Bn,N is a Lie group by Proposition 3.2.1(ii). For these groups we have the following

claim.

Claim 3.3.4. For every n there is in ≥ n such that for N ≥ in

dim (Ain/Bn,in) = dim (AN/Bn,N ) .

Proof. Let N ≥ n. Inclusion (3.3.4) induces an injective continuous homomorphism

AN+1/(π
−1
N,N+1(Bn,N ) ∩AN+1)→ AN/Bn,N .

It follows by Proposition 3.2.1(iii) that

dim(AN+1/(π
−1
N,N+1(Bn,N ) ∩AN+1)) ≤ dim(AN/Bn,N ). (3.3.5)
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Note however that

π−1
N,N+1(Bn,N ) ∩AN+1 ⊆ Bn,N+1,

and, therefore, there is a surjective continuous homomorphism

AN+1/(π
−1
N,N+1(Bn,N ) ∩AN+1)→ AN+1/Bn,N+1,

so by Proposition 3.2.1(iii) we have

dim(AN+1/Bn,N+1) ≤ dim(AN+1/(π
−1
N,N+1(Bn,N ) ∩AN+1)).

From this inequality and from (3.3.5) we get

dim(AN+1/Bn,N+1) ≤ dim(AN/Bn,N ).

We conclude that the natural number valued function

N → dim(AN/Bn,N ),

defined for N ≥ n, is non-increasing, and the conclusion of the claim follows.

For n ∈ N, in ≥ n will denote the natural number from Claim 3.3.4.

Claim 3.3.5. Let n ∈ N. For N ≥ in,

πn,N+1(AN+1) = πn,N (AN ).

Proof. The homomorphisms πn,N � AN and πn,N+1 � AN+1 induce injective continuous homomor-

phisms

π̂n,N : AN/Bn,N → Ln and π̂n,N+1 : AN+1/Bn,N+1 → Ln.
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Furthermore, from (3.3.4), we see that

π̂n,N+1(AN+1/Bn,N+1) = πn,N+1(AN+1)

⊆ πn,N (AN ) = π̂n,N (AN/Bn,N ).

(3.3.6)

Note that by Claim 3.3.4

dim(AN+1/Bn,N+1) = dim(AN/Bn,N ),

and that AN/Bn,N is connected, as AN is. Now since π̂n,N and π̂n,N+1 are injective, by (3.3.6), we

can consider the injective homomorphism

(π̂n,N )−1 ◦ π̂n,N+1 : AN+1/Bn,N+1 → AN/Bn,N .

Since this homomorphism is Borel, it is continuous, and, by what was said above, Proposition 3.2.1(iv)

implies that it is surjective. From this assertion and from (3.3.6), the conclusion of the claim follows

immediately.

By Claim 3.3.5, πn,N (AN ) does not depend on N as long as N ≥ in. Put

Cn = πn,N (AN ),

for any N ≥ in.

Claim 3.3.6. For every n,

Cn ⊆ πn(G ∩
⋂
i

Mi).

Proof. Note first that for each n, πn,n+1(Cn+1) = Cn. This is because, for N ≥ in, in+1,

Cn = πn,N (AN ) = πn,n+1(πn+1,N (AN ))

= πn,n+1(Cn+1).

(3.3.7)

We will use the following general observation concerning Polish groups, see [11, Corollary 2.2.2].

Let dl be a left invariant metric on G0, and let dr be the right invariant metric on G0 given by
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dr(x, y) = dl(x
−1, y−1). Then the metric d defined by

d = dl + dr

is a complete metric on G0. We will also need the following definition. For each i ∈ N and

g1, g2 ∈Mi, let ρi be given by the formula

ρi(g1Hi, g2Hi) = inf{dl(g1h1, g2h2) : h1, h2 ∈ Hi}

+ inf{dr(g1h1, g2h2) : h1, h2 ∈ Hi}.

Since Hi is a normal subgroup of Mi, by [11, Lemma 2.2.8], ρi is a metric on Mi/Hi inducing the

quotient topology.

Fix n0. Let y0 be an arbitrary element of Cn0 . We will show that y0 ∈ πn0(G ∩
⋂
iMi). Using

(3.3.7), we can recursively pick cn ∈Mn/Hn so that for each n we have

(c0, . . . , cn) ∈ Cn and (c0, . . . , cn0) = y0. (3.3.8)

By definition of Cn and AN we have

Cn ⊆ πn,N
(
πN (G ∩MN )

)
⊆ πn(G ∩Mn),

where N ≥ in is arbitrary and where the closure is taken in Ln. Using this observation and (3.3.8),

we can pick recursively on n a sequence gn ∈ G∩Mn, n ∈ N, so that πn(gn) = (gnH0, . . . , gnHn) is

as close to (c0, . . . , cn) as we wish, say, we wish that for all i ≤ n

ρi(gnHi, ci) <
1

n+ 1
. (3.3.9)

Consider now an arbitrary left coset gHi of Hi in Mi. Since g ∈ Mi, we have gHi = Hig. Thus,

the dl-diameter of gHi and the dr-diameter of gHi are equal to the dl- and the dr-diameters of Hi,

respectively. From this observation, from the definition of ρi, and from (3.3.9), it follows that for
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i ≤ n

dl(gi, gn) ≤ dl-diam(giHi) +
1

i+ 1
+ dl-diam(ci) +

1

n+ 1
+ dl-diam(gnHi)

≤ 2

i+ 1
+ 3 · d-diam(Hi),

and similarly

dr(gi, gn) ≤ 2

i+ 1
+ 3 · d-diam(Hi).

Thus, for i ≤ n we get that

d(gi, gn) ≤ 4

i+ 1
+ 6 · d-diam(Hi),

and therefore the sequence (gi) is d-Cauchy. Since d is complete, (gi) converges to some g∞. Since

Mi+1 ⊆Mi and since each Mi and G are closed, we see that

g∞ ∈ G ∩
⋂
i

Mi.

Furthermore, from (3.3.9) we see that for each n

πn(g∞) = (c0, . . . , cn),

in particular, by (3.3.8), we have πn0(g∞) = y0, as required.

Now we are ready to finish the proof, that is, show that for every n,

G

/G ∩ ⋂
i≤n

Hi


is locally compact. We will apply the following fact that is easy to prove using the Baire category

theorem: if a homogeneous Polish space contains an open non-empty subset that is σ-compact,

then the space is itself locally compact. (By a homogeneous space we mean a space in which for

each pair of points x, y there is a homeomorphism of the space onto itself mapping x to y.) Now

fix n and note that G/
(
G ∩

⋂
i≤nHi

)
is a Polish space with its natural quotient topology. It is
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homogeneous and it contains the Polish group

(G ∩Mn)

/G ∩ ⋂
i≤n

Hi


as an open subset. Thus, it suffices to show that this last group is σ-compact.

Take N ≥ in. Consider the following commutative diagram. The functions in the diagram are

defined below it.

AN
πn,N �AN //

τ

))SSSSSSSSSSSSSSSSSSSSSSS πn (G ∩Mn)

(G ∩Mn)
/(

G ∩
⋂
i≤nHi

)ρ

OO

The range of the continuous homomorphism πn,N � AN is included in the group πn (G ∩Mn) by

Claim 3.3.6. The function ρ is defined as follows. In general, given groupsM , N/M , N0, . . . , Nn/M

and K < M , there exist natural injective homomorphisms

K/(K ∩N)→M/N and M/
⋂
i≤n

Ni →
∏
i≤n

M/Ni.

From these general principles, we get two continuous injective homomorphisms

(G ∩Mn)

/G ∩ ⋂
i≤n

Hi

→Mn

/ ⋂
i≤n

Hi

and

Mn

/ ⋂
i≤n

Hi →
∏
i≤n

Mi/Hi = Ln,

and we let ρ be their compositions. Clearly ρ is a continuous injective homomorphism. By tracing

the definitions it is easy to see that ρ is onto πn(G∩Mn); thus, ρ is a continuous isomorphism. We

define τ by

τ = (ρ)−1 ◦ πn,N .

The function τ is a homomorphism and it is Borel, since ρ−1 is Borel being the inverse of a continuous

injection. Since τ maps a Polish group AN into a second countable group, it is a continuous
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homomorphism.

Since AN is locally compact, it is σ-compact, and, therefore, so is τ(AN ) by continuity of τ .

Thus, it suffices to show that τ(AN ) has countable index in

(G ∩Mn)

/G ∩ ⋂
i≤n

Hi


Since ρ is an isomorphism, it follows from the diagram that it is enough to prove that πn,N (AN )

has countable index in πn (G ∩Mn).

To prove this assertion note that from the definition of AN and from Proposition 3.2.1(i), AN is

a non-empty relatively open subset of

πN (G ∩MN ),

which allows us to pick gj ∈ G ∩MN , j ∈ N, so that

⋃
j

πN (gj)AN = πN (G ∩MN ).

Applying πn,N to both sides of the equality above, removing the closure operation, and using

πn,N ◦ πN = πn and the fact that πn,N restricted to the group LN is a homomorphism, we obtain

⋃
j

πn(gj)πn,N (AN ) ⊇ πn (G ∩MN )

with πn(gj) ∈ πn(G∩Mn). Thus, πn,N (AN ) will have countable index in πn(G∩Mn) as soon as we

show that the index of πn (G ∩MN ) in πn (G ∩Mn) is countable. But this last assertion is obvious

since πn � (G ∩Mn) is a homomorphism and G ∩MN is open and, therefore, of countable index in

G ∩Mn.

Lemma 3.3.7. A countable product of Polish groups with property (∗) has property (∗).

Proof. Assume Gn, n ∈ N, are Polish groups with property (∗). Fix an open neighborhood of 1 in
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∏
nGn, which we can assume to be of the form

U0 × · · · × Um ×
∏
n>m

Gn.

Let Hi < Gi, i ≤ m, be closed and such that Hi ⊆ Ui, Gi/Hi locally compact, and N(Hi) open.

Then the subgroup of
∏
nGn

H = H0 × · · · ×Hm ×
∏
n>m

Gn.

is as required, that is, H is included in the given neighborhood of 1, the space (
∏
nGn)/H is locally

compact, and N(H) is open.

Proof of ⇐ in Theorem 3.3.1. By the theorem of Gao and Kechris [12, Theorem 6.3], and by Lem-

mas 3.3.3 and 3.3.7, it suffices to show that groups G of the form

G = S∞ nMN

have property (∗), where M is Polish locally compact and S∞ acts by automorphisms on MN as

follows

σ(h)(i) = h(σ−1(i)),

where σ ∈ S∞ and h ∈ MN. To prove this fact, fix an open neighborhood of 1 ∈ G, which we can

assume to be of the form

{σ ∈ S∞ : σ � n = id} × Un ×MN\n

for some open 1 ∈ U ⊆M and some n ∈ N, where n denotes the set {0, . . . , n− 1}. Let

H = {σ ∈ S∞ : σ � n = id}n
(
{1}n ×MN\n

)
.

Clearly H is a closed subgroup of G contained in the given neighborhood of 1. Its normalizer N(H)

contains

{σ ∈ S∞ : σ � n = id} ×MN

and therefore is open. The quotient G/H contains an open subset homeomorphic to Mn, which
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makes the space G/H locally compact.

Proof of ⇒ of Theorem 3.3.1. Fix d, a left invariant metric on G. Without loss of generality d is

bounded by 1. Fix a decreasing sequence Un, n ∈ N, of open neighborhoods of 1 in G such that

diam(Un) → 0 and
⋂
n Un = {1}. Let Hn ⊆ Un be closed subgroups of G as in property (∗). Set

Mn = N(Hn).

Consider ⊕n(G/Hn), the topological direct sum of the spaces G/Hn. This is a locally compact

separable metrizable space. We define d∗ by letting, for x, y ∈ G,

d∗(xHn, yHn) = inf{d(xu, yv) : u, v ∈ Hn}

and, if m 6= n,

d∗(xHn, yHm) = 1.

We show that d∗ is a metric on the set ⊕n(G/Hn). Note first that, by [11, Lemma 2.2.8], for each

n, d∗ restricted to Mn/Hn is a metric. This remains true, by left-invariance of d, for the restriction

of d∗ to g(Mn/Hn), for each g ∈ G. Now, all the properties of a metric are clearly true of d∗ except

perhaps for the fact that xHn = yHn whenever d∗(xHn, yHn) = 0. To show this, fix sequences

(ui)i and (vi)i in Hn such that d(xui, yvi) → 0. Then d(v−1
i y−1xui, 1) → 0, which allows us to fix

i0 such that v−1
i0
y−1xui0 ∈ Mn, implying y−1x ∈ Mn. Hence x and y are in the same coset of Mn

in G. Therefore xHn = yHn by the remark at the beginning of this argument.

Notice that, by left invariance of d, for each g ∈ G the function

⊕n(G/Hn) 3 c→ gc ∈ ⊕n(G/Hn) (3.3.10)

is an isometry with respect to d∗.

We show that d∗ is compatible with the quotient topology on ⊕n(G/Hn). It suffices to see that

both topologies agree on G/Hn, for each n. We start by showing that Mn/Hn is open in each of

the two topologies. Clearly this set is open in the quotient topology. For the topology induced by

d∗ suppose that

d∗(xiHn, xHn)→ 0,
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where xi /∈ Mn and x ∈ G. Suppose that x ∈ Mn. Since Hn is normal in Mn, for some sequences

(ui)i and (vi)i in Hn, we have

d(xiui, vix)→ 0,

i.e., d(v−1
i xiui, x)→ 0. Note that for each i, v−1

i xiui /∈Mn. Hence, since Mn is open in G, x /∈Mn,

and we get a contradiction.

Since (3.3.10) is an isometry with respect to d∗, g(Mn/Hn), where g ∈ G, is open in G/Hn and

homeomorphic to Mn/Hn with respect to each of the two topologies. Thus, it suffices to see that

the two topologies coincide on Mn/Hn, which follows immediately from [11, Lemma 2.2.8].

We show now that f : G→ Iso (⊕n(G/Hn)) given by

f(g)(xHn) = (gx)Hn,

for each n, is an embedding of Polish groups. Clearly f is a group homomorphism. Next note

that f is injective. Indeed, let g1 6= g2. Take n such that g−1
2 g1 /∈ Hn. Then g1Hn 6= g2Hn, i.e.,

f(g1)(Hn) 6= f(g2)(Hn).

Finally, we show that f is a topological embedding. First let gi → g. We want to show that

for each x ∈ G and n ∈ N, d∗(gixHn, gxHn) → 0. By the definition of d∗, we have the inequality

d∗(gixHn, gxHn) ≤ d(gix, gx), which yields the desired conclusion since d(gix, gx)→ 0.

Now suppose that f(gi) → f(g). We want gi → g. Fix ε > 0. Take n such that diam(Hn) < ε
3 .

By assumption we have d∗(giHn, gHn)→ 0, which allows us to choose sequences (ui)i and (vi)i in

Hn such that d(giui, gvi)→ 0. Take i0 such that for i ≥ i0, d(giui, gvi) <
ε
3 . Since

d(gi, g) ≤ d(gi, giui) + d(giui, gvi) + d(gvi, g)

= d(1, ui) + d(giui, gvi) + d(vi, 1),

we get d(gi, g) < ε, for i ≥ i0, and we are done.

We conclude this section with the following corollary. This corollary is a restatement of Corollary

1.3.3 stated in the introduction.

Corollary 3.3.8. Let G be a Polish group of isometries of a locally compact separable metric space,
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and let N be a closed normal subgroup of G. Then G/N is also a Polish group of isometries of a

locally compact separable metric space. In other words, the class of Polish groups of isometries of

locally compact separable metric spaces is closed under taking images of continuous homomorphisms

onto Polish groups.

By Theorem 3.3.1, it suffices to show that the property from this theorem holds for G/N if it

holds for G. Let π : G → G/N be the quotient homomorphism. Let U be an open neighborhood

of 1 in G/N . Let V be an open neighborhood of 1 in G/N whose closure is contained in U . Pick

H < π−1(V ) a closed subgroup of G with N(H) open and with G/H locally compact. Define

H ′ = π(H),

where the closure is taken in G/N . Obviously H ′ is a closed subgroup of G/N contained in U . The

normalizer of H ′ in G/N contains π(N(H)) and therefore is open. The natural function

G/H → G/π−1(H ′) ∼= (G/N)/H ′

is surjective, continuous, and open. Thus (G/N)/H ′ is locally compact.

3.4 Boolean actions of isometry groups

The goal of this section is to prove Theorem 3.4.1. This is a restatement of Theorem 1.3.1 stated

in the introduction.

Theorem 3.4.1. Let G be a Polish group of isometries of a locally compact separable metric space.

Then each measure preserving Boolean action of G has a spatial model.

Theorem 3.4.1 follows from Theorem 3.3.1 and from Lemma 3.4.3 below. Therefore, proving this

lemma is all that remains to be done.

The following notion comes from [14]. It will be used in the proof of Lemma 3.4.3 through an

application of Theorem 3.4.2 below. Assume we have a measure preserving Boolean action of a

Polish group G on B(X)/µ. We say that a function f ∈ L∞(µ) is G-continuous if f ◦ gn converges
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to f in the L∞-norm whenever gn converges to the identity in G. (By L∞(µ) we understand the

real valued L∞(µ).)

Theorem 3.4.2. ([14, Theorem 2.2], see also [15, Theorem 1.7]) A measure preserving Boolean

action of G on B(X)/µ admits a spatial model if and only if G-continuous functions are dense in

L2(µ).

We note that since Aut(µ) is a subgroup of O(L2(µ)), each continuous homomorphism G →

Aut(µ), i.e., Boolean action of G, gives rise to a continuous homomorphism G → O(L2(µ)), i.e.,

a continuous representation of G. We call this representation the representation induced by the

Boolean action.

Lemma 3.4.3. Let G be a group with property (∗). Then every Boolean action of G has a spatial

model.

Proof. Fix a standard Borel space (X,B(X), µ) with a Borel probability measure µ and fix a Boolean

action of G. We aim to show that G-continuous functions are dense in L2(µ), which will prove the

lemma by Theorem 3.4.2. We consider the representation of G induced by the Boolean action. The

first step of the proof consisting of an application of the Ryll-Nardzewski fixed point theorem is

borrowed from the proof of [15, Theorem 2.3]. Fix f0 ∈ L2(µ) and ε > 0. Consider

B(f0, ε) = {f ∈ L2(µ) : ‖f − f0‖2 ≤ ε}.

Let Uf0 ⊆ G be an open neighborhood of 1 such that Uf0 .f0 ⊆ B(f0, ε). Since G has property (∗),

we can fix a closed subgroup H < G such that H ⊆ Uf0 , G/H is locally compact and N(H) is open.

Since L2(µ) is reflexive, by the Banach–Alaoglu theorem, the closed ball B(f0, ε) is weakly com-

pact. Let

D = conv{h.f0 : h ∈ H}w

be the weak closure of the convex hull of the H-orbit of f0 in L2(µ).

The set D is a weakly compact convex H-invariant subset of B(f0, ε). By the Ryll-Nardzewski

fixed point theorem, see [6, Chapter V, Theorem 10.8], there is f1 ∈ D which is H-fixed. Without

loss of generality, we can assume that f1 ∈ L∞(µ). (If f1 is not bounded replace it by fM satisfying
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fM (x) = f1(x) if |f(x)| < M and fM (x) = M if |f(x)| ≥ M , for some M > 0 such that fM ∈

B(f0, ε).)

Let A be the smallest closed sublattice of L2(µ) (i.e. A is a linear space closed under max and

min) containing f1, constant functions, and closed under the action of N(H).

Our goal is to show that G-continuous functions are dense in A in the L2-norm. Note that

this will finish the proof since then, in particular, we get some G-continuous function f such that

‖f − f1‖2 < ε. Since ‖f0 − f1‖2 < ε, where f0 is the function we fixed at the beginning, we get

‖f − f0‖2 < 2ε.

Let Q be a dense, countable subgroup of N(H). For h · f1 ∈ L2(µ) with h ∈ Q, let f1,h : X → R

be a Borel function that is a representative of h ·f1. Let C be the countable algebra of Borel subsets

of X generated by the preimages under f1,h, h ∈ Q, of rational intervals of R. Let B ⊆ B(X) be

the σ-algebra generated by C.

Claim 3.4.4. For h ∈ N(H) and B ∈ B we have

h · [B]µ ∈ B/µ.

Proof of Claim 3.4.4. The conclusion of the claim holds for all h ∈ Q by the definition of B. Now

equip B(X)/µ with the metric

dist([B1]µ, [B2]µ) = µ(B14B2).

Note that since B is a σ-subalgebra of B(X), B/µ is a closed subset of B(X)/µ. The action of N(H)

on B(X)/µ is continuous. Since Q is dense in N(H), the claim follows.

Define the function π : X → {0, 1}C by

π(x)(B) = 1 iff x ∈ B

for B ∈ C. The function π is Borel. Set

X ′ = π(X), µ′ = π∗(µ),
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where, as usual, π∗(µ)(B) = µ(π−1(B)) for B ⊆ X ′ Borel. Note that there is a standard Borel set

Y ⊆ X ′ with µ′(Y ) = 1 in which case

B(X ′)
/
µ′ ∼= B(Y )

/
(µ′ � B(Y )).

Thus, we can assume that X ′ itself is standard Borel. Note that X ′ comes equipped with the

topology inherited from {0, 1}C , which we will use.

The σ-algebra B consists precisely of preimages under π of elements of B(X ′). Mapping B ∈ B

to the unique B′ ∈ B(X ′) with B = π−1(B′) induces a measure preserving isomorphism

π∗ : B/µ→ B(X ′)/µ′. (3.4.1)

By Claim 3.4.4, for each B0 ∈ B(X ′) and h ∈ N(H) there exists B1 ∈ B(X ′) such that

h · [π−1(B0)]µ = [π−1(B1)]µ,

which allows us to define

h · [B0]µ′ = [B1]µ′ . (3.4.2)

It is now easy to check that this is a measure preserving Boolean action of N(H) on B(X ′)/µ′ and

that for h ∈ N(H)

π∗(h · [B]µ) = h · π∗([B]µ). (3.4.3)

The measure preserving isomorphism (3.4.1) induces in the natural way a lattice isomorphism

π∗ : L2(µ � B)→ L2(µ′).

This lattice isomorphism is also an isometry between L2(µ � B) and L2(µ′) and, when restricted

to L∞(µ � B), it is an isometry between L∞(µ � B) and L∞(µ′). Furthermore, note that for the

representation of N(H) in O(L2(µ � B)) induced by its Boolean action on B/µ given by Claim 3.4.4

and for the representation of N(H) in O(L2(B(X ′))) induced by the Boolean action given by (3.4.2),
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we have by (3.4.3)

π∗(h · f) = h · π∗(f) (3.4.4)

for h ∈ N(H) and f ∈ L2(µ � B).

We show that

A ⊆ L2(µ � B). (3.4.5)

Indeed, since L2(µ � B) is a closed sublattice of L2(µ), to see the above inclusion, it suffices to show

that k · f1 ∈ L2(µ � B) for each k ∈ N(H), for which it suffices to see that k · f1 is B-measurable.

The latter statement is a consequence of Claim 3.4.4.

Now it follows from (3.4.5), that π∗(f) is defined for each f ∈ A. Set

A′ = {π∗(f) : f ∈ A} ⊆ L2(µ′).

Since A is a closed sublattice of L2(µ), A′ is a closed sublattice of L2(µ′).

Claim 3.4.5. A′ ⊇ L∞(µ′).

Proof of Claim 3.4.5. Since A′ is a closed sublattice of L2(µ′), it is enough to show that for every

ε > 0 and B ∈ B′ there is q ∈ A′ such that ‖χB− q‖2 < 2ε. Let ε > 0 be given. Recall at this point

the definitions of Q, C, and π. It follows from these definitions that for k ∈ Q, π∗(k ·f1) ∈ L2(µ′) has

a continuous representative. For the remainder of the proof of this claim, we think of each π∗(k·f1) as

an actual continuous function from X ′ to R. Let L ⊆ X ′ be compact with µ′(L) > 1−ε2. Let C(L)

stand for the lattice of all continuous functions from L to R with the L∞-norm. By the definition of

π, the sublattice of C(L) generated by the constant functions and {π∗(k · f1) � L : k ∈ Q} separates

points of L. By the Stone–Weierstrass theorem for lattices, see [2, Chapter 2, Theorem 11.3], this

sublattice is dense in C(L). This fact allows us to pick q ∈ A′ with ‖(q � L) − χB∩L‖2 < ε. Since

A′ is a lattice with 0, 1 ∈ A′, we can assume that 0 ≤ q ≤ 1. Now, by the choice of L, we have

‖q − χB‖2 < 2ε.

Set

G0 = N(H)/H.
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We will need the claim below to define a Boolean action of G0 on B(X ′)/µ′.

Claim 3.4.6. For g1, g2 ∈ N(H), if g1, g2 are in the same coset of H, then g1 · [B′]µ′ = g2 · [B′]µ′

for each B′ ∈ B(X ′).

Proof of Claim 3.4.6. If g1, g2 ∈ N(H) are in the same coset of H and k ∈ N(H), then g1k and g2k

are in the same coset of k−1Hk = H. Thus,

((g2k)−1g1k) · f1 = f1,

hence

g1 · (k · f1) = g2 · (k · f1).

It follows from the definition of B that for each B ∈ B we have g1 · [B]µ = g2 · [B]µ. Now from this

equality, by (3.4.3), we have for B ∈ B

g1 · π∗([B]µ) = π∗(g1 · [B]µ) = π∗(g2 · [B]µ) = g2 · π∗([B]µ),

and the conclusion of the claim follows.

Now Claim 3.4.6 allows us to define a measure preserving Boolean action of G0 on B(X ′)/µ′ by

letting for gH ∈ G0 and B ∈ B(X ′)

(gH) · [B]µ′ = g · [B]µ′ .

We consider the representation of G0 induced by the above Boolean action. Since G0 is locally

compact, by a combination of the theorem of Mackey [29] and Theorem 3.4.2, G0-continuous func-

tions for the above representation are dense in L2(µ′). We will derive from it the conclusion that

G-continuous functions are dense in A in the L2-norm, which will finish the proof. First we note

that if f ∈ A and π∗(f) is G0-continuous, then f is G-continuous. Indeed, obviously π∗(f) is

N(H)-continuous. By the fact that π∗ preserves the L∞-norm and by (3.4.4), it follows that f is

N(H)-continuous. Since N(H) is open in G, every N(H)-continuous function is also G-continuous;

thus, f is G-continuous.
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Now since π∗(A) = A′ and π∗ preserves the L2-norm, we will be done if we show that G0-

continuous functions are dense in A′. But this follows from Claim 3.4.5 and the fact that G0-

continuous functions are dense in L2(µ′).

3.5 A property of the group H+([0, 1])

In this section we show that the condition N(H) is open cannot be omitted in our characterization

of groups of isometries of locally compact separable metric spaces. More precisely, we show the

following proposition.

Proposition 3.5.1. There is a Polish group which is not a group of isometries of a locally compact

separable metric space, which satisfies the following weakening of the property (∗). For every open

neighborhood U of the identity there is a closed subgroup H < G such that H ⊆ U and G/H is

locally compact.

Proof. We show that G = H+([0, 1]), the group of all increasing homeomorphisms of the interval

[0,1] with the uniform convergence metric, is an example of such a group.

Take U , an open neighborhood of 1 in G. If necessary, we shrink U to

Uε = {h ∈ G : ∀x|h(x)− x| < ε},

for some ε > 0. Take

Hn = {h ∈ G : h(
k

n
) =

k

n
for every k = 0, 1, . . . , n},

a closed subgroup of G, such that Hn ⊆ Uε. Note that G/Hn is homeomorphic to

An = {(a1, a2, . . . , an−1) : 0 < a1 < a2 < . . . < an−1 < 1}
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(taken with the topology induced from the product topology) via the map

h→
(
h(

1

n
), h(

2

n
), . . . , h(

n− 1

n
)

)
.

Since An is an open subset of [0, 1]n−1, it is locally compact. Hence, G satisfies the weakening of

the property (∗).

We show that G is not isomorphic to a Polish group of isometries of a locally compact separable

metric space. For this, we show that the property (∗) is not fulfilled.

As shown in [10], there are exactly three proper normal subgroups of G. These are:

S1 = {h ∈ G : Fix(h) ⊇ [0, p) for some 0 < p < 1},

S2 = {h ∈ G : Fix(h) ⊇ (p, 1] for some 0 < p < 1},

S3 = S1 ∩ S2,

where Fix(h) denotes the set of fixed points of h.

The group G is connected and non-locally compact. For the former, notice that G is a closure of

the increasing union of

Bn = {h ∈ G : h �

[
k

n
,
k + 1

n

]
is linear , k = 0, 1, . . . , n− 1},

and that Bn is homeomorphic to the connected space An.

Combining the remarks above, we see that for U , an open neighborhood of the identity which

does not contain any of the S1, S2, S3, there is no H < G, H ⊆ U such that N(H) is open.

Remark 3.5.2. The normalizer of Hn is equal to Hn.

Proof. Let g ∈ N(Hn). Take h1 ∈ Hn such that Fix(h1) = { kn : k = 0, 1, . . . , n}. Take h2 ∈ Hn such

that gh2 = h1g. For each k = 0, 1, . . . , n we have h1(g( kn)) = g( kn). Since g( 0
n) < g( 1

n) < . . . < g(nn),

and by the choice of h1, we have g( kn) = k
n , for each k = 0, 1, . . . , n. Hence g ∈ Hn.
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3.6 Non-turbulence for isometry groups

The notion of turbulence was introduced by Greg Hjorth. It is connected to the problem of

classifiability of countable structures. Every continuous action by a locally compact group or by a

permutation groups is non-turbulent. Recall that for a Polish group, a Polish G-space is a Polish

space X together with a continuous action of G on X. Hjorth showed the following theorem.

Theorem 3.6.1 (Hjorth [20]). Let G = G0 ×G1 × . . ., where each Gi is a permutation group or is

locally compact. Then no Polish G-space is turbulent.

This result was extended by Gao and Kechris.

Theorem 3.6.2 (Gao-Kechris [12]). Let G be a Polish group of isometries of a locally compact

separable metric space. Then no Polish G-space is turbulent.

Below we show how to prove Theorem 3.6.2 using our characterization of Polish groups of isome-

tries of locally compact separable metric spaces (Theorem 3.3.1). This proof is different from the

proof due to Gao and Kechris. Our proof is a generalization of the proof of Theorem 3.6.1 due to

Hjorth.

First we recall some definitions from [26]. Let X be a Polish G-space. For an open set U in X

and an open symmetric 1 ∈ V in G define

RU,V = {(x, y) ∈ U × U : ∃g ∈ V (g · x = y)}

For x ∈ U we write RU,V (x) = {y ∈ U : ∃g ∈ V (g · x = y)}. Define the relation on U

x ∼U,V y ⇐⇒ ∃g0, g1, . . . , gk ∈ V (x0 = x, xi+1 = gi · xi, xk+1 = y, xi ∈ U).

This is an equivalence relation. Let O(x, U, V ) denote the equivalence class of x.

A point x ∈ X is turbulent if for every U with x ∈ U and every V , O(x, U, V ) is somewhere

dense, i.e. O(x, U, V ) has nonempty interior. The set of turbulent points is G-invariant. Therefore,

we can talk about turbulent orbits. A Polish G-space X is called turbulent if every orbit is dense,

meager, and turbulent.
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Proposition 3.6.3 (Proposition 11.1 in [26]). Let X be a Polish G-space with every orbit meager.

Then for every U0 there is U ⊆ U0 and V such that RU,V is nowhere dense.

We say that a Polish G-space X is calm if for every U, V and x ∈ U there is U ′ ⊆ U with x ∈ U ′,

and there is V ′ ⊆ V such that O(x, U ′, V ′) ⊆ RU ′,V ′(x).

Proposition 3.6.4 (Propositions 11.3 and 11.5 in [26]). (1) A calm G-space is not turbulent.

(2) Any Polish G-space, where G is locally compact, is calm.

Let K be a Polish group. Let d < 1 be a left-invariant metric on K. Let X be a Polish K-space.

Let H be a closed normal subgroup of K. Let d∗ denote the quotient metric on L = K/H

d∗(k1H, k2H) = inf{d(k1h1, k2h2) : h1, h2 ∈ H}.

Since H is normal in K and d is left invariant, d∗ is also left invariant. Define

L(L) = {f : L→ [0, 1] : ∀g, h ∈ L(|f(g)− f(h)| ≤ d∗(g, h))}

Therefore L(L) is just the space of 1-Lipschitz functions on L. We take L(L) with the pointwise

convergence metric. We let L act on L(L) by left translations (h · f)(g) = f(h−1g). We notice that

L(L) is a compact Polish L space.

Let F : X → L(L)N, where F (x) = (fxm) be given by

fxm(g) = d∗(g, {h : ∃k∈K(h = π(k) and k · x ∈ Um)}−1), (3.6.1)

where (Um)m is a basis in X and π : K → L is the projection.

Recall that a function is Baire class 1 if the preimage of each open set is Fσ. In the proof of

Theorem 3.6.2 we will use a fact that Baire class 1 functions have a comeager set of continuity

points.

Proposition 3.6.5. Let K be a Polish group and let H be a closed normal subgroup of K. Let X

be a K-space. Let L, L(L), and F be as above. Then:

(1) for every k ∈ K and x ∈ X, F (k · x) = π(k) · F (x);
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(2) F : X → F (X) is Baire class 1.

Proof. The proof of the first part is just a straightforward checking. For the second part, it is enough

to show that for each m, a ∈ R, g ∈ G, the set {x : fxm(g) < a} is open (this is straightforward from

the definition) and the set {x : fxm(g) > a} is Fσ. For this we notice

fxm(g) > a ⇐⇒ ∃b>a,b∈Q{k ∈ K : d∗(π(k), g) < b}−1 · x ⊆ X \ Um.

Proposition 3.6.5 is a generalization of a proposition due to Hjorth and Kechris, see [23], page 240

(see also [26], page 155). They show Proposition 3.6.5 assuming that K can be written as L × L1

for some closed subgroup L1 of K.

Proof of Theorem 3.6.2. Let X be a Polish G-space. Let d be a left-invariant metric on G. Suppose,

towards a contradiction, that this action is turbulent. Let (On)n be a decreasing sequence of

neighborhoods of the identity in G. For every On take Hn and Kn, closed subgroups of G, such that

Hn ⊆ On, Kn = N(Hn) is open in G, and Ln = Kn/Hn is locally compact. Let πn : Kn → Kn/Hn

be the projection. Denote by d∗n the quotient metric on Ln (coming from the restriction of d to

Kn). Let Fn : X → L(Kn/Hn)N be defined as in (3.6.1).

Using the fact that for every n, the action of Kn/Hn on L(Kn/Hn)N is calm, and since we have

for each n the equivariant and almost everywhere continuous map from the action of the open

subgroup Kn < G on X to the action of Kn/Hn on L(Kn/Hn)N, we will deduce that the action of

G on X is non-turbulent.

Fix an open set U in X and V0, an open symmetric neighborhood of the identity in G, such that

RU,V0 is nowhere dense.

Claim. There are n, x ∈ U , and V ′′0 ,V , open and symmetric neighborhoods of the identity, such

that V ′′0 ⊆ V ⊆ V0, Hn ⊆ V ′′0 , V = V ′′0 Hn, V ⊆ Kn, V 2 ·x ⊆ U , Fn is continuous at x, and RU,V 2(x)

is nowhere dense.

Proof of the Claim. Step 1: Find Ũ ⊆ U and V ′0 ⊆ V0 such that (V ′0)2 · Ũ ⊆ U and (V ′0)2 ⊆ V0.
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Step 2: We find n, V , and V ′′0 . First, take V ′′0 such that (V ′′0 )2 ⊆ V ′0 . Next, take n such that

Hn ⊆ V ′′0 . Finally, let V = V ′′0 Hn. Since V ⊆ V ′0 , we have V 2 · Ũ ⊆ U .

Step 3: We find x. Take x ∈ Ũ such that Fn is continuous at x and RU,V 2(x) is nowhere dense.

For the former we use {x ∈ X : Fn(x) is continuous} is comeager, for the latter we use V 2 ⊆ V0 and

we use the Kuratowski-Ulam theorem. For this x we have V 2 · x ⊆ U .

We show that for appropriate U ′ ⊆ U , x ∈ U ′, V ′ ⊆ V ,

O(x, U ′, V ′) ⊆ RU,V 2(x).

Since Ln is locally compact, the action of Ln on L(Ln) is calm. Take an open neighborhood

U ′′ of Fn(x) and take V ′′ ⊆ πn(V ′′0 ), open and symmetric neighborhood of the identity, such that

O(Fn(x), U ′′, V ′′) ⊆ RU ′′,V ′′(Fn(x)). Put V ′ = π−1
n (V ′′). Since Hn ⊆ V ′′0 and V = V ′′0 Hn, we have

V ′ ⊆ V . Let U ′ ⊆ U be an open neighborhood of x such that Fn(U ′) ⊆ U ′′. We show that these

U ′ and V ′ work.

LetW be an open basic neighborhood withW∩O(x, U ′, V ′) 6= ∅. We show thatW∩RU,V 2(x) 6= ∅.

Pick y ∈ W ∩ O(x, U ′, V ′). Then Fn(y) ∈ O(Fn(x), U ′′, V ′′). Therefore, Fn(y) ∈ RU ′′,V ′′(Fn(x)),

i.e, for some g′ ∈ V ′,

Fn(y) = πn(g′) · Fn(x) = Fn(g′ · x).

Let m be such that W = Um. We have, in particular, fym = fg
′·x
m , where we write (fxm) = Fn(x).

Since y ∈ Um, we have fym(1Ln) = 0, and therefore fg
′·x
m (1Ln) = 0. It follows that there is a sequence

hi ∈ Ln with hi → 1Ln , and there is a sequence ki ∈ Kn with πn(ki) = hi and ki · g′ · x ∈ Um.

For large i, hi ∈ V ′′, so ki ∈ V ′, and since g′ ∈ V ′, we have ki · g′ · x ∈ (V ′)2 · x ⊆ U . Hence

W ∩RU,V 2(x) 6= ∅.

Therefore O(x, U ′, V ′) ⊆ RU,V 2(x). Since RU,V 2(x) is nowhere dense, we get a contradiction.
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