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Abstract 

 Rum ether is a distillate of wood extractives, so named as a result of its purported 

similarity in flavor to rum; however, despite it being used widely throughout the flavor industry, 

no work is publicly available that delves into the aroma characteristics of rum ether or explores 

how they compare to those of rum. With these goals in mind, two popular rums were subjected 

to aroma extract dilution analysis (AEDA) in order to establish the aroma profile for typical gold 

or white rum. Both commercial and self-prepared samples of rum ether were then subjected to 

aroma analysis for comparison with these results. Ten commercial samples obtained from a 

number of flavor companies were analyzed by direct injection gas chromatography-olfactometry 

(GCO) in order to establish an understanding of traits common to most or all commercial rum 

ethers. These served as a guide when using scaled-down industrial methods for distillation of two 

rum ethers. In both, the feasibility was assessed of replacing pyroligneous acid, a traditional rum 

ether ingredient, with liquid smoke, one that is more widely available and safer for use in food. 

Self-prepared ethers were found to be comparable to commercial samples despite this ingredient 

substitution and underwent AEDA for more direct comparison with rum. Ultimately, a number 

of compounds, including ethyl isobutyrate, ethyl butyrate, and guaiacol, were found to be 

essential to both rum and rum ether. Not all compounds were aligned: isoamyl alcohol and β-

damascenone were found to be extremely important in rum but not present in rum ether, while 

ethyl acrylate and ethyl 3-butenoate were important rum ether aroma contributors that are 

nowhere to be found in rum. Rum ether therefore currently possesses a solid foundation of rum-

like odor notes, especially wood extractives and short-chain esters, but could benefit from the 

addition of certain fermentation-derived compounds and the removal of several unpleasant off-

notes. Methods for eliminating these discrepancies could be the basis for much future work. 
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Chapter One: 

Introduction 

 

Fenaroli’s Handbook of Flavor Ingredients defines rum ether as “the mixture resulting 

from the oxidation and the hydration of ethyl alcohol.” In practice, it is produced by the 

distillation of pyroligneous acid, more commonly known as wood alcohol, and ethanol (Burdock 

2009). The production of rum ether is vastly different from that of rum in both materials and 

process; its name was derived from its purported similarity in flavor to rum. Rum ether is first 

mentioned in old perfumery handbooks (Piesse 1857), and as early as the late 19
th

 century it was 

also cited as a means of supplementing rum flavor in liquors (Western Druggist 1885). In the 

years since, it has moved beyond the world of alcoholic beverages into baked goods and 

confectionary products (Burdock 2009). It has been given Generally Recognized as Safe (GRAS) 

status by the Flavor and Extract Manufacturers Association (FEMA) – in fact, it was among the 

original set of substances given this designation in 1965 (Hall and Oser 1965). Additionally, it is 

considered “all natural,” an especially important distinction in today’s food climate, where 

natural flavors have a marked commercial advantage. Its long history of use and status as a 

natural flavor should make rum ether an ideal means of creating a rummy note in a variety of 

food products; assuming, of course, that it truly does mimic the flavor of rum. However, despite 

its long-running and widespread use, no research currently exists in the public domain to support 

this assumption. 

Only limited research is available that even establishes the exact composition of rum 

flavor. This is a surprising gap in the literature considering that rum was the most popular 
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beverage in the American colonies (Barr 1999) and that, after seeing a dip in demand, it now 

finds itself in the liquor category (molasses-based spirits) with the greatest worldwide growth 

(Delevante 2004). Although studies can be found in the published literature that examined rum 

flavor, these typically did so in a peripheral way, such as in comparison to a primary liquor of 

interest (Ng 1999; de Souza et al. 2006) or as a medium for the analysis of a specific and narrow 

class of volatile compounds (Timmer et al. 1971, Pino et al. 2002). One of the most thorough 

analyses of rum volatiles was conducted several decades ago (Maarse and ten Noever de Brauw 

1966), using technology that was appropriate at the time, but that has since been replaced by 

more sensitive instrumentation with the ability to obtain much more detailed information. The 

other most rum-focused work contains a thorough listing of rum volatiles, but includes all 

volatiles – not just those with an aroma – leaving the discussion of aroma to only the few most 

potent odorants (Pino 2012). In establishing the similarity of rum ether to rum, it would be 

helpful to first have a more complete understanding of the key aroma compounds in rum. This 

information would additionally be useful in its own right as a way to better understand a 

beverage that has been both popular and historically important for centuries. 

This research aimed to first determine the aroma profile and key aroma compounds of 

both white and gold rum through the use of aroma extract dilution analysis (AEDA). In AEDA, 

serially diluted aroma extracts are subjected to analysis by gas chromatography-olfactometry 

(GCO); all aroma-active compounds – those that can be smelled, even faintly – are part of the 

aroma profile, while those compounds that continue to be sensed in even the most dilute extracts 

are considered potent or key odorants. Once a characteristic aroma profile was established for 

rum, a wide range of commercially available rum ether samples was assessed in order to 

determine which compounds were most common among all samples. Additionally, rum ethers 
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were distilled in the laboratory using traditional methods but with one ingredient substitution, 

replacing historically used pyroligneous acid with liquid smoke, a more widely available and less 

toxic product that is also derived from wood. These rum ethers were analyzed in the same 

manner as the commercial products and compared to both rum and other rum ethers to determine 

the feasibility of using liquid smoke in rum ether production. Self-made rum ethers also provided 

the opportunity to determine points in the rum ether production process that could be altered to 

create a product more reminiscent of rum. With this information, it was possible to determine 

whether rum ethers are, or could be made, similar to rum in volatile composition, or whether the 

resemblance is purely qualitative. 

Objectives 

 Determine what aroma compounds are most important in giving rum its distinctive flavor 

using a combination of headspace, direct injection, and AEDA GCO as well as GC-MS 

confirmation. 

 Distill rum ethers on a bench scale in a consistent way using liquid smoke as a replacement 

for pyroligneous acid. 

 Characterize the aroma profile of rum ethers using a combination of direct injection and 

aroma extract dilution analysis GCO with GC-MS confirmation and compare with the key 

aroma compounds found in rum. 

 Identify potential changes that could be made to rum ether distillation in order to produce a 

rum ether that more closely mirrors true rum flavor. 
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Chapter Two: 

Literature Review 

 

2.1. Rum 

2.1.1 History 

The English first happened upon the Caribbean island of Barbados in 1607 (Gately 2008), 

and by 1625 the first British settlements had been built there. The land was initially used for 

attempts at growing tobacco, followed by cotton and indigo, but no crop seemed to take to the 

land. It was not until the 1640s, when sugarcane was introduced, that the plantations really began 

to thrive. Soon sugar was being refined on the island and exported for use throughout Europe 

(Barr 1999).  

In addition to sugar, the refining process created a sticky byproduct known as molasses. 

At first glance, the settlers deemed it worthless and used it as animal slop or trash. Before long, 

however, it was discovered that addition of water created an easily fermentable material; 

furthermore, the resulting alcohol was found to be very well-suited to distillation. With that, rum 

was born (Gately 2008). Although distillation of sugarcane-based beverages was not new – the 

Portuguese had for years been making alcohol from sugarcane juice – the ability to do the same 

with an otherwise unmarketable byproduct held great novelty. This meant that the British could 

use a single crop of sugarcane for production of both sugar and rum, and within a decade of the 

discovery they were the richest people in the New World (Barr 1999). 
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Which is not to say that rum was an instant success. The first recorded mention of rum is 

found in a description of Barbados from 1651, where it is described as “hot, hellish, and terrible” 

(Gately 2008). It just so happened, however, that the nearby continent was quickly filling with 

colonists who were desperate enough for a replacement libation that they would try anything, no 

matter how hellish. For while beer was the drink of choice in Britain, American soil proved to be 

unwelcoming to wheat and barley, the raw ingredients necessary to prepare it; importing these 

from overseas was prohibitively expensive (Park 1985). Additionally, while the population 

density was high enough in Britain to consume large quantities of beer before it could spoil, the 

colonies were so spread out that most taverns could not reasonably expect to finish a keg before 

it went bad. With water considered unsafe to drink, rum seemed the best solution (Barr 1999). 

Before long, rum was the most consumed beverage in the colonies. By the height of its 

popularity in the late eighteenth century, the two million colonists were drinking eight million 

gallons of the liquor each year, or four gallons per capita. Approximately half of this was 

imported from the West Indies, while the other half was distilled stateside using imported 

molasses. As a result, the two most imported commodities from the Caribbean were by far rum 

and molasses. A common myth exists that this was one leg of a construct known as the triangle 

trade, where sugar and molasses were sent from the islands to the colonies, from whence rum 

would be sent to Africa. Finally, Africa would send slaves back to the Indies, completing the 

“triangle.” But although African slaves were certainly brought to the Americas, only a small 

amount of rum was actually involved in this trade; the bulk of demand for rum originated in the 

colonies themselves (Park 1985). 

Some other rum-related lore, specifically that related to pirates, contains a bit more truth. 

American colonists were not the only ones who had grown to like the beverage; its use had also 
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spread back to Europe and even onto the high seas. Sir Henry Morgan, a famous English 

privateer, made rum a part of his brand to the point that he died not from cannon fire or walking 

the plank but from overconsumption of alcohol. Today, one of the most popular brands of rum 

appropriately – or perhaps inappropriately – bears his name. Rum was so deeply engrained in 

pirate culture that it was even mentioned in their governing articles, which recognized the right 

of every man to “strong liquors” (Gately 2008). 

Rum’s importance in colonial times truly cannot be overstated. By many accounts, it was 

one of the first sparks of contention between the British and their colonies that led eventually to 

the Revolutionary War. The Molasses Act of 1733 placed a tax on molasses imported from non-

British colonies (Barr 1999). This dealt a huge blow to domestic distilleries, which relied on 

cheap molasses from French islands in the Caribbean to remain profitable. Rum production was 

at the time the most lucrative colonial business in New England, with at least one distillery in 

every major city, and the Molasses Act threatened the very foundation on which that industry 

was built (Park 1985). Although many more grievances would accumulate by the start of the 

war, this first insult was not easily forgotten. Upon conclusion of the Revolutionary War, John 

Adams is noted as having said “I know not why we should blush to confess that molasses was an 

essential ingredient in American independence. Many great events have proceeded from much 

smaller causes” (Gately2008). 

By this time, colonists had forgotten much of their anger over molasses import taxes, as 

their sights had been set on a newly popular drink. During the course of the war, imports had 

been impeded significantly by the British Navy, and many distilleries had switched over to 

whiskey. Although the end of the war brought the opportunity to pick back up on rum, whiskey 

was cheaper and could be made from domestic raw materials, something the newly independent 
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country took a lot of pride in (Barr 1999). By 1790, per capita rum consumption was down from 

its four gallon peak to only one gallon, and by the mid-1850s, rum comprised only five percent 

of all American spirit consumption (Park 1985). It maintained some popularity in Europe 

throughout the nineteenth century, but it still seemed that perhaps rum’s best days were behind it 

(Wilson 2006). 

Recently, however, rum has experienced a renaissance. With the introduction of Bacardi 

white rum in the 1970s, many who had always thought of rum as a dark beverage began to view 

it as an alternative to vodka in mixed drinks (Park 1985). In the years since, many brands of rum, 

like Bacardi and Captain Morgan, have become household names, and new premium rums are 

now widely being seen as competitive with premium spirits in other categories (Delevante 2004). 

In 2001, rum was able to capture 11.9% of the U.S. distilled spirit market (Corrigan 2004), and 

this figure seems to be growing: sugarcane-based spirits experienced the largest growth of any 

spirit category in 2004 (Delevante 2004). So although it would be decidedly impossible for rum 

to recapture its colonial monopoly in today’s liquor market, it is reemerging as a beverage worth 

watching and, perhaps, studying. 

2.1.2. Production 

 What constitutes rum varies significantly across the globe; with more than twenty 

standards of identity, it is more ambiguously defined than any other spirit (Delevante 2004). In 

the United States, a beverage must meet three criteria in order to be classified as rum: it must be 

made solely of distillates of sugar cane or its byproducts, it must be distilled at less than 190° 

proof and bottled at greater than 80° proof, and it must have the taste and aroma characteristic of 

rum (United States). Other countries may contain different requirements regarding ethanol 
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concentration or include additional criteria, most commonly a minimum length of aging 

(Delevante 2004).  

 Despite the diversity of standards, it is generally agreed upon that the raw material for 

rum should be sugar cane derivatives, including molasses, cane juice, and cane syrup. Molasses 

is the most popular starting material, both for its ability to create a flavorful spirit and for the 

economic benefits of using an otherwise unpopular sugar byproduct (Lehtonen and Suomalainen 

1977). Typical molasses composition is as follows: 

Table 2.1. Composition of molasses (adapted from Persad-Doodnath 2008) 

 

Water 15-25% 

Organic Solids 65-70% 

    Fermentable sugars 35-55% 

    Unfermentable sugars 2-9% 

    Other organics (protein, starch, acid) 1-33% 

Inorganic Solids 10-15% 

One of the most important factors here is the ratio of fermentable matter – the fermentable sugars 

sucrose, fructose, and glucose – to the remaining solids, which for an ideal fermentation should 

be always greater than 1 and preferably greater than 1.2 (Persad-Doodnath 2008). 

 In preparation for fermentation, the molasses is diluted with pure water to a sugar 

concentration (w/v) of 10-12% (Lehtonen and Suomalainen 1977). Insufficient dilution will lead 

to a fatal concentration of ethanol for the yeast, which will die before all sugars have been 

converted. In addition to being diluted, the molasses may also be heated to remove 

microorganisms that might compete with the chosen yeast culture or centrifuged to separate out 
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colloidal matter (Persad-Doodnath 2008).  Finally, yeast is added to the dilute molasses substrate 

to begin fermentation. In the case of large-scale producers, this is usually a single, carefully 

selected culture from the Saccharomyces genus for light rums or the Schizosaccharomyces genus 

for heavier ones (Lehtonen and Suomalainen 1977). Smaller, artisan producers are more likely to 

still use a mixture of wild yeast strains or the yeast residue remaining from an earlier batch 

(Buglass 2011).  

 Fermentation now begins. Although more extreme conditions are occasionally used, most 

fermentation is conducted at a temperature of 30-33°C and a pH between 5.5 and 5.8. This 

process is usually allowed to continue for one to three days (Lehtonen and Suomalainen 1977), at 

which point all fermentable sugars will have been converted. Most sugars – about 90% – are 

converted into ethanol, while the rest are utilized for cell growth and production of glycerol. The 

finished fermented molasses has an ethanol concentration of 6-9%. In addition to ethanol, many 

of rum’s characteristic aroma compounds are formed during the fermentation process: alcohol 

oxidizes to form aldehydes, which oxidize to form acids.  Meanwhile, alcohols and acids 

undergo esterification, and amino acids react to form fusel oils or sulfur compounds (Persad-

Doodnath 2008).  

 Fermentation is followed by distillation, which serves to concentrate both the alcohol and 

desirable aroma compounds while removing any unpleasant congeners. Although this step does 

not contribute as heavily as fermentation to the formation of aroma compounds, it is essential in 

determining their concentrations in the finished rum (Lehtonen 1977). Two types of distillation 

are still commonly used: continuous distillation and pot-still distillation. 
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 Pot-still distillation (Figure 2.1) is a more traditional, batch method of distillation and is 

still used by many smaller distilleries, especially those making heavier, darker rums. The 

fermented mixture, or beer, is placed in the pot still. Both the low and high wine retorts are filled 

with the tail end cuts from previous distillations. These are more concentrated in alcohol than the 

beer – the beer is only 6-9% alcohol, while the low wines are approximately 30% and the high 

approximately 75% - but are still less concentrated than the desired finished product. Heat is 

applied to the pot still, causing evaporation of the beer. Upon hitting the retort filled with cooler 

low wines, the water in the beer condenses; the heat from this condensation is enough to 

evaporate much of the ethanol in the mixture. This process of condensation and evaporation is 

repeated in the high wine retort. Finally, this vapor, now highly concentrated in ethanol, moves 

to the condenser, is cooled to the point of condensation, and is collected. The initial condensate 

is collected as headings and typically discarded. The first fraction, at about 90% ethanol, is 

collected to be aged into rum. As the ethanol begins to be exhausted, second and third fractions 

are collected to replenish the high and low wine retorts, respectively (Buglass 2011). 

Figure 2.1. Pot-still distillation of rum 
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 Continuous distillation (Figure 2.2) is a more modern alternative to the pot-still method 

and is common in large-scale operations. A typical continuous distillation set-up contains two 

columns: the analyzer, where initial concentration of ethanol occurs, and the rectifier, where 

fractionation takes place. The process begins when the beer (A) is fed through a series of coils 

running through the rectifier, allowing the hot vapors formed later in the distillation to warm the 

beer almost to boiling. This improves efficiency – rather than heating the beer exclusively with 

fresh steam, the heat energy already being released by another part of the distillation is captured 

and utilized. This hot beer (B) is then fed into the first column, the analyzer. Steam (C) is fed 

from the bottom of the column. As the steam flows upward, there is an exchange of heat between 

the steam and the hot beer. The steam heats the more volatile components of the beer, 

particularly ethanol, to the point of evaporation, while the beer cools much of the steam to the 

point of condensation. The spent beer (D), now consisting primarily of water, exits the bottom of 

the column, while the more volatile components (E), now highly concentrated in ethanol, are 

collected and fed into the second column, or rectifier. The rectifier has a heat gradient – cool at 

the top and warm at the bottom – created by a flow of cool water (F) through a coil at the top of 

the column; this serves to absorb much of the heat of the vapors without actually contacting and 

diluting them, and exits the column significantly warmer (G). As the concentrated beer vapor 

flows towards the top of the rectifier, the gradually decreasing temperature creates condensation 

of increasingly volatile components. The most volatile components (H) remain vapor and are 

collected at the top and discarded, as they typically contain undesirable compounds such as 

methanol; the least volatile components (I) condense almost immediately upon entering the 

rectifier and are recycled back into the analyzer column. Only the heart (J), a cut out of the 

middle of the rectifier column taken slightly below the top, is collected to be aged and sold as 
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rum. Despite only requiring two columns, this rum fraction can be very concentrated in ethanol, 

often reaching all the way to the azeotrope at around 95% ethanol (Buglass 2011). 

Figure 2.2. Continuous (Coffey still) distillation of rum 
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 The primary differences between pot-still and continuous distillation come down to a 

trade-off: volume of flavor vs. efficiency. A pot-still distillation consumes significantly more 

energy than the alternative, but it captures more of the volatiles and can therefore result in 

stronger, more complexly flavored rum. The continuous still can create a larger volume more 

quickly and in a less energy-intensive way, but often excludes many aroma compounds in the 

process. This explains why a pot-still is favored for dark, heavy rums designed to be drunk neat, 

where depth of flavor is key, and continuous distillation is preferred for light rums, which benefit 

from a cleaner flavor. 

 The collected distillate from either method then undergoes an aging process, as it is harsh 

and lacking in complexity of flavor when fresh (Persad-Doodnath 2008). The mixture is put into 

charred, oak barrels for typically at least one year; barrels purchased from Bourbon producers are 

popular, as rum has no rules about reuse of barrels, while Bourbon requires that they be used 

only once (Buglass 2011). During aging, the aroma profile of the rum is altered in three major 

ways: constituents of the wood are extracted into the rum, oxygen seeping in through the pores 

of the barrel participates in oxidation reactions, and unstable components of the rum react with 

one another to produce more stable molecules (Persad-Doodnath 2008). Although more 

complexity is developed, it is at the expense of product, as about 10% of the volume is lost with 

every year of aging, so a balance must be struck between quality and quantity of rum produced 

(Buglass 2011).  

 Once rum has been aged for the desired length of time, only two steps remain before it is 

ready to be bottled and sold. First, an employee of the distillery trained in creating well-rounded 

rum flavors mixes together several different distillates – perhaps some of different age, ethanol 

content, or method of fermentation or distillation (Buglass 2011). The purpose is to create not 
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only balanced flavor, but also a consistent product from year to year. Although blenders now 

have the aid of chemical analysis to confirm consistency, in traditional rum-making, it was 

essential that they be well-trained to maintain quality in every batch. Often blenders have at their 

disposal small amounts of rum aged for a very long time – twenty years or more – to lend 

complexity to much younger spirits (Blue 2004). Finally, the color of the blend may be altered to 

influence perception – rums advertised as dark but not aged sufficiently to take on a naturally 

golden color can be tinted with caramel, while those aged in wood but sold as white rums can 

undergo charcoal filtration to remove coloration (Buglass 2011). The rum is now finally ready to 

be bottled, purchased, and, most importantly, consumed. 

 

2.1.3. Aroma Research 

 A fairly significant body of work is in existence on the volatile compounds in rum. 

Studies of rum flavor first appeared in the literature during the 1960s, and additional work has 

steadily been published in the literature until as recently as a few weeks ago. In fact, rum 

research provides a fairly complete view of the evolution of flavor analysis techniques, with the 

first thorough analysis of rum volatiles utilizing solvent extraction and capillary-column gas-

liquid chromatography (Maarse and ten Noever de Brauw 1966), and the most recent research 

harnessing the power of solid phase microextraction (Pino 2007) and aroma extract dilution 

analysis (Pino et al. 2012), two of the more modern developments in flavor research.  

With such an abundance of work available, one might presume that a full characterization 

of rum volatiles would at this point be redundant, but in fact none of the currently published 

work provides a thorough profile of rum aroma by current standards. Much of what is available 
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does not make complete characterization its aim, choosing to focus instead on a single group of 

compounds such as fatty acids (Nykänen et al. 1968), phenols (Timmer et al. 1971), nitrogen-

containing compounds (Wobben et al. 1971), or fatty acid ethyl esters (Ng 1999; Pino et al. 

2002). Each of these fills in some holes in the knowledge, but even in combination these studies 

do not provide a complete picture of the complex chemistry responsible for rum aroma. 

Four articles exist that come closest to providing this picture. A synthesis of those 

compounds identified within at least two of the four, ranked by retention index on a DB5 

column, can be found in Table 2.2. The 1966 work of Maarse and ten Noever de Brauw is one of 

the first places in the literature where rum aroma is mentioned at all. For this analysis, the aroma 

compounds of dark Jamaican rum were extracted using a mix of pentane and ether, and the 

extracts were analyzed using a combination of gas chromatography with either infrared or mass 

spectrometry. A total of sixty-five compounds were identified. The primary setback to using this 

work today is that the technology has evolved significantly over the past five decades, and many 

of the techniques used are now seen as somewhat dated. The same can be said of the rum 

research published in 1970 by Liebich et al., which identified more than three times as many 

compounds; although it used the best technology available at the time, we now know that many 

of those analysis methods can create artifacts not present in the original product. Additionally, 

without the aid of more recently developed olfactometry techniques, both of these researchers are 

unable to provide more than a simple, unranked list of all compounds that are thought to have an 

impact on the overall aroma (Maarse and ten Noever de Brauw 1966, Liebich et al. 1970). This 

leaves open the possibility that many of the compounds listed are volatile but odorless, 

contributing nothing to the overall rum flavor. Two more recent contributions are available as 

well. In the work of de Souza et al., published in 2006, more modern extraction techniques are 
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paired with olfactometric methods to obtain a list of rum aroma compounds ordered by 

importance of their contribution to the aroma. Unfortunately, the goal of the work is to compare 

the most important compounds in rum with those in cachaça, so only the few largest aroma 

contributors are discussed, passing over the more minor components (de Souza et al. 2006). 

Finally, in some of the most recent rum research, published in 2012, Pino et al. use a 

combination of the olfactometric method of aroma extract dilution analysis, or AEDA, with GC-

MS to create both an exhaustive list of volatile components in rum and a short exploration of the 

most potent odorants. However, the longer list includes many odorless compounds, while the 

shorter one focuses on only a small number of very potent odorants, making it hard to distinguish 

those compounds that might be weaker contributors to the aroma profile from those that 

contribute nothing at all. 

Table 2.2. Commonly identified rum volatiles 

 

Compound RI (DB5)* Type A B C D 

ethanol 435
D
 aldehyde X X 

  propanal 
A
 aldehyde X X 

  ethyl formate 504
D 

ester X X 

 
X 

1-propanol 568
D
 alcohol X X 

 
X 

ethyl acetate 606
D
 ester X X  X 

isobutanol 624
D
 alcohol X X 

 
X 

3-methylbutanal 630
D
 aldehyde  X  X 

diacetyl 644
C
 ketone 

 
X X X 

acetic acid 645
D
 acid X   X 

propanoic acid 668
D
 acid X X  X 

2-butanol 676
D
 alcohol X X  X 

2-pentanone 687
D 

ketone  X  X 

ethyl propionate 715
D
 ester X X 

 
X 

propyl acetate 719
D
 ester X X 

  diethyl acetal 730
C
 acetal X X X X 

2-methyl-1-butanol 736
D
 alcohol X X 

  3-methyl-1-butanol 740
D
 alcohol X X  X 

ethyl isobutyrate 758
C
 ester X X X X 
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Table 2.2 (cont.) 
       

Compound RI (DB5)* Type A B C D 

1-pentanol 
A
 alcohol X X 

  isobutyl acetate 769
D
 ester 

 
X 

 
X 

ethyl butyrate 803
C
 ester X X X X 

butyl acetate 
A
 ester X X 

  coffee furanone 814
D
 lactone X X 

  butyric acid 820
D
 acid X X 

 
X 

furfural 836
D
 aldehyde X X 

  ethyl 2-methylbutanoate 850
C
 ester X X X X 

ethyl 3-methylbutanoate 856
D
 ester X X 

  butanol 
A
 alcohol X X 

  isoamyl acetate 880
D
 ester X X 

 
X 

propyl butyrate 
A
 ester X X 

  ethyl valerate 900
D
 ester X X 

 
X 

pentanoic acid 910
D
 acid X X 

 
X 

2-acetylfuran 912
D
 ketone X X 

 
X 

benzaldehyde 962
D
 aldehyde X X 

 
X 

ethyl hexanoate 1000
D
 ester X X 

 
X 

hexyl acetate 1008
D
 ester X X 

  ethyl lactate 
A
 ester X X   

caproic acid 
A
 acid X X   

isoamyl butyrate 
A
 ester X X   

guaiacol 1088
C
 phenol 

 

X X X 

ethyl heptylate 1097
D
 ester X X 

  2-phenylethyl alcohol 1111
C
 alcohol 

  

X X 

ethyl benzoate 1173
D
 ester X X 

  diethyl succinate 1179
D
 ester X X 

 

X 

4-methyl guaiacol 1191
D
 phenol X X 

 
X 

ethyl octanoate 1195
D
 ester X X 

  β-phenethyl acetate 1255
C
 ester 

 

X X X 

octanoic acid 1279
D
 acid X X 

 

X 

4-ethylguaiacol 1279
C
 phenol 

 

X X X 

ethyl nonanoate 1296
D
 ester X X 

  eugenol 1368
C
 phenol X X X X 

β-damascenone 1383
C
 ketone 

  

X X 

ethyl decanoate 1396
D
 ester X X 

 

X 

vanillin 1407
C
 phenol 

 

X X X 

ethyl laurate 1594
D
 ester 

 
X 

 

X 
. 
A: Maarse et al. 1966 ; B: Liebich et al. 1970 ; C: de Souza et al. 2004 ; D: Pino et al. 2012 



19 

 

Esters account for about half of the commonly identified compounds in rum (Table 2.2); 

alcohols come in a far second, and the remainder of compounds are approximately evenly 

divided between acids, aldehydes, ketones, and phenols. This does not necessarily indicate that 

esters are the most important or even the most abundant aroma compounds, only that they are the 

most diverse group. It would seem, however, that esters are considered to be some of the most 

important distinguishing compounds in rum, with the existence of ester number, or mg ester per 

100 mL ethanol, as an established classification method for different types of rum (Lehtonen and 

Suomalainen 1977). 

2.2. Rum Ether  

2.2.1. History 

 There is a notable lack of information available in the case of rum ether, in particular 

where its history is concerned. Mentions of the substance can be found in books dating back to at 

least 1857, at which time a short formula was published in George William Septimus Piesse’s 

exhaustively titled work The Art of Perfumery and Method of Obtaining the Odors of 

Plants: With Instructions for the Manufacture of Perfumes for the Handkerchief, Scented 

Powders, Odorous Vinegars, Dentifrices, Pomatums, Cosmetiques, Perfumed Soap, Etc.: with an 

Appendix on the Colors of Flowers, Artificial Fruit Essences, Etc., Etc. Here it is described as a 

reaction product of black oxide of manganese, sulfuric acid, alcohol, and strong acetic acid that 

was responsible for the “peculiar” flavor of rum (Piesse 1857). Similar descriptions can be found 

in other manuals from around the same time, but it is difficult to locate anywhere an account of 

how or when rum ether was first discovered.  
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2.2.2. Production 

 A modern formula for rum ether is given in Fenaroli’s Handbook of Flavor Ingredients: 

Ethanol (95%) 12-25 kg 

Manganese Dioxide 2-5 kg 

Pyroligneous Acid (12% Acetic Acid) 10-16 kg 

Sulfuric Acid (66 °Be) 3-8 kg 

One at a time and in order, each ingredient is stirred into a flask attached to a distillation 

apparatus. Once everything has been added, the mixture is slowly heated; everything distilling 

between 60°C and 100°C is collected. This mixture is then further rectified, with only the portion 

boiling between 65°C and 87°C being used for the finished rum ether. The finished product has 

been noted for its qualitative similarity to rum, and has thus been incorporated into a number of 

sweets and beverages to lend rummy notes. The concentration of use varies greatly depending on 

the product. In ice cream, for example, its use generally remains close to 100 ppm, while in 

alcoholic beverages it may reach two or three percent of the finished product (Burdock 2010). 

2.2.3. Aroma Research 

 A search of the literature reveals no relevant work in regards to rum ether. The limited 

information available again comes from handbooks, which list the bulk constituents of a typical 

rum ether: water, ethyl alcohol, ethyl acetate, methanol, ethyl formate, acetone, acetaldehyde, 

and formaldehyde. No source is provided for this information, and nothing is included about the 

more minor constituents that are responsible for the flavor of rum ether, making it a compelling 

subject (Burdock 2010). 
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2.3. Aroma Analysis Techniques 

2.3.1. Liquid-Liquid Continuous Extraction 

 In flavor analysis of food and beverage volatiles, it is often necessary to remove only the 

portion responsible for the aroma – the volatile compounds – from the sample matrix and 

concentrate these to make them detectable by laboratory instruments (Plutowska and Wardencki 

2007). One way of doing this is liquid extraction. In liquid-liquid continuous extraction (LLCE), 

an immiscible solvent with a low boiling point is continuously refluxed through the sample of 

interest, slowly transferring the volatiles in the sample matrix into the solvent. Only a tiny 

fraction of the volatile components will be transferred with each drop of solvent falling through 

the sample, but with repetition of this process for up to a day, the extraction of volatiles is 

significant (MacNamara and Hoffman 1998). The cycle of continuous evaporation and 

condensation allows for a more complete transfer of volatiles than traditional liquid extraction 

methods. This addresses one of the biggest problems with solvent extraction – extraction bias. In 

traditional extraction, those compounds that have high affinity for the solvent matrix will be 

disproportionately represented in the finished extract. The prolonged contact in LLCE allows for 

those compounds with a lower affinity for the solvent to be more fully extracted. Although 

extraction bias cannot be eliminated entirely – some compounds will still be over- or 

underrepresented – LLCE takes a step in the right direction (Buglass 2011). 

2.3.2. Aroma Extract Dilution Analysis 

 It is often necessary in flavor analysis to not merely identify volatile compounds but to 

offer some suggestions about which ones might be the biggest contributors to the flavor. One 
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way to do this is to determine both odor detection thresholds and concentrations of each 

compound in the sample, but this can be extremely time-consuming and may not be necessary in 

all cases. For some samples, it is sufficient to use a dilution technique such as aroma extraction 

dilution analysis (AEDA) or combined hedonic aroma response measurement (CHARM). Of 

these, AEDA is the more commonly used method (Plutowska and Wardencki 2007). AEDA was 

first detailed by Dr. Werner Grosch in 1993. In his method, he describes how a flavor extract is 

serially diluted and each dilution analyzed by gas chromatography-olfactometry. Each compound 

is then assigned a flavor dilution (FD) factor that represents the most dilute sample in which it 

was detected, e.g., a compound sensed only until a 1:32 dilution would have an FD factor of 32. 

Dr. Grosch describes the drawbacks of AEDA as well. Because it depends on detection in an 

extract, extraction bias can skew the FD factors; additionally, many people may differ in their 

sensitivity to certain compounds and therefore not all assign the same FD factor to the same 

compound. Despite these setbacks, AEDA remains a very popular method for analysis of relative 

importance of volatiles in a given sample (Plutowska and Wardencki 2007). 
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Chapter Three:  

Characterization of Rum Aroma 

 

3.1. Introduction 

Although research into the flavor profile of rum can be found in the literature, none of 

what is currently available provides a complete picture of rum aroma. Much of the work focused 

only on specific classes of aroma compounds, and only two researchers have attempted to study 

not just the presence or absence of compounds but their relative importance. Even these two 

studies looked only at the twenty most potent odorants in their respective samples, which 

captures the essential notes but still leaves out more than half of detectable rum volatiles (de 

Souza et al. 2006, Pino et al. 2012). 

 In order to determine how rum ether is both similar to and different from rum, it was 

important to have a characterization of rum aroma that was complete, one that included not just 

the primary rum volatiles, but the minor ones as well. For direct comparison of rum and rum 

ether data, it was also necessary to have collected information on both in a consistent fashion. 

With these goals in mind, it was deemed necessary to determine the odorants in both white and 

gold variants of the most commonly found rum brand. While this decision was made primarily 

for its necessity in rum ether analysis, the research was worthwhile in its own right as a 

contribution to the current knowledge of rum, one that both confirms what is already available 

and adds to the discussion. 
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 A combination of gas chromatography-olfactometry and gas chromatography-mass 

spectrometry were used to identify the odor-active compounds in rum extracts. Dilution analysis 

was employed for determining which of these were most and least important in the overall 

aroma. These techniques produced a clearer profile of rum volatiles than was otherwise 

available; this profile was essential in evaluating rum ether. 

3.2. Materials and Methods 

3.2.1. Materials 

Two commercial rums, Bacardi Gold and Bacardi Superior, were chosen as 

representative samples based on their widespread popularity in the U.S. (Longfield 2011). Both 

products were reported to contain 40% alcohol by volume and fit the U.S. standard of identity for 

rum (“Liquors” 2011). Bacardi is mentioned for the purpose of being thorough but was in no 

way affiliated with this research. 

Dichloromethane and anhydrous sodium sulfate were both purchased from Fisher 

Scientific (Fair Lawn, NJ). 

Aroma standards were obtained from the following sources: Baker (Phillipsburg, NJ): 9, 

14; Bedoukian (Danbury, CT): 44; Fisher Scientific: 23; Fluka (Switzerland): 31, 45; Sigma 

Aldrich Co. (St Louis, MO): 1,2, 4-6, 10, 11, 13, 17-20, 22, 25, 26, 28-30, 33-36, 38, 39, 41, 43, 

46. 

3.2.2. Static Headspace Analysis 

Gas chromatography-olfactometry analysis of decreasing static headspace volumes 

(GCO-H) was modeled after the method described by Zhou et al. for buckwheat honey (2002). A 
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sample of 10.0 mL of rum was diluted with 10.0 mL of odor-free water to obtain an ethanol 

concentration of 20% (v/v). The diluted sample was placed in a 250 mL flask fitted with a 

septum and the headspace allowed to equilibrate with stirring in a warm water bath at 40°C for 

30 minutes. After equilibration, a sample of the headspace of 25 mL, 5 mL, 1 mL, or 0.2 mL was 

withdrawn with a gastight syringe for analysis by GCO.   

3.2.3. Liquid-Liquid Continuous Extraction 

Figure 3.1. Liquid-liquid continuous extraction (LLCE) set-up 
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Aroma extracts were obtained by continuous liquid-liquid extraction (LLCE, Figure 3.1). 

A continuous extraction apparatus (#Z562440; Sigma Aldrich, St Louis, MO) was attached to 

both a 7-inch-long condenser and a 300 mL receiving flask. The condenser was cooled to a 

temperature of 4° C, while the flask was heated to a temperature appropriate for steady 

evaporation of solvent. To the system were added 150 mL of dichloromethane as the solvent, 

100 mL of rum, and 425 mL of deodorized water.  

Dichloromethane was refluxed through the diluted rum for 18 hours. The 

dichloromethane fraction was collected and dried over anhydrous sodium sulfate. This extract 

was then purified using solvent-assisted flavor evaporation (SAFE). 

3.2.4. Solvent-Assisted Flavor Evaporation  

Solvent-assisted flavor evaporation (SAFE), a method for high vacuum distillation, was 

used on the dichloromethane extracts as a means of separating volatile compounds from non-

volatiles present. SAFE was applied using the technique described by Song et al. (2008), which 

is based on the method given by Engel et al. (1999). The SAFE set-up was similar to that used by 

Engel; it comprised a high-vacuum pump, a turbo-pump, a receiving trap, and a waste trap. The 

distillation lasted two hours and was maintained at a low pressure of roughly 10
-5

 torr throughout 

this time. 

3.2.5. Gas Chromatography-Olfactometry 

Gas chromatography-olfactometry (GCO) analysis was completed using an Agilent 6890 

Gas Chromatograph (Agilent, Santa Clara, CA) outfitted with a Gerstel Olfactometry Detection 

Port and CIS-4 Programmable Temperature Vaporizer (PTV) inlet (Mulheim an der Ruhr, 

Germany), as well as a Flame Ionization Detector. Two columns were used for all samples: a 
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polar RTX-Wax and non-polar RTX-5, both from Restek (Bellefonte, PA). Both columns were 

15 m in length, with an inner diameter of 0.53 mm and a film thickness of 1 μm.  

 Total GCO runtime was 38.5 min. Helium, with a flow rate of 21.8 mL/min, was used as 

the carrier gas. Cold splitless injection was used. For vapor (headspace) samples, the CIS-4 inlet 

was programmed to -120°C for injection and held there for 0.10 min, at which point it was 

increased to a final temperature of 250°C at a rate of 12°C/s. For liquid (extract) samples, the 

inlet was cooled to -50°C prior to injection and held at this temperature for 0.10 min, at which 

point it was increased to a final temperature of 260°C at a rate of 10°C/s. For both vapor and 

liquid samples, the GC oven was initially brought to 40°C, held for 5.00 min, increased at 

10.0°C/min until reaching 225°C, and finally held at this temperature for 15.00 min.  

 The exit flow from the column was split between the Flame Ionization Detector and the 

Olfactometry Detection Port. Each sample was tested by two individuals, who recorded for each 

aroma an elution time, one or more descriptors, and a perceived odor strength. In addition to the 

samples, a series of standard alkanes ranging from 6 to 28 carbons was injected in order to 

calculate retention indices. 

3.2.6. Gas Chromatography-Mass Spectrometry 

Gas chromatography-mass spectrometry (GC-MS) analysis was conducted using an 

Agilent 6890 GC with Gerstel CIS-4 PTV inlet paired with a Hewlett-Packard 5973 mass 

spectrometer. Samples were analyzed using both a polar RTX-Wax and a non-polar RTX-5 

column (Restek), both with a length of 30 m, an inner diameter of 0.25 mm, and a film thickness 

of 0.25 μm. The National Institute of Science and Technology (NIST) database was used for 

comparison against experimental mass spectra.  



30 

 

GC-MS analysis lasted 71.25 minutes. Helium, with a flow rate of 1.0 mL/min, was used 

as the carrier gas. Samples were injected in cold splitless mode at an initial inlet temperature of -

50°C. This was held for 0.10 min, at which point it was increased to a final temperature of 260°C 

at a rate of 12°C/s. The GC oven was programmed to hold at 40°C for 5 min, increase by 

4°C/min to 225°C, and then hold this temperature for an additional 20 min. The entirety of the 

gas chromatograph’s outlet flow was directed to the mass spectrometer for analysis in scan 

mode. 

3.2.7. Identification of Volatiles 

Volatile compounds were identified using a combination of GCO and GC-MS data and 

confirmed using authentic standards. For each volatile detected using GCO, a retention index 

was calculated using the elution time of both the volatile and the surrounding standard alkanes. 

The formula was as follows: 

                
       
       

 

where RI indicates retention index and RT retention time, and the subscripts indicate the target 

compound (no subscript), the alkane directly preceding this compound (n), and the alkane 

directly following this compound (N). Each alkane is assigned a retention index equal to its 

carbon chain length multiplied by 100, e.g. hexane has a retention index of 600. 

 Each compound was tentatively identified using its retention indices on both a polar and 

non-polar phase, as well as the odor impressions recorded. These identifications were considered 

positive if they could be confirmed using at least one mass spectra database match on the GC-
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MS (either polar or non-polar phase) as well as a match in both retention index and odor 

impression to an authentic standard on the GCO. 

3.2.8. Aroma Extract Dilution Analysis 

Relative importance of volatiles was determined using Aroma Extract Dilution Analysis 

(AEDA, Grosch 1993). A series was prepared of increasing 1:3 extract dilutions in 

dichloromethane, ranging from a concentrated extract to a dilution of 1:2187, at which point no 

additional volatiles were detected. Each dilution was analyzed using GCO. Each of the 

compounds identified in the extracts was assigned a flavor dilution (FD) factor that corresponded 

to the last dilution at which it was detected. Those compounds with the highest FD factor were 

considered most crucial in creating characteristic rum aroma.   

3.3. Results 

3.3.1. Static Headspace Analysis 

Nine compounds were identified using static headspace analysis of gold rum; six of these 

were also detected in white rum (Table 3.1). The compound with the highest FD factor in both 

rum samples was acetaldehyde. More than half of the compounds identified were esters.  
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Table 3.1. Compounds identified by GCO-H and their FD factors for gold and white rum  

Compound RI 

(Wax) 

RI 

(DB5) 

Aroma FD
a
 

(Gold) 

FD
a 

(White) 

1. acetaldehyde 619 <500 sweet, pungent 4 4 

2. 2-methyl propanal 779 545 dark chocolate 3 3 

3. ethyl propanoate 884 733 fruity 2 2 

4. 3-methyl butanal 904 656 dark chocolate 3 2 

5. ethyl isobutyrate 945 761 fruity 3 2 

7. ethyl butyrate 1028 813 fruity 1 -- 

8. ethyl 2-methylbutyrate 1046 861 blueberry 1 -- 

9. ethyl 3-methylbutyrate 1065 861 blueberry 1 1 

23. β-damascenone 1910 1396 applesauce 1 -- 

 

a: FD factors are log5 and were found on a wax column. 

3.3.2. Aroma Extract Dilution Analysis 

 In total, forty-four compounds were detected in the undiluted gold rum extract by AEDA; 

of these, thirty-six were smelled in the white rum extract (Table 3.2). No additional aroma 

compounds were found in the white rum. Thirty-one of the forty-four volatiles were able to be 

positively identified. Of the remaining thirteen, three were tentatively identified, and ten remain 

unidentified. More than a third of the odorants were esters, with the remainder comprising acids, 

alcohols, and various carbonyls. Both gold and white rum had detectable odorants through a 

dilution of 1:729, which corresponded to a log3 FD factor of 7. In gold rum, both ethyl 

propanoate and phenethyl alcohol could be found at this dilution, while in white rum only ethyl 

propanoate was sensed. 
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Table 3.2. Compounds identified by AEDA and their FD factors for gold and white rum 

Compounds 

RI 

(Wax) 

RI  

(DB5) Aroma 

FD
a
 

(Gold) 

FD
a
  

(White) 

2. 2-methyl propanal <900 <700 malty, dark chocolate 3 3 

4. ethyl propanoate 926 715 caramel, fruity 7 7 

5. 3-methyl butanal 933 <700 malty 4 4 

6. ethyl isobutyrate
b
 974 758 butterscotch 5 1 

9. 1-propanol 1003 705 dirty 2 1 

10. ethyl butyrate 1036 806 sweet, fruity 4 1 

11. ethyl 2-methylbutyrate 1054 844 berry 2 2 

13. ethyl 3-methylbutyrate 1068 856 fruity, berry 4 4 

14. isobutanol 1100 <700 malty 3 1 

U1. unknown 1127 747 fruity 4 2 

17. isoamyl acetate
c
 1135 -- banana 1 2 

U3. unknown 1188 925 berry 2 4 

18. isoamyl alcohol 1215 732 malty 6 6 

U4. unknown 1224 943 pool water 1 1 

19. ethyl hexanoate 1232 995 fruity 1 -- 

20. 2,5-dimethyl pyrazine 1327 906 woody 3 2 

21. 2-acetyl-1-pyrroline
d
 1339 928 popcorn 3 3 

U6. unknown 1417 1102 fruit 1 1 

22. ethyl octanoate 1424 1190 solvent, fresh 2 -- 

23. acetic acid 1437 <700 vinegar 5 4 

U7. unknown 1551 1070 berry 1 1 

25. propanoic acid 1564 -- fruity, sweaty 1 -- 

26. butyric acid 1621 801 cheesy 1 1 

28. 3-methylbutyric acid 1665 873 sweaty 1 1 

29. 2-methylbutyric acid
d
 1673 873 cheesy 1 -- 

30. 2-methylpentanoic acid 1745 979 sweaty 1 1 

U11. unknown 1804 -- minty 1 -- 

31. β-damascenone 1816 1390 apple juice 6 2 

33. guaiacol 1843 1093 spearmint 5 3 

34. (E)-oak lactone 1881 1339 honey 3 2 

35. phenethyl alcohol 1899 1115 floral 7 6 

36. (Z)-oak lactone 1947 1330 woody! 6 6 

38. 4-ethylguaiacol 2014 1284 brown spice 3 2 

39. p-cresol
d
 2070 1088 overrun motor 3 -- 

U15. unknown 2096 1224 dirty 5 2 

U16. unknown 2102 1354 floral 1 -- 

41. 4-ethylphenol 2168 1175 burnt motor 3 3 

43. eugenol 2176 1365 sweet brown spice 1 2 

44. decanoic acid
c 

2257 -- bandage 1 2 

U19. unknown 2333 1460 floral 3 1 

U20. unknown 2437 1473 fruity, juicy 1 -- 

45. vanillin 2539 1407 marshmallow 5 4 

46. ethyl vanillate 2613 1574 floral 3 2 

 

a: FD factors are log3 and were found on a wax column. b: The butterscotch aroma was prolonged and potentially was the 

result of multiple odorants, including 2,3-butanedione, which was also detected by mass spectrometry.  c: Compound only 

tentatively identified (mass spectral data unable to be matched).  
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.  

3.4. Discussion 

 Static headspace analysis identified only one compound – acetaldehyde – that was not 

also detected by AEDA. All other compounds found by GCO-H had extract FD factors of at least 

2. Although the identification of acetaldehyde provides one additional piece of information with 

regards to rum flavor, this was deemed not significant enough to justify subjecting all remaining 

samples – the commercial and self-prepared rum ethers – to GCO-H.  

 The aroma profile determined by AEDA shows a great deal of agreement with the 

literature available on rum aroma. Of the compounds identified, all but four had been previously 

written about as rum odorants; the most significant odorants – all those in gold rum with a flavor 

dilution (FD) factor of at least 4 – had all been featured in at least two significant rum papers 

(those appearing in Table 2.2). 

 In addition to agreement on identity of compounds, the data agreed with the information 

available on their importance. In de Souza et al. (2006), β-damascenone was found to be the 

most important odorant. Although it was not the most important in our samples, it was an 

important odorant, at least for gold rum. Many of the others documented in this work were found 

to be major contributors in these samples as well, including ethyl 2-methylbutyrate, ethyl 

isobutyrate, vanillin, ethyl butyrate, and phenethyl alcohol. In the more recently published Pino 

et al. (2012), AEDA was used to identify the most important odorants (those detected in at least a 

1:32 dilution) in rum aged fifteen years. Although this data would not be expected to have 

perfect agreement with AEDA data for gold and white rums, which are aged for a much shorter 

length of time, one would expect some overlap to be present, and it is. All five of the volatiles 



35 

 

found by Pino et al. to be most important in aged rum – ethyl butyrate, ethyl hexanoate, β-

damascenone, (Z)-oak lactone, and vanillin – were found in both gold and white rum extracts, 

and in all cases but ethyl hexanoate were also seen as important in these. 

 It is also worth taking the time to compare rum to literature data for other alcoholic 

beverages. There is bound to be some overlap between rum volatiles and those of other 

fermented, distilled beverages; those compounds found in rum but not in other beverages could 

be seen as especially important for setting rum apart from other similar products. Although the 

literature contains limited AEDA data for other liquors, there is some information available. As 

might be expected by the common production step of barrel aging, both whiskey and rum share 

many wood extractives. In 2008, Poisson and Schieberle reported many compounds in bourbon 

whiskey that were also found in rum, including guaiacol, vanillin, and both oak lactones. 

However, whiskey appears to contain additional wood-derived lactones not found in rum, likely 

as a result of the lengthier aging time demanded of most whiskeys. Where whiskey fell short in 

comparison to rum was in ester content, especially branched esters. Tequila analysis by AEDA 

also reported far fewer detectable esters than rum (Benn and Peppard 1996). This would indicate 

that esters are an important group of compounds to look at when determining whether or not a 

model rum system is indeed rum-like, since they appear to set rum apart from other spirits. 

 This is a logical distinction between rum and other liquors. The step that most 

differentiates rum from other beverages is fermentation, as both the raw materials – molasses or 

sugar cane juice – and yeast used in the fermentation step differ from those used for whiskey or 

tequila. This is where one would expect the biggest distinctions between the various distilled 

beverages to emerge; it would make sense then that the compounds responsible for setting rum 

apart would be formed in this step. Research would indicate that, as expected, formation of esters 
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is influenced most heavily by the fermentation stage; in this step, yeast facilitates the formation 

of fatty acids, which then undergo esterification. One study additionally found that rum had a 

higher concentration of many of the short chain fatty acids than whiskey or cognac (Lehtonen 

and Suomalainen 1977). This would explain the high dilution factors for their derivative esters, 

odorants like ethyl propanoate, ethyl isobutyrate, and ethyl butyrate, as well as the higher ester 

content in general with respect to other alcohols. 

It is important as well to compare the rums not only to the literature but to one another in 

order to understand the variation that exists among this particular product. In comparing the two 

rums, it is clear that white was very similar to gold in overall profile, but simply less strong in 

many compounds, which is in line with what is known about the rum production process. Since 

both rums are from the same brand and one that produces rum in mass quantities, it is likely that 

neither were aged for more than a couple of years. The gold rum, however, was likely aged a 

short while longer, leading to more overall complexity. The white rum has also almost certainly 

undergone charcoal filtration to remove any coloration, which can remove some aroma 

compounds in addition to pigmentation. The biggest difference between the two samples is found 

with β-damascenone, which has an FD factor of 6 in the gold rum extract, making it one of the 

five most potent odorants, but only an FD factor of 2 in the white rum extract. Because β-

damascenone reportedly has a very low odor threshold (Pino et al. 2012), even a small difference 

in concentration could dramatically impact detection of this compound. It is also the product of 

degradation of plant extractives, so a shorter aging time could be responsible for such a 

difference. The next chapter will examine how these two rums compare to rum ether samples, 

both commercial and self-prepared. 
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Chapter Four: 

Characterization of Rum Ether Aroma 

 

4.1. Introduction 

 Rum ether is an interesting and enigmatic substance. It has been used for nearly two 

centuries, but its origins remain a mystery. It is produced from an unusual combination of 

ingredients that would seem unfit for human consumption, yet someone saw it a suitable addition 

to foods long before chemical analysis confirmed this was true, and it has since been given the 

Flavor and Extract Manufacturers Association’s (FEMA) Generally Recognized as Safe (GRAS) 

status and an “all natural” designation (Hall and Oser 1965). Its ingredients furthermore are 

completely unrelated to the raw materials used for rum, and still it has been universally 

recognized as mimicking rum. And although it is widely used by flavor chemists for creating 

rum-like notes, there is no information available in the literature that confirms its rummy 

character. 

 The current body of knowledge contains only mentions of the components of rum ether 

that make up its bulk phase; its odor-active compounds go completely undocumented. It would 

be valuable for the flavor industry to have a thorough characterization of rum ether. Not only 

could this confirm the underlying assumption that has driven the use of rum ether – that it is 

similar to rum – but it could also help with understanding what the similarities actually are and 

how to compensate for the differences. 
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 To this end, ten commercial rum ethers were analyzed by direct injection gas 

chromatography-olfactometry (GCO) and GC-MS to determine those aroma compounds that 

were common among commercial products. Two rum ethers were also prepared in the lab with a 

widely available wood extractive – liquid smoke – replacing the traditionally used pyroligneous 

acid; these were compared with commercial products to determine the fitness of liquid smoke as 

a substitute ingredient. Self-prepared rum ether volatiles were also analyzed using extractive 

methods, in particular aroma extract dilution analysis (AEDA). The results of AEDA were 

compared with rum results obtained in the same manner in order to ultimately determine how 

rum ether aroma components compare to those of rum.  

4.2. Materials and Methods 

4.2.1. Materials 

 Ten commercially available rum ethers were obtained from a number of flavor houses 

and ingredient supply companies. Of these, seven rum ethers – Advanced Biotech 1206 

(Paterson, NJ), Bell 1075ATF (Northbrook, IL), Berje 71169 (Bloomfield, NJ), Fleurchem 

(Middletown, NY), Mission RU-107 (Foothill Ranch, CA), Ungerer 200048 (Lincoln Park, NJ), 

Wild FALJ509 (Erlanger, KY) – were labeled as natural and the remaining three - Advanced 

Biotech 1440, Bell 129.11840, Virginia Dare 23635 (Brooklyn, NY) – as artificial or imitation 

rum ethers. 

 For production of self-prepared rum ethers, liquid smoke was obtained from Red Arrow 

Products (Manitowoc, WI). Manganese (IV) oxide came from Sigma Aldrich (St. Louis, MO). 

The remaining components – absolute ethanol, glacial acetic acid, sulfuric acid, and activated 

carbon – were acquired from Fisher Scientific (Fair Lawn, NJ).  
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 Dichloromethane and anhydrous sodium sulfate were both purchased from Fisher 

Scientific. 

 Aroma standards were obtained from the following sources: Baker (Phillipsburg, NJ): 3; 

Fisher Scientific: 23; Fluka (Switzerland): 46; Mallinckrodt (St. Louis, MO): 37; Sigma Aldrich 

Co.: 1, 2, 4-7, 10-13, 16, 22, 34, 36, 38, 32-36, 40-42; TCI (Portland, OR): 27. 

4.2.2. Rum Ether Distillation 

Figure 4.1. Apparatus for bench scale distillation of rum ether 
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The distillation system for rum ether (Figure 4.1) consisted of a three-necked 3000 mL 

flask (A) attached to a solvent repurification distillation apparatus (B, Kimble-Chase, Vineland, 

NJ), a thermometer for monitoring distillation temperature (C), and a drop funnel for addition of 

chemicals (D). The flask was held in a mantle that provided both heat and magnetic stirring (E). 

The solvent repurification distillation apparatus was maintained at 4.0°C throughout the process 

by pumping coolant through the top (F). Ventilation of extremely volatile compounds – those 

that would not condense at 4°C – was also provided at the top (G).  

Chemicals were added to the flask with stirring in the following order and amounts: 375 

mL liquid smoke, 5.25 g activated carbon, 0.65 g manganese dioxide, 333.75 mL absolute 

ethanol diluted with 41.25 mL deodorized water, 72 mL glacial acetic acid diluted with 50 mL 

deodorized water, 17 mL sulfuric acid. Once all components had been added and temperature 

equilibrated, the mantle was turned on and the heat was slowly increased until the thermometer 

registered 75°C. 

 At this point, one of two paths was taken. For original method rum ether, distillate began 

to be collected as soon as the target temperature of 75°C was reached. For reflux rum ether, the 

reaction mixture was allowed to reflux through the system for 24 hrs once the target temperature 

was reached; after 24 hrs, distillate was collected. In both cases, the target distillate volume was 

375 mL.  

4.2.3. Liquid-Liquid Continuous Extraction (LLCE) 

 Aroma extracts of self-prepared rum ethers were obtained by continuous liquid-liquid 

extraction (LLCE, Figure 3.1). A continuous extraction apparatus (#Z562440; Sigma Aldrich, St 

Louis, MO) was attached to both a 7-inch-long condenser and a 300 mL receiving flask. The 



42 

 

condenser was cooled to a temperature of 4° C, while the flask was heated to a temperature 

appropriate for steady evaporation of solvent. To the system were added 150 mL of 

dichloromethane as the solvent, 2 mL of rum ether, and 523 mL of deodorized water.  

 Dichloromethane was refluxed through the diluted rum ethers for 18 hours. The 

dichloromethane fraction was collected and dried over anhydrous sodium sulfate. This extract 

was then purified using solvent-assisted flavor evaporation (SAFE). 

4.2.4. Solvent-Assisted Flavor Evaporation 

 Solvent-assisted flavor evaporation (SAFE), a method for high vacuum distillation, was 

used on the dichloromethane extracts as a means of separating volatile compounds from non-

volatiles present. SAFE was applied using the technique described by Song et al. (2008), which 

is based on the method given by Engel et al. (1999). The SAFE set-up was similar to that used by 

Engel; it comprised a high-vacuum pump, a turbo-pump, a receiving trap, and a waste trap. The 

distillation lasted two hours and was maintained at a low pressure of roughly 10
-5

 torr throughout 

this time. 

4.2.5. Gas Chromatography-Olfactometry 

 Gas chromatography-olfactometry (GCO) analysis was completed using an Agilent 6890 

Gas Chromatograph (Agilent, Santa Clara, CA) outfitted with a Gerstel Olfactometry Detection 

Port and CIS-4 Programmable Temperature Vaporizer (PTV) inlet (Mulheim an der Ruhr, 

Germany), as well as a Flame Ionization Detector. Two columns were used for all samples: a 

polar RTX-Wax and non-polar RTX-5, both from Restek (Bellefonte, PA). Both columns were 

15 m in length, with an inner diameter of 0.53 mm and a film thickness of 1 μm.  
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 Total GCO runtime was 38.5 min. Helium, with a flow rate of 21.8 mL/min, was used as 

the carrier gas. Cold splitless injection was used for both extract analysis of self-prepared rum 

ethers and direct injection of all samples, including commercial rum ethers. The inlet was cooled 

to -50°C prior to injection and held at this temperature for 0.10 min, at which point it was 

increased to a final temperature of 260°C at a rate of 10°C/s. For both vapor and liquid samples, 

the GC oven was initially brought to 40°C, held for 5.00 min, increased at 10.0°C/min until 

reaching 225°C, and finally held at this temperature for 15.00 min.  

 The exit flow from the column was split between the Flame Ionization Detector and the 

Olfactometry Detection Port. Each sample was tested by two individuals, who recorded for each 

aroma an elution time, one or more descriptors, and perceived odor strength. In addition to the 

samples, a series of standard alkanes ranging from 6 to 28 carbons was injected in order to 

calculate retention indices. 

4.2.6. Gas Chromatography-Mass Spectrometry 

Gas chromatography-mass spectrometry (GC-MS) analysis was conducted using an 

Agilent 6890 GC with Gerstel CIS-4 PTV inlet paired with a Hewlett-Packard 5973N mass 

spectrometer. Samples were analyzed using both a polar RTX-Wax and a non-polar RTX-5 

column (Restek; Bellefonte, PA), both with a length of 30 m, an inner diameter of 0.25 mm, and 

a film thickness of 0.25 μm.  

GC-MS analysis lasted 71.25 minutes. Helium, with a flow rate of 1.0 mL/min, was used 

as the carrier gas. Samples were injected in cold splitless mode at an initial inlet temperature of -

50°C. This was held for 0.10 min, at which point it was increased to a final temperature of 260°C 

at a rate of 12°C/s. The GC oven was programmed to hold at 40°C for 5 minutes, increase by 
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4°C/min to 225°C, and then hold this temperature for an additional 20 min. The entirety of the 

gas chromatograph’s outlet flow was directed to the mass spectrometer for analysis in scan 

mode. 

4.2.7. Identification of Volatiles 

Volatile compounds were identified using a combination of GCO and GC-MS data and 

confirmed using authentic standards. Tentative identification of compounds was done by 

comparison of mass spectra of unknown against those in the National Institute of Science and 

Technology (NIST) database. For each volatile detected using GCO, a retention index was 

calculated using the elution time of both the volatile and the surrounding standard alkanes. The 

formula was as follows: 

                
       
       

 

where RI indicates retention index and RT retention time, and the subscripts indicate the target 

compound (no subscript), the alkane directly preceding this compound (n), and the alkane 

directly following this compound (N). Each alkane is assigned a retention index equal to its 

carbon chain length multiplied by 100, e.g. hexane has a retention index of 600. 

 Each compound was tentatively identified using its retention indices on both a polar and 

non-polar phase, as well as the odor impressions recorded. These identifications were considered 

positive if they could be confirmed using at least one mass spectra database match on the GC-

MS (either polar or non-polar phase) as well as a match in both retention index and odor 

impression to an authentic standard on the GCO. 

 



45 

 

4.2.8. Aroma Extract Dilution Analysis 

 Relative importance of volatiles in self-prepared samples was determined using Aroma 

Extract Dilution Analysis (AEDA, Grosch 1993). A series was prepared of increasing 1:3 extract 

dilutions in dichloromethane, ranging from a concentrated extract to a dilution of 1:2187, at 

which point no additional volatiles were detected. Each dilution was analyzed using GCO. Each 

of the compounds identified in the extracts was assigned a flavor dilution (FD) factor that 

corresponded to the last dilution at which it was detected. Those compounds with the highest FD 

factor were considered most crucial in creating characteristic rum ether aroma. 

4.3. Results 

4.3.1. Analysis of Commercial Rum Ethers 

Figure 4.2. Frequency of detection of all odorants sensed in commercial rum ether samples 
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More than two hundred distinct aroma compounds were detected through direct injection 

GCO analysis of the ten commercial samples (Figure 4.2). However, more than one hundred of 

these were unique to a single rum ether sample, and many others were found in only a small 

fraction of samples. In order to determine what could be considered typical of commercial rum 

ethers, the focus was narrowed to those compounds found in at least half of all commercial 

samples (Table 4.1). 

Table 4.1. Most commonly detected odorants in commercial rum ether samples 

Compound 

RI 

(Wax) 

RI 

(DB5) Aroma 

Detection 

Frequency 

1. acetaldehyde <900 <700 yogurt 7 

3. ethyl acetate 908 <700 pungent 6 

4. ethyl propanoate 965 709 butterscotch 8 

8. ethyl acrylate 1006 <700 plasticky 6 

23. acetic acid 1438 <700 vinegar 10 

24. 2-acetylfuran 1495 -- cooling 5 

25.propanoic acid 1532 <700 cheesy 6 

26. butyric acid 1623 827 cheesy 9 

32. 3-methyl-1,2-cyclopentanedione 1846 1047 maple 7 

33. guaiacol 1846 1099 smoky 10 

37. phenol 1983 980 phenolic 6 

39. p-cresol 2069 1089 mechanical 6 

41. 4-ethylphenol 2168 1175 bandage 5 

42. sotolon
a
 2175 1114 maple 9 

U19. unknown 2332 -- floral 8 

U20. unknown 2431 1458 sweet 6 

45. vanillin 2537 1409 vanilla 10 
. 

a: Sotolon was not detectable by GC-MS, likely due to its low odor threshold (Grosch 2007). 

 A total of seventeen compounds were found in five or more commercial rum ether 

samples, with three being found in all ten. Some combination of most or all of these compounds 

that included the ubiquitous rum ether trio of acetic acid, guaiacol, and vanillin could therefore 

be considered to be one indicator of a rum ether. 
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4.3.2. Consistency of Self-Prepared Rum Ethers 

 Three rum ethers were distilled using the original (non-refluxed) method to test for 

consistency. During distillation, information was collected periodically about the temperature of 

the reaction and the volume of distillate (Figure 4.3). Although not all three rum ethers distilled 

in an identical length of time, all appeared to follow a nearly identical curve with regards to total 

volume collected for a given distilling temperature. 

Figure 4.3. Total collected volume of distillate vs. distillation temperature for three preparations of original 

method rum ether 
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instrument could have been dismissing some peaks as noise. The method was deemed to produce 

consistent results, and one of the three rum ethers was selected for the remainder of analysis. 

Figure 4.4. Comparison of chromatographic data for three self-prepared ethers made by original method
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Table 4.2. Common rum ether odorants in self-prepared samples. 

Compound 

RI 

(Wax) 

RI 

(DB5) Aroma 

Original 

Method 

24 Hr  

Reflux 

1. acetaldehyde <900 <700 yogurt -- X 

3. ethyl acetate 908 <700 pungent X X 

4. ethyl propanoate 965 709 butterscotch X X 

8. ethyl acrylate 1006 <700 plasticky X X 

23. acetic acid 1438 <700 vinegar X X 

24. 2-acetylfuran 1495 

 

cooling X X 

25.propanoic acid 1532 <700 cheesy -- -- 

26. butyric acid 1623 827 cheesy -- X 

32. 3-methyl-1,2-cyclopentanedione 1846 1047 maple -- 

X 

X 

33. guaiacol 1846 1099 smoky X X 

37. phenol 1983 980 phenolic -- X 

39. p-cresol 2069 1089 mechanical X X 

41. 4-ethylphenol 2168 1175 bandage X X 

42. sotolon
a
 2175 1114 maple X -- 

U19. unknown 2332 

 

floral X -- 

U20. unknown 2431 1458 sweet X -- 

45. vanillin 2537 1409 vanilla X X 
a: Sotolon was not detectable by GC-MS, likely due to its low odor threshold (Grosch 2007). b: By virtue of being 

unknown, these compounds were matched only by retention indices and odor impression. 

 

 

 Both samples contained thirteen out of seventeen compounds, including the three 

essential rum ether compounds: acetic acid, guaiacol, and vanillin. The thirteen odorants were 

not an identical group, however; propanoic acid could not be detected in either, but the identity 

of the other three missing compounds differed between the two samples. For this reason, both 

samples were considered important for further analysis. 

  In addition to presence of odorants, bulk composition was considered. The most 

abundant compound asides from water was ethanol, which was present in high concentrations in 

all commercial products. Ethanol concentration was not quantified, but by comparison of GC 

peak area (Figure 4.5), it is clear that the original method self-prepared ether falls within the 

range of concentrations found in commercial samples. It is therefore comparable to commercial 
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ethers in both aroma profile and bulk composition and was selected for further analysis by aroma 

extract dilution analysis (AEDA). 

Figure 4.5. Comparison of relative ethanol concentration in commercial and self-prepared rum ethers 
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Table 4.3. AEDA analysis of both self-prepared rum ether extracts 

Compound 

RI 

(Wax) 

RI 

(DB5) Aroma 

FD
a
 

(Original) 

FD
a
  

(24 Hr) 

1. acetaldehyde <900 <700 yogurt 1 2 

2. 2-methyl propanal <900 <700 dark chocolate 2 2 

3. ethyl acetate 919 <700 nail polish 4 3 

4. ethyl propanoate 922 715 butterscotch 1 1 

5. 3-methyl butanal 937 <700 dark chocolate 3 1 

6. ethyl isobutyrate 967 751 butterscotch 6 7 

7. 2,3-butanedione 975 <700 butter 1 1 

8. ethyl acrylate
b 

1000 703 plastic 7 8 

10. ethyl butyrate 1033 806 fruity 6 7 

11. ethyl 2-methyl butyrate 1052 847 berry 1 3 

12. 2,3-pentanedione 1058 <700 butter 2 2 

13. ethyl 3-methylbutyrate 1068 859 blueberry 5 6 

15. ethyl 3-butenoate
b 

1101 776 plastic 4 4 

16. ethyl pentanoate 1127 906 berry -- 3 

U2. unknown 1166 847 dark chocolate 2 2 

U3. unknown
c 

1183 928 blueberry 3 3 

U5. unknown 1315 1135 blueberry 6 5 

22. ethyl octanoate 1424 1194 berry 3 5 

23. acetic acid 1439 <700 vinegar 3 2 

24. 2-acetylfuran
d 

1489 -- minty 4 4 

26. butyric acid 1620 839 cheesy -- 1 

27. ethyl benzoate 1631 1149 honey -- 1 

28. 3-methylbutyric acid 1655 855 sweaty 1 1 

U8. unknown 1661 1260 woody 1 4 

U9. unknown 1715 -- hay -- 1 

U10. unknown 1782 -- mechanical failure 1 2 

32. 3-methyl-1,2-cyclopentanedione 1823 1061 maple -- 4 

33. guaiacol 1839 1091 smoky 3 6 

34. (E)-oak lactone 1881 1287 spicy 4 1 

35. phenethyl alcohol
d
 1900 -- floral -- 3 

36. (Z)-oak lactone 1937 1331 maple 1 1 

U12. unknown 1949 -- overrun motor -- 2 

37. phenol 1988 981 earwax -- 1 

U13. unknown 2019 1487 minty -- 3 

40. p-cresol 2061 1083 overrun motor 1 4 

U14. unknown 2117 1463 grape cough syrup -- 3 

41. 4-ethylphenol 2164 1174 bandage 2 5 

42. sotolon
e 

2176 1115 maple 2 -- 

U17. unknown 2196 -- woody -- 1 

U18. unknown 2300 -- grape juice -- 1 

U19. unknown
c 

2331 -- floral 1 -- 

U20. unknown
c 

2430 -- sweet 1 -- 

46. vanillin 2528 1412 marshmallow 2 3 
. 
a: FD factors are log3 and were found on a wax column. b: Both “plastic” notes are tentative identifications; aroma 

standards were not available to be matched. c: As a result of being unidentified, those unknowns numbered in 

parallel with rum unknowns are only tentatively matched as the same compound. d: Compound only able to be 

tentatively identified due to not being detected on DB5 column. e: Sotolon was not detectable by GC-MS, likely due 

to its low odor threshold (Grosch 2007). 
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4.4. Discussion 

 The seventeen odorants detected in at least half of commercial rum ethers represent only 

a small subset – less than ten percent – of all detected odorants in these products. This would 

seem to indicate that rum ether should be treated not as a uniform product with a singular 

identity, but as a class of products. This is a positive sign for anyone with the end goal of 

creating a product more similar to rum, since the rum ethers currently available represent a wide 

range of compounds which could, in theory, be selected for by small modifications to the current 

process without falling outside the range of what is considered normal for rum ether. Only three 

odorants – acetic acid, guaiacol, and vanillin – appear in all commercial products and could 

therefore be treated as essential to rum ether, but since these are all also found in rum, they are 

desirable in a product that aims to mimic rum. 

 If acetic acid, guaiacol, and vanillin are a positive trio to have in any rum ether, ethyl 

acetate, ethyl acrylate, and phenol could be considered their rum ether foils – compounds that are 

not only not found in rum, but that have odors that are both strong and unpleasant. However, 

unlike the other three, these are not universally found in rum ethers. Each is only found in six of 

ten commercial samples, or slightly more than half. This could therefore be a good focus in 

initial development of rum ethers, since it would seem that not all methods currently in use 

create these potential off-odors. 

 For in-lab preparation of rum ethers, liquid smoke was substituted for a more traditional 

ingredient, pyroligneous acid. Both are made by collecting volatiles during the burning of wood, 

but while liquid smoke is produced with the end goal of being used in food, pyroligneous acid is 

a byproduct of charcoal production that happened to find a home in the making of rum ether. It 
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used to be widely and cheaply available for use as an energy source, but as it has gradually been 

replaced by petrochemicals, it has become a less economically viable product to the point that it 

is no longer easy to come by. Additionally, it was not designed for use in food, so it contains a 

number of components that make it a “highly polluting noxious corrosive liquid,” including a 

very high percentage of methanol (FAO 1987). Although one would hope this would be removed 

before the finished product made it into food, one handbook claims that rum ether must only 

have less than five percent combined methanol and formaldehyde content (Burdock 2010). Both 

producers and consumers could benefit from the replacement of pyroligneous acid with 

something easier to find and safer; liquid smoke seems a suitable alternative.  

 When compared with commercial rum ethers, those made with liquid smoke fit in quite 

well. Both contain thirteen out of the seventeen commonly detected odorants, but only one – 

propanoic acid – is not found in either, so all but one of the common odorants could still be 

produced by the liquid smoke substitution. Acetic acid, guaiacol, and vanillin are found in both. 

Although each variation is missing four common odorants, this is not necessarily a red flag; in 

fact, none of the commercial products actually contains all seventeen. This places the self-

prepared ethers squarely in the realm of the commercial products.  

 AEDA of these self-prepared ethers using a method identical to that used for rum allowed 

for a direct comparison of the two substances. One would expect there to be some overlap, both 

because of the nearly universal recognition of qualitative similarities and because both rum and 

rum ether seem to obtain a significant part of their aroma from wood; this expectation is met. 

Many of the compounds found to be important in the AEDA of rum ether were similarly 

important in rum, including ethyl isobutyrate, ethyl butyrate, and ethyl 3-methylbutyrate. It is 

also worth noting that all three of these are esters, compounds that, as discussed in Chapter 3, are 
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widely considered some of the most important and characteristic in rum. Even many of the less 

potent esters, for instance ethyl 2-methylbutyrate and ethyl octanoate, are found in both. Less 

important to the overall aroma but still worth noting are the wood extractives shared by rum and 

rum ether, compounds like (E)- and (Z)-oak lactones, guaiacol, and vanillin. Acetic acid, one of 

the most important rum odorants, is also found in rum ether, a finding that is not surprising when 

one considers that it is one of the raw ingredients. 

 Perhaps a more interesting focus is where rum and rum ether are not similar. This could 

be potentially useful information for anyone aiming to minimize the differences between the two 

products. The first set of differences is made up of compounds unique to rum. This includes three 

of the most key odorants in rum: isoamyl alcohol, which has a malty aroma, β-damascenone, 

which gives the impression of applesauce, and phenethyl alcohol, which contributes a floral, rosy 

smell. These make up three of the four most important odorants. Phenethyl alcohol was 

tentatively identified in one of the self-prepared samples but not the other, while the other two 

compounds were not found at all. This information alone could be enough to make a marked 

difference in the similarity of rum ether to rum. Two of these – isoamyl alcohol and phenethyl 

alcohol - were found in a small number of the commercial samples and could possibly be 

incorporated into rum ether through development of the proper methodology. However, for the 

well-informed flavor chemist, another, easier option exists. In cases where rum ether is being 

used as one of many flavors, a simple supplementation with one or more of these three 

compounds, all of which are available individually as natural flavors, could enhance the finished 

product in a way that makes it more true-to-rum. The product could still be labeled as all natural 

if desired, and would be set apart from products using less well-rounded flavors. 
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 A second set of differences between rum and rum ether is less easily solved. This set 

comprises the compounds found in rum ether but not rum, and it is arguably the biggest 

challenge facing rum ether. Although all three of the biggest contributors to this category are 

esters, they are not the desirable fruity esters for which rum is famed. These esters – ethyl 

acetate, ethyl acrylate, and ethyl 3-butenoate – contribute pungent chemical and plastic notes in 

the AEDA conducted on self-prepared ethers. Ethyl acetate and ethyl acrylate especially are 

important because they are found within the ranks of the seventeen common rum ether odorants. 

Luckily, the variation among commercial samples indicates that composition of a rum ether can 

be altered without it losing its identity entirely; this is reinforced by the samples produced with 

liquid smoke, which show some variation even with only a minor change in methodology.  
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Chapter Five: 

Conclusions 

 

 The objectives of this research were to characterize both rum and rum ether for the 

purpose of better understanding how rum ether, an important but poorly understood flavoring 

agent, relates to its namesake. The end goal was to be able to create a useful understanding of 

rum ether’s strengths and weaknesses as a substitute for more expensive rum extracts; this will 

allow for anyone using it as a flavor to highlight the strengths while compensating for the 

weaknesses. 

 A number of compounds were able to be identified in both rum and rum ether, including 

quite a few that were common to both. A more thorough definition of what makes a rum ether 

was established, and two rum ethers were selected for thorough characterization and comparison 

with rum. Additionally, rum ethers were prepared on a bench scale in the lab to better understand 

the process and determine if liquid smoke was a suitable alternative to pyroligneous acid as a raw 

material. 

 However, this research merely scratched the surface of what is unknown about rum ether 

as a flavor. Although odorants were ranked by apparent potency according to AEDA, a more 

rigorous analysis could be applied that employed quantification of odorant concentrations and 

odor thresholds.  Comparing these with the same information about rum could provide new 

parallels or discrepancies that AEDA missed. 
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 Additionally, throughout the last chapter, the possibility of altering rum ether 

composition by changes in process conditions is mentioned. A cursory attempt at this was made, 

but a huge amount of time could be dedicated exclusively to documenting how small changes in 

production method are reflected in the finished product. What was written about here certainly 

proves that these small changes are important to the final composition, but not how these 

changes manifest themselves. 

 Finally, sensory analysis is an important final step in much flavor research. In order to do 

a meaningful sensory study, it would be necessary to create a rum ether that much more closely 

follows rum, as could be done with quantification of odorants, or a series of rum ethers that 

varied significantly less than products currently available, as could be done by studying rum 

ether process conditions. As it stands now, the rum and rum ether are far from confusable – a 

sensory study is not needed to confirm this – and the products available vary so greatly that it 

would be impossible to pinpoint which specific compounds are responsible for making one rum 

ether more or less rummy than another. 

 The current research hopes to be able to provide a starting point for additional 

explorations of rum ether, an initial dive into the depths of its mysteries. However, truly 

understanding this product will require further study. 

 

 


