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Abstract

The recent decade has witnessed an explosive growth of online information with the birth of Web. Search engines

are by far the most powerful tools that help users find relevant information from large amounts of Web texts and have

now become essential tools for all aspects of our life. The accuracy of a search engine is mainly determined by its

retrieval model which formally specifies how each document matches a user’s query. Improving the effectiveness of

general retrieval models has been a long-standing difficult challenge in information retrieval research, yet is also a

fundamentally important task, because an improved general retrieval model would benefit every search engine.

The language modeling approach to information retrieval has recently attracted much attention. In the language

modeling approach, we assume that a query is a sample drawn from a language model: given a query Q and a

document D, we compute the likelihood of “generating” query Q with a document language model estimated based

on document D. We can then rank documents based on the likelihood of generating the query, i.e., query likelihood.

On the one hand, with sound statistical foundation, the language modeling approach makes it easier to set and optimize

retrieval parameters, and often outperforms traditional retrieval models. On the other hand, however, after more than

one decade of research, the basic language modeling approach to retrieval still remains the same, mainly because the

difficulty in accurately modeling the highly empirical notion of relevance within a standard statistical model has led to

slow progress in optimizing language modeling approaches; this suggests that the theoretical framework of language

models has a clear gap from what is needed to make a retrieval model empirically effective, a general problem we refer

to as the “theory-effectiveness gap”. We have identified the following theory-effectiveness gaps in current language

modeling approaches:

First, one critical common component in any language modeling approach is the document language model. Tra-

ditional document language models follow the bag-of-words assumption that assumes term independence and ignores

the positions of the query terms in a document. For example, in a query “computer virus”, the occurrences of two

query terms may be close to each other in one document (likely to mean computer virus) while far apart in another

document (not necessarily about computer virus), which makes a huge difference for indicating relevance but is largely

underexplored, suggesting the existence of a theory-effectiveness in standard document language models.

Second, accurate estimation of query language models plays a critical role in the language modeling approach
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to information retrieval. Pseudo-relevance feedback (PRF) has proven very effective for improving query language

models. The basic idea of PRF is to assume that a small number of top-ranked documents in the initial retrieval

results are relevant and select from these documents useful terms to improve the query language model. However,

existing PRF algorithms simply assume that all terms in a feedback document are equally useful, again ignoring term

occurrence positions. They are often non-optimal, as a feedback document may cover multiple incoherent topics and

thus contain many useless or even harmful terms. This shows a theory-effectiveness gap in estimating query language

models based on PRF.

Third, although pseudo-relevance feedback approaches to the estimation of query language models can help im-

prove the average retrieval precision, many experiments have shown that PRF often hurts many individual queries; the

risk of PRF limits its usefulness in real search engines – another theory-effectiveness gap in query language models.

Fourth, the language modeling approach scores a document mainly based on the query likelihood score. A pre-

viously unknown deficiency of the query likelihood scoring function is that it is not properly lower-bounded for long

documents. As a result of this deficiency, long documents which do match the query term can often be scored unfairly

as having a lower relevancy than shorter documents that do not contain the query term at all. For example, for the

aforementioned query “computer virus”, a long document matching both “computer” and “virus” can easily be ranked

lower than a short document matching only ”computer”. This reveals a clear theory-effectiveness gap between the

standard query likelihood scoring function and the optimal way of scoring documents.

Fifth, the justification of using the basic query likelihood score for retrieval requires an unrealistic assumption,

which states that the probability that a user who dislikes a document would use a query does not depend on the

particular document. In reality, however, this assumption does not hold because a user who dislikes a document

would more likely avoid using words in the document when posing a query. This theoretical gap between the basic

query likelihood retrieval function and the notion of relevance suggests that the basic query likelihood function is a

potentially non-optimal retrieval function.

To bridge the above theory-effectiveness gaps between the theoretical framework of standard language models

and the empirical application of information retrieval, in this thesis, we clearly identified the causes of these gaps,

and developed general methodologies to remove the causes from language models without destroying the statistical

foundation and any other desirable properties of language models. Our explorations have delivered several more

effective and robust general language modeling approaches, which can all be applied immediately to search engines to

improve their ranking accuracy. Although this thesis focuses on language models, most of the proposed methodologies

are actually more general, and can also be applied to retrieval models other than language models to bridge their

theory-effectiveness gap as well.
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Chapter 1

Introduction

The recent decade has witnessed an explosive growth of online information with the birth of Web. The vast amount

of data contains a lot of useful information for all kinds of human needs. Search engines, such as Google and Bing,

are by far the most powerful tools that help users find relevant information from large amounts of Web texts and have

now become essential tools for all aspects of our life. It is estimated that about 20 billion user queries from U.S. were

submitted to search engines in November 2011 alone. Clearly, the effectiveness of search engines would significantly

affect our productivity and quality of life.

Information Retrieval (IR) is, in brief, the underlying science of search engines. As a research field, IR research is

primarily concerned with developing theories, principles, algorithms, and systems to help a user find relevant informa-

tion from a collection of text documents to satisfy some information need of the user. IR research can be dated back

to the 1950’s [101]. In early days, the primary applications were library systems and the users were mostly librarians.

However, the recent growth of online information, especially the development of the Web, has enabled ordinary people

to be the users of various search engines.

Information retrieval problem is usually defined as identifying all the documents satisfying a user’s information

need from a collection. A user expresses the information need as a query. If a document satisfies a user’s information

need, it is relevant to the corresponding query. Due to the inherent vagueness of the notion of relevance, it is hard

to find a clear boundary between relevant documents and non-relevant documents. Moreover, even if two documents

are both relevant, one of them might be more relevant than the other. Therefore, a retrieval system usually assigns a

relevance score to every document in the collection and returns a ranking list of the documents based on the relevance

scores [84].

The key challenge of the information retrieval problem is to derive a retrieval model that can formally and ap-

propriately specify how the content of each document matches a user’s query, i.e., compute the relevance score of

each document in response to a user’s query. Although there are also other non-content or query independent features

(e.g., links on the Web [9]) that can be exploited to improve relevance prediction, content-based matching remains the

most important component in any search engine, and its performance can significantly affect the overall utility of a

search engine. Thus, improving the effectiveness of retrieval models is a fundamentally important research problem
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in information retrieval because an improved general retrieval model would benefit every search engine.

Improving the effectiveness of retrieval models has been a long-standing difficult challenges. Over the decades,

many different retrieval models have been proposed, such as vector space models [89, 97], probabilistic inference

models [107, 111], classical probabilistic retrieval models [85, 36, 86, 87], and language models [81, 121]. And

the three most effective retrieval functions are the pivoted length normalization function from the vector space model

[97], the BM25 function from the classic probabilistic model [87], and the query likelihood method with Dirichlet prior

smoothing from the language model [121]. When optimized, these three models tend to all perform similarly well

[29, 118]. However, we do not yet have a clear single winner among all the models that can consistently outperform

all other models.

The language modeling approach to information retrieval has recently attracted much attention, due to its potential

to develop an ultimately optimal retrieval model that is both theoretically sound and able to perform well empirically

[118]. The language modeling approach to information retrieval was first introduced by Ponte and Croft in [81] and

also independently explored in [77, 43]. In the language modeling approach, as shown in Figure 1.1, we assume that

a query is a sample drawn from a language model: given a query Q and a document D, we compute the likelihood of

“generating” query Q with a document language model estimated based on document D. We can then rank documents

based on the likelihood of generating the query, i.e., query likelihood. With sound statistical foundation, the language

modeling approach can leverage statistical estimation to optimize retrieval parameters, and often achieves comparable

or better performance than a traditional model with less effort on parameter tuning. It can also be more easily adapted

to model non-traditional and complex retrieval problems, including cross-lingual information retrieval [114, 60], dis-

tributed information retrieval [113, 95], structured document retrieval [79], personalized and context-sensitive search

[94, 102], modeling redundancy [123], predicting query difficulty [24], expert finding [6, 33], passage retrieval [63],

subtopic retrieval [119], etc.

However, on the other hand, the difficulty in accurately modeling the highly empirical notion of relevance within

a standard statistical model has led to slow progress in optimizing language modeling approaches; after more than

one decade of research, the basic language modeling approach to retrieval still remains the same [118]. This suggests

that the theoretical framework of language models, without being able to accurately model the empirical notion of

relevance, has a clear gap from what is needed to make a retrieval model empirically effective, a general problem we

refer to as the “theory-effectiveness gap”. This thesis reveals and identifies the following gaps in the current language

modeling approaches:

• First, one critical common component in any language modeling approach to retrieval is the document language

model, as shown in Figure 1.1. Traditional document language models follow the bag-of-words assumption

that assumes term independence and ignores the positions of the query terms in a document. For example, in
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Figure 1.1: The query likelihood retrieval method

Figure 1.2: The KL-divergence retrieval method

a query “computer virus”, the occurrences of two query terms may be close to each other in one document

(likely to mean computer virus) while far apart in another document (not necessarily about computer virus),

which makes a huge difference for indicating relevance but is largely underexplored, suggesting the existence

of a theory-effectiveness in standard document language models.

• Second, in order to naturally and effectively support feedback, the KL-divergence retrieval model [121], which

scores and ranks documents based on the negative KL-divergence between the query language model and the

document language model, as shown in Figure1.2, has been proposed to generalize the query likelihood retrieval

function so that feedback can be achieved through improved estimate of a query language model. Thus accu-

rate estimation of query language models plays a critical role in the KL-divergence retrieval method. Pseudo-

relevance feedback (PRF) has proven very effective for improving query language models [120, 61, 69]. The

basic idea of PRF is to assume that a small number of top-ranked documents in the initial retrieval results are

relevant and select from these documents useful terms to improve the query language model. However, existing
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PRF algorithms simply assume that all terms in a feedback document are equally useful, again ingoring term

occurrence positions. This is often non-optimal, as a feedback document may cover multiple incoherent topics

and thus contain many useless or even harmful terms. This shows a theory-effectiveness gap in estimating query

language models based on PRF.

• Third, although pseudo-relevance feedback approaches to the estimation of query language models can help

improve the average retrieval precision, many experiments have shown that pseudo-relevance feedback often

hurts many individual queries [22]; the risk of pseudo-relevance feedback limits its usefulness in real search

engines – another theory-effectiveness gap in query language models.

• Fourth, the language modeling approach scores a document mainly based on the query likelihood score or the

negative KL-divergence score. A previously unknown deficiency of the query likelihood scoring function and

the KL-divergence scoring function is that they are not properly lower-bounded for long documents. As a result

of this deficiency, long documents which do match the query term can often be scored unfairly as having a lower

relevancy than shorter documents that do not contain the query term at all. For example, for the aforementioned

query “computer virus”, a long document matching both “computer” and “virus” can easily be ranked lower

than a short document matching only ”computer”. This reveals a clear theory-effectiveness gap between the

standard query likelihood scoring function and the optimal way of scoring documents.

• Fifth, the justification of using the basic query likelihood score for retrieval requires an unrealistic assumption,

which states that the probability that a user who dislikes a document would use a query does not depend on

the particular document [59]. In reality, however, this assumption does not hold because a user who dislikes

a document would more likely avoid using words in the document when posing a query. This theoretical gap

between the basic query likelihood retrieval function and the notion of relevance suggests that the basic query

likelihood function is a potentially non-optimal retrieval function.

These problems of language models are mainly due to the fact that the standard statistical approach alone, without

directly thinking about what makes a retrieval model practically effective, is only be able to model relevance inac-

curately or inappropriately. To bridge the above heuristic or theoretical “gaps” between the theoretical framework of

standard language models and the empirical application of information retrieval, in this thesis, we clearly identified

the causes of these gaps, and developed general methodologies to remove the causes from language models without

destroying their statistical foundation to improve language models from different perspectives, corresponding to the

three main components of language modeling approaches as shown in Figure 1.2, i.e., document language models,

query language models, and the query likelihood scoring function (or the KL-divergence scoring function):
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• Positional document language models: existing studies have not really incorporated term position and prox-

imity evidence into language models as an inner component. To break this limitation, we propose a novel

positional language model (PLM) which implements both heuristics in a unified language model to bridge this

theory-effectiveness gap. The key idea is to define a language model for each position of a document, and score

a document based on the scores of its positional language models. The PLM is estimated based on propagated

counts of words within a document through a proximity-based kernel function. Specifically, we let each word

at each position of a document propagate the evidence of its occurrence to all other positions in the document

so that positions close to the word would get more share of the evidence than those far away, which both cap-

tures the proximity heuristic and achieves an effect of ”soft” passage retrieval. In addition, we work out a

mathematical approach to reduce the computational complexity dramatically. The PLM has shown more robust

and effective than the general document language model, the general passage retrieval, and a state-of-the-art

proximity retrieval model.

• Positional relevance models for estimating query language models: the existence of multiple topics and

irrelevant information would lead potentially harmful terms from non-relevant topics (e.g., the ad text) to be

picked up as feedback terms in pseudo-relevance feedback methods for estimating query language models. Thus

a critical challenge in improving all pseudo-relevance feedback methods is to effectively select from feedback

documents those terms that are most likely relevant to the query topic. We tackle this challenge by exploiting

the position and proximity information of terms as cues to assess if a term is related to the query topic. Since

topically related content is usually grouped together in documents, terms closer to the occurrences of query

words are, in general, more likely relevant to the query topic, thus a good feedback model should intuitively

place higher weights on such terms. Based on this intuition, we propose a novel positional relevance model to

incorporate the cues of term positions and term proximity in a probabilistic approach based on the proposed

positional language model for pseudo-relevance feedback. An important advantage of the this method is that

it can model the “relevant positions” in a feedback document with probabilistic models so as to assign more

weights to terms at more relevant positions in a principled way, thus leading naturally to selection of expansion

terms more likely relevant to the query topic. Besides, we develop two methods to estimate the proposed

positional relevance model based on different sampling processes. Experiment results show that the proposed

method is more effective and robust than current state-of-the-art pseudo-relevance feedback approaches.

• Direct optimizing the robustness of pseudo-relevance feedback approaches to estimating query language

models: pseudo-relevance feedback is risky due to its pseudo nature [22]. An important, yet difficult problem is

to optimize the overall effectiveness of pseudo-relevance feedback without sacrificing the performance of indi-

vidual queries too much. To address this problem, we propose a novel learning algorithm based on the boosting
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framework to optimize pseudo-relevance feedback through combining a set of basis (weak) feedback algorithms

using a loss function defined to directly measure both robustness and effectiveness. Specifically, like all other

boosting algorithms, our algorithm iteratively selects and combines basis feedback methods. In each iteration, a

basis feedback method is selected to improve those queries on which the already selected basis feedback meth-

ods perform poorly in terms of both effectiveness and robustness. At last, we use a linear combination of these

basis feedback methods as its final feedback model. The proposed algorithm can potentially accommodate many

basis feedback methods, including the proposed pseudo-relevance feedback methods in this thesis, as features in

the model, making the proposed method a general optimization framework for pseudo-relevance feedback. The

experiment results demonstrate that our algorithm can achieve better average precision and meanwhile dramati-

cally reduce the number and magnitude of feedback failure cases. Moreover, the proposed algorithm is actually

more general and applicable to pseudo-relevance feedback in other retrieval models as well.

• Lower-bounding the query likelihood scoring function: one key component in the query likelihood function

(as well as in the KL-divergence function and other state-of-the-art retrieval functions) is term frequency nor-

malization by document length [121]. This component captures the following heuristic: a document should be

scored higher if it contains more occurrences of a query term, but the term frequency signal, if applied alone,

would have a tendency to overly reward long documents due to their high likelihood of matching a query term

more times than a short document, so term frequency should be regularized by document length. Our analysis

has shown that the improper lower-bound of the query likelihood scoring function is caused by its improper

lower-bound of term frequency normalization. In order to analytically diagnose this problem, we propose two

desirable formal constraints to capture the heuristic of lower-bounding term frequency normalization, and use

constraint analysis to examine the query likelihood function. Analysis results show that it can only satisfy the

constraints for a certain range of parameter values and/or for a particular set of query terms. Empirical results

further show that the retrieval performance tends to be poor when the parameter is out of the range or the query

term is not in the particular set. To solve this problem, we propose an efficient method to introduce a suffi-

ciently large lower bound for term frequency normalization which can be shown analytically to fix the problem.

Our experimental results demonstrate that the proposed method, incurring almost no additional computational

cost, can improve the retrieval performance of the query likelihood function significantly. In fact, our empirical

observation and constraint analysis show that the problem of improper lower-bound of term frequency normal-

ization is a common deficiency of current retrieval models. And the proposed method is a general solution that

can be used as a plug-and-play patch to multiple state-of-the-art retrieval models to improve their effectiveness.

• Query likelihood with negative query generation: the basic query likelihood function is a potentially non-

optimal retrieval function, because it makes an unrealistic assumption to ignore the probability of generating
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a “negative query” from a document. We attempt to improve the query likelihood function by bringing back

the negative query generation. Specifically, we exploit document D to infer the “negative queries” that a user

would use to avoid retrieving D based on the intuition that such queries would not likely have any information

overlap with D. We then propose an effective and efficient approach to estimate probabilities of negative query

generation based on the principle of maximum entropy, and derive a more complete query likelihood retrieval

function with the negative query generation component, which essentially scores a document with respect to a

query according to the ratio of the probability that a user who likes the document would pose the query to the

probability that a user who dislikes the document would pose the query. In addition, we further develop a more

general probabilistic distance retrieval method to naturally incorporate query language models, which covers

the proposed query likelihood with negative query generation as its special case. The proposed approach not

only bridges the theoretical gap between the standard query likelihood and the probability ranking principle,

but also improves retrieval effectiveness over the standard query likelihood with no additional computational

cost. More interestingly, the developed query likelihood with negative query generation leads to the same

ranking formula as derived by lower-bounding the query likelihood scoring function, thus essentially providing

a probabilistic interpretation for the heuristic method of lower-bounding term frequency normalization in the

basic query likelihood method.

Developing an optimal retrieval function has huge impact, because it will improve the accuracy of every search en-

gine. This thesis proposes to improve the effectiveness language modeling approaches to information retrieval through

bridging the “theory-effectiveness gap”, and has resulted in several more effective and robust retrieval algorithms that

are as efficient as standard language modeling approaches. Although we focus on language models in this thesis,

most of the proposed methodologies are actually not restricted to language models and can also be applied to retrieval

models other language models. All the proposed new models are general, and thus can be used immediately in any

search engine to improve its retrieval accuracy over the current retrieval models.

The rest of the thesis is organized as follows. First, we discuss the literature of language modeling approaches to

information retrieval in Chapter 2. Then, we present positional document language models in Chapter 3. Next, we

introduce a novel positional relevance model for estimating query language models in Chapter 4. We further propose a

novel boosting approach, and discuss how we can apply it to improve not only the effectiveness but also the robustness

of pseudo-relevance feedback approaches for estimating query language models in Chapter 5. After that, in Chapter 6

and Chapter 7, we present two extended query likelihood retrieval functions, through lower-bounding term frequency

normalization and bringing back the negative query generation, respectively. Finally, we summarize the contributions

of the thesis and discuss future work in Chapter 8.
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Chapter 2

Language Modeling Approaches to
Information Retrieval

2.1 Statistical Language Modeling

A statistical language model, or simply a language model, is a probability distribution over word sequences. The

first serious statistical language modeler was contributed by Shannon [93], where he used n-grams to investigate

the information content of English text [64]. This seminal work opened up a whole research branch of language

modeling, as it provides a principled way to quantify the uncertainties associated with the use of natural language.

Since then, statistical language modeling has become one of the main techniques used in the speech recognition tasks

for many years, and it also gradually expended itself successfully into speech recognition [46], machine translation

[10], information retrieval [81], and other research areas.

Given a language model, we can sample word sequences according to the distribution to obtain a text sample.

In this sense, we may use a language model to “generate” text. Thus, a language model is also often regarded a

probabilistic mechanism for generating text, i.e., a generative model for text. In text applications, a statistical language

model is usually constructed on words with necessary stemming. We name such units terms. If we enumerate all the

possible sequences of words and give a probability to each sequence, the model would be too complex to estimate

because the number of parameters is potentially infinite since we have potentially infinite number of word sequences.

That is, we would never have enough data to estimate these parameters. Thus, we always have to make assumptions

to simplify the model. The simplest language model is the unigram language model in which we assume that a word

sequence is generated by generating each word independently. Thus, the probability of a sequence of words would

be equal to the product of the probability of each word. Formally, let V be the set of words in the vocabulary, and

w1 · · ·wn a word sequence, where wi ∈ V is a word. We have:

p(w1 · · ·wn) =
n∏

i=1

p(wi) (2.1)

It is easy to see that given a unigram language model θ, we have as many parameters as the words in the vocabulary,

i.e., {p(wi|θ)}|V |
i=1.
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Now suppose we have observed a document D, which is assumed to be generated using a unigram language model

θ, and we would like to infer θ (i.e., estimate the probability of each word w, p(w|θ)) based on the observed D. This is

a standard problem in statistics and can be solved using many different methods. One popular method is the maximum

likelihood (ML) estimator, which seeks a model θ̂ that would give the observed data the highest likelihood:

θ̂ = argmax
θ

p(D|θ) (2.2)

Unigram language models clearly make unrealistic assumptions about word occurrence dependence in text, since

they assume that each word is generated independently. More sophisticated language models have thus been developed

to address the limitations of unigram language models. For example, an n-gram language model would capture some

limited dependency between words and assume the occurrence of a word depends on the proceeding n− 1 words. As

a specific example, a bigram language model is defined as follows:

p(w1 · · ·wn) = p(w1)
n∏

i=2

p(wi|wi−1) (2.3)

Such a bigram language model can capture any potential local dependency between two adjacent words.

While theoretically speaking, we would like to adopt a sophisticated language model that can model our language

more accurately, in reality, we often have to make a tradeoff. This is because as the complexity of a language model

increases, so does the number of parameters. As a result, we would need much more data to estimate the parameters.

With limited amount of data, our estimate of parameters would not be accurate. The computational cost of complex

language models is also a concern for all large-scale retrieval applications. So far, the simplest unigram language

model has been shown to be quite effective for information retrieval, while more sophisticated language models such

as bigram language models or trigram language models tend not to improve much over the unigram language model.

Throughout the whole thesis, our discussion is on the basis of unigram models unless otherwise stated.

In the following sections, we summarize representative language modeling approaches to information retrieval.

2.2 The Query Likelihood Retrieval Method

The query likelihood retrieval method was first introduced by Ponte and Croft in [81]. In this method, given a query Q

and a document D, we compute the likelihood of “generating” query Q with a model θD estimated based on document

D, and then score and rank the document based on the likelihood of generating the query:

Score(D,Q) = p(Q|θD) (2.4)
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The query generation can be based on any language model. Different models make different assumptions about

term occurrences. So far, using a multinomial distribution [77, 43, 121] for θD has been most popular and most

successful, which is also adopted in this thesis. However, several other choices have also been explored, including the

multiple Bernoulli distribution [81, 76], the multiple Poisson distribution [72], and the hypergeometric distribution

[106]. With the multinomial distribution, the query likelihood is

p(Q|θD) =
∏
w

p(w|θD)c(w,Q) (2.5)

where c(w,Q) is the count of term w in query Q.

According to the maximum likelihood estimator, we have the following estimation of the document language

model θD for the multinomial model:

pml(w|θD) =
c(w,D)

|D| (2.6)

where c(w,D) represents the count of term w in document D, and |D| is the document length. The document language

model θD needs to be smoothed to overcome the zero-probability problem, and an effective method is the Dirichlet

prior smoothing [121]:

p(w|θD) =
|D|

|D|+ µ
pml(w|D) +

µ

|D|+ µ
p(w|C) (2.7)

Here p(w|C) is the collection language model and is estimated as p(w|C) = c(w,C)∑
w′ c(w′,C) , where c(w,C) indicates

the count of term w in the whole collection C, and µ is a smoothing parameter (Dirichlet prior) which is usually set

empirically. Smoothing plays two different roles in the query likelihood retrieval method [121]: one role is to assign

non-zero probabilities to terms that are not observed in the document, and the other role is to weaken the effect of

non-discriminative terms in the query to achieve an “IDF” effect.

Assuming the Dirichlet prior smoothing method, we can rewrite the query likelihood scoring function as follows

[42, 121]:

log p(Q|θD)
rank
=

∑
w∈Q∩D

c(w,Q) log

(
1 +

c(w,D)

µp(w|C)

)
+ |Q| log µ

|D|+ µ (2.8)

where |Q| represents query length. It shows that, although the query likelihood method is motivated in a different way

than a traditional model such as the vector-space model, it tends to boil down to retrieval functions that implement

retrieval heuristics (such as TF-IDF weighting and document length normalization) similar to those implemented in a
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traditional model [42, 121].

In the past decade, many more complex variants of the query likelihood method have been proposed for ad hoc

retrieval. For example, n-gram [98] and dependence language model [37] have been explored to go beyond the bag-

of-word assumption; the query likelihood was also extended as a translation model to allow inexact matching of

semantically related words [8]; a full Bayesian query likelihood was studied to consider uncertainty of an estimation

of θD [117]; parsimonious language models was proposed to improve the discrimination of language models [44];

cluster-based smoothing methods were evaluated for document-specific smoothing [65, 110, 103], etc. Although

these extensions often outperform the basic query likelihood, they tend to incur significantly more computational cost.

The query likelihood method has also been shown to perform well for a variety of retrieval tasks, including ad-

hoc retrieval [81, 121, 58], cross-lingual information retrieval [114, 60], distributed information retrieval [113, 95],

structured document retrieval [79], personalized and context-sensitive search [94, 102], modeling redundancy [123],

predicting query difficulty [24], expert finding [6, 33], passage retrieval [63], subtopic retrieval [119], etc.

2.3 The Notion of Relevance in Language Modeling Approaches

To better understand the retrieval foundation of the query likelihood method, Lafferty and Zhai [59] provided a general

relevance-based derivation of the query likelihood method. Formally, let random variables D and Q denote a document

and query, respectively. Let R be a binary random variable that indicates whether D is relevant to Q or not. Following

Sparck Jones et al. [50], we will denote by ℓ (“like”) and ℓ̄ (“not like”) the value of the relevance variable. The

Probability Ranking Principle [84] provides a justification for ranking documents for a query based on the conditional

probability of relevance, i.e., p(R = ℓ|D,Q). This is equivalent to ranking documents based on the odds ratio, which

can be further transformed using Bayes’ Rule:

O(R = ℓ|Q,D) =
p(R = ℓ|Q,D)

p(R = ℓ̄|Q,D)
∝ p(Q,D|R = ℓ)

p(Q,D|R = ℓ̄)
(2.9)

There are two different ways to decompose the joint probability p(Q,D|R), corresponding to “document genera-

tion” and “query generation” respectively. With document generation p(Q,D|R) = p(D|Q,R)p(Q|R), we have

O(R = ℓ|Q,D) ∝ p(D|Q,R = ℓ)

p(D|Q,R = ℓ̄)
(2.10)

Most classical probabilistic retrieval models [85, 50, 36] are based on document generation. Fuhr [36] has provided

in-depth discussions in this direction.

Query generation, p(Q,D|R) = p(Q|D,R)p(D|R), is the focus of this paper. With query generation, we end up
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with the following ranking formula:

O(R = ℓ|Q,D) ∝ p(Q|D,R = ℓ)p(R = ℓ|D)

p(Q|D,R = ℓ̄)p(R = ℓ̄|D)
(2.11)

in which, the term p(R|D) can be interpreted as a prior of relevance on a document, which can be used to encode any

bias on documents. Without such extra knowledge, we may assume that this term is the same across all the documents

and obtain the following simplified ranking formula:

O(R = ℓ|Q,D) ∝ p(Q|D,R = ℓ)

p(Q|D,R = ℓ̄)
(2.12)

There are two components in this model. p(Q|D,R = ℓ) can be interpreted as a positive query generation model.

It is essentially the basic query likelihood, which suggests that the query generation probability used in all the query

likelihood scoring methods intuitively means the probability that a user who likes document D would pose query

Q. Another component p(Q|D,R = ℓ̄) can be interpreted as the generation probability of a “negative query” from

a document, i.e., the probability that a user who dislikes a document D would use a query Q. In order to justify

using the basic query likelihood alone as the ranking formula, an assumption has to be made about this negative query

generation component, which states that the probability of negative query generation does not depend on the particular

document [59], formally

p(Q|D,R = ℓ̄) = p(Q|R = ℓ̄) (2.13)

This assumption enables ignoring the negative query generation in the derivation of the basic query likelihood

retrieval function, leading to the following basic query likelihood scoring method: O(R = ℓ|Q,D) ∝ p(Q|D,R =

ℓ) = P (Q|θD).

2.4 The KL-Divergence Retrieval Method

A major deficiency of the query likelihood method is that it cannot easily incorporate relevance or pseudo-relevance

feedback [120]. To address this problem, a probabilistic distance model called Kullback-Leibler (KL) divergence

retrieval method was proposed [58]. The KL-divergence method can actually cover the query likelihood retrieval

model as a special case when the query model is estimated based on only the query. Moreover, the development of the

KL-divergence retrieval model [58], which explicitly models both document and query language models, has attracted

many efforts to propose effective pseudo-relevance feedback methods for improving the estimate of query language
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models, e.g., [58, 61, 120, 57, 28, 103, 23, 69].

In the KL-divergence retrieval model [58], queries and documents are all represented by unigram language models.

Assuming that these language models can be estimated appropriately, the KL-divergence retrieval model scores a

document D with respect to a query Q by computing the negative Kullback-Leibler divergence between the query

language model θQ and the document language model θD:

S(Q,D) = −D(θQ||θD) = −
∑
w∈V

P (w|θQ) log
P (w|θQ)
P (w|θD)

(2.14)

where V is the set of words in our vocabulary. Clearly, the retrieval performance of the KL-divergence model would

depend on how we estimate the document language model θD and the query language model θQ. The document

language model θD can be estimated using Formula 2.7. The query language model θQ intuitively captures what the

user is interested in, and thus would affect retrieval accuracy significantly. Without feedback, query language models

are often estimated by using the MLE method on the query text:

P (w|θQ) =
c(w,Q)

|Q|
(2.15)

where c(w,Q) is the count of word w in query Q, and |Q| is the total number of words in the query.

2.5 Query Language Models with Pseudo-Relevance Feedback

The most effective methods for estimating query language models generally rely on the strategy of pseudo-relevance

feedback (PRF) [88, 85, 91, 11, 87, 61, 120], which can improve retrieval performance significantly over simple

estimation methods that only use the query [69]. The basic idea of estimating query language models with PRF is to

assume that a small number of top-ranked documents F = {D1 . . . D|F |} in the initial retrieval results are relevant and

select from these documents useful terms to re-estimate a more accurate query language model θ′Q. Several popular

methods, e.g., the relevance models [61, 1] and the simple two-component mixture model [120], have been shown to

be robust and effective to improve the estimation of the query model in the setting of pseudo-relevance feedback (i.e.,

estimating θ′Q with F ). We now review these representative methods for estimating query language models.

2.5.1 Relevance Models

The relevance model (RM) was developed by [61]. RM does not explicitly model feedback. Instead, it models a

more generalized notion of relevance. Given a query Q, a relevance model is a multinomial distribution P (w|Q) that

encodes the likelihood of each term w given the query as evidence. We now describe two methods proposed in [61]
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for estimating the relevance model.

In the first method (often called RM1), the authors first compute the joint probability of observing a word together

with the query words in each feedback document and then aggregate the evidence by summing over all the documents.

It essentially uses the query likelihood P (Q|D) as the weight for document D and takes an average of the probability

of word w given by each document language model. Formally, let Θ represent the set of smoothed document models

in the pseudo feedback collection F and Q = {q1, q2, · · · , qm}. The formula of RM1 is derived as follows:

Prm1(w|Q) =
∑

θD∈Θ

P (w|θD)P (θD|Q)

=
∑

θD∈Θ

P (w|θD)
P (Q|θD)P (θD)

P (Q)

∝
∑

θD∈Θ

P (w|θD)P (Q|θD)P (θD)

=
∑

θD∈Θ

P (w|θD)P (θD)
m∏
i=1

P (qi|θD) (2.16)

In the derivation, for the posterior of document language model P (θD|Q), we can rewrite it as being proportional to

P (θD)
∏m

i=1 P (qi|θD) by the Bayes’ rule, in which the second term
∏m

i=1 P (qi|θD) is precisely the query likelihood

given the document, which tells us how likely the document is relevant to the query, while the first term p(θD) is

a general prior on documents and is often assumed to be uniform without any additional prior knowledge about

document D. Thus, the count of a word in a highly scored document according to the query likelihood retrieval model

would be weighted more when combining the counts, which intuitively makes sense.

The Dirichlet prior smoothing method is used to smooth the language model of each pseudo-relevant document in

F for both RM1 and RM2 (which we will introduce later):

P (w|θD) =
c(w,D) + µfb · P (w|C)

|D|+ µfb
(2.17)

where µfb is another Dirichlet prior different from the one used in the initial retrieval step (Formula 2.7). However,

in some popular information retrieval systems, e.g., Lemur toolkit and Indri search engine 1, to simplify the imple-

mentation of RM1, the query likelihood score
∏m

i=1 P (qi|θD) in Formula 2.16 is taken or transformed directly from

the initial retrieval results; while only P (w|θD) in Formula 2.16 is smoothed using Formula 2.17. In practice, such an

estimation shows a slightly better performance. Thus this strategy is also adopted in our study.

In the second method (i.e., RM2), the authors compute the association between each word and the query using

documents containing both query terms and the word as “bridges”. The strongly associated words are then assigned

1http://www.lemurproject.org/
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high probabilities in the relevance model. Formally, the derivation is as follows:

Prm2(w|Q) =
P (Q|w)P (w)

P (Q)

∝ P (Q|w)P (w)

= P (w)

m∏
i=1

P (qi|w)

= P (w)
m∏
i=1

∑
θD∈Θ

P (qi|θD)P (θD|w)

= P (w)
m∏
i=1

∑
θD∈Θ

P (qi|θD)
P (w|θD)P (θD)

P (w)
(2.18)

where p(w) can be estimated as:

P (w) =
∑

θD∈Θ

P (w|θD)P (θD) (2.19)

where in Formula 2.18 and 2.19, P (θD) is also kept uniform and θD is smoothed using Formula 2.17.

Indeed, we see that the two estimation methods RM1 and RM2 mainly differ in how they aggregate the evidence

of a word w co-occurring with query words: RM1 first aggregates the evidence for all the query words by taking a

product, and then further aggregates the evidence by summing over all the possible document models, while RM2

does the opposite.

The relevance model P (w|Q) can be interpolated with the original query model θQ to improve performance [1].

In this paper, we will only evaluate the following two interpolated versions of the relevance model, called RM3 and

RM4 respectively:

RM3: P (w|θ′Q) = (1− α) · P (w|θQ) + α · Prm1(w|Q) (2.20)

RM4: P (w|θ′Q) = (1− α) · P (w|θQ) + α · Prm2(w|Q) (2.21)

where α ∈ [0, 1] is a parameter to control the amount of feedback information. Such an interpolation coefficient α is

also employed explicitly or implicitly in other pseudo-relevance feedback methods as will be introduced below.
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2.5.2 Simple Mixture Model

The simple mixture feedback model (SMM) proposed by [120] fits the feedback documents F with a two-component

mixture model, where one component is a fixed background language model P (w|C) estimated using the collection

and the other is an unknown, to-be-discovered topic model P (w|θF ). Essentially, the words in F are assumed to be

drawn from two models:(1) background model P (w|C) and (2) topic model P (w|θF ). Specifically, when we generate

a word using this mixture model, we would first decide which model to use and then sample a word using the chosen

model. Thus, the probability of generating a word w is:

P (w) = (1− λ) · P (w|θF ) + λ · P (w|C) (2.22)

where λ ∈ [0, 1] is the probability of choosing the background model P (· |C) to generate the word. Thus the log-

likelihood function for the entire set of feedback documents is:

logP (F |θF ) =
∑
w∈V

c(w,F ) log((1− λ) · P (w|θF ) + λ · P (w|C)) (2.23)

where c(w,F ) is the count of word w in the set of feedback documents. Since c(w,F ) =
∑

D∈F |D| · P (w|D), it

means that the document length |D| is used as a weight for document D to sum over all evidence from each feedback

document. As a result, long documents are favored.

Intuitively, λ indicates how much weight we want to put on the background model. Note that in attempting to find

the optimal θF using maximum likelihood, we need to set λ to a fixed value [120]. In effect, P (w|C) together with

λ would “encourage” the estimated topic model θF to focus more on the words with small probabilities in P (w|C).

That is, the SMM method tends to assign high probabilities to words with high “IDF” scores.

The estimate of θF can be computed using the Expectation-Maximization (EM) algorithm [27]. Specifically, in

the E-step, we would use the following equation to compute the posterior probability of a word w being generated

using θF based on the current estimation of θF :

E-Step:

P (zw = 1) =
(1− λ) · P (n)(w|θF )

(1− λ) · P (n)(w|θF ) + λ · P (w|C)
(2.24)

where zw ∈ {0, 1} is a hidden variable indicating whether word w is generated using the topic model θF (i.e., zw = 1)

or the collection model P (w|C) (i.e., zw = 0).

Intuitively, if P (w|θF ) is much larger than P (w|C), we would “guess” that w is more likely generated using θF ,

and P (zw = 1) would be high. Then, in the M-step, we use the following equation to update the estimate of θF :
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M-Step:

P (n+1)(w|θF ) =
c(w,F )P (zw = 1)∑

w′∈V c(w′, F )P (zw′ = 1)
(2.25)

Similarly, the query language model is updated by interpolating θF with the original query model θQ using a

coefficient α.

2.6 Summary

In this chapter, we summarized the language modeling approaches to information retrieval. As compared to traditional

retrieval models, the language modeling approach has clear statistical foundation, which makes it easier to set and

optimize retrieval parameters based on standard statistical estimation. However, the difficulty in accurately modeling

the highly empirical notion of relevance within a standard statistical model has also led to slow progress in optimizing

language modeling approaches; after more than one decade of research, the basic language modeling approach to

retrieval still remains unchanged: the query likelihood retrieval method or the KL-divergence retrieval method as the

retrieval function, Dirichlet prior smoothing for the estimation of document language models, and the relevance model

or the simple mixture model for the estimation of query language models.

This thesis aims at bridging this “theory-effectiveness gap” between the theoretical framework of standard lan-

guage models and the empirical application of information retrieval, so as to allow the language modeling approach

to more directly and accurately model what is needed to make a retrieval model empirically effective. Specifically,

we clearly identified the causes of existing theory-effectiveness gaps, and developed general methodologies to remove

the causes from language models without destroying the statistical foundation and any other desirable properties of

language models.
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Chapter 3

Positional Language Models

3.1 Introduction

In Section 2.2, the analysis of the language modeling retrieval formula shows that although language models are

motivated in a different way than a traditional model such as the vector-space model, they tend to boil down to

retrieval functions that implement retrieval heuristics similar to those implemented in a traditional model, such as

TF-IDF weighting and document length normalization [121]. One important advantage of the language modeling

approach is that it can leverage statistical estimation to optimize retrieval parameters [118].

However, on the other hand, the standard statistical language modeling framework makes it hard to incorporate

additional retrieval heuristics without destroying the statistical foundation of language modeling approaches. Two

particularly important retrieval heuristics that are still remaining “external” to the language modeling approach are the

term proximity heuristic and the passage retrieval heuristic: (1) proximity heuristic which rewards a document where

the matched query terms occur close to each other; (2) passage retrieval which scores a document mainly based on the

best matching passage.

Although much work has been done in language models, traditional document language models follow the bag-

of-words assumption that assumes term independence and ignores the positions of the query terms and the passage

evidence in a document. Or at the best, some existing studies have only attempted to use a standard language model

as a black box to implement these heuristics, which means that these heuristics have not really been incorporated

into a language model as a component and make it hard to leverage advantages of language models to optimize the

combination parameters. For example, proximity heuristic has been studied in [104] where the authors proposed

heuristic proximity measures and combined them with the scores of documents computed using standard language

models. Also, passage retrieval has been studied in [63] where the authors explored different ways of segmenting

text to create passages and then applied standard language models on top of the passages as if they were regular

documents. A common deficiency of these studies is that the proximity and passage retrieval heuristics are not modeled

from language modeling perspective, which makes it difficult to optimize the way of combining them with language

models, suggesting the existence of a clear “gap” between the existing language modeling approaches and what is
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needed to make a retrieval model empirically effective.

In this chapter, we propose a novel positional language model (PLM) which implements both heuristics in a

unified language model. The key idea is to define a language model for each position of a document (thus the name

positional language model), and score a document based on the scores of its PLMs. This is in contrast with virtually

all the existing work in which a document language model is generally defined for the entire document. An important

advantage of introducing a language model for each position is that it can allow us to model the “best-matching

position” in a document with probabilistic models, thus supporting “soft” passage retrieval naturally.

It is nontrivial to estimate PLM at a position of a document, because each position only contains a single term:

PLM will suffer from a serious data sparseness problem if we estimate it purely based on the position content. To

address this problem, in our work, the PLM would be estimated using a novel smoothing strategy based on the

propagated word counts from the words at all other positions in the document. Specifically, we let each word at

each position of a document to propagate the evidence of its occurrence to all other positions in the document so

that positions close to the word would get more share of the evidence than those far away. This way, each position

would receive propagated counts of words from all the words in the document with most propagated counts coming

from words near the position. We can then estimate a language model for the position based on the propagated counts

reaching the position.

A main technical challenge in implementing this idea is how to define the propagation function and estimate

the PLM accordingly. We propose and evaluate several different proximity-based kernel functions for propagation.

With some specific choices, we show that the PLM can cover the standard whole document language model and the

fixed-window passage language model, as special cases. Since in all these kernel functions, close-by positions would

receive more propagated counts than positions far away from the current word, the PLM also captures the proximity

heuristics.

Once we have a language model estimated for each position, we can use one or multiple PLMs of a document

as regular document language models to generate a score for the document. We propose and study three general

document ranking strategies for combining different PLMs to score documents, including scoring based on the best

PLM, combining scores from PLMs at multiple positions, and combining PLMs with different kernel ranges.

Experiment results on several standard test collections show that among all the proximity-based kernel functions,

the Gaussian density kernel performs the best, and that combining PLMs with different propagation ranges is the

best document ranking strategy. It is also observed that the proposed PLM not only outperforms the general docu-

ment language model, but also outperforms the regular sliding-window passage retrieval method and a state-of-the-art

proximity-based retrieval model. Overall, the PLM is shown to be able to achieve “soft” passage retrieval and capture

proximity heuristic effectively in a unified probabilistic framework.
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3.2 Related Work

Term proximity in information retrieval has been previously studied in [54, 55, 40, 20, 82, 74, 14, 15, 104, 99]. Keen’s

work [54, 55] is among the earliest efforts, in which, a “NEAR” operator was introduced to address proximity in

Boolean retrieval model. The shortest interval containing a match set was first used as a measure of proximity in

[20, 40]. Recent work has attempted to heuristically incorporate proximity into an existing retrieval model (often

through score combinations) [78, 82, 14, 15, 104]. A variety of proximity measures were proposed, e.g., minimum

term span, minimum pair-wise distance, etc.; in [104], the authors systematically examined different measures and

concluded that the minimum pair-wise distance is most effective.

An indirect way to capture proximity in the language modeling framework is to use high-order n-grams as units to

represent text. For example, in [98], bigram and trigram language models were shown to outperform simple unigram

language models. However, n-gram language models cannot capture dependency of non-adjacent terms (we may

attempt to capture such proximity by increasing the length of an n-gram, but it is impractical to enumerate all lengths).

A more general way to capture proximity through using appropriate “matching units” is Metzler and Croft’s work on

term dependency [74]. In that work, term structures with different levels of proximity can be defined in a general

probabilistic model. Unfortunately, they only attempted to use a standard language model as a black box to implement

the proximity heuristic.

Our work differs from the previous studies in two important aspects. First, we propose a new type of language

model that incorporates the term proximity evidence in a model-based approach; thus, the existing language modeling

techniques (e.g., mixture-model based feedback [120]) can be applied to our model naturally. Second, we capture

term proximity directly based on proximity-based term propagation functions.

In passage retrieval [90, 16, 52, 63, 105], documents are often pre-segmented into small passages, which are then

taken as units for retrieval. Also documents can be segmented in a more dynamic way defined at query time, referred

to as arbitrary passages [52] (“arbitrary” means that a passage can start at any position in a document). Two subclasses

are further defined: fixed-length arbitrary passages resemble overlapped windows but with an arbitrary starting point;

variable-length arbitrary passages can be of any length. Fixed-length arbitrary passage retrieval was shown to be as

effective as, but more efficient than variable-length arbitrary passages [52]. The proposed PLM covers the fixed-

length arbitrary passage as a special case, and can be viewed as a “soft” fixed-length passage. However, different from

general passage retrieval, which only models term position evidence indirectly using a standard language model as a

black box, our model can incorporate term position information directly into the estimation of language models using

a proximity-based propagation function.

Proximity-based density functions have been used to propagate term influence in [26, 56, 73, 80]. Kretser’s work

[26] proposed to propagate the tf · idf score of each query term to other positions, based on several proximity-based
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kernel functions. The document is scored using the position with the highest accumulative tf · idf score finally. But

their methods have not been able to achieve effective retrieval performance. The studies [56, 73] are very similar to

[26] and based on the vector space model and Boolean model respectively. In our work, we also evaluate the kernel

functions proposed in these studies. In addition, we also propose several other density functions that are more effective

than theirs. Compared with this previous work, our work also differs in that we use the language modeling framework,

and incorporate such density functions into the estimation of language models.

Similar to our work, Petkova and Croft’s work [80] proposed a proximity-based document representation for name

entities. Their work emphasizes terms of proximity to entities by using a proximity-based density function, which

is then used to build description for entities. Our work, however, proposes a positional language model for general

document retrieval, and we evaluate the empirical performance of a number of proximity-based density functions

systematically.

3.3 Positional Language Models

In this section, we propose a positional language model (PLM) to incorporate term position information into the

language model so that we can naturally implement retrieval heuristics such as proximity and passage retrieval.

3.3.1 Estimation of Positional Language Models

In most existing work on language models, a document language model is estimated based on only the counts of

words in a document, but not the position of words. The main idea of the PLM is to break this limitation and estimate

language models based on the position-dependent counts of words. At a high-level, our idea is to define a language

model for each word position in a document. This language model is intended to capture the content of the document

at the position, which is roughly like a “fuzzy passage” centered at this position but can potentially cover all the words

in the document with less weight on words far away from the position.

Specifically, we assume that a term at each position can propagate its occurrence at that position to other positions

within the same document through a proximity-based density function, as shown in Figure 3.1. The idea is that if a

word w occurs at position i, we would like to pretend that the same word has also occurred at all other positions with

a discounted count such that if the position is closer to i, the propagated count for word w at that position would be

larger than the propagated count at a position farther away, even though both propagated counts would be less than

one, which is the count of w at position i.

The PLM at each position can then be estimated based on all the propagated counts of all the words that to the

position as if all the words had appeared actually at the position with discounted counts. Such a PLM intuitively gives
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Figure 3.1: Examples of term propagation.

a position-specific view of the content of the document, and thus can naturally support passage retrieval. It can also

implement the proximity heuristic because of the use of a proximity-based propagation function.

Once we obtain a PLM for each position in a document, we can use each PLM as a regular document language

model for matching with a query. We can then score the document by using one or combining multiple PLMs as we

will explain later.

We now present PLM more formally. We first introduce the following notations. Let D = (w1, ..., wi, ..., wj , ..., wN )

be a document, where 1, i, j, and N are absolute positions of the corresponding terms in the document, and obviously

N is the length of the document.

• c(w, i): the count of term w at position i in document D. If w occurs at position i, it is 1, otherwise 0.

• k(i, j): the propagated count to position i from a term at position j (i.e., wj). Intuitively, given wj , k(i, j) serves

as a discounting factor and can be any non-increasing function of |i − j|, that is, k(i, j) favors positions close

to j. k(i, j) plays an important role in PLMs, and we will analyze and explore a number of proximity-based

density functions.

• c′(w, i): the total propagated count of term w at position i from the occurrences of w in all the positions. That

is, c′(w, i) =
∑N

j=1 c(w, j)k(i, j). Thus even if c(w, i) is 0, c′(w, i) may be greater than 0. As shown in Figure

3.1, after propagation, position ′∗′ has a non-zero “count” of terms Q2 and Q1.

Based on term propagation, we have a term frequency vector ⟨c′(w1, i), ..., c
′(wN , i)⟩ at position i, forming a

virtual document Di. We can see that term position information has been translated to term frequency information

stored in this vector. Thus the language model of this virtual document can be estimated as:

p(w|D, i) =
c′(w, i)∑

w′∈V c′(w′, i)
(3.1)
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where V is the vocabulary set. We call p(w|D, i) a Positional Language Model (PLM) at position i.

Intuitively, we can imagine that the PLMs give us multiple representations of D. Thus given a query Q, we can

adopt the KL-divergence retrieval model [58] to score each PLM as follows:

S(Q,D, i) = −
∑
w∈V

p(w|Q) log
p(w|Q)

p(w|D, i)
(3.2)

where p(w|Q) is an estimated query language model. We can estimate p(w|Q) with the maximum likelihood estimate

or through some pseudo relevance feedback algorithms (e.g., relevance model [61] or mixture model [120]).

Similar to a regular document language model, the PLM also needs to be smoothed to solve the zero probability

problem and to penalize common terms [121]. We consider two popular smoothing methods: Dirichlet prior and

Jelinek-Mercer. Dirichlet prior smoothing has proven an effective smoothing method for document language models

and captures the document length normalization heuristic [121]. For a PLM, the length of the virtual document at

position i is Zi =
∑

w∈V c′(w, i). We use the general collection language model p(w|C) as our background model.

Thus the smoothed model is given by:

pµ(w|D, i) =
c′(w, i) + µp(w|C)

Zi + µ
(3.3)

where µ is a smoothing parameter. Although previous work has shown that Jelinek-Mercer does not work as well as

Dirichlet prior [121], it is unclear whether the same conclusion holds for PLMs because the virtual document length

Zi at different positions are similar to each other [66]. We thus also consider it as an alternative smoothing method,

which is given by:

pλ(w|D, i) = (1− λ)p(w|D, i) + λp(w|C) (3.4)

where λ is a smoothing parameter.

3.3.2 Proximity-based Count Propagation

Clearly, a major technical challenge in PLMs is how to define the propagation function k(i, j). Following some

previous work [26, 56, 80], we present here four representative kernel functions: Gaussian, Triangle, Cosine, and

Circle, as shown in Figure 3.2. Different kernels lead to different PLMs.

1. Gaussian kernel

k(i, j) = exp

[
−(i− j)2

2σ2

]
(3.5)
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Figure 3.2: Proximity-based kernel functions. We set σ = 12.5 for all kernels.

2. Triangle kernel

k(i, j) =


1− |i−j|

σ if |i− j| ≤ σ

0 otherwise
(3.6)

3. Cosine (Hamming) kernel

k(i, j) =


1
2

[
1 + cos

(
|i−j|·π

σ

)]
if |i− j| ≤ σ

0 otherwise
(3.7)

4. Circle kernel

k(i, j) =


√

1−
(

|i−j|
σ

)2
if |i− j| ≤ σ

0 otherwise
(3.8)

All these four kernels have one parameter σ to tune, which controls the spread of kernel curves, i.e., it restricts the

propagation scope of each term. In general, the optimal setting of σ for a term may vary according to the term and may

also depend on the query because some general terms presumably would have wider semantic scope in a document,

thus requiring a higher value of σ, and similarly, some general query might match a longer relevant passage than a

more specific query. Our definition of PLMs would in principle allow us to explore such options. However, as a first

study of PLMs, in this chapter, we simply assume that σ is set to the constant across all the terms and all the queries,

leaving further optimization of σ as a future work.

As a baseline, we also present the following non-proximity-based Passage kernel:

5. Passage kernel:

k(i, j) =


1 if |i− j| ≤ σ

0 otherwise
(3.9)

With the passage kernel, the PLM can recover the fixed-length arbitrary passage retrieval method [52] in the language
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modeling framework. We would use this kernel as a baseline to examine whether the proximity-based kernel functions

perform better than this non-proximity-based kernel.

According to the proximity-based propagation property, p(w|D, i) is mainly influenced by terms around the posi-

tion i, all of which form a “soft” passage together. Hence, the PLM captures a “soft passage” naturally in the language

modeling framework. Moreover, different from general passage retrieval, which only captures term position evidence

indirectly, our model can measure term position information and incorporate it into a language model directly.

Furthermore, if we set σ to a very large or infinite value for any of the proposed kernels, we would have k(i, j) = 1

for all i and j. Thus, we have c′(w, i) =
∑N

j=1 c(w, j)k(i, j) = c(w,D), which means that p(w|D, i) degenerates

to the basic whole document language model p(w|D). This shows that the PLM can cover the basic language model

as a special case. In general, we can balance the local term proximity evidence and the document level term statistics

by tuning the parameter σ (a small σ would emphasize more on local term proximity). Thus, PLM captures term

proximity information in the language modeling framework in a natural way.

3.3.3 Model Implementation

If the PLM is naively implemented, the cost of estimating and ranking PLMs can be extremely high, since the number

of positions is much larger than the number of documents or predefined passages. Fortunately, with some mathematical

transformation, we may significantly reduce the computational complexity. Below we will show that under reasonable

assumptions, PLMs can be implemented similarly to the fixed-length arbitrary passage retrieval.

Given a query, suppose all terms in a document have the same propagation function with the same σ, and the curve

of the kernel density function is symmetric. Then we have k(i, j) = k(j, i). Since the most time-consuming part is to

compute the normalized length Zi =
∑

w∈V c′(w, i), we rewrite it as:

∑
w∈V

c′(w, i) =
∑
w∈V

N∑
j=1

c(w, j)k(i, j) =
N∑
j=1

(∑
w∈V

c(w, j)

)
k(i, j) =

N∑
j=1

k(i, j) =
N∑
j=1

k(j, i)

This means the sum of propagated count to a position is equal to that propagated from the position. We show the

computation of Zi for the Gaussian kernel as an example:

N∑
j=1

k(j, i) =

N∑
j=1

(
exp

[
−(j − i)2

2σ2

])

≈
√
2πσ2 ·

∫ N

1

1√
2πσ2

exp

[
−(x− i)2

2σ2

]
dx

=
√
2πσ2 ·

[
Φ

(
N − i

σ

)
− Φ

(
1− i

σ

)]
(3.10)
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where ϕ(·) is the cumulative normal distribution and N is the document length. To calculate ϕ(·), we can adopt some

existing algorithms, such as the algorithm 26.2.17 [2]. For other kernels considered by us, it is also easy to obtain their

cumulative distribution functions through integration.

From this analysis, we can see that our PLM can be implemented similarly to fixed-length arbitrary passage

retrieval model. Thus, we can use the techniques proposed in [53] for passage retrieval to implement PLMs; with

such an implementation, ranking documents based on PLMs has a complexity of the same order as regular document

ranking.

3.4 Document Ranking based on Positional Language Models

As discussed earlier, with PLMs, we can compute a position-specific score S(Q,D, i) for each position i using the

KL-divergence of the PLM at the position and the query language model. Such position-specific scores serve as the

basis for computing an overall score for document D. We now discuss several different ways of doing this.

3.4.1 Best Position Strategy

Our first strategy is to simply score a document based on the score of its best matching position, formally,

S(Q,D) = max
i∈[1,N ]

{S(Q,D, i)} (3.11)

This strategy resembles most existing studies on passage retrieval, which generally considered evidences from the best

matching passage [16, 52, 63].

3.4.2 Multi-Position Strategy

A more flexible alternative strategy is to first compute the scores of top-k positions separately, and then combine these

scores together to take advantage of the evidence from several top ranked positions. Particularly, we can take the

average of the top-k scores to score a document:

S(Q,D) =
1

k

∑
i∈TopK

S(Q,D, i) (3.12)

where TopK is the set of positions corresponding to the top-k highest scores of S(Q,D, i).
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AP88-89 FR TREC8 WT2G
queries 51-100 51-100 401-450 401-450

#qry(with qrel) 49 21 50 50
mean(ql) 3.70 4.19 2.46 2.46

#total qrel 4418 502 4728 2279
#documents 164, 597 45, 820 528, 155 247, 491

mean(dl) 462 1498 481 1056

Table 3.1: Document set characteristic

3.4.3 Multi-σ Strategy

In this strategy, we compute the best position scores for several different σ values, and then combine these scores

together as the final score for a document. The idea is to use different σ values to capture proximity at different

propagation ranges.

S(Q,D) =
∑
σ∈R

[βσ ·max{Sσ(Q,D, i)}] (3.13)

where R is a predefined set of σ values, Sσ(·) is the score function for PLMs with parameter σ, βσ is the weight on

different σ (
∑

σ∈R βσ = 1). In particular, if R = {σ0,∞}, this strategy equals to an interpolation of the PLM (with

a parameter σ0) and the regular document language model. Considering the efficiency issue, we only evaluate this

special case of multi-σ strategy, defined formally as follows:

S(Q,D) = γ · max
i∈[1,N ]

{Sσ0
(Q,D, i)}+ (1− γ) · [−D(θQ||θD)] (3.14)

3.5 Experiments

3.5.1 Experimental Setup

We used several standard TREC data sets in our study: AP88-89, FR, TREC8, and WT2G. They represent different

sizes and genre of text collections. AP88-89 is chosen as a homogeneous collection. FR is selected as a collection of

long documents, with a large variance in the document length. TREC8 is a relatively large heterogeneous collection,

while WT2G is Web data. Queries are taken from the title field of the TREC topics 1. Table 3.1 shows some basic

statistics about these data sets, including the query topics, number of queries with relevance judgments, mean query

length, total number of relevance judgments, number of documents, and mean document length. The preprocessing

of documents and queries is minimum, involving only stemming with the Porter stemmer. No stop words have been

removed.

In each experiment, we first use the baseline model (KL-divergence) to retrieve 2, 000 documents for each query,

1Topic 110 in AP88-89 was left out accidently due to a format problem in preprocessing.
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WT2G
kernel�σ 25 75 125 175 275
Gaussian 0.2989 0.3213 0.3286 0.3307 0.3285
Triangle 0.2661 0.3028 0.3149 0.3211 0.3288
Cosine 0.2621 0.3007 0.3128 0.3181 0.3243
Circle 0.2797 0.3140 0.3225 0.3273 0.3267

FR
Gaussian 0.2913 0.2679 0.2895 0.2880 0.2846
Triangle 0.2585 0.2898 0.2858 0.2682 0.2897
Cosine 0.2603 0.2910 0.3000 0.2948 0.2858
Circle 0.2685 0.2754 0.2673 0.2877 0.2873

TREC8
kernel�σ 25 75 125 175 275
Gaussian 0.2364 0.2465 0.2503 0.2535 0.2550
Triangle 0.2244 0.2379 0.2438 0.2475 0.2500
Cosine 0.2257 0.2390 0.2430 0.2457 0.2486
Circle 0.2315 0.2401 0.2464 0.2492 0.2523

AP88-89
Gaussian 0.1926 0.2112 0.2162 0.2177 0.2198
Triangle 0.1709 0.1987 0.2077 0.2117 0.2173
Cosine 0.1682 0.1969 0.2063 0.2107 0.2144
Circle 0.1801 0.2034 0.2093 0.2135 0.2159

Table 3.2: MAP Results of different kernel functions with Dirichlet smoothing method.

and then use the PLM (or a baseline method) to re-rank them. The top-ranked 1, 000 documents for all runs are

compared using the mean average precisions (MAP) as the main metric.

3.5.2 Best Position Strategy

We first examine the effectiveness of the Best Position Strategy for scoring documents based on PLM. Since the

performance of this strategy is directly determined by the effectiveness of the kernel function used to estimate the PLM,

we first compare the proposed four different proximity-based kernel functions to see which one performs the best. For

this comparison, the initial retrieval results were obtained using the KL-divergence retrieval model with Dirichlet

prior smoothing; since the relative performance of different kernel functions would presumably not be affected by the

setting of the smoothing parameter in the initial retrieval, we did not tune the smoothing parameter and simply set it to

1, 000. To compare different kernel functions, we follow [52] and systematically test a set of fixed σ values from 25

to 300 in increments of 25. For the sake of efficiency, positions start at 25-word intervals, which was shown by [51]

to be an effective way for passage retrieval.

Since we also smooth an estimated PLM when computing retrieval scores, we test both Dirichlet prior smoothing
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WT2G
kernel�σ 25 75 125 175 275
Gaussian 0.3024 0.3170 0.3133 0.3096 0.3010
Triangle 0.2711 0.3057 0.3118 0.3170 0.3131
Cosine 0.2622 0.2855 0.2681 0.2452 0.2039
Circle 0.2813 0.3130 0.3188 0.3179 0.3148

FR
Gaussian 0.2639 0.2606 0.2592 0.2827 0.2822
Triangle 0.2458 0.2681 0.2607 0.2610 0.2834
Cosine 0.2463 0.2476 0.2424 0.2249 0.1593
Circle 0.2512 0.2557 0.2613 0.2591 0.2833

TREC8
kernel�σ 25 75 125 175 275
Gaussian 0.2454 0.2510 0.2548 0.2575 0.2576
Triangle 0.2335 0.2477 0.2491 0.2506 0.2562
Cosine 0.2335 0.2423 0.2356 0.2227 0.2058
Circle 0.2369 0.2456 0.2498 0.2528 0.2555

AP88-89
Gaussian 0.1892 0.2016 0.2054 0.2066 0.2049
Triangle 0.1718 0.1933 0.1968 0.2002 0.2051
Cosine 0.1701 0.1910 0.1815 0.1636 0.1349
Circle 0.1735 0.1933 0.1962 0.2010 0.2049

Table 3.3: MAP Results of different kernel functions with Jelinek-Mercer smoothing method

(with parameter 1, 000) and Jelinek-Mercer (with parameter 0.5). (see Equations 3.3 and 3.4). The results of compar-

ing different kernel functions when using each smoothing method are shown in Table 3.2 and Table 3.3, respectively.

The best result for each σ value is highlighted. Overall, we see that for all kernels, a relatively large σ value, e.g., 125,

175, and 275, often brings the best performance. It seems that the performance of all runs stabilizes after σ reaches

125. Considering the length of the soft passage is approximately 2σ (as shown in Figure 3.2), this result confirms

the observation in recent studies of passage retrieval [52, 63] that setting passage length to a value around 350 often

achieves the best performance. Among all the kernel functions, the Gaussian kernel clearly has the best performance;

it contributed 15 best MAP scores out of 20 for Dirichlet prior smoothing and 13 out of 20 for Jelinek-Mercer. To see

whether the setting of the smoothing parameter may have affected the relative performance of these kernel functions,

we further compare them for a wide range of values of the Dirichlet prior parameter on TREC8 in Figure 3.3, where

we fix σ = 175 for all kernels. The results clearly show that the Gaussian kernel is the winner among all the four

functions. One way to explain why the Gaussian kernel performs the best is that it is the only one of all the functions

that exhibits the following property: the propagated count would drop slowly when the distance value |i− j| is small,

but drop quickly as the distance value is in a middle range, and then drop slowly again when distance value becomes

very large. Such an “S-shape” trend is reasonable for the following reason. Dependent terms are not always adjacent
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Figure 3.3: Sensitivity to Dirichlet smoothing parameter of different kernels over TREC8

in documents, but can be a little far from each other, thus we would not like to make the propagation so sensitive to

the distance when the distance is small. However, when the distance is just around the boundary of strong semantic

associations (semantic scope of a term), the propagated count should be more sensitive to the distance change. Then

as the distance increases further, all terms are presumably only loosely associated, and thus the propagated term count

again should not be so sensitive to the difference of distances.

Since the Gaussian kernel performs the best, in all the following experiments, we use this kernel function. In

order to see whether PLM can effectively capture proximity and passage retrieval, we compare the performance of

Gaussian kernel (σ = 175) with the baseline whole document language model using both Dirichlet prior smoothing

and Jelinek-Mercer smoothing (both the PLM and the baseline would use the same smoothing method). The results

are shown in Figure 3.4, where we vary the smoothing parameters for both smoothing methods on all the four data

sets. We can observe that the PLM improves performance on WT2G and FR clearly and consistently, which shows

that, similar to general passage retrieval, the PLM can bring added benefits to document retrieval when documents

are relatively long. Some improvements are also found on TREC8, possibly because it is a heterogeneous data set as

compared to AP88-89, which is homogeneous; a heterogeneous collection is relatively nosier, thus term dependence

information may be more helpful. Unfortunately, the PLM does not seem to show its advantages on AP88-89 for

Dirichlet prior smoothing even though it is so for Jelinek-Mercer smoothing.

By comparing the results of the two smoothing methods in Figure 3.4, we see that in general, Dirichlet prior

performs better than Jelinek-Mercer for PLM, and the Dirichlet prior smoothing method seems to perform stably for

a range of µ values around 500.

Figure 3.4 shows that PLM outperforms whole document LM baseline likely due to the use of proximity and

passage-retrieval heuristics. We would like to further understand whether PLM, which captures “soft” passages, is

also better than the fixed-length arbitrary passage retrieval method. Thus, we compare the PLM (using the Gaussian

kernel, σ = 175, Dirichlet prior smoothing, µ = 500) with the fixed-length arbitrary passage retrieval method [52]
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Figure 3.4: Sensitivity to the smoothing parameters of Dirichlet smoothing (left) and Jelinek-Mercer smoothing (right)
of basic language modeling methods (LM) and the PLM on four collections.

WT2G
– 25 75 125 175 275

Psg 0.2962 0.3176 0.3225 0.3265 0.3249
PLM 0.2989 0.3213 0.3286+ 0.3307+ 0.3285

TREC8
Psg 0.2358 0.2433 0.2492 0.2511 0.2518

PLM 0.2364 0.2465+ 0.2503 0.2535+ 0.2550+

FR
Psg 0.2899 0.2704 0.2878 0.2887 0.2860

PLM 0.2913 0.2679 0.2895 0.2880 0.2846
AP88-89

Psg 0.1854 0.2054 0.2130 0.2142 0.2154
PLM 0.1926+ 0.2112+ 0.2162+ 0.2177+ 0.2198+

Table 3.4: Comparison of fixed-length arbitrary passage retrieval (Psg) and PLM. ′+′ means that improvements over
the Psg are statistically significant.

(i.e., the Passage kernel). The MAP scores are summarized in Table 3.4, where the best result for each σ is highlighted.

We can observe that the PLM indeed outperforms the standard passage retrieval baseline significantly, which shows

that modeling term proximity directly using a proximity-based density function is more effective and robust than

assuming fixed lengths.

3.5.3 Multi-position Strategy

We now evaluate the multi-position ranking strategy. Based on the observation in the previous section, we use the

Gaussian kernel (σ = 175) with Dirichlet smoothing (µ = 500) for the PLM. We vary parameter k and plot the MAP

results of multi-position strategy in Figure 3.5. We see that the multi-position strategy does not lead to any noticeable

improvement over the best position strategy (i.e., k = 1), and if we use a relatively large k, the performance can even

degrade dramatically. Hence, given a single σ value, the best position strategy is a robust and reasonable method for

document ranking.
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Figure 3.5: Sensitivity to the parameter k of multi-position strategy

method�data WT2G TREC8 FR AP88-89
KL 0.2931 0.2509 0.2697 0.2196

σ = 25 0.3247+ 0.2562+ 0.2936 0.2237+

σ = 75 0.3336+ 0.2553+ 0.2896+ 0.2227
σ = 125 0.3330+ 0.2559+ 0.2885 0.2201
σ = 175 0.3324+ 0.2574+ 0.2858 0.2196
σ = 275 0.3255+ 0.2561+ 0.2852 0.2193

Table 3.5: The best performance of multi-σ strategy for different σ. ′+′ means that improvements over the baseline
KL method are statistically significant.

3.5.4 Multi-σ Strategy

We now turn to the evaluation of the multi-σ strategy – in particular, the special case of interpolating a PLM with the

whole document language model (i.e., σ = ∞). To test this special case of Multi-σ strategy, we fix one σ value to ∞,

and vary the other one from 25 to 300 in increments of 25. For each σ value, we again use the Gaussian kernel and the

Dirichlet prior smoothing method (µ = 500). The results are presented in Table 3.5, where we tune the interpolation

coefficient γ in the range of [0.0, 1.0] to its optimal value for each σ. It shows that, when interpolated with document

language models, the PLM performs more robustly and effectively. One possible explanation is that a locally focused

PLM alone does not model document-level retrieval heuristics as effectively as the whole document language model

does, even though the former captures term proximity heuristic better, thus balancing them will get better results.

Another interesting observation is that the best results are always obtained when we use a smaller σ value, e.g. 25 or

75, which also suggests that the PLM is better at capturing local term proximity evidence rather than document-level

evidence (e.g., term frequency).

To further look into the sensitivity to γ, we set R = {75,∞} and vary γ on all the four data sets. The results are

shown in Figure 3.6. Interestingly, for collections of long documents (i.e., FR and WT2G), we can rely more on PLMs

(larger γ), likely because the whole document language models may contain much noise, but for collections of short-

documents (i.e., TREC8 and AP88-89), the sensitivity curves are generally flatter and a relatively smaller γ seems
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Figure 3.6: Sensitivity to γ value of multi-σ strategy.

method�data WT2G TREC8 FR AP88-89
R1 + MinDist 0.3197 0.2568 0.2708 0.2220
R = {75,∞} 0.3336 0.2553 0.2896 0.2227

Table 3.6: MAP Comparison of the multi-σ strategy and the best method proposed by Tao and Zhai.

working better, suggesting that regular document language models work reasonably well without term proximity

information.

We finally compare our multi-σ strategy (R = {75,∞}, γ = 0.8 for FR and WT2G, and γ = 0.4 for TREC8 and

AP88-89) with a state-of-the-art proximity retrieval method proposed in [104]. Our parameter setting gives PLM near

optimal performance. To be fair, we also use the best language modeling retrieval formula suggested in [104] (i.e., R1

+ MinDist), and tune their parameter α to its optimal value to re-rank documents. We label this run as “R1 + MinDist”

and report the comparison results in Table 3.6. Interestingly, we see both methods perform similarly on short-document

collections (i.e., TREC8 and AP88-89), but our method is clearly better on long-document collections (i.e., WT2G

and FR), suggesting that the proposed PLM can capture the passage and proximity heuristics more effectively.

3.6 Summary

In this chapter, we proposed a novel positional language model which implements both proximity heuristic and passage

retrieval in a unified language model. We proposed and studied four different proximity-based density functions to

estimate PLMs. Experiment results show that the Gaussian density kernel performs the best, followed by Circle,

Triangle, and Cosine. As for the smoothing of PLM, the Dirichlet smoothing method performs better than Jelinek-

Mercer smoothing.

In addition, we further proposed three PLM-based document ranking strategies. We evaluated their performance

and found that the multi-σ strategy performs the best. Our experiments on several standard test collections show that

the proposed PLM not only outperforms the regular document language models, but also outperforms the fixed-length
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arbitrary passage retrieval method and a state-of-the-art proximity-based retrieval model.

As a new family of language models, the PLM opens up many interesting future research directions. One of

the most interesting directions is to further study whether setting a term-specific and/or query-specific σ can further

improve performance. Another interesting direction is to study how to optimize σ automatically based on statistics

such as IDF of terms and discourse structures of documents.
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Chapter 4

Positional Relevance Models

4.1 Introduction

The previous chapter aims at bridging one theory-effectiveness gap in document language models by making them

be able to capture term position and proximity heuristics. Accurate estimation of query language models also plays a

critical role in the language modeling approaches. The most effective methods for estimating query language models

generally rely on the strategy of pseudo-relevance feedback (PRF) [88, 85, 91, 11, 87, 61, 120], which can improve

retrieval performance significantly over simple estimation methods that only use the query [69], as we have discussed

in Section 2.5.

However, existing PRF algorithms use a whole feedback document as a unit for selecting expansion terms, and

simply assume that all terms in a feedback document are equally useful, again ingoring term occurrence positions and

the term proximity evidence. This is often non-optimal, as a feedback document may cover multiple incoherent topics

and thus may contain much irrelevant information as often happens in Web search. The existence of multiple topics

and irrelevant information would lead to a noisy feedback model as potentially harmful terms from non-relevant topics

may be picked up to include in the feedback model. As a result, the use of pseudo feedback may not improve or even

decrease the retrieval performance. Thus a critical challenge in improving all feedback methods is to effectively select

from feedback documents those terms that are most likely relevant to the query topic.

In this chapter, we solve this challenge by exploiting the position and proximity information of terms as cues

to assess if a term is related to the query topic. Since topically related content is usually grouped together in text

documents, terms closer to the occurrences of query words are, in general, more likely relevant to the query topic, thus

a good feedback model should intuitively place higher weights on such terms.

Based on this intuition, we propose a novel positional relevance model (PRM) to incorporate the cues of term

positions and term proximity in a probabilistic feedback model based on statistical language modeling. The key idea

is to extend the relevance model [61] to aggregate the associations between a term and query words at the position level

via the positional language model (PLM) proposed in the previous Chapter 3. An important advantage of estimating a

relevance model based on PLM is that it can model the “relevant positions” in a feedback document with probabilistic
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models so as to assign more weights to terms at more relevant positions in a principled way, thus leading naturally to

selection of expansion terms more likely relevant to the query topic.

Since PRM estimates a relevance model at the level of term positions, it incorporates individual term positions

directly into a probabilistic model. This is in contrast with virtually all the existing pseudo feedback techniques which

have only made use of term statistics at the document level [88, 85, 91, 11, 87, 61, 120, 69], or at the best, at the level

of passages [3, 112, 63, 75] without distinguishing every different position.

Analogously to the two methods proposed for estimating the relevance model [61], we also derive two methods

for estimating PRM, leading to two different ways to aggregate term information based on positions. We evaluate the

proposed PRM on two large TREC datasets. Experimental results demonstrate that PRM is effective in exploiting term

proximity for pseudo feedback and significantly outperforms the relevance model in both document-based feedback

and passage-based feedback.

4.2 Related Work

General Pseudo-Relevance Feedback: Pseudo-relevance feedback has been shown to be effective with various re-

trieval models [88, 85, 91, 11, 87, 61, 120, 69]. In the vector space model, feedback is usually done by using the Roc-

chio algorithm, which forms a new query vector by maximizing its similarity to pseudo-relevant documents [88]. The

feedback method in classical probabilistic models is to select expansion terms primarily based on Robertson/Sparck-

Jones weight [85]. Several query expansion techniques have been developed in the language modeling framework,

including, e.g., the mixture-model feedback method [120] and the relevance model [61], which have been discussed in

Chapter 2. The basic idea is to use feedback documents to estimate a better query language model. Both the mixture

model and relevance model have been shown to be very effective, but the relevance model appears to be more robust

[69].

All these pseudo feedback algorithms use a whole feedback document as a unit, and thus term position and prox-

imity evidences are largely ignored. Our work is an extension of the relevance model to estimate a feedback model

based on individual term positions.

Passage Feedback: There have been several studies to exploit passage-level evidence of documents for feedback,

e.g., [3, 112, 63], which can potentially address the heterogeneous topical structure of documents to some degree.

However, these approaches usually take a traditional feedback model as a black box to handle sub-document units as

if they were regular documents. For example, Liu and Croft’s work [63] estimates a relevance model based on the

best matching passage of each feedback document, where fixed-length arbitrary passages that resemble overlapped

windows but with an arbitrary starting point [52] can often be used due to its effectiveness and efficiency [52, 63]. A
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limitation of this approach is that term positions are not directly incorporated into the feedback model. As we will

show later in this chapter, the proposed PRM outperforms such a passage feedback approach.

Some other approaches, e.g., [116, 13], make use of visual cues or eye tracker to improve passage feedback for

web search: on the server side of a search engine, documents can be decomposed into topically different components

via visual cues [116], while on the client side of users, gaze-based attention feedback [13] can go down to the sub-

document level by exploiting evidence about which document parts the user looks at. However, such approaches face

the same problems as general passage feedback without being able to model each individual position.

In fact, these passage-based or sub-document level feedback models are orthogonal to the proposed PRM in the

sense that PRM can be applied to passages to model proximity inside a passages in the same way as it can be applied

to whole documents. Moreover, the underlying positional language model, which can capture passage-level evidence

in a soft way in model estimation, has been shown to work better than imposing a “hard” boundary of passages.

Recently, Metzler and Croft’s work on Latent Concept Expansion [75]. Their work provides a more general frame-

work, but is only be able to indirectly captures term position and proximity evidence through the use of appropriate

general passages. And also their work is complementary with our ideas in that we can use PRM as a more effective

feature than the general passage features defined on their graph, so our PRM scores can then be combined with other

features explored in [75] to further improve its performance.

Term Proximity in Pseudo-Relevance Feedback: There has been relatively little work done in the area of formally

modeling term proximity heuristic in the context of pseudo feedback. However, there have been several attempts

to simply combine term proximity with other feedback heuristics to select good expansion terms. In [108], several

distance functions were evaluated for selecting query expansion terms from windows or passages surrounding query

term occurrences; however, no improvement was observed as compared to existing feedback methods. Cao et al. [17]

used a supervised method to classify whether an individual expansion term is good or not, in which term proximity

is one of their features. Their method only loosely combined term proximity with traditional feedback heuristics;

in contrast, we incorporate term position and proximity into a probabilistic feedback model with more meaningful

parameters.

4.3 Positional Relevance Model

In this section, we describe the proposed positional relevance model (PRM) which incorporates term position informa-

tion into the estimation of feedback models so that we can naturally reward terms close to query terms in the feedback

documents and avoid including irrelevant terms in the feedback model.
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The proposed PRM can be regarded as an extension to the relevance model (RM) [61], which have been reviewed

in Chapter 2.

In the relevance model, the count of a term is computed over an entire feedback document. The main idea of the

proposed positional relevance model (PRM) is to further distinguish different positions of a term and discount the

occurrences of a term at positions that are far away from a query term in a feedback document.

Similarly to RM, a PRM is also a multinomial distribution P (w|Q) that attempts to capture the probability that

term w is seen in a relevant document. However, PRM goes beyond RM to estimate the conditional probability

P (w|Q) in terms of the joint probability of observing w with the query Q at every position in every feedback docu-

ment. Formally,

P (w|Q) =
P (w,Q)

P (Q)
∝ P (w,Q) =

∑
D∈F

|D|∑
i=1

P (w,Q,D, i) (4.1)

where i indicates a position in document D, and F is the set of feedback documents (assumed to be relevant).

The challenge now lies in estimating the joint probability P (w,Q,D, i). Inspired by the two estimation methods

proposed in [61] for estimating relevance models, we derive two methods similarly for estimating P (w,Q,D, i). The

first method assumes that w is sampled in the same way as Q based on a query generation process, while the second

method assumes that w and Q are sampled using two different mechanisms based on a document generation process.

4.3.1 Estimation Method 1: Query Generation

In this method, we first compute the joint probability of observing a word together with the query words at each

position and then aggregate the evidence by summing over all the possible positions. Specifically, we factor the joint

probability P (w,Q,D, i) for each pseudo-relevant document D as follows:

P (w,Q,D, i) = P (D)P (i|D)P (w,Q|D, i) (4.2)

Intuitively, we have assumed a generative model in which we would first pick a document according to P (D), then

choose a position i in document D with probability P (i|D), and finally generate word w and query Q conditioned on

D and i, with probability P (w,Q|D, i).

P (D) can be interpreted as a document prior and set to a uniform distribution with no prior knowledge about

document D. While it is possible to estimate P (i|D) based on document structures, here we assume that every

position is equally likely, i.e., P (i|D) = 1
|D| . Improving the estimation of p(D) and P (i|D) would be an interesting

future work. An illustration of the dependencies between the variables involved in the derivation is shown on Figure
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Figure 4.1: Dependence networks for two methods, i.e., method 1 (left) and method 2 (right), of estimating positional
relevance models.

4.1 (left side).

After making these assumptions and a further assumption that the generation of word w and that of query Q are

independent, we have

P (w,Q,D, i) ∝ P (w,Q|D, i)

|D|
=

P (Q|D, i)P (w|D, i)

|D|
(4.3)

Plugging Equation 4.3 into Equation 4.1, we obtain the following estimate of the PRM:

P (w|Q) ∝ P (w,Q) ∝
∑
D∈F

|D|∑
i=1

P (Q|D, i)P (w|D, i)

|D|
(4.4)

In the above equation, P (w|D, i) is the probability of sampling word w at position i in document D. To improve

the efficiency of PRM, we simplify P (w|D, i) as:

P (w|D, i) =


1.0 if w occurs at position i in D

0.0 otherwise
(4.5)

The term P (Q|D, i) in Equation 4.4 is the key component in estimating the positional relevance model. It is the

query likelihood at position i of document D, and we will discuss how to estimate it based on the positional language

model in Section 4.3.4. Additionally, there is a third term |D| in the equation, which penalizes long documents to

prevent them from dominating the feedback model (long documents naturally have more positions).

Thus, Equation 4.4 essentially combines all terms in feedback documents by assigning different weights to each

term: (1) P (Q|D, i) serves as a relevance-based weight for each position in each document so that a position with

many query terms nearby would have a higher weight. Thus as an intra-document weight, P (Q|D, i) can measure

the relative weights of positions within a document: a position closer to query words would more likely generate the

query, and as a result a term that occurs at this position would naturally receive a higher weight. (2) |D| comes into
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the formula because of the assumption about uniform distribution over all the positions in a document and can be

interpreted as an inter-document weight: it penalizes a long document which is reasonable since a longer document

by nature has more positions and more occurrences of terms to contribute.

4.3.2 Estimation Method 2: Document Generation

In this method, we consider the following different way to decompose the joint probability distribution:

P (w,Q,D, i) = P (Q)P (D|Q)P (i|Q,D)P (w|D, i) (4.6)

The assumed generative model is as follows. We first pick a query according to some prior P (Q). We then generate a

document D with probability P (D|Q). Finally, we select a position i in D with probability P (i|Q,D) and generate

word w according to P (w|D, i). An illustration of this sampling process is given on the right side of Figure 4.1.

For the purpose of estimating P (w|Q), we can clearly ignore the term P (Q) as it is a query-specific constant.

Using Bayes Rule and assuming both P (D) and P (i|D) to be uniform (as we have assumed in the first estimation

method), we have

P (D|Q) =
P (Q|D)P (D)∑

D∈F P (Q|D)P (D)
=

P (Q|D)∑
D∈F P (Q|D)

(4.7)

P (i|D,Q) =
P (Q|D, i)P (i|D)∑|D|
i=1 P (Q|D, i)P (i|D)

=
P (Q|D, i)∑|D|
i=1 P (Q|D, i)

(4.8)

Plugging Equations 4.6, 4.7, and 4.8 into Equation 4.1, we obtain the following estimate of PRM:

P (w|Q) ∝
∑
D∈F

|D|∑
i=1

P (Q|D)∑
D∈F P (Q|D)

P (Q|D, i)∑|D|
i=1 P (Q|D, i)

P (w|D, i) (4.9)

where P (Q|D) is the query likelihood score of document D, which can be computed using either the positional

language models or the standard document language model. In our experiments, we use the latter, i.e., P (Q|D) =∏m
j=1 P (qj |D).

As in the first estimation method, we compute P (w|D, i) using Equation 4.5.

Similarly to the first estimation method, this second estimate of PRM also essentially combines all terms in feed-

back documents by assigning different weights to each term: the first weighting term in Equation 4.9 is seen to be the

normalized query likelihood score of the document, which assigns more weights to documents that are more likely to

be relevant, while the second weighting term is the normalized query likelihood of each positional language model,
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which assigns more weights to terms that are closer to query words.

Compared to the first estimation method, the document length normalizer |D| is missing, but a comparable effect

is now achieved by normalizing the query likelihood of each positional language model P (Q|D, i). Indeed, the effect

of intra-document weighting and inter-document weighting can now be seen even more clearly, i.e., the normalized

P (Q|D) can be interpreted as the inter-document weight favoring a document matching the query well, while the

normalized P (Q|D, i) clearly achieves intra-document weighting to place more weight on terms closer to query terms

in document D.

4.3.3 Comparison

Comparing the two methods, PRM1 essentially takes each position as a “pseudo document” and applies the general

relevance model to such “pseudo documents”, while PRM2 extends the general relevance model by re-weighting terms

within the same document according to their distances to the occurrences of query terms. PRM1 is more aggressive

in that, it directly extracts absolutely “relevant” positions from multiple feedback documents, but PRM2 first extracts

relatively “relevant” positions within each document and then pools these positions together.

To further analyze the technical differences between PRM1 and PRM2, we re-write PRM1 (Formula 4.4) as below:

Pprm1(w|Q) ∝
∑
D∈F

|D|∑
i=1

P (Q|D, i)P (w|D, i)

|D|

=
∑
D∈F

|D|∑
i=1

∑|D|
i=1 P (Q|D, i)

|D|
P (Q|D, i)∑|D|
i=1 P (Q|D, i)

P (w|D, i) (4.10)

Comparing Formula 4.9 and 4.10, we can see that, the ways of assigning weights to each term (position) in PRM1 and

PRM2 are essentially the same, both of which use a normalized positional query likelihood score, i.e., P (Q|D,i)∑|D|
i=1 P (Q|D,i)

,

but their strategies for document weighting are quite different: PRM1 uses an average of all positional query likeli-

hood scores, i.e.,
∑|D|

i=1 P (Q|D,i)

|D| , as the document weight, while PRM2 uses a normalized query likelihood score, i.e.,

P (Q|D)∑
D∈F P (Q|D)

.

4.3.4 More Estimation Details

This section provides the final estimation details for our positional relevance model (Equation 4.4 and 4.9), i.e., how

to estimate P (Q|D, i). We adapt the proposed positional language model in Chapter 3 to do that. The PLM at position

i of document D can be estimated as:

P (w|D, i) =
c′(w, i)∑

w′∈V c′(w′, i)
(4.11)
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where c′(w, i) is the total propagated count of term w at position i from the occurrences of w in all the positions. We

estimate c′(w, i) using the Gaussian kernel function due to its effectiveness:

c′(w, i) =

|D|∑
j=1

c(w, j) exp

[
−(i− j)2

2σ2

]
(4.12)

where i and j are absolute positions of the corresponding terms in the document, and |D| is the length of the document;

c(w, j) is the real count of term w at position j. With the proposed approximation method, the following estimation

of P (w|D, i) is obtained:

P (w|D, i) =
c′(w, i)

√
2πσ2 ·

[
Φ
(

|D|−i
σ

)
− Φ

(
1−i
σ

)] (4.13)

where Φ(·) is the cumulative normal distribution and the denominator is essentially the length of the “soft” passage

centered at position i.

However, there is one issue with the above estimation: the length of “soft” passages around the boundaries of a

document would be smaller than that in the middle of the document; as a result, boundary positions tend to unfairly

receive more weights. This may not raise problems in PLMs for retrieval, but it is a more serious concern for PRM,

where the relative weights of terms are more important. So we decide to use a fixed length for all “soft” passages in

feedback documents to estimate their corresponding positional language models as follows:

P (w|D, i) =
c′(w, i)√
2πσ2

(4.14)

This strategy has shown to be better than the original implementation for estimating PRM.

The distribution P (·|D, i) needs to be smoothed. Now that all “soft” passages have equal length, we use Jelinek-

Mercer smoothing method to smooth PLM, which is shown to work as well as the Dirichlet prior smoothing method

and is relatively insensitive to the setting of σ in our experiments.

Pλ(w|D, i) = (1− λ)P (w|D, i) + λP (w|C) (4.15)

where λ ∈ [0, 1] is a smoothing parameter and p(w|C) is the collection language model. Now we can compute the

positional query likelihood score P (Q|D, i) for position i.

P (Q|D, i) =

m∏
j=1

Pλ(qj |D, i) (4.16)
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Terabyte05 Terabyte06 ClueWeb09 Cat. B
queries 751-800 801-850 20001-21000

#qry(with qrel) 50 49 358
#documents 25, 205, 179 50, 220, 423

mean(dl) 931 875

Table 4.1: Document set characteristic

Plugging Equation 4.16 into Equations 4.4 and 4.9, we would be able to compute the two estimation methods

directly. Interestingly, if we set λ = 1 or σ = ∞, Method 2 will degenerate to the general relevance model (see

Equation 2.16).

The computation of positional query likelihood is the most time-consuming part in estimating PRM. Fortunately,

there is no serious efficiency concern even with an unoptimized implementation. The reason is because we only need

to traverse each position of a document twice: during the first pass, the positions of query terms are recorded; in the

second, we compute a positional query likelihood for each position directly based on the position information of query

terms collected in the first pass. Therefore, the efficiency is comparable to the estimation of the relevance model.

Finally, the estimated positional relevance model P (w|Q) will also be interpolated with the original query model

θQ using Equation 2.20 to improve performance with a similar parameter α to that used in the mixture-model feedback

[120] and RM3 [1].

4.4 Experiments

4.4.1 Experimental Setup

We used two standard TREC datasets in our study: Terabyte (i.e., the Gov2 collection) and ClueWeb09 Category

B. They represent two very large web text collections in English. Queries were taken from the title field of the

TREC topics. We used the Lemur toolkit (version 4.10) and Indri search engine (version 2.10) 1 to implement our

algorithms. For both datasets, the preprocessing of documents and queries included stemming with the Porter stemmer

and stopwords removing using a total of 418 stopwords from the standard InQuery stoplist. Table 4.1 shows some

basic statistics about the datasets.

We evaluated seven methods. (1) The basic retrieval model is the KL-divergence retrieval model [58], and we chose

the Dirichlet smoothing method [121] for smoothing document language models, where the smoothing parameter µ

was set empirically to 1500. This method was labeled as “NoFB”. (2) The baseline pseudo feedback method is the

relevance model “RM3” described in Section 2.5.1 [1], which is one of the most effective and robust pseudo feedback

methods under language modeling framework [69]. (3) Another baseline pseudo feedback method is a standard

1http://www.lemurproject.org/
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passage-based feedback model, labeled as “RM3-p”, which estimates the RM3 relevance model based on the best

matching passage of each feedback document [63]. (4) We have two variations of PRM, i.e., “PRM1” and “PRM2”,

which are based on the two estimation methods described in Section 4.3, respectively. (5) In addition, we also used

PRM1 and PRM2 for passage feedback in a way as RM3-p does. Specifically, we first computed a PLM for each

position of the document, and then we estimate a PRM based on a passage of size 2σ centered at the position with

the maximum positional query likelihood score (see Equation 4.16). These two runs are labeled as “PRM1-p” and

“PRM2-p” respectively.

There are several parameters in these pseudo feedback algorithms. We fixed the number of feedback documents

to 20 and the number of terms in feedback model to 30. Other parameters, including the feedback interpolation

coefficient α, the two additional parameters σ and λ in PRM, the passage size, and the passage smoothing parameter

in RM3-p, were all tuned on Terabyte05 dataset.

We used Terabyte06 and ClueWeb09 for testing. The top-ranked 1000 documents for all runs were compared in

terms of their mean average precisions (MAP) (for Terabyte06) or eMAP [19] (for ClueWeb09). In addition, other

performance measures, such as Pr@10, Pr@30 and Pr@100 for Terabyte06 and eP@10, eP@30 and eP@100 for

ClueWeb09, were also considered in our evaluation.

4.4.2 Feedback Effect

We first examine the overall retrieval precision of the pseudo feedback models for document-based feedback. The

results are summarized in Table 4.2, where the best result for each row is highlighted. As we see, both PRM1 and

PRM2 significantly outperform the basic KL-divergence retrieval model in terms of MAP. In addition, PRM1 and

PRM2 are also significantly better than RM3 across data sets. For example, the relative improvements of PRM1 over

NoFB are 9.0% on Terabyte06 and 13.5% on ClueWeb09 in terms of average precision, which are much larger than

the corresponding improvements achieved by RM3 (only 2.8% and 5.9% respectively). RM3 improves Pr@10 over

NoFB in neither dataset; however both PRM1 and PRM2 often improve Pr@10, though not significantly. Besides,

comparing PRM1 and PRM2, we find that PRM1 is slightly more effective than PRM2.

We are also interested in evaluating if a heuristic passage-based feedback (i.e., RM3-p) can work as well as PRM,

since both PRM1 and PRM2 essentially can be regarded as achieving a soft effect of passage feedback. Moreover,

we can also use PRM1 and PRM2 for “hard” passage feedback in a way as RM3-p does, which leads to PRM1-p and

PRM2-p respectively. So we further compare the average precision of PRM1, PRM2, PRM1-p, PRM2-p, and RM3-p

in Table 4.3. From the table, it is clear that PRM1, PRM2, PRM1-p and PRM2-p all outperform RM3-p significantly

in most cases, suggesting that our model does not only have sound statistical foundation but also works effectively. In

addition, we also observe that RM3-p behaves quite differently in two datasets: it beats RM3 on ClueWeb09 but loses
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Collection Metric NoFB RM3 PRM1 PRM2

Terabyte06
MAP 0.3047 0.3131 0.3322∗+ 0.3319∗+

Pr@10 0.5367 0.5041 0.5306 0.5490+

Pr@30 0.4653 0.4660 0.4884+ 0.4871+

Pr@100 0.3547 0.3576 0.3671∗+ 0.3741∗+

ClueWeb09
eMAP 0.0713 0.0755 0.0809∗+ 0.0786∗+

eP@10 0.2371 0.2307 0.2418+ 0.2377+

eP@30 0.2433 0.2486 0.2536∗+ 0.2525∗+

eP@100 0.2216 0.2283 0.2356∗+ 0.2325∗+

Table 4.2: Comparison of different pseudo feedback models for document-based feedback. ‘*’ and ‘+’ mean the
corresponding improvements over NoFB and RM3 are significant respectively.

Collection RM3-p PRM1 PRM2 PRM1-p PRM2-p
Terabyte06 0.3077 0.3322∗ 0.3319∗ 0.3331∗ 0.3290∗

ClueWeb09 0.0781 0.0809∗ 0.0786 0.0800∗ 0.0798∗

Table 4.3: MAP/eMAP comparison of passage-based feedback methods. ‘*’ means the corresponding improvement
over RM3-p is significant.

to RM3 on Terabyte06. However, all the four variations of PRM perform better than RM3 consistently. Finally, it is

also interesting to see that PRM1 and PRM2 work similarly to PRM1-p and PRM2-p respectively, which may mean

that PRM1 and PRM2 have already achieved successfully an effect of passage-based feedback by assigning weights

to different positions, so it does not bring too much additional benefit to apply PRM to passages explicitly.

Next we examine the robustness to the parameter setting in PRM on the Terabyte06 collection.

4.4.3 Robustness Analysis

In PRM1 and PRM2, there is a parameter σ inherited from the positional language model to control the propagation

range, which would influence the effect of term position and term proximity. Specifically, if we increase σ to infinity,

the effect of term position and proximity will be disabled. However, if we decrease this parameter to a finite value,

term position and proximity will play an important role in PRM. We fix other parameters to their default values as

trained on Terabyte05 and focus on understanding how σ affects the retrieval performance of PRM1 and PRM2. From

Figure 4.2 (left), we can see that, as long as σ is in the range of [100, 1000], both PRM1 and PRM2 outperform RM3

clearly. Indeed, by setting σ around 200, we can often obtain the optimal performance for both PRM1 and PRM2.

This result confirms the observation in previous Chapter 3. In addition, comparing PRM1 and PRM2, PRM2 seems to

be less sensitive to σ.

Next, the positional language model is smoothed using Jelinek-Mercer method to estimate PRM. The smoothing

is controlled by a parameter λ. When λ = 0, we are using the pure positional language model, while if λ = 1, we

completely ignore the position and proximity evidence so that every position will receive the same weight. Again,

we fix other parameters and show in Figure 4.2 (right) how the average precision changes under different λ. The
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Figure 4.2: Sensitivity to the propagation range σ (left) and the smoothing parameter λ (right) of PRM.
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Figure 4.3: Sensitivity to the feedback interpolation coefficient α (left), the number of feedback documents (middle),
and the number of expansion terms (right) of different pseudo feedback methods

experiment results indicate that when λ is set to around 0.1, both PRM1 and PRM2 achieve their optimal performance.

However, PRM1 and PRM2 always outperform RM3 with λ < 1. Comparing PRM1 and PRM2, we see again that

PRM2 seems to be more robust.

Recall that we interpolate the feedback model with the original query model. The interpolation is controlled by

a coefficient α. When α = 0, we are only using the original query model (i.e., no feedback), while if α = 1.0, we

completely ignore the original query model and use only the estimated feedback model. We fix other parameters and

show in Figure 4.3 (left) how the average precision changes according to the value of α. We can see that both PRM1

and PRM2 are clearly better than RM3 with different α values. And the optimal α for all the methods seems to be

in a range around 0.5. Besides, it is also interesting to observe that the pure feedback model results (α = 1.0) of

PRM1 and PRM2 are much better than that of RM3, suggesting that the positional relevance model can lead to a more

accurate query model. Finally, comparing PRM1 and PRM2, the former seems to be slightly more effective.

We further compare the robustness of different methods w.r.t. the number of feedback documents. We change the

number of feedback documents from 1 to 200. The MAP results are shown in Figure 4.3 (middle). We notice that

PRM1 and PRM2 are more robust to the number of feedback documents as compared to RM3. It is also interesting to
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Figure 4.4: MAP Plot of PRM1 (left) and PRM2 (right) as compared to RM3 on Terabyte06

see there is almost no performance decrease of PRM1 and PRM2 even when we set the parameter to 200, suggesting

that the proposed positional relevance model works better in tolerating noisy information. Moreover, with only 1

feedback document, PRM1 and PRM2 have already been able to outperform RM3, no matter how many feedback

documents RM3 uses, which may indicate that our methods can identify good feedback terms more accurately by

assigning position-dependent weights.

Additionally, we also compare the sensitivity of different methods to the number of expansion terms in Figure

4.3 (right). We vary the number of terms from 5 to 100, and observe that both PRM1 and PRM2 can achieve a very

effective performance with only 10 expansion terms, while RM3 needs 70 terms, but even so, its performance is still

not as good as our methods with 10 terms. This would be another advantage of our methods since fewer expansion

terms mean higher efficiency, which is very important for retrieval systems.

To further see the robustness of our methods on individual queries, we plot the MAP of PRM1 versus RM3 and

PRM2 versus RM3 on Terabyte06 in Figure 4.4. It is interesting that the proposed methods, particularly PRM2, are

quite robust; they improve most of the queries clearly with only a small number of queries decreased slightly.

4.5 Summary

We proposed a novel positional relevance model (PRM) for pseudo-relevance feedback. The PRM exploits term

position and proximity evidence to assign more weights to words closer to query words based on the intuition that

words closer to query words are more likely to be consistent with the query topic. Specifically, PRM generalizes the
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relevance model to aggregate the associations between a word and query words at the position-level in a probabilistic

way. We also developed two methods to estimate the PRM based on different generative models.

Experiment results on two large web data sets show that the proposed PRM is quite effective and robust and

performs significantly better than the state of the art relevance model in both document-based feedback and passage-

based feedback. Compared to the relevance model, the proposed models are also less sensitive to the setting of various

parameters, such as feedback coefficient, number of feedback documents, and number of expansion terms. Comparing

the two estimation methods of PRM, the first method (PRM1) appears to be more effective, while the second (PRM2)

tends to be more robust. Both methods achieve its optimal retrieval performance when setting the σ value in a range

around 200 and λ to around 0.1.

There are many interesting future research directions to explore. One of the most interesting directions is to further

study whether setting a term-specific and/or query-specific σ can further improve performance. Another interesting

direction is to study how to optimize σ automatically based on the layout of web pages. Improving the estimate of

other components in PRM (e.g., the probability of choosing a position in a document) would also be interesting.
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Chapter 5

A Boosting Approach to Improving Query
Language Models

5.1 Introduction

We have presented a positional relevance model to improve the effectiveness of pseudo-relevance feedback approaches

for estimating query language models in the previous Chapter. Besides effectiveness, robustness of a retrieval model is

also very important for any real retrieval systems. In fact, although traditional pseudo-relevance feedback techniques

generally improve retrieval performance (e.g., AP) on average, they are not robust in the sense that they tend to help

some queries, but hurt other queries [38, 22], limiting its usefulness in real retrieval applications. Thus an important,

yet difficult challenge is to improve the overall effectiveness of pseudo-relevance feedback without sacrificing the

performance of individual queries too much. Although there has been a lot of work on pseudo-relevance feedback,

little work has been devoted to address this issue, with only a few exceptions, e.g., [22]. In [22], the authors tried to

reduce feedback failures in a constrained optimization approach. However their work was only able to optimize an

objective function loosely related to the effectiveness and robustness of pseudo-relevance feedback.

In this chapter, we propose a novel learning algorithm, FeedbackBoost, based on the boosting framework to im-

prove pseudo-relevance feedback through combining a set of basis feedback algorithms optimally using a loss function

defined to directly measure both robustness and effectiveness, which has not been achieved in any previous work on

pseudo-relevance feedback. Specifically, like all other boosting algorithms [35, 92, 34, 115], FeedbackBoost itera-

tively selects and combines basis feedback methods. In each iteration, a basis feedback method is selected to improve

those queries on which the already selected basis feedback methods perform poorly in terms of both effectiveness and

robustness. At last, FeedbackBoost uses a linear combination of these basis feedback methods as its final feedback

model.

There are several important differences between our work and previous work on improving pseudo-relevance

feedback: (1) we cast the pseudo-relevance feedback problem as an optimization problem that can be solved in a

supervised way; (2) we propose a novel objective function that directly measures the effectiveness and the number of

failure cases of pseudo-relevance feedback; (3) FeedbackBoost can incorporate potentially many different basis feed-

back methods as features in the model, making it a general optimization framework for pseudo-relevance feedback;
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(4) FeedbackBoost does not introduce any extra parameter that needs to be manually tuned.

As an application, we apply FeedbackBoost to improve pseudo-relevance feedback based on language models for

estimating query language models through combining different document weighting strategies. One cause of the low

robustness and effectiveness in pseudo-relevance feedback is that the feedback documents are simply assumed to be

relevant whereas in reality, not all of them are relevant. Thus one way to improve pseudo-relevance feedback would

be to assign appropriate weights to these documents. Indeed, our previous work [69] has already shown that with

relevance-based document weighting, the relevance model [61] tends to be more robust and effective than alternative

models for feedback with language models. In the existing work, however, such weighting is generally based on

one heuristic or another, and is not optimized directly to improve feedback. Our main idea is to combine a variety

of feedback methods each with a different strategy for document weighting under the framework of FeedbackBoost.

Although we only try to leverage feedback methods with different document weighting methods in this work, the

proposed boosting framework can potentially accommodate many other basis feedback methods.

We evaluate our method using two representative large test sets and compare FeedbackBoost with multiple base-

line methods. The experiment results demonstrate that the proposed FeedbackBoost algorithm can improve average

precision significantly and meanwhile reduce the number and magnitude of feedback failures dramatically as com-

pared to two representative pseudo-relevance feedback methods based on language models, the mixture model and

the relevance model. We also compare our algorithm with a recently proposed constrained optimization approach to

robust feedback, and the results show that our method is more robust. In addition, we compare FeedbackBoost with

a traditional learning to rank approach applied for pseudo-relevance feedback and observe that FeedbackBoost works

clearly better.

5.2 Related Work

Pseudo-relevance feedback has been extensively studied in the literature, as discussed in Section 4.2. Most existing

pseudo-relevance feedback algorithms aim at improving average precision alone but rarely address the robustness

issue. In contrast, our work attempts to improve both average precision and robustness at the same time.

A few previous studies also attempted to improve the robustness of pseudo-relevance feedback [103, 100, 22]. Tao

and Zhai [103] used a regularized EM algorithm to reduce the parameter sensitivity of the mixture-model feedback

but did not minimize the feedback failures. Soskin et al. [100] leveraged multiple relevance models [61] in a heuris-

tic unsupervised way to improve feedback performance. However, their method is not guaranteed to optimize the

combination of feedback algorithms. Collins-Thompson [22] also tried to reduce feedback failures in an optimization

framework. However this work was only able to optimize an objective function loosely related to the robustness of
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pseudo feedback. In contrast, we propose a general machine learning framework to directly optimize both the robust-

ness and effectiveness of pseudo feedback, which can incorporate existing methods, such as [103], [100], and [22], as

features. In this sense, our work offers a unified framework that can be used to potentially combine all the existing

pseudo feedback methods.

Selective feedback [4] and adaptive feedback [68] are another stream of work to improve the robustness of pseudo

feedback, where the idea is to disable query expansion if query expansion is predicted to be detrimental to retrieval [4]

or to adaptively set the amount of query expansion in a per-query way [68]. However, these methods are not as general

as our proposed framework. Besides, our work and the selective/adaptive feedback method are complementary in the

following sense: our work can construct a strong ensemble feedback method, which can be used by selective/adaptive

feedback to further improve its performance, while selective/adaptive feedback methods can be incorporated into our

framework as features for boosting.

Recently, learning to rank [47, 34, 12, 115, 18, 125, 62] has attracted much attention in IR. Our work can also be

regarded a novel use of machine learning to leverage multiple feedback-related features to improve ranking. However,

a main difference of our work from traditional work on learning to rank is that we design a novel learning algorithm to

directly optimize both robustness and effectiveness of pseudo feedback (novel objective function). Another difference

is that most learning to rank work learns optimal ways to combine retrieval functions but fails to improve the query

representation. Our work, however, uses machine learning to improve a content-based query representation. Therefore,

our study is orthogonal to the existing learning to rank work, and existing learning to rank algorithms can be used to

learn a retrieval function on the basis of our improved query representation to further improve retrieval performance.

Machine learning was also introduced to improve pseudo feedback through selecting good expansion terms [17] or

good feedback documents [41]. However, neither work attempted to directly optimize robustness of pseudo feedback.

Boosting is a general method for improving the accuracy of supervised learning. The basic idea of boosting is

to repeatedly construct “weak learners” by re-weighting training data and form an ensemble of weak learners so that

the total performance of the ensemble is “boosted”. Freund and Schapire have proposed the first and most popular

boosting algorithm called AdaBoost for binary classification [35]. Extensions of boosting have been made to deal

with the problems of multi-class classification [92], ranking [34, 115, 125], etc. Our work can be viewed as a novel

extension of the boosting framework to improve pseudo-relevance feedback.

5.3 Problem Formulation

Given a query qi and a document collection C, a retrieval function F returns a ranked list of m documents d =

{d1, · · · , dm}, where dj denotes the j-th ranked document in the ranked list. In pseudo feedback, we assume the
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top-n documents are “relevant”, and construct a feedback model ϕt(qi,d, n, C), or ϕt(qi) for short, for query qi by

exploiting those assumed “relevant” documents. Here ϕt can be any pseudo feedback method that is able to output

an improved query representation, and we call it a weak or basis feedback method; ϕt(qi) is essentially an expanded

representation of the original query qi, and we call it a weak or basis feedback model for qi. In general, the format

of ϕt(qi) would depend on the retrieval function F ; for example, in the vector space model, ϕt(qi) is represented as

a vector of weighted terms, while in language modeling approaches, it is represented as a word distribution. We can

use ϕt(qi) as the new query and apply F to retrieve another ranked list of documents d′.

Given a performance measure E and the relevance judgments set J(qi) for query qi, we can compute the perfor-

mance scores for the original query qi and for the expanded query ϕt(qi), which will be denoted as E (F (qi), J(qi))

and E (F (ϕt(qi)), J(qi)), respectively, and will be represented as E(qi) and E(ϕt(qi)) in the rest of the chapter for

conciseness. We choose the widely accepted average precision (AP) as the performance measure E in this chapter,

though the proposed algorithm can in principle also work with other measures.

Although many pseudo feedback methods have been shown to improve the performance of a retrieval system on

average, they all share a common deficiency, i.e., the average performance gain always comes inevitably at the cost

of (sometimes significantly) degraded performance of some queries. That is, while on average, 1
|Q|

∑|Q|
i=1 E(ϕ(qi)) >

1
|Q|

∑|Q|
i=1 E(qi), it is almost always the case that for some queries, E(ϕ(qj)) < E(qj). Indeed, it has been a long-standing

difficult challenge to improve the robustness of pseudo feedback so that we can improve average performance without

sacrificing the performance of individual queries too much.

In this chapter, we propose to use a learning method to address this problem. Specifically, given a query qi, we

assume there are a variety of basis feedback models ϕk(qi) based on different feedback methods Φ = {ϕ1, · · · , ϕm},

and our main idea is to combine a set of such basis feedback models ϕk(qi) into a single feedback model H(qi) called

the final or combined feedback model to reduce feedback failures:

H(qi) =

t∑
k=1

αkϕk(qi) (5.1)

A linear combination is chosen because the final feedback model H(qi) should be in the same format as that of each

basis model ϕk(qi); that is, if ϕk(qi) is a vector of weighted terms, so is H(qi), while if ϕk(qi) is a language model,

H(qi) should also be a language model by normalizing the learned αk (k = 1, · · · , t) to make them sum to 1.

Our main motivation of combining multiple feedback methods is that different basis feedback methods often have

relative strengths for different query topics and thus are complementary to each other. To illustrate it, we examine

46 basis feedback methods constructed using methods described in Section 5.5. The results are presented in Figure

5.1. We can see that many feedback methods indeed have relative strengths on different queries (e.g., topic 708 and
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Figure 5.1: Plot of each query w.r.t. different weak feedback methods, where ‘•’ indicates that the corresponding
weak feedback improves performance.

709). It seems there are only 3 very hard queries that no feedback method can help, while for other queries, there

are always some successful feedback methods. Thus, constructing an ensemble feedback method H would be an

effective strategy to reduce feedback loss. For example, suppose we have two weak feedback methods ϕ1 and ϕ2; ϕ1

improves 0.2 and −0.1 (i.e., decreases by 0.1) on q1 and q2 respectively, while ϕ2 improves −0.1 and 0.2 on q1 and

q2 respectively. So the fbloss scores are 0.5 for both ϕ1 and ϕ2 on these two queries. However, an ensemble method

α1ϕ1 + α2ϕ2 would probably have 0 fbloss while still achieving better or comparable average improvement if the

combination coefficients α1 and α2 are chosen appropriately.

Our goal is to minimize the number of query instances for which the retrieval performance is decreased by the final

feedback model H(qi) as compared to the original query qi. The learning algorithm that we study attempts to find an

H with a small number of query failures, a quality called the feedback loss and denoted by fblossD(H). Formally,

fblossD(H) =

|Q|∑
i=1

D(qi) · I{E(H(qi)) < E(qi)} (5.2)

Here and throughout this chapter, the indicator function I{π} is defined to be 1 if the predicate π holds and 0 otherwise.

D(qi) is the weight of qi, and we set it initially to uniform, i.e., D(qi) = 1/|Q| so that all queries are equally important;

later the query weights would be updated iteratively in a boosting framework [35] so that queries that do not perform

well would contribute more to the loss function more. We will also show later in Section 5.4.1 that the feedback loss

can be bounded by the degradation of retrieval precision, which means that the feedback loss can actually measure both

feedback failures and retrieval effectiveness, which is necessary in order to ensure both robustness and effectiveness.

In the following section, we will discuss how to optimize the combination of weak feedback methods so as to

minimize fbloss on some training data, formally,

argmin
{α1:t}

|Q|∑
i=1

D(qi) · I

{
E(

t∑
k=1

αk · ϕk(qi)) < E(qi)

}
(5.3)
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5.4 A Boosting Approach to Improving Pseudo-Relevance Feedback

With only a few basis feedback methods, it is possible to optimize their combination through manual parameter tuning.

However, manual tuning is infeasible if there are many basis feedback methods as is often the case. Inspired by the

AdaBoost [35], we devise a boosting approach, referred to as “FeedbackBoost”, to solve this problem.

5.4.1 Minimizing Feedback Loss via Forward Stagewise Additive Modeling

Ideally we want to minimize the feedback loss on the training data as shown in Equation 5.3. However, it is difficult

to solve this optimization problem because the combination is inside a retrieval function and not differentiable. To

simplify this problem, we make an assumption that the feedback loss of the combined feedback H is less than or equal

to that of a linear performance combination of the corresponding basis feedback methods. Formally,

|Q|∑
i=1

D(qi) · I

{
E(

t∑
k=1

αk · ϕk(qi)) < E(qi)

}
≤

|Q|∑
i=1

D(qi) · I

{[
t∑

k=1

αk∑t
j=1 αj

E(ϕk(qi))

]
< E(qi)

}
(5.4)

Although we have not found a theoretical proof for the above inequality, we can empirically guarantee this as-

sumption to be true in our algorithms since we can automatically adjust the algorithms to make sure this assumption

holds (as shown in the step 5 of the pseudo code of the algorithm). In practice, this assumption turns out to work

well. One possible explanation is that different feedback models often complement to each other, so the performance

of a mixture model with reasonable coefficients is often better than the performance of any single model and thus also

better than the weighted average performance of these single models. An example is that an appropriate interpolation

of a pseudo feedback model and the original query model usually works better than either single model [120, 1, 69].

Thus we will minimize the following upper bound of the feedback loss.

argmin
{α1:t}

|Q|∑
i=1

D(qi)I

{
t∑

k=1

αkE(ϕk(qi)) <

t∑
k=1

αkE(qi)

}
(5.5)

However the above optimization problem is still hard to handle, because the indicator function I is non-continuous.

Fortunately, we know that I{x < y} ≤ ey−x for all real x and y, so, instead of solving Equation 5.5 directly, we can

alternatively minimize its upper bound below, which is essentially a measure of retrieval performance degradation.

argmin
{α1:t}

|Q|∑
i=1

D(qi) exp

(
t∑

k=1

αkE(qi)−
t∑

k=1

αkE(ϕk(qi))

)
(5.6)

Now we can address this problem using forward stagewise additive modeling, which is an effective strategy to find

an approximate solution to an optimization problem through sequentially adding new basis method without adjusting
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Algorithm 1 The FeedbackBoost algorithm
Require:

Query set {qi, J(qi)}|Q|
i=1, retrieval model F , retrieval performance measure E, and the number of iterations T ;

A set of basis feedback methods Φ = {ϕ1, · · · , ϕm};
Initial distribution D1 over training queries: D1(i) = 1/|Q|;

Ensure:
1: for t = 1, 2, · · · , T do
2: Select basis feedback method ϕt with weighted distribution Dt on training queries using Formula 5.14; if there

is no ϕt selected, break;
3: Compute Elosst(ϕt) using Formula 5.9.
4: Choose αt based on Formula 5.12 and Elosst(ϕt).
5: While the inequality in Formula 5.4 does not hold, goto step 2 and choose the next optimal basis feedback as

ϕt; if there is no ϕt that satisfies the inequality, break;
6: Update Dt+1 using Formula 5.8;
7: end for
8: Output the final feedback: H =

∑T
t=1 αtϕt;

those already selected methods [39]. By forward stagewise additive modeling, the above formula can be expressed as

follows where we would iteratively choose αt and ϕt, as well as adjust Dt(qi):

argmin
{αt,ϕt}

|Q|∑
i=1

Dt(qi) · exp (αt · [E(qi)− E(ϕt(qi))]) (5.7)

where

Dt(qi) ∝
Dt−1(qi) · exp (αt−1 · [E(qi)− E(ϕt−1(qi))])

Zt

(5.8)

Here, Zt is a normalization factor to make Dt a distribution; such a normalization operation does not affect the

choosing of αt and ϕt, since Dt depends neither on αt nor ϕt in the forward stagewise additive modeling [39]. Dt is

defined in a recursive way, where D1(qi) = D(qi) = 1/|Q| is the initial weight for query qi. After T iterations, we can

obtain the desired combined feedback model as H(qi) =
∑T

t=1 αtϕt.

5.4.2 FeedbackBoost

FeedbackBoost is designed to find a solution to the optimization problem in Formula 5.7 using a boosting approach.

Specifically, like all other boosting algorithms, FeedbackBoost operates in rounds. At each round, we calculate a

distribution of weights over training queries. In fact, Dt can be regarded as a weight that is applied to each query

after t − 1 iterations. From Equation 5.8, we can see that Dt will put more weights on queries that are hurt more by

previously selected basis feedback methods.

We next select a basis feedback method ϕt that works well on those highly-weighted queries, and the selection of
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this basis feedback method is to optimize an objective function that is defined to directly measure the feedback loss.

Specifically, we define the weighted performance degradation of ϕ at iteration t as

Elosst(ϕ) =
|Q|∑
i=1

Dt(qi) · (E(qi)− E(ϕ(qi))) (5.9)

And the feedback method ϕt with the minimum Elosst will be selected. Theoretical analysis is provided as follows:

The performance measure E, e.g., AP in this paper, is usually within range [0, 1]. Even a measure is beyond

this range, we can still normalize it to [0, 1]. Therefore, for any basis feedback method ϕt, we have the performance

degradation E(qi) − E(ϕt(qi)) ∈ [−1, 1]. By the convexity of eαx as a function of x when x ∈ [−1, 1] [34], we thus

have

exp (αt[E(qi)− E(ϕt(qi))]) ≤
(
1 + E(qi)− E(ϕt(qi))

2

)
exp(αt) +

(
1− E(qi) + E(ϕt(qi))

2

)
exp(−αt) (5.10)

So Equation 5.7 can be approximated by

argmin
{αt,ϕt}

1 + Elosst(ϕt)

2
exp(αt) +

1− Elosst(ϕt)

2
exp(−αt) (5.11)

We can easily minimize this equation by setting

α∗
t =

1

2
log

1− Elosst(ϕt)

1 + Elosst(ϕt)
(5.12)

which indeed makes sense since it suggests that a ϕt with less performance degradation will receive a larger weight

αt. Then, by plugging Equation 5.12 into 5.11, we obtain the following optimal basis feedback.

ϕ∗
t = argmin

{ϕt}

√
(1− Elosst(ϕt))(1 + Elosst(ϕt)) (5.13)

We can see that Equation 5.13 is minimized when Elosst(ϕt) is close to 1 or −1. With respect to the former case,

we would choose a ϕt with the largest weighted performance degradation, and αt will be negative, which, however,

does not make sense: if a pseudo feedback ϕt leads to large performance degradation, a negative αt may not make ϕt

work well. Therefore, Elosst(ϕt) should be negative to keep the coefficient αt positive. So we choose a basis pseudo

feedback ϕt with the smallest negative Elosst so far.

ϕ∗
t = argmin

{ϕt}
{Elosst(ϕt)} subject to Elosst(ϕt) < 0 (5.14)
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5.4.3 Algorithm Summary

To summarize, FeedbackBoost works as follows. The input to the algorithm includes a set of queries and relevance

judgments {qi, J(qi)}|Q|
i=1, a set of basis feedback methods Φ = {ϕ1, · · · , ϕm}, a document collection C, a retrieval

function F , a retrieval performance measure E, and the iteration number T . FeedbackBoost works in an iterative way:

during each iteration t, a basis feedback method ϕt is chosen based on its performance on training data with weight

distribution Dt, i.e., Elosst(ϕt). Also the coefficient αt of ϕt is calculated based on Elosst(ϕt). After that, the query

weight distribution Dt is updated by increasing weights on queries for which ϕt performs poorly, leading to a new

distribution Dt+1; Dt+1 will be used in the next iteration to select ϕt+1 and αt+1. At last, the final feedback model

H is created by linearly combining all the selected basis feedback methods. A sketch of the algorithm flow is shown

in Algorithm 1.

5.5 Application of FeedbackBoost to Language Models

In order to apply FeedbackBoost, the main task is to design appropriate basis feedback methods {ϕ}. A basis feedback

method ϕk generally consists of three components: a weighting function hk to assign weights to feedback documents,

a weighting function gk to calculate the importance of different expansion terms, and the retrieval model F to decide

the representation format of the feedback model. Formally, ϕk = f(hk, gk, F ). Given a retrieval model F , one feedback

method differs from others often because it uses different document and/or term weighting functions [69]. We can

thus naturally construct many basis feedback methods by varying the document and/or term weighting functions.

5.5.1 Basis Pseudo-Relevance Feedback Methods based on Language Models

As a specific application, here we discuss how we can apply FeedbackBoost to improve pseudo feedback under the

language modeling framework through combining different document weighting strategies. This application is es-

pecially interesting because (1) language models deliver state of the art retrieval performance [81, 58]; (2) feedback

document weighting has been shown to be a critical factor affecting robustness and effectiveness of pseudo feed-

back methods [69]. However, our methodology could be applicable to other retrieval models and to optimizing term

weighting methods as well, which we leave as future work.

We use the KL-divergence retrieval method [58] as our retrieval model (i.e., F ), which scores a document d with

respect to a query q by computing the negative KL divergence between the query and the document language model:

S(q, d) = −
∑
w∈q

P (w|q) log P (w|q)
P (w|d)

(5.15)
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Two important instantiations of basis pseudo feedback methods in language models are the relevance model [61] and

the mixture model [120], which are among the most effective and robust feedback techniques based on language

models [69].

Relevance Model

The relevance model ϕr essentially uses the query likelihood as the weight for document d and takes an average of

the probability of word w given by each document language model. Formally, let Θ represent the set of smoothed

document models in the pseudo feedback collection Ω = {d1, · · · , dn}. The formula of the relevance model is:

P (w|ϕr(q)) ∝
∑
θd∈Θ

P (w|θd)
∏
w′∈q

P (w′|θd) (5.16)

Let’s denote the original query model as P (w|q). The relevance model P (w|ϕr(q)) can be interpolated with the

original query model P (w|q) to improve performance using a interpolation coefficient α. In this paper, we will use

the following interpolated model P (w|θq) as the new query model, which is often called RM3 [1]:

P (w|θq) = (1− α)P (w|q) + αP (w|ϕr(q)) (5.17)

In Equation 5.16, hr(d) =
∏

w′∈q P (w′|θd) is the query likelihood score of document d, serving for document

weighting, and gr(w, d) = P (w|θd) works for term weighting. If we instantiate the document weighting strategy in a

different way, e.g., h′
r, whereas the term weighting strategy is fixed to gr, it will lead to a different “relevance model”

ϕ′
r. Formally

P (w|ϕ′
r(q)) ∝

∑
θd∈Θ

P (w|θd) · h′
r(d) (5.18)

which can also be used for feedback after a similar interpolation. Following this way, we can construct a set of

relevance-model style basis feedback methods by varying their document weighting strategies.

Mixture Model

In the simple two-component mixture model (SMM) ϕm, the words in Ω are assumed to be drawn from two models:

(1) background model P (w|C) and (2) topic model P (w|ϕm(q)). Thus the log-likelihood for the entire set of feedback

documents is:

logP (Ω|ϕm(q)) =
∑
w∈V

c(w,Ω) log((1− λ)P (w|ϕm(q)) + λP (w|C)) (5.19)
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where V is the word vocabulary, c(w,Ω) is the count of word w in feedback document set Ω, and λ ∈ [0, 1] is the

mixture parameter. The estimate of ϕm(q) can be computed using the EM algorithm to maximize the log-likelihood.

Finally, ϕm(q) is also interpolated with the original query model P (w|q) to update the query model with a coefficient

α. We notice in Formula 5.19 that

c(w,Ω) =
∑
d∈Ω

|d| · P (w|d) (5.20)

It means that the document length |d| is used as a weight of document d (i.e., hm(d) = |d|) to sum over the term

evidence from each feedback document. As in the case of the relevance model, we can also use any other document

weighting method h′
m to replace hm while keeping gm the same, which will lead to a new family of mixture-model

style basis feedback method ϕ′
m.

5.5.2 Document Weighting Strategies

We next introduce a set of document weighting strategies {ht}. As we have discussed, each of them can be plugged

into the relevance model (Section 5.5.1) or the mixture model (Section 5.5.1), leading to a new basis feedback method

ϕt.

Relevance Score: Relevance score is shown to be a critical factor for feedback document weighting in a recent

work [69]. We explore the use of query likelihood [81] h1 and BM25 score [87] h2 for document weighting: w.r.t. the

former, the Dirichlet smoothing method [121] with µ = 1, 000 is used to smooth the document language model; w.r.t.

the latter, we fix k1 = 1.2, b = 0.5, and k3 = 1, 000.

Document Novelty: We estimate a novelty score for each document to reward novel information. Three different

methods are proposed: (1) The distance between the centroid of all feedback documents h3(di) = 1−cosim(d⃗i,
1
k

∑k
j=1 d⃗j),

where ‘cosim’ stands for cosine similarity; (2) The distance between the centroid of all feedback documents ranked

before the document h4(di) = 1 − cosim(d⃗i,
1

i−1

∑i−1
j=1 d⃗j). (3) The distance between the most similar document ranked

before the document: h5(di) = 1 − maxi−1
j=1{cosim(d⃗i, d⃗j)}.

Query Term Proximity: Query term proximity has been largely ignored in traditional retrieval models [87, 81].

We use the proposed positional language model in Chapter 3 and the minimum pair distance [104] to capture term

proximity for improving document weighting: (1) we compute a positional query likelihood score based on the “best-

matching” position, i.e., h6(d) = max
|di|
j=1

∏
w∈q P (w|d, j)c(w,q), where c(w, q) is the count of w in q; (2) we use the

normalized minimum pair-wise distance proposed in [104] by setting α = 1 which prevents negative document

weights, i.e., h7(d) = log(α + exp(−δ(q, d))).

Document Length: Though the heuristic of document length normalization has been incorporated into the rele-

59



vance scores [87, 121], we still list it here because it was explicitly used in some existing pseudo feedback methods

[69]: (1) raw document length: h8(d) = |d|; (2) reciprocal of the raw document length: h9(d) = 1/h8(d); (3) Dirichlet

document length: h10(d) = |d|/(|d| + µ), where we set µ = 1, 000; (4) reciprocal of the Dirichlet document length:

h11(d) = 1/h10(d).

Besides the above basic document weighting methods, for each ht, we also introduce some of their variations as

our document weighting, including exp(ht), (ht)
2, and

√
ht. Also we include log(h2) and log(h8), since the values

of h2 and h8 are usually larger than 1.0 for top-ranked documents. Overall, there are 46 methods in total, all of which

are normalized to sum to 1.0 for each query.

5.5.3 Implementation Details

We next apply the FeedbackBoost algorithm to learn an ensemble feedback method. We denote Ed(ϕ(q)) as the score

of document d with respect to a basis feedback method ϕ on query q. In fact, with the KL-divergence retrieval method

(Equation 5.15), we only need to retrieve and score documents once for each basis feedback method. Then during

the training process, if we need to score a document d using any combined feedback H ′ =
∑t

k=1 αkϕk, we can do it

efficiently by linearly combining the scores of the corresponding basis feedback methods.

Ed(H
′(q)) ∝

∑
w∈q

P

(
w|

t∑
k

αk∑t
j αj

ϕk(q)

)
logP (w|d)

=
∑
w∈q

[
t∑

k=1

αk∑t
j=1 αj

P (w|ϕk(q))

]
logP (w|d)

∝
t∑

k=1

αk

∑
w∈q

P (w|ϕk(q)) logP (w|d)

∝
t∑

k=1

αkEd(ϕk(q))

(5.21)

So training FeedbackBoost would be as efficient as training general AdaBoost algorithm [35].

Besides, during the testing phase, H(q) can also be estimated efficiently. For example, for the relevance model,

we can plug the ensemble document weighting method used in H(q) into Formula 5.18 to replace h′
r(d) and estimate

H(q) directly; for the mixture model style H(q), we can also replace |d| with the combined document weighting

methods in Formula 5.20, which does not affect feedback performance in the experiments. Hence, the efficiency

of H(q) for pseudo feedback would be comparable to that of basis feedback algorithms, which is also confirmed

empirically.
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Collection Description #Docs Training Topics Validate Topics Test Topics
Robust04 TREC disk 4&5 (minus CR) 528,155 301-450 601-650 651-700
Terabyte 2004 crawl of .gov domain 25,205,179 701-750 751-800 801-850

Table 5.1: Overview of TREC collections and topics

5.6 Experiments

5.6.1 Experimental Setup

We evaluate our method using the Terabyte Web dataset and a large news dataset Robust04. Only title portions of the

topics are taken as queries. For each dataset, we split the available topics into training, validate and test sets, where

the training set is used solely for training the algorithms, the validate set is used for tuning the number of iterations T ,

and the test set is used for evaluation purposes. Table 5.1 shows some document set statistics. The preprocessing of

the collections includes stemming using the Porter algorithm and stopword removal using a standard InQuery stoplist.

We train two FeedbackBoost models: in the first one, each basis feedback method implements a different document

weighting strategy proposed in Section 5.5.2, while all of them use the same mixture-model style term weighting,

and thus we refer to it as BoostMM; in the second one, each basis feedback method also implements a different

document weighting strategy but all of them share the relevance-model style term weighting, thus the name BoostRM.

That is, we parameterize Φ in different ways for BoostRM and BoostMM. This design allows us to meaningfully

compare BoostMM and BoostRM with the corresponding two baseline feedback methods (i.e., SMM and RM3)

and the basic query language model without feedback (labeled as “NoFB”). This set of experiments are mainly

to compare FeedbackBoost with traditional pseudo feedback methods. A main hypothesis we would like to test is

whether BoostMM and BoostRM are indeed more robust than the corresponding baseline SMM and RM3.

Furthermore, we also compare FeedbackBoost with two other lines of baseline methods. In the first line, we

compare FeedbackBoost with another strong baseline representing a recent work on improving robustness of pseudo

feedback, i.e., the REXP-FB method [22]. In the second line, we are interested in knowing if an existing learning to

rank approach can also improve both robustness and effectiveness as much as FeedbackBoost does. So we introduce

yet another baseline AdaRank [115], which performed well [62]. AdaRank attempts to learn a ranking function

through directly optimizing retrieval measures. One variation of AdaRank used in our comparison is AdaRank.MAP,

which tries to optimize MAP. Since it is non-trivial to directly optimize the proposed fbloss using AdaRank, we

further extend AdaRank to optimize a loss function that is similar to fbloss: a novel robustness-related measure E′

that measures the performance degradation in feedback: E′(qi) = E
(∑t

k=1 αk · ϕk(qi)
)
− E(qi). According to the

Formula 6 in [115], AdaRank turns out to minimize an exponential loss function
∑|Q|

i=1 exp {−E′(qi)}, leading to

a new run AdaRank.FB. Note that AdaRank.FB is no longer the traditional AdaRank algorithm because the loss

function is novel, thus it is a very strong baseline.
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We use the Dirichlet smoothing method [121] for all document language models, where we set the µ = 1, 000.

Besides, as suggested in our previous study [69], we set the mixture noise parameter λ to 0.9 for SMM and all the

mixture-model style basis feedback methods. We also set the number of expansion terms to 40. These parameter

settings work well and are used in our experiments unless otherwise stated.

It does not make sense to talk about fbloss alone, since we can always get 0 loss for any feedback method by setting

the feedback coefficient α to 0. In the traditional evaluation strategy [120, 69], people often tune α to optimize one

retrieval precision measure. We thus follow such a strategy to first optimize α in terms of MAP, on the basis of which

we then try to reduce fbloss. Specifically, we give a priority to SMM and RM3 to optimize their feedback coefficient

α on the training, validate and test sets respectively. However, for all the mixture-model style basis feedback methods,

we simply set the feedback coefficients to those optimized for SMM, while for all the relevance-model style basis

feedback methods, we use RM3’s setting directly.

We are interested in both effectiveness and robustness of pseudo feedback methods, so besides MAP (on top-ranked

1, 000 documents) and Pr@20, we also compare all runs in terms of two robustness measures, the robustness index

(RI) and the accumulative loss of retrieval performance (APloss). RI = 1− 2 · fbloss, is essentially a transformation of

the fbloss proposed in our paper; we show RI instead of fbloss mainly because RI was often used in previous studies,

e.g., [22]. APloss is to measure the feedback loss in a finer degree, which is the accumulative AP degradation in failure

cases (since AP is used as E in our paper), defined as: APloss =
∑|Q|

i=1 [E(qi)− E(H(qi))] · I{E(H(qi)) < E(qi)}

5.6.2 Performance of FeedbackBoost

Table 5.2 compares MAP, Pr@20, RI, and APloss for NoFB, SMM, RMM, BoostMM, and BoostRM on the validate

and test sets. Note that each time all runs use the same set of feedback documents to make the comparison fair; that

is, we fix the base ranking for all runs. Besides, the iteration number T in FeedbackBoost is chosen to minimize the

corresponding fbloss on the validate sets. We also vary the number of feedback documents from 20 to 50.

For all cases, we can see that BoostMM and BoostRM significantly improve the robustness over SMM and RM3

respectively. For example, BoostMM reduces APloss as compared with SMM by amounts ranging from 50.9% to

77.8% when using 20 feedback documents and from 65.1% to 79.5% when using 50 feedback documents. More-

over, BoostMM and BoostRM also significantly improve MAP over SMM and RM3 in almost all cases. The results

demonstrate that the FeedbackBoost algorithm does a good job to improve robustness while still achieving better

effectiveness. Moreover, FeedbackBoost works consistently well when we use different number of feedback docu-

ments. The performance of FeedbackBoost shows that it is effective to combine multiple feedback methods using our

FeedbackBoost to improve both robustness and effectiveness of pseudo feedback.

We next compare FeedbackBoost with AdaRank.MAP and AdaRank.FB. These three algorithms are all trained on
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BoostMM Versus SMM

Collection Metric NoFB fbDocCount = 20 fbDocCount = 50
SMM BoostMM SMM BoostMM

Validate

Robust04

MAP 0.2850 0.3215∗ 0.3447∗+ 0.2973 0.3468∗+

Pr@20 0.3310 0.3610 0.3790 0.3850 0.3850
RI n/a 0.3600 0.6400 (+77.8%) 0.0400 0.6000 (+1400%)

APloss n/a 0.6191 0.2877 (−53.5%) 1.3730 0.2815 (−79.5%)

Terabyte

MAP 0.3076 0.3477∗ 0.3701∗+ 0.3445∗ 0.3669∗+

Pr@20 0.5410 0.5570 0.5970 0.5540 0.5820
RI n/a 0.4400 0.7200 (+63.6%) 0.3200 0.6000 (+87.5%)

APloss n/a 0.6036 0.1667 (−72.4%) 0.6963 0.2433 (−65.1%)

Test

Robust04

MAP 0.2930 0.3265∗ 0.3511∗+ 0.3067 0.3453∗+

Pr@20 0.3796 0.4041 0.4143 0.3867 0.4082
RI n/a 0.3878 0.5102 (+31.6%) 0.2653 0.4286 (+61.6%)

APloss n/a 0.7108 0.3493 (−50.9%) 1.3429 0.4231 (−68.5%)

Terabyte

MAP 0.3012 0.3061 0.3331∗+ 0.3067 0.3298∗+

Pr@20 0.4878 0.4765 0.5255 0.4663 0.5112
RI n/a 0.1429 0.5102 (+257%) 0.1429 0.5102 (+257%)

APloss n/a 0.6438 0.1499 (−76.7%) 0.7546 0.2511 (−66.7%)

BoostRM Versus RM3

Collection Metric NoFB fbDocCount = 20 fbDocCount = 50
RM3 BoostRM RM3 BoostRM

Validate

Robust04

MAP 0.2850 0.3431∗ 0.3450∗ 0.3430∗ 0.3490∗+

Pr@20 0.3310 0.3840 0.3800 0.3800 0.3880
RI n/a 0.2800 0.4800 (+71.4%) 0.3600 0.5200 (+44.4%)

APloss n/a 0.7084 0.5056 (−28.6%) 0.6421 0.4155 (−35.3%)

Terabyte

MAP 0.3076 0.3471∗ 0.3661∗+ 0.3466∗ 0.3628∗+

Pr@20 0.5410 0.5840 0.5890 0.5770 0.5740
RI n/a 0.5200 0.6800 (+30.8%) 0.4800 0.5600 (+16.7%)

APloss n/a 0.9042 0.2946 (−67.4%) 0.9458 0.4247 (−55.1%)

Test

Robust04

MAP 0.2930 0.3483∗ 0.3537∗+ 0.3462∗ 0.3488∗+

Pr@20 0.3796 0.4010 0.4122 0.4082 0.4082
RI n/a 0.3061 0.4286 (+40.0%) 0.3061 0.4694 (+53.3%)

APloss n/a 0.5736 0.3662 (−36.2%) 0.5184 0.4261 (−17.8%)

Terabyte

MAP 0.3012 0.3187 0.3287∗ 0.3188 0.3311∗+

Pr@20 0.4878 0.4939 0.5010 0.4980 0.5173
RI n/a 0.2245 0.3469 (+54.5%) 0.1837 0.3469 (+88.8%)

APloss n/a 0.6847 0.2797 (−59.1%) 0.6608 0.2614 (−60.4%)

Table 5.2: Comparison of BoostMM and BoostRM with SMM and RM3 respectively. Note that for APloss, lower is
better (negative change is good), while for RI, higher is better. ‘*’ and ‘+’ mean the MAP improvement is statistically
significant over NoFB and the corresponding baseline feedback method respectively. The improvement of APloss and
RI is shown for BoostMM/BoostRM relative to SMM/RM3.

Metric fbDocCount = 20 fbDocCount = 50
AdaRank.MAP AdaRank.FB FeedbackBoost AdaRank.MAP AdaRank.FB FeedbackBoost

MAP 0.3451 0.3535 0.3537 0.3418 0.3485 0.3488
RI 0.3061 0.3878 0.4286 0.3061 0.3469 0.4694

APloss 0.9776 0.4333 0.3662 1.0033 0.6329 0.4261

Table 5.3: Comparison of FeedbackBoost, AdaRank.MAP, and AdaRank.FB on the test set of Robust04. Note that
AdaRank.FB is different from the traditional AdaRank algorithm, since it is armed with a novel robustness-related
loss function.
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Collection NoFB-1 REXP-FB NoFB-2 BoostRM BoostMM

Robust04 MAP 0.2152 0.2451 0.2502 0.2617+ 0.2752+

RI n/a 0.3773 n/a 0.5100 0.5221

Terabyte MAP 0.2736 0.3004 0.2901 0.3086+ 0.3230+

RI n/a 0.2624 n/a 0.5135 0.5270

Table 5.4: Comparison of FeedbackBoost and REXP-FB on the same collections, where cross-validation is used for
training. ‘+’ indicates that the improvement of MAP over NoFB-2 is statistically significant.

the same set of relevance-model style basis feedback methods. The iteration number for all the algorithms are chosen to

minimize fbloss on the validate set. We present the experiment results in Table 5.3. One interesting observation is that

AdaRank.FB is more effective than AdaRank.MAP, suggesting that the proposed robustness-related measure is better

than MAP as an objective function to improve pseudo feedback: one possible explanation is that the average precision

does not work well to indicate the room for improvement of a query, so focusing on queries with lower average

precision may not be a good strategy to fully exploit the potential of different queries; however, our new measure

would be able to capture more precisely the potential room of a query through comparing its performance with the

baseline performance. Moreover, we also see that FeedbackBoost is clearly better than AdaRank.FB, though they use

similar objective functions, sugggesting that our optimization framework is more effective for pseudo feedback.

We finally compare FeedbackBoost with a state-of-the-art feedback method, REXP-FB [22], which attempted

to reduce failures of pseudo feedback but was only able to optimize an indirect objective function. They also used

Terabyte and Robust04 as their test collections. So we used a 3-fold (701-750, 751-800, and 801-850) and a 2-

fold (301-450 and 601-700) cross validation method to evaluate FeedbackBoost on the whole Terabyte and Robust04

topics respectively in order to compare with their reported numbers. In this comparison, we use the same collection

and parameter settings as were used in [22]. The comparison is reported in Table 5.4.

There are clear performance improvements of our baseline runs (NoFB-2) over theirs (NoFB-1), probably because

we use a latest version of Indri search engine (2.10) 1. We still can see that, in terms of relative improvements,

BoostMM performs similarly to REXP-FB, although REXP-FB used a lot of constraints to improve the selection of

expansion terms while we only use the default term weighting. However, the most interesting observation is from

the comparison of RI, which may be more comparable across systems. We can see that our algorithms achieve a

significantly higher RI in all cases, even though our baseline run is even harder to beat. This finding confirms the

conclusion in [69] that document weighting plays a key role in affecting the robustness of feedback. Furthermore, it

suggests that our way of directly optimizing robustness indeed works more effectively.

1http://www.lemurproject.org/
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Figure 5.2: Histograms that compare robustness of SMM vs BoostMM (first and third) and RM3 vs BoostRM (second
and fourth) on the combination of two test sets. 20 (50) feedback documents are used in the left (right) two histograms
respectively.

5.6.3 Robustness Histograms

To examine in details how badly queries are hurt by a pseudo feedback algorithm, we show in Figure 5.2 the robustness

histograms by combining two test sets (query 651-701 and query 801-850). The x-axis represents the individual

APloss in percentage (i.e., [E(q) − E(ϕ(q))]/E(q), where ϕ is the corresponding feedback method) for individual

failure queries, and the y-axis stands for the number of queries with the corresponding percentage APloss. We can

see that for the worst cases, where a query’s AP is decreased by more than 40%, both BoostMM and BoostRM

perform much better than SMM and RM3 respectively. It suggests that the proposed FeedbackBoost algorithm indeed

concentrates more on difficult queries that are hurt seriously by baseline feedback methods, i.e., SMM and RM3, and

the significant reduction of APloss and improvement of RI shown in Table 5.2 could be mainly due to the elimination

of those worst cases.
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Figure 5.3: Sensitivity of the percentage degradation of MAP in failure queries to the feedback coefficient α. SMM
versus BoostMM and RM3 versus BoostRM are shown in the odd and even-number figures respectively.
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5.6.4 Parameter Sensitivity

Usually there is a tradeoff between robustness and effectiveness: if we use a smaller feedback coefficient α, there

would be fewer feedback failures, but we may not fully improve the effectiveness; if we increase this α to some

appropriate value, the overall retrieval precision could be optimized, which, however, may lead to more feedback

failures. Although we have shown that FeedbackBoost improves both robustness and effectiveness at the same time,

we are still interested in how the performance of FeedbackBoost interacts with α (where α in FeedbackBoost is used

to control the feedback interpolation of each basis feedback method involved.) We thus draw the sensitivity curves

for FeedbackBoost in terms of the percentage MAP degradation and the overall MAP improvement in Figure 5.3 and

5.4 respectively. The percentage MAP degradation is essentially the relative APloss, i.e., APloss/[
∑|Q|

i E(qi)]; the

overall MAP improvement of ϕ is defined as [
∑|Q|

i E(ϕ(qi))]/[
∑|Q|

i E(qi)]− 1.0. We use 50 feedback documents in

all curves. The curves clearly show that FeedbackBoost consistently improves the robustness and effectiveness over

two baseline algorithms. Additionally, our algorithm is also less sensitive to α in both curves, and setting α around

0.8 often leads to a large improvement in precision with only a small amount of failures.

Finally, we show in Figure 5.5 the curves of performance changes as we increase the iteration number T . We see

that the APloss decreases steadily and quickly as the training goes on, until it reaches its plateau. In our experiments,

we can usually find the best parameter T within 100 rounds.

5.7 Summary

In this paper, we propose a novel learning algorithm, FeedbackBoost, based on the boosting framework to improve

pseudo feedback. A major contribution of our work is to optimize pseudo feedback based on a novel loss function that

directly measures both robustness and effectiveness, which has not been achieved in any previous work.

The experiment results show that the proposed FeedbackBoost algorithm can improve average precision effectively

and meanwhile reduce the number and magnitude of feedback failures dramatically as compared to two representative

pseudo feedback methods based on language models, the mixture model and the relevance model. We also compare

our algorithm with a recently proposed robust feedback method, and the results show that our method is more robust.

In addition, we compare FeedbackBoost with a well-performing learning to rank approach applied for pseudo feedback

and observe that FeedbackBoost works clearly better. These results show that the proposed FeedbackBoost is more

effective and robust than any of the existing method for pseudo feedback, including both traditional pseudo feedback

methods and new learning-based approaches.

Our work can be extended in several ways. First, in our current work, we only use basis feedback methods

with different document weighting strategies, so a straightforward future work is to also introduce term weighting
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Figure 5.4: Sensitivity of the average improvement of MAP in all queries to the feedback coefficient α. SMM versus
BoostMM and RM3 versus BoostRM are shown in the odd and even-number figures respectively.
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Figure 5.5: Sensitivity of BoostMM and BoostRM to the iteration number on Robust04 validate set.

methods to construct a larger set of basis feedback methods. Second, we are also interested in combining even

more recently proposed pseudo feedback algorithms, e.g., [4, 103, 22], and other families of feedback methods, e.g.,

[88, 85], to diversify our basis feedback methods. Third, personalized search is another scenario which shares similar

effectiveness-robustness tradeoff issues; thus it is also interesting to improve personalized search by exploring the

FeedbackBoost framework.
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Chapter 6

Lower-Bounding Term Frequency
Normalization

6.1 Introduction

We have presented several more effective document and query language models in the previous Chapters. Besides

document and query language models, the third key component in any language modeling approach is its scoring

function for computing the relevance score of a document in response to a query. The language modeling approach

scores a document mainly based on the query likelihood score [81], which has proven to be empirically effective for

many retrieval tasks. However, after more than one decade of research, the basic query likelihood retrieval function

still remains state-of-the-art [118], which shows that it is very difficult to improve the basic language modeling retrieval

function. In fact, there are similar observations in the literature of other retrieval models. For example, Okapi BM25

[86, 87], the pivoted length normalization method [97], and the PL2 method [5], all have been proposed for more than

ten years, but still remain strong baselines in the classic probabilistic retrieval model, vector space model, and the

divergence from randomness model, respectively.

In order to further develop more effective functions, it is necessary to understand the deficiencies of the current re-

trieval functions [29]. For example, in [97], it was revealed that the traditional vector space model retrieves documents

with probabilities different from their probabilities of relevance, and the analysis led to the pivoted normalization

retrieval function which has been shown to be substantially more effective than the traditional vector space model.

In this work, we reveal a previously unknown common deficiency of existing retrieval models, including the query

likelihood retrieval function, in optimizing the TF normalization component and propose a general way to address this

deficiency that can be applied to multiple state-of-the-art retrieval models to improve their retrieval accuracy.

Previous work [29] has shown that all the effective retrieval models tend to rely on a reasonable way to combine

multiple retrieval signals, such as term frequency (TF), inverse document frequency (IDF), and document length. A

major challenge in developing an effective retrieval model lies in the fact that multiple signals generally interact with

each other in a complicated way. For example, document length normalization is to regularize the TF heuristic which,

if applied alone, would have a tendency to overly reward long documents due to their high likelihood of matching

a query term more times than a short document. On the other hand, document length normalization can also overly

70



penalize long documents [97, 29]. What is the best way of combining multiple signals has been a long-standing open

challenge. In particular, a direct application of a sound theoretical framework such as the language modeling approach

to retrieval does not automatically ensure that we achieve the optimal combination of necessary retrieval heuristics as

shown in [29].

To tackle this challenge, formal constraint analysis was proposed in [29]. The idea is to define a set of formal

constraints to capture the desirable properties of a retrieval function related to combining multiple retrieval signals.

These constraints can then be used to diagnose the deficiency of an existing model, which in turn provides insight

into how to improve an existing model. Such an axiomatic approach has been shown to be useful for motivating and

developing more effective retrieval models [31, 32, 21].

In this section, we follow this axiomatic methodology and reveal a previously unknown common deficiency of the

current retrieval models, including the query likelihood retrieval function, in their TF normalization component, and

propose a general strategy to fix this deficiency in multiple state-of-the-art retrieval models. Specifically, we show

that the normalized TF may approach zero when the document is very long, which often causes a very long document

with a non-zero TF (i.e., matching a query term) to receive a score too close to or even lower than the score of a short

document with a zero TF (i.e., not matching the corresponding query term). As a result, the occurrence of a query

term in a very long document would not ensure that this document be ranked above other documents where the query

term does not occur, leading to unfair over-penalization of very long documents. For example, for a query “computer

virus”, a long document matching both “computer” and “virus” can easily be ranked lower than a short document

matching only ”computer”.

The root cause for this deficiency is that the component of TF normalization by document length is not lower-

bounded properly, i.e., the score “gap” between the presence and absence of a query term could be infinitely close

to zero or even negative. In order to diagnose this problem, we first propose two desirable constraints to capture

the heuristic of lower-bounding TF in a formal way, so that it is possible to apply them to any retrieval function

analytically. We then use constraint analysis to examine several representative retrieval functions and show that all

these retrieval functions can only satisfy the constraints for a certain range of parameter values and/or for a particular

set of query terms. Empirical results further show that the retrieval performance tends to be poor when the parameter

is out of the range or the query term is not in the particular set.

Motivated by this understanding, we propose a general and efficient methodology for introducing a sufficiently

large lower bound for TF normalization, which can be applied directly to current retrieval models. Constraint analysis

shows analytically that the proposed methodology can successfully fix or alleviate the problem.

Our experimental results on multiple standard collections demonstrate that the proposed methodology, incurring

almost no additional computational cost, can be applied to state-of-the-art retrieval functions, such as Okapi BM25 [86,
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87], the query likelihood retrieval function [81, 121], and the PL2 method [5], to significantly improve their average

precision, especially when queries are verbose. Due to its effectiveness, efficiency, and generality, the proposed

methodology can work as a “patch” to fix or alleviate the problem in current retrieval models, in a plug-and-play way.

6.2 Related Work

Developing effective retrieval models is a long-standing central challenge in information retrieval. Many different

retrieval models have been proposed and tested, such as vector space models [89, 97], classical probabilistic retrieval

models [85, 36, 86, 87], language models [81, 121], and the divergence from randomness approach [5]; a few represen-

tative retrieval models will be discussed in detail in Section 6.3. In our work, we reveal and address a common “bug”

of these retrieval models (i.e., TF normalization is not lower-bounded properly), and develop a general plug-and-play

“patch” to fix or alleviate this bug.

Term frequency is the earliest and arguably the most important retrieval signal in retrieval models [87, 97, 81, 121,

96, 5, 29, 70]. The use of TF can be dated back to Luhn’s pioneer work on automatic indexing [67]. It is widely

recognized that linear scaling in term frequency puts too much weight on repeated occurrences of a term. Thus, TF is

often upper-bounded through some sub-linear transformations [87, 97, 81, 121, 5, 21, 70] to prevent the contribution

from repeated occurrences from growing too large. Particularly, in Okapi BM25 [86, 87], it is easy to show that there

is a strict upper bound (k1 + 1) for TF normalization. However, the other interesting direction, lower-bounding TF,

has not been well addressed before. Our recent work [71] appears to be the first study that notices the inappropriate

lower-bound of TF in BM25 through empirical analysis, but there is no theoretic diagnosis of the problem. Besides,

the approach proposed in [71] is not generalizable to lower-bound TF normalization in retrieval models other than

BM25. In this section, we extend [71] to show analytically and empirically that lower-bounding TF is necessary for

all representative retrieval models and develop a general approach to effectively lower-bound TF in these retrieval

models.

Document length normalization also plays an important role in almost all existing retrieval models to fairly re-

trieve documents of all lengths [97, 29], since long documents tend to use the same terms repeatedly (higher TF). For

example, both Okapi BM25 [86, 87] and the pivoted normalization retrieval model [97] use the pivoted length nor-

malization schema [97], which uses the average document length as the pivoted length to coordinate the normalization

effects for documents longer than this pivoted length and documents shorter than it. The PL2 model, a representative

of the divergence from randomness models [5], also uses the average document length to control document length

normalization. A common deficiency of all these existing length normalization methods is that they tend to force the

normalized TF to approach zero when documents are very long. As a result, a very long document with a non-zero
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Model G (c(t,Q)) F (c(t,D), |D|, td(t))
BM25 (k3+1)·c(t,Q)

k3+c(t,Q)
(k1+1)c(t,D)

k1(1−b+b·|D|/avdl)+c(t,D) · log
N+1
df(t)

PL2 c(t,Q)


tfnD

t ·log2 (tfnD
t ·λt)+log2 e·(1/λt−tfnD

t )+0.5 log2 (2π·tfnD
t )

tfnD
t +1

if tfnD
t > 0 and λt > 1

0 otherwise

Dir c(t,Q) log
(

µ
|D|+µ + c(t,D)

(|D|+µ)p(t|C)

)
Piv c(t,Q)

{
1+log(1+log(c(t,D)))

1−s+s·|D|/avdl · log N+1
df(t) if c(t,D) > 0

0 otherwise

Table 6.1: Document and query term weighting components of representative retrieval functions.

TF could receive a score too close to or even lower than the score of a short document with a zero TF, which is clearly

unreasonable. Although some exiting studies have attempted to use a sub-linear transformation of document length

(e.g., the squared root of document length [25]) to heuristically replace the original document length in length normal-

ization, they are not guaranteed to solve the problem and often lose to standard document length normalization such

as the pivoted length normalization in terms of retrieval accuracy. Our work aims at addressing this inherent weakness

of traditional document length normalization in a more general and effective way.

Constraint analysis has been explored in information retrieval to diagnostically evaluate existing retrieval models

[29, 30], introduce novel retrieval signals into existing retrieval models [104], and guide the development of new

retrieval models [31, 21]. The constraints in these studies are basic and are designed mostly based on the analysis of

some common characteristics of existing retrieval formulas. Although we also use constraint analysis, the proposed

constraints are novel and are inspired by our empirical finding of a common deficiency of the existing retrieval models.

Moreover, although some existing constraints (e.g., LNCs and TF-LNC in [29, 30]) are also meant to regularize the

interactions between TF and document length, they tend to be loose and cannot capture the heuristic of lower-bounding

TF normalization. For example, the modified Okapi BM25 satisfies all the constraints proposed in [29, 30], but it still

fails to lower-bound TF normalization properly. In this sense, the proposed two new constraints are complimentary to

existing constraints [29, 30].

6.3 Motivation of Lower-Bounding Term Frequency Normalization

In this section, we discuss and analyze a common deficiency (i.e., lack of appropriate lower bound for TF normaliza-

tion) of four state-of-the-art retrieval functions, which respectively represent the classical probabilistic retrieval model

(Okapi BM25 [86, 87]), the divergence from randomness approach (PL2 [5]), the language modeling approach (query

likelihood with Dirichlet prior smoothing [121]), and the vector space model (pivoted normalization [97, 96]).

An effective retrieval function is generally comprised of two basic separable components: a within-query scoring

formula for weighting the occurrences of a term in the query and a within-document scoring formula for weighting
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Notation Description
c(t,D) Frequency of term t in document D
c(t, Q) Frequency of term t in query Q
N Total number of docs in the collection
df(t) Number of documents containing term t
td(t) Any measure of discrimination value of term t
|D| Length of document D
avdl Average document length
c(t, C) Frequency of term t in collection C
p(t|C) Probability of a term t given by the collection

language model [121]

Table 6.2: Notation

the occurrences of this term in a document. We will represent each retrieval function in terms of these two separable

components to make it easier for us to focus on studying the document side weighting:

S(Q,D) =
∑
t∈Q

G (c(t,Q)) · F (c(t,D), |D|, td(t)) (6.1)

where S(Q,D) is the total relevance score assigned to document D with respect to query Q, and G(·) and F (·) are

within-query scoring function and within-document scoring function respectively. In Table 6.1, we show how this

general scheme can be used to represent all the four major retrieval models. Other related notations are listed in Table

6.2. Note that most of the notations were also used in some previous work, e.g., [29], and will be adopted throughout

our work.

6.3.1 Deficiency of Existing Retrieval Functions

Okapi BM25 (BM25): The Okapi BM25 method [86, 87] is a representative retrieval function that represents the

classical probabilistic retrieval model. The BM25 retrieval function is summarized in the second row of Table 6.1.

Following work [29], we modify the original IDF formula of BM25 to avoid the problem of possibly negative IDF

values. The within-document scoring function of BM25 can be re-written as follows:

FBM25 (c(t,D), |D|, td(t)) = (k1 + 1) · tfnD
t

k1 + tfnD
t

· log N + 1

df(t)
(6.2)

where k1 is a parameter, and tfnD
t is the normalized TF by document length using pivoted length normalization [97].

tfnD
t =

c(t,D)

1− b+ b |D|
avdl

(6.3)

where b is the slope parameter in pivoted normalization.
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Figure 6.1: Comparison of the within-document term scores, i.e., F (·), of documents D1 and D2 w.r.t. query term t
against different document lengths, where we assume c(t,D1) = 0 and c(t,D2) = 1. Here, x-axis and y-axis stand
for the length of documents and the within-document term scores respectively.

When a document is very long (i.e., |D| is much larger than avdl), we can see that tfnD
t could be very small and

approach 0. Consequently, FBM25 will also approach 0 as if t did not occur in D. It can be seen clearly in Figure 6.1

(1): when |D2| becomes very large, the score difference between D2 and D1 appears to be very small. This by itself,

would not necessarily be a problem, but the problem is that, the occurrence of t in a very long document D fails to

ensure D to be ranked above other documents where t does not occur. It suggests that the occurrences of a query term

in very long documents may not be rewarded properly by BM25, and thus those very long documents could be overly

penalized, which as we will show later, is indeed true.

PL2 Method (PL2): The PL2 method is a representative retrieval function of the divergence from randomness

framework [5]. In this section, we use the modified PL2 formula derived by Fang et al. [30] instead of the original

PL2 formula [5]. The only difference between this modified PL2 function and the original PL2 function is that the

former essentially ignores non-discriminative query terms. It has been shown that the modified PL2 is more effective
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and robust than the original PL2 [30]. The modified PL2 (still called PL2 for convenience in the following sections) is

presented in the third row of Table 6.1, where λt =
N

c(t,C) is the term discrimination value, and tfnD
t is the normalized

TF by document length:

tfnD
t = c(t,D) · log2

(
1 + c · avdl

|D|

)
(6.4)

where c > 0 is a retrieval parameter.

We can see that, when a document is very long, tfnD
t could be very small and approach 0, which is very similar to

the corresponding component in BM25. What is worse is that, when tfnD
t is sufficiently small, the within-document

score FPL2 will be a negative number surprisingly. However, as shown in Table 6.1, even if the term is missing, i.e.,

c(t,D) = 0, FPL2 can still receive a default zero score. This interesting observation is illustrated in Figure 6.1 (2).

It suggests that a very long document that matches a query term may be penalized even more than another document

(the length can be arbitrary) that does not match the term; consequently, those very long documents tend to be overly

penalized by PL2.

Query Likelihood with Dirichlet Prior Method (Dir): The query likelihood with Dirichlet prior method is one of

the best performing language modeling approaches [121]. It is presented in the fourth row of Table 6.1, where µ is the

Dirichlet prior.

It is observed that, the within-document scoring function FDir is monotonically decreasing with the document

length variable. And when a document D2 is very long, say 50 ∗ avdl, even if it matches a query term, the within-

document score of this term could still be arbitrarily small. And this score could be smaller than that of any average-

length document D1 which does not match the term. This is shown clearly in Figure 6.1 (3). Thus, the Dirichlet prior

method can also overly penalize very long documents.

Pivoted Normalization Method (Piv): The pivoted normalization retrieval function [96, 29] represents one of the

best performing vector space models. The detailed formula is shown in the last row of Table 6.1, where s is the slope

parameter. Similarly, the analysis of the pivoted normalization method also shows that it tends to overly penalize very

long documents, as shown in Figure 6.1 (4).

6.3.2 Empirical Evidence: Likelihood of Relevance/Retrieval

Our analysis above has shown that, in principle, all these retrieval functions tend to overly penalize very long doc-

uments. Now we turn to seeking empirical evidence to see if this common deficiency hurts document retrieval in

practice.
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Figure 6.2: Comparison of retrieval and relevance probabilities against all document lengths when using BM25 on
short (left) and verbose (right) queries.

Inspired by Singhal et al.’s finding that a good retrieval function should retrieve documents of all lengths with

similar chances as their likelihood of relevance [97], we compare the retrieval pattern of different retrieval functions

with the relevance pattern. We follow the binning analysis strategy proposed in [97] and plot the two patterns against

all document lengths on WT10G in Figure 6.2, where the bin size is set to 5000. Due to the space reason, we only plot

BM25 as an example. But it is observed that other retrieval functions have similar trends as BM25. The plot shows

clearly that BM25 retrieves very long documents with chances much lower than their likelihood of relevance. This

empirically confirms our previous analysis that very long documents tend to be overly penalized.

6.4 Formal Constraints

A critical question is thus how we can regulate the interactions between term frequency and document length when a

document is very long so that we can fix this common deficiency of current retrieval models?

To answer this question, we first propose two desirable heuristics that any reasonable retrieval function should

implement to properly lower bound TF normalization when documents are very long: (1) there should be a sufficiently

large gap between the presence and absence of a query term, i.e., the effect of document length normalization should

not cause a very long document with a non-zero TF to receive a score too close to or even lower than a short document

with a zero TF; (2) a short document that only covers a very small subset of the query terms should not easily dominate

over a very long document that contains many distinct query terms.

Next, in order to analytically diagnose the problem of over-penalizing very long documents, we propose two

formal constraints to capture the above two heuristics of lower bounding TF normalization so that it is possible to

apply them to any retrieval function analytically. The two constraints are defined as follows:
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LB1: Let Q be a query. Assume D1 and D2 are two documents such that S(Q,D1) = S(Q,D2). If we reformu-

late the query by adding another term q /∈ Q into Q, where c(q,D1) = 0 and c(q,D2) > 0, then S(Q ∪ {q}, D1) <

S(Q ∪ {q}, D2).

LB2: Let Q = {q1, q2} be a query with two terms q1 and q2. Assume td(q1) = td(q2), where td(t) can be any

reasonable measure of term discrimination value. If D1 and D2 are two documents such that c(q2, D1) = c(q2, D2) =

0, c(q1, D1) > 0, c(q1, D2) > 0, and S(Q,D1) = S(Q,D2), then S(Q,D1∪{q1}−{t1}) < S(Q,D2∪{q2}−{t2}),

for all t1 and t2 such that t1 ∈ D1, t2 ∈ D2, t1 /∈ Q and t2 /∈ Q.

The first constraint LB1 captures the basic heuristic of 0-1 gap in TF normalization, i.e., the gap between presence

and absence of a term should not be closed by document length normalization. Specifically, if a query term does

not occur in document D1 but occurs in document D2, and both documents receive the same relevance score from

matching other query terms, then D1 should be scored lower than D2, no matter what are the length values of D1 and

D2. In other words, the occurrence of a query term in a very long document should still be able to differentiate this

document from other documents where the query term does not occur.

In fact, when F (0, |D|, td(t)) is a document-independent constant, LB1 can be derived from a basic TF constraint,

TFC1 [29]. Here, F (0, |D|, td(t)) is the document weight for a query term t not present in document D, i.e., t ∈ Q

but t /∈ D. This property is presented below in Theorem 1.

Theorem 1 LB1 is implied by the TFC1 constraint, if the within-document weight for any missing term is a document

independent constant.

Proof: Let Q be a query. Assume D1 and D2 are two documents such that S(Q,D1) = S(Q,D2). We reformulate

query Q by adding another term q /∈ Q into the query, where c(q,D1) = 0 and c(q,D2) > 0. If D′
2 is another

document, which is generated by replacing all the occurrences of q in D2 with a non-query term t /∈ Q ∪ {q}, then

c(q,D′
2) = 0 and S(Q,D1) = S(Q,D2) = S(Q,D′

2). Due to the assumption that the document weight for the

missing term q is a document independent constant, it follows that S(Q ∪ {q}, D1) = S(Q ∪ {q}, D′
2). Finally,

since |D′
2| = |D2| and c(q,D′

2) = 0 < c(q,D2), according to TFC1, we get S(Q ∪ {q}, D1) = S(Q ∪ {q}, D′
2) <

S(Q ∪ {q}, D2).

However, when the document weights for missing terms are document dependent, LB1 will not be redundant in the

sense that it cannot be derived from other constraints such as the proposed LB2 and the seven constraints proposed in

[29]. For example, the Dirichlet prior retrieval function, as shown in Table 6.1, has a document-dependent weighting

function for a missing term, which is log µ
|D|+µ

. As will be shown later, the Dirichlet prior method violates LB1,

although it satisfies LB2 and most of the constraints proposed in [29].

The second constraint LB2 states that if two terms have the same discrimination value, a repeated occurrence of

one term is not as important as the first occurrence of the other. LB2 essentially captures the intuition that covering
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more distinct query terms should be rewarded sufficiently, even if the document is very long. For example, given a

query Q = {“computer”, “virus”}, if two documents D1 and D2 with identical relevance scores with respect to Q

both match “computer”, but neither matches “virus”, then if we add an occurrence of “virus” to D1 to generate D′
1

and add an occurrence of “computer” to D2 to generate D′
2, we should ensure that D′

1 has a higher score than D′
2.

This intuitively makes sense because D′
1 is more likely to be related to computer virus, while D′

2 may be just about

other aspects of computer.

LB1 and LB2 are two necessary constraints to ensure that very long documents would not be overly penalized.

When either is violated, the retrieval function would likely not perform well for very long documents and there should

be room to improve the retrieval function through improving its ability of satisfying the corresponding constraint.

6.5 Constraint Analysis on Current Retrieval Models

Okapi BM25 (BM25): BM25 satisfies TFC1 [29], and the within-document weight for any missing term is always

0. Therefore, BM25 satisfies LB1 unconditionally according to Theorem 1.

We now examine LB2. Due to the sub-linear property of TF normalization, we only need to check LB2 in the case

when c(q1, D1) = 1, since when c(q1, D1) > 1, it is even harder to violate the constraint. Consider a common case

when |D1| = avdl. It can be shown that the LB2 constraint is equivalent to the following constraint on |D2|:

|D2| <
(
2k1 + 2

(k1)2 · b
+ 1

)
· avdl (6.5)

This means that LB2 is satisfied only if |D2| is smaller than a certain upper bound. Thus, a sufficiently long

document would violate LB2. Note that the upper bound of |D2| is a monotonically decreasing function with both b

and k1. This suggests that a larger b or k1 would lead BM25 to violate LB2 more easily, which is confirmed by our

experiments.

PL2 Method (PL2): In Fang et al.’s work [30], the TFC1 constraint is regarded equivalent to that “the first partial

derivative of the formula w.r.t. the TF variable should be positive”, which has been shown to be satisfied by the

modified PL2 [30]. However, the PL2 function is not continuous when the TF variable is zero, and what is worse is

that,

lim
c(t,D)→0

FPL2 (c(t,D), |D|, td(t)) < FPL2 (0, |D|, td(t)) = 0 (6.6)

which shows that even the modified PL2 still fails to satisfy TFC1. So we cannot use Theorem 1 for PL2.
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We thus check both LB1 and LB2 directly. Since the optimal setting of parameter c is usually larger than 1 [29],

we consider a common case when |D1| = c
3 · avdl. Similar to the analysis on BM25, we only need to examine LB2

for c(q1, D1) = 1. The LB1 constraint is approximately equivalent to

|D2| <
c

2exp(−
2
λt

−1.84) − 1
· avdl (6.7)

and LB2 is approximately equivalent to

|D2| <
c

2exp(0.27 log(λt)− 2.27
λt

−2.26) − 1
· avdl (6.8)

Due to space limit, we cannot show all the derivation details.

We can see that both LB1 and LB2 set an upper bound for document length, suggesting that a very long document

would violate both LB1 and LB2. However the upper bound introduced by LB1 is always larger than that introduced

by LB2. So we focus on LB2 in the following sections.

The upper bound of document length in LB2 is monotonically increasing with both c and λt. It suggests that,

when c is very small, there is a serious concern that long documents would be overly penalized. On the other hand, a

more discriminative term also violates the constraint more easily. These analyses are confirmed by our experiments.

Query Likelihood with Dirichlet Prior Method (Dir): With Dir, the within-document weight for a missing term

is log µ
|D|+µ

, which is document dependent. So Theorem 1 is not applicable to the Dirichlet method. We thus need to

examine LB1 and LB2 directly.

First, we only check LB1 at the point of c(q,D2) = 1, which is the easiest case for LB1 to be violated. By

considering the common case that |D1| = avdl, the LB1 constraint is equivalent to the following constraint on |D2|:

|D2| < avdl +
1

p(q|C)

(
1 +

avdl

µ

)
(6.9)

It shows that the Dirichlet method can only satisfy LB1 if |D2| is smaller than a certain upper bound, suggesting

again that a very long document would violate LB1. And this upper bound is monotonically decreasing with both

p(q|C) and µ. On the one hand, a non-discriminative (i.e., large p(q|C)) term q violates LB1 easily; for example, if

µ · p(q|C) = 1, the upper bound appears to be as low as (2 ∗ avdl + µ). Thus, the Dirichlet method would overly

penalize very long documents more for verbose queries. On the other hand, a large µ would also worsen the situation

according to Formula 6.9. These are all confirmed by our experimental results.
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Next, we turn to check LB2, which is equivalent to

n+ 1 + µ · p(q|C)

n+ µ · p(q|C)
<

1 + µ · p(q|C)

µ · p(q|C)
(6.10)

where n ∈ {1, 2, · · · }. Interestingly, this inequality is always satisfied, suggesting that the Dirichlet method satisfies

LB2 unconditionally. We thus expect that the Dirichlet method would have some advantages in the cases when other

retrieval functions tend to violate LB2.

Pivoted Normalization Method (Piv) It is easy to show that the pivoted normalization method also satisfies LB1

unconditionally. We now examine LB2. Similar to the analysis on BM25, we only need to check LB2 in the case of

c(q1, D1) = 1. By considering a common case when |D1| = avdl, we see that LB2 is equivalent to the following

constraint on |D2|:

|D2| <
(
0.899

s
+ 1

)
· avdl (6.11)

This means that LB2 is satisfied only if |D2| is smaller than a certain upper bound. And this upper bound is a

monotonically decreasing function with s. So, in principle, a larger s would lead the pivoted normalization method to

violate LB2 more easily, which can also explain why the optimal setting of s tends to be small [29]. Of course, if s

is set to zero, LB2 would be satisfied, but that would be to turn off document length normalization completely, which

would clearly lead to non-optimal retrieval performance.

6.6 A General Approach to Lower-Bounding TF Normalization

The analysis above shows analytically that all the state-of-the-art retrieval models would tend to overly penalize very

long documents. In order to avoid overly penalizing very long documents, we need to lower-bound TF normalization

to make sure that the “gap” of the within-document scores F (c(t,D), |D|, td(t)) between c(t,D) = 0 and c(t,D) > 0

is sufficiently large. However, we do not want that the addition of this new constraint changes the implementations of

other retrieval heuristics in these state-of-the-art retrieval functions, because the implementations of existing retrieval

heuristics in these retrieval functions have been shown to work quite well [29].

We propose a general heuristic approach to achieve this goal by defining an improved within-document scoring

formula F ′ as shown in Equation 6.12, where δ is a pseudo TF value to control the scale of the TF lower bound, and

l is a pseudo document length which is document-independent. In this new formula, a retrieval model-specific, but

document-independent value F (δ, l, td(t)) − F (0, l, td(t)) would serve as an ensured “gap” between matching and
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missing a term: if c(t,D) > 0, the component of TF normalization by document length will be lower-bounded by

such a document-independent value, no matter how large |D| would be.

F ′(c(t,D), |D|, td(t)) =


F (c(t,D), |D|, td(t)) + F (0, l, td(t)) if c(t,D) = 0

F (c(t,D), |D|, td(t)) + F (δ, l, td(t)) otherwise
(6.12)

It is easy to verify that F ′(c(t,D), |D|, td(t)) is able to satisfy all the basic retrieval heuristics [29] that are satisfied

by F (c(t,D), |D|, td(t)): first, it is trivial to show that, if F (c(t,D), |D|, td(t)) satisfies TFCs, F ′(c(t,D), |D|, td(t))

will also satisfy them; secondly, F (δ, l, td(t)) and F (0, l, td(t)), as two special points of F (c(t,D), |D|, td(t)), satisfy

the TDC constraint in exactly the same way as F (c(t,D), |D|, td(t)), so does F ′(c(t,D), |D|, td(t)); finally, since

the newly introduced components are document-independent, they raise no problem for LNCs and TF-LNC.

The proposed methodology is very efficient, as it only adds a retrieval model specific but document-independent

value to those standard retrieval functions. For a query Q, we only need to calculate |Q| such values, which can even

be done offline. Therefore, our method incurs almost no additional computational cost.

Finally, we can obtain the corresponding lower-bounded retrieval function through substituting F ′(c(t,D), |D|, td(t))

for F (c(t,D), |D|, td(t)) in each retrieval function,

Take BM25 as an example. Obviously F ′(0, |D|, td(t)) = 0. In F (δ, l, td(t)), since l is a constant document

length variable used for document length normalization, its influence can be absorbed into the TF variable δ, we thus

set l = avdl simply. Then, we obtain F (δ, avdl, td(t)) = (k1+1)δ
k1+δ

log N+1
df(t)

. Clearly parameter k1 can also be absorbed

into δ, and the above formula is simplified again as δ log N+1
df(t)

. Finally, we derive a lower-bounded BM25 function,

namely BM25+, as shown in the following Formula 6.13.

∑
t∈Q∩D

(k3 + 1)c(t,Q)

k3 + c(t,Q)
×

 (k1 + 1)c(t,D)

k1

(
1− b+ b |D|

avdl

)
+ c(t,D)

+ δ

× log
N + 1

df(t)
(6.13)

∑
t∈Q∩D

c(t,Q)

[
log

(
1 +

c(t,D)

µ · p(t|C)

)
+ log

(
1 +

δ

µ · p(t|C)

)]
+ |Q| · log µ

|D|+ µ (6.14)

∑
t∈Q∩D

c(t,Q)

[
1 + log (1 + log(c(t,D)))

1− s+ s |D|
avdl

+ δ

]
log

N + 1

df(t)
(6.15)
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∑
t∈Q∩D,λt>1

c(t, Q)

×

 tfnD
t log2

(
tfnD

t · λt

)
+ log2 e ·

(
1
λt

− tfnD
t

)
+

log2 (2π·tfnD
t )

2

tfnD
t + 1

+
δ log2 (δ · λt) + log2 e ·

(
1
λt

− δ
)
+ log2 (2πδ)

2

δ + 1

(6.16)

Similarly, we can derive a lower-bounded Dirichlet prior method (Dir+), a lower-bounded pivoted normalization

method (Piv+), and a lower-bounded PL2 (PL2+), which are presented in Formulas 6.14, 6.15, and 6.16 respectively.

Next, we check LB1 and LB2 on these four improved retrieval functions.

Lower-Bounded BM25 (BM25+): It is trivial to verify that BM25+ still satisfies LB1 unconditionally. To examine

LB2, we apply an analysis method that is consistent with our analysis for BM25 in Section 6.5. The LB2 constraint

on BM25+ is equivalent to

k1
k1 + 2

<
(k1 + 1) · 1

k1

(
1− b+ b |D2|

avdl

)
+ 1

+ δ (6.17)

which can be shown to be satisfied unconditionally if

δ ≥ k1
k1 + 2

(6.18)

Clearly, if we set δ to a sufficiently large value, BM25+ is able to satisfy LB2 unconditionally, which is also

confirmed in our experiments that BM25+ works very well when we set δ = 1.

Lower-Bounded PL2 (PL2+): We only need to check LB2 on PL2+, since it is easier to violate than LB1. With a

similar analysis strategy as used for analyzing PL2, the LB2 constraint on PL2+ is equivalent to

|D2| <
c · avdl

2
exp

(
(0.27− 2δ

δ+1 ) log(λt)−
2.27− 2

δ+1
λt

−2.26−g(δ)

)
− 1

(6.19)

where g(δ) =
(2δ+1) log δ−2δ+log(2π)

δ+1 . Due to space limit, we cannot show all the derivation details in this section.

We can see that, given a δ, the right side of the Formula 6.19 (i.e., the upper bound of |D2|) is minimized when

λt =
2.27δ+0.27
1.73δ−0.27

. This suggests that, in contrast to PL2, the upper bound of |D2| is not monotonically decreasing with

λt. This interesting difference is shown clearly in Figure 6.3. Thus, if we set δ to an appropriate value to make the

minimum upper bound still large enough (e.g., larger than the length of the longest document), PL2+ would not violate

LB2.
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Figure 6.3: Comparison of upper bounds of document length in PL2 and PL2+ to satisfy LB2.

Lower-Bounded Query Likelihood with Dirichlet Method (Dir+): It is easy to show that Dir+ also satisfies LB2

unconditionally. We analyze Dir+ in the same way as analyzing Dir, and obtain the following equivalent constraint of

LB1:

|D2| < avdl +
1 + δ

p(t|C)

(
1 +

avdl

µ

)
+

δ

µ · p2(t|C)

(
1 +

avdl

µ

)
(6.20)

We can see that, although Dir+ does not guarantee that LB1 is always satisfied, it indeed enlarges the upper bound

of document length as compared to Dir in Section 6.5, and thus makes the constraint harder to violate. Generally, if

we set δ to a sufficiently large value, the chance that very long documents are overly penalized would be reduced.

Lower-Bounded Pivoted Method (Piv+): It is easy to verify that Piv+ also satisfies LB1. Regarding LB2, similar

to our analysis on Piv, the LB2 constraint on Piv+ is equivalent to

log(1 + log 2) <
1

1− s+ s |D2|
avdl

+ δ (6.21)

which is always satisfied if

δ ≥ log(1 + log(2)) ≈ 0.53 (6.22)

This shows that Piv+ can be able to satisfy LB2 unconditionally with a sufficiently large δ.
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Terabyte WT10G Robust04 WT2G

queries 701-850 451-550 301-450 401-450601-700
#qry(with qrel) 149 100 249 50
avg(ql short) 3.13 4.24 2.74 2.46
avg(ql verb) 11.55 11.61 15.47 13.86
#total qrel 28, 640 5, 981 17, 412 2, 279

#documents 25205k 1692k 528k 247k
avdl 949 611 481 1056

std(dl)/avdl 2.63 2.31 1.19 2.14

Table 6.3: Document set characteristic

Query Method WT10G WT2G Terabyte Robust04
MAP P@10 MAP P@10 MAP P@10 MAP P@10

Short
BM25 0.1879 0.2898 0.3104 0.4840 0.2931 0.5785 0.2544 0.4353

BM25+ 0.19624 0.3040 0.31721 0.4820 0.30041 0.5685 0.2553 0.4357
BM25+ (δ = 1.0) 0.19273 0.3010 0.31781 0.4840 0.29974 0.5718 0.2548 0.4349

Verbose
BM25 0.1745 0.3250 0.2484 0.4380 0.2234 0.5221 0.2260 0.4036

BM25+ 0.18501 0.3360 0.26243 0.4400 0.23364 0.5309 0.2274 0.4056
BM25+ (δ = 1.0) 0.18411 0.3340 0.25651 0.4340 0.23394 0.5329 0.2275 0.4052

Table 6.4: Comparison of BM25 and BM25+ using cross validation. Superscripts 1/2/3/4 indicate that the correspond-
ing MAP improvement is significant at the 0.05/0.02/0.01/0.001 level using the Wilcoxon test.

6.7 Experiments

6.7.1 Experimental Setup

We use four TREC collections: WT2G, WT10G, Terabyte, and Robust04, which represent different sizes and genre of

text collections. WT2G, WT10G, and Terabyte are small, medium, and large Web collections respectively. Robust04

is a representative news dataset. We test two types of queries, short queries and verbose queries, which are taken

from the title and the description fields of the TREC topics respectively. We use the Lemur toolkit and the Indri

search engine (http://www.lemurproject.org/) to carry out our experiments. For all the datasets, the preprocessing of

documents and queries is minimum, involving only Porter’s stemming. An overview of the involved query topics, the

average length of short/verbose queries, the total number of relevance judgments, the total number of documents, the

average document length, and the standard deviation of document length in each collection are shown in Table 6.3.

We employ a 2-fold cross-validation for parameter tuning, where the query topics are split into even and odd

number topics as the two folds. The top-ranked 1000 documents for each run are compared in terms of their mean

average precisions (MAP), which also serves as the objective function for parameter training. In addition, the precision

at top-10 documents (P@10) is also considered. Our goal is to see if the proposed general heuristic can work well for

improving each of the four retrieval functions.
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Figure 6.4: Performance Sensitivity to δ of BM25+, where y-axis shows the relative MAP improvements of BM25+
over BM25, and suffix ‘-even’/‘-odd’ indicates that only even/odd-number query topics are used.

6.7.2 Lower-Bounded BM25 (BM25+) VS. BM25

In both BM25+ and BM25, we train b and k1 using cross validation, where b is tuned from 0.1 to 0.9 in increments

of 0.1, and k1 is tuned from 0.2 to 4.0 in increments of 0.2. Besides, in BM25+, parameter δ is trained using cross

validation, where δ is tuned from 0.0 to 1.5 in increments of 0.1, but we also create a special run in which δ is fixed to

1.0 empirically (labeled as BM25+ (δ = 1.0)). The comparison results of BM25+ and BM25 are presented in Table

6.4.

The results demonstrate that BM25+ outperforms BM25 consistently in terms of MAP and also achieves P@10

scores better than or comparable to BM25. The MAP improvements of BM25+ over BM25 are much larger on Web

collections than on the news collection. In particular, the MAP improvements on all Web collections are statistically

significant. This is likely because there are generally more very long documents in Web data, where the problem of

BM25, i.e., overly-penalizing very long documents, would presumably be more severe. For example, Table 5.1 shows

that the standard deviation of the document length is indeed larger on the three Web collections than on Robust04.

Another interesting observation is that, BM25+, even with a fixed δ = 1.0, can still work effectively and stably

across collections and outperform BM25 significantly. This empirically confirms the constraint analysis results in Sec-

tion 6.6 that, when δ > k1
k1+2

, BM25+ can satisfy LB2 unconditionally. It thus suggests that the proposed constraints

can even be used to guide parameter tuning.

We further plot the curves of MAP improvements of BM25+ over BM25 against different δ values in Figure 6.4,

which demonstrates that, when δ is set to a value around 1.0, BM25+ works very well across all collections. Therefore,

δ can be safely “eliminated” from BM25+ by setting it to a default value 1.0.

Regarding different query types, we observe that BM25+ improves more on verbose queries than on short queries.
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Query WT10G WT2G Terabyte Robust04
b k1 b k1 b k1 b k1

Short 0.3 1.0 0.2 0.8 0.3 1.0 0.4 0.6
Verbose 0.6 2.0 0.6 1.6 0.4 1.8 0.7 1.2

Table 6.5: Optimal settings of b and k1 in BM25.

For example, the MAP improvements on Web collections are often more than 5% for verbose queries and are around

2% for short queries. We hypothesize that BM25 may overly-penalize very long documents more seriously when

queries are verbose, and thus there is more room for BM25+ to boost the performance. To verify our hypothesis,

we collect the optimal settings of b and k1 for BM25 in Table 6.5, which show that the optimal settings of b and k1

are clearly larger for verbose queries than for short queries. Recall that our constraint analysis in Section 6.5 has

shown that the likelihood of BM25 violating LB2 is monotonically increasing with parameters b and k1. We can now

conclude that BM25 indeed tends to overly penalize very long documents more when queries are more verbose.

So far we have shown that BM25+ is more effective than BM25, but if it is really because BM25+ has alleviated the

problem of overly-penalizing very long documents? To answer this question, we plot the retrieval pattern of BM25+

as compared to the relevance pattern in a similar way as we have done in Section 6.3.2. The pattern comparison

is presented in Figure 6.5. We can see that the retrieval pattern of BM25+ is more similar to the relevance pattern,

especially for the retrieval of very long documents. This suggests that BM25+ indeed retrieves very long documents

more fairly.

BM25+ and BM25 share two parameter b and k1. We are also interested in understanding how these parameters

affect the retrieval performance of BM25+ and BM25. So we first draw the sensitivity curves of BM25 and BM25+

to b in Figure 6.6. It shows that BM25+ is more robust than BM25; if we increase b, the performance of BM25 drops

more quickly than BM25+. Next, we also plot the sensitivity curves of BM25 and BM25+ through varying k1 in

Figure 6.7. We can see that BM25 often does not work well when increasing k1, while BM25+ appears more stable.

These observations are not surprising, because increasing b or k1 in BM25 could overly-penalize very long documents

even more, as shown in our constraint analysis in Section 6.5.

6.7.3 Lower-Bounded PL2 (PL2+) VS. PL2

In both PL2+ and PL2, we train parameter c using cross validation, where c is tuned from 0.5 to 25 (27 values).

Besides, in PL2+, parameter δ is also trained using cross validation, where δ is tuned from 0.0 to 1.5 in increments

of 0.1. Also we create a special run of PL2+ in which δ is fixed to 0.8 empirically without training. The comparison

results of PL2+ and PL2 are presented in Table 6.6.

The results show that PL2+ outperforms PL2 consistently, and even if we fix δ = 0.8, PL2+ can still achieve stable
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Figure 6.5: Comparison of retrieval and relevance probabilities against all document lengths when using BM25 (left)
and BM25+ (right) for retrieval. It shows that BM25+ alleviates the problem of BM25 that overly penalizes very long
documents.

improvements over PL2. Specifically, PL2+ improves significantly over PL2 for about 10% on verbose queries, yet

it only improves slightly on short queries; PL2+ appears to be less sensitive to the genre of collections, since it also

improves significantly over PL2 on news data (verbose queries). We hypothesize that, PL2 may overly-penalize very

long documents seriously on verbose queries but works well on short queries, and thus there is more room for PL2+

to improve the performance on verbose queries than on short queries. To verify it, we collect the optimal settings of c

in PL2 and show them in Table 6.7. We can see that the optimal settings of c are “huge” for short queries as compared

to that for verbose queries, presenting an obvious contrast. As a result, recalling the upper bound of document length

in Formula 6.8, verbose queries would be more likely to violate LB2 even if a document is not very long (e.g., a news

article), while short queries would only have a very small chance to violate LB2 even if a document is very long.

Again, we can see that our constraint analysis is consistent with empirical results.

We further do a sensitivity test for both PL2 and PL2+ to parameter c. It shows that PL2+ works more robustly,
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to 1.0 in BM25+ and k1 is well tuned in both methods for different b values.
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Figure 6.7: Performance Sensitivity to k1 of BM25 and BM25+ on WT10G (left) and Robust04 (right), where δ is
fixed to 1.0 in BM25+ and b is well tuned in both methods for different k1 values.

especially when c is small, and that the performance of PL2 drops quickly when c becomes small, due to the violation

of LB2.

6.7.4 Lower-Bounded Query Likelihood (Dir+) VS. Query Likelihood (Dir)

In both Dir+ and Dir, we train parameter µ using cross validation, where µ is tuned in a parameter space of 12 values

from 500 to 10000. Besides, in Dir+, parameter δ is also trained, the candidate values of which are from 0.0 to 0.15

in increments of 0.01. Similarly, we also create a special run in which δ is fixed to 0.05 empirically without training.

The comparison of Dir+ and Dir is presented in Table 6.8.

Overall, we observe that Dir+ improves over Dir consistently and significantly across different collections, and
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Query Method WT10G WT2G Robust04

Short
PL2 0.1883 0.3231 0.2531

PL2+ 0.1920 0.3227 0.2549
PL2+ (δ = 0.8) 0.1912 0.3255 0.2540

Verbose
PL2 0.1695 0.2473 0.2185

PL2+ 0.18864 0.2595 0.23484

PL2+ (δ = 0.8) 0.18864 0.26392 0.23474

Table 6.6: Comparison of PL2 and PL2+ using cross validation. Superscripts 1/2/3/4 indicate that the corresponding
MAP improvement is significant at the 0.05/0.02/0.01/0.001 level using the Wilcoxon test.

Query WT10G WT2G Robust04
Short 9 23 9

Verbose 2 3 2

Table 6.7: Optimal settings of c in PL2.

Query Method WT10G WT2G Robust04

Short
Dir 0.1930 0.3088 0.2521

Dir+ 0.1961 0.31122 0.25301

Dir+ (δ = 0.05) 0.19671 0.31233 0.2525

Verbose
Dir 0.1790 0.2742 0.2329

Dir+ 0.18743 0.28671 0.24404

Dir+ (δ = 0.05) 0.18713 0.28712 0.24404

Table 6.8: Comparison of Dir and Dir+ using cross validation. Superscripts 1/2/3/4 indicate that the corresponding
MAP improvement is significant at the 0.05/0.02/0.01/0.001 level using the Wilcoxon test.

Query WT10G WT2G Robust04
Short 4000 2500 1000

Verbose 7000 8000 3000

Table 6.9: Optimal settings of µ in Dir.

90



 0.12

 0.13

 0.14

 0.15

 0.16

 0.17

 0.18

 0.19

 0.2

 0  2  4  6  8  10  12  14

M
A

P

c

WT10G

short-PL2
short-PL2+

verbose-PL2
verbose-PL2+

 0.18

 0.19

 0.2

 0.21

 0.22

 0.23

 0.24

 0.25

 0.26

 0  2  4  6  8  10  12  14

M
A

P

c

Robust04

short-PL2
short-PL2+

verbose-PL2
verbose-PL2+
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Figure 6.9: Performance Sensitivity to parameter µ of Dir and Dir+ on WT10G and Robust04, where δ is fixed to 0.05
in Dir+.

even if we fix δ = 0.05 without training, Dir+ can still outperform Dir significantly in most cases. Note that, similar

to BM25+ and PL2+, Dir+ works more effectively on verbose queries, which is consistent with our constraint analysis

that Dir is more likely to overly penalize very long documents when a query contains more non-discriminative terms.

Besides, we also collect the optimal settings of µ for Dir in Table 6.9, which show that the optimal settings of µ are

also clearly larger for verbose queries than for short queries. Recall that our constraint analysis in Section 6.5 has

shown that the likelihood of Dir violating LB1 is monotonically increasing with parameter µ. We can now conclude

that Dir indeed tends to overly penalize very long documents more when queries are more verbose.

In addition, we further compare Dir+ and Dir thoroughly by varying µ from 500 to 10000, as shown in Figure 6.9.

It shows that Dir+ is consistently better than Dir no matter how we change the µ value.

Moreover, comparing Table 6.8 with Table 6.4 and 6.6, we can see that Dir works clearly better on verbose queries
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Query Method WT10G WT2G Robust04

Short Piv 0.1870 0.2915 0.2410
Piv+ 0.1869 0.29451 0.24551

Verbose Piv 0.1493 0.2148 0.2144
Piv+ 0.1493 0.2154 0.2150

Table 6.10: Comparison of Piv and Piv+ using cross validation. Superscripts 1 indicates that the corresponding MAP
improvement is significant at the 0.05 level using the Wilcoxon test.
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Figure 6.10: Performance Sensitivity to parameter s of Piv and Piv+ on WT10G and Robust04, where δ is fixed to 0.6
in Piv+.

than BM25 and PL2. One possible explanation is that Dir satisfies LB2 unconditionally, but BM25 and PL2 do not.

6.7.5 Lower-Bounded Piv (Piv+) VS. Piv

In both Piv+ and Piv, we train s using cross-validation, where s is tuned from 0.01 to 0.25 in increments of 0.02.

Besides, in Piv+, parameter δ is also trained, the candidate values are from 0.0 to 1.5 in increments of 0.1. The

comparison results of Piv+ and Piv are presented in Table 6.10.

Unfortunately, Piv+ does not improve over Piv significantly in most of the cases, which, however, is also as we

expected: although there is an upper bound of document length for Piv to satisfy LB2 (as shown in Formula 6.11), this

upper bound is often very large because the optimal setting of parameter s is often very small as presented in Table

6.11. Nevertheless, Piv+ would work much better than Piv when s is large, as observed in Figure 6.10.

Our experiments demonstrate empirically that, the proposed general methodology can be applied to state-of-the-art

Query WT10G WT2G Robust04
Short 0.05 0.01 0.05

Verbose 0.05 0.11 0.19

Table 6.11: Optimal settings of s in Piv.
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retrieval functions to successfully fix or alleviate their problem of overly-penalizing very long documents.

We have derived three effective retrieval functions, BM25+ (Formula 6.13), PL2+ (Formula 6.16), and Dir+ (For-

mula 6.14). All of them are as efficient as but more effective than their corresponding standard retrieval functions,

i.e., BM25, PL2, and Dir, respectively. There is an extra parameter δ in the derived formulas, but we can set it to

some default values (i.e., δ = 1.0 for BM25+, δ = 0.8 for PL2+, and δ = 0.05 for Dir+), which perform quite well.

The proposed retrieval functions can potentially replace its corresponding standard retrieval functions in all retrieval

applications.

6.8 Summary

In this paper, we reveal a common deficiency of the current retrieval models: the component of term frequency (TF)

normalization by document length is not lower-bounded properly; as a result, very long documents tend to be overly-

penalized. In order to analytically diagnose this problem, we propose two desirable formal constraints to capture the

heuristic of lower-bounding TF, and use constraint analysis to examine several representative retrieval functions. We

find that all these retrieval functions can only satisfy the constraints for a certain range of parameter values and/or for

a particular set of query terms. Empirical results further show that the retrieval performance tends to be poor when the

parameter is out of the range or the query term is not in the particular set. To solve this common problem, we propose

a general and efficient method to introduce a sufficiently large lower bound for TF normalization which can be shown

analytically to fix or alleviate the problem.

Our experimental results on standard collections demonstrate that the proposed methodology, incurring almost

no additional computational cost, can be applied to state-of-the-art retrieval functions, such as Okapi BM25 [86,

87], language models [121], and the divergence from randomness approach [5], to significantly improve the average

precision, especially for verbose queries. Our work has also helped reveal interesting differences in the behavior of

these state-of-the-art retrieval models. Due to its effectiveness, efficiency, and generality, the proposed methodology

can work as a “patch” to fix or alleviate the problem in current retrieval models, in a plug-and-play way.
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Chapter 7

Query Likelihood with Negative Query
Generation

7.1 Introduction

In the previous chapter, we have identified and bridged an empirical theory-effectiveness gap in the query likelihood

retrieval function using a heuristic approach, i.e., lower-bounding TF normalization. Although working effectively,

such a heuristic approach tends to be inconsistent with the language modeling framework, the essence of which is

statistical model estimation. In this chapter, we reveal and address a theoretical gap in the query likelihood method

using a probabilistic approach; as a by-product, interestingly, the proposed approach also provides a probabilistic

interpretation for the heuristic lower-bounding approach.

Although query likelihood has sound statistical foundation and performs well empirically, there was criticism

about its theoretical foundation as a retrieval function [83, 48, 49]. In particular, Sparck Jones questioned “where

is relevance?” [48]. Responding to this criticism, Lafferty and Zhai [59] showed that under some assumptions the

query likelihood retrieval method can be justified based on probability ranking principle [84] which is regarded as the

foundation of probabilistic retrieval models.

However, from theoretical perspective, the justification of using query likelihood as a retrieval function based on

the probability ranking principle [59] requires an unrealistic assumption about the generation of a “negative query”

from a document, which states that the probability that a user who dislikes a document would use a query does not

depend on the particular document. This assumption enables ignoring the negative query generation in justifying

using the standard query likelihood method as a retrieval function. In reality, however, this assumption does not hold

because a user who dislikes a document would more likely avoid using words in the document when posing a query.

This suggests that the standard query likelihood function is a potentially non-optimal retrieval function.

In order to address this theoretical gap between the standard query likelihood and the probability ranking principle,

in this chapter, we attempt to bring back the component of negative query generation.

A main challenge in estimating the negative query generation component is to develop a general method for

any document with respect to any query. Our solution to this problem is to estimate the probability of negative

query generation purely based on document D so as to make it possible to incorporate the negative query generation
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component when retrieving any document. Specifically, we exploit document D to infer the queries that a user would

use to avoid retrieving D based on the intuition that such queries would not likely have any information overlap with

D. We then propose an effective approach to estimate probabilities of negative query generation based on the principle

of maximum entropy [45], which leads to a document-dependent negative query generation component that can be

computed efficiently. Finally, we derive a more complete query likelihood retrieval function that also contains the

negative query generation component, which essentially scores a document with respect to a query according to the

ratio of the probability that a user who likes the document would pose the query to the probability that a user who

dislikes the document would pose the query.

Similar to the standard query likelihood, a major deficiency of the proposed query likelihood with negative query

generation is that it cannot easily incorporate query language models. To solve this problem, we further develop a more

general probabilistic distance retrieval method, inspired by the development of the KL-divergence retrieval method

[58]. With this method, we first estimate a regular document language model, a regular query language model, and

a “negative document language model” based on the probabilities of negative query generation, and we then score

a document with respect to a query based on the relative KL-divergence between the query language model and

the corresponding document language model and between the query language model and the corresponding negative

document language model. With this probabilistic distance retrieval method, Feedback can also be naturally cast as to

improve the estimate of the query language model based on the feedback information. Interestingly, this probabilistic

distance retrieval method covers the proposed query likelihood model with negative query generation as its special

case.

Moreover, the developed query likelihood with negative query generation leads to the same ranking formula as

derived by lower-bounding the query likelihood scoring function in the previous chapter, thus essentially providing

a probabilistic interpretation for the heuristic method of lower-bounding term frequency normalization in the basic

query likelihood method. Meanwhile, this connection also shows that the proposed query likelihood retrieval function

with negative query generation improves over the basic query likelihood method empirically. Overall, the proposed

approaches not only bridge the theoretical gap between the standard query likelihood and the probability ranking

principle, but also improve retrieval effectiveness significantly.
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7.2 Negative Query Generation

As discussed in Section 2.3, with query generation, the odds ratio of the probability ranking principle ends up with

the following ranking formula:

O(R = ℓ|Q,D) ∝ p(Q|D,R = ℓ)

p(Q|D,R = ℓ̄)
(7.1)

There are two components in this model. p(Q|D,R = ℓ) can be interpreted as a positive query generation model.

It is essentially the basic query likelihood, which suggests that the query generation probability used in all the query

likelihood scoring methods intuitively means the probability that a user who likes document D would pose query Q.

Another component p(Q|D,R = ℓ̄) can be interpreted as the generation probability of a “negative query” from a

document, i.e., the probability that a user who dislikes a document D would use a query Q.

However, in order to justify using the basic query likelihood alone as the ranking formula, an unrealistic assump-

tion has to be made about this negative query generation component, which states that the probability that a user who

dislikes a document would use a query does not depend on the particular document [59], formally

p(Q|D,R = ℓ̄) = p(Q|R = ℓ̄) (7.2)

This assumption enables ignoring the negative query generation in the derivation of the basic query likelihood

retrieval function, leading to the following basic query likelihood scoring method: O(R = ℓ|Q,D) ∝ p(Q|D,R =

ℓ) = P (Q|θD).

In reality, however, this assumption does not hold because a user who dislikes a document would more likely

avoid using words in the document when posing a query, suggesting a theoretical gap between the standard query

likelihood and the probability ranking principle. These observations and analysis show that, although a standard

statistical approach, the basic query likelihood function is a potentially non-optimal retrieval function.

In the following section, we attempt to improve the basic query likelihood function by estimating, rather than

ignoring the component of negative query generation p(Q|D,R = ℓ̄).

7.3 Query Likelihood with Negative Query Generation

7.3.1 Negative Document Language Models

What would a user like if he/she does not like D? We assume that there exists a “complement document” D̄, and that

if a user does not like D, the user would like D̄. That is, when generating query Q, if a user does not like D, the user
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would randomly pick a word from D̄. Formally,

p(w|D,R = ℓ̄) = p(w|θD̄) (7.3)

The challenge now lies in how to estimate a language model θD̄, which we refer to as the “negative document language

model” of D. Note that the negative document language model in our paper is still a “document” model, which is

completely different from the relevance model p(w|R = ℓ) [61] and the irrelevance model p(w|R = ℓ̄) [109] that

capture the probability of observing a word w relevant and non-relevant to a particular information need respectively.

Ideally we should use many actual queries by users who do not want to retrieve document D to estimate the

probability p(w|θD̄). For example, we may assume that if a user sees a document in search results but does not click

on it, he/she dislikes the document. Under this assumption, we can use all the queries from the users who “dislike” the

document to approximate D̄. However, in practice, only very few search results will be shown to users and certainly

there are always queries that we would not even have seen. Yet, as a general retrieval model, the proposed method

must have some way to estimate θD̄ for any document with respect to any query.

One straightforward way is using the background language model p(w|C) to approximate p(w|θD̄), based on the

intuition that almost all other documents in the collection are complementary to D:

p(w|θD̄) = p(w|C) (7.4)

With this estimate of p(w|θD̄), the negative query generation component does not affect the ranking of documents,

because the probability of negative query generation will be constant for all documents: it justifies the document

independent negative query generation component in the standard query likelihood method. However, the content of

document D is ignored in this estimate.

We are interested in estimating p(w|θD̄) in a general way based on the content of document D so as to make it

possible to incorporate a document dependent negative query generation component when retrieving any document.

Our idea is based on the intuition that if a user wants to avoid retrieving document D, he/she would more likely avoid

using words in the document when posing a query. That is, the user would like a document D̄ with little information

overlap with D. Therefore, D̄ should contain a set of words that do not exist in D, because given only document D

available, the sole constraint of D̄ is that, if a word w occurs in D, i.e., c(w,D) > 0, this word should not occur in D̄.

c(w, D̄) =


0 if c(w,D) > 0

? otherwise
(7.5)
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where “?” means unknown.

How to determine the count of a word in D̄ if it does not occur in D? As the probability distribution of such a

word is unknown, according to the principle of maximum entropy [45], each such a word occurring in D̄ should have

the same frequency δ > 0, which maximizes the information entropy under the only prior data D. That is, D̄ contains

a set of words that are complementary to D in the universe word space (i.e., the whole word vocabulary V ). Formally,

c(w, D̄) =


0 if c(w,D) > 0

δ otherwise
(7.6)

According to the maximum likelihood estimator, we have the following estimation of the document language

model θD̄ for the multinomial model:

pml(w|θD̄) =
c(w, D̄)

|D̄|
(7.7)

where |D̄| is the “document” length of D̄, which can be computed by aggregating frequencies of all words occurring

in D̄. Because the number of unique words in D is usually much smaller than the number of unique words in the

whole document collection C (i.e., |V |), the number of unique words in D̄ is approximately the same as |V |. Thus

|D̄| =
∑
w∈V

c(w, D̄) ≈ δ|V | (7.8)

Due to the existence of zero probabilities, pml(w|θD̄) needs smoothing. Following the estimation of regular doc-

ument language models, we also choose the Dirichlet prior smoothing method due to its effectiveness in information

retrieval [121]. Formally,

p(w|θD̄) =
δ|V |

δ|V |+ µ
pml(w|θD̄) +

µ

δ|V |+ µ
p(w|C) (7.9)

where µ is the Dirichlet prior. Since the influence of µ can be absorbed into variable δ clearly, we thus set it simply

to the same Dirichlet prior value as used for smoothing the regular document language model (see Equation 2.7 in

Chapter 2).
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7.3.2 Bringing Back the Negative Query Generation Component

Now we can bring back the negative query generation component to the query generation process based on the proba-

bility ranking principle:

O(R = ℓ|Q,D)
rank
= log

p(Q|D,R = ℓ)

p(Q|D,R = ℓ̄)

= log p(Q|D,R = ℓ)− log p(Q|D,R = ℓ̄)

= log p(Q|θD)− log p(Q|θD̄)

(7.10)

The negative query loglikelihood log p(Q|θD̄) can be further written as

log p(Q|θD̄)
rank
= −

∑
w∈Q∩D

c(w,Q) log

(
1 +

δ

µp(w|C)

)
(7.11)

The corresponding derivation process has been shown in Formula 7.12.

log p(Q|θD̄)

=
∑
w∈Q

c(w,Q) log p(w|θD̄)

=
∑

w∈Q∩D

c(w,Q) log

(
µ

δ|V |+ µ
p(w|C)

)
+

∑
w∈Q,w/∈D

c(w,Q) log

(
δ

δ|V |+ µ
+

µ

δ|V |+ µ
p(w|C)

)

=
∑

w∈Q∩D

c(w,Q) log

(
µp(w|C)

δ|V |+ µ

)
+

∑
w∈Q

c(w,Q) log

(
δ + µp(w|C)

δ|V |+ µ

)
︸ ︷︷ ︸

document independent constant

−
∑

w∈Q∩D

c(w,Q) log

(
δ + µp(w|C)

δ|V |+ µ

)

rank
= −

∑
w∈Q∩D

c(w,Q) log

(
1 +

δ

µp(w|C)

)

(7.12)

Plugging Equations 2.8 and 7.11 into Equation 7.10, we finally obtain a more complete query likelihood retrieval

function that also contains the negative query generation component:

O(R = ℓ|Q,D)
rank
=

∑
w∈Q∩D

c(w,Q)

[
log

(
1 +

c(w,D)

µp(w|C)

)
+ log

(
1 +

δ

µp(w|C)

)]
+ |Q| log µ

|D|+ µ (7.13)

Comparing Formula 7.13 with the standard query likelihood in Formula 2.8, we can see that our new retrieval

function essentially introduces a novel component log
(
1 + δ

µp(w|C)

)
to reward the matching of a query term, and it

rewards more the matching of a more discriminative query term, which not only intuitively makes sense, but also

provides a natural way to incorporate IDF weighting to query likelihood, which has so far only been possible through

a second-stage smoothing step [42, 122]. Note that when we set δ = 0, the proposed retrieval function degenerates to

the standard query likelihood function.
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Furthermore, since this new component we introduced is a term-dependent constant, the proposed new retrieval

function only incurs O(|Q|) additional computation cost as compared to the standard query likelihood function, which

can be certainly ignored.

More interestingly, the developed query likelihood with negative query generation (Formula 7.13) leads to the

same ranking formula as derived by lower-bounding term frequency normalization in the standard query likelihood

method in Chapter 6. However, the Formula 6.14 derived in Chapter 6 is purely based on a heuristic approach, which

is inconsistent with the probabilistic framework of the query likelihood method. Our method essentially provides a

probabilistic approach for appropriately lower-bounding term frequency normalization in the standard query likelihood

method.

7.4 A General Probabilistic Distance Retrieval Method

Query language models play a critical role in the language modeling approaches. However, similar to the standard

query likelihood, a major deficiency of the proposed query likelihood with negative query generation is that it cannot

easily incorporate query language models [120]. To address this problem, we further develop a more general proba-

bilistic distance retrieval method to explicitly incorporate the query language model, inspired by the development of

the KL-divergence retrieval method [58].

Specifically, given the regular document language model θD, the regular query language model θQ, and the pro-

posed negative document language model θD̄ (Equation 7.9), we score a document D with respect to a query Q based

on the difference of two KL-divergence values: one is the KL-divergence between the query language model θQ

and the regular document language model θD, and the other KL-divergence between θQ and the negative document

language model θD̄. Formally,

Score(D,Q) = D(θQ||θD̄)−D(θQ||θD)

=
∑
w∈V

p(w|θQ) log
p(w|θQ)
p(w|θD̄)

−
∑
w∈V

p(w|θQ) log
p(w|θQ)
p(w|θD)

=
∑
w∈V

p(w|θQ) log
p(w|θD)

p(w|θD̄)

(7.14)

This way, the closer the document language model is to the query language model and the farther the negative docu-

ment language model is away from the query language model, the higher the document would be ranked.

Moreover, it is easy to show that this probabilistic distance retrieval method covers the query likelihood with
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negative query generation as its special case when we use the empirical query word distribution to estimate θQ, i.e.,

p(w|θQ) =
c(w,Q)

|Q|
(7.15)

Indeed, with such an estimate, we have :

Score(D,Q) =
∑
w∈V

c(w,Q)

|Q|
log

p(w|θD)

p(w|θD̄)

rank
=

∑
w∈V

c(w,Q) log
p(w|θD)

p(w|θD̄)

= log p(Q|θD)− log p(Q|θD̄)

(7.16)

In this sense, the proposed probabilistic distance retrieval method is not only an extended KL-divergence model with

a negative document language model but also a generalization of the proposed query likelihood scoring method with

a negative query generation component, suggesting that the proposed probabilistic distance retrieval method would

work more effectively than the basic KL-divergence retrieval method.

7.5 Summary

In this chapter, we show that we can improve the standard query likelihood function by bringing back the component

of negative query generation (i.e., the probability that a user who dislikes a document would use a query). We argue

that ignoring the component of negative query generation to justify the standard query likelihood retrieval function

in existing work is questionable, because in reality, a user who dislikes a document would more likely avoid using

words in the document when posing a query. We propose an effective approach to estimate document-dependent

probabilities of negative query generation based on the principle of maximum entropy, and derive a more complete

query likelihood retrieval function that contains the negative query generation component, which essentially scores a

document with respect to a query according to the ratio of the probability that a user who likes the document would

pose the query to the probability that a user who dislikes the document would pose the query. In addition, we further

develop a more general probabilistic distance retrieval method to naturally incorporate query language models, which

covers the proposed query likelihood with negative query generation as its special case.

Our work not only bridges the theoretic gap between the standard query likelihood method and the probability

ranking principle, but also improves retrieval effectiveness over the standard query likelihood with no additional com-

putational cost for various types of queries across different collections, as shown in Chapter 6. The proposed retrieval

functions can potentially replace the standard query likelihood retrieval method and the standard KL-divergence re-
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trieval method in all retrieval applications.

As a first attempt at bringing back negative query generation, our work opens up an interesting novel research

direction in optimizing language models for information retrieval through improving the estimation of negative docu-

ment language model. One of the most interesting directions is to study whether setting a term-specific δ can further

improve performance. For example, term necessity prediction [124] and discovery of key concepts [7] could be

two possible ways for setting adaptive δ. Another interesting direction is to go beyond document D and seek other

resources for estimating a more accurate negative query generation probability.
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Chapter 8

Conclusions and Future Work

In this chapter, we summarize our research findings and discuss the future research directions.

8.1 Conclusions

Improving the effectiveness of general retrieval models has been a long-standing difficult challenge in information

retrieval research, yet is also a fundamentally important task, because an improved general retrieval model would

benefit every search engine. The language modeling framework for information retrieval have recently attracted much

attention, due to its potential to develop an optimal retrieval model that is both theoretically sound and able to perform

well empirically. However, the difficulty in accurately modeling the highly empirical notion of relevance within a

standard statistical language model has led to slow progress in optimizing language modeling approaches; after more

than one decade of research, the basic language modeling approach to retrieval still remains the same. This suggests

that the theoretical framework of language models, without being able to accurately model the empirical notion of

relevance, has a clear gap from what is needed to make a retrieval model empirically effective, a general problem we

refer to as the “theory-effectiveness gap”.

This thesis presents our efforts at bridging the ”theory-effectiveness gap” between the theoretical framework of

standard language models and the empirical application of information retrieval. Specifically, we clearly identified the

causes of these gaps, and developed a series of general methodologies to remove the causes from language models

without destroying their statistical foundation to improve language models from different perspectives, corresponding

to the three main components of language modeling approaches, i.e., document language models, query language

models, and the query likelihood scoring function. Specifically, this thesis makes contributions in the following five

aspects.

• Positional document language models: we propose a novel positional language model (PLM) which imple-

ments term position and proximity heuristics in a unified language model. The key idea is to define a language

model for each position of a document, and score a document based on the scores of its positional language

models. We estimate PLM using a novel smoothing strategy based on different proximity-based kernel func-
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tions. In addition, we work out a mathematical approach to reduce the computational complexity dramatically.

The PLM has shown more robust and effective than the standard document language model, the state-of-the-art

passage retrieval, and a state-of-the-art proximity retrieval model.

• Positional relevance models for estimating query language models: we propose a novel positional rele-

vance model (PRM) for estimating query language models based on pseudo-relevance feedback. The PRM

exploits term position and proximity evidence to assign more weights to words closer to query words based

on the intuition that words closer to query words are more likely to be consistent with the query topic. An

important advantage of the this method is that it can model the “relevant positions” in a feedback document

with probabilistic models so as to assign more weights to terms at more relevant positions in a principled way,

thus leading naturally to selection of expansion terms more likely relevant to the query topic. Besides, we de-

velop two methods to estimate the proposed positional relevance model based on different sampling processes.

Experiment results show that the proposed method is more effective and robust than current state-of-the-art

pseudo-relevance feedback approaches.

• Boosting the robustness of pseudo-relevance feedback approaches for estimating query language models:

we propose a novel learning algorithm based on the boosting framework to optimize pseudo-relevance feedback

approaches for estimating query language models. A major contribution of our work is to optimize pseudo-

relevance feedback based on a novel loss function that directly measures both robustness and effectiveness,

which has not been achieved in any previous work. The experiment results demonstrate that our algorithm can

achieve better average precision and meanwhile dramatically reduce the number and magnitude of feedback

failure cases. Moreover, the proposed algorithm is actually more general and applicable to pseudo-relevance

feedback in other retrieval models as well.

• Lower-bounding the query likelihood scoring function: we reveal a previously unknown deficiency of the

query likelihood scoring function: it is not properly lower-bounded for long documents. As a result of this

deficiency, long documents which do match the query term can often be scored unfairly as having a lower

relevancy than shorter documents that do not contain the query term at all. In order to analytically diagnose this

problem, we propose two desirable formal constraints to capture the heuristic of lower-bounding term frequency

normalization, and use constraint analysis to examine the query likelihood function. Analysis results show that it

can only satisfy the constraints for a certain range of parameter values and/or for a particular set of query terms.

Empirical results further show that the retrieval performance tends to be poor when the parameter is out of the

range or the query term is not in the particular set. To solve this problem, we propose an efficient method to

introduce a sufficiently large lower bound for term frequency normalization which can be shown analytically to
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fix the problem. Our experimental results demonstrate that the proposed method, incurring almost no additional

computational cost, can improve the retrieval performance of the query likelihood function significantly. In

fact, our empirical observation and constraint analysis show that the problem of improper lower-bound of term

frequency normalization is a common deficiency of current retrieval models, including BM25, the pivoted length

normalization method, etc. And the proposed method is a general solution that can be used as a plug-and-play

patch to multiple state-of-the-art retrieval models to improve their effectiveness.

• Query likelihood with negative query generation: we improve the basic query likelihood function by bring-

ing back the component of negative query generation (i.e., the probability that a user who dislikes a document

would use a query) that was ignored. We argue that ignoring the component of negative query generation to

justify the standard query likelihood retrieval function in existing work is questionable, because in reality, a

user who dislikes a document would more likely avoid using words in the document when posing a query.

We propose an effective approach to estimate document-dependent probabilities of negative query generation

based on the principle of maximum entropy, and derive a more complete query likelihood retrieval function

that contains the negative query generation component, which essentially scores a document with respect to a

query according to the ratio of the probability that a user who likes the document would pose the query to the

probability that a user who dislikes the document would pose the query. In addition, we further develop a more

general probabilistic distance retrieval method to naturally incorporate feedback, which covers the proposed

query likelihood with negative query generation as its special case. The proposed approach not only bridges the

theoretical gap between the standard query likelihood and the probability ranking principle, but also improves

retrieval effectiveness over the standard query likelihood with no additional computational cost. More inter-

estingly, the developed query likelihood with negative query generation leads to the same ranking formula as

derived by lower-bounding the query likelihood scoring function, thus essentially providing a probabilistic in-

terpretation for the heuristic way of lower-bounding term frequency normalization in the basic query likelihood

method.

In summary, this thesis proposes to improve the effectiveness language modeling approaches to information re-

trieval through bridging the “theory-effectiveness gap”, and has resulted in several more effective and robust retrieval

algorithms. All the proposed new models are general, and thus can be used immediately in any search engine to

improve its retrieval accuracy over the current retrieval models.

Although we focus on language models in this thesis, most of the proposed methodologies are actually not re-

stricted to language models and can also be applied to retrieval models other language models.
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8.2 Future Work

There are still many challenges to be solved to fully develop the potential of language models by bridging the theory-

effectiveness gap. The following is a list of some interesting opportunities for future research.

A unified model to bridge all the identified theory-effective gaps: we have presented different algorithms for

bridging multiple theory-effectiveness gaps of language modeling approaches from different perspectives. A direct

future work is thus to evaluate if the benefits from different algorithms can add together; in other words, how can

we develop a unified model that is able to bridge all these gaps in a single effective retrieval function? However, it

is a non-trivial task, as it would raise some problems if we simply put these algorithms together, due to the potential

overlap between different algorithms. For example, because positional language models and the lower-bounded query

likelihood function (or query likelihood with negative query generation) both can improve the probability of retrieving

long documents, though from bridging different gaps, we should pay careful attention to avoid overly-rewarding

long documents if we use both algorithms together; positional language models and positional relevance models both

consider the term proximity evidence, so applying them together may count the term proximity effect twice. The

axiomatic approach, as we used to successfully develop the lower-bounded query likelihood retrieval function, could

be a promising way to leverage the proposed algorithms together by formalizing retrieval constraints to regularize the

overlap between different algorithms.

Adaptive language models: one deficiency of current language models is that document characteristics are not

fully explored, leading to non-optimal retrieval performance. For example, the content of a news article is usually co-

herent and focused on one topic, while the content of a forum thread is generally incoherent and often covers multiple

different topics. Unfortunately, current language models do not consider this difference in collection characteristics,

thus facing a dilemma: if we use a whole document as a unit for estimating language models, it would be appropriate

for news data, but it would not perform well for forum data; on the other hand, if we estimate language models based

on its best-matching passage, which likely helps forum data, but it would be non-optimal for news data. Thus adapt-

ing language models to document characteristics is needed to improve search performance. The proposed positional

document language model provides a framework to adapt document language models to document characteristics by

dynamically choosing different kernel functions. It would be interesting to further explore advanced NLP techniques

(e.g., discourse structure analysis) and machine learning approaches to develop an adaptive language model.

Effective language models for retrieval with complex information needs: language models are natural for

modeling topical relevance. But in many retrieval applications, a user’s information need consists of multiple dimen-

sions of preferences with topical relevance being only one of them. Other factors such as readability, genre, reliability,

and sentiment may also be important. How can we use language models to capture such non-topical aspects, and de-

velop language models to optimize ranking of documents based on multiple factors are still unclear. In this direction,
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recent work has shown that the learning-to-rank approaches [62] are quite promising, thus again it would be very inter-

esting to study how to leverage the language modeling approaches (generative approaches) with the learning-to-rank

approaches (discriminative approaches).

An ultimately optimal retrieval model: our goal is to develop a robust and effective language model for informa-

tion retrieval that can (1) adapt retrieval parameters to different queries, documents, and tasks, (2) optimize retrieval

parameters automatically, (3) perform as well as or better than well-tuned traditional retrieval methods, and (4) be

computed as efficiently as traditional retrieval methods.
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