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Abstract

People generate and share a huge variety of information that can be used to derive useful insights and create value

for society. Keyword queries are by far the most popular method for users to search, explore, and understand such

information. Because search is more effective when information is well organized, people often choose to add structure

to their information, producing semi-structured or even structured data. However, the new structure is not always added

in the right places, i.e., where it will maximize the improvement in search results. Further, seemingly unimportant

changes in the structure of the information tend to affect search results in undesirable ways. In addition, current

keyword search and exploration systems are not very effective for certain types of information and queries. This thesis

addresses these three issues by showing how to determine where to add structure to information for maximal benefit,

and how to use the resulting structure to provide effective and robust answers to keyword queries.

Our first contribution is to determine what structure should be imposed on a given collection of information.

Since the resources for converting information to a more structured format are always limited, our goal is to impose

structure in a manner that will maximize the improvement for subsequent queries. In more technical terms, this

means discovering and maintaining exactly the parts of a database schema that will most improve users’ search and

exploration experience. We show that adding structure corresponding to the most “popular” parts of a schema does

not generally maximize search effectiveness. We formalize the problem of deciding which parts of a schema to extract

and materialize, prove that the problem is NP-hard, propose polynomial-time solution algorithms, and prove that their

effectiveness is within a constant factor of optimal.

Given a collection of semi-structured information, our next contribution is a principled way to take this structure

into account when answering keyword queries. Because the same information can be represented in many ways, we

propose the principle of design independence, which postulates that search results should not depend on the details

of the design chosen for the information’s structure. Otherwise, search may be effective over one schema design

but provide poor rankings over another equivalent design. We formalize this principle and show that current search

approaches for semi-structured information are not design independent. We propose a new approach to keyword search

over semi-structured information, prove that it is design independent, and show that it gives better search results in

practice than all previous approaches.
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A schema describes the concepts that underlie a collection of information, but users do not usually explicitly

specify these concepts in keyword queries. Thus the query term Java could refer to an island, a programming language,

or a drink. When query terms can refer to multiple concepts, it is hard to devise effective heuristics to determine

which answers should rank highest. In this thesis, we use the probability ranking principle and other widely accepted

principles to provide a solid formal model for ranking the answers to such queries over semi-structured data. In

an extensive empirical study, we show that our method generally provides more effective rankings than previous

approaches.

Schemas provide information about concepts and the relationships between them. Current keyword search ap-

proaches generally assume that all types of relationships are equally important to users, which can lead to poor ranking

of answers. We provide a way to quantify the importance of relationships between concepts, provide an efficient way

to use this metric to rank answers, and show that users prefer the resulting rankings over those of previous methods.

If a query is very broad and underspecified (e.g., vacation), then even well-ranked answers are unlikely to please

users. In such situations, we believe that the best approach is to detect that this is a difficult query and then use other

techniques, such as query completion suggestions, to improve the user’s experience. We provide a probabilistic model

that accurately predicts how underspecified a query is, together with algorithms that quickly compute this measure

when a user queries semi-structured data.
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Chapter 1

Introduction

1.1 The Limitations of Search and Exploration of Information

People and organizations generate and share a huge variety of unstructured information that can potentially be used

to derive useful insights and bring value to society. However, unstructured information has limited capacity to satisfy

users’ information needs [32]. For instance, suppose that a user wants to find information about the athlete Michael

Jordan, and submits keyword query Q1: Michael Jordan to the Wikipedia collection (www.wikipedia.org) whose

excerpts are shown in Figure 1.1. Many articles in the collection contain Q1’s two terms, and the search system does

not have enough evidence to determine which article best satisfies the information need behind Q1. Thus, the search

system may give a high rank to articles that do not satisfy the information need behind Q1, such as an article whose

url is wikiMichael I. Jordan rather than wikiMichael Jordan.

To help overcome this challenge, we can convert the unstructured information to a semi-structured or structured

format that makes some or all of the information’s concepts and relationships explicit [23, 14, 55, 13, 7, 39, 36,

135, 32]. By structure, we mean the kind of semantic information about entities and relationships that one finds in

a database schema.1 A search system can use the resulting structure (schema) to improve users’ experience as they

search and explore the data. For example, Figure 1.2 depicts a more structured representation of the information

shown in Figure 1.1. Users can learn the schema of the data set and use query languages such as XQuery or SQL to

express their exact information needs and receive precise answers. This paradigm, however, has two important issues.

First, organizing huge volumes of unstructured information into a semi-structured2 format is error-prone and takes

a lot of computational and human resources [21, 1, 70]. To organize unstructured information, developers must

identify and implement hundreds of extraction rules, or design and train complex machine learning based modules, to

discover instances of concepts and add them to the resulting semi-structured data set. Developers must also maintain

the modules and update them over time [105], which is especially awkward for specialized domains that require

collaboration between developers and domain experts, such as medicine and law.

1In this dissertation, our approaches to answering keyword queries do not consider syntactic structure, such as the division of a document into
sections, paragraphs, and sentences. For example, for our purposes an ordinary HTML file is unstructured text.

2In this thesis, we view structured information as a special case of semi-structured information, and will not consider it separately.
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Since an organization will have limited resources available for adding structure, we should add structure only

where it will significantly improve the user experience. For instance, if queries about athletes are exceedingly rare or

are already answered well using unstructured information, then we should not expend a lot of resources to find and

label all instances of concept athlete. Further, if the error rate of a module that discovers instances of a concept is high,

the original unstructured data may serve the information needs behind the queries about this concept more effectively

than its more structured version. Hence, the challenge is how to create a systematic framework that accurately predicts

the degree of improvement in satisfying users’ information needs using erroneous programs and limited resources, and

determines the most cost effective organization for the data.

A second issue is that most users are not familiar with the notion of a schema or with query languages like XQuery

or SQL, and have no wish to learn [69, 16, 9, 57, 26, 87, 149, 90, 6]. Even sophisticated users face challenges, as

semi-structured data sets typically have complex schemas with hundreds of tables, columns, or XML elements. With

little documentation available for the database design, and even less motivation to study it, even computer-savvy users

find it challenging to explore the database and formulate appropriate queries [154]. Further, as the schema evolves

over time, even an expert user may not be able to pose the correct query for her needs. Visual interfaces are an option

that is excellent for many situations [146], but they must be customized individually for each domain, which is very

expensive.

Keyword query interfaces are a popular alternative [155, 19, 9, 26, 57, 61, 60, 79, 85, 119, 124, 134, 149, 150].

With keyword query interfaces, users do not need to know schema details or any query language. For example,

suppose a user wants to find papers about Integration published in the VLDB conference, in the database fragment in

Figure 1.3. The user submits keyword query Integration VLDB, whose desired answer is the paper at node 2. Since

the query is not framed in terms of the data’s actual structure, the search system should determine the information

need behind the query and rank highest the potential answers most closely related to the user’s information need. For

example, the paper at node 9 should not be the top-ranked answer, as it does not satisfy the user’s information need.

Thus, the challenge is how to create a system that finds users’ desired answers for most if not all keyword queries over

most if not all semi-structured data sets.

This thesis proposes systematic and principled solutions to these challenges. We set forth solid theoretical founda-

tions for effective, robust, and cost-effective keyword search systems based on widely accepted principles in statistics,

information retrieval, and database systems. We provide efficient algorithms for large scale search and exploration

systems, and present the results from extensive user studies that validate these theoretical frameworks over real world

data. We elaborate on the main contributions of this thesis in the following sections.
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<article>

<url>wiki/Michael_Jordan</url>

<body>

Michael Jeffrey Jordan

(born February 17, 1963) is a

former American professional

basketball player, ... .

Michael Jordan had spent

his entire career with the Chicago Bulls ... .

</body>

</article>

<article>

<url>wiki/Michael_Jordan_statue</url>

<body>

The Michael Jordan statue, officially

known as The Spirit, ... .

</body>

</article>

<article>

<url>wiki/Michael_I._Jordan</url>

<body>

Michael I. Jordan is a leading

researcher .... . He is currently a full

professor at the University of California,

Berkeley... .

</body>

</article>

...

</collection>

Figure 1.1: Wikipedia article excerpts

1.2 Cost Effective Data Organization

To determine where to expend resources to add structure to information, we have created a method to quantify the

expected improvement in satisfying users’ information needs that will result if we convert the instances of a particular

concept in unstructured data to a semi-structured format. We use the widely accepted effectiveness metric precision at

k, so our approach provides understandable and verifiable predictions about the improvement in user satisfaction that

can be expected from adding structure to a given collection of information.

Given a budget for the resources available for discovering instances of concepts, plus particular error rates for the

discovery processes, we model the problem of choosing the most cost-effective organization for the data as an opti-

mization problem. We use this model to explore the effectiveness of some commonly used heuristics for organizing the

information in sets of documents. For instance, it is generally assumed that the more relevant and popular documents

we organize, the more effective search experience we can provide. Interestingly, we show that sometimes the fewer
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<collection>

<article>

<url>wiki/Michael_Jordan</url>

<body>

<athlete> Michael Jeffrey Jordan </athlete>
(born

<birthdate> February 17, 1963 </birthdate>
) is a former

<nationality> American </nationality>
professional basketball player, ... .

<athlete> Michael Jordan </<athlete>
had spent his entire career with the

<club> Chicago Bulls </club>
... .

</body>

</article>

<article>

<url>wiki/Michael_Jordan_statue</url>

<body>

<art-form> The Michael Jordan statue </art-form>
, officially known as

<art-form> The Spirit </art-form>
... .

</body>

</article>

<article>

<url>wiki/Michael_I._Jordan</url>

<body>

<scientist> Michael I. Jordan </scientist>
is a leading researcher .... . He is currently a

<position> full professor </position>
at the

<school> University of California, Berkeley </school>
... .

</body>

</article>

...

</collection>

Figure 1.2: A more structured version of the Wikipedia article excerpts

relevant and popular documents we organize, the more effective search experience we can provide. We prove that the

optimization problem is NP-hard in the general case, and propose approximation algorithms with provably bounded

approximation ratios. We use standard benchmarks to validate the formal model and optimization algorithms, along

with extensive experimental studies.
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Figure 1.4: A bibliographic database

1.3 Design Independent Query Interfaces

Different data sources may be designed differently. Moreover, the design of the same data set may evolve over time.

Database administrators (DBAs) may revise the database design over time to address issues such as redundancy, space

overhead, performance, and usability [30, 137]. For instance, in the database excerpted on the right in Figure 5.3,

path paper/booktitle is repeated under every subtree of element proceedings. The DBA may normalize the schema as

shown in the fragment on the left in Figure 5.3 [4]. Or, as each paper has more than one author, the DBA may add a

new node authors to the database excerpted in Figure 1.4 and create the new database excerpted in Figure 1.5 to make

the database more usable. A DBA may also remove nodes such as authors to save space.

Current database management systems provide physical independence for users. Users do not have to modify their

XQuery queries if the physical representation of the data changes. One goal of having a keyword query interface is to

5



2 proceedings

5 inproceedings

6 title

XML search 

algorithm

3

title

XML Symp 10

author

performance

12

article

1 bib

4 

area

DB

performance

7 subject

9 author

John Lee
Smith Lee

13

title

XPath Query 

17

author

algorithm

14 subject

16 author

Mary Lee

Albert Green

8 authors

15

authors

11

journal

Figure 1.5: A bibliographic database

proceedings

paper

title

XML search 

algorithm

bib

paper

title

XML Mining

paper

title

XML search 

algorithm

bib

booktitle

Novel DB

paper

title

XML Mining

booktitle

Novel DB

booktitle

Novel DB

year

2005

year

2005

proceedings

Figure 1.6: Normalization of a bibliographic database

allow users to find their desired information without knowing anything about the schema of the database [57, 149, 90,

6, 129]. Hence, a keyword query interface should have the property that its answers to a query stay the same when the

database schema changes, if possible. In other words, users should not have to change their queries to get the same

answers over the new schema. For instance, a keyword query interface should return the paper at node 6 in Figure 1.4

and the inproceedings at node 5 in Figure 1.5 for query John Lee XML, as they both represent the entity in question.

Otherwise, users would have to learn aspects of the new schema to formulate the new query, which contradicts the goal

of having a user-friendly system. If the results of a keyword query depend on a specific style of database design, the

search system will perform poorly for data sets that follow other styles. Hence, no matter how the data is organized, a

keyword query system should return the same answers as long as the data set contains the same information.

We introduce and formally define this property of design independence for keyword query systems [130, 131].

Design independence provides a way to measure the degree of logical data independence sought by the architects of

modern data models [25]. To the best of our knowledge, design independence has not previously been defined and

explored for any kind of query interface, including keyword query interfaces.

For a given set of content, the ranking produced by a design independent query interface is invariant under
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Figure 1.7: IMDB fragment

equivalence-preserving reorganizations of the structure of the data. We analyze this property for current keyword

query interfaces and prove that they do not generally provide design independence. We have developed a novel key-

word query answering method that is design independent. In addition to providing theoretical results for the worst

case, we conduct an extensive empirical study to measure the design independence of a variety of keyword query an-

swering methods, using real-world data sets. We show that our new method has higher average design independence

than other methods. We also perform an extensive user study and show that the ranking provided by the new query

answering approach is as good as or better than other methods.

1.4 Principled Ranking of Keyword Query Answers

As a basis for creating effective, extensible, and robust keyword query systems, it is crucial to develop principled

formal models that correctly characterize the problem of which answers to rank highest. A keyword query system

that is built atop clearly defined principles should have far fewer parameters to tune than more ad hoc approaches.

Moreover, it should be possible to interpret and estimate its parameters analytically. More importantly, such a model

may be able to guarantee that given the information needed to compute its parameters, it delivers the best possible

ranking for every keyword query and data set. In other words, it will provide optimal ranking of answers for every

keyword query and data set, given enough information.

Researchers have addressed similar challenges in document retrieval by creating formal models, most notably

the probabilistic model and language model [29, 157]. However, it is ineffective to apply document ranking models

and techniques directly to keyword search over databases. In fact, document retrieval models assume that a term

refers to the same concept throughout the entire document [29, 104]. This assumption is usually false in databases.

For example, Figure 3.6 shows part of the movie database IMDB, www.imdb.com. Different occurrences of term

Godfather under the same movie at node 7 refer to different concepts: a company, a soundtrack, and a keyword about

7



the movie. To rank answers well, the query answering system must take these differences into account.

Researchers have extended the formal models of document retrieval for keyword search over databases [102, 116,

78, 34, 33]. However, these approaches use relatively ad-hoc heuristics to define their models [116, 78, 34, 33]. In

other words, it is not clear why their ranking methods should provide the highest utility to users, given the information

available to use in ranking. Hence, they are not guaranteed to perform reasonably well for arbitrary databases. To

address this problem, we propose a new formal model for keyword queries over structured data, called the Structured

Language Model (SLM). We show that SLM provides an effective ranking of answers for every query and data set,

given the information made available to it. Our justification is based on the probability ranking principle, which is a

widely accepted principle for ranking answers in an information retrieval system [109]. To the best of our knowledge,

no previous model for keyword queries over structured data guarantees such a property. For the case where no training

data is available, we show how to use widely accepted principles and heuristics in statistics and information retrieval

to estimate the parameters of SLM. We provide the results of extensive experiments using two real databases, a real

query log, and queries from a standard benchmark. Our results show that SLM’s ranking of answers is better than that

of previous keyword query systems.

1.5 Using Relationships in the Schema for Effective Ranking

Different types of relationships in a database have different degrees of importance for users. For instance, users who

submit the query Han data mining to a bibliographic data set are generally more interested in books about data mining

that are authored by Han, rather than the books on this subject that are edited by Han. A query answering system

should quantify the importance of these relationships for users, and give a higher rank to answers that represent more

important relationships between data items.

Previous methods model the data set as a large graph, and use heuristics such as the length of the shortest path

between data items to compute the importance of the relationship between them [26, 149, 9, 151, 54]. We show that

these methods are often misleading and return ineffective search results. We propose a novel approach that uses metrics

from information theory to quantify the importance of relationships between concepts in a schema. We propose novel

approaches to use this information to rank the answers of a keyword query, and show that this approach avoids the

pitfalls of the previous methods. Since the naive algorithms to compute these metrics are prohibitively inefficient, we

present efficient algorithms to compute them. Our extensive user study with two real-world data sets shows that our

ranking method is efficient at query time, and provides better ranking than previous approaches.
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1.6 No Query Left Behind

INEX SemSearch
ancient Rome era Austin Texas
Movies Klaus Kinski actor good rating Carolina
true story drugs addiction Earl May

Lynchburg Virginia
San Antonio

Table 1.1: Example difficult queries from INEX and SemSearch benchmarks

Figure 1.8: Our results for difficult query ancient Rome era, with query suggestions returned

Intuitively, if the user enters a vague and underspecified query, the top-ranking answers are not likely to meet her

needs. For example, Table 1.1 lists several queries from two recent benchmarking competitions [142, 133]. These

are hard queries, in the sense that no current query-answering method or potential ranking approach performs very

well for them. It is important for a keyword query system to recognize such queries and take appropriate action, such

as warning the user, reformulating the query, suggesting query completions, or diversifying the top-ranked answers.

For example, Figure 1.8 shows the ranked results for query ancient Rome era, using one of our implemented ranking

algorithms. Our algorithms determine that this is an ambiguous query, which guides the system to generate query

reformulation suggestions. On the other hand, if a keyword query interface employed these techniques for queries

with high-quality results, it could reduce user satisfaction and waste computational resources. Hence, it is helpful for

a keyword query interface to recognize underspecified queries and respond accordingly.

To the best of our knowledge, there has not been previous work on predicting or analyzing the difficulty of keyword
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queries over structured data. Researchers have proposed methods to detect difficult queries over unstructured text

document collections [132, 161, 122]. These techniques are not directly applicable to semi-structured data sets,

because they do not consider structure. For example, given the query Godfather, a keyword query system should

consider which concepts in the schema are most likely to correspond to the user’s information need: a movie title,

production company name, descriptive keyword, plot summary, etc. We show empirically that direct adaptations of

query difficulty prediction techniques for unstructured data are ineffective for structured data.

We analyze the characteristics of difficult queries over structured data and propose a novel method to detect such

queries, by taking advantage of the structure of the data to gain insight about the degree of the difficulty of a query

given the database. We used several popular and representative algorithms for keyword search over semi-structured

data to show that our approach predicts the degree of difficulty of a query efficiently and effectively.

1.7 Dissertation Outline

The rest of this dissertation is organized as follows. Chapter 2 discusses related work. Chapters 3 and 4 introduce

a series of novel keyword search and ranking algorithms that exploit the relationship between concepts in semi-

structured data to deliver effective results for keyword queries. Those chapters include our experimental results on the

effectiveness of these query answering techniques over real-world data sets.

Chapter 5 presents the concept of design independence and formally analyzes this property for current keyword

query interfaces over semi-structured data. The chapter introduces a novel keyword query answering approach for

semi-structured data that is provably design independent and explains our empirical results regarding its effectiveness

and design independence over real-world large scale data sets.

Chapter 6 introduces the Structured Language Model (SLM), which is a novel, principled, and formal query

answering model for structured data. This chapter provides methods to estimate the parameter of SLM, and presents

empirical results on the effectiveness of SLM over real-world databases and query workloads.

Chapter 7 studies the problem of detecting hard queries over databases and proposes novel models and efficient

and algorithms to effectively distinguish difficult queries over databases.

Chapter 8 formalizes the novel problem of optimizing the annotation and organization of data given limited re-

sources. It introduces efficient approximation algorithms to solve the problem.

Chapter 9 concludes the dissertation and points out our future research directions.
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Chapter 2

Related Work

2.1 Measuring the Effect of Adding Structure

Researchers have recognized that adding organization and structure to data sets reduces or eliminates current barriers

in effectively addressing users’ information needs [16, 32, 37, 42, 21, 115, 14]. Many systems use programs such

as named entity and relationship recognizers to annotate or extract concepts and relationships in unstructured data

[32, 37, 42, 21, 115, 23, 14, 55, 13, 39, 36, 135]. Our focus in this thesis is on determining what additional structure

will most improve the user experience, through better ranking of answers to queries.

Since information extraction over a large collection of text documents is time consuming, researchers have pro-

posed methods to detect and extract information from only a “promising” subset of documents or concepts. The intent

is that the targeted documents or concepts are more likely to contain relevant information and/or be interesting to users

[68, 71, 1, 70, 63, 74]. While the ultimate goal of information extraction is to improve the quality of query results, that

line of work has not directly measured the improvements, instead relying on intermediate metrics such as the number

of relevant documents organized or the “extractability” of a concept [63] as a proxy for query result improvement, and

assuming error-free extraction. This thesis builds on that line of work by directly exploring the relationship between

the cost of extraction, the choice of concepts to extract, the error rate of the information extraction modules, and the

quality of ranking of answers to subsequent keyword queries, as measured by precision at k. Our goal is to help guide

organizations as they decide where to expend their limited budgets for information extraction and annotation.

The previous work discussed above focuses on the effectiveness of queries over the extracted data only. This

amounts to an implicit assumption that extracting and/or annotating more text documents always leads to more effec-

tive search. This thesis shows that this is not true if query processing also considers unstructured data, which may

already satisfy the users’ information needs in its original form. We also show that the extraction of one concept or

entity may impact the effectiveness of search over other concepts, which violates an implicit assumption in previous

work.

To measure the cost of extraction, previous work focused on the number of documents processed. This thesis

considers a wider range of possible costs, such as the time and money to develop and maintain information extraction
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and annotation programs [117, 56]. Previous empirical studies suggest that the average life of some types of real-

world Web information extraction programs is about two months, due to the dynamic nature of the Web [56]. These

observations motivate our consideration of additional cost measures.

Researchers have considered the effect of the quality of online and ad hoc information extraction on the effective-

ness of a single SQL query [70]. This setting is simpler than for keyword queries, because a user’s information need

is clearly stated in a SQL query and the query answers do not have to be ranked, which simplifies the relationship

between query result effectiveness and information extraction quality. We build on this work by considering the more

complex setting of a large workload of keyword queries. In this setting, previous work has empirically examined the

effect of the quality of information extraction on the quality of query answers [24]. We add to this understanding by

providing a formal framework to capture and optimize this relationship.

Concept annotation and extraction can be aimed at recognizing named entities and proper nouns such as Michael

Jordan, or at disambiguating the meaning of terms found in dictionaries, such as Java, which can be a drink, an is-

land, or slang for coffee. Researchers have used word sense disambiguation techniques to improve the effectiveness

of keyword queries over unstructured text documents [83, 121, 113, 114, 123, 112]. We build on this work by pro-

viding a formal framework that can be used to explore the relationship between word sense disambiguation and the

effectiveness of keyword queries, while considering the cost of annotation and extraction.

2.2 Design Independence

The goal of our work on design independence is to ensure that a keyword query will receive the same answers in the

same order when the structure of the underlying data changes, as long as the two versions of the data are in some sense

equivalent. To the best of our knowledge, the issue of design independence has not been examined previously for

keyword queries over semi-structured data sets. In pursuing this line of inquiry, however, we build on previous work

from the database community that seeks to characterize what it means for two databases to have equivalent content.

In the context of data exchange and data integration, researchers have studied the information preservation and

query preservation properties of XML and relational schema mappings, i.e., translations from one schema version to

another [66, 45]. The goal there is to identify schema mappings where every SQL or XQuery query over the source

schema can be manually translated to a new query over the target schema. Our goal is different: we want to identify

mappings where the keyword query system can return the same answers without changing the query, and we propose

a new keyword query system that does this.

Researchers have experimented with providing logical data independence by representing a database as an instance

of one single “universal” relation [136], so that each database query maps to a query over the universal relation.
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Universal relation users do not need to know how to join relations to build the universal relation, but they must know

a query language, the attribute names, and which information is stored in which attribute. Thus a universal-relation-

based system is harder to use than a keyword query interface. Our work does not assume a common representation for

all databases, such as a universal relation. Instead, we provide keyword query answering approaches that can return

the same answers over different designs of the same database content. This provides more logical data independence

than a universal relation approach. For instance, if the database designer changes attributes’ names, our query system

will still return the same query answers over the old and new databases. Universal relation users would have to rewrite

their queries for the new database.

This thesis focuses on data-centric semi-structured data sets, rather than text-centric data such as HTML files with

section and paragraph tags, or XML files containing just long text fields. Researchers have analyzed the effect of

modifications of text-centric XML files, where the content of the output file is a subsequence of the content of the

input file [3]. These modifications may not preserve the content or structure of the XML file, which puts them beyond

the scope of the schema modifications we consider in this thesis.

2.3 Identifying Difficult Queries

Researchers have proposed methods to predict the difficulty of queries over unstructured text documents [132, 161,

59, 27, 138, 122]. Some methods use the statistical properties of the terms in the query to predict its difficulty, such as

the average inverse document frequency of the terms in the query and the number of documents that contain at least

one query term [59]. The common idea behind these methods is that the more discriminative the query terms are, the

easier the query will be. Empirical evaluations indicate that these methods have limited prediction accuracy [132].

A better and popular approach called the clarity score argues that an easy query is sufficiently distinctive to separate

the user’s desired documents from other documents in the collection [132, 27]. Hence, its top ranked answers belong

to very few topics, which are very likely to be the desired topics. On the other hand, the top ranked documents of a

difficult query describe a variety of topics, many of which are irrelevant to the user’s information need.

For example, consider a set of documents containing news stories. The top ranked documents for query European

financial crisis will be mainly about financial news, but the top ranked answers for query European crisis may cover

several additional topics, such as a political scandal, parliamentary showdown, or mysterious mass poisoning linked

to vegetable consumption. Thus European crisis is more difficult than European financial crisis.

The clarity score provides a better estimate of the difficulty of a query for text documents than clues such as

the number of terms in the query or the inverse document frequencies of its terms [132]. To measure the number

of topics in the top ranked document of a given query, some systems compare the probability distribution of terms
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in the returned documents with the probability distribution of terms in the whole collection. If these probability

distributions are relatively similar, the top ranked documents contain information about almost as many topics as the

whole collection, indicating that the query is difficult [132, 122].

Consider a database as a collection of information about entities and their attributes. From this point of view,

a “topic” in a database consists of entities that pertain to a similar subject. It is hard to define a formula that can

partition an arbitrary set of entities into topics, as it requires finding an effective similarity function for entities. Such a

similarity function would require domain knowledge and an understanding of users’ preferences [58]. For instance, in

practice, different attributes may have different degrees of impact on the similarity between entities. As a hypothetical

example, suppose movies The Bourne Identity and Mission Impossible 4 from the Internet Movie Database (IMDB)

share k terms in their genre attributes. Suppose Mission Impossible 4 and High School Musical 3 also share k terms

in their distributor attribute, which gives the distribution company for the movie. If the other attributes of these three

movies do not contain any common term, then without additional domain knowledge, Mission Impossible 4 and High

School Musical 3 would be seen as just as likely to be about the same subject and satisfy the same information need as

Mission Impossible 4 and The Bourne Identity. This thesis provides empirical results that confirm this argument, and

shows that a straightforward extension of clarity scores is a poor predictor of the difficulty of a query over structured

data.

To compute clarity scores, some systems use a precomputed set of topics and assign each document to at least one

topic in the set [27]. To estimate the difficulty of a query, those systems compare the probability distribution of topics

in the top ranked documents with the probability distribution of topics in the whole collection, and consider a query to

be difficult if the two distributions are similar. The drawback of this approach is that we need domain knowledge about

the data and its users to create an appropriate set of topics. It would be better to find an effective domain independent

approach to predict the difficulty of queries.

Some methods use machine learning techniques to learn the properties of difficult queries and predict whether a

new query will be difficult [152]. As these methods are intended for unstructured information, they have the limitations

described above when applied to structured data. Moreover, they depend on the existence of sufficient quantities of

good-quality training data, which is not always available in practice.

2.4 Effective Keyword Query Answering

Much research has focused on how to provide user-friendly query systems for semi-structured and structured data,

especially for keyword search [136, 69, 16, 2, 5, 9, 26, 57, 61, 60, 79, 82, 85, 87, 89, 119, 149]. Two recent surveys

offer an overview of the issues associated with supporting keyword queries over structured and semi-structured data
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[155, 19]. Effectiveness, i.e., delivering the desired answers in the desired order, is always a key issue [144, 19], and

is a central focus of this thesis. In the chapters that follow, we examine the previously proposed methods in detail.

In the case of unstructured information (text documents), formal probabilistic models justified by the probability

ranking principle have been found effective in deciding how to rank answers to keyword queries [29, 157]. We use

a similar approach to provide effective probabilistic models for ranking answers to keyword queries over structured

data.
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Chapter 3

Using Structural Information in Keyword
Search Over Semi-Structured Data

3.1 Background

In this chapter, we propose a ranking approach for keyword queries that exploits the presence of structure in semi-

structured data while avoiding overreliance on shallow structural details. This new ranking approach has higher

precision and recall and better ranking quality than previous approaches. More specifically, we make the following

contributions:

• We develop a theoretical framework that defines the degree of relatedness of query terms to XML subtrees, based

on coherency ranking (CR), an extended version of the concepts of data dependencies and mutual information.

• We show how CR avoids the pitfalls that lower the precision, recall, and ranking quality of previous approaches,

which rely on intuitively appealing but insufficiently principled heuristics that we analyze within the framework

of CR. In particular, we show that for a given set of content, the ranking produced by CR is invariant under

equivalence-preserving reorganizations of the schema, thus avoiding reliance on shallow structural details.

• We show how to deploy CR in XML query processing, using a two-phase approach. The first phase is a pre-

computation step that extracts the meaningful substructures from an XML database, before the query interface

is deployed. During normal query processing, we use the results of the precomputation phase to rank the sub-

structures in the database that contain the query keywords. Precomputation needs to be repeated after structural

changes in the database that introduce new node types, so that subtrees containing those types of nodes can be

correctly ranked. However, the results of the precomputation phase are not affected by non-structural updates

to the content of a populated database, so the precomputation phase rarely or never needs to be repeated as the

database content evolves.

• Since naive methods are prohibitively inefficient for the precomputation step, we present and evaluate optimiza-

tion and approximation techniques to reduce precomputation costs. Our experiments show that these optimiza-

Portions of this work has appeared in [126] and [129].
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tions improve precomputation performance by orders of magnitude while introducing negligible approximation

errors.

• Our extensive user study with two real-world XML data sets shows that CR is efficient at query time, and has

higher precision and recall and provides better ranking than previous approaches.

• For domains where information-retrieval-style statistics such as term frequency (TF) and inverse document

frequency (IDF) [110] or PageRank [11] can be helpful in ranking query answers, we show how to combine

CR with such measures to improve the precision of query answers. We provide an empirical study of how to

combine information-retrieval-style methods and CR.

Although our focus in this chapter is on XML keyword queries, CR could also be adapted to work with for

relational and graph databases (e.g., RDF, OWL, XML with ID/IDREF), and natural language queries. Our precom-

putation algorithm could also be adapted to for purposes other than keyword search, such as finding highly correlated

elements and patterns [76], or discovering approximate functional dependencies [67] in XML databases.

This chapter is organized as follows. Section 3.2 motivates the work by examining previous approaches. Section

3.3 introduces the basic principles of CR and Section 3.4 provides the mathematical tools to quantify CR scores.

Section 3.5 presents optimization and approximation techniques for database precomputation. Section 3.6 describes

our implementation and Section 3.7 presents empirical results.

3.2 Motivation

In this section, we analyze current approaches to XML keyword search, in terms of their precision, recall, and ranking

capabilities.

3.2.1 Basics

We model an XML database as a tree T = (r, V,E, L,C,D), where V is the set of nodes in the tree, r ∈ V is the

root, E is the set of parent-child edges between members of V , C ⊂ V is a subset of the leaf nodes of the tree called

content nodes, L assigns a label to each member of V − C, and D assigns a data value (e.g., a string) to each content

node. We assume no node has both leaf and non-leaf children, and each node has at most one leaf child; other settings

can easily be transformed to this one. Each node can be identified by its path from the root; e.g., node 5 in Figure

3.1 has path /bib/paper/title. Each subtree S = (rs, Vs, Es, Ls, Cs, Ds) of T is a tree such that rs ∈ Vs, Vs ⊆ V ,

Es ⊆ E, Ls ⊆ L, Cs ⊆ C, and Ds ⊆ D.
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Figure 3.1: DBLP database fragment, with DBLP’s native XML schema
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Figure 3.2: DBLP database fragment, with DBLP’s native XML schema

A keyword query is a sequence Q = t1 · · · tq of terms. A subtree S is a candidate answer to Q iff its content nodes

contain at least one instance of each term in Q. (The containment test can rely on stemming, stop words, synonym

tests, and other refinements, although our experiments do not use these.) The root of a candidate answer is the lowest

common ancestor (LCA) of its content nodes. When no confusion is possible, we identify a candidate answer by its

root’s node number.

The IR community has been developing retrieval techniques for text-centric XML [96], where structures are simple
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and structural information plays almost no role in retrieval. The metadata of such content (e.g., title, author, confer-

ence) is the primary target of keyword search in data-centric XML, and the techniques we propose in this chapter are

not intended for use with very long text fields, which we consider in the following chapter.

3.2.2 Current Approaches

The consensus in keyword search for relational and XML databases is that the best answers are the most specific

entities or data items containing the query terms [2, 5, 9, 26, 57, 61, 60, 79, 82, 85, 87, 89, 119, 149]. Thus in XML

databases, answers should include the most specific subtrees containing the query terms. The specificity of a subtree

depends on the strength of the relationship between its nodes. For instance, if two nodes merely belong to the same

bibliography, such as titles of two different papers, then the user will not gain any insight from seeing them together

in an answer. If the nodes belong to the same paper, such as the paper’s title and author, the user will surely benefit

from seeing them together. If the nodes represent titles of two different papers cited by one paper, the answer might

be slightly helpful.

The baseline method for XML keyword search returns every candidate answer ([119], with modest subsequent

refinements [57, 61, 150]). For instance, consider the DBLP fragment from www.informatik. uni-trier.de/ shown in

Figure 3.1. The answer to query Integration Miller is (rooted at) node 2. This approach has high recall but very

low precision. For example, for query Q1 = Integration EDBT, the baseline approach returns the desired answer of

node 16, but also the unhelpful root node. In Q2 = Integration VLDB for Figure 3.1, candidate answers node 9 and
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1 are unhelpful. The node 9 tree contains two otherwise-unrelated papers cited by the same paper, and the node 1

tree contains otherwise-unrelated papers in the same bibliography. A good approach should either not return these

answers, or rank them below the helpful answers.

Researchers have worked to boost the precision of the baseline method by filtering out unhelpful candidate an-

swers. One approach eliminates every candidate answer whose root is an ancestor of the root of another candidate

answer [124, 149]; the LCAs of the remaining candidate answers are called the smallest LCAs (SLCAs). The SLCA

approach relies on the intuitively appealing heuristic that far-apart nodes are not as tightly related as nodes that are

closer together. For Q1 in Figure 3.1, the SLCA approach does not return node 1. However, it does still return node 9

forQ2; as it does not rank its answers, the user will get a mix of unhelpful and desirable answers. SLCA’s recall is less

than the baseline’s: for query Q3 = XML Burt, nodes 3 and 15 are desirable; but since node 3 is an ancestor of node

15, node 3 will not be returned. MaxMatch [90] improves the precision of SLCA, by eliminating an SLCA answer if

it has the same root as another SLCA answer A, and its matched keywords are a subset of A’s matched keywords. But

it still has SLCA’s effectiveness problems: it still returns node 9 for Q2, and does not return nodes 3 for query Q3. It

does not rank its answers either.

XSearch [26] removes every candidate answer having two non-leaf nodes with the same label. The idea is that

non-leaf nodes are instances of the same entity type if they have duplicate labels (DLs), and there is no interesting

relationship between entities of the same type. We refer to this heuristic as DL. For instance, the subtree rooted at

node 9 does not represent a meaningful relationship between nodes 19 and 20, because they have the same label and

type. Therefore, node 9 should not be an answer to Q2. XSearch ranks the remaining answers by the number of nodes

they contain and their TF/IDF.

DL is not an ideal way to detect nodes of similar type. For example, nodes article and paper in Figure 3.2 have

different names but represent similar objects. As a result, for the query Q4 = SIGMOD XPath, DL returns node 11,

which is undesirable. DL cannot detect uninteresting relationships between nodes of different types, either; it does

not filter out node 1 for query Q5 = UBC Green in Figure 3.2. Further, sometimes there are meaningful relationships

between similar nodes, even in a database with few entity types. For example, DL does not return any answer for Q6

= Smith Burt in Figure 3.2, as it filters out node 3. XSearch’s distance-based ranking scheme does not help to avoid

DL’s pitfalls.

We also review the MLCA approach [87] used to retrieve meaningful relationships from XML documents with a

natural language query interface [88]. Similar to DL, MLCA assumes that only the closest nodes of different types

are meaningfully related. For instance, node 16 in Figure 3.2 will not be associated with node 15 because node 16 has

a different node with the same label (name) closer to it. Therefore, the MLCA approach successfully filters out the

undesirable answers for queries like Q5.

20



However, MLCA has many of the DL and SLCA problems. MLCA does not identify uninteresting relationships

between nodes of the same type; e.g., it returns undesirable node 1 for query Q7 = Smith Green. Second, it can return

undesirable answers when a child is null due to being optional. For example, consider Figure 3.1, but with node 10

null. For query Q8 = XML Design VLDB, MLCA returns the undesirable tree rooted at node 1 and including nodes

8 and 6 in Figure 3.1. Third, MLCA is not appropriate to use with databases that contain instances of more than

one entity type. Consider Figure 3.2 with proceedings’s title renamed to venue. For the query editor XML Query,

MLCA returns the subtree rooted at the root of the database containing nodes 4 and 13. Since there is no meaningful

relationship between nodes 13 and 4, MLCA should not return this answer. These precision problems are important,

as MLCA does not rank its answers. Fourth, MLCA misses desirable answers when similar nodes have a meaningful

relationship. In Figure 3.3, MLCA finds no interesting relationship between nodes 9 and 17, as there is another node

with the label title closer to node 17. To improve precision, CVLCA combined MLCA and DL into one approach

[85]. But the combination still has the precision problems described above, and lower recall than either approach

alone. [85] also introduced another approach, called VLCA. VLCA uses the DL heuristic; therefore, VLCA has the

same problems as the XSearch method. CVLCA and VLCA do not rank their returned answers.

XRank [57] finds the LCAs using a modest modification of the baseline approach and uses a PageRank-based

approach to rank subtrees. It has the same precision problems as the baseline method. Also, PageRank is effective

only in certain domains and relationships and is not intended for ranking subtrees. For instance, all the Proceedings

tags in Figure 3.1 have the same PageRank.

XReal [6] filters out entity types that do not contain many of the query terms. Then it ranks subtrees higher if

they and their entities’ types have more of the query terms. For instance, DBLP has few books about Data Mining,

so XReal filters out all book entities when answering the query Data Mining Han – even Han’s textbook. XReal

does not consider the relationship between nodes of a subtree when it ranks its answers, so irrelevant subtrees can be

ranked very high. For query Q10 = SIGMOD 1997, XReal ranks the subtree rooted at node 3 in Figure 3.2 higher than

the 1997 papers with booktitle SIGMOD. This is because SIGMOD occurs very frequently in subtrees rooted at cite.

Even if we ignore the importance of the cite entity type in XReal ranking, XReal still ranks papers published in 1997

below papers that cite multiple articles and papers published in 1997. In general, IR ranking techniques do not take

advantage of XML’s structural properties effectively.

Another method is to determine the interesting entity types manually and return only the instances of these entities

that contain the keyword query. For instance, assume that DBLP contains only entity types paper and proceedings.

Then, this method returns only the subtrees rooted at paper and proceedings nodes that contain the input keywords.

However, we still have to rank the candidate answers, as usually more than one instance of each entity type match

the keyword query. For example, both papers rooted at node 2 and 3 are candidate answers for the query XML VLDB
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in Figure 3.1. Nevertheless, the desired answer is the paper rooted at node 2. Furthermore, this method is domain

dependent and appropriate only for the databases that consist of relatively small number of entity types.

The first key shortcoming of all these methods is that they filter out answers instead of ranking them and they rely

on very shallow structural properties to rank answers. As relevance is a matter of degree, good ranking schemes are

generally more effective than filtering [109]. Since these methods rely on ad hoc heuristics, they are ineffective for

many queries, as our experimental results illustrate. Second, these methods are dependent on the current schema of

the database. If the schema is reorganized in an equivalence-preserving manner, their query answers may change.

3.3 Coherency-based Ranking

In this section, we propose an approach that uses deep structural information to rank the candidate answers instead

of filtering them. First, we analyze previously proposed structural properties that could be used for this purpose

in XML, relational, and graph databases and show they deliver poor ranking. We argue that the meaningfulness
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and interestingness of a candidate answer depends on the types of its nodes and their relationships. We show that

the interestingness of the relationship between two entity types can be measured by the information content and

correlation between its nodes. We also show that our proposed approach does not have the problems of the previously

proposed approaches and delivers better ranking. Furthermore, we argue that as this approach takes advantage of

deeper structural information, it provides almost the same answers for different designs of the same database.

Current XML keyword search systems implicitly assume that all relationships between nodes in a candidate answer

are equally relevant to the input queries [26, 6, 57]. The distance between nodes n and m is the number of nodes in

the path between n andm. Thus, they rank higher the subtrees where the nodes containing query terms are less distant

from each other. This heuristic is too ad hoc to work well in general: consider the subtrees rooted at cite and bib in

Figure 3.1, which contain paper titles. Te query terms in these two subtrees are the same distance apart,, but in a large

bibliographic database with papers on many topics, such as the original DBLP data set, the relationship between the

titles under cite is more meaningful than between the titles under bib. Even in a small bibliographic database where all

the papers under bib are on the same narrow topic, this rule will still hold for citations of papers that are themselves

titles under bib, though it may be violated for citations of external papers. Our work is targeted toward large diverse

data sets, where ranking keyword query answers is especially important and challenging. Also, our experiments show

that many candidate answers have the same maximum distance. This is particularly important because flat XML

databases (like the original version of DBLP) are proliferating, due to the use of semantic tagging of text corpora

using information extraction codes [35]. Most candidate subtrees have the same distance in flat XML databases, so

we need to be able to rank subtrees with the same distance between query terms.

One might think that the subtrees that occur deeper in the database (i.e., where the root of the subtree is further from

the DB root) present more meaningful relationships. However, this method has the same problems as the distance-

based ranking. For instance, node 2 is at a higher level than node 9 in Figure 3.1, but node 2’s subtree represents a

more meaningful relationship (information about one paper) than node 9’s (information about different papers cited

by the same paper).

Researchers have also considered the problem of how to rank answers to keyword queries in relational databases

[9, 2, 5, 89, 82]. These approaches create a join tree whose tuples contain the query terms, and rank the tree based

on its maximum distance. The ranking can also consider DBA-specified weights on the edges in the join tree [5, 82];

however, we seek an automated approach.

Researchers have found that different types of relationships have different degrees of importance to the users in

relational and graph database keyword search systems [9, 151, 54]. They suggest that the fewer instances of type

B associated with each instance of type A, the stronger their relationship is. One approach ranks a tuple higher if

many tuples link to it, but it links to just a few [9]; the same idea can be used for graph databases [54]. Another idea
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employs the notion of join selectivity to measure the degree of closure among a set of tables [151]. We call this group

of methods association based approaches. We can also extend these approaches to work with the semi-structured data

such as XML. For instance, this approach can recognize that the relationship between two titles under bib in a large

bibliographic database covering multiple topics (such as the original DBLP database) is more meaningful than the

relationships between titles under cite. This is because each title under bib is associated with many more other titles

than the number of titles associated with a title under cite. This heuristic improves the ranking quality of distance

based approaches; however, as explained in the following paragraphs, these heuristics are misleading.

First consider Figure 3.6 which illustrates some information about movies and TV shows from www.imdb.com.

Node type location shows the filming locations of a movie. The number of actors in each movie greatly exceeds the

number of its filming locations on average, considering all instances of the original IMDB data set. The fragment

shown in Figure 3.6 has twice as many number of actors as filming locations per movie, which is typical of the

IMDB data set. Hence, according to association based heuristics, the relationship between title and location is more

interesting to most users than the relationship between title and actor. Therefore, for query Love Fox these methods

rank the movie subtree on the right higher than the movie subtree on the left in Figure 3.6. However, we argue that

the relationship between the title of a movie and its actor(s) is more interesting to most users than the relationship

between its title and its filming location(s). The main search query form on the home page of the IMDB web site

(www.imdb.com) enables users to search on several attributes of a movie, such as titles and actors. However, it does

not query the database based on the filming locations of a movie. There is a query form in the bottom of another page

of the web site (www.imdb.com/search) that enables users to find movies based on their filming locations. Even in that

form, the filming location has been placed after other attributes. It is reasonable to assume that the developers of the

IMDB web site put the more important and more frequently queried attributes on the main query form of the database.

Thus, the relationship between the title of a movie and its actor(s) is more important to most users of IMDB than the

relationship between the title of a movie and its filming location(s). Of course, in some cases users may be interested

in the filming locations of a movie, but they are in the minority and our goal is to deliver the best possible ranking for

the majority of users. Interestingly, distance-based approaches will give the same rank to both candidate subtrees for

query Love Fox.

As another example, consider the fragments of DBLP shown in Figure 3.4. If we compare the relationship of

title with author and publisher in Figure 3.4, we see that there are more authors associated with a title than there are

publishers for the title on average. The same argument holds for the original DBLP data set, as there is more than one

author for each paper but only one publisher per incollection (i.e., an article in a book) on average. Hence, association

based approaches assume that the relationship between title and publisher is more important than the relationship

between title and author. Thus, they rank the right incollection subtree higher than the left one for query Q11 = MPI
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Addison. However, we argue that the relationship between title and author of an incollection is more interesting than

the relationship between its title and its publisher. Developers of graphical user interfaces place the most queried

database fields in the query forms. They make these decisions based on user feedback, query logs, and their own

experiences. The DBLP data set has some query forms that perform search over specific fields, where users choose

their field(s) of interest before submitting their queries at dblp.uni-trier.de, dblp.mpi-inf.mpg.de/dblp, and dblp.l3s.de.

All these forms support searches based on author names, but none of them support searches via the publisher fields.

They also show author as a facet when returning the candidate answer, so that users are able to filter the results based

on specific author(s). However, they do not show the publisher field as a facet. This indicates that the publisher field

is less interesting to most DBLP users than author. In other words, the relationship of a book or article’s title to its

author is generally more relevant for query answering than the relationship between the book or article’s title and its

publisher. Of course, there are exceptions to this rule (e.g., an author looking for a potential publisher for her book),

but it holds in general for large bibliographic databases.

Note also that distance-based approaches will give the same rank to the candidate subtrees for query Q11, as both

candidate answers have the same maximum distance. Consider the redesign of Figure 3.4 shown in Figure 3.5. The

new design categorizes articles and books based on their authors, which makes the title closer to the publisher than it is

to the article’s author – even though the new design is still normalized [4, 153]. Thus, distance-based ranking methods

rank the candidate subtree on the right higher than the candidate subtree on the left for query Q11 in Figure 3.5.

A second problem with association based methods is that these measurements are not normalized by the number

of distinct values for each type. For example, suppose that type B has just three values. Having a distinct value of

type A associated with just two values of type B does not mean that the relationship is very meaningful. Yet having

the same association when B has over 100 distinct values could mean that the relationship between the two is very

close.

A third problem is that the join-selectivity method does not address the case where the join path does not cover

all the tuples in the relations. For instance, consider a universitydatabase where each professor advises a few students

and a few professors offer on-line courses for hundreds of students. Since the on-line course join path does not cover

all tuples in the faculty relation, its join selectivity can be as small as or even smaller than the advisor relationship.

Finally, these approaches do not rank different candidate tuples that come from the same table. These problems,

plus the lack of certain other forms of normalization discussed later, mean that these heuristics will not rank answers

well in general.

The right intuition is that type A is more related to type B if each instance of type A is associated with relatively

few instances of type B and each instance of type B is associated with relatively few instances of type A. In other

words, from the value of one type we can predict the value of the other. The closer this association is between the
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types in a subtree, the more the subtree represents a meaningful and coherent object. This intuition can be generalized

to more than two types, and can be normalized based on the number of values of each type. We can use this idea

to measure the strength of the relationships in a candidate answer and rank the candidate answers according to these

strengths. We will show how to quantify these relationships in Section 3.4. We will measure the correlation between

node types, considering all instances of the node types in the complete underlying database. Using this information,

we rank the most highly correlated candidate answers first. We call this approach coherency ranking (CR).

CR correctly ranks the subtree on the left higher than the subtree on the right in Figure 3.4 forQ11 = MPI Addison,

as the number of articles and books a publisher publishes is far more than the number of the publications of an author

(considering all the instances in the original DBLP database). Thus, knowing the name of an author predicts the title

of its publications more precisely than knowing the publisher of an article or a book. CR also gives more importance

to the relationship between title and actor than the relationship between title and location in Figure 3.6. CR handles

the cases where association based methods deliver acceptable ranking. For instance, according to CR the relationship

between titles under cite is more meaningful than the relationship between the titles under bib in the original DBLP

database whose fragments shown in Figure 3.2.

CR gives the intuitively desirable ranking for all the queries considered in Section 3.2. The title of a paper is

associated with only one booktitle and there are on average fewer than 50 papers in each proceedings in the original

DBLP database. However, each citation is co-cited with around 40 other citations on average in the original DBLP

database. Thus, title and booktitle are more correlated than two citations in the same paper. Thus, CR ranks the

candidate answer rooted at node 2 first and the candidate answer rooted at node 9 second for Q2 = Integration VLDB

in Figure 3.1. It also ranks the candidate answer rooted at node 1 last. As we will discuss in Section 3.4, users can

set the minimum acceptable amount of correlation for the returned candidate answers. If this value is set to be greater

than zero, CR will not return any spurious candidate answers such as the candidate answers rooted at the root of the

database. CR delivers a similar ranking for Q4 = SIGMOD XPath and ranks a paper about “XPath” in “SIGMOD”

higher than the subtree rooted at node 11 in Figure 3.2. CR also ranks a paper published by an author named “Green”

and affiliated with “UBC” higher than the candidate answer rooted at the root of the database in Figure 3.2 for Q5 =

UBC Green. This is because each institute has a limited number of authors and each author is affiliated with a few

institutes, but all authors and institutes in the original database are associated with each other.

The correlation between each pair of author and editor in the original DBLP database is very low, as almost every

author in the database can be associated with each editor and vice versa. Thus, CR recognizes that the candidate

answer rooted at node 1 shown in Figure 3.2 is not a meaningful answer to Q7 = Smith Green and will not return

it or will return it as the last candidate answer in the ranked list of answers. Even if node 10 in Figure 3.1 is null,

CR still omits or ranks last the subtree rooted at node 1 for Q8 = XML Design VLDB. This is because considering
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all information in the original DBLP database, the correlation of title of one paper and booktitle of another paper

whose only relationship is that they are placed in the same database is very low. CR will deliver a similar result for

Q9 =editor XML Query in Figure 3.2. Each booktitle is associated with only one year value, as each conference in the

DBLP database is held once per year. Each year value is associated with many booktitle values in DBLP. However,

each year value is associated with many more papers and even more papers that are cited by these papers. On the other

hand, each paper can be cited by other papers published in different years. Thus, the booktitle and year of a paper are

more correlated than its year and its cited papers. Hence, CR ranks a paper that is published in “1997” in “SIGMOD”

higher than the candidate answer rooted at node 3 in Figure 3.2 for query Q10 = SIGMOD 1997.

As for recall, unlike previous methods, CR correctly returns both nodes 3 and 15 forQ3 = XML Burt in Figure 3.1,

and returns node 3 as an answer to queryQ6 = Smith Burt in Figure 3.2. CR’s recall will be equal to that of the baseline

approach and higher than that of all other approaches discussed earlier, as long as the minimum correlation threshold

is close to zero. Users of approximate retrieval systems sometimes like to see as many relevant answers as possible

(i.e., high recall) and sometimes they are interested in only the most relevant answers (i.e., high precision) [96]. CR

enables users to control the tradeoff between the quantity (recall) and quality (precision) of the returned answers.

The idea of CR is close to the concept of functional dependencies (FDs) and approximate FDs [65, 31], which

have been used to distinguish fine-grained entities in a database [95]. Researchers have extended the concept of a FD

to apply to XML data [4, 153]. However, two obstacles prevent us from using FDs here. First, FDs are unidirectional,

and we need a bilateral relationship. Second, FDs are defined on two specific sets of attributes. For instance, to identify

the most meaningful subtrees, should we use the FD title→ booktitle author, author→ booktitle title, or another FD?

We remedy this problem using an extended version of mutual information.

Mutual information and other statistical measurements are used in the data mining community to find correlated

data items [10, 94, 76, 100]. However, these approaches typically consider only binary variables, and our variables

(XML types, or paths) are usually not binary. Second, these approaches look for sets of elements whose correlation

exceeds a specific threshold; the exact value of the correlation is not of interest. However, to correctly rank query

answers, we may need to compute exact correlations. Third, their measurements are upward closed, meaning that if

a set of variables is correlated, at least one subset of them is correlated [10, 94, 76, 100]. This makes the correlation

easy to compute. But in keyword search, we may prefer one answer over another that contains it, even if the larger tree

has a higher correlation. Thus our measurement should not be upward closed. Third, these approaches redefine the

correlation measurement to make it easier and faster to compute. For example, one approach only considers mutual

information among pairs of variables in a set, rather than among all possible subsets of the set [94]. But we must

consider the correlation among all nodes in a subtree, not just pairs. For example, consider a bibliographic database

with conference names, years, and paper titles. The correlation between conference names and years will be low, as
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each conference is held in multiple years and each year has many different conferences. But the correlation between

the three types conference name, year, and title is quite high, as the conference name and year together are associated

with only a small set of paper titles. Overall, we conclude that we cannot simply apply previous work from the data

mining community to rank candidate answers.

Mutual information has been used to improve retrieval effectiveness for unstructured and semi structured docu-

ments [73, 107, 72, 118]. Jones et al. and Petkova et al. use mutual information between terms to extract phrases in

unstructured and semi-structured documents. Petkova et al. also use information gain to discover the correct ancestral

order among tag labels in ambiguous XML structural queries and refine the queries. Schenkel and Theobald use mu-

tual information to expand the structural queries over XML documents using relevance-feedback techniques. Jang et

al. use mutual information to eliminate query ambiguities in cross-language information retrieval. These approaches

consider mutual information between terms, rather than between schema elements. Our work is orthogonal to these

methods and can use these methods to improve its effectiveness.

As shown in our experiments, in application domains where PageRank or IR ranking techniques are applicable,

they can be combined with CR by weighting and adding the ranks suggested by each approach. As mentioned earlier,

our techniques in this chapter are for data-centric XML, not text-centric XML. Nodes with a lot of text, such as the

body of an article, are likely to be very highly correlated with certain other fields. The metadata of such content (e.g.,

title, author, conference) is the primary target of keyword search in data-centric XML, and the techniques we propose

in this chapter are not intended for use with very long text fields.

3.4 Measuring Coherency

In this section, we develop a ranking framework for XML query answers, based on the concept of CR. For brevity, we

will use the term DB to refer to XML DBs. Also, in this section we ignore all non-content leaf nodes, as they do not

affect rankings.

3.4.1 Preliminaries

Consider the depth-first traversal of a tree, where we always visit the children of a node in alphabetic order of their

labels. Each time we visit a node, we output its number (or content); each time we move up one level in the tree, we

output -1. The result is the unique prefix string for that tree [156]. For instance, the prefix string for the subtree rooted

at node 4 in Figure 3.1 is 4 11 MIT -1 -1 12 Miller -1 -1.

Trees T1 and T2 are label isomorphic if the nodes of T1 can be mapped to the nodes of T2 in such a way that node

labels are preserved and the edges of T1 are mapped to the edges of T2. A pattern concisely represents a maximal set
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of isomorphic trees (its instances). The pattern can be obtained from any member of the set, by replacing each node

number in its prefix string by the corresponding label. For instance, pattern bib paper title -1 -1 corresponds to trees 1

2 5 -1 -1 and 1 3 8 -1 -1 in Figure 3.1. P1 is a subpattern of P2 if P1’s trees are all subtrees of P2’s trees.

Definition 3.4.1. A tree S = (r, Vs, Es, Ls, ∅, ∅) is a root-subtree of tree T = (r, V,E, L,C,D) if S is a subtree of

T and each leaf node of S is the parent of a leaf node of T .

For instance, 1 2 5 -1 6 -1 -1 is a root-subtree in Figure 3.1. If the root-subtree is a path, we call it a root-path. Each

path from root to leaf in a root-subtree is a root-path, so each root-subtree contains at least one root-path. Intuitively,

the value of a root-subtree is the content that was pruned from its leaves. For example, the value of 1 2 5 -1 6 -1 -1 is

(“XML Integration”, “VLDB”).

Definition 3.4.2. Let S′ be a subtree of T , and let S be a subtree of S′, such that S is a root-subtree of T and every

leaf of S′ is also a leaf of T . Let c1, . . . , cn be the list of content nodes encountered in a depth-first traversal of S′.

Then (c1, . . . , cn) is the value of S.

Every maximal set of isomorphic root-subtrees in a tree T corresponds to a pattern. Each root-subtree pattern includes

one or more root-path patterns, corresponding to the root-paths of its root-subtrees. The size of a root-subtree pattern

is the number of root-path patterns it contains. The values of a pattern are all the values of its instances. The only

patterns we consider hereafter are those of root-subtrees.

Information theory allows us to measure the association between the values of random variables in tables [28].

We now translate information theory metrics to apply to XML. Each root-path pattern p represents a discrete random

variable that takes value a with probability P (a) = 1
ncount(a), where count(a) is the number of instances of p with

value a and n is the total number of instances of p in the DB. In Figure 3.1, if p = bib paper title -1 -1, P (p =“XML

Design”) = 1
2 . Since a root-subtree pattern defines the association between the patterns of its root-paths, the root-

subtree pattern represents the joint distribution of random variables. For instance, the root-subtree pattern t1 = bib

paper title -1 booktitle -1 -1 represents an association between root-path patterns p1 = bib paper title -1 -1 and p2 =

bib paper booktitle -1 -1. The probability of each value of a root-subtree pattern can be defined in the same manner

as the probability of each value of a root-path pattern. For example, the probability of P (p1 =“XML Design”,

p2 =“SIGMOD”) = 1
2 in Figure 3.1. Generally, one value of a root-path can be associated with one or more values

of other root-path(s). Before showing how to apply information-theoretic concepts to patterns, we quickly review the

traditional definitions of entropy and joint entropy.

Definition 3.4.3. Given a pattern p that takes values a1, . . . , an with probabilities P (a1), . . . , P (an) respectively, the

entropy of p is H(p) =
∑

1≤j≤n P (aj) lg (1/P (aj)).
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Intuitively, the entropy of a random variable indicates how predictable the variable is. The entropy is minimal

(zero) when all instances of p have the same value, and maximal (lg n) when no two instances of p have the same

value. When the pattern is not a root-path pattern, we refer to its entropy as joint entropy as well, because it explains

the behavior of a joint random variable. We refer to the joint entropy of pattern t both by H(t) and H(p1, . . . , pn)

where p1, . . . , pn are the root-path patterns of t. The properties of XML entropy are the same as for tabular data,

except for the following property:

Proposition 3.4.4. If root-tree pattern t has exactly one root-path pattern p, then H(p) ≤ H(t).

This property does not hold for traditional joint entropy, where H(x, x) = H(x).

In the context of the relational model, researchers [31] have defined FDs based on conditional entropy [28]. We

extend conditional probability and conditional entropy to apply to XML variables:

Definition 3.4.5. Given pattern t containing two root-path patterns p1 and p2 that take values ai, 1 ≤ i ≤ n and

bj , 1 ≤ j ≤ m. respectively, the conditional probability of p1|p2 is: P (p1 = ai|p2 = bj) = P (p1=ai,p2=bj)
P (p2=bj)

.

Definition 3.4.6. Given pattern t including two root-path patterns p1 and p2 that take values ai, 1 ≤ i ≤ n and

bj , 1 ≤ j ≤ m respectively, the conditional entropy of p1|p2 is:

H(p1|p2) =
∑
i

∑
j

P (p1 = ai|p2 = bj) lg (1/P (p1 = ai|p2 = bj)).

The conditional entropy of two root-path patterns is the entropy of the first one given information about the value

of the second. The next property follows from the properties of conditional entropy in the original formulation of

entropy:

Proposition 3.4.7. Given pattern t with two root-path patterns p1 and p2, H(p1|p2) = H(p1, p2)−H(p2). Further-

more,

H(p1, . . . , pn) =
∑

1≤i≤n

H(pi|p1, . . . , pi−1).

3.4.2 Coherency Ranking & NTC

Mutual information [28] measures the correlation between two random variables:

Definition 3.4.8. The mutual information of random variables A and B that take values ai, 1 ≤ i ≤ n and bj , 1 ≤

j ≤ m respectively, is:

M(A,B) =
∑

1≤i≤n

∑
1≤j≤m

p(ai, bj) lg (p(ai, bj)/p(ai)p(bj)). (3.1)
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where variable A,B takes value (ai, bj) with probability p(ai, bj), for 1 ≤ i ≤ n and 1 ≤ j ≤ m.

We have:

M(A,B) = H(A) +H(B)−H(A,B). (3.2)

We extend the traditional definition of mutual information to apply to XML.

Definition 3.4.9. The mutual information of a pattern t with size two is

M(t) =
∑

1≤i≤n

∑
1≤j≤m

P (ai, bj) lg (P (ai, bj)/P (ai)P (bj)) (3.3)

where t takes value (ai, bj) with probability P (ai, bj), for 1 ≤ i ≤ n and 1 ≤ j ≤ m.

According to the definition of the values of a pattern, the ais and bjs are the values of the root-paths of pattern

t. For instance, in Figure 3.6 pattern imdb movie title -1 locations location -1 -1 -1 takes values ((“For Love of

Money”,“New York”),(“Big Love”,“Fox Hills”)). Therefore, we have P (“For Love of Money”,“New York”) = 1/2

and P (“Big Love”,“Fox Hills”) = 1/2. Also, we have P (“For Love of Money”) = 1/2, P (“Big Love”)= 1/2, P (“New

York”) = 1/2, P (“Fox Hills”)= 1/2. Thus, the value of mutual information for this pattern is 1.

Mutual information measures the reduction of uncertainty in the values of one root-path pattern that comes from

knowing the value of the second one. Mutual information is minimal when each value of one root-path pattern is

associated with every value of the other root-path pattern, and is maximal when each value of one root-path pattern

is associated with just one value of the other and vice versa. For instance, the mutual information of pattern bib

paper title -1 author -1 -1 whose paths are bib paper title -1 -1 and bib paper author -1 -1 is higher than the mutual

information of bib paper booktitle -1 author -1 -1 whose paths are bib paper booktitle -1 -1 and bib paper author -1

-1 in Figure 3.1. Therefore, the relationship between the first two variables is stronger.

The next proposition follows immediately from the properties of mutual information, and is useful in computing

mutual information.

Proposition 3.4.10. Given pattern t containing root-path patterns p1 and p2, we haveM(t) = H(p1)+H(p2)−H(t).

To compute the mutual information of t, we consider only the instances of the root-path pi that are subtrees of the

instances of the root-pattern t. Notice that with non-XML mutual information we have M(A,A) = H(A), but as

redefined for XML data, we have M(t) ≤ H(p), where t includes only one root-path pattern p.

Total correlation [143] is closely related to mutual information; it measures the correlation between more than two

random variables.
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Definition 3.4.11. The total correlation of the random variables A1, . . . , An is:

I(t) =
∑

1≤i≤n

H(A1)−H(A1, . . . , An). (3.4)

We extend this definition to apply to XML DBs:

Definition 3.4.12. Let p1, . . . , pn be the root-path patterns of pattern t. The total correlation of t is:

I(t) =
∑

1≤i≤n

H(pi)−H(p1, . . . , pn). (3.5)

Total correlation does not consider the possibility that a pattern may have higher entropy just because it has more

values. Similarly, total correlation goes up when one root-path pattern has more diverse values, even if it is not

correlated with the other root-path patterns. For example, in Figure 3.3, consider patterns t = bib proceedings editor

name -1 -1 title -1 -1 -1 and t′ = bib proceedings paper author name -1 -1 title -1 -1 -1. Intuitively, the relationship

between a paper and its author is as close as between a proceedings and its editor. But the root-paths ending with

paper title and paper author have more values than those ending with proceedings title and proceedings editor, so

I(t) > I(t′). NTC addresses this, in a manner similar to that used to normalize mutual information [147]. We define

the normalized total correlation (NTC) of t as:

Î(t) = f(n)× (
I(t)

H(p1, . . . , pn)
). (3.6)

It can be tricky to compare patterns of very different sizes. As discussed earlier, adding new nodes to a pattern that

already contains all the query terms should not improve its rank. NTC solves this problem by dividing the total

correlation by the sum of the entropies of all root-path patterns, thereby penalizing sets with more root-path patterns.

Nonetheless, the range of total correlation values for n > 1 root-path patterns is [0, n−1n ], as the maximum total

correlation for n root-path patterns is reached when they all have the same entropy as their root-subtree pattern. Thus

as n grows, the total correlation may also increase, which may penalize small candidate answers during ranking. NTC

removes this bias by including a factor f(n) that is a decreasing function of the answer size (number of root-path

patterns) n, for n > 1. Based on the observations above, we can stipulate that as n grows, f(n) must decrease at

least as fast as n
n−1 . Through empirical observation we found that f(n) = n2/(n− 1)2 performs well in practice. A

systematic exploration of the options for f(n) is an interesting area for future work.

CR uses NTC to rank subtrees and filter answers for XML keyword queries, as follows. First we extend each

candidate answer to be a root-subtree, by adding the path from the root of that answer to the root of the DB. Then we

rank the candidate answers in the order given by the NTC of their root-subtrees’ patterns. (We rank patterns with only
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one root-path highest, in descending order of entropy, as our f(n) function is undefined for them.) If desired, one can

set a low thresholdNTCmin ≥ 0 appropriate for the domain, and include only candidate answers whose patterns have

an NTC greater thanNTCmin. With a good ranking function such as NTC, one does not really need this cutoff, as the

worst answers appear last; but its use can improve the user experience by removing particularly unhelpful candidate

answers.

For example, consider the query XML SIGMOD in Figure 3.1. When computed over all of DBLP, the NTC of the

title of a paper and its booktitle is 1.47, so node 3 will be returned as an answer. The subtree that connects nodes 18

and 10 will be returned as the second answer (NTC = 0.42), and the root node will be ranked last (NTC = 0). For Q2

= Integration VLDB in Figure 3.1, pattern bib paper cite paper title -1 -1 -1 -1 paper booktitle -1 -1 has NTC = 0; its

candidate answers will be ranked last. Similarly, bib paper title -1 booktitle -1 -1 (NTC = 1.47) outranks bib paper

cite paper title -1 -1 paper booktitle -1 -1 -1 -1 (NTC = 0.84). CR also correctly differentiates between the relationship

of nodes 15 and 16 and nodes 2 and 3 in Figure 3.1, and ranks the former higher because the NTC of two papers cited

in the same publication is greater than the NTC of two papers listed in the same bibliography. In this chapter, we set

NTCmin = 0 unless otherwise noted, which is an extremely conservative setting.

NTC sheds light on the behavior of previously-proposed heuristics. In SLCA, the intuition is that closer nodes are

more strongly correlated. DL assumes that repeated root-path patterns will have lower correlation than non-repeated

root-path patterns in a subtree. MLCA assumes that two root-path patterns that are closer together will be more

correlated than two that are far apart.

3.5 Precomputing Coherency Ranks

NTCs can be computed offline in advance with a populated version of the DB, and then used at query time. In this

section we introduce methods to make this precomputation efficient.

A naive approach to finding NTCs for all DB patterns is to generate all patterns, find all their instances, then

compute the instances’ NTCs. We can generate all patterns using existing data mining algorithms to generate candidate

subtrees in a forest [156, 140, 103]. These works find trees in the forest that have at least one subtree isomorphic to

the candidate; but to compute its NTC, we must find all instances of a pattern. To do this, we can express a newly

found pattern as an XML twig query and use existing algorithms to find its instances [12, 92].

Unfortunately, the naive method is so inefficient as to be impractical. First, this method generates and finds all

types of subtrees, but we only want root-path subtrees, and there are relatively few root-paths in XML DBs [22]. Twig

query algorithms examine each node in the DB, while we only need to consider root-paths to find all the instances

of a root-tree pattern. Second, to compute the entropy of a pattern, we will have to find and store all its values in a
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table-like data structure and then scan the stored values. This table can be much larger than the DB itself. If the XML

file is huge and has a deep nested structure, the size of the table could be prohibitively large. For example, consider

the size of such a table for the pattern bib paper cite paper title -1 -1 -1 cite paper title -1 -1 -1 -1 in Figure 3.1.

Third, each NTC must be computed separately; there is no upward closure property [10] to help us, no general

way to detect that NTC is below a cutoff threshold [100], no way to use sampling [67] (because the number of distinct

values is quite close to the number of instances for some patterns), and no way to use XML query selectivity estimation

techniques (because they assume that the conditional entropy between root-paths is zero). Fourth, as there is no limit

on the size of a candidate pattern, the process of finding all patterns in a large database can take an extremely long

time. To address this problem, the tree mining methods use the number of instances of a pattern as a way to prune

unlikely candidate answers. Unfortunately, we do not expect our target patterns to be relatively infrequent. There

could be very few infrequent patterns, due to noisy data. Finally, these methods scan the whole database to find the

instances of each pattern, which is very costly.

We use four approaches to speed up precomputation. First, we exploit the typical characteristics of users’ key-

word queries. Second, we use properties of NTC and entropy to reduce computation. Third, we use compressed

indexes to save memory space and speed up pattern generation. Fourth, we introduce methods to estimate entropy and

approximate NTC efficiently. We discuss each of these below.

Keyword Search Parameters. Previous studies of internet document retrieval have shown that the average query

has roughly 2.5 keywords [145]. As users want specific answers, we expect the number of nodes in the user’s ideal

answer to be quite low. That is, if the query has many keywords (e.g., a long paper title), probably many of those

words reside in just a few nodes of the top-ranked answer. Hence we introduce a domain-dependent upper bound

MAS (maximum answer size) on the value of n (pattern size) considered when precomputing NTCs. Since the

average length of keyword queries for different bibliographic databases is between 1.81 to 3.66 including stop words

[148], setting MAS to 4 or 5 seems reasonable for bibliographic DBs.

Zero NTCs. We refer to the root of a candidate answer as the LCA of its pattern. We show that if a pattern’s LCA

has only one instance in the DB (e.g., the DB root), its NTC is very close to zero.

A prefix-path is a path whose root is the root of the DB and its last node is not a leaf node or a parent of a leaf

node. For instance, /bib/paper is a prefix-path in Figure 3.1. If the last node of prefix-path s is the LCA of pattern p, s

is a prefix-path of p. For instance, /bib/paper is a prefix-path of bib paper title -1 booktitle -1 -1 in Figure 3.1. Prefix-

paths such as u that are created by adding nodes to prefix-path s are the super-paths of s. For instance, /bib/paper

is a super-path of /bib in Figure 3.1. Every prefix-path has at least one instance in the DB. For example, /1/2 is an

instance of /bib/paper in Figure 3.1. Each instance of prefix-path s is a prefix-path instance of at least one instance

of s’s patterns. Given i that is an instance of prefix-path s, the distinct values of root-path p whose prefix-path instance
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is i is a projection of p under i, which is written as V ip . |V ip | shows the number of such values.

Consider pattern t that contains paths p1, . . . , pn and its prefix-path s has only one instance in the DB. If p1, . . . , pn

do not share any other prefix-path that is a super-path of s, each instance of pi is associated with every instance of

pj , for i 6= j and 1 ≤ i, j ≤ n. Therefore, for the joint probability of (p1, . . . , pn) we have: P (p1, . . . , pn) =

P (p1) · · ·P (pn). Hence, H(t) =
∑

1≤i≤nH(pi). Considering formula (4.3), the value of NTC of t will be zero.

Assume that p1, . . . , pn share at least one prefix-path l other than s. l is a super-path of s. Therefore, each instance of

pi will be associated with at least |V spj |−|V
l
pj | instances of pj , for i 6= j and 1 ≤ i, j ≤ nwhere |V lpj | = maxm∈l |V lpj |

and m is an instance of l. If the value of |V lpj | is far less than the value of |V spj |, similar to the previous case, we can

assume that: P (p1, . . . , pn) = P (p1) · · ·P (pn) and therefore, the value of NTC of t will be zero. This usually happens

for the patterns whose LCAs is the root of DB. For instance, the number of distinct values for /bib/paper/title or

/bib/paper/author under the root of DB are by far larger than the number of distinct values for the same paths under

/bib/paper/. In other words, knowing the value of root-path pi does not help to narrow down the value of another

root-path pj when their only relationship is that they belong to the same DB.

During the parsing of the input XML data set, we identify the prefix-paths such as s that have only one instance in

the DB and store the numbers of the distinct values of their paths under all possible super-paths. If the numbers of the

distinct values of all paths under s are by far larger than the numbers of their distinct values under all super-paths of

s, we ignore all patterns whose LCA is s during NTC computation.

Entropy Computation. Since we need only to compare different values of a pattern to compute its entropy, we

can use the hashed values of the pattern instead of its actual values. This reduces the memory consumption of the

entropy computation process and speeds up the comparison operation, as the hashed values generally occupy less

space than the original values. The precision of this method depends on how conflict-free the hash function is. Our

experiments use the FNV-64 hash function [47], whose output is relatively short and is almost conflict-free.

Approximation. To reduce the number of patterns to find, we adapt an approximation approach designed for mu-

tual information [80]. We use another correlation measurement in information theory called interaction information

[97]:

Definition 3.5.1. The interaction information of random variables A, . . . , An is:

Intr(t) = −
∑

T⊆{A1,...,An}

(−1)n−|T |H(T ). (3.7)

We extend the definition of interaction information [97] to work with XML:
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Definition 3.5.2. Let p1, . . . , pn be the root-path patterns of pattern t. Then the interaction information of t is:

Intr(t) = −
∑

T⊆{p1,...,pn}

(−1)n−|T |H(T ). (3.8)

In contrast to total correlation, this metric subtracts the correlation inside the patterns defined by T from the correlation

of T itself. For instance, consider (bib/book/title, bib/book/author, bib/book/price), where all share the same book par-

ent node, in a bibliographic DB. Their interaction information is close to zero because the correlation of (title, author)

with the price of the book is almost equal to the sum of the correlations of (title, price) and (author, price). On the other

hand, the interaction information between root-path patterns (bib/book/ISBN, bib/book/title, bib/book/author), where

they share the same book parent, is negative. This is because the combination of ISBN and title does not provide more

information about the author than ISBN alone.

We can compute the entropy of a pattern t with root-paths p1, . . . , pn, by using the entropies and interaction

information of its subtrees T as follows [80]:

H(t) =
∑

1≤i≤n

H(pi) +
∑

T⊆{p1,...,pn}

(−1)|T |Intr(T ). (3.9)

We can approximate the entropy of pattern t by computing the information interaction of subtrees T of size m, up to

a value m ≤ EV , where 0 < EV < n. The formula works well if the sum of the correlations of the subtrees T is

close to the total correlation of the pattern, as for title, author, and price in the last example. However, its error is quite

high for cases like ISBN, title, and author, where there are multiple keys or quasi-keys (e.g., ISBN and book title)

in the pattern t. While keyword queries do not usually provide multiple key or quasi-key values, experiments with

real-world queries showed us that the errors were high enough in practice for us to prefer a different formula, based

on the fact that the maximum value of the entropy of a pattern t is the summation of the entropies of its root-paths

p1, . . . , pn:

H(t) =
∑

1≤i≤n

H(pi) + min (0,
∑

T⊆{p1,...,pn}

(−1)|T |Intr(T )) (3.10)

Using the above approach, we compute the exact NTC of patterns up to a certain size EV ≤ MAS. Then, we

approximate the NTC of larger patterns using formula (3.10).

How should we choose the value of EV ? Even if the information interaction starts to approach zero for subset T

of size m < n, it may increase for the subsets of size m+1. Thus, one should set EV to be as large as possible, based

on the computational time available for precomputation (e.g., half a day). Our experiments in Section 3.7 on multiple

data sets show that even low values of EV are very effective.
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3.6 Search & Ranking Algorithms

Input: XML data file data
Input: Maximum size EV of patterns to compute exact NTC for
Input: Maximum size MAS of patterns to compute exact or estimated NTC for
Input: Minimum frequency thresholds MIN FREQ
Output: Table CT of NTCs for data

/* Create path indices for all frequent root-path patterns */

indxs = Depth First Scan(data, MIN FREQ);1

// Compute the entropy for root-path patterns

forall p ∈ indxs do2

p.entropy();3

/* Initialize the set of prefix classes */

pfxSet← ∅;4

/* Add all root-path patterns as one prefix class */

pfxSet.add(indxs);5

for k = 2 to MAS do6

nextPfxSet← ∅;7

last = ();8

forall pfx ∈ pfxSet do9

forall p ∈ pfx do10

/* Compute all prefix classes whose prefixes are p */

nextPfx← ∅;11

forall q ∈ pfx do12

Jnt← join Pattern(p, q);13

forall r ∈ Jnt do14

if subTrees(r) 6⊂ pfxSet then15

continue;16

if k ≤ EV then17

/* Join indices and get frequency as well as NTC */

w← join Indices(r, indxs);18

if w.freq < MIN FREQ then19

continue;20

CT[r]← w.Î;21

else22

CT[r]← approximateÎ(r);23

if k 6= MAS then24

nextPfx.add(r);25

if k 6= MAS then26

nextPfxSet.add(nextPfx);27

pfxSet← nextPfxSet28

return CT ;29

Figure 3.7: Algorithm to compute NTCs
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3.6.1 Ranking Precomputation Algorithms

The algorithm in Figure 4.5 shows the overall process of computing NTCs. Our first challenge is to generate the

patterns efficiently (lines 1-20), by generating only root-subtree patterns and generating every pattern only once. For

efficiency, we should use information gained in previous stages to find instances of future patterns. As discussed

earlier, modern tree mining algorithms produce new candidates by joining current candidate trees together, and adding

new nodes to current candidate trees. When extending a candidate, these algorithms cannot use information about the

positions of the instances of the current candidate in the DB. Therefore, they have to scan all the information in the

DB to enumerate the number of instances for the new candidate. Furthermore, they generate many candidates that are

not patterns. Therefore, we extend current tree mining approaches to generate patterns more efficiently.

To help ensure that we generate patterns only once, we impose a somewhat counterintuitive transitive < relation-

ship on patterns, where -1 is greater than all other labels:

Definition 3.6.1. For patterns t and t′, we have t < t′ iff the prefix string of t′ is a prefix of the prefix string of t, or

the prefix string of t is lexicographically greater than the prefix string of t′. We have t = t′ if both patterns have the

same prefix string.

The first part is counterintuitive, but it will be justified when we prove the correctness of our algorithm.

Two subtrees of t are siblings if their roots are siblings in t.

Definition 3.6.2. A pattern t is sorted when for every pair of sibling proper subtrees u and u′, u ≤ u′ iff the root of u

appears before the root of u′ in the prefix string for t.

For instance, pattern bib paper author -1 title -1 -1 paper author -1 -1 is sorted, while pattern bib paper author -1

-1 paper author -1 title -1 -1 is not.

Lemma 3.6.3. Every prefix of a sorted pattern is sorted.

The proof of the lemma uses the concept of the last path of tree t, which is the path that starts at the last node with

only one child in the depth first traversal of t, and ends at the last node in the depth first traversal of t. For instance, 10

SIGMOD is the last path in Figure 3.1. The last rightmost node of a subtree is the last node in its last path.

Proof. Suppose we have s ≥ r for subtrees s and r. Let s′ be obtained from s by removing its last rightmost node.

Then s′ ≥ r. Removing the last rightmost node of a sorted tree t will remove the rightmost node of the proper subtrees

of t whose roots are in the rightmost root-path of t. Therefore, these subtrees will still be greater than or equal to their

left siblings.

The level of a last path is the level of the parent of its root in t. Everything that is not on the last path of t is t’s

prefix-tree. All patterns with the same prefix-tree pattern form a prefix class. For example, all root-path patterns
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belong to the same prefix class, as their prefix-tree is empty. We can describe a pattern t as t = (px, pa, l), where px

is its prefix-tree, pa is its last path, and l is the level of its last path. We use the following operation in line 13 of the

NTC computation algorithm in Figure 4.5 to generate sorted patterns of size n from sorted patterns of size n− 1.

Definition 3.6.4. Given patterns t = (px, pat, lt) and r = (px, par, lr), we define their join ⊕ as follows:

• If lr < lt, then t⊕ r = (t, par, lr).

• If lr = lt, then t⊕ r is a set of patterns of the form s = (t, par, lr). For each common prefix path c of pat and

par such that c 6= pat and c 6= par, we include pattern s = (t, pas, ls), where pas is created by removing the

nodes of c from nr. The level of pas is lr + |c|.

• If lr > lt, then t⊕ r is null.

For example, the patterns bib paper author -1 -1 and bib paper title -1 -1 have the same prefix-tree (null) and the

same levels (0). Therefore their join contains bib paper author -1 -1 paper title -1 -1 and bib paper author -1 title -1

-1. The two generated patterns belong to the same prefix class. The join of the first of them with the second is null, as

the level of the first (0) is less than the level of the second (1). The result of joining the second pattern with the first

one is bib paper author -1 title -1 -1 paper title -1 -1. The NTC algorithm in Figure 4.5 only needs to join patterns

from the same prefix class (lines 12 and 13). The join of two sorted patterns is not generally sorted, so the call to

join Pattern in line 12 must check the result patterns to ensure that they are sorted. We call a pattern a node-subtree

of pattern t at node v if it is induced by removing all nodes from t except for v and its descendants (if any). To see

if the pattern is sorted, we must compare every node-subtree on the rightmost path of the pattern with its left sibling

(if any). This function takes O(m(d− 1)) time, where m is the number of nodes in the pattern and d is the length of

its rightmost path. We ignore patterns at level 0 in our implementation, because their LCA is the tree root, so their

NTC is zero. The join operation itself takes O(m) time. Therefore, the exact time complexity of each join and check

operation is O(m(d− 1)).

Theorem 3.6.5. Given the set of all root-path patterns in the DB, the join operation followed by the check operation

will generate every sorted pattern exactly once.

Proof. We prove that the algorithm generates all possible sorted patterns by induction on the size of the pattern.

Assume that all possible sorted patterns of size n− 1 can be generated by the algorithm. According to Lemma 3.6.3,

the prefix of a sorted pattern is sorted. Thus, the prefixes of patterns of size n are in the set of generated patterns

of size n − 1. All possible last paths are also in the generated set. Therefore, the algorithm generates all the sorted

patterns. Since the sorted patterns are unique, they will not be generated more than once. The exception is the case

when sibling node subtrees are equal. However, these patterns are generated from two equal patterns of size n− 1. As

we join each pattern with itself just once, the resulting patterns are generated only one time.
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Since the process of generating patterns proceeds level by level, it can take advantage of the Apriori technique.

That is, it can prune patterns of size m that have subtrees that do not have any instance in the DB or have very few

instances in the DB (lines 15 and 19), before finding their instances in the DB. Patterns of very low frequency often

indicate noise in the DB. Line 13 of the NTC algorithm in Figure 4.5 calls the join Pattern algorithm to generate the

sorted patterns. The time complexity of generating new patterns of a particular size is O(n2), where n is the number

of patterns of size 2 ≤ k ≤ MAS. All the patterns found so far are stored in a hash table in main memory. The

function subTrees in line 15 finds all subtrees of size k − 1 for a pattern of size k. Therefore, checking whether all

subtrees of a pattern are frequent takes O(s) time, where s is the size of the pattern. For patterns of size larger than

EV , the NTC algorithm in Figure 4.5 uses the approximation technique discussed in the previous section: it finds all

the subtrees of the pattern, then uses formula (3.10) to approximate the total correlation. This step takes O(s3) time.

The algorithm continues until it reaches the MAS answer size limit.

The second challenge in computing ranks is to efficiently find the instances of the generated patterns in the DB.

Since the most important parts of patterns are root-path patterns, line 1 of the algorithm in Figure 4.5 scans the DB

in a depth first manner and stores the instances of each root-path pattern in a separate path index. We use Dewey

encoding [125] to store the root-path patterns in their path indices. Dewey encoding assigns a vector of numbers to

each node. It is a combination of the Dewey number of the parent of the node and the relative position of the node

among its siblings. Figure 3.4 shows the Dewey numbers for nodes of the DB tree. Each entry in the path index

contains the Dewey number [125] of the parent of the leaf child of an instance, as well as the hash of the leaf child

data value. For example, the path index for path /bib/incollection/title in Figure 3.4 is (0.0.0, hash(MPI Techniques)),

(0.1.0, hash(MPI Applications)). To reduce the index size, we use bitmaps to represent Dewey codes, and store the

index sorted on Dewey number. In line 19, the algorithm prunes all the patterns with fewer instances than a minimum

frequency threshold. The patterns with very few instances tend to have very high entropy and therefore higher NTC

than more frequent patterns.

Path indices can join at different levels. The entries whose Dewey codes have the same prefix of size l+ 1 can join

at level l. The join of the path index given above with itself at level 1 is given by (0.1, {hash(Moore), hash(Tob)}).

Since the path indices are sorted on their Dewey codes, we can compute the instances of each pattern p by performing

a zigzag join [50] on the path indices of p’s root-path patterns (line 18). Thus, we do not need to scan the DB to find

the instances of a pattern. Also, since we join the path indices in a certain order, we generate each result at most once.

When joining the root-path pattern indices in line 18, the JoinIndices routine inserts the values of the new pattern

into a temporary hash table. Then, the algorithm computes the exact NTC for the new pattern at line 21, based on

the values stored in the temporary hash table. If the NTC will be approximated for larger patterns, then line 21 must

also compute and store the entropy of this pattern. If a pattern has EV or more root-path patterns, the algorithm
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DBLP IMDB XMark
Size (in MB) 207.2 1038.8 233.7 - 2113.5
Max Depth 5 7 11

Table 3.1: Data set statistics

EV DBLP IMDB
2 0.290 0.250
3 0.126 0.106
4 0.061 0.052

Table 3.2: Approximation error for DBLP and IMDB

approximates the value of NTC at line 23, instead of computing the exact NTC.

3.6.2 Query Processing

The NTC value for each pattern resides in a hash table in main memory during query processing. The query processing

system finds each candidate answer, generates its pattern, looks up the NTC for that pattern, and then ranks the answer

accordingly. The problem of finding all candidate answers given a keyword query has been addressed in previous work

[61, 124]. The algorithm proposed in [124] returns only the root of the subtree, while we need the whole structure of

the subtree in order to find its pattern. The SA algorithm [61] returns the LCA, leaf nodes, and leaf node parents of

each candidate answer. We extended SA to also produce the pattern of a candidate answer.

The performance of SA has been studied before [61, 124, 85], and our extensions do not affect the asymptotic time

complexity of SA. Since the NTC of the candidate answers whose LCA is the root of the tree is zero, we changed SA

to omit the DB root as a candidate LCA. This optimization helped the extended SA to perform better than the original

SA for our queries. As shown in [61], in some circumstances the number of relevant answers is asymptotically larger

than the number of candidate answers that the SA algorithm returns. However, we decrease the number of candidate

answers considerably by never considering the root of the XML tree as a candidate answer.

We used Berkeley DB 4.6 [8] to store the XML data sets. Each node occupies a separate entry in the database

table. The key of the node entry is the node’s position in the depth-first traversal of the DB, and the value of the entry

is its parent Dewey code and its content (if the node is a content node). We built an index on the parental information

of the nodes to facilitate finding the parents of a node, as the SA algorithm requires. Also, we store an inverted index

for the content stored in the database table.
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Figure 3.8: Precomputation performance for DBLP without hashing
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Figure 3.9: Precomputation performance for DBLP with hashing

3.7 Evaluation

We implemented and evaluated the precomputation algorithm and query processing system on a Linux machine with

4 GB memory and an Intel Pentium D 2.80 GHz. Our experiments use two real-world data sets and one synthetic data

set: DBLP, IMDB, and XMark [120]. Table 3.1 presents the properties of the data sets. We used 14 different Xmark

data sets whose sizes are in the range of 233.7MB to 2113.5MB to evaluate the scalability of the precomputation

algorithm. We did not consider the font tags such as emp as elements in XMark. No previous approach has been tried

on data sets as large as our version of IMDB, or as large and deep as our XMark. Because CR is not intended for use

with long text fields, we did not include the long IMDB fields such as plot and bloopers in our experiments.
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Figure 3.10: Precomputation performance for IMDB without hashing
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Figure 3.11: Precomputation performance for IMDB with hashing

3.7.1 NTC Precomputation Performance

We implemented the NTC precomputation algorithm in C++ using Apache’s Xerces SAX parser. We set the minimum

frequency threshold to 50 for all data sets; any value between 2 and 50 would have produced the same results, because

IMDB and XMark have no patterns with frequencies between 1 and 49, and DBLP has only one such pattern. We

set the maximum answer size MAS to 5 for DBLP and IMDB, which is a reasonable threshold for both domains as

argued earlier.

Figure 3.8 and Figure 3.10 show the time spent on the exact and approximate computations for DBLP and IMDB,

broken down by the value for EV , when we used the original values of the content nodes to compute NTC. This in-

cludes the time to parse the XML data and create path indices. As expected, the time for exact computation increases
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Figure 3.13: Performance of approximate NTC computation for Xmark data sets for EV = 3

exponentially as EV increases. The exact computation takes much longer for IMDB than for DBLP, because IMDB

is larger and its structure is more nested than DBLP’s, so IMDB has many more patterns and pattern instances. The

exact computation for MAS = 3 in XMark of size 1117MB took about a week. For DBLP, the exact computation for

MAS = 5 took about three days. The exact computation for EV > 3 in IMDB and XMark larger than 800MB took

too long to run to completion. Overall, although approximation helps to reduce the precomputation time, precom-

putation still takes a long time. Thus, we repeated the experiments using the hashing technique described in Section

3.5. Figure 3.9 and Figure 3.11 depict the time spent on the exact and approximate NTC computations for the same

data sets. Hashing reduces the exact NTC computation time for DBLP by more than a factor of 10 and the exact

computation time for IMDB by about a factor of 5. The computation time for EV = 3 and MAS = 5 is less than for
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EV = 2 and MAS = 5 in IMDB data set. The algorithm does not check wether the generated patterns whose sizes

are more than EV have any instances in the database. Thus, it produces more spurious patterns for smaller EV . The

exact NTC computation for MAS = 3 in XMark took about 87 hours. The approximate computation for EV = 3

andMAS = 5 took less than two weeks. The exact computation forMAS = 5 in IMDB took more than three weeks.

Since the number of root-paths in an XML database is relatively small [22], the algorithm can cache all or most of the

path indexes in memory. This makes choosing larger values for EV and even exact computation practical, depending

on the size of the data set and the available time and resources.

Figure 3.12 shows the scalability of the exact computation for different values ofMAS for Xmark data sets of size

233.7MB to 2113.5MB. The exact precomputation for MAS = 5 for Xmark data sets larger than 800MB took too

long to run to completion. The figure shows that the precomputation algorithm scales linearly with respect to the size

of the data set. Figure 3.13 shows the time spent on approximate computation of a typical Xmark data set for different

values of MAS with EV = 3. Since the approximation time depends only on the number of pattern in the database,

it takes the same time for XMark data sets of different sizes. As we see, the time scales exponentially with respect to

the maximum size of generated patterns. The approximation algorithm took too long to run to completion for patterns

larger than 6. Fortunately, keyword queries whose desired answers include more than 6 separate leaf nodes are very

rare in practice [145, 148]. Thus, the NTC computation for such queries for very large and deep data sets (such as

Xmark) can be done at query time. The query time algorithm keeps the precomputed patterns up to a given size, for

instance 4, in main memory. If the size of pattern p of a candidate answer was more than the maximum size of the

precomputed patterns, the query time algorithm finds all precomputed subtrees of p and approximates its NTC. Since

the precomputed patterns reside in a hash table in main memory in the query-time, this step can be done very fast.

Table 3.2 shows the effectiveness of the NTC approximation technique. The table excludes XMark, because

XMark content is generated randomly and is not meaningful, so the concept of an approximation error does not make

sense for XMark. For the other two data sets, we sorted the list of all patterns of size up to MAS based on their

exact or approximate NTC values for different values of EV . Then we computed the approximation error rate using

Kendall’s tau distance between two permutations of the same list of NTCs [77]. This measure penalizes the sorted

approximate-computation list whenever a pattern occurs in a different position in the exact-computation list. Thus,

if two lists have almost the same ordering, they have a low Kendall’s tau distance. In the table, Kendall’s tau is

normalized by dividing by its maximum value, n(n−1)/2, where n is the total number of patterns in the list of NTCs.

One problem in using Kendall’s tau is that the approximate and exact lists have different lengths. This is because

the approximation procedure cannot distinguish and eliminate certain patterns whose frequency is less than the fre-

quency threshold. For instance, it is not possible for an approximation run with EV = 1 to eliminate all patterns

containing a paper with two titles. Our solution to this problem was to add these patterns to the exact list, with a zero
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NTC. As shown in Table 3.2, the error rate decreases as EV increases. EV = 3 gives an error rate close to 10%.

The approximation is a bit better for IMDB than for DBLP, because there are fewer key/semi-key elements in IMDB

than in DBLP. Of course, the real test is wether approximation affects the ranking of actual user queries. In the next

section, we show that is does not.

In many domains, NTC precomputation will only be done once; in domains with more fluid structure, NTC

precomputation will still be a rare event, e.g., once a year. The NTC precomputation times seem quite reasonable for

this rare task. For MAS = 5, the table of NTCs produced by precomputation occupied less than 2 MB for IMDB and

about 1 MB for DBLP. Thus CR imposes only a modest memory overhead at query processing time. If desired, the

table size could be further reduced by removing patterns whose correlations are below a threshold value.

3.7.2 Query Processing

At the time this research was performed, there was no standard benchmark to evaluate the effectiveness of keyword

search methods for data-oriented XML. To address this problem, we used a TREC-like evaluation method [96]. We

asked 15 users who were not conducting this research to provide up to 5 keyword queries for IMDB and DBLP. This

resulted in 40 queries for IMDB and 25 for DBLP, shown in Table 3.3. There are more queries for IMDB than for

DBLP because some of the users are not computer science researchers, and could not provide meaningful DBLP

queries. We developed a keyword query processing prototype based on the baseline algorithm that returns every LCA

for each query, without any ranking [119]. Our users submitted their queries to this system and judged the relevancy

of each answer as relevant or irrelevant by selecting a checkbox in front of each returned answer. The prototype’s user

interface merged all the equal answers (subtrees with the same labels and contents), and did not present the user with

any subtrees rooted at the root of the DB. We eliminated stop words from the queries before submitting them to the

baseline algorithm.

Many submitted queries are relatively short. For instance, users submitted the main subject or parts of the title

of a movie, with at most one related predicate, when searching for a movie in the IMDB database. This complies

with the previous user studies on the length of keyword search queries [145]. There are query assistance tools for

keyword search over relational databases, such as [101] that provide a ranked list of schema elements that match the

keywords as user types keywords. Users can use the suggested schema elements and translate their keyword queries

to the form (e1 : k1, · · · , en : kn) where ei, 1 ≤ n is a schema element and ki, 1 ≤ n is a keyword from input query.

The keyword search interface can determine the related answers for the translated query more precisely. In order to

build such a system, the DBA must make up user-friendly names for the schema elements. Also, since there may

be hundreds and thousands of schema elements in the database, the DBA must group semantically similar schema

elements. For instance, even a proper name such as Clooney matches actor, director, producer, writer, special-
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Num IMDB DBLP
1 Beautiful Mind Cis Regulatory Module 2008
2 Edward Norton William Yurcik
3 Artificial Intelligence Radu Sion
4 True Dreams Barbara Liskov
5 Jackie Chan 2007 Hoarding
6 Basic Instinct Authenticated Dictionary
7 Comedy Woody Allen Scarlett Johansson Language Based Security
8 Peter Sellers Blake Edwards CCS 2008
9 Belgian Detective Closed Frequent Pattern
10 Slumdog Millionaire 2008 Social Network Evaluation
11 Crime the Godfather Personalized Web Search
12 Forrest Gump SASI Protocol Attack
13 Kate Winslet 1997 Trust Management Web Services
14 Pearl Harbor Authorization Web Services
15 Susan Sarandon VLDB Korea
16 The World of Apu Web Conversation
17 Satyajit Ray Maude
18 Doctor Zhivago TinyOs Motes
19 Thumbs Up Data Aggregation Sensys 2004
20 Grand Torino Madden TinyDB
21 Brad Pitt Movie TEEVE
22 Painted Skin Stereo Vision
23 Ang Pamana Social Visualization
24 The Owl and the Sparrow The Dynamics of Mass Interaction
25 Hayden Christensen Han Data Mining
26 Ben Barnes
27 Christian Bale
28 Fight Club
29 The Watchmen
30 Momento
31 Return of the Mummy
32 High School Musical
33 Kate Winslet Award
34 Britney Spears Disney
35 Lara Croft Cambodia
36 The Wizard of Speed and Time
37 Mike Jittlov
38 The Unforgiven Clint Eastwood
39 Dakota Fanning Animation
40 Disney Channel Movie Surfing

Table 3.3: IMDB and DBLP queries

thanks, miscellaneous-crew, cinematographer, soundtrack-info, character, keyword, art-department, and literature in

IMDB. The DBA can group these schema elements into 6 groups such as people, soundtrack, companies, characters,

keywords, and literature. Nevertheless, CR is a domain independent keyword query interface, so we prefer to avoid

reliance on domain-dependent knowledge whenever possible. Moreover. because humans are not good at considering

large numbers of options [98], the number of suggested groups should not exceed seven. Given this limitation, creating
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Num IMDB DBLP
1 Lasseter Hanks Docter Jiawei Han Xifeng Yan
2 Brad Pitt Catherine George Clooney Aiken Foster Kodumal
3 Boyle Trainspotting Vidler Aiken Kodumal PLDI
4 Animation Adventure Comedy Banerjee Amtoft Bandhakavi POPL
5 Terminator Arnold Claire Amtoft Banerjee
6 Psycho Thriller Japanese Hasan Winslett Radu
7 Kate Winslet Drama 2003 Hasan Winslett Policy
8 Clooney Pitt Roberts Boyer Lee
9 Mckellen Bloom Jackson Mittal Borisov Security
10 Drama Lynch Watts Minami Lee
11 Clooney Pitt Mac Han SIGMOD Frequent Patterns
12 Gould Affleck Caan Keyword Search Databases
13 Jemison Cheadle Qin Cabello Chambers
14 Reiner Damon Garcia Planar Shortest Path
15 Robert Clooney Pitt Klein Planar Flow
16 Tsunami Earth Ship Surface Graph Computer Vision
17 Ghost Hunt Drama TCC Public Key Cryptography
18 Family Life Nature Bioinformatics Markov Chain
19 Romance Comedy Death Xifeng Yan Graph Jiawei Han
20 Military World Comedy SIGMOD Database Storage
21 Clooney Crime Warner Binner Chen Networks
22 Julia Roberts Romance Fox Ullman Molina SIGMOD
23 Brad Pitt Crime Warner IPv6 Mobile Security
24 Hugh Grant Columbia Cryptography Key Authentication
25 Clooney Action Fox Ullman Molina Widom
26 Hijacking English Lazebnik Schmid Ponce
27 World War Japanese Agarwal Awan Roth
28 Mathematics Professor USA Cootes Edwards Taylor
29 Nordstrom Nelson Phillips
30 Patterson Hennessy Architecture
31 Agarwal Roth Object Detection
32 Elmasri Navathe Database

Table 3.4: IMDB and DBLP complex queries

Coherency XSearch SLCA MaxMatch CVLCA XRank XReal
Ranking

Avg. Precision 0.687 0.189 0.679 0.679 0.164 0.166 0.360
Avg. Recall 1.0 1.0 0.915 0.915 1.0 1.0 0.250

Table 3.5: Average precision and recall of original methods for simple queries over DBLP

appropriate groups of schema elements for a database with a relatively complex schema will be a challenging task .

Moreover, since there is more than one schema element in a group, the keyword search system still will not know the

exact desired schema element(s) for each keyword. For instance, there are 7 schema elements in the people group, and

some of them, such as special-thanks, miscellaneous-crew, and cinematographer, are not likely to be desirable. The

same limitation applies to similar works such as [88].

However, we also wanted to measure the effectiveness of CR for structurally rich keyword queries, We define a
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Coherency XSearch SLCA MaxMatch CVLCA XRank XReal
Ranking

Avg. Precision 0.592 0.054 0.558 0.558 0.057 0.058 0.211
Avg. Recall 1.0 0.975 0.798 0.798 0.975 0.976 0.202

Table 3.6: Average precision and recall of original methods for simple queries over IMDB

Coherency XSearch-M SLCA-M MaxMatch-M CVLCA-M XRank-M XReal-M

Ranking
Avg. Precision 0.687 0.687 0.679 0.679 0.687 0.687 0.360
Avg. Recall 1.0 1.0 0.915 0.915 1.0 1.0 0.250

Table 3.7: Average precision and recall of modified methods for simple queries over DBLP

Coherency XSearch-M SLCA-M MaxMatch-M CVLCA-M XRank-M XReal-M

Ranking

Avg. Precision 0.592 0.586 0.558 0.558 0.586 0.592 0.211
Avg. Recall 1.0 0.975 0.798 0.798 0.975 1.0 0.202

Table 3.8: Average precision and recall of modified methods for simple queries over IMDB

Coherency XSearch-M SLCA-M MaxMatch-M CVLCA-M XRank-M XReal-M Baseline-M

Ranking

Avg. Precision 0.892 0.893 0.892 0.892 0.893 0.892 0.121 0.892

Avg. Recall 1.0 1.0 1.0 1.0 1.0 1.0 0.106 1.0

Table 3.9: Average precision and recall of modified methods for complex queries over DBLP

Coherency XSearch-M SLCA-M MaxMatch-M CVLCA-M XRank-M XReal-M

Ranking
Avg. Precision 0.545 0.548 0.545 0.545 0.548 0.545 0.404

Avg. Recall 1.0 1.0 1.0 1.0 1.0 1.0 0.446

Table 3.10: Average precision and recall of modified methods for complex queries over IMDB

Coherency XSearch PN PN-M XRank XRank-M XReal
Ranking

IMDB 0.715 0.642 0.511 0.627 0.421 0.609 0.420
DBLP 0.834 0.794 0.621 0.739 0.591 0.723 0.380

Table 3.11: Mean Average Precision (MAP) for simple queries over DBLP and IMDB

structurally rich keyword query as a keyword query that deals with at least two attributes of different types in the

desired entities. For instance, query Clooney Crime Warner over the IMDB database refers to three three different

attributes of a movie. Clooney matches 12 attributes, Crime matches 11 attributes, and Warner matches 12 attributes.

The movies acted in or directed by Clooney, having the term Crime in their title, and distributed or produced by Warner

Brothers company are among the desired answers. Some combinations of matching attributes are not desirable. For

example, movies produced by Clooney, having the term Crime in their location, and having the term Warner in their

camera crew are not ideal answers. These complex combinations of desired attributes cannot be captured by query
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Coherency XSearch PN PN-M XRank XRank-M XReal
Ranking

IMDB 0.706 0.601 0.507 0.612 0.465 0.598 0.348
DBLP 0.956 0.939 0.785 0.956 0.629 0.920 0.106

Table 3.12: Mean Average Precision (MAP) for complex queries over DBLP and IMDB

assistance tools such as [101]. In order to collect such queries, we performed another round of user study. We provided

our users with the definition of complex queries and some examples. Table 3.4 shows the collected complex queries

for DBLP and IMDB.

We defined two different evaluation tasks for each query set to examine the effectiveness of CR. The first task

compares CR with the methods discussed in Section 3.2.2: SLCA [149], XRank [57], CVLCA [85], MaxMatch [90],

XReal [6], and XSearch [26] for our data sets to evaluate unranked retrieval.

XRank, XSearch, and XReal have tunable parameters. We explain these parameters and how we have set them in

our experiments. XRank uses parameter decay which ranges between 0 and 1 and limits the depth of the LCAs of

candidate answers. XRank also uses the parameters d1 and d2 as damping factors in its customization of the PageRank

algorithm:

e(v) =
1− d1 − d2

N(v)
+ d1

∑
(u,v)∈CE

e(u)

Nc(u)
+ d2

∑
(u,v)∈CE−1

e(u) (3.11)

Here, CE is the set of edges from parents to their children and CE−1 is the set of edges from children to parents

in the DB tree. If there is only one type of edge in the database, then d2 = 0 and the formula becomes the original

PageRank formula. Geo et al. did not report effectiveness results for XRank and there has not been any study of the

effect of tunable parameters on the effectiveness of XRank. We experimented with values for decay between 0 and 1

our experiments. Since the damping factor in PageRank is 0.85 [11], we used non-zero values for d1 and d2, where

d1 + d2 = 0.85, similar to [57]. According to our experiments, the ranking quality of XRank depends on the value

of its tunable parameters. Our experiments also show that these parameters must be selected based on the properties

of the data set and query set. In order to get realistic results and be fair to other methods, we trained XRank tuning

parameters on a smaller training set and used those values for the actual data set and query set. Thus, we randomly

selected 1/4 of each data set and query set to tune the parameters of XRank. Then, we used these parameters for the

real data set and query set.

XSearch uses two tunable parameters, α and β, that control the effect of the IR-style ranking and the size of the

candidate answer, respectively. There has not been any deep study on the effect of these parameters on the effectiveness

of the XSearch method. We performed an effectiveness experiments using values for α and β between 1 and 10, and

compared the results to CR. Our experiments showed that changing the values of these parameters has a very low

impact on the effectiveness of XSearch i.e., less than 2%. The reason is that the size of most candidate answers were
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the same for both data sets. XSearch shows its best ranking quality for both data sets when the values of α and β are

equal. We report only the best effectiveness results for XSearch in this section.

Similar to XRank, XReal uses a tunable parameter r that limits the depth of the LCAs of the candidate answers.

The authors in [6] propose 0.8 for r and uses this value in their experiments. We have used different values in the

range (0,1] for r for XReal and compared the results to CR. Generally, different values of r deliver the same results in

our experiments. The only exception is r = 1, which reduces precision, recall, and ranking quality of XReal by about

2%. We report only the maximum values for precision, recall, and ranking quality of XReal in this section.

The effectiveness measurements used in the first task are recall, precision, and fall-out [96]. Recall gives the

fraction of the relevant candidate answers that are included in the actual answer returned to the user. Precision gives

the fraction of the returned answers that are relevant. We consider the precision of a method to be zero whenever

its recall is zero. Fall-out shows the proportion of non-relevant answers in the returned answers. Fall-out is closely

related to precision. When there is no relevant answer, a method that returns no answers has the same precision as one

that returns many irrelevant answers – even though the first method is more useful than the second. Fall-out captures

this difference.

We implemented the CR query processing system in Java 1.6. The query system uses the NTCs computed using

MAS = 5, EV = 3, and minimum frequency 50. The use of larger values for EV did not affect the results, which

is consistent with our error rate analysis for EV . None of the queries matched more than 4 leaf nodes, which shows

that the choice of maximum answer size MAS = 5 was reasonable. We set NTCmin = 0 for the evaluations in

this paper. Larger values for NTCmin increase the precision but decrease the recall. If desired, one can control the

recall-precision tradeoff by tuning the value of NTCmin in a manner similar to that used to tune the parameters of IR

retrieval methods [96]. Finding the best value for NTCmin is a subject for future study.

Table 3.5 and Table 3.6 show the average precision and average recall of all seven approaches on IMDB and

DBLP for the simple query collection, respectively. The precision of CR (shown as “Coherency” in the tables) is as

high or higher than every other method, for almost every query in both data sets. CVLCA, XSearch, and XRank show

the lowest precision overall. They return many irrelevant subtrees whose LCA is the root of the DB. For instance,

for William Yurcik, these methods return subtrees describing a paper written by an author whose name contained

“William” and an article authored by a different person whose name contained “Yurcik”. SLCA and MaxMatch show

better precision than CVLCA, XSearch, and XRank. Our queries did not reveal any differences between SLCA and

MaxMatch in terms of their precision and recall. As mentioned in Section 3.2.2, XReal prunes too many candidate

answers. Therefore, it delivers lower precision than other methods. The root of the database has the highest sum of

the query term frequencies for most queries having more than two terms, such as Kate Winslet 1997, Peter Sellers

Blake Edwards, and Comedy Woody Allen Scarlett Johansson in IMDB and Closed Frequent Pattern, Social Network
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Evaluation, and Cis Regulatory Module 2008 in DBLP. This also happens for the relatively short queries whose terms

are very frequent in the data set, such as VLDB Korea in DBLP. Thus, XReal returns the root of the database as the

only answer for these queries, which is not the desired result.

CR shows perfect recall for all queries. For instance, in some movies Edward Norton acted and also appeared on

the sound track. SLCA and MaxMatch return only the sound track nodes. For some queries, the users marked both

large and small subtrees as relevant. For instance, all methods except for CR return a director subtree or composer

subtree for Satyajit Ray. However, our users also marked as relevant the subtrees that contain both director and writer

information, as they were interested in movies that Satyajit Ray directed and composed. Since DBLP is flatter than

IMDB, the recall of SLCA and MaxMatch is better for DBLP than for IMDB. XReal filters out the entity types that

have relatively low query term frequencies. For instance, it does not return the movies produced by Edward Norton, as

Edward Norton appears more frequently in the actor element than the producer element. For the same reason, XReal

returns only the inproceedings elements containing the keyword Hoarding and ignores the article and incollections

elements about Hoarding. Thus, XReal shows the lowest recall.

Our users initially proposed many queries with no relevant answers. All methods but CR presented a long list of

irrelevant answers. When the users protested at having to sift through so many unwanted answers, we removed all but

one of those queries from the workload: SASI Protocol Attack for DBLP. While quite a few papers have been written

about attacks on SASI protocols, this overspecified keyword query will not find any of them in DBLP. CR returned

no answer for this query, and was similarly helpful for many other queries with no relevant answers. XSearch and

CVLCA return 121 answers for this query, all irrelevant; SLCA, MaxMatch, and XRank return 460 answers; and

XReal returns 82 answers. The DL filtering technique of XSearch and CVLCA and the filtering approach of XReal

improve their performance, but they still give many unhelpful answers. Thus, CR provides better fall-out than the

other methods.

Since most methods return many irrelevant answers that are rooted at the root of the DB, we reran our experiments

after modifying all the algorithms to filter out answers rooted at the DB root. This modification improves the precision

and ranking quality of these methods without changing their recall. We use “-M” to distinguish these methods from

their original method. For instance, we refer the modified version of SLCA as SLCA-M.

Table 3.7 and Table 3.8 show the average precision and average recall of all modified approaches on IMDB

and DBLP for the simple query collection, respectively. CR shows the same precision and recall as before, as it

automatically filters out the unrelated answers rooted at the root of the DB. XRank-M has the same precision and

recall as CR, as it did not get a chance to remove a relevant answer. XSearch-M and CVLCA-M have the same recall

as CR for DBLP but slightly lower recall for IMDB. Since IMDB is deeper than DBLP, XSearch-M and CVLCA-M

filtered out some relevant answers using DL heuristics. SLCA-M and MaxMatch-M still have lower recall than CR.
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The XReal-M has the same precision and ranking quality as XReal.

XReal returns elements from the lower levels of the database for some queries. For example, XReal returns only

the element actor for the query Christian Bale in IMDB. Our users deem this answer not to be informative enough

and want to see its ancestor element movie. XReal provides better precision than CR for five IMDB queries and five

DBLP queries. However, XReal omits many relevant answers for these ten queries, as explained below. For the query

Fight Club, only movies having Fight Club in the title were marked relevant by the users, but there are many candidate

answers having these words in their keywords or production company names. Subtrees containing a title, keyword,

or production company all have the same size, as they all have one non-leaf node. Thus the approaches that rely on

subtree size are unable to filter out the unwanted answers. The same thing happens for queries Beautiful Mind, Jackie

Chan 2007, Pearl Harbor, Crime the Godfather, Momento, The Watchmen, Thumbs Up, Return of the Mummy, High

School Musical, and Basic Instinct. Our users were looking for information about movies with these titles, but there

are many movies that have these words in their keywords. None of the methods had good precision for these queries.

In the second evaluation task, we will see how CR addresses this problem through returning the most relevant answer

first.

For query Edward Norton, all methods return many movies that have one actor whose first or last name is Edward

and another actor whose first or last name is Norton. The same happens for Kate Winslet 1997. Almost the same thing

happens with queries like Han Data Mining, where the user wants information on the book written by Han, but gets

papers about Data Mining written by Han as well. Later we will show how CR solves this problem through ranking.

For very specific queries, like Comedy Woody Allen Scarlett Johansson, the candidate answers are the desired ones,

and SLCA, MaxMatch, and CR are equally precise. However, as explained below, SLCA and MaxMatch omit many

relevant answers. This lowers not only their recall but also their precision. XReal-M has the lowest recall among the

modified methods.

Table 3.9 and Table 3.10 show the average precision and average recall on the complex queries, for all modified

approaches on IMDB and DBLP, respectively. Overall, we found that asking users for more complex IMDB and

DBLP queries simply led to more constrained queries, greatly reducing the number of candidate answers, lessening

the potential margin for filtering and ranking errors, and diminishing the distinctions between methods. This can

most clearly be seen in the results for DBLP, where users crafted complex DBLP queries by giving more and more

details about authors, titles, and venues, shrinking the set of candidate answers with each additional term. The final

set of candidate answers had cardinality 1 in some cases; the largest set, which was for Xifeng Yan Jiawei Han, had

perhaps 20 papers authored by the gentlemen in question. The users judged over 90% of the candidate answers to the

DBLP queries to be relevant. If almost all candidate answers are relevant, then almost all methods will have excellent

precision. If all candidate answers are good, then ranking does not matter very much either. In such a situation, even
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the baseline method that returns all candidate answers has good precision (and by definition good recall). Finally,

when there are very few candidate answers and almost all of them fit the same pattern (e.g., papers coauthored by

Xifeng Yan and Jiawei Han), then there is very little room for error on the part of the heuristics that filter out patterns.

In such situations, almost all the methods will have good recall. Table 3.9 shows that the modified baseline algorithm

that returns all candidate answers except for the ones rooted at the root of the DB (shown in the table as Baseline-M)

has almost the same precision and recall as other methods. Thus in our results, every method except XReal (discussed

below) had almost identical precision and recall. When the baseline method works very well, then no other method’s

benefits are very visible; tightly constrained queries do not allow any method to show its power.

The differences between methods are slightly more visible in the IMDB data set, as it has a more nested structure

with more patterns, and therefore a greater margin for error in filtering and ranking. With complex queries, XReal has

the lowest recall on both data sets. XSearch-M and CVLCA-M do show slightly better precision than other methods,

as they successfully filter some unrelated candidate answers using DL heuristics. Since the precision and recall of

almost all methods are still almost equal, the methods differ mainly in their ranking quality, discussed below.

In the second task, we evaluated the ranking effectiveness of CR, XSearch, XRank, XRank-M and XReal using

mean average precision (MAP). Intuitively, MAP measures how many of the relevant answers appear near the begin-

ning of the returned list of answers [96]. To compute MAP, we first consider each queryQ separately. We compute the

precision of all returned answers for Q, up to and including the ith relevant answer, for each value of i. The average of

these precisions is called the average precision for Q. The MAP is the mean of the average precisions for all queries

in the workload. Since XSearch uses the size of the candidate answers to rank them, it always ranks the candidate

answers rooted at the root of the DB last. Thus, the MAP values of the original and modified versions of XSearch are

equal. Also, since XReal returns the instances of the same entity type for an input query, the modification does not

have any impact in its ranking quality.

By combining CR with IR-style ranking methods, we can take advantage of both structural and content information

in the database. We combined CR with the pivoted normalization method [96] to determine the rank r(t) of answer t:

r(t) = αÎ(t) + (1− α)ir(t), (3.12)

where ir(t) is:

ir(t) =
∑

w∈Q,El

1 + ln (1 + ln (tf(w)))

(1− s) + s(ell/avell)
× qtf(w)× ln (

Nl + 1

efl
). (3.13)

Here, El is an element whose label is l and is the parent of the leaf node m that matches term w from the input query

Q. tf(w) and qtf(w) are the number of occurrences of w in m and Q, respectively. ell is the length of m, and avell

is the average length of the contents of all leaf nodes m whose parent has label l. Nl is the count of nodes whose
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parent has label l, and efl is the number of nodes whose parent has label l and contain w. s is a constant; the IR

community has found that 0.2 is the best value for s [96]. α is a constant that controls the relative weight of structural

and contextual information in ranking. If α is set to 1, the formula uses only structural information. We used the

parameter settings given in the previous section to compute Î .

For our queries, CR with pivoted normalization has better MAP than plain CR. The MAP for both data sets changes

only slightly (at most .01%) for α between 0.1 and 0.9. It drops by more than 25% if we set α to 0. The reason is that

DBLP and IMDB are data-oriented; thus, structural information is more important than contextual information.

Table 3.11 illustrates the MAP values of modified methods for the simple query collection for DBLP and IMDB.

The table shows that the MAP of CR is higher than that of other methods for simple queries, for the Wilcoxon signed

rank test at a confidence level of at least 95%. This confirms that NTC is better than subtree size as a basis for ranking

decisions. Also, XSearch’s filtering strategy lowers its ranking quality. Pivoted normalization without CR (α = 0),

shown as PN, has lower MAP than all but one other method, because PN uses only contextual information. The

modified PN method (shown in the tables as PN-M) has better ranking quality than PN, but it has lower MAP than

CR. XRank has lower MAP than PN, as its filtering strategy lowers its precision. XRank-M shows better ranking than

XRank. The ranking quality of XRank and XRank-M changes considerably (about 15%) for different values of d1,

d2, and decay. In order to be fair to all methods, we randomly selected 1/10 of DBLP and IMDB and 1/4 of the

queries of the simple query set to tune the parameters of XRank-M. Then, we used these parameters for the real data

set and query set. If we use the same parameters for DBLP and IMDB, the modified version of XRank will have a

lower MAP value than CR for DBLP. Nevertheless, CR returns almost the same MAP values for different values of its

parameter. XReal shows the lowest MAP. For most queries, the elements with higher query term frequencies are not

the best answers. For instance, for the query Crime the Godfather, XReal ranks the movies whose keyword element

contains Godfather higher than the movies whose title is Godfather, but the latter are the desired answers. XReal also

ranks the movies produced at Pearl Harbor higher than the movies whose titles or keywords contain Pearl Harbor.

Table 3.12 illustrates the MAP values of modified methods for the complex query collection for DBLP and IMDB.

CR has the highest MAP value for this query collection for DBLP and IMDB. Similar to the ranking task for simple

queries, we trained XRank and XRank-M parameters over a randomly selected 1/10 of DBLP and IMDB and 1/4 of

the complex queries. Generally, the MAP values of different methods are closer to each other for complex queries

than for simple queries. This is because the complex queries have few matching subtrees (candidate answers). For

complex queries, CR does specially well compared to the other methods in picking the best entity types. For instance,

for query Elmasri Navathe Database, the user is looking mainly for the book and articles written by Elmasri and

Navathe about database systems. CR successfully ranks the instance of these entity types at the top of its returned list.

XSearch returns the first related answer at the fourth position of its list. XRank returns some articles written by others
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that cite the publications of Elmasri and Navathe at the top of its ranked list. The reason is that those articles have

lots of citations and have larger PageRank value. As mentioned in Section 3.1, CR is orthogonal to PageRank style

algorithms such as XRank; combining the two ia an interesting topic for future work.

In the remainder of this section, we explain how CR ranks the query answers that had low precision in the first

evaluation task. We also discuss every query where CR did not rank the desired answer(s) first.

Since a book typically has fewer authors than a paper in a conference or journal, the NTC of the author and title

of a book is higher than the NTC of the author and title of a paper. Therefore, for the query Han Data Mining, CR

returns the textbook at the first result, as the user desired. XReal filters the book entity and XSearch ranks the desired

answer very low.

Subtrees containing two keyword nodes, and subtrees containing a keyword node and a literature reference, have

lower NTCs than subtrees containing a title and a keyword node. So for query Godfather Crime, CR ranks crime

movies whose title contains Godfather above movies with Godfather and Crime as keywords and/or literature refer-

ences. XSearch ranks the subtree with two keywords first, as it is smaller. XReal ranks the subtree containing keyword

and literature reference nodes higher, as the frequencies of the query terms in these nodes are higher than their fre-

quencies in the title node. Queries Beautiful Mind, Pearl Harbor, Momento, The Watchmen, Basic Instinct, and Return

of the Mummy have the same problems.

Since the title of a movie is a semi-key but there are many production company nodes with the same content, the

NTC of title is higher than that of production company. Therefore CR returns the movie with the title Fight Club as

the first result for the query Fight Club. The other methods do not find the proper ranking for this query.

The NTC of a subtree containing only one actor node is higher than the NTC of a subtree containing two actor

nodes. Therefore, CR places the subtree with one actor node at the top of the result list for the query Edward Norton.

Also, since the NTC of an actor node is higher than the NTC of a producer node, CR ranks the producer nodes

containing Edward Norton after the actor nodes. This ranking was the desired ranking for our users, who were not

interested in the producer nodes.

Since the location node has less diverse values than the keyword node in IMDB, the NTC of title and keyword is

less than the NTC of title and location. Therefore CR ranked the subtree containing title and location above the subtree

containing title and keyword in the result list, for the query Lara Croft Cambodia. The same happens for the subtree

containing the year and producer nodes versus the subtree containing the year and actor nodes, when CR answers the

query Jackie Chan 2007. The NTC of the former is higher than the NTC of the latter, so CR ranks the movies that

Jackie Chan acted in in 2007 higher than those produced by him in 2007. This ranking was what the users wanted.

Because the number of producers is lower than the number of actors in each movie subtree, heuristics such as join

selectivity [151] give higher rank to the movies that Jackie Chan produced in 2007.
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IR-style ranking helped with some queries, such as Artificial Intelligence. Multiple movies include those words in

their titles. Pivoted normalization correctly penalized the titles that were longer than the desired answers, and returned

the desired answer at the beginning of the list.

We consider an example of how CR determines users’ intentions when the query terms are ambiguous. For query

CCS 2008 on DBLP, our users wanted information about the 2008 ACM Conference on Computer and Communica-

tions Security (CCS). However, many 2008 papers have CCS (change control system) in their titles. CR successfully

ranked the title of the proceedings of CCS 2007 first, as both words occurred in the title. XSearch ranked the irrelevant

papers higher and XReal filtered out the proceedings node, which had very low query term frequencies. CR, however,

ranked the subtree containing the title and year of the proceedings fourth, after two articles about CCS, but above the

conference papers about change control systems.

For the query Maude on DBLP, since the NTC of title is higher than that of author, CR correctly ranked papers

whose titles mention Maude above papers written by authors named Maude. XSearch ranks the latter first. XReal

provides almost the same ranking as CR for this query. Nevertheless, it misses many relevant answers due to its

pruning strategy.

Although CR provided a ranking close to users’ expectations, it could not deliver exactly the ranking that the user

wanted for some queries. We discuss each of these queries here.

The user who issued the query Dakota Fanning Animation was looking for all the animated movies voiced by

Dakota Fanning. The word Animation matched both the special effects company and genre nodes. The desired answer

is the subtree containing the actress and genre nodes. However, genre has less diverse values in IMDB than special

effects company. Therefore CR chooses the subtree including the actress and the special effects company as its top

answer, and ranks the subtree containing the actress and genre nodes second. One potential solution to this problem

would be to exploit the NTC of individual words in the final ranking formula. The next chapter investigates this

approach.

As another problematic query, the user who submitted Pearl Harbor was looking for the most recent movie with

this name. CR ranked the most recent movie fourth, as it could not distinguish which was the most recent. This

problem also occurred for the queries True Dreams, Social Visualization, and Stereo Vision in DBLP and IMDB.

Addressing this issue is beyond the scope of this thesis; either a domain-specific hard-coded heuristic or a heuristic

learned from click-through behavior could be used to help CR break ranking ties between movies of different vintages.

A similar problem arose with Basic Instinct, where the user was looking for the first and most famous movie of the

series, and marked the others as irrelevant. CR returns this movie second in the result list, rather than first. The IMDB

database does not have enough information to determine popularity measures for the movies, though such information

could be learned by click-through behavior.
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In the query Authenticated Dictionary over DBLP, the user was looking for the titles where these two words

occur next to each other. CR does not consider word proximity in its ranking formula, but it can be addressed by

incorporating more advanced IR-style rankings [89].
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Chapter 4

Using Structural Information in Keyword
Search over Semi-structured Information
with Long Text Fields
4.1 Background

In Chapter 3, we empirically showed how to use ranking approaches based on statistical measures of the correlation

between schema elements [76, 67] to improve the effectiveness of keyword query interfaces over databases. Intuitively,

answers that involve closely correlated schema elements should be ranked higher than less correlated answers. Such

schema-correlation-based measures have been shown to be effective for ranking query answers for data-oriented XML

without long text fields, but they do not handle long text fields such as paper abstracts or movie plot summaries

appropriately. Long text fields are proliferating in data sets due to the increasing popularity of constructing and

querying annotated corpora [15], so we address their special needs in this chapter.

In a nutshell, the problem is that the measures used in Chapter 3 consider two field values to be completely

different, even if they differ in only one word. For example, consider a movie database that includes information

about writers, movie plot lines, and movie tag lines (lines from trailers). Each movie has its own unique tag lines and

plot lines, so existing correlation-based measures find that writers’ names are as highly correlated with tag lines as

with plots. In practice, however, a writer’s plots tend to involve similar situations or characters, while the tag lines

of his or her shows have little similarity. Thus intuitively, writers should be more correlated with plots than with tag

lines. Overgeneralizing slightly, any correlation measure that cannot capture this intuition will tend to rank a query

answer that includes a writer and a phrase from a tag line higher than an answer including a writer and a phrase from

a plot line, which is undesirable in practice.

To address this problem, in this chapter, we introduce term based correlation measures as an effective way to

capture our intuition about correlations between similar pieces of text, while at the same time exploiting all other

available structural information in an XML database. Our contributions:

• We introduce a particular form of term based correlation called normalized term presence correlation (NTPC)

and show how to incorporate NTPC into an XML query system. We show how to perform a one-time compu-

tation of NTPCs for schema elements, using a populated database instance. For all subsequent queries, the

Portions of this work has appeared in [127] and [128].
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Figure 4.1: DBLP database fragment

precomputed NTPCs are used to rank candidate answers based on their structure. NTPCs only need to be re-

computed if structural changes introduce a new type of schema element. We also show how to combine NTPCs

with traditional IR ranking methods, so that query answer rankings consider both content and structure.

• Through an extensive user study with two real-world data sets, we show that the precision, recall, and ranking

quality of a NTPC-based approach to query answering is always at least as high that of as seven other previously

proposed approaches to XML keyword search. We also show that NTPC provides better ranking than previous

approaches when the database includes long fields.

• The straightforward approach to computing NTPCs is prohibitively slow for large data sets. We present novel

optimizations that allow NTPCs to be computed for .5-1.1 GB data sets in .5-2.5 days, which is reasonable for

a one-time setup cost.

In the reminder of the chapter, Section 4.2 elaborates more on the motivation. Section 4.3 defines NTPC. Section

4.4 presents optimization techniques and algorithms for computing NTPC. Section 4.5 describes our query system,

Section 4.6 presents empirical results.

4.2 Motivation

Consider the Citeseer fragment from citeseer.ist.psu.edu/ in Figure 4.3. The best answer to query Burt Mining is rooted

at node 3. Since desc is a long text field, two different papers will almost never have the same description. However, a
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few papers have similar titles but different authors. Thus, the NTC of the values of paper author -1 title -1 is less than

that of paper author -1 desc -1, and CR inappropriately returns node 2 as the best answer.

IR-style heuristics and penalties for long fields will not solve this problem. For instance, consider the IMDB

fragment from www.imdb.com in Figure 4.4. Because tag lines are less indicative of a movie’s content than plot lines,
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the best answer to query Evolution Brian is the subtree rooted at node 3. Different movies have different plot lines

and tag lines. In the original IMDB, on average each movie has more plot nodes than tagline nodes (taglines are the

famous sentences in the movies’ trailers), so the NTC of movie taglines tagline -1 -1 writers write -1 -1 is 1.48 and

the NTC of movie plots plot -1 -1 writers write -1 -1 is only 1.37. Thus, CR ranks node 2 above node 3. As the plot

field is longer than the tagline field, penalizing long fields will not solve the problem.

The problem can occur for short text fields as well. Consider query XML Dan for Figure 4.2. The best answer is

at node 4, which gives papers about XML written by Dan. The node 3 answer should be ranked second, as it is less

interesting for most users. But since each proceedings has a different title, the NTC of proceedings title -1 editor name

-1 -1 is the same as the NTC of paper title -1 author name -1 -1 in this fragment. NTC does not consider the fact that

the proceedings titles for nodes 2 and 3 are almost identical; if it did, the correlation of the first pattern would drop

and we would get the desired ranking.

Thus, intuitively, we should consider the individual components (words) of each value when computing correla-

tions, both for long and short fields. For instance, the words in movie tag lines are not as representative of the movie’s

subject as the words in its plot lines. Thus in Figure 4.4, the terms in the values of the field writer are more correlated

with those of plot than tagline.

Correlation mining is an active research area in data mining and databases [10, 76, 94]. But most research has

focused on finding the correlations between data items themselves, rather than computing the collective correlation

between their columns or nodes. Even the systems in the latter category [67, 76, 80] consider the values of each

column as a whole, so we cannot apply them to our ranking problem.

4.3 Term Based Correlation

4.3.1 Preliminaries

We adopt the terminology of the previous chapter, with a few extensions. A root-subtree is a subtree whose root is the

root of the XML DB and whose leaves are the parents of content nodes. For instance, 1 2 5 -1 6 -1 -1 is a root-subtree

in Figure 4.1. If the root-subtree is a path, we call it a root-path. Each root-subtree contains at least one root-path.

Every maximal set of isomorphic root-subtrees in a tree T corresponds to a pattern. The size of a root-subtree pattern

is the number of root-path patterns it contains. From now on, the only patterns we consider are those of root-subtrees.

Definition 4.3.1. W (r1 : w1, . . . , rn : wn) is a term of root-subtree T containing root-paths r1, . . . , rn, with value

(r1 : v1, . . . , rn : vn), if w1, . . . , wn are non-stop words that occur in values v1, . . . , vn, respectively.

The terms of pattern p containing root-path patterns (p1, . . . , pn) are the union of the sets of terms of its instances.
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We write p’s terms as W (p1 : w1, . . . , pn : wn), reflecting which root-path pattern contains which term. For instance,

(p1 : Design) is a term of the root-path pattern bib paper title -1 -1 and p1 : Design, p2 : SIGMOD is a term of the

root-subtree pattern t1 = bib paper title -1 booktitle -1 -1 in Figure 4.1.

Each term W (p1 : w1, . . . , pn : wn) is associated with 2n possible events. Each event takes the form E(p1 :

f(w1), . . . , pn : f(wn)), where each f(wi) is either wi or w̄i, depending on whether wi does or does not occur in pi.

Definition 4.3.2. The occurrence probability of an eventE(p1 : f(w1), . . . , pn : f(wn)) for termW in a root-subtree

pattern q is O(E) = |t(E)|
|t(q)| , where |t(E)| is the number of terms where pi contains wi, if f(wi) = wi; or where pi

does not contain wi, if f(wi) = w̄i (1 ≤ i ≤ n). |t(q)| is the total number of terms of q in the DB.

In Figure 4.1, if q = bib paper title -1 -1, O(p1 : “Design”) = 1
4 , as this pattern has 4 terms.

Definition 4.3.3. The presence probability of an event E(p1 : f(w1), . . . , pn : f(wn)) for term W in a root-subtree

pattern q is P (W ) = |E|
|q| , where |E| is the number of instances of q where pi contains wi, if f(wi) = wi; or pi does

not contain wi, if f(wi) = w̄i (1 ≤ i ≤ n). |q| is the number of instances of q in the DB.

In Figure 4.1, if q = bib paper title -1 -1, P (p1 : Design) = 1
2 , as the pattern has two instances and “Design” occurs in

one.

A root-subtree pattern represents the joint distribution of the root-paths it contains. For instance, the root-subtree

pattern t1 = bib paper title -1 booktitle -1 -1 represents an association between root-path patterns p1 = bib paper title

-1 -1 and p2 = bib paper booktitle -1 -1.

Intuitively, the entropy of a random variable indicates how predictable it is [28]. We define the entropy of term W :

Definition 4.3.4. Given term W of pattern p of size n whose events E1, . . . E2n have presence probability P (E1),

. . . , P (E2n) respectively, the presence entropy of p is

Hp(W ) =
∑

1≤i≤2n
P (Ei) lg (1/P (Ei)).

For instance, consider the term (p1 : robot, p2 : Aldis) in the pattern imdb movie plots plot -1 -1 writers writer -1 -1

-1, where p1 is imdb movie plots plot -1 -1 -1 and p2 is imdb movie writers writer -1 -1 -1 in Fig 4.4. The term has

four events. Considering only DB fragment in the figure, we can compute their presence probabilities to find the the

presence entropy for the term: 2 ∗ 1/4 lg (4) + 2/4 lg (2) = 1.5.

The occurrence entropy Ho(W ) of term W can be defined similarly.

Definition 4.3.5. Given the pattern p containing termsW1, . . . ,WN with occurrence probabilitiesO(W1), . . . , O(WN )
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respectively, the collective entropy of p is

H(p) =
∑

1≤i≤N

O(Wi) lg (1/O(Wi)).

As opposed to the presence and occurrence entropies, collective entropy is defined over all terms of a pattern. Notice

that we cannot define the collective entropy based on presence probability, as the sum of the presence probabilities of

the terms of a pattern could exceed one. If the pattern has more than one path, we also call its entropy joint entropy,

as it is defined over a joint distribution.

4.3.2 Correlation Measures

Total correlation [143] is closely related to mutual information [28]; it measures the correlation between random

variables. It is defined over random variables A1, . . . , An as

I =
∑

1≤i≤n

H(Ai)−H(A1, . . . , An). (4.1)

The greater the value of I , the more correlated the variables are. If the variables are independent, the value of I will be

zero. Since each wi of term W (p1 : w1, . . . , pn : wn) is a term itself, we can extend the definition of total correlation

as follows:

Definition 4.3.6. The total presence correlation (TPC) of term W (p1 : w1, . . . , pn : wn) of pattern q is:

Ip(W ) =
∑

1≤i≤n

Hp(wi)−Hp(W ). (4.2)

In the same setting as the last example, the TPC of term (p1 : evolution, p2 : Fagan) is 0.61 and the TPC of term

(p1 : robot, p2 : Aldiss) is 0.31. In this fragment, from the writer’s name Fagan, we can predict that the movie is

about evolution and vice versa. However, knowing the movie is about robot does not necessarily mean that its writer is

Aldiss, so they are not as correlated as the previous term. Thus, the TPC of a term reflects the correlation between its

components. In the above definition, the instances of path pi in the DB are a superset of its instances that are subtrees

of the instances of q. Thus, we compute Hp(wi) considering only the instances of pi that are subtrees of the instances

of q. The total occurrence correlation (TOC) of a term can be defined similarly.

We can measure the correlation of a pattern by averaging the sum of TPCs for all terms in the pattern. However,

there are many weakly correlated terms in patterns. For instance, the original IMDB has many terms in the title, tag

line, or plot that are not correlated or are weakly correlated with the terms in the name of the movie writers or the
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terms in other fields. Such words usually have high frequency in the DB. Hence, patterns that intuitively should have

different correlations may look very similar if we average over all their terms. To prevent this problem, we average

over the top-k correlated terms, where k is reasonably large. If k is too small, we face the same problem, as there are

always some terms that are highly correlated in most patterns. Through empirical evaluation, we found that a value of

50-100 is appropriate for a large database such as DBLP or IMDB.

TOC and TPC both measure the collective correlation of a pattern. However, their different properties make them

appropriate for different applications. Consider the term W (p1 : w1, p2 : w2) in pattern q, where the values of p2 are

relatively long. With TOC, w1 is associated with many terms in p2 where one of them is w2. Thus, TOC finds the term

W to be relatively weakly correlated. Since TPC views the presence of the components of the term W in an instance

of p as an association between them, TPC gives W a higher correlation. As mentioned before, a good correlation

measure must work equally well for long and short fields. Hence, we choose TPC for our application, keyword search.

Among patterns of size 1, those with more variety are more helpful for users. For instance, in Figure 4.1, title is

more helpful for most users and queries than booktitle. Thus if both match the input query, the system should rank

title first. Since the terms of highly repetitive fields such as booktitle are quite evenly distributed in the database and

there are so few of them, averaging over their top-k entropies returns a relatively high value that does not reflect the

true variety of their information. Therefore, we use collective entropy from Definition 4.3.5 to rank patterns of size

one.

Since users prefer smaller patterns, we penalize larger patterns in the final formula for TPC:

NTPC(W ) = g(n)× TPC(W )

H(W )
, n > 1. (4.3)

Here, g(n) is a function that penalizes larger patterns; g(n) = n2/(n − 1)2 performs well in practice. Exploring

options for g(n) is an interesting area for future work.

The values of NTPC and collective entropy for all patterns in the DB should be computed in a separate phase before

the first queries are submitted to the system. If the DB does not undergo drastic structural changes that introduce new

node types and patterns, this computation need never be repeated. For example, the tightness of the relationship

between paper titles and their authors will not change, no matter how many years go by or new conferences are

introduced. However, if a new field paper-body is introduced, we must compute the NTPCs for candidate answers that

include that new field.

To answer a query, we find all candidate answers and their associated patterns, and look up those patterns in a

table of precomputed NTPCs. We rank answers according to their NTPC values. We choose to omit answers with

zero NTPC, as they are especially irrelevant.
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NTPC-based ranking successfully handles all the examples described earlier. For instance, the NTPC of proceed-

ings title -1 editor name -1 -1 in the full DBLP is 1.41, and the NTPC of paper title -1 author name -1 -1 is 1.73. In

the full IMDB, the NTPC of movie taglines tagline -1 -1 writers write -1 -1 is 1.25, while the NTPC of movie plots

plot -1 -1 writers write -1 -1 is 1.49. Section 4.6 contains a detailed evaluation of the effectiveness of NTPC-based

ranking.

4.4 Computing NTPC

4.4.1 Optimization Techniques

Researchers have experimented with techniques for efficiently computing correlations. Unfortunately, these tech-

niques rely on domain characteristics that are not applicable for keyword search over XML with long fields. For

example, in keyword search, many strongly correlated terms are not frequent, so we cannot consider only frequent

terms [10]. For keyword search, the minimum interesting value of NTPC is too small for it to be helpful as a cutoff

during correlation computation [100]. Nor is the number of distinct values for a field necessarily much less than its

total number of values, which would allow us to use sampling [67]. Nor can we adopt the techniques for precomputing

NTC quickly, as NTC computes the correlation for entire values, not for the terms of a pattern. However, as in CR,

we can assume that the maximum number of keywords in a query is relatively low (2.5 on average according to IR

studies [145]). Thus, the size of the patterns we seek does have a domain-dependent upper bound MCAS (maximum

candidate answer size). For instance, empirical studies suggest that 4 is a reasonable MCAS value for bibliographic

DBs.

The following lemma reduces the number of patterns for which we must compute NTPC. We call two events

presence independent if their presence probabilities are independent of one another.

Lemma 4.4.1. Consider the termW (p1 : w1, . . . , pn : wn), n > 1, of the pattern q, with eventsE(p1 : f(w1), . . . , pn :

f(wn)). If the root of q is the DB root, then all components p1 : f(w1), . . . , pn : f(wn) are presence independent.

Proof. We show the property for two arbitrary components of the term itself. The proof is similar for other numbers

of components and other events. For every 1 ≤ i, j ≤ n we have:

P (pi : wi|pj : wj) =
P (pi : wi ∪ pj : wj)

P (pj : wj)

=
|wi||wj |/|pi||pj |
|wj |/|pj |

=
|wi|
|pi|

= P (pi : wi).

(4.4)
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We can view the components of a term’s events as a random variable that assumes value 0 when f(wi) = wi

and 1 when f(wi) = w̄i. Since all the events of these random variables are independent, they are independent, too.

Therefore, we have:

Corollary 4.4.2. The NTPC of patterns rooted at the root of the database is zero.

Hence, when computing NTPCs we ignore all patterns rooted at the root of the database tree.

The number of pattern instances containing a term is the frequency of the term. From the properties of total

correlation, it follows that infrequent terms have relatively low NTPC. The frequency of termW (p1 : w1, . . . , pn : wn)

is less than the frequencies of its components wi, . . . , wn. As explained later in this section, we compute the NTPC

of a pattern using the information from its root-path patterns. Before computing the NTPC of patterns of size n > 1,

we remove all terms in root-path patterns p whose frequencies are less than ε|p|, where 0 < ε < 1. Similarly, for

terms of very high frequency, we use an upper frequency cutoff threshold 1− ε, and remove components with relative

frequency above that limit. The appropriate value of ε depends on the number of root-path instances in the DB. In

our experiments we used ε = 0.01, with two exceptions. First, a root-path pattern will have members with very low

frequency if the entity represented by the root-path pattern is a key or semi-key and each value of the pattern has only

one or two terms, such as for ISBN numbers in a bibliographical database. We do not remove any term from such

patterns, as that would not leave any term in the pattern. Some entities have terms that are very frequent, such as

payment-methods with values cash, check, credit card. We do not remove any terms from such patterns, either.

4.4.2 NTPC Computation Algorithms

The ComputeNTPC algorithm in Figure 4.5 gives an overview of how to compute NTPC and collective entropy. First,

ComputeNTPC reads the XML data set in a depth first manner, finds the root-path patterns, and creates a compressed

index (CI) for each root-path pattern. Each entry in a CI contains a root-path instance and the terms in its value. We

define a 32 bit key for each term, and store the key instead of the term in the index. We do not need the terms to

compute the collective entropies and NTPCs. Each root-path instance is represented in the CIs by the Dewey code

[125] of its leaf node. Every Dewey code is stored in a bitmap to save space. These optimizations reduce the space

requirements and enable ComputeNTPC to keep the CIs in main memory. For instance, for the roughly 1 GB IMDB

data set, the average CI size was 4MB. As we use only one instance of CI for each root-path pattern throughout

ComputeNTPC, this ensures modest space overhead and drastically reduces run time. The root-path instances in each

CI entry are sorted according to their depth-first traversal order in the DB.
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Input: XML data file data
Input: Maximum size MCAS of patterns to compute NTPC for
Input: Minimum term frequency ε
Output: Table CT of NTPC for data

/* Find the root-paths and build their CIs */

invdx = Create CI(data);1

/* Compute the collective entropies */

forall p ∈ invdx do2

clt Entropy(p);3

/* Prune frequent and infrequent terms */

prune(p,ε);4

/* Initialize the set of prefix classes */

pfxSet← ∅;5

/* Add all root-path patterns as one prefix class */

pfxSet.add(invdx);6

for k = 2 to MCAS do7

nextPfxSet← ∅;8

last = ();9

forall pfx ∈ pfxSet do10

forall p ∈ pfx do11

/* Compute all prefix classes with prefix p */

nextPfx← ∅;12

forall q ∈ pfx do13

Jnt← join Pattern(p, q);14

forall r ∈ Jnt do15

if subTrees(r) 6⊂ pfxSet then16

continue;17

/* Find the root-paths and join levels for the new pattern */

rp← rootPaths(r);18

jl← joinLevels(r);19

/* Join the CIs */

jTable← join CIs(rp,jl);20

if jTable.freq = 0 then21

continue;22

/* Compute the NTPC */

CT[r]← NTPC(jTable);23

if k 6= MCAS then24

nextPfx.add(r);25

if k 6= MCAS then26

nextPfxSet.add(nextPfx);27

pfxSet← nextPfxSet28

return CT ;29

Figure 4.5: ComputeNTPC: algorithm to compute NTPCs
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Input: List rp of root-path patterns to join
Input: List jl of join levels
Output: Join table jTable

/* root-paths to CI mapping */

path2Ind = pathIndexMap(rp);1

/* Distinct CIs */

indcs = indexes(path2Ind);2

/* Group levels for each root-path */

gLvs = group Levels(rp,jl);3

for i = 0 to indcs.size - 1 do4

nextInd.add(i);5

repeat6

/* Read the terms from the CI entries */

for i = 0 to indcs.size - 1 do7

if i /∈ nextInd then8

continue;9

buf [i].clear();10

buf [i].add(nextBuf [i]);11

nextBuf [i] = NULL;12

repeat13

ent = indcs[i].next();14

/* No more entries */

if ent = NULL then15

break;16

/* If entries of the same index can be grouped */

if grp(buf[i][0],ent,gLvs[i]) then17

buf [i].add(ent);18

else19

nextBuf [i] = ent;20

break;21

until false ;22

/* Join groups of nodes */

for i = 0 to buf [0].size - 1 do23

resBuf [i][0]← buf [0][i];24

for i = 1 to rp.size - 1 do25

forall rent ∈ resBuf do26

forall ent ∈ buf [path2Ind[i]] do27

if !eql(ent,rent) and jin(ent,rent.last,jl[i-1]) then28

tmp.add(rent,ent);29

resBuf ← tmp;30

tmp.clear();31

/* Update the join table */

jTable.add(resBuf );32

/* Find the next indexes to read */

nextInd← nextGrp();33

until !nextInd.empty() ;34

return jTable;35

Figure 4.6: JoinCIs: Algorithm to join compressed inverted indexes
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Output: The entries of the next groups

for i = 0 to nextInd.size-1 do1

if nextBuf = NULL then2

nextInd.clear();3

return;4

nextInd.clear();5

if resBuf .size ¿ 0 then6

/* move over all CIs */

for i = 0 to indcs.size-1 do7

nextInd[i] = i;8

else9

/* Find the groups with the smallest LCAs */

node←MAX CODE;10

for i = 0 to indcs.size-1 do11

if grpLCA(buf[i][0],gLvs[i]) ¡ node then12

nextInd.clear();13

nextInd.add(i);14

node = buf [i][0];15

else if grpLCA(buf[i][0]) = node then16

nextInd.add(i);17

Figure 4.7: NextGrp: algorithm to find the next group to join

Input: Nodes n and m to group
Input: Join level l
Output: true if n and m can be grouped
if n = NULL or n.ancestor(l) = m.ancestor(l) then1

return true;2

return false;3

Figure 4.8: Grp: algorithm for the grouping test

The next step in computing NTPCs is to find all patterns in the DB. We primarily use techniques from Chapter 3 to

generate these patterns efficiently, and discuss only the differences here. After creating CIs, ComputeNTPC computes

the collective entropy for each root-path pattern in line 3. In line 4, ComputeNTPC prunes terms whose relative

frequencies are less than ε or more than 1− ε. In addition to lines 1-4, ComputeNTPC is different from the algorithms

in Chapter 3 in its join operation at lines 18-20 and computing the correlation at line 23. After generating a pattern, in

line 18 ComputeNTPC finds its root-paths, and then finds the levels of the LCAs of the root-paths. We call these levels

join levels. Each entry in a CI represents an instance of a root-path pi containing a root-path term wi. Thus, joining

the entries of root-paths p1, . . . , pn of pattern q produces terms such as W (p1 : w1, . . . , pn : wn) of the pattern q.

Figure 4.6 shows the join algorithm, JoinCIs. Many patterns have duplicates of the same root-path. For instance,
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Input: Nodes n and m to join
Input: Join level l
Output: true if n and m can be joined
if n.ancestor(l) = m.ancestor(l) and n.ancestor(l + 1) != m.ancestor(l + 1) then1

return true;2

return false;3

Figure 4.9: Jin: test whether nodes can be joined at a particular level

the pattern bib paper author name -1 -1 author name -1 -1 -1 has the root-path bib paper author name -1 -1 -1 two

times. These root-paths share the same CI and our goal is to use only one CI for each root-path. Thus, the join

algorithm finds the mapping from root-paths to unique CIs in line 1. The loop from line 6-34 moves down the entries

of the CIs and joins them if possible. For example, assume JoinCIs wants to join the instances of root-path pi with

root-path pj at level l. An instance of pi can join with an instance of pj if they have a common ancestor at level l or

above. For instance, we can join the root-path bib paper author name -1 -1 -1 with the root-path bib proceedings title

-1 -1 at level 0 to create instances of the pattern bib paper author name -1 -1 proceedings title -1 -1 in Figure 4.2.

The path instances 1 4 10 20 -1 -1 -1 and 1 4 11 22 -1 -1 -1, whose LCA (node 4) is at level 1, can both join with the

instance 1 3 8 -1 -1. We call all instances of a root-path that have an LCA at level l or lower a group.

The Grp function shown in Figure 4.8 checks whether two instances are in the same group. Since each root-path

in a pattern is adjacent to two other root-paths (except the first and the last root-paths in the traversal of the pattern,

which are only adjacent to one), the root-path has two candidate group levels. As the groups of this root-path must

join to the groups of all its adjacent root-paths, the pseudocode chooses the lowest level of the two as the grouping

level. Consider a pattern q that consists of root-paths pi, pj , and pi, with join levels l1 and l2, where l1 < l2. To

perform the join, we must group all instances of pi at l1 to form group g1, and group its instances at level l2 to form

group g2. However, according to the definition of a group, g2 is a subset of g1. Thus, we need only the group at level

g1. We use this technique to make the join operation faster. If a root-path occurs more than once in the same pattern,

we create only one group for its instances. The group levels are computed at line 3 of JoinCIs. Every instance of a

root-path belongs to only one group in each join operation. Thus, JoinCIs reads each member of a CI entry only once,

and finds its group at lines 13-22.

JoinCIs then joins the groups in lines 25-31. The Jin method in Figure 4.9 checks if two root-path instances can

join at a given level. When two root-paths are the same, JoinCIs performs a self-join between the members of a group.

Line 28 checks whether a root-path instance is different from the other root-path instances in a joint pattern instance.

After joining the groups of the root-paths, JoinCIs inserts the keys of the joint terms in the join table at line 32. The

join table is a hash table that maps the terms W of the produced pattern to the number of times |W | they appear in

the pattern. Line 33 finds the CIs whose groups are the next ones to read. The NextGrp algorithm in Figure 4.7 shows
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how to find these CIs. Every root-path instance belongs to only one group. Also, the entries in each CI are sorted.

Thus, if the join operation was successful (lines 6-8), NextGrp must advance the cursor over all CIs. Otherwise, it

must advance the cursor over the groups whose LCAs have the smallest Dewey codes among the current groups (lines

11-17). For the reasons mentioned earlier, these groups cannot join with any other group. Lines 1-4 of NextGrp check

whether we have finished with any CIs. The time complexity of joining CIs is linear in the number of groups in each

CI. If the join operation produces at least one pattern instance, line 22 of ComputeNTPCs computes the NTPCs using

the join table.

4.5 Using NTPC at Query Time

We keep the collective entropy and NTPC for each pattern in a hash table in main memory during query processing.

Our query processing system, SA3, finds each candidate answer. It then extends the candidate answer to be a root-

subtree, by adding the path from the root of that answer to the root of the DB. SA3 looks up the NTPC of the

root-subtree pattern of the candidate answer, and ranks the answer based on its NTPC. We use a modified version of

the query processing algorithm from CR (call it SA2), which is in turn an extension of the SA algorithm from [61];

we refer the reader to those papers for details and a performance analysis. In the remainder of this section, we focus

on SA3’s unique features.

SA and SA2 use an inverted index to find nodes that contain the query terms. SA does not present answer values

to the user; SA2 finds them by a sequential scan of the original XML files, which is slow. SA3 incorporates a new

storage strategy and indexes to eliminate this problem.

At startup, SA3 reads the XML data set in a depth first fashion and stores it in a NODES table in Berkeley DB

[8]. Each node is described in a separate tuple of NODES. The key of each tuple is the node’s Dewey code and the

remainder of the tuple contains its tag name, its parent’s Dewey code, and its value if it is a content node.

SA3 builds an inverted index for the text information in the NODES table. Each entry in the inverted index for

a term w contains two separate lists. The first list describes the leaf nodes whose values contain w. Each list entry

contains the Dewey code of the node and the number of times w occurs in its value. The second list stores the number

of times w occurs in the values of each node type (all the nodes with the same tag name constitute a node type). This

information is required to compute the IR based ranks, as explained below. We store the inverted index as a table

MATCHES in Berkeley DB.

SA2 returns only the answer subtrees. However, for many queries the user wants to also see the siblings of the

leaf nodes, which can satisfy the user’s underlying information need. For instance, for the query XML Integration in

Figure 4.1, returning the subtree rooted at node 5 is not useful. The user already knows the title, and probably wants
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ε = 0 ε = 0.001 ε = 0.01 ε = 0.02 ε = 0.03
DBLP 20.3 17.9 13.7 12.1
IMDB 43.5 40.8 34.9 33.0 31.8
XMark 56.5 48.5 41.7 35.0 31.6

Table 4.1: NTPC computation time in hours, for different choices of ε
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Figure 4.10: Average F-measure for IMDB queries

NTPC CR XReal SLCA MaxMatch CVLCA XSearch XRank
Precision 0.611 0.599 0.566 0.566 0.545 0.048 0.046 0.050
Recall 0.985 0.965 0.918 0.798 0.798 0.975 0.976 0.975

Table 4.2: Average precision and recall for IMDB queries

NTPC CR XSearch XReal PN XRank
IMDB 0.701 0.510 0.612 0.587 0.478 0.431
DBLP 0.834 0.834 0.794 0.790 0.621 0.591

Table 4.3: Mean average precision (MAP) for DBLP and IMDB queries

to learn the author and/or booktitle of the paper. To address this need, SA3 presents the full subtree to the user. To

this end, SA3 builds an additional index CHILDREN on the parental information of the DB nodes, and stores it in

Berkeley DB. Given the Dewey ID of a node, a lookup in CHILDREN finds its children. For each candidate LCA,

SA3 queries CHILDREN to reconstruct the full subtree.
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4.6 Evaluation

We evaluated ComputeNTPC and SA3 on a Linux machine with 2GB memory and a 2.13 GHz Intel Xeon CPU. We

used two real-world and one synthetic data set: DBLP (529.9 MB, max depth 5), IMDB (994.8 MB, max depth 7),

and XMark (1172.3 MB, max depth 11) [120]. We use XMark only to evaluate the scalability of ComputeNTPC, as

there is no way to evaluate ranking quality for queries over a nonsense database. IMDB includes long text fields such

as plot, quote, crazy-credit (interesting facts about movies’ credits), tagline, goofs (mistakes in the movies), trivia,

and others; these fields have not been included in any previous study of the effectiveness of XML keyword query

processing strategies (including CR), and serve to illustrate the effectiveness of NTPC in the presence of long text

fields. DBLP does not have long text fields; we use DBLP to show that NTPC also works well when the DB does not

have very long fields, and to demonstrate ComputeNTPC’s scalability.

We set MCAS to 5 for DBLP and IMDB, which is a generous setting for both domains.

4.6.1 NTPC Computation Efficiency

Table 4.1 shows the time to load data, build supporting indexes, and compute NTPC, for different values of ε. IMDB

is close to twice as large as DBLP and is more nested, so it has more patterns and more CI indexes than DBLP, and

IMDB’s CIs are larger on average than DBLP’s. IMDB also has longer text fields than DBLP, so its join tables are

larger. Thus, with ε = 0, ComputeNTPC takes a bit more than twice as long for IMDB as for DBLP. The average

length of XMark fields is less than for IMDB, but XMark is about 20% larger and is more nested, so ComputeNTPC

takes about 25% longer for XMark than for IMDB, with ε = 0.

The NTPC for a pattern is a characteristic of the underlying domain. Once NTPCs are computed for a representa-

tive instance, they do not need to be recomputed until a structural update introduces new schema element types. Thus

NTPC calculations will be rare for a populated DB, and the .5-2.5 day running times shown in Table 4.1 are reasonable

for a rare task.

Larger values for ε reduce the preprocessing time considerably. Run times drop off sharply at first as ε increases,

then begin to level off, for a total drop of roughly 1/3 before ε grows too large. DBLP has more relatively infrequent

terms than IMDB does. Thus, pruning infrequent terms reduces DBLP processing time the most. XMark content is

randomly selected from a specific text collection, so XMark has relatively few infrequent terms and relatively many

very frequent terms, compared to DBLP and IMDB. Thus, removing the terms with relative frequency greater than

1 − ε helps to reduce the processing time for XMark. If ε grows too large, highly correlated terms can be pruned,

which will change NTPCs enough to change the ranking of query answers. For DBLP, this happens for ε > .02. Since

IMDB has longer fields than DBLP, this happens at ε > .03 for IMDB.
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The final table of NTPCs was under 2MB for both DBs. Thus NTPCs can reside in main memory at query time.

4.6.2 Ranking Effectiveness

We used the IMDB and DBLP query workload from Chapter 3 to evaluate NTPC ranking quality. The queries came

from 15 users who did not participate in the research. Each user submitted up to 5 queries to IMDB and DBLP,

resulting in 40 queries for IMDB and 25 for DBLP. The exact workload can be found in Chapter 3. Users were given

query results through a GUI interface where they can score each result as being relevant or irrelevant. We used the

NTPCs computed for MCAS = 5 and ε = 0.02 for DBLP, and ε = 0.03 for IMDB. No candidate answer had more

than 4 leaf nodes, which shows that MCAS = 5 was reasonable.

We first compared precision, recall, and F-measure [96] of NTPC against current methods: SLCA [149], Max-

Match [90], XRank [57], CVLCA [85], XSearch [26], XReal [6], and CR. Recall gives the fraction of the relevant

candidate answers that are included in the actual answer returned to the user. Precision gives the fraction of the

returned answers that are relevant. The F-measure shows the tradeoff between precision and recall; it is computed as:

F =
(β2 + 1)PR

β2P +R
. (4.5)

Setting β = 1 weights precision and recall equally. Values of β < 1 emphasize precision, while β > 1 emphasizes

recall.

For DBLP, NTPC produced the exact same ranking for every query as did CR. Chapter 3 showed that CR per-

formed as well as or better than each of the six other methods on the same workload and DB instance, in terms of

precision, mean average precision (for approaches that rank their answers), recall, and F-measure.This shows that

NTPC maintains CR’s good performance when the data set contains short text fields. DBLP text fields are relatively

short, and none of the 25 queries in the DBLP workload demonstrated NTPC’s potential advantage over CR when

fields have similar text, such as “EDBT 2009” and “EDBT 2010”. Since the performance of CR and the other six

approaches for the DBLP instance and workload was discussed in detail in Chapter 3, we focus on IMDB in the

remainder of this section.

Table 4.2 summarizes the recall and precision of all 8 methods on all 40 IMDB queries by averaging over all

queries in the workload. NTPC had higher recall on IMDB queries than other methods including CR. The recall of

the other approaches is lower, due to imperfect pruning heuristics. For example, SLCA and MaxMatch showed even

lower recall on IMDB than they did for DBLP and for the data-oriented version of IMDB used in Chapter 3, which

had its long text fields removed. Many relatively unimportant short and long text fields such as crazy-credit and quote

are in the lower levels of the XML tree. Some important fields like title appear high in the tree. SLCA and MaxMatch
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remove answers whose roots are ancestors of other candidate answers. Thus, they omit many relevant answers. For

instance, they do not return the obvious answers to Crime The Godfather and High School Musical; instead they return

the plots of some crime movies, and only the plot for the “High School Musical” movie.

XReal also delivers lower recall for IMDB, compared to DBLP and the data-oriented version of IMDB. Since

many TV shows, stored in show elements, do not have long text fields, their values are shorter. Thus they have fewer

occurrences of query keywords, compared to movie elements. Therefore XReal filters out TV shows. However, our

users wanted to see TV shows as well as movies, for example in the queries Pearl Harbor and Christian Bale. Even

with long fields not a factor, XReal filters out all show elements for Christian Bale, as he appears mostly in movies.

The relative precision and recall of XRank, CVLCA, and XSearch were the same, as they do not filter based on the

content or the level of the root of the candidate answers.

Keyword search approaches that do not rank their answers are frustrating to use; for example, High School Musical

returns over 100 answers under the baseline approach. We used mean average precision (MAP) to compare the ranking

quality of all current XML keyword search approaches that do rank their answers: XRank, XSearch, XReal, CR, and

NTPC. MAP shows how many of the relevant answers appear near the beginning of the returned list [96]. To compute

MAP, we first consider each query Q separately. We compute the precision of all returned answers for Q, up to and

including the ith relevant answer, for each value of i. The average of these precisions is called the average precision

for Q. The MAP is the mean of the average precisions for all queries in the workload.

To compare NTPC with the content-based ranking of XSearch, XReal, and CR, we combined NTPC with pivoted

normalization (PN) [96], an IR-style content ranking formula that we customized for XML. We control the relative

weight of NTPC and PN as follows:

r(t) = αNTPC(t) + (1− α)ir(t), (4.6)

where ir(t) is the content score of the candidate answer, computed based on the classical PN formula. α is a constant

that controls the relative weight of structural and contextual information in ranking. If α is set to 1, the formula uses

only structural information. If α = 0, we have pure PN. Based on our empirical evaluation, we set the value of α to

0.8 when combining it with NTPC.

Table 5.3 shows the MAPs of the methods. XRank shows a relatively low MAP, as the movie domain and IMDB

are not appropriate for PageRank-like heuristics. PN delivers a low MAP as well. Generally, PN ranks smaller

fields and fields with more query keyword occurrences higher. There are many fields of average length but different

importance in IMDB, such as title, crazy-credit, and tagline, which have many words in common. For instance, for the

query Artificial Intelligence, PN ranked some science fiction movies that have the terms Artificial Intelligence in their
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tagline and plot first, but the desired answer was the movie “Artificial Intelligence”. XReal has the same problem, as

it uses IR techniques. XReal assumes that fields with more occurrences of a query keyword are more important. For

instance, the keywords of query Edward Norton appear more often in field actor than field producer. Thus, XReal

ranks movies where Edward Norton acted higher than the movies he produced. Unfortunately, this heuristic works

poorly for long fields, as they contain many words found elsewhere in the DB, and the unimportant (for the query) long

fields may contain more of the query keywords than important fields do. For example, for query Beautiful Mind, XReal

concludes that tagline is more important than title, because tagline has more occurrences of the word beautiful than

title does, and ranks the desired answer with title “Beautiful Mind” low. XReal also ranks subtrees higher if they have

many occurrences of the query keywords. Each movie has many long text fields in IMDB. Therefore, movies with

similar subjects tend to have almost the same number of query keyword occurrences in their subtrees. For instance,

all sequels to “The Mummy” have the same number of occurrences of Mummy and Return. However, the best answer

to the query Return of the Mummy is the one with these words in its title, and XReal does not recognize this. This

situation is common in data sets with long text fields.

XSearch uses an IR-style formula to rank its results. Thus, it has the same precision problems as PN. Moreover, it

ranks the smaller subtrees higher. Thus, for the query Crime The Godfather, it ranks a movie whose keywords include

crime and Godfather first, instead of the movie “The Godfather”, which was the desired answer. XSearch has better

MAP than PN and XRank, almost as good as that of XReal. CR performs only slightly better than PN, because CR

does not work well for long text fields, as expected. NTPC correctly recognizes the important fields and patterns, and

delivers better MAP than all other methods. For instance, for Artificial Intelligence and Return of the Mummy, NTPC

ranks the desired movies first.

Fig 4.10 shows the F-measure of the 8 methods on IMDB; higher F-measures are better. NTPC’s handling of long

fields allows it to surpass CR, which in turn is significantly better than the other methods.

The MAP of NTPC is high but not perfect; NTPC does not return the perfect ranking for every query. The first

reason is that some important fields have low collective entropy, such as Genera in IMDB. NTPC does not realize how

important they are. The second reason is that our users preferred the most popular/famous papers and movies. IMDB

and DBLP do not provide popularity information, although some related fields are present, such as award in IMDB.

Resolving these issues is left as future work.
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Chapter 5

Design Independent Keyword Query
Systems

5.1 Background

In this chapter, we explore the effect of data organization modifications on query answers. We consider a slightly

more general form of keyword queries in this chapter, by focusing on schema free query interfaces (SFQIs) [57, 26,

87, 149, 90, 6]. As usual, a query is a sequence of terms Q = t1 · · · · · tq; however, now each term is either a keyword

(intended to match a leaf node in the database, as usual) or the label of an attribute (intended to match a non-leaf node).

The exact definition of a query differs slightly for different SFQIs. In some SFQIs, users can specify the selection

attributes, i.e., the attributes that contain the keywords; and the projection attributes, i.e., the attributes whose values

users want to see in the output [26, 87]. In pure keyword query interfaces [57, 26, 87, 149, 90, 6], the query system

has to figure out this information and return the values of selection and projection attributes. Our work in this chapter

is orthogonal to the format of the query, as long as the query does not contain any information about the relationship

between attributes in the schema.

Our contributions in this chapter are as follows:

• We explore and formally define the similarity between answers to the same query across different organizations

of the same data, from a user’s perspective.

• We introduce and formally define the design independence property and explore its benefits for SFQI users.

We introduce value structure preserving database transformations, which preserve schema information and the

database content. We prove that if an SFQI is built properly, it will be design independent under value structure

preserving transformations.

• We analyze the design independence property for current XML SFQIs and argue that all except one, CR (intro-

duced in Chapter 3), are not design independent.

• Design independence requires the original and redesigned databases to have the same content, so it does not

cover database redesigns that introduce or eliminate data redundancy. Since database transformations such as

Portions of this work appeared in [130] and [131].
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normalization affect redundancy, we introduce a new property called weak design independence for the case

where the new database has more or less redundant data than the old database.

• No current SFQI is weakly design independent. We define a new SFQI called Duplication Aware Coherency

Ranking (DA-CR) that is weakly design independent. DA-CR identifies desirable query answers by exploiting

the information-theoretic relationships between the elements in the database, combined with a novel content

scoring formula.

• We provide an extensive empirical study to evaluate the average case design independence of current and new

SFQIs over three real-world data sets. We show that CR and DA-CR have considerably better average design

independence than other SFQIs when the new database design does not introduce or remove data redundancy.

We also show that DA-CR has higher average design independence than other methods if the new designs create

or eliminate data redundancy. Through an extensive user study, we show that DA-CR delivers the same or better

ranking than other methods. Thus, its design independence does not reduce its effectiveness.

In the reminder of the chapter, Section 5.2 presents basic definitions. Section 5.3 defines design independence and
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explores its properties. Section 5.4 analyzes this property for current SFQIs. Section 5.5 defines and analyzes weak

design independence and introduces DA-CR. Section 5.6 discusses experimental results for the average case design

independence and weak design independence for all discussed methods, and analyzes the effectiveness of DA-CR

using real world databases.

5.2 Basic Definitions

Given a query Q, a subtree S of the database is a candidate answer for Q iff each of its content nodes either contains

at least one instance of each keyword term in Q, or the attribute of the content node contains one label term in Q. We

consider only candidate answers that contain all terms of the input query. As usual, the root of a candidate answer

is the lowest common ancestor (LCA) of its content nodes. For example, the subtree with LCA 3 in Figure 5.1 is a

candidate answer for query Q1: title performance. We consider the path from the LCA of a candidate answer to the

root of the database as part of the candidate answer, as it simplifies our analysis.

As usual, the baseline SFQI returns all candidate answers to a query. As discussed in previous chapters, many

candidate answers are unhelpful. For instance, consider query Q2: algorithm Lee on the database fragment shown in

Figure 5.1. candidate answer a1: 1 2 6 7 “XML search algorithm” -1 -1 -1 -1 11 12 15 “Mary Lee” -1 -1 -1 -1 and

candidate answer a2: 1 2 6 9 “John Lee” -1 -1 -1 -1 11 12 14 “algorithm” -1 -1 -1 -1 are unhelpful answers for Q2.

The only relationship their attributes have is that they occur in the same database, which is not very interesting. As

discussed in previous chapters, some SFQIs filter out candidate answers they deem unhelpful [87, 149, 90, 85], and

others return a ranked list of candidate answers. For instance, one approach filters out every candidate answer whose

root is an ancestor of the root of another candidate answer [149, 90]; the LCAs of the remaining candidate answers

are called the smallest LCAs (SLCAs). The SLCA approach relies on the intuitively appealing heuristic that far-apart

nodes are not as tightly related as nodes that are closer together. SLCA removes a1 and a2, as their roots (node 1) are

ancestors of node 6, which is the root of another candidate answer, a3: 6 7 “XML search algorithm” -1 -1 9 “John
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Lee’ -1 -1. If an SFQI only filters out irrelevant candidate answers, it outputs a multiset of candidate answers (multiset

for short) for a given query, rather than a list.

It is possible to develop a domain-independent SFQI and then leverage additional domain- and database-specific

knowledge to help identify desirable answers. For example, most IMDB users may be more interested in new releases

than older movies. In this thesis we focus on domain-independent techniques, to minimize the need for manual

addition of domain-specific heuristics.

5.3 Design Independence

A transformation T over database D is a function that modifies D to generate a new database T (D) [66, 45]. We

assume that the query system is unaware of the differences between the two databases, or the transformation used to

map between them.

If two candidate answers are isomorphic and their corresponding leaf nodes contain the same content, they are
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label-content isomorphic. Label-content isomorphic answers represent the same information. Hence, we intuitively

consider an SFQI to be design independent if it returns the same list (multiset) of (label-content isomorphic) answers

for every query over the original and modified databases. However, when a database is modified, an SFQI may not

be able to return exactly the same list of candidate answers for a query over the old and new databases. For instance,

Figure 5.2 is the result of a transformation of the fragment shown in Figure 5.1. Consider Q3: Query Green over

Figure 5.1, where its candidate answer is the subtree whose LCA is node 12 and contains nodes 13 and 16, and

Figure 5.2, where its candidate answer is the subtree whose LCA is node 12 and contains nodes 13 and 17. Since the

candidate answer forQ3 over Figure 5.2 contains a new node authors, the candidate answers ofQ3 over Figure 5.1 and

Figure 5.2 are not isomorphic. However, they both represent the authorship relation between Albert Green and XPath

Query. Thus, we argue that users gain the same information from two candidate answers that express equivalent

relationships between data items that have the same content. Therefore, we also consider an SFQI to be design

independent if it returns essentially the same information for every query over the original and transformed databases.

We will precisely define what it means for answers over the original and transformed databases to convey the same

information to users.

5.3.1 Preserving Content

Answers that convey the same information must contain the same content. For instance, if the content of node 13 in

Figures 5.1 and 5.2 were different, users would consider the candidate answers to Q3 over these data fragments to

be different. Consider a transformation over the data fragment in Figure 5.1 that removes author and title nodes that

are children of the same paper node and creates a single new child node for each paper node, called paperInfo, that

contains the merged content of the eliminated author and title nodes. The candidate answers for Q3 over the original

and transformed databases have similar content. Nevertheless, the candidate answer of the original database represents

the author and the title of the paper in separate nodes and the candidate answer of the transformed database shows the

author and the title of the paper in one content node. By looking at the candidate answer of the transformed database,

some users may not be able to distinguish the tokens that represent the title from the tokens that represent the author.

Definition 5.3.1. A bijective mappingM from pattern instance i1 to pattern instance i2 is value preserving iff it maps

each member of the value of i1 to an equal member of the value of i2.

We consider two value members equal if they are lexicographically equal, i.e., they have the same length and contain

the same characters in the same positions. We define value preserving mappings between candidate answers similarly.

Definition 5.3.2. Pattern instances i1 and i2 are value equivalent iff there is a value preserving mapping from i1 to

i2.
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We can similarly define value equivalent candidate answers. Since users observe all candidate answers that an SFQI

returns for a query, we must define value equality between the lists or multisets for the same query over different

databases.

Definition 5.3.3. A bijective mapping M from list l1 to list l2 is value preserving iff it maps each candidate answer

s ∈ l1 to a value equivalent candidate answer M(s) ∈ l2, where the rank of s in l1 is equal to the rank of M(s) in l2.

Definition 5.3.4. Lists l1 and l2 are value equivalent iff ere is a value preserving mapping from l1 to l2.

Definition 5.3.4 requires the value equivalent lists to have the same number of candidate answers. Similarly, a bijective

mapping M from multiset u1 to multiset u2 is value preserving iff it maps each candidate answer s ∈ u1 to a value

equivalent candidate answerM(s) ∈ u2. Hence, two multisets are value equivalent if we can define a value preserving

mapping between them. There may be more than one value preserving mapping for value equivalent multisets.

If a transformation manipulates the value of a content node, no SFQI will be able to return value equivalent lists

(or multisets) for queries whose candidate answers contain that content node. For instance, if a transformation updates

the value of node 9 in Figure 5.1 to “Kate Lee”, there is no value equivalent mapping between the candidate answers of

Q2 over the original and transformed databases. Since SFQIs do not know about transformations, they cannot return

value equivalent lists (multisets) to Q2. Thus, we must find the properties of transformations that allow SFQIs to be

design independent.

Definition 5.3.5. A bijective mapping M from pattern p1 to pattern p2 is value preserving iff it maps each instance

of p1 to a value equivalent instance of p2.

Patterns p1 and p2 are value equivalent iff there is a value preserving mapping from p1 to p2.

Definition 5.3.6. A transformation T over database D is value preserving iff it maps each pattern p in D to exactly

one value equivalent pattern T (p) in database T (D), where each pattern T (p) is mapped to by only one pattern p in

D.

Given a query, an SFQI filters or ranks the candidate answers for the query. Hence, for an SFQI to be design indepen-

dent, a transformation must map every possible candidate answer for every query over the original database to a value

equivalent candidate answer over the transformed database, and vice versa.

Proposition 5.3.7. Given a value preserving transformation T over database D, the multisets of candidate answers

to every query q over D and T (D) are value equivalent.

Proof. According to Definition 5.3.6 if q does not have any candidate answer over D, it will not have any candidate

answer over T (D). In that case, the multisets of answers are value equivalent. If q has at least one candidate answer
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<!ELEMENT bib (conf*, journal*)>

<!ELEMENT conf (info, paper*)>

<!ELEMENT info (title, area)>

<!ELEMENT paper (title, subject, author*)>

<!ELEMENT journal (article*)>

<!ELEMENT article (title, subject, author*)>

Figure 5.6: Schema of the bibliographic database in Figure 5.1

<!ELEMENT bib (proceedings*, journal*)>

<!ELEMENT proceedings (title, area, inproceedings*)>

<!ELEMENT inproceedings (title, subject, authors)>

<!ELEMENT authors (author*)>

<!ELEMENT journal (article*)>

<!ELEMENT article (title, subject, authors)>

Figure 5.7: Schema of the bibliographic database in Figure 5.2

over D, then each candidate answer is an instance of a pattern. Since all pattern instances of D and T (D) are value

equivalent, each candidate answer of q over D is value equivalent to one and only one candidate answer of q over

T (D). Thus, the multisets for q over D and T (D) are value equivalent.

As noted, if a transformation introduces new terms into a database or eliminates some terms from the database,

then every SFQI will return different answers over the original and transformed databases for all queries that contain

the added or removed terms. One may argue that it may be possible to develop an SFQI that returns similar results

under a transformation that modifies only the number of instances of some terms in the content nodes of a database.

Researchers have considered a similar problem in the context of retrieval over noisy document collections [161]. They

have shown that even slight modifications in the number of instances of query terms in the documents of a collection

results in considerably different rankings for some queries, when using any reasonably effective retrieval method. We

have to consider the properties of the content nodes in the retrieval formula in order to develop a reasonably effective

SFQI. Since each content node is a small document, it will not be possible to have an SFQI that returns similar results

under this type of transformation.

5.3.2 Preserving Structure

Non-content nodes represent structural relationships between content nodes. If a transformation renames or removes

schema elements or introduces new schema elements, it may change the structural relationship between content nodes.

Hence, SFQIs cannot always deliver answers with exactly the same structure over the original and new database.

Suppose that users can mentally translate the structure of the old answers to the structure of the new answers. Then,

the SFQI returns structurally similar answers over both databases. Since an SFQI uses schema information to rank
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and/or filter candidate answers, we must only consider transformations that do not lose any information of the schema

of the original database. (We do not consider complex consistency or integrity constraints as part of the schema

information.)

Let S be the schema of XML database D (e.g., its DTD) and let I(S) be the set of all databases with schema

S. Given schemas S1 and S2, if we can find an invertible function T : I(S1) → I(S2), then S2 carries at least as

much information as S1 [66, 45]. In other words, we can reconstruct the information available in any database over

the original schema S1, given the transformed database. This definition is suitable for data exchange and schema

mapping, where the target schema may contain more information than the original schema. Therefore, it allows T to

be a partial function. Since we would like to have similar answers over the original and transformed databases, we

need T to cover all databases of a given XML schema and not add any new information to the original schema. Given

XML schemas S1 and S2, transformation T : I(S1)→ I(S2) is bijective if it is a bijective mapping.

Figures 5.6 and 5.7 show the schema of the databases excerpted in Figures 5.1 and 5.2, respectively. There is a

bijective transformation between these schemas, with each database under the schema of Figure 5.6 mapped to one

and only one database under the schema of Figure 5.7. Assume a transformation U over the schema of Figure 5.6

that removes journal, article, info, conf, and paper and connects all attribute nodes to the bib node. Since we defined

an XML database as an unordered tree, U maps more than one database of the schema shown in Figure 5.6 to one

database of the new schema. Thus, U is not bijective and loses schema information.

We must also consider the limitations of domain-independent SFQIs. If two database nodes have the same label,

domain-independent query interfaces, and SFQIs in particular, consider them to be instances of the same entity type.

Consider a version of the data fragment in Figure 5.1 that contains additional articles written by different authors.

Assume a transformation removes node 15 from this database and maps node 12 to Mary-Lee-article. Users may

recognize that the resulting candidate answer for Q3 carries the same information as the candidate answer over the

original database. Nevertheless, we do not expect SFQIs to draw such a conclusion, because values and labels play

distinct roles in query interfaces, even in SFQIs [57, 26, 6, 129, 85]. Thus as far as they are concerned, the new schema

introduces a new entity type that is different from article entities and must be treated differently. Moreover, domain

independent SFQIs treat values as uninterpreted bags of words (or objects) [57, 26, 87, 149, 90, 6, 129, 85]. Therefore,

they cannot comprehend that the information added to the label carries the removed content information.

As another example, consider a transformation that groups all articles about the same subject under a new node

labeled article-subject that is a child of journal in the original database whose fragments are shown in Figure 5.1.

An SFQI may reasonably rank candidate answers containing articles under the same article-subject node higher than

candidate answers containing articles under different article-subject nodes. This is because the first group of candidate

answers represents a more interesting relationship between articles than the second group. However, since SFQIs
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consider the values as uninterpreted objects and different from labels, they return the same ranking for candidate

answers in both groups over the original database.

Users expect candidate answers with equal content nodes to also have similar structural information. Figure 5.4

shows a candidate answer for Q4: search Han mining John from a database whose schema is in Figure 5.6. Figure 5.4

also shows the value equivalent answer from a database whose schema is in Figure 5.7. John Lee and Jiawei Han

have the same path in the candidate answer on the left. This indicates that they have similar structural roles in the

original and transformed databases. Thus, users expect their equivalent content nodes in the other answer to have

similar structural roles. The path of a content node encodes its structural role in a database. Hence, if two content

nodes have the same path in every candidate answer a, their mapped content nodes in the value equivalent candidate

answer of a must have the same paths. In addition to the same structural role for each content node, users should see

similar structural relationships between mapped content nodes in candidate answers. For instance, the authorship of a

paper whose title is XML Mining by Jiawei Han is represented using bib conf paper title -1 author -1 -1 -1 in the left

candidate answer in Figure 5.4. This pattern also represents the relationship between XML search algorithm and John

Lee in the same candidate answer. Since the patterns of content nodes mapped to {XML Mining, Jiawei Han} and

{XML search algorithm, John Lee} in the right candidate answer in Figure 5.4 are isomorphic, the candidate answers

convey similar structural information about the relationships of these content nodes.

Definition 5.3.8. A bijective mapping M from candidate answer s1 to candidate answer s2 is value structure pre-

serving (VS preserving for brevity) iff for all subpattern instances i1 and i2 of s1:

• i1 and M(i1) are value equivalent.

• The patterns of i1 and i2 are isomorphic iff the patterns of M(i1) and M(i2) are isomorphic.

Definition 5.3.9. candidate answers s1 and s2 are value structurally equivalent (VS equivalent) iff there is a VS

preserving mapping from s1 to s2.

According to the first constraint in Definition 5.3.8, a VS preserving mapping is value preserving. Hence, VS equiva-

lent candidate answers are also value equivalent.

Similar to the case for value equivalence, users consider all candidate answers in the list (multiset) of candidate

answers to a query when judging the similarity of two lists (multisets). Figure 5.5 shows some candidate answers

for Q2: algorithm Lee over Figure 5.1 in the first row. It also shows some candidate answers over a transformation

of Figure 5.1 in the second row, each of which is value equivalent to the one above it in the first row. The first two

candidate answers in the first row have the same pattern and represent the same structural relationship between XML

search algorithm and John Lee and XML search algorithm and Smith Lee, respectively. Thus, users will expect the
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first two candidate answers in the second row to have the same pattern, which they do. Since Mary Lee is the author

of an article and Smith Lee is the author of a paper, they have different paths in the list of candidate answers for Q2

over Figure 5.1. Hence, users expect them to have different paths in the list of candidate answers for Q2 over the

transformed database, but they do not. Thus, we consider the candidate answer lists in the first and second row of

Figure 5.5 to be structurally dissimilar. We define the subpattern instances of a list (multiset) of candidate answers as

subpattern instances of its candidate answers.

Definition 5.3.10. A bijective mapping M from list l1 to list l2 is VS preserving iff for all subpattern instances i1 and

i2 of l1:

• i1 and M(i1) are value equivalent.

• The candidate answer that contains i1 and the candidate answer that contains M(i1) have equal ranks in l1

and l2, respectively.

• The patterns of i1 and i2 are isomorphic iff the patterns of M(i1) and M(i2) are isomorphic.

Definition 5.3.11. A list of candidate answers l1 is VS equivalent to a list of candidate answers l2 iff there is a VS

preserving mapping from l1 to l2.

Based on the first two conditions in Definition 5.3.10, a VS preserving mapping between lists of candidate answers is

also value preserving. Thus, two VS equivalent lists of candidate answers are also value equivalent. VS equivalence

is defined similarly for two multisets of candidate answers. There may be more than one VS equivalent mapping

for two multisets of candidate answers. VS equivalent lists (multisets) of answers for a query preserve the contents

of structural relationships between the content nodes; therefore, users get essentially the same information on the

relationships between content nodes in the original and new databases.

If the candidate answers for every query q over a database are VS equivalent to the candidate answers for q over

the transformed database, an SFQI can provide VS equivalent answers for q over the old and new databases. Thus, we

define the required conditions for such transformations.

Definition 5.3.12. A bijective mapping M from pattern p1 to pattern p2 is VS preserving iff for all subpattern in-

stances s1 and s2 of p1:

• s1 and M(s1) are value equivalent.

• The patterns of s1 and s2 are isomorphic iff the patterns of M(s1) and M(s2) are isomorphic.
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Definition 5.3.13. Patterns p1 and p2 are VS equivalent iff there is a VS preserving mapping from p1 to p2.

Similar to value preserving transformations, we have:

Definition 5.3.14. A transformation T over database D is VS preserving iff it maps each pattern p in D to exactly

one VS equivalent pattern T (p) in database T (D), and each pattern T (p) is mapped to by only one pattern p in D.

For instance, the mapping from the fragment in Figure 5.1 to the fragment in Figure 5.2 is VS preserving.

Theorem 5.3.15. If T is VS preserving forD, then any query’s candidate answers forD and T (D) are VS equivalent.

Proof. By Proposition 5.3.7, candidate answers over D and T (D) are value equivalent. Since each subpattern of

the pattern of a candidate answer is a pattern in the original database, by Definition 5.3.14, the multiset of candidate

answers for q over D and T (D) are VS equivalent.

Definition 5.3.16. An SFQI is design independent if for each database D, query q, and VS transformation T for D,

the answer to q from D and from T (D) are VS equivalent.

An SFQI may use some information in the database that may not be in the candidate answers to rank and/or filter

the candidate answers. Thus, a VS preserving transformation must not lose any schema information of the original

database, so that SFQIs will be able to use this information. Patterns of a schema are shared between all instances of

the schema. Hence, we can define VS transformations over all databases of a given schema. Given XML schemas S1

and S2, we define a VS preserving transformation as a mapping from I(S1) to I(S2).

Theorem 5.3.17. Given XML schemas S1 and S2, every VS preserving transformation T : I(S1)→ I(S2) is bijective.

Proof. Assume that there are two databases D1 and E1 with schema S1 that map to the same database D2 of S2 using

T . According to Definition 5.3.14, we can define a bijective mapping that maps every instance of each pattern from

D1 to an isomorphic pattern instance from E1 with equal values. Thus, D1 and E1 represent XML trees with equal

patterns and values.

We can, however, find a bijective transformation that is not VS preserving. For instance, assume the data fragment

shown in Figure 5.1 has more than one article in each journal and each article has only one subject. Assume that

transformation T groups all the articles in a journal that have the same subject under a new parent node article-subject

that is the child of journal. This transformation is bijective, as it provides a bijective mapping over the instances of the

two schemas. Nevertheless, it does not provide a bijective mapping over the patterns of the original and transformed

databases.
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Since a VS preserving transformation may change the labels of the leaf nodes, a query that contains label terms

might have different numbers of candidate answers in the original and transformed databases. If an SFQI allows its

queries to contain label terms, we restrict VS preserving transformations so that they preserve the labels of the leaf

nodes in the original database.

5.4 Design Independence of SFQIs

The baseline technique for answering queries, called the LCA method, returns all candidate answers. Based on

Theorem 5.3.15, the LCA method is design independent. However, as mentioned in Section 5.2, this approach returns

all the non-relevant candidate answers. Hence, it has the lowest precision. Moreover, it does not rank the candidate

answers. Thus other methods use the properties of candidate answers to improve its effectiveness. They filter out

irrelevant candidate answers via filtering methods [57, 26, 87, 149, 85], and/or rank the answers, via ranking methods

[26, 6, 129]. There are two categories of filtering techniques: distance based and label based. Distance based methods

deem a candidate answer to be irrelevant if its subtree is relatively large. ELCA [57] and MLCA [87] assume that only

the closest nodes are meaningfully related. If candidate subtree t1 shares a leaf node with another candidate answer

t2 and the LCA of t1 is an ancestor of the LCA of t2, they filter out t1. For instance, for query Q5: DB XML over

Figure 5.1, we have two candidate answers: a51 whose LCA is node 2 and contains nodes 4 and 7 and a52 whose LCA

is node 3 and contains nodes 4 and 5. ELCA and MLCA filter a51 as it shares a leaf node with a52 and its LCA is an

ancestor of the LCA of a52. Q5 has also two candidate answers over Figure 5.2: a53, whose LCA is node 2 and contains

nodes 4 and 6; and a54, whose LCA is node 2 and contains nodes 3 and 4. Since the LCAs of these candidate answers

are the same node, ELCA and MLCA return both candidate answers. Thus, ELCA and MLCA return different results

for these two fragments.

Proposition 5.4.1. The ELCA and the MLCA methods are not design independent.

Generally, VS preserving transformations that change the structure of a database by adding or removing non-leaf nodes

change the results of ELCA and MLCA. These changes are quite frequent in XML database design. For instance, one

designer may decide to put title and area of a conference into a new node to increase readability of the database and

answers, while another designer may decide to remove these nodes to save space and increase performance.

As mentioned in Section 5.2, the SLCA method [149, 90] filters out every candidate subtree whose LCA is an

ancestor of the LCA of another candidate subtree. SLCA returns two candidate answers for query Q6: performance

XML over Figure 5.1: the one whose LCA is node 3 and contains nodes 4 and 5 and the one whose LCA is node 6 and

contains nodes 7 and 8. However, SLCA returns only one candidate answer for Q6 over Figure 5.2, the one whose

LCA is node 5 and contains nodes 6 and 7. The candidate answer whose LCA is node 2 is filtered out, as node 2 is an
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ancestor of node 5. Thus, SLCA-based methods return different results under VS preserving transformations. Similar

to ELCA and MLCA, VS preserving transformations that add or remove non-leaf nodes change the results of SLCA.

Proposition 5.4.2. The SLCA method is not design independent.

Label based techniques such as XSearch [26] and CVLCA [85] remove every candidate subtree having two non-

attribute nodes with the same label. The idea is that non-leaf nodes are instances of the same entity type if they have

duplicate labels, and there is no interesting relationship between entities of the same type. For example, Q7: Lee

XML over the leftmost data fragment in Figure 5.4 has two candidate answers: a71, whose LCA is node bib; and a72,

whose LCA is node paper. These methods filter out a71 because it contains duplicate labels (paper). They return three

candidate answers for Q8: Green Lee over Figure 5.1: two whose LCAs are node 1 and one whose LCA is node

12. However, they return only one candidate answer to the same query over Figure 5.2. They filter out the candidate

answers whose LCAs are node 1 as they contain duplicate label authors.

Proposition 5.4.3. The XSearch and CVLCA methods are not design independent.

In general, label based methods are sensitive to schema transformations that group similar nodes under a new node.

For instance, in Figure 5.2, a designer has decided to group all authors under a new grouping node authors, to make

the database more usable. Label based methods are also sensitive to renaming of schema elements.

Ranking techniques include using depth and the number of nodes in candidate subtrees, extensions of the PageR-

ank technique, and statistical information about candidate patterns. For example, XSearch ranks the candidate subtrees

according to the number of nodes in the candidate subtree [26]. However, as mentioned earlier, VS preserving transfor-

mations can add or remove nodes from a database. Thus, they can change the number of nodes for different candidate

answers if they are not instances of the same pattern. This will change the rank of the candidate answers over the

original and transformed databases.

XReal uses the depths of the LCAs and attribute nodes of candidate subtrees to find and rank the candidate answers

[6]. Since VS transformations can add or remove nodes from the database, they can change the depth of LCA and

attribute nodes. Again, if the candidate answers do not belong to the same pattern, VS transformations can change

the depth of their LCA and attributes unequally, resulting in a different ranking over the original and transformed

databases.

XRank extends the PageRank formula to XML databases, where nodes replace web pages and edges replace

the links in the original PageRank technique. Thus, the importance of a node is proportional to the number of edges

connected to it. VS transformations can change the number of edges connected to a node through removing its children

or grouping its children under new nodes. For instance, the number of edges connected to node conf in Figure 5.1 is

different from node proceedings in Figure 5.2. Changes to authoritative nodes such as conf alter the overall ranking of
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the nodes considerably [46].

As discussed in previous chapters, CR and NTPC rank candidate answers according to the correlations of their

patterns. They use values of candidate patterns to compute correlations. The more correlated the values of a pattern

are, the stronger their relationship is. Consider the original database excerpted in Figure 5.1, where each conference

has many papers. Knowing the title of a paper gives a considerable amount of information about the author of the

paper in the database. In other words, given a value of title in bib conf paper title -1 author -1 -1 -1, one can determine

the value of author with high probability, as each paper does not have many authors. However, knowing title in bib

conf info title -1 -1 paper author -1 -1 -1 does not narrow down author very much, as each conference has many paper

authors. CR and NTPC exploit this fact, and return a candidate answer if its pattern’s correlation exceeds a given low

threshold ε. They rank the answers in descending order of their patterns’ correlations, computed using an extended

version of mutual information. We focus on CR here, as the design independence properties of NTPC can be shown

in the same manner.

Before analyzing CR’s design independence, we briefly review the concepts associated with entropy in XML. The

probability of value a in pattern p is P (a) = 1
ncount(a), where count(a) is the number of instances of p with value a

and n is the total number of instances of p in the database. Intuitively, the entropy of a random variable indicates how

predictable it is. The entropy of a pattern p having values a1, . . . , an with probabilities P (a1), . . . , P (an) respectively

is H(p) =
∑

1≤j≤n P (aj) lg (1/P (aj)). Normalized total correlation (NTC) measures the correlation of a pattern;

its value for a pattern t with root-paths p1, . . . , pn, n > 1, is NTC(q) = 1− H(q)∑
1≤i≤nH(pi)

. If the size of a pattern is

one, CR sets the value of NTC(q) to H(q).

Proposition 5.4.4. Given VS transformation T that maps database D to T (D), the NTCs of each pattern p ∈ D and

T (p) ∈ T (D) are equal.

Proof. Since T is VS preserving, it maps every pattern p in D to exactly one pattern T (p) in T (D), where T (p) is

mapped to by only pattern p in D. Also, T maps each instance s of p to exactly one instance T (s) of T (p), where s

and T (s) are value equivalent. Since T (s) is not mapped to by any other instance except for s, p and T (p) will have

the same values. Thus, they have the same NTC.

CR, similar to XSearch [26] and XReal [6], considers each candidate subtree as a small document and uses varia-

tions of TF-IDF formulas to leverage the values of candidate answers in delivering the final ranking. Each term ki in

the input query has a document frequency (DF) that is the number of attribute nodes of the same label in the database

that contain ki. The larger this number is, the less important the term becomes. If a candidate subtree contains more

instances of important terms in a query, it has higher term frequency (TF) and gets higher rank. Since the content of

candidate answers is the same over VS transformed databases, the TF remains the same under VS transformations.
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Assume that a VS transformation does not change the label of the attributes. Since VS transformations do not

change the number of instances of each path of a database, they do not change the number of instances for attribute

nodes with the same label. Thus, the DF will be equal over the original and transformed databases. If a VS trans-

formation changes the names of attributes, DF may not be equal for the original and VS transformed databases. In

this case, we can measure DF over paths instead of attributes and make the TF-IDF formula design independent. CR

computes a linear combination over NTC and TF-IDF scores to deliver the final ranking. Since both parts of CR are

design independent, we have:

Corollary 5.4.5. The CR method is design independent.

We can prove that NTPC is design independent similarly.

5.5 Weak Design Independence

The definition of a VS transformation ensures that we have the same number and similar answers for a query over

the original and transformed schemas. Therefore, VS transformations do not include transformations that preserve

schema information but do not deliver exactly the same number of similar answers for each query. In particular,

VS transformations require both databases to have the same number of equal values. Figure 5.3 depicts a non-VS

transformation over a bibliographic database fragment that moves booktitle nodes from proceedings and duplicates

them under all papers of the same proceedings. The transformation denormalizes the data fragment and creates

redundancy [4]. Since it is bijective, since it maps each database using the schema of the database whose fragment is

shown on the left to one database using the schema of the database whose fragment is shown on the right. However,

Q9: Novel 2005 has one candidate answer over the data fragment on the left and two candidate answers over the data

fragment on the right. The candidate answers over the right data fragment are VS equivalent. Thus, we may consider

them to be duplicates. If users can recognize and ignore duplicate candidate answers, we can consider both candidate

answers as a single candidate answer. Then the results of Q9 over the two databases are VS equivalent.

It is not unrealistic to expect users of a search system to recognize duplicate answers [96]. Consider Q10: Novel

DB. It has one candidate answer over the left fragment a101 whose LCA is booktitle, but three candidate answers on

the right data fragment: a102 and a103 , whose LCAs are booktitle nodes; and a104 , whose LCA is node proceedings. a101

and a102 are VS equivalent. a104 is not VS equivalent to any candidate answers for the right data fragment, but conveys

the same information as the others and we can consider it a duplicate.

Definition 5.5.1. Pattern instance S1 is almost equal to pattern instance S2 iff there is an onto relation R between

every path p of S1 and every path p′ ∈ R(p) of S2, such that p and p′ are isomorphic and have equal values.
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For instance, candidate answers a102 and a104 are almost equal. In this section, we consider the values of a pattern

to be a set.

Definition 5.5.2. Pattern p1 is a duplicate of pattern p2 iff there is an onto relation R between every instance i of p1

and every instance i′ ∈ R(i) of p2, such that i and i′ are almost equal.

For instance, pattern b1: bib proceedings paper title -1 -1 paper booktitle -1 -1 -1 is a duplicate of pattern b2: bib

proceedings paper title -1 booktitle -1 -1 -1 in the right data fragment in Figure 5.3. candidate answers are duplicates

of each other if they are almost equal and their patterns are duplicates of each other. For example, the candidate

answers of Q11: Mining DB over the right data fragment in Figure 5.3 are duplicates of each other.

We define the LCA of a pattern similarly to the LCA of its instances. Since the duplicate relationship between

patterns is symmetric and reflexive, patterns can be divided into equivalence classes based on this relationship. For

each equivalence class, we choose the pattern with the fewest paths to be its representative element. If more than one

pattern qualifies, we choose the first one in lexicographic order. The representative pattern does not have two distinct

isomorphic paths.

Definition 5.5.3. A transformation T over database D is weak VS (WVS) preserving if it maps each equivalence

class of duplicate patterns g to exactly one equivalence class of duplicate patterns T (g), such that the representative

pattern of g is VS equivalent to the representative pattern of T (g) and each equivalence class T (g) is mapped to by

only one equivalence class g.

The transformation shown in Figure 5.3 is WVS preserving. Each VS preserving transformation is WVS preserv-

ing, but there are some WVS preserving transformations that are not VS preserving, such as the transformation shown

in Figure 5.3. We relax the condition on VS equivalence to define WVS equivalence for lists or multisets of candidate

answers. We consider the output of an SFQI as a set, where all duplicate candidate answers in the same list or multiset

are considered as equal. Also, we consider the position of each class of duplicate candidate answers in a list as the

rank of the candidate answer in the class with the lowest rank.

Proposition 5.5.4. Given a WVS preserving transformation T over database D, the candidate answers for every

query q over D and T (D) are WVS equivalent.

Proof. Since the candidate answers of the representative patterns in both databases are VS equivalent, the candidate

answers are WVS equivalent.

As discussed in Section 5.3.2, SFQIs may use some schema information that is not in the candidate answers of

input queries. Thus, we must make sure that WVS transformations do not add or lose any schema information. In other

words, they must be bijective over the instances of the original and transformed schemas, as defined in Section 5.3.2.
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Theorem 5.5.5. Given XML schemas S1 and S2, every WVS preserving transformation T : I(S1) → I(S2) is

bijective.

Proof. Each database pattern belongs to an equivalence class of duplicate patterns. We can define a bijective mapping

between each equivalence class and its representative pattern. According to Theorem 5.3.17, each VS preserving

transformation is bijective. Each WVS transformation defines a VS transformation between the representative patterns

of equivalence classes in the original and the transformed databases. Hence, each WVS transformation is bijective.

Should an ideal SFQI return similar results under all bijective transformations that preserve database content? For

example, suppose we map articles written by Mary Lee in Figure 5.1 to Mary-Lee-article. As noted in Section 5.3.2,

SFQIs treat the labels of structural nodes and values of content nodes differently. It is not reasonable to expect SFQIs

to return the same answers for this transformation, or for any others that use the values of a pattern instance in D to

decide how to transform D’s structure.

What about the remaining bijective transformations T that do not modify database content and use only D as

input? All remaining transformations use the labels and the ancestor-descendant relationships between non-leaf nodes

of D in their predicates. Hence, they modify the instances of isomorphic sub-patterns similarly. According to Defi-

nition 5.5.3, these transformations are WVS preserving. We call a method weakly design independent if it returns a

WVS equivalent list or a set of candidate answers over a WVS transformation.

5.5.1 Duplicate Aware CR

Since VS transformations are also WVS preserving, methods that are not design independent will not be weakly

design independent. With a WVS transformation, VS equivalent patterns may have different numbers of almost equal

instances. Thus, if we consider the values of a pattern to be a multiset, their NTC values can be different in the old

and new databases. Hence, CR does not provide design independence over WVS transformations. This means that

patterns’ correlations should be measured by statistical properties of their instances that will provide effective ranking

and do not change under WVS transformations. Researchers have shown that the more distinct values an attribute has

in the database, the more important the information usually is that it stores [154]. As WVS transformations do not

change the number of distinct values of a pattern in a database, NTC simply needs to be changed to ignore duplicates.

Definition 5.5.6. Given pattern t with paths p1, . . . , pn, n ≥ 1, p’s normalized set total correlation (NSTC) is the

NTC of its set of pattern values.

As we will show in Section 5.6, patterns’ NSTC and NTC tend to be very close in practice, so both estimate pattern

correlation very well. From a more analytical point of view, their similarity follows from Zipf’s law, which ensures
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that database attributes often have many rare values. For example, approximately 65% of DBLP (dblp.uni-trier.de)

authors have published only one paper [41]. Zipf’s law is not the only source of rare attribute values. Entities typically

have keys and often have semi-keys, such as title in Figure 5.1. These attributes’ values are highly selective, i.e., rare.

Further, a pattern will be highly selective if it has at least one highly selective path. For example, bib/conf/title is not

highly selective, but almost all values of bib conf title -1 paper title -1 -1 -1 occur only once in the database excerpted

in Figure 5.1. Hence NSTC and NTC tend to be close for a pattern with many instances. We compute the values of

NSTC as for NTC [129], in a preprocessing stage.

As mentioned in Section 5.4, SFQIs adapt TF-IDF methods for IR-style ranking. Assume a WVS transformation

maps path p in D to T (p) in T (D). Since there could be different numbers of instances of p and T (p), the DF of the

terms in the values of p and T (p) will be different. Hence, current TF-IDF methods are not design independent under

WVS transformations. Thus we redefine the DF of a term w in pattern p to be the number of distinct values of p that

contain w. With the redefined DF, we extend the pivoted normalization method [96] to determine the contextual rank

ir(t, Q) of a candidate answer t with pattern p for query q:

ir(t, Q) =
∑
w∈q,t

1 + ln (1 + ln (tf(w)))

(1− s) + s(elt/avelp)
× qtf(w)× ln (

Np + 1

dfp
). (5.1)

Here, tf(w) and qtf(w) are the number of occurrences of w in t and the qs, respectively. elt is the total length of the

content of t, and avelp is the average length of the distinct values of p. Np is the count of distinct values of p, and dfp

is the number of distinct values of p that contain w. s is a constant; the IR community has found that 0.2 is the best

value for s [96]. We combine ir and NSTC on a sliding scale as:

r(t, Q) = αNSTC(p) + (1− α)ir(t, Q), (5.2)

where p is t’s pattern and α is a constant that determines the relative weight given to structural versus contextual

information. We determined the best value of α empirically.

The proposed ranking scheme has two problems. First, the user may have to scan through many duplicate patterns

in the list of answers. Second, the IR formula may rank larger patterns in the same equivalence class higher, as they

have more paths and therefore may contain more query terms. To address these problems, we group patterns with

equal values for NSTC and the same set of paths before query time. After finding the candidate answers at query time,

we find the equivalence class of the pattern of each candidate answer and consider only candidate answer(s) with the

smallest patterns in each class. If there is more than one such pattern, we break the ties arbitrarily. We call the new

approach Duplicate Aware CR (DA-CR).

Theorem 5.5.7. DA-CR is weakly design independent.
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Proof. Let T be a WVS transformation from database D to database T (DB). We must prove that given query q,

the lists of candidate answers returned by DA-CR for q over D and T (DB) are WVS equivalent. Hence, according

to formula (5.2), we must show that the values of NSTC and ir for the candidate answers whose patterns are the

representatives of their equivalence classes in D and T (D) are equal. All patterns in the same equivalence class in D

have equal NSTC. Similarly, all patterns that belong to a equivalence class in T (D) have equal NSTC. Let p be the

representative pattern of equivalence class g in D and T (p) be the representative pattern of equivalence class T (g)

in T (D). Since p and T (p) are VS equivalent, they have equal NSTC values. Since WVS transformations do not

merge content nodes, p and T (p) have the same size. Hence, the NSTC value of candidate answers of p is equal to the

NSTC value of the candidate answers of T (p). Since p and T (p) are VS equivalent, they have equal avelp and Np.

As candidate answer t of p and candidate answer T (t) of T (p) are value equivalent, we have elt = elT (t). Similarly,

t and T (t) have equal tf(w) for all w ∈ q. Thus, t and T (t) have equal ir values. As the candidate answers of p and

T (p) have equal NSTC and ir values, they will have the same ranking score. As D and T (D) have the same number

of candidate answers, the results of DA-CR for q over D and T (D) are WVS equivalent.

To compute ir in Formula (5.2), for every term w and pattern p up to a given size, we must compute dfp(w),

the number of distinct values of p that contain w; and Np, the number of distinct values of pattern p. We also must

compute avelp, the average length of all distinct values in p. Since the number of patterns and terms in a large database

is huge, exact computations of these values are prohibitively expensive. Furthermore, this information occupies a lot

of space on disk. Thus, we estimate them by assuming that the terms occur in the paths of a pattern independently.

Assume that p contains paths q1, . . . , qn and pw(qi) shows the probability of term w appearing in distinct values of qi:

dfp(w)

Np + 1
≈ dfp(w)

Np
≈ 1−

∏
1 ≤ i ≤ n(1− pw(qi)). (5.3)

Similarly, we estimate avelp as
∑

1≤i≤n avelqi . Spark [93] used the same idea to estimate IR-style statistics for

relational data, and found the average error rate to be around 30%. We computed exact values for avelp and dfp(w)
Np+1

for all patterns up to size 3 for DBLP and got an average error rate of 32%, which subsequent experiments show to be

acceptable for ranking purposes.

5.6 Experiments

We performed an extensive empirical study to measure the average case design independence of the SFQIs discussed

in Section 5.4 on three real world databases: IMDB (205 MB, 35 schema elements, max depth 7), DBLP (102 MB,

31 schema elements, max depth 7), and Mondial’s geographical information about countries (dbis.informatik.uni-
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goettingen.de/Mondial) (1.5 MB, 53 schema elements, max depth 5). Since the structure of DBLP was originally

relatively flat and similar to Mondial, we transformed it by putting papers and articles under their associated journals

and proceedings to get a more nested structure.

We asked undergraduate CS majors who were not conducting this research and were familiar with the concepts

and issues of database design and XML to create new designs for each database. We explained to them the properties

of a WVS transformation, so that they created a new database that was a WVS transformation of the original database.

They were required to provide an acceptable objective for each redesign. For instance, if they created a new entity,

they had to explain how the new entity helps users understand the data and answers better (usability). For instance, one

designer decided to create a new entity called crew-info that contains the information on actor, actress, director, writer,

and other movie crew members. He also created another new entity production-info that contained all information on

the production and distribution process of a movie, such as location, production-company, and distributor. Inside

this new entity, the business information such as the box office of a movie was grouped under another entity called

overall-business. The objective of this design was to increase the usability of the data because IMDB has more than

40 attributes for each movie and most attributes can have over 30 instances. Thus, it is very hard for users to find the

information they want among all these attributes. Similarly, if designers merged some entities or denormalized the

database, they had to explain how it would improve query processing performance. For instance, one designer moved

year and booktitle from proceedings or journals to papers in DBLP. This way the system needs to perform fewer

structural joins between these nodes and other nodes from a paper, such as title and author [87].

We collected three redesigns for each database. Since Mondial has a relatively simple and flat schema, our de-

signers could not find a WVS transformation that involves duplication. Furthermore, we also collected a differ-

ent design for each dataset from a real database in the same domain. We used the design of SIGMOD Record at

www.dia.uniroma3.it/Araneus/Sigmod as an alternative design for DBLP, the design of the movie data set from Meta-

critic at www.metacritic.com as an alternative design for IMDB, and the design of the geographic database from the

CIA World Factbook at www.cia.gov/library/publications/the-world-factbook as an alternative design for Mondial.

Since some of the schema elements in our data are not presented in their schemas, we added some new schema ele-

ments to these designs in order to make their transformations VS preserving. The designers wrote one XSL script for

each new design to transform the database instance. We name each design by its objective.

We collected 80 keyword queries for DBLP, 79 keyword queries for IMDB, and 60 keyword queries for Mondial,

submitted by 16 users. The query length ranged from 2 to 5. A complete list of the queries can be found in Table 5.4.

As mentioned in Section 5.4, SFQIs filter out candidate answers and/or rank candidate answers. We implemented

filtering methods SLCA, CVLCA, XSearch, XReal, and ELCA, and ranking methods CR, XSearch, XReal, and

XRank. Accordingly, we used two metrics to compare the result lists or multisets delivered by a method over different
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Figure 5.8: Design independence of filtering methods

designs of a database. For filtering methods, we adapted the Jaccard index to measure the similarity between their

results, by counting the number of different candidate answers in the multiset results, and normalizing it by dividing

by the total number of candidate answers from both results together. If the results have exactly the same candidate

answers, the value is 1; if they do not overlap, the value is 0.

For rank-based comparison, we used Kendall’s tau metric [77], which penalizes a list if a candidate answer occurs

in a position different from its position in the other list. We normalized Kendall’s tau by dividing it by its maximum

value, n(n − 1)/2, where n is the total number of elements in the list. If the list of results from two databases is

identical, then the measurement is 1, and if the ranked result from one database is the reverse of the other’s, then the

measurement is 0.

Kendall’s tau is designed to compare lists with the same number of elements. As ranking methods such as XSearch

and XReal do both ranking and filtering, they can produce ranked lists of different lengths for the same query over

different databases. Hence, we do multiset comparisons of these methods to find the difference between the multisets

of elements in both lists. Then, we assume that the missing elements from a list are ranked at the end of the list, and

compute Kendall’s tau to find the difference between the rankings in the lists.

Normally, ranking methods return a very large number of candidate answers for an input keyword query, but users

focus primarily on the top ranked results. Hence, we also compute the average design independence for ranking

methods over only the top 20 candidate answers for each query.

5.6.1 Average Design Independence

The first five bars (solid colors) for each data set in Figure 5.8 show the design independence of the filtering methods

discussed in Section 5.4 over DBLP, IMDB, and Mondial, averaged over the different designs. Since IMDB’s schema

is more complex than DBLP’s and Mondial’s, all methods except ELCA have their lowest average design indepen-

dence for IMDB. IMDB has more paths and patterns than DBLP and Mondial, making its candidate answers more
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Figure 5.9: Design independence of ranking methods

Figure 5.10: Design independence of ranking methods for top 20 answers

DB CVLCA XSearch XReal
DBLP 11 11 1
IMDB 0 0 0
Mondial 26 26 33

Table 5.1: Average number of queries whose answers’ LCA is the database root

DB CVLCA XSearch XReal Op.CVLCA Op.XSearch Op.XReal
DBLP 3 3 3 14 14 4
IMDB 0 0 11 0 0 11
Mondial 0 0 5 26 26 6

Table 5.2: Average number of queries returning no results

diverse. ELCA has its lowest average design independence for Mondial because ELCA is a distance based method,

and all transformations over Mondial change the distance between leaf nodes. Since Mondial was originally very flat,

a small change in distances between nodes makes a relatively large difference in query results.

The first four bars (solid colors) for each data set in Figure 5.9 show the design independence of the ranking

methods in Section 5.4 for designs of DBLP, IMDB, and Mondial, respectively. Similarly, Figure 5.10 shows the

average design independence of these methods considering only the top 20 answers. Interestingly, the resulting values
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for top 20 answers are quite close to the values computed over all ranked answers, except for a noticeable difference

in IMDB, which we discuss later. DA-CR delivers perfect design independence over all three data sets (not shown

in the figures). XSearch and XReal deliver their lowest average design independence over IMDB. CR and XRank,

however, show their lowest design independence for DBLP and Mondial, respectively, for reasons explained later.

All ranking methods except DA-CR deliver their lowest average design independence over IMDB when considering

only the top 20 candidate answers, as shown in Figure 5.10. Since Mondial has the simplest schema, all filtering and

ranking methods except for DA-CR generally have their highest average design independence for Mondial. Since all

the transformations over Mondial are VS preserving, CR provides perfect average design independence over Mondial.

The other filtering and ranking methods do not provide perfect average design independence even over such a relatively

simple database.

We have proved that if a method is weakly design independent, it delivers perfect design independence over all

WVS transformations of a database. Also, we have proved that if a method is design independent but not weakly design

independent, it will show its lowest design independence over WVS preserving transformations. Our experiments

confirm these theoretical results. DA-CR delivers perfect design independence for all transformations. CR shows its

lowest design independence for Performance transformations over DBLP and IMDB, which are WVS preserving. As

DA-CR provides perfect design independence over all transformations and databases, we ignore it in the rest of our

analysis of average design independence.

Since other filtering and ranking methods are not (weakly) design independent, there is no specific type of trans-

formation where their design independence is worst. Generally, method M has lower average design independence

for transformation T , if T modifies the information used by M to filter or rank candidate answers the most. Hence,

methods are less design independent for transformations that extensively change the database structure, either by

introducing new nodes or modifying the nodes’ positions. As discussed in Section 5.4, if a method is not design

independent, it returns dissimilar results under at least one VS preserving transformation. Interestingly, none of the

design dependent methods provides perfect average design independence over any VS preserving transformation in

our experiments. This observation underlines the need for design independent query interfaces in real-world settings.

For DBLP, all ranking methods except XSearch deliver their lowest average design independence with the Per-

formance transformation, because this mapping adds many new and duplicate nodes. As discussed in Section 5.4,

XSearch ranks candidate answers by their sizes. This candidate answer property is changed the most by Usability2

and in SIGMOD Record transformations. Thus, XSearch delivers its lowest average design independence for these

redesigns of DBLP. We observe a similar trend for filtering methods. XReal and SLCA deliver their lowest average

design independence with Performance. They use the depth of the LCAs to filter the candidate answers, and this prop-

erty is modified the most by Performance. Usability2 adds more duplicate labels and changes the distance between
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leaf nodes the most. As other methods consider duplicate labels and the distance between leaf nodes in candidate

answers, they show their lowest average design independence under this transformation.

Except for CR, in IMDB the average design independence of filtering and ranking methods for Usability1 and

Usability2 is lower than for Performance. This is because only a few queries match the parts of IMDB changed by

Performance. Usability1 and Usability2 extensively change the database structure at popular query nodes such as

actor, actress, and title. The average design independence for Usability1 and Usability2 over IMDB is very close for

the different methods. All redesigns of Mondial are VS preserving. All methods except CR have their lowest average

design independence with Usability3 and their highest with Usability2. This is because Usability3 adds more new

nodes and increases the depth of the paths the most, whereas Usability1 slightly changes the database design.

Figures 5.8 shows that the structural filtering technique of SLCA and XReal provides better design independence

than label based techniques such as CVLCA and XSearch. However, their higher degree of design independence is

mostly because they filter out more candidate answers than other filtering methods. For instance, XReal returns on

average fewer than 1/5th of the candidate answers returned by XSearch, XRank, or CVLCA over IMDB. Similarly,

SLCA returns on average fewer than half of the candidate answers returned by XSearch, XRank, and CVLCA over

IMDB. If an SFQI returns more candidate answers for a query, it is likely to have lower average design independence,

assuming all other conditions remain the same.

All queries in our experiments are guaranteed to have at least one candidate answer whose LCA is not the root of

the database. Table 5.2 shows the number of queries that return no answer at all, using filtering and ranking methods,

averaged over the database designs. XReal does not return any candidate answer for many queries over all three

databases. It has been shown that SLCA and XReal have lower recall than other filtering methods [129]. Hence, the

relatively high design independence of these methods comes at the cost of missing relevant answers, which is not a

desirable property of an SFQI. Every filtering and ranking method but SLCA, CR, and DA-CR returns some candidate

answers whose LCA is the root of the database. This type of candidate answer is not relevant in a large database [129].

Table 5.1 shows the number of queries where the LCA of every returned candidate answer is the database root, for

CVLCA, XSearch, and XReal, averaged over all database designs. The recall of these methods for such queries is

zero.

After DA-CR, CR delivers the highest overall average design independence among the ranking methods. Although

CR is not weakly design independent, its design independence is better than all ranking methods except for DA-CR

and XReal for Performance with IMDB and DBLP. This shows that if a method does not rely on schema details,

it generally provides higher average design independence. XReal has the second best average design independence

for Performance over DBLP and IMDB after DA-CR. However, XReal returns on average fewer than 1/6th of the

candidate answers retuned by CR over DBLP with Performance. Similar results hold for XReal answers over IMDB.
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DA-CR CR
IMDB 0.721 0.714
DBLP 0.837 0.832
Mondial 0.881 0.881

Table 5.3: Mean average precision for DBLP and IMDB queries

XReal has considerably lower recall than CR [129], as confirmed in Tables 5.1 and 5.2. A method that never returns

any answers will have perfect design independence, so it is not surprising that XReal is slightly more design indepen-

dent than CR over DBLP and IMDB for Performance, but it misses many relevant answers. XRank’s rankings depend

very much on the shape of the database. Since all transformations make significant changes to the database shape,

XRank has the lowest average design independent among all ranking methods.

The ranking algorithms of SLCA, CR, and DA-CR are designed so that they do not return any candidate answer

whose LCA is the root of the database. To be fair to other methods, we changed the ranking algorithms of other

methods so that they discard such candidate answers. The last four bars in brighter colors in Figures 5.8 show average

design independence after this optimization. Generally, the design independence of all filtering methods improves

dramatically after this optimization, but no method delivers perfect average design independence. Though CVLCA

and XSearch improve significantly, as shown in Table 5.2, they do not return any candidate answer for a considerable

number of queries. As discussed above, returning many fewer answers tends to increase design independence, but

severely penalizes recall. The average design independence of XReal does not change much. ELCA improves, but is

still far from delivering perfect average design independence.

The last three bars with brighter colors in Figures 5.9 show the average design independence of ranking methods

over different databases, after optimization through removal of candidate answers whose LCA is the database root.

The average design independence of XSearch and XReal increase significantly, but the optimized versions of XSearch

and XReal do not return any candidate answer for a considerable number of queries. The average design independence

of XRank decreases after this optimization, which shows that its ranking method is quite unstable. Overall, the average

design independence of most ranking methods increases after this optimization. However, they still do not deliver a

perfect design independence as DA-CR does on every WVS transformation, or as CR does on VS transformations.

5.6.2 Effectiveness

As discussed above, higher design independence does not necessarily mean better effectiveness, i.e., better recall

and precision. However, the previous chapters have already shown that CR delivers better ranking quality than the

previously proposed methods discussed in this chapter. To show that DA-CR is at least as effective than CR, we

compared the ranking quality of DA-CR and CR over three real-world databases. We asked 15 users who were not

102



conducting this research to provide up to 5 keyword queries each for IMDB and DBLP. We collected 25 queries

for DBLP, 40 queries for IMDB, and 35 queries for Mondial. There are fewer queries for DBLP because some of

the users are not CS researchers, and could not provide meaningful DBLP queries. A complete list of queries can

be found in [129]. We developed a query processing prototype based on the baseline algorithm that returns every

candidate answer for each query. Our users submitted their queries to this system and judged each candidate answer

as relevant or irrelevant by selecting a checkbox in front of each candidate answer. We compared the ranking quality

of CR and DA-CR using mean average precision [96]. We use the NSTC and NTC values generated by EV = 3 and

L = 5 for all databases, which suffices for our queries. We set α to 0.84 for all databases, which provides the best

empirical results. Table 5.3 shows that DA-CR has almost the same MAP as CR over Mondial and DBLP, and a better

MAP for IMDB. The new TF-IDF formula in DA-CR delivers better ranking quality for IMDB, because it has a more

nested structure. Each query over IMDB returns more candidate patterns than for the DBLP and Mondial queries.

<!ELEMENT dblp (proceedings*, book*, ...)>

<!ELEMENT proceedings (year, booktitle, inproceedings*, editor*, title, ...)>

<!ELEMENT book (booktitle, year, incollection*, editor*, url, ee, ...)>

<!ELEMENT inproceedings (author*, title, pages, url, ee, cite*, ...)>

<!ELEMENT incollection (author*, title, pages, url, ee, cite*, ...)>

Figure 5.11: Part of the DBLP database DTD

<!ELEMENT dblp (proceedings*, book*)>

<!ELEMENT proceedings (inproceedings*, author*, editor*, series, volume, title, url, ee, ...)>

<!ELEMENT book (incollection*, author*, editor*, url, ee...)>

<!ELEMENT inproceedings (booktitle, year, author*, title, pages, url, ee, cite*, ...)>

<!ELEMENT incollection (booktitle, year, author*, title, pages, url, ee, cite*, ...)>

Figure 5.12: Part of the DBLP database DTD with Performance transformation

<!ELEMENT dblp (proceedings*, book*, ...)>

<!ELEMENT proceedings (booktitle, inproceedings*, editor*, info, url, ee, ...)>

<!ELEMENT book (booktitle, year, incollection*, editor*, url, ee...)>

<!ELEMENT info (title, series, volume, year)

<!ELEMENT inproceedings (author, title, pages, url, ee, cite*, ...)>

<!ELEMENT incollection (author, title, pages, url, ee, cite*, ...)>

<!ELEMENT author (name*)>

<!ELEMENT editor (name*)>

Figure 5.13: Part of the DBLP database DTD with Usability1 transformation
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Num DBLP IMDB Mondial
1 robert sanz flick jessica greek orthodox
2 dmkd models beautiful mind bourgogne brest
3 design languages dreams true 8535 opolskie
4 authenticated dictionary english ocean luzern switzerland
5 smyrlis yiorgos sarandon susan kanagawa kawasaki
6 culler schauser grand torino languedoc rousillon
7 barbara liskov artificial intelligence beijing china
8 conversation web doctor zhivago ajaccio franche
9 william yurcik bale christian olomouc praha

10 chris miller clooney george aragon zaragoza
11 haixun wang ray satyajit gorzow wielkopolskie
12 transaktionsprogrammen von advice berg gottingen oldenburg
13 giorgio parallel belgian detective arkhangelsk arkhangelskaya
14 2003 jugravu christensen hayden chunchon kunsan
15 stereo vision thumbs up anatoliki thraki
16 bart goethals edward norton bermuda dependent
17 reid stillings harbor pearl dhytiki ellas
18 social visualization basic instinct rostock schwerin
19 decision linear trees crime godfather asia japan
20 architecture hennessy patterson cheadle jemison qin lorraine metz
21 acm discovery oliver allen french highmore ivanovskaya kineshma
22 altman challenges knowledge arnold claire terminator slaski wodzilaw
23 1999 inferring webkdd comedy portland stone europe spain
24 iglesia techniques victor japanese psycho thriller budejovice ceske jihocesky
25 path planar shortest animation dakota fanning coruna galicia la vigo
26 molina sigmod ullman alcoholic ofm paul 18412 saarland sachsen
27 authentication cryptography key comedy military world graz styria tyrol
28 distribution portability replication blackson courtesy world kuala lumpur malaysia
29 cootes edwards taylor mathematics professor usa cantabria laguna santander
30 1999 bailey stuart britney disney spears augsburg erlangen regensburg
31 database elmasri navathe clooney pitt roberts cote dazur provence
32 database sigmod storage 1997 kate winslet calabria di reggio
33 flow klein planar columbia grant hugh burgenland eisenstadt klagenfurt
34 computations matrices polynomials brian miracle train 10391 navarre pamplona
35 databases keyword search damon garcia reiner heilbronn pforzheim ulm
36 fung mangasarian selection clooney mac pitt czech jihomoravsky republic
37 closed frequent pattern derek null power italy lazio padova
38 cubesort feasible jorge beauvais dollars tippi de hospitalet llobregat
39 graphs matching maximum docter hanks lasseter cancun quintana roo
40 computer notes science drama ghost hunt alacant madrid valencia
41 lazebnik ponce schmid 2008 millionaire slumdog andorra la vella
42 aleksandar boosting zoran action clooney fox brest bretagne rennes
43 cryptography key public colton light utah 4374 fejer hodmezovasarhely
44 build mok salvatore earth ship tsunami and castile leon
45 molina ullman widom bloom jackson mckellen berlin erlangen furth
46 communication hypermedia modelling japanese war world amsterdam holland netherlands noord
47 aschoff environment measurement subsystem 2005 documentary mcginn poland river warsaw warszwaskie
48 commutative free monoids partially drama lynch watts arzamas belgorod belgorodskaya oblast
49 cadam db2 engineering kohlman amy catch christopher home bashkortostan oktyabrsky salavat sterlitamak
50 arnulf ctla heiko mester fox julia roberts romance huancavelica huanuco ica peru
51 commodity launching narayan thomas blake edwards peter sellers cdn great lake slave
52 agarwal detection object roth cuppers doll jassie reno 50 kharkiv kharkivska ukraine
53 barrera bivariate compactly hct 44 basil joe microcosm arequipa ayacucho cajamarca callao
54 min on portfolio wolfgang capitol control liberal press bihor bistrita botosani braila oradea
55 2000 banded for pavlov extramarital idealist teenage vigil democracy equatorial guinea malabo transition
56 explicit lebedev systems time afternoon bregman dog laurent geleen limburg maastricht netherlands nl
57 andronov esm resampling simulation cox filmmaking july keith ababa addis africa economic ethiopia
58 bisimilarity deciding history preserving bernet foenkinos gallotte vincent el mariy of rep rybinsk
59 podelski reactive set tacas cfi comedy david oregon cauca choco cordoba cundinamarca yopal
60 multiple of power reads mummy of return the burma magway mandalay rangoon yangon
61 agarwal dheeraj puneet sanghi commander far master side
62 antje bernhard sitelang thalheim clint eastwood the unforgiven
63 frequent han patterns sigmod bernstein jarecki kaluska spherical
64 finding forbidden minimal minors drama galileo paradise trevill
65 1987 defined objects winfried 2004 angel julie villoldo
66 236 calculation josefsson states avenue mitch number original
67 chen chi convergence wnaa bouzereau jason summers warner
68 breakthroughs embeddings graph optimal torben century futurama matt patric
69 clauses cononical horn of sets barnett brian michael prodeje west
70 641 beyond discussions sandra tutors collins delano egger megan olivia
71 biswas christine fischer friedman pietras 40 aaron griffin nights vinessa
72 ishikawa kato kubota noguchi ono coming garnet jordon motta scarlett
73 alan design languages mycroft richard and of speed the time wizard
74 102 approach metasystem paul tremblay al charles dede martin summers
75 collapsing computation degrees strong via allen comedy johansson scarlett woody
76 cubic cuts efficient graph maximal ambition heckler lorna reporter waitress
77 dynamics interaction mass of the investigation parkes scenes zophres
78 1996 automatic properties riccardo some 2005 breckin justin mark paramount
79 acm data mining sigmod workshop edward featured james season yost
80 chengfei maria workflow xiaofang xuemin

Table 5.4: DBLP, IMDB and Mondial queries

<!ELEMENT dblp (proceedings*, book*, ...)>

<!ELEMENT proceedings (year, booktitle, inproceedings*, editor*, series, volume, title, location, ...)>

<!ELEMENT book (booktitle, year, incollection*, editor*, location, ...)>

<!ELEMENT inproceedings (paperinfo, pages, location, cite*, ...)>

<!ELEMENT incollection (paperinfo, pages, location, cite*, ...)>

<!ELEMENT paperinfo (author*, title)>

<!ELEMENT location (url, ee)>

Figure 5.14: Part of the DBLP database DTD with Usability2 transformation
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Dataset:Transformation Renamed Elements # Added Elements #
DBLP : Performance 0 0
DBLP : Usability1 2 2
DBLP : Usability2 0 2
DBLP : SIGMOD Rec. 0 3
IMDB : Performance 0 0
IMDB : Usability1 0 25
IMDB : Usability2 0 6
IMDB : Metacritic 5 21
Mondial : Usability1 0 7
Mondial : Usability2 0 4
Mondial : Usability3 0 10
Mondial : Factbook 8 11

Table 5.5: Modified schema elements in the schema of transformed databases

<!ELEMENT dblp (proceedings*, book*, ...)>

<!ELEMENT proceedings (year, booktitle, inproceedings, editor*, series, volume, title, ...)>

<!ELEMENT book (booktitle, year, incollections, editor*, ...)>

<!ELEMENT inproceedings (inproceeding*)>

<!ELEMENT incollections (incollection*)>

<!ELEMENT inproceeding (authors, title, pages, cite*, url, ee, ...)>

<!ELEMENT incollection (authors, title, pages, cite*, url, ee, ...)>

<!ELEMENT authors (author*)>

Figure 5.15: Part of the DBLP database DTD transformed to SIGMOD Record data set design

<!ELEMENT imdb (show*)>

<!ELEMENT show (title, year, keywords, actor*, actress*, director*, producer*, writers, genres,

sound_track*, sound-mix, rating, location*, country*, ...)>

<!ELEMENT sound_track (title, info*)>

<!ELEMENT rating (votes, rank)>

Figure 5.16: Part of the IMDB database DTD

<!ELEMENT imdb (show*)>

<!ELEMENT show (title, year, keywords, actor*, actress*, director*, producer*, writer*, genres,

sound_track*, rating, location*, country*, ...)>

<!ELEMENT show (title, year, actors, release_dates, ...)>

<!ELEMENT sound_track (title, info*, sound-mix)>

<!ELEMENT rating (votes, rank)>

Figure 5.17: Part of the IMDB database DTD with Performance transformation

<!ELEMENT imdb (show*)>

<!ELEMENT show (title, year, keywords, casts, staffs, places, genres, sound_track*, sound-mix, rating, ...)>

<!ELEMENT sound_track (title, info*)>

<!ELEMENT rating (votes, rank)>

<!ELEMENT casts (actors, actresses)>

<!ELEMENT staffs (directors, producers, writers, ...)>

<!ELEMENT places (locations, countries)>

<!ELEMENT actors (actor*)>

<!ELEMENT actresses (actress*)>

<!ELEMENT producers (producer*)>

<!ELEMENT directors (director*)>

<!ELEMENT writers (writer*)>

<!ELEMENT locations (location*)>

<!ELEMENT countries (country*)>

Figure 5.18: Part of the IMDB database DTD with Usability1 transformation
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<!ELEMENT imdb (show*)>

<!ELEMENT show (keywords, basic_info, cast_info, production_info, misc_info, ...)>

<!ELEMENT sound_track (title, info*)>

<!ELEMENT rating (votes, rank)>

<!ELEMENT basic_info (title, year, language, genre*)>

<!ELEMENT cast_info (actor*, actress*, director*, producer*, writer*, ...)>

<!ELEMENT production_info (location*, country*, release_date, ...)>

<!ELEMENT misc_info (rating, tech_info)>

<!ELEMENT tech_info (sound_track*, sound-mix)>

Figure 5.19: Part of the IMDB database DTD with Usability2 transformation

<!ELEMENT movies (movie*)>

<!ELEMENT movie (title, year, production_company*, summary, detail&credits, user_reviews)>

<!ELEMENT summary (plot?, genres, keywords, runtime)>

<!ELEMENT details&credits (directors, casts, producers, writers, release_date*, locations, soundtrack, ...)>

<!ELEMENT user_reviews (distribution, votes, rank)>

<!ELEMENT producers (producer*)>

<!ELEMENT casts (actor*, actress*)>

<!ELEMENT directors (director*)>

<!ELEMENT writers (writer*)>

Figure 5.20: Part of the IMDB database DTD transformed to Metacritic data set design

<!ELEMENT mondial (country*, organization*, lake*, ...)>

<!ELEMENT country (name, population?, population_growth?, gdb_total?, gdb_agri?, religions*, border*,

province*, city*, government, ...)>

<!ATTLIST country (capital, area, ...)>

<!ELEMENT province (name, area?, population?, city*)>

<!ELEMENT city (name, longtitude?, latitude?, area?)>

<!ELEMENT organization (name, abbrev?, established?, members)>

<!ELEMENT lake (name, located?, area?, ...)>

Figure 5.21: Part of the Mondial database DTD

<!ELEMENT mondial (countries, ...)>

<!ELEMENT countries (country*)>

<!ELEMENT country (name, population?, population_growth?, gdb_total, gdb_agri?, religions-s, borders,

provinces, cities, government, ...)>

<!ATTLIST country (capital, area, ...)>

<!ELEMENT religions-s (religions*)>

<!ELEMENT borders (border*)>

<!ELEMENT provinces (province*)>

<!ELEMENT cities (city*)>

<!ELEMENT province (name, area?, population, city*)>

<!ELEMENT city (name, longtitude?, latitude?)>

Figure 5.22: Part of the Mondial database DTD with Usability1 transformation

<!ELEMENT mondial (country*, ...)>

<!ELEMENT country (name, population_info, gdb_info, other_info, geograpy, ...)>

<!ATTLIST country (capital, area, ...)>

<!ELEMENT population_info (population?, population_growth, ...)>

<!ELEMENT gdb_info (gdb_total, gdb_agri?, ...)>

<!ELEMENT other_info (religions*, borders*, government, ...)>

<!ELEMENT geography (city*, province*)>

<!ELEMENT province (name, area?, population?, city*)>

<!ELEMENT city (name, longtitude?, latitude?)>

Figure 5.23: Part of the Mondial database DTD with Usability2 transformation
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<!ELEMENT mondial (countries, ...)>

<!ELEMENT countries (country*)>

<!ELEMENT country (basic_info, country_description, population_dist, geography)>

<!ELEMENT basic_info (capital, area, ...)>

<!ELEMENT country_description (name, population?, population_growth?, gdb_total, gdb_agri?, government, ...)>

<!ELEMENT population_dist (religions*, ...)>

<!ELEMENT geography (borders, cities, provinces, ...)>

<!ELEMENT borders(border*)>

<!ELEMENT cities (city*)>

<!ELEMENT provinces (province*)>

<!ELEMENT province (name, area?, population?, city*)>

<!ELEMENT city (name, longtitude?, latitude?)>

Figure 5.24: Part of the Mondial database DTD with Usability3 transformation

<!ELEMENT factbook (record*)>

<!ELEMENT record (country, geography, people, economy, cities, provinces, ...)>

<!ELEMENT geography (location, geographic_coordinates, area, land_boundaries, border_countries, ...)>

<!ELEMENT people (population, population_growth_rate, ethnic_groups, religions, languages, ...)>

<!ELEMENT government (government_type, capital, ...)>

<!ELEMENT economy (gdp, gdp_agri, inflation, ...)>

<!ELEMENT provinces (province*)>

<!ELEMENT province (name, area?, population?, city*)>

<!ELEMENT cities (city*)>

<!ELEMENT city (name, longtitude?, latitude?)>

<!ELEMENT border_countries (border*)>

<!ELEMENT religions (religion*)>

<!ELEMENT ethnic_groups (ethnic_group*)>

Figure 5.25: Part of the Mondial database DTD transformed to CIA Factbook data set design
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Chapter 6

A Principled Language Model for Ranking
the Results of Keyword Search Over
Entities
6.1 Background

In this chapter, we formulate a rigorous model for determining the desirable ranking of answers to a keyword query

over a set of entities, based on reasonable and widely accepted principles of information retrieval. Our contributions

in this chapter:

• We propose a new formal model for ranking keyword query answers over a set of entities, called the Structured

Language Model (SLM). SLM adapts the IR community’s language model framework to suit a more structured

setting, using two widely accepted principles from statistics and information retrieval. SLA captures the unique

characteristics of the structured data in a database of entities (as opposed to pure text documents and text-centric

data), leveraging the database’s structural information to provide more effective ranking of answers.

• We prove that SLM determines the optimal ranking of answers for every query and data set, given the infor-

mation made available to it. To the best of our knowledge, no previous model for database keyword queries

guarantees such a property. Our proof is based on the probability ranking principle, a well known and widely

accepted principle in information retrieval [109]. We also analyze previous formal models for database keyword

queries and show that they violate the probability ranking principle.

• We provide the results of extensive experiments with SLM, using two real databases, a real query log, and

queries from a user study. Our results show that SLM’s ranking quality exceeds that of previous approaches to

keyword queries for structured data.

In the reminder of the chapter, Section 6.2 presents basic definitions and Section 6.3 explores the shortcomings of

current formal models for keyword search over a set of entities. Section 6.4 defines SLM and proves its optimality.

Section 6.5 provides principled methods to estimate SLM parameters in the absence of training data. Section 6.6

presents experimental results.
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0 imdb

1 movie

2 
title

3 
keyword

4 
keyword 5 

director

Godfather

Godfather Mafia
Coppola

6 
year

1970

7 movie

8 
title 9 

keyword

10 
keyword 11 

director

Crime 
Family

Godfather
1970

Johnson

12 
year

1982

14 
distributor

Godfather 
Inc.

15 
soundtrack

Godfather 
Attacks

Figure 6.1: IMDB fragment

Title Director Keyword Keyword Year · · · Mapping Relevance (R)
Godfather I Coppola Godfather Mafia 1970 · · · {(Godfather,title), (1970, year)} 1
Godfather I Coppola Godfather Mafia 1970 · · · {(Godfather, keyword), (1970, year)} 0

Crime Family Johnson Godfather 1970 1982 · · · {(Godfather, keyword), (1970, keyword)} 0
1970 Smith Godfather Mafia 1991 · · · {(Godfather, keyword), (1970, title)} 0

Goodfellas Scorsese Godfather Mafia 1995 · · · {(Godfather, keyword)} 0
Hanna Allen Family New York 1970 · · · {(1970, year)} 0

Table 6.1: Relevance information for Q2 over a fragment of IMDB

6.2 Definitions

As discussed in the previous chapter, a keyword query approach that relies on database design details will rank answers

differently for different designs with the same content. Thus a principled formal model that ranks answers well for all

databases should not consider the details of the database design, or the data format (XML, relational, etc.). This means

that our assumptions about the data model need to be so basic that any data model or database design will satisfy them.

By definition, a database has structure, so there must be at least one way to divide it into queriable units – the

potential answers to queries – and the descriptions of those units. Albeit with loss of nuances, it should be possible

to map any database design under any data model to a simple entity-relationship diagram containing entity sets,

relationships, and attributes. We focus on building a principled model that can appropriately rank the entities in a

particular entity set that match a keyword query. For example, in Figure 6.1, each subtree with a root labeled movie

can be viewed as an entity. Given a keyword query about movies, the task is to rank the potential answers.

Since one database designer’s relationship is another designer’s entity, we assume that all the “interesting” rela-

tions, i.e., the ones likely to be the targets of keyword queries, have already been promoted to be entity sets in the

database’s entity-relationship diagram. The entity sets and their attributes are the queriable units and their descrip-

tions, respectively. We do not consider more nuanced structural information that might be specific to a particular data

model, such as how an entity is stored in an XML file or in a set of normalized relational tables. Searches that match

multiple entity sets are also beyond our scope. In spite of these restrictions, many important keyword query tasks over

structured databases, such as entity search [116, 49] and keyword search over XML collections [78, 33], fit this model.
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The entity set being queried has an associated set of attributes, each of which represents an underlying domain,

such as titles of movies or names of companies. We assume that different attributes represent different concepts. Each

entity in the entity set has zero or more values for each of the set’s attributes; we refer to these as the entity’s attribute

values. Each attribute value is a nonempty bag of terms, containing no stop words.

For instance, Godfather and Mafia are attribute values of the movie entity shown in the subtree rooted at node 1 in

Figure 6.1. Node 2 says that title is an attribute of Godfather. Godfather and Mafia in the entity rooted at node 1 are

both attribute values of the attribute keyword.

Two attribute values represent the same piece of information if and only if they have the same content and the same

attribute. The entities rooted at nodes 1 and 7 in Figure 6.1 both have an attribute value Godfather. However, Godfather

is the title of the entity at node 1 and a keyword of the other movie. Thus, they represent different information.

To simplify notation, if term w occurs in an attribute valueA of attribute T belonging to entityE, we write w ∈ A,

A ∈ T , A ∈ E, T ∈ E, and w ∈ T . T is the set of all attributes in the database.

A keyword query is a set Q = {q1 · · · q|Q|} of terms, where |Q| is the number of terms in Q. Many times in

keyword search the desired answers may not exactly contain the terms in the query. For instance, the entity under node

1 in Figure 6.1 does not contain any exact match for the term in query gangster movie, but it is a relevant answer to

this query. Keyword query systems use a variety of methods to find approximate matches to the query terms [96]. We

explain such methods in detail in Section 6.4. We consider an entity E to be an answer to Q iff some attribute value

A ∈ E contains exact or approximate match(es) for at least one term q ∈ Q.

The difficulties of answering a keyword query in this setting are two-fold. First, unlike queries in languages like

SQL, users do not specify the desired schema element(s) for each term in their queries. For instance, Q1: Godfather

does not specify whether the user wants movies whose title is Godfather or movies distributed by the Godfather

company. Thus, the query answering system must find the intended schema elements for the terms in the query.

Second, keyword queries are generally underspecified, i.e., users do not give enough information to single out exactly

their desired entities [96]. For instance, perhaps the user who submitted Q1 wants to see information about movies

whose title contains Godfather. Roughly fifty movies in IMDB satisfy this condition, but the user is most likely

interested in at most a handful of them. Hence, the query answering system must find the most desired entities among

all such entities, and rank them highest.

In the remainder of the chapter, DB, E, A, T , Q, q, D always refer to a database, entity in the database, attribute

value of E, attribute of E and A, keyword query, term in Q, and document, respectively.
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6.3 Shortcomings of Current Models

The language model for document retrieval ranks each document according to the probability that it generates the

user’s query [157]. That is, assuming that the query terms are conditionally independent, the language model ranks D

based on:

P (Q | θD) =
∏
q∈Q

P (q | θD), (6.1)

where θD is the probability distribution of terms in document D, also known as the language model for D. The

language model is more effective than other formal models for document retrieval when there is little or no training

data available, and provides comparable results when training data is at hand [157]. Due to its solid foundation, it has

been extensively used in document retrieval [157]. It has been shown that document retrieval methods based on the

language model comply with the probability ranking principle [84], which we discuss later.

Researchers have adapted the language model to apply to keyword queries over documents with multiple fields

and databases [104, 102, 141, 108]. A straightforward extension of the language model for entity E is to model E as

a document and apply formula (6.1) directly [108]. However, this approach ignores the structural information in the

entity and does not model those aspects of the information.

Since each entity consists of mutually exclusive and collectively exhaustive attribute values, some models compute

P (Q | θE) as [104, 102, 141]:

P (Q | θE) =
∏
q∈Q

∑
A∈E

P (A | E)P (q | θA), (6.2)

where θA is the language model of the attribute value A and P (A | E) is the prior probability of attribute value A.

These methods compute the model for θA quite similarly to the approach used for computing θD in formula (6.1).

The model in formula( 6.2) has a clear justification, but has some serious issues. The first challenging and impor-

tant issue is how to set the value for P (A | E), which signifies the desirability of attribute value A to users as a match

for a query term. Some methods set these values manually based on properties of attribute value A, such as its length

[104, 102]. However, it is very hard to use such a manual and ad hoc approach in practice. We could use training data

to learn the values of the prior probabilities of the attribute values, but good training data is not usually available. In

these situations, we would prefer to have a method that does not require manual tuning or training data.

We argue that the degree of desirability of an attribute also depends upon the particular query Q. For instance,

attribute title in the entity rooted at node 1 in Figure 6.1 may be the desired attribute for query Q1: Godfather, but it

may not be the desired attribute for queryQ2: Sony. More formally, we may set the value of P (A1 | E) lower than the

value of P (A2 | E) if the attribute value A1 is less “interesting” than the attribute value A2 for Q. Empirical results

for collections of documents with multiple fields also show that ranking is more effective if we change the values for
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P (A | E) for each query [141].

Some researchers address this issue by choosing the values for P (A | E) that maximize the value of P (Q | θE)

in formula (6.2) [141]. It is very hard to rigorously justify this method, as according to the model in formula (6.2), the

value of P (A | E) should not depend on query Q. Moreover, the user’s desired attribute to match for a query does

not depend on any particular entity; for example, if the user’s desired attribute for Q1 is title, it will be title for all

entities in IMDB. This method, however, sets the value of P (A | E) to be larger for attributes with larger values for

P (q | θA). Our empirical results with real world data sets show that this method fails to provide effective ranking for

queries over entity sets, for this reason.

In another effort to address this issue, some methods replace P (A | E) in formula (6.2) with the posterior probabil-

ity distribution of q over T (A) in the database, i.e., P (T (A) | q), where T (A) denotes the attribute of A [78, 33, 34]:

P (Q | θE) =
∏
q∈Q

∑
A∈DB

P (T (A) | q)P (q | θA), (6.3)

These methods usually compute the value of P (T (A) | q) using Bayes’ rule, as:

P (T (A) | q) =
P (q | T (A))P (T (A))

P (q)
. (6.4)

P (T (A)) represents our prior knowledge about the importance of T (A), which is either assumed to have the same

value across different values of T (A) in the database [78, 34, 33], or is learned from training data. Some methods

ignore P (q) for ranking because it is the same for all attributes in the database [33, 34], and some methods set it to∑
T∈DB P (q | T )P (T ) [78]. Informally, these methods assume that the best attribute to match to a query term is the

attribute where that term appears most often in the database. In other words, the same probability distribution defines

the desirability of an attribute as a match for a query term, and the distribution of that term across the attributes in the

database [78, 116, 34, 33]. This heuristic has also been used in some keyword query approaches that are not based on

the query generation framework [6]. We call this the posterior distribution heuristic.

As opposed to formula (6.2), the model in formula (6.3) is not a principled and logical derivation of the original

language model in formula (6.1), and there is no reasonable justification for why formula (6.3) will deliver the desired

ranking for keyword queries. More importantly, it is well known in document retrieval that the probability distribution

of query terms is very different form the probability distribution of terms in the document collection [96]. There is no

reason to believe otherwise for keyword queries over databases. Hence, it seems unlikely that the posterior distribution

heuristic will find the desired attributes for query terms in a general setting, or that this heuristic will deliver effective

rankings in any particular setting.

For instance, using all information in the IMDB data set and the computation method in [78], the value of formula
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6.4 ofQ1: Godfather over attribute title is 0.003, but this value for the same query over attributes trivia (which contains

facts about movies), alias (that contains aliases for the characters in movies), keyword, and quote (which contains

quotes from movies) is 0.017, 0.014, 0.007, and 0.004, respectively.. Hence for Q1 over IMDB, these models rank

movies whose trivia, alias, keyword, or quote contains Godfather higher than movies whose title includes Godfather,

given that all other conditions are the same. Intuitively, this is the wrong ranking.

Since each attribute in a database normally represents a different concept, the meaning of a term in a database

depends on its attribute. For instance, in Figure 6.1, term Godfather under node 9 represents the subject of a movie,

but the same term under node 14 represents the name of a company. It is very unlikely that these attributes both are

the desired attributes for query Q1. In general, we can argue that only a small subset of attributes in a database that

represent the same or very similar concepts are the desired attributes for a query term over a database. However,

formulas (6.2) and (6.3) assume that to some extent, any attribute may be the desired attribute for a query term. This

assumption may be reasonable for documents with multiple fields, but is likely to produce undesirable rankings in a

database context. For instance, these models may rank the entity rooted at node 7 higher than the entity rooted at node

1 in Figure 6.1 for Q1, as the entity rooted at node 7 contains more attribute values that match term Godfather.

Query tagging or annotation is closely related to keyword search over databases [86, 116]. Given a keyword

query, a query tagger annotates query terms with attributes and ranks these annotations. Such annotations help in

finding the answers to these queries from the structured data sources. For instance, given Q1 over Figure 6.1, a query

tagger may output movie.keyword: Godfather. Researchers rely partially or in whole on training data to find the best

annotation(s) for a keyword query [86, 116]. Since such supervised learning techniques do not scale to large data sets,

some researchers also use the properties of the data set and queries to find and rank annotations. For instance, one can

rank annotations for a query term q by the posterior distribution heuristic, i.e., P (q | T )P (T ) [116].

Overall, the previous work on language models for keyword queries over structured data was a step in the right

direction. However, its shortcomings suggest that the language model needs significant additional adaptation to be

suitable for use with databases of entities. More specifically, these approaches suffer from two important shortcomings.

First, they do not rigorously justify their models and/or their parameter estimation methods. In this chapter, we prove

that these models do not generally lead to optimal rankings for keyword search over databases. Second, they also

assume that all terms in an entity represent the same or similar concepts, which the Godfather example shows to be

unreasonable.

Researchers have worked to create effective ranking methods for keyword queries over structured and semi-

structured information [9, 90, 6, 78, 102, 34, 33, 44]. Many ranking methods are not based on any formal framework,

which limits their applicability to a wide variety of queries and databases, as discussed in Section 5.1 [9, 90, 6, 44].

Some of these systems use information drawn from sources other than the database or query (e.g., the importance of
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the web pages used to extract the database records) to rank query answers [40]. Others use clues such as the order of

terms in the query to improve their effectiveness [89]. Our approach is orthogonal to these.

Researchers have developed a formal probabilistic model to rank the answers to underspecified SQL queries over a

relational database [17]. Although their work targets SQL, their ideas are relevant for keyword queries. However, their

approach uses query logs as training data to compute the parameters of their model, which is not always a realistic

assumption in our setting. Generally, semi-structured and structured data sets are intended for queries that are too

difficult to answer well when only unstructured information is available; otherwise, it would not be worth the effort of

introducing structure. Because query distributions have such a long tail, it is inherently impossible for training data to

include most of the long tail queries that the system will see at run time. Hence, as for queries over unstructured sets

of documents, we should use principled parameter estimation methods that are effective given the data set alone, so

that the system will ranks answers well for queries that were not included in the training data. We must also address

the problem of query term disambiguation, which was not an issue for [17], which focused on SQL queries.

6.4 Structured Language Model

6.4.1 Probabilistic Ranking in Databases

The probability ranking principle (PRP) is a widely accepted principle for ranking documents [109, 139]. PRP says

that a retrieval system is optimal, i.e., delivers the highest utility for its users, when it ranks documents in decreasing

order of their probability of relevance to the query. The classical version of PRP assumes that the probabilities are

computed correctly and there are no dependencies between documents [109]. There are other versions of PRP that do

not make these assumptions [18, 139], but the classical version of PRP is still widely accepted and useful in developing

formal probabilistic models for query answering systems [96]. We use the classical version of PRP in this chapter,

and our approach can be extended for other versions [18, 139].

PRP computes the probability of relevance using a hypothetical complete set of relevance information for a query

over the documents in the data set. Each entry in the relevance information for a given query consists of a document

D and the judgment R of whether D is relevant to a particular query Q. R is 0 for non-relevant documents and 1 for

relevant documents. Hence, the probability that D is relevant to Q is P (R = 1 | D,Q).

We adapt PRP for ranking keyword queries over databases. In order to adapt PRP for keyword search over

databases, we should also consider the desired concepts for query terms in the model. Generally, each attribute in

a database represents a different concept. For instance, attributes title, distributor, and soundtrack each represent

a separate concept in IMDB. For reasons such as usability or performance, database designers may use multiple

attributes to describe the same aspect of an entity. For instance, in IMDB, attribute keyword contains short descriptions
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of the story, and the subject of the movie is stored in the plot attribute. Similar terms in these attributes represent the

same concepts. Hence, we assume that it is possible for more than one attribute in the database to match the desired

concept behind a query term. One may identify a group of attributes that represent the same concept manually or

automatically [159]. Automatic discovery of these groups of attributes is beyond the scope of this thesis.

Let P(T ) be the set of all non-empty subsets of set T . A mapping M for Q is a function Q 7→ P(T ) that assigns

a non-empty set of attributes M(q) to each term q ∈ Q. We write each member of M as µ = (q,M(q)). A mapping

for query Q captures the desired concepts behind the terms in Q. As discussed in the previous paragraph, we consider

only subsets of the attributes that convey similar concepts. |M(q)| is the number of attributes assigned to q in M .

Table 6.1 gives example mappings for Q2: Godfather 1970, over part of IMDB. An entity E satisfies M iff for each

assignment (q,M(q)) of M , E has attribute values with attributes M(q) that exactly or approximately contain q.

Now consider a database setting, where L(DB) denotes the hypothetical perfect complete set of relevance infor-

mation for all possible keyword queries and answers over DB. Each entry in L(DB) includes a query Q, entity E,

relevance value R, and a mapping M such that E satisfies M for Q.

Table 6.1 shows the relevance information for Q2 over part of IMDB. E appears in L(DB) once for each of its

mappings for Q, as in the first two rows of Table 6.1. Given E and Q, R can be different for each choice of M .

To compute relevance probabilities for the database, we use the odds of relevance of E and M [109]:

O(R | E,M) =
P (R = 1 | E,M)

P (R = 0 | E,M)
. (6.5)

For brevity, we abbreviate R = 1 to R and R = 0 to R̄.

Relevance probabilities ideally should be computed over L(DB), but complete relevance information, or even

sufficient samples, is rarely available. By definition, even query logs can only contain a small fraction of the long tail

and difficult queries. Hence, the key challenge is to leverage the properties of Q and the database in a principled way,

to deliver reasonable and effective relevance estimates.

6.4.2 Optimal Language Model

In this section, we build a language model based on PRP. We revise formula (6.5) to:

P (R |M,E)

P (R̄ |M,E)
=
P (M,E | R)P (R)

P (M,E | R̄)P (R̄)
. (6.6)

Applying Bayes’ rule to the numerator and denominator, we have:

P (M,E | R)P (R)

P (M,E | R̄)P (R̄)
≈ P (M | E,R)P (E | R)P (R)

P (M | E, R̄)P (E | R̄)P (R̄)
(6.7)
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It is a widely accepted principle in information retrieval that only a very small fraction of the documents in a

collection are relevant to Q [29, 96]. Hence, it is a reasonable and common practice to estimate the statistics for non-

relevant documents using the set of all documents [29, 96]. The relative number of relevant answers is even smaller

for keyword queries over large databases [91]. Thus it is reasonable to assume that almost all entities are not relevant

to a given Q, even if they satisfy the desired mapping(s) for Q. Hence, we approximate the value of P (M | E, R̄) as:

P (M | E, R̄) ≈ P (M | R̄).

Using formula (6.4.2) for the denominator of the right hand side in formula (6.7), we have:

P (M | E,R)P (E | R)P (R)

P (M | E, R̄)P (E | R̄)P (R̄)
≈ P (M | E,R)P (E | R)P (R)

P (M | R̄)P (E | R̄)P (R̄)

According to Bayes’ Rule, we have:

P (E | R)P (R)

P (E | R̄)P (R̄)
=
P (R | E)

P (R̄ | E)
= O(R | E),

which does not depend on Q and represents prior knowledge about the importance of E, similar to PageRank scores.

Computing such a value is out of the scope of this thesis. Hence, we rank the answers using:

P (M | E,R)

P (M | R̄)
. (6.8)

We make the following assumptions in order to compute the probabilities in formula (6.8). Current keyword

query approaches generally assume that query terms and their mappings are independent [78, 33, 116, 9, 90]. Query

annotation methods make similar assumptions [116]. We do also, as otherwise computing the model will be quite

complex. Given the independence assumptions, we rewrite formula (6.8) as:

P (M | E,R)

P (M | R̄)
=

∏
q∈Q

P (q,M(q) | E,R)

P (q,M(q) | R̄)
.

Since M(q) is a set of attributes, we have:

∏
q∈Q

P (q,M(q) | E,R)

P (q,M(q) | R̄)
=

∏
q∈Q

∑
T∈M(q) P (q, T | E,R)∑
T∈M(q) P (q, T | R̄)

.
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Applying Bayes’ Rule to the numerator and denominator of formula (6.4.2), it becomes:

∏
q∈Q

∑
T∈M(q) P (q | T,E,R)P (T | E,R)∑

T∈M(q) P (q | T, R̄)P (T | R̄)
. (6.9)

We call this formula the Structured Language Model (SLM).

At first glance, P (q | T,E,R) does not seem to represent a language model. However, researchers have shown

that formula (6.1) in fact generates all queries that users use to retrieve a document D [84]. More formally, they

have argued that formula (6.1) is equivalent to P (Q | D,R). Similar to keyword search over a document collection,

users like to retrieve relevant answers when they perform keyword search over a database. Hence, we argue that

P (q | T,E,R) represents the model that generates all query terms whose concepts are T and are used to fetch E in a

database setting. We call P (q | T,E,R) the attribute value language model.

Using a similar argument, the probability value P (q | T, R̄) in the SLM formula models the query terms that are

less likely to be submitted by a user to retrieve entities, given that the attribute that the user desires to match is T . We

call this part of the SLM formula the non-relevant attribute language model.

If we assume that all attributes in the database convey the same concept, the denominator of formula (6.9) becomes:

∑
T∈T

P (q, T | R̄) = P (q | R̄),

which can be ignored for ranking that uses the SLM formula, as it has the same value for all entities. The value P (T |

E,R) shows our prior knowledge about the importance of attribute values of attribute T in entity E, i.e., how often

users use terms within these attribute values to retrieve entity E. Thus, the SLM formula becomes probabilistically

similar to the mixture model in formula (6.2).

This argument shows why we cannot use the mixture model in formula (6.2) to rank database entities. As opposed

to collections of documents with multiple fields, different attributes in a database may correspond to different concepts.

Hence, according to PRP, we cannot ignore the denominator in formula (6.9) when ranking over databases.

We can rewrite the denominator of the SLM formula as:

∑
T∈M(q)

P (q | T, R̄)P (T | R̄) =
∑

T∈M(q)

P (T | q, R̄).

Given a query,
∑
T∈M(q) P (T | q, R̄) has different values for different M(q), i.e., different sets of attributes in

the database. The smaller its value is, the larger the value of formula (6.9) will be. Hence, the derivation of the

SLM formula from PRP justifies that the degree of the desirability of attribute(s) depends also on the input query.

SLM avoids the ranking problems that arise if the desired attribute depends only on E (e.g., [102, 141]), as noted in
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Section 6.3. SLM also captures this relationship in a principled and clearly justified manner, unlike previous models

(e.g., [78, 33]).

Since the probabilities in the SLM model contain the R and R̄ variables, they have a clear interpretation. This is

very important for estimating these probabilities in the absence of training data, which is the focus of Section 6.5.

For a particular entity, a query may have multiple mappings, i.e., a query term may match several different at-

tributes, and the entity may have a different value for the SLM formula for each of these mappings. We should choose

one particular mapping from among these mappings to compute the SLM formula for a query. The desired mapping

for a query and an entity is the mapping that delivers the maximum value for the SLM formula.

6.5 Estimating SLM Parameters

We can compute the probabilities in the SLM formula using training data. However, such training data is not normally

available. In this section, we propose methods to estimate the parameters of SLM in the absence of training data.

Using training data to train SLM through methods such as (pseudo-)relevance feedback is an interesting topic for

future work.

Without training data, we cannot compute the values of the query-independent terms in the SLM formula, i.e.,

P (T | E,R) and P (T | R̄). According to the principle of maximum entropy, we should assume that the values

of these probabilities are equal for all attributes and entities in the database. We can take these values out of the

summations in both the nominator and denominator. Hence, we can ignore them for ranking against the same query,

as they change the estimation bias in the same way for all entities and attributes, given the query.

6.5.1 Attribute Value Language Model

As discussed in Section 6.4.2, probability P (q | T,E,R) represents the language model for attribute value A that

belongs to attribute T and entity E. Since each attribute value is a bag of terms, we can adapt current methods to

compute the language models for text documents in document collections to estimate the attribute value language

model, in the absence of relevant answers [157]. For brevity, we write P (q | A) for P (q | T,E,R).

The maximum likelihood (ML) method is an intuitive way to calculate P (q | A). That is, given q and attribute

value A, let n(q, A) be the number of times q appears in attribute value A. Also, let n(A) be the total number of

occurrences of terms in attribute A. The maximum likelihood estimate for P (q | A) is:

Pml(q | A) =
n(q, A)

n(A)
. (6.10)

For instance, given term crime and the attribute value under node 8, A8 in Figure 6.1, the value of Pml(crime | A8)
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is 1
2 , as the attribute value has two occurrences of terms.

Consider the query Q5 : Godfather sequel. No movie in the original IMDB contains both terms, so P (q | A) = 0

for all A in the database, for one or both choices of q. The maximum likelihood estimate gives every answer the

same score, 0, which is undesirable. Moreover, database entities have relatively few attributes and relatively few terms

in each attribute, compared to the totality of information that one could provide for that entity and related entities.

Perhaps we could estimate P (q | A) better if we had all this information. These issues also appear in the applications

of generative models in speech recognition and document retrieval [64, 157].

Researchers use smoothing techniques to address these issues in other domains. For instance, document retrieval

research uses model θD to estimate the probability P (q | D). θD includes D and other documents similar to D. For

every query term q, P (q | θD) > 0. The effectiveness of a document language model mainly depends on its smoothing

method [157]. Researchers often compute θD using weighted combinations of D and the collection of all documents.

Although the collection of all documents does not represent the set of documents that are similar to D, it delivers

acceptable results [157].

A straightforward smoothing method to estimate θA is to combine the language model of the attributes in θA with

the language model of all attributes of type T in DB. One popular example of these types of smoothing methods is

Jelinek-Mercer smoothing, which is:

P (q | θA) = (1− λ)Pml(q | A) + λP (q | T ), (6.11)

where 0 ≤ λ ≤ 1 determines the weight given to attributes of type M(q) in the database. One may use other

techniques to smooth the attribute value language model [160]. The issue of smoothing the attribute value language

model is beyond the scope of this thesis. In our experiments, we use the same smoothing method for all models.

6.5.2 Non-Relevant Attribute Language Model

As discussed in Section 6.4.2, the value of P (q|T, R̄ is larger for the terms that are less likely to be used in queries to

access entities in the database, given that the user’s intended attribute is T . In the absence of training data, we use the

information about the terms in the database to estimate this probability. If users’ desired attribute is T , we argue that

they are less likely to use terms that appear mostly in other attributes in the database. Let DB \ T denote all attributes

in the database DB except for T . We have:

P (q | T, R̄) ∝ P (q | DB \ T ). (6.12)

119



We can view DB \ T as a virtual document created by appending all terms in attributes such as T ′ ∈ DB, T ′ 6= T .

What about the terms that appear in T in the database? We can make three different arguments about the terms that

appear in T .

In absence of any information about the user’s search behavior, according to the principle of maximum entropy,

one should assume that all terms in T are equally likely to be used by users in their queries, provided that their desired

attribute is T . Let V be the number of distinct terms in T . We assign equal probability of 1
V to all distinct terms in T

and compute the value of P (q | T, R̄) as:

P (q | T, R̄) = β
1

V
+ (1− β)P (q | DB \ T ), (6.13)

where we have 0 ≤ β < 1, and the value of β may be set empirically. We refer to this version of SLM as SLM-UF.

If users perform ad-hoc keyword search, an extremely small portion of possible answers will be relevant to their

information needs. For instance, if users are seeking information about a particular movie or specific actor in IMDB,

at most a handful of entities in IMDB will be relevant to their queries. Such information seeking tasks appear in

contexts such as Web search. In this context, if a term appears relatively more frequently in T , it is less likely that

users will use this term in their queries. In other words, users are more likely to use rare terms in T to access their

desired entities. The example of Q1 : Godfather over IMDB data, discussed in Section 6.3, depicts such behavior:

since users are looking for particular movies, they choose terms that are quite rare in the title attribute in IMDB. Our

experiments in Section 6.6, which use queries over structured data taken from real Web search engine query logs,

confirm this hypothesis. More formally:

P (q | T, R̄) ∝ P (q | T ). (6.14)

Using formulas (6.12) and (6.14), we have:

P (q | T, R̄) = β(q | T ) + (1− β)P (q | DB \ T ), (6.15)

where 0 ≤ β < 1, and the value of β may be set empirically. We refer to this version of SLM as SLM-MF.

One may also argue that users are less likely to submit terms that are relatively less frequent in T , if their desired

attribute is T . Such searching behavior occurs when users are performing a more exploratory search. In these settings,

users do not have sufficient knowledge about their desired answers and may submit a relatively general description of

their information need. The number of desired answers, at least in one interaction with the search system, is larger
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than for other types of information searching tasks. More formally:

P (q | T, R̄) ∝ 1− P (q | T ). (6.16)

Using formulas (6.12) and (6.16), we have:

P (q | T, R̄) = β(1− P (q | T )) + (1− β)P (q | DB \ T ), (6.17)

where 0 ≤ β < 1, and the value of β may be set empirically. We refer to this version of SLM as SLM-LF.

The estimation method in formula (6.17) has some similarities to the posterior distribution heuristic discussed in

Section 6.3. Given that the user’s desired attribute is T , both methods give larger weights to the terms that appear more

frequently in attribute T . However, formula (6.17) has a more reasonable justification than the posterior distribution

heuristic, and due to that justification we can predict in which settings such a heuristic is more effective. As opposed

to the posterior distribution heuristic, this also justifies the need for smoothing the value of (1− P (q | T )).

6.6 Experiments

IMDB Discogs
Size (GB) 29.0 9.64
Number of Entities 4,418,081 1,871,614
Number of Entity Sets 2 3
Number of Attributes 77 24

Table 6.2: Data Set Properties

6.6.1 Experiment Setting

Data Set and Query Workload: We evaluated the effectiveness of SLM over two real world databases, a standard

query workload and a real world query log. We used the IMDB data set from the INEX 2010 Data-Centric Track

[142]. We also used the Discogs (www.discogs.com) data set, which contains information about singers and music

albums. Table 7.1 gives properties of the two data sets. The IMDB data set has two entity sets: person, which gives

information about people, and movie, which contains information about movies and TV shows. The Discogs data

set has three entity sets: artist, which contains information about singers, label, which contains information about

companies that produce and distribute music albums, and release, which provides information about albums. We

divide each data set into its separate entity sets, and evaluate them separately.
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In the INEX workshop, participants were asked to submit topics that are different from typical Web queries [142].

In order to evaluate our methods over Web-like queries, we performed an additional large scale experiment. We parsed

the AOL query log [106] and picked out the queries that caused the user to click through to IMDB. We considered

only the queries that appeared at the end of each user session, as they indicate that the user has probably satisfied her

information need in IMDB. This way, we collected about 15,000 queries. We used the IMDB data set from the INEX

Data-Centric Track and filtered out the movies after 2006, which was the last date of the queries in the AOL query

log.

The AOL query log does not contain the exact URL of the IMDB page that was visited by users. However, it tells

which position the user clicked in the ranked result returned by the AOL search engine. The average rank of the IMDB

pages clicked by users in the AOL query log was 2.71. As search engine technology has advanced significantly since

2006, we hypothesize that the ranking delivered by a popular search engine such as Bing (www.bing.com) today must

be at least as good as the ranking delivered by the AOL search engine in 2006. Thus for each query Q, we retrieve

the URLs of the IMDB pages that are in the top n links returned by Bing, where n is the rank of the desired result

for Q, according to the AOL query log. If no IMDB page is in the list, we fetch the first link of IMDB in the ranked

list returned by Bing. As 50 queries is normally sufficient to evaluate the effectiveness of a ranking method over a

collection [96], we randomly picked 50 queries for each entity set in IMDB from this query workload, and report the

results as IMDB-AOL in the next section.

Both the INEX and AOL query workloads use the IMDB database, and we wanted to evaluate the effectiveness

of our methods over more than one database. Thus we also collected queries from the AOL query log that target the

Discogs web site, which contains information about songs, singers, and label companies. Since the Discogs database

is publicly available, we performed a similar experiment as for IMDB, and randomly collected 50 queries from the

AOL query log whose relevant answers are in the Discogs database, for each entity set in Discogs.

Ranking Methods: We implemented SLM with three different methods of estimating the non-relevant attribute

language model, as explained in Section 6.5.2. We compared SLM to two other ranking methods that are based on

the language model and do not require manual tuning or extensive training. These methods are PRMS [78] and Multi-

Style [141], both of which are mentioned in Section 6.3. PRMS assumes that a query term q must be mapped to an

attribute that contains a relatively large number of instances of q. In other words, it uses the posterior probability

heuristic [78, 116, 34, 33]. PRMS also uses a ranking formula based on the language model to compute the relevance

of the content of the mapped attributes to the query. PRMS requires tuning of the value of the smoothing factor for

its language model formula. It has been shown that for keyword search over databases, PRMS is more effective than

the language model for document retrieval (formula (6.1)) [78] and language models that determine the weights of

attributes using sufficient training [104, 102, 78] PRMS and all versions of SLM use Jelinek-Mercer smoothing, and
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we have to set their smoothing parameter. We estimated these parameters using five randomly selected queries for

each query workload.

The Multi-Style ranking method uses an expectation maximization algorithm to tune the parameters in formula (6.2).

The authors of Multi-Style have used the Multi-Style ranking method with open vocabulary smoothing [141]. We tried

Multi-Style both with and without open vocabulary smoothing (shown as MS-OVS and MS, respectively, in our re-

sults). Multi-Style has been shown to provide better ranking than other popular methods such as BM25F [111, 141]. It

has also been shown empirically that Multi-Style’s effectiveness is very close to the effectiveness of a BM25F method

that uses the testing data set for training [111, 141]. The methods that use the long descriptions or structural versions

of keyword queries that are provided by users, or manually tune most their parameters are not comparable to our

method [142].

Effectiveness Metrics: We used the popular effectiveness metrics precision at k (Prec@K) and Mean Average

Precision (MAP) to measure the quality of rankings delivered by ranking algorithms [96]. Prec@K measures the

precision of the returned results up through position K in the returned ranked list. Let W denote the query workload

that contains |W | queries Qi, 1 ≤ i ≤ |L|. Given that Qi has relevant answers {E1, . . . , Eni
} and Ri,k is the list of

ranked entities up to the kth entity Ek, average precision is defined as:

AvgP (Qi) =
1

|ni|

ni∑
k=1

Precision(Ri,k).

Then the MAP of query workload L is:

MAP (L) =
1

|L|

|L|∑
i=1

AvgP (Qi).

The greater the value of MAP is, the more effective the query results will be.

Experiment Configuration: We implemented the system on a Linux server with 24 GB of main memory. SLM

took roughly the same time to rank answers as all other methods in this experiment except Multi-Style.

As mentioned in the description of ranking methods, Multi-Style uses an expectation maximization (EM) algo-

rithm to estimate its smoothing parameters and its mixture weights in its scoring formula. While the EM algorithm

provides convenience for parameter tuning, the algorithm itself requires multiple re-estimations of the parameters until

it converges. Each iteration of the estimation also needs a separate computation for every field in a document. With

a very large dataset such as IMDB, a document may contain anywhere from from a couple to more than a thousand

fields. Thus the method runs extremely slowly. This is a huge disadvantage for Multi-Style, compared to other rank-

ing methods. For our experiments, we imposed a maximum of 20 iterations of the EM algorithm, thereby sacrificing

exactness for the sake of reasonable running time. Table 6.3 shows the average processing time in scoring a single
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candidate answer when using SLM and Multi-Style. We see that even with the cap on EM iterations, Multi-Style is

still at least 5 times slower than SLM.

INEX’10-movie INEX’10-person AOL-movie AOL-person Discogs-Label Discogs-Release Discogs-Artist
SLM 3.29 13.22 2.52 9.06 0.05 0.24 0.12
Multi-Style (20) 17.16 75.44 17.01 74.73 0.38 1.01 0.64

Table 6.3: Average ranking time per candidate answer, in milliseconds

6.6.2 Ranking Quality

INEX’10-movie INEX’10-person AOL-movie AOL-person Discogs-Label Discogs-Release Discogs-Artist
PRMS 0.2921 0.1353 0.0622 0.5501 0.4138 0.6397 0.5594
MS-OVC 0.4580 0.2182 0.1632 0.6459 0.5283 0.7021 0.4827
MS 0.4524 0.2151 0.1730 0.6487 0.5140 0.7154 0.4828
SLM-MF 0.4508 0.4082 0.5394 0.7024 0.7478 0.7037 0.7180
SLM-LF 0.4772 0.4069 0.3983 0.7060 0.5547 0.6986 0.6577
SLM-UF 0.4598 0.4323 0.5958 0.7332 0.7585 0.7446 0.7394

Table 6.4: The values of Mean Average Precision for different ranking methods

All methods except Multi-Style have some tuning parameters. We used 5 randomly selected queries from the

IMDB query set for parameter training over the IMDB data set, and 10 queries from the Discogs query set over the

Discogs data set. The training is done separately for each entity set. Table 6.4 shows the MAP of PRMS, Multi-

Style (MS), Multi-Style with open vocabulary smoothing (MS-OVC), SLM-MF, SLM-LF, and SLM-UF. All methods

generally deliver a better ranking for Discogs than for IMDB. This is primarily because Discogs has a simpler structure,

so there is less for a method to get wrong. Also, most of the queries target an attribute that is a unique identifier for

the entity in question, so the rankers can easily identify the correct answers.

On the other hand, IMDB is a larger data set with a more complicated structure, and many possible mappings for

a given query. The AOL query workload is similar to that of Discogs, in the sense that each query tends to target a

unique identifier for its entity. We see that most rankers also perform well with this query workload. However, the

INEX query set is more exploratory. Each term in the query is intended for different fields in the document. Hence,

many rankers get stuck on a sub-optimal choice for the query term mappings.

Overall, SLM delivers the best MAP over most data sets. For example, consider the query men last stand from

the AOL query log, which has the “X-Men: The Last Stand” movie as its only relevant answer. All versions of SLM

successfully map each query term to the movie/title attribute. On the other hand, Multi-Style is stuck on weighting

the most important field to be movielinks/link, as many of its top ranked documents contain terms in this attribute

instead. PRMS places more importance on the field that contains the most query terms, which does not match the

user’s intention.

For Discogs, SLM outperforms other rankers. For example, consider the query our last goodbye killing joke. The

correct mapping attribute of this query is artist/name, which is the artists’ group name. Only SLM got the correct
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result. Other rankers tended to instead choose the artist/group/name attribute, which gives the name of the group the

artist is associated with.

For INEX’s movie set, SLM and Multi-Style deliver similar ranking quality. In fact, more queries from the INEX

movie set are exploratory than for any other data set. For example, consider the query avatar james francis cameron,

where all methods except PRMS perform well, with an average precision of around 0.9. The result from PRMS

has an average precision of only 0.07. PRMS puts more weight on the attribute with the most frequent query term,

/actor/name, as the query james is more common in this attribute. However, the user intends other attributes for this

query: director, writer and movie alias. Because many other queries in the INEX movie query set are exploratory in

nature, SLM-LF is more effective there than other methods.

Interestingly, SLM-UF tends to perform better than other versions of SLM, except for the INEX movie set. For-

mula (6.13) in Section 6.5.2 tries to balance between having too many and too few occurrences of a particular term.

For example, SLM-UF performs better than other SLM versions for query mission impossible in the AOL query set.

In this case, the relevant entity has the query term mainly in the attributes movie/title and movie/url. SLM-LF chose a

wrong mapping because of the high frequency for query terms in other attributes. Similarly, SLM-MF found that these

query terms are rare in keyword, and so it mistakenly weighted the importance of this field above others. SLM-UF

captures the importance of this query term in the right attribute, as it does not overestimate or underestimate the impor-

tance of term occurrences in a particular attribute. Overall, we observe that users’ search behavior is heterogeneous,

even for a single entity set.

Even though SLM delivers good ranking quality, it may perform badly if it cannot find a mapping that is close to

the user’s intention. Consider the query may force be with you from INEX 2010, which relates to the attribute plot

of the movie. SLM is misled by the term may and picks releasedate as the best mapping, and this mapping score

overwhelms the score of the mapping of other query terms, leading to a poor ranking.

Multi-Style also performs quite well over our data sets. The advantages of the language model help make Multi-

Style’s ranking method relatively flexible, so that it is less likely to misinterpret the user’s search intention. For exam-

ple, for the query avatar james francis cameron discussed previously, Multi-Style puts appropriate mixture weights on

attributes such as director/name, movie/title, and writer/name, which are the most desirable attributes for this query.

However, Multi-Style’s running time is extremely slow, making it unfair to compare Multi-Style to other ranking meth-

ods. Interestingly, we do not see a significant improvement when using the open-vocabulary smoothing technique with

Multi-Style in this experiment. This is because each document attribute uses a similar vocabulary set. Hence, the vo-

cabulary entropy between structures is negligible and thus the smoothing value is very close to the default without

smoothing.

PRSM, on the contrary, is shown to perform the worst in this experiment. As we have given many examples that
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there are many queries that are not satisfied by the posterior probability heuristic. It is, therefore, not too unexpected

that PRSM does not perform as well as other methods. On a side note, one may notice an extremely low MAP of

the results for PRSM on AOL-movie query workload. We suspected that the problem is caused by the bad training

samples. This training shows the best smoothing parameter of PRSM to be 0.9 which is completely opposite to

the usual very small parameter. We then perform a new training using another samples, and get the best smoothing

parameter of 0.1. The MAP of the running of PRSM with a new parameter is 0.4082. However, with this special

treatment, PRSM still could not surpass the effective quality of SLM.
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Chapter 7

Difficult Queries Over Semi-structured
Data

7.1 Background

In this chapter, we analyze the characteristics of difficult keyword queries over semi-structured data and propose a

novel method to detect such queries. We take advantage of the structure of the data to gain insight about the degree

of the difficulty of a query given the database. We implemented some of the most popular and representative algo-

rithms for keyword search on databases and used them to evaluate our techniques on both the INEX and SemSearch

benchmarks. The results show that we can predict the degree of difficulty of a query efficiently and effectively.

We make the following contributions:

• We introduce the problem of predicting the degree of the difficulty for queries over structured data, and analyze

the reasons that keyword queries may be difficult to answer well.

• We propose the structured robustness (SR) score, which measures the difficulty of a query based on the dif-

ferences between the rankings of the same query over the original and a noisy (corrupted) version of the same

database, where the noise spans both the content and the structure of the result entities.

• We introduce efficient algorithms to compute the SR score. This is important because such a measure is only

useful when it can be computed with a small overhead compared to the query execution cost.

• We present the results of extensive experiments using two standard data sets and query workloads, from INEX

and SemSearch. Our results show that the SR score effectively predicts the ranking quality of representative

ranking algorithms, and outperforms non-trivial baselines introduced in this chapter. Also, the time spent to

compute the SR score is negligible compared to the query execution time.

In the remainder of this chapter, Section 7.2 presents basic definitions. Section 7.3 explains the ranking robustness

principle and analyzes the properties of difficult queries over databases. Section 7.4 presents concrete methods to com-

pute the SR score in semi-structured data. Section 7.5 describes the algorithms to compute the SR score. Section 7.6

contains the experimental results.

Portions of this work appeared in [20].
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7.2 Data and Query Models

We model a database as a set of entity sets, each of which is a collection of entities. For instance, movies and people

are two entity sets in IMDB. Figure 3.6 depicts a fragment of a data set, where each subtree whose root’s label is movie

represents an entity. Each entity E has a set of attribute values Ai, 1 ≤ i ≤ |E|. Each attribute value is a bag of terms.

Following current approaches for answering keyword queries over unstructured and semi-structured approaches, we

ignore stop words that appear in attribute values, although this is not necessary for our methods. Every attribute value

A belongs to an attribute T , written asA ∈ T . For instance, Godfather and Mafia are two attribute values in the movie

entity shown in the subtree rooted at node 1 in Figure 3.6. Node 2 depicts the attribute of Godfather, which is title.

The above is an abstract data model that ignores the physical representation of data. That is, an entity could be

stored in an XML file or a set of normalized relational tables. This model has been widely used in works on entity

search [116, 49] and data-centric XML retrieval [142], and has the advantage that it can be easily mapped to both

XML and relational data. Further, if a KQI method relies on the intricacies of the database design (e.g., deep syntactic

nesting), it will not be robust and will have considerably different degrees of effectiveness over different databases

[130]. Since our goal is to develop principled formal models that cover reasonably well all databases and data formats,

we do not consider the intricacies of the database design or data format in our model of a database.

A keyword query is a list Q = {q1 · · · q|Q|} of terms, where |Q| is the number of terms in Q. An entity E is an

answer to Q iff at least one of its attribute values A contains a term qi in Q, written qi ∈ A. Given database DB

and query Q, retrieval function g(E,Q,DB) returns a real number that reflects the relevance of entity E ∈ DB to

Q. Given database DB and query Q, a keyword search system returns a ranked list L(Q, g,DB) of entities in DB,

where entities E are listed in decreasing order of the value of g(E,Q,DB).

7.3 Ranking Robustness Principle for Databases

In this section we present the Ranking Robustness Principle, which postulates that there is a negative correlation

between the difficulty of a query and its ranking robustness in the presence of noise in the data. Section 7.3.1 discusses

how this principle has been applied to unstructured text data. Section 7.3.2 presents the factors that make a keyword

query on structured data difficult, which explain why we cannot apply the techniques developed for unstructured data.

The latter observation is also supported by our experiments in Section 7.6.2 on the Unstructured Robustness Method

[161], which is a direct adaptation of the Ranking Robustness Principle for unstructured data.
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7.3.1 Background: Unstructured Data

Mittendorf has shown that if a text retrieval method effectively ranks the answers to a keyword query in a collection

of text documents, it will also perform well for that query over the version of the collection that contains some errors,

such as repeated terms [99]. In other words, the degree of the difficulty of a query is positively correlated with the

robustness of its ranking over the original and the corrupted versions of the collection. We call this observation the

Ranking Robustness Principle. Zhou and Croft [161] have applied this principle to predict the degree of the difficulty of

a query over free text documents. They compute the similarity between the rankings of the query over the original and

the artificially corrupted versions of a collection to predict the difficulty of the query over the collection. They deem a

query to be more difficult if its rankings over the original and the corrupted versions of the data are less similar. They

have empirically shown their claim to be valid. They have also shown that this approach is generally more effective

than using methods based on the similarities of probability distributions, which we reviewed in Chapter 2. This result

is especially important for ranking over databases. As we explained in Chapter 2, it is generally hard to define an

effective and domain independent categorization function for entities in a database. Hence, we can use the Ranking

Robustness Principle as a domain independent proxy metric to measure the degree of difficulty of queries.

7.3.2 Properties of Hard Queries on Databases

As discussed in Chpater 2, it is well established that the more diverse the candidate answers of a query are, the more

difficult the query is over a collection of the text documents. We extend this idea for queries over databases and

propose three sources of difficulty for answering a query over a database, as follows:

1. The more entities match the terms in a query, the more diverse the candidate answers for the query are and it is

harder to answer the query well. For example, there is more than one person named Ford in the IMDB data set.

If a user submits query Q2: Ford, a query system must determine which Ford will satisfy the user’s information

need. As opposed to Q2, Q3: Spielberg matches a smaller number of people in IMDB, so it is easier for the

query system to return relevant results.

2. Each attribute describes a different aspect of an entity. If a query matches different attributes in its candidate

answers, it will have a more diverse set of potential answers in the database. For instance, some candidate

answers for query Q4: Godfather in IMDB contain its term in their title and some contain its term in their

distributor. For this example, we temporarily ignore the other attributes in IMDB. A query system must identify

the desired matching attribute for Godfather to find its relevant answers. As opposed to Q4, query Q5: taxi

driver does not match any instance of attribute distributor. Hence, a query system already knows the desired

matching attribute for Q5 and has an easier task to perform. The kind of difficulty introduced by this type of
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diversity is different from the kind of difficulty created by having a large number of matched entities. Assume

that Q4 and Q5 have almost equal numbers of answers. Some of the movies whose titles match Q5 are related,

e.g., there are three documentaries in IMDB whose titles match taxi driver, which are about making the well-

known movie Taxi Driver directed by Martin Scorsese. They may partially or fully satisfy the information need

behind Q5. However, the candidate answers whose title attribute matches Q4 and the candidate answers whose

distributor attribute matches Q4 are not generally related.

3. Each entity set contains information about a different type of entities. Hence, if a query matches entities from

more entity sets, it will have more a diverse set of candidate answers. For instance, IMDB contains information

about movies in an entity set called movie and information about the people involved in making movies in

another entity set called person. Consider query Q6: divorce over the IMDB data set whose candidate answers

come from both entity sets. A query system has a difficult task to do, as it has to identify whether the information

need behind this query is to find people who got divorced or movies about divorce. In contrast to Q6, Q7:

romantic comedy divorce matches only entities from the movie entity set. It is less difficult for a KQI to answer

Q7 than Q6, as Q6 has only one possible desired entity set. This kind of diversity poses a new type of difficulty.

Since the candidate answers of Q6 are romantic comedy movies about divorce, they have some similarities to

each other. However, movies about divorce and people who get divorced cannot both satisfy the information

need of query Q6. Given that Q6 and Q7 have almost the same number of candidate answers and matching

attributes, it is likely that more candidate answers of Q6 are relevant to its users’ information need than the

candidate answers to Q7.

The aforementioned observations show that we may use the statistical properties of the query terms in the database

to compute the diversity of its candidate answers and predict its difficulty. One idea is to count the number of possible

attributes, entities, and entity sets that contain the query terms and use them to predict the difficulty of the query. The

larger this value is, the more difficult the query will be. We show empirically in Section 7.6.2 that such an approach

predicts the difficulty of queries quite poorly. This is because the distribution of query terms over attributes and entity

sets may also impact the difficulty of the query. For instance, assume database DB1 contains two entity sets book

and movie, and database DB2 contains entity sets book and article. Let term database appear in both entity sets in

DB1 and DB2. Assume that there are far fewer movies that contain term database compared to books and articles. A

query system can leverage this property and rank books higher than movies when answering query Q8: database over

DB1. However, it will be much harder to decide the desired entity set in DB2 for Q8. Hence, a difficulty metric must

take into account the skew of the distributions of the query term in the database as well. In Section 7.4, we discuss

how these ideas are used to create a concrete noise generation framework that considers attribute values, attributes and

entity sets.
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7.4 A Framework to Measure Structured Robustness

In Section 7.3, we presented the Ranking Robustness Principle and discussed the specific challenges in applying this

principle to structured data. In this section, we show concretely how this principle is quantified in structured data.

Section 7.4.1 discusses the role of the structure and content of the database in the corruption process, and presents

the robustness computation formula given corrupted database instances. Section 7.4.2 provides the details of how we

generate corrupted instances of the database. Section 7.4.3 suggests methods to compute the parameters of our model.

In Section 7.4.4 we show real examples of how our method corrupts the database and predicts the difficulty of queries.

7.4.1 Structured Robustness

Corruption of structured data. The first challenge in using the Ranking Robustness Principle for databases is to

define data corruption for structured data. For that, we model a database DB using a generative probabilistic model

based on its building blocks, which are terms, attribute values, attributes, and entity sets. A corrupted version of DB

can be seen as a random sample of such a probabilistic model. Given a query Q and a retrieval function g, we rank the

candidate answers in DB and its corrupted versions DB′, DB′′, . . . to get ranked lists L and L′, L′′, . . ., respectively.

The less similar L is to L′, L′′, . . ., the more difficult Q will be.

According to the definitions in Section 7.2, we model database DB as a triplet (S, T ,A), where S, T , and A

denote the sets of entity sets, attributes, and attribute values in DB, respectively. |A|, |T |, |S| denote the number

of attribute values, attributes, and entity sets in the database, respectively. Let V be the number of distinct terms

in database DB. Each attribute value Aa ∈ A, 1 ≤ a ≤ |A|, can be modeled using a V-dimensional multivariate

distribution Xa = (Xa,1, · · · , Xa,V ), where Xa,j ∈ Xa is a random variable that represents the frequency of term wj

in Aa. The probability mass function of Xa is:

fXa
(~xa) = Pr(Xa,1 = xa,1, · · · , Xa,V = xa,V ), (7.1)

where ~xa = xa,1, · · · , xa,V and xa,j ∈ ~xa are non-negative integers.

Random variable XA = (X1, · · · , X|A|) models attribute value set A, where Xa ∈ XA is a vector of size V that

denotes the frequencies of terms in Aa. Hence, XA is a |A|× V matrix. The probability mass function for XA is:

fXA(~x) = fXA( ~x1, · · · , ~x|A|) = Pr(X1 = ~x1, · · · , X|A| = ~x|A|), (7.2)

where ~xa ∈ ~x are vectors of size V that contain non-negative integers. The domain of ~x is all |A|× V matrices that

contain non-negative integers, i.e., M(|A|× V ).
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We can similarly define XT and XS to model the set of attributes T and the set of entity sets S, respectively. The

random variable XDB = (XA, XT , XS) models corrupted versions of database DB. In this thesis, we focus only on

the noise introduced in the content (values) of the database. In other words, we do not consider other types of noise

such as changing the attribute or entity set of an attribute value in the database. Since the membership of attribute

values in their attributes and entity sets remains the same across the original and the corrupted versions of the database,

we can derive XT and XS from XA. Thus, a corrupted version of the database will be a sample from XA; note that

the attributes and entity sets play a key role in the computation of XA, as we discuss in Section 7.4.2. Therefore, we

use only XA to generate the noisy versions of DB, i.e., we assume that XDB = XA. In Section 7.4.2 we present in

detail how XDB is computed.

Structured Robustness calculation. We compute the similarity of the answer lists using the Spearman rank cor-

relation [53]. It ranges between 1 and -1, where 1, -1, and 0 indicate perfect positive correlation, perfect negative

correlation, and almost no correlation, respectively. Equation 7.3 computes the Structured Robustness score (SR

score), for query Q over database DB given retrieval function g:

SR(Q, g,DB,XDB) = E{Sim(L(Q, g,DB), L(Q, g,XDB))}

=
∑
~x

Sim(L(Q, g,DB), L(Q, g, ~x))fXDB
(~x) (7.3)

where ~x ∈M(|A|× V ) and Sim denotes the Spearman rank correlation between the ranked answer lists.

7.4.2 Noise Generation in Databases

In order to compute Equation 7.3, we need to define the noise generation model fXDB
(M) for database DB. We

will show that each attribute value is corrupted by a combination of three corruption levels: on the value itself, its

attribute and its entity set. Now the details: since the ranking methods for queries over structured data do not generally

consider the terms in V that do not belong to query Q [62, 78], we consider their frequencies to be the same across

the original and noisy versions of DB. Given query Q, let ~x be a vector that contains term frequencies for terms

w ∈ Q∩V . Similarly to [161], we simplify our model by assuming the attribute values in DB and the terms in Q∩V

are independent. Hence, we have:

fXA(~x) =
∏
xa∈~x

fXa( ~xa) (7.4)

and

fXa
(~xa) =

∏
xa,j∈~xa

fXa,j
(xa,j) (7.5)
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where xj ∈ ~xi depicts the number of times wj appears in a noisy version of attribute valueAi and fXi,j (xj) computes

the probability of term wj to appear in Ai xj times.

The corruption model must reflect the challenges discussed in Section 7.3.2 about search on structured data, where

we showed that it is important to capture the statistical properties of the query keywords in the attribute values,

attributes and entity sets. We must introduce content noise (recall that we do not corrupt the attributes or entity sets

but only the values of attribute values) to the attributes and entity sets, which will propagate down to the attribute

values. For instance, if an attribute value of attribute title contains keyword Godfather, then Godfather may appear

in any attribute value of attribute title in a corrupted database instance. Similarly, if Godfather appears in an attribute

value of entity set movie, then Godfather may appear in any attribute value of entity set movie in a corrupted instance.

Since the noise introduced in attribute values will propagate up to their attributes and entity sets, one may question

the need to introduce additional noise in attribute and entity set levels. The following example illustrates the necessity

of generating such noise. Let T1 be an attribute whose attribute values are A1 and A2, where A1 contains term w1 and

A2 does not contain w1. A possible noisy version of T1 will be a version where A1 and A2 both contain w1. However,

the aforementioned noise generation model will not produce such a version. Similarly, a noisy version of entity set S

must introduce or remove terms from its attributes and attribute values. According to our discussion in Section 7.3,

we must use a model that generates all possible types of noise in the data.

Hence, we model the noise in a DB as a mixture of the noises generated in the attribute value, attribute, and entity

set levels. Mixture models are typically used to model how the combination of multiple probability distributions

generates the data. Let Yt,j be the random variable that represents the frequency of term wj in attribute Tt. Probability

mass function fYt,j
(yt,j) computes the probability of wj to appear yt,j times in Tt. Similarly, Zs,j is the random

variable that denotes the frequency of term wj in entity set Ss and probability mass function fZs,j (zs,j) computes the

probability of wj to appear zs,j times in Ss. Hence, the noise generation models attribute value Ai whose attribute is

Tt and entity set is Ss:

f̂Xa,j (xa,j) = γAfXa,j (xa,j) + γT fYt,j (xt,j) + γSfZs,j (xs,j), (7.6)

where 0 ≤ γA, γT , γS ≤ 1 and γA + γT + γS = 1. fXa,j , fYt,j , and fYs,j model the noise in the attribute value,

attribute, and entity set levels, respectively. Parameters γA, γT and γS have the same values for all terms w ∈ Q ∩ V

and are set empirically.

Since each attribute value Aa is a small document, we model fXi,j as a Poisson distribution:

fXa,j (xa,j) =
e−λa,jλ

xa,j

a,j

xa,j !
. (7.7)

133



Similarly, we model each attribute Tt, 1 ≤ t ≤ |T |, as a bag of words and use a Poisson distribution to model the

noise generation at the attribute level:

fYt,j
(xt,j) =

e−λt,jλ
xt,j

t,j

xt,j !
. (7.8)

Using similar assumptions, we model the changes in the frequencies of the terms in entity set Ss, 1 ≤ s ≤ |S|, using

a Poisson distribution:

fZs,j
(xs,j) =

e−λs,jλ
xs,j

s,j

xs,j !
. (7.9)

In order to use the model in Equation 7.6, we have to estimate λA,w, λT,w, and λS,w for everyw ∈ Q∩V , attribute

value A, attribute T and entity set S in DB. We treat the original database as an observed value of the space of all

possible noisy versions of the database. Thus, using the maximum likelihood estimation method, we set the value of

λA,w to the frequency of w in attribute value A. Assuming that w are distributed uniformly over the attribute values

of attribute T , we can set the value of λT,w to the average frequency of w in T . Similarly, we set the value of λS,w as

the average frequency of w in S. Using these estimations, we can generate noisy versions of a database according to

Equation 7.6.

7.4.3 Smoothing The Noise Generation Model

Equation 7.6 overestimates the frequency of the terms of the original database in the noisy versions of the database.

For example, assume a bibliographic database of computer science publications that contains attribute T2 =abstract

which constitutes the abstract of a paper. Apparently, many abstracts contain term w2 =algorithm, therefore, this

term will appear very frequently with high probability in the fT2,w2 model. On the other hand, a term such as w3 =

Dirichlet is very likely to have very low frequency in the fT2,w3
model. Let attribute value A2 be of attribute abstract

in the bibliographic DB that contains both w2 and w3. Most likely, term algorithm will appear more frequently than

Dirichlet in A2. Hence, the mean for fA2,w2 will be also larger than the mean of fA2,w3 . Thus, a mixture model of

fT2,w2
and fA2,w2

will have much larger mean than a mixture model of fT2,w3
and fA2,w3

. The same phenomenon

occurs if a term is relatively frequent in an entity set. Hence, a mixture model such as Equation 7.6 overestimates the

frequency of the terms that are relatively frequent in an attribute or entity set.

Researchers have faced a similar issue in language model smoothing for speech recognition [75]. We use a similar

approach to resolve this issue. If term w appears in attribute value A, we use only the first term in Equation 7.6 to

model the frequency of w in the noisy version of database. Otherwise, we use the second or third terms if w belongs

to T and S, respectively. Hence, the noise generation model is:
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<movie id= ‘‘1025102’’>

<title>rome ...</title>

<keyword>ancient-world</keyword>

<keyword>ancient-art</keyword>

<keyword>ancient-rome</keyword>

<keyword>christian-era</keyword>

</movie>

<movie id=‘‘1149602’’>

<title>Gladiator</title>

<keyword>ancient-rome</keyword>

<character>Rome ...</character>

<person>... Rome/UK)</person>

<trivia>"Rome of the imagination... </trivia>

<goof>Rome vs. Carthage ...</goof>

<quote>... enters Rome like a ... Rome ... </quote>

</movie>

Figure 7.1: Ranking of the original results of Q11

<movie id=‘‘1149602’’>

<title> Gladiator rome</title>

<keyword>ancient-rome rome</keyword>

<character>Rome ...</character>

<person> ... Rome/UK)</person>

<trivia>of the imagination ...</trivia>

<goof>Rome vs. Carthage ...</goof>

<quote>... enters Rome like a ... Rome ...</quote>

</movie>

<movie id= ‘‘1025102’’>

<title>rome ...</title>

<keyword>ancient-world ancient</keyword>

<keyword>-art</keyword>

<keyword>ancient ancient</keyword>

<keyword>christian-</keyword>

</movie>

Figure 7.2: Ranking of the corrupted results of Q11

f̂Xa,j
(xa,j) =


γAfXa,j

(xa,j) if wj ∈ Aa

γT fYt,j
(xt,j) if wj /∈ Aa, wj ∈ Tt

γSfZs,j (xs,j) if wj /∈ Aa, Tt, wj ∈ Ss

(7.10)

where we remove the condition γA + γT + γS = 1.
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<movie id=‘‘1492260’’>

<title>The Legend of Mulan (1998) (V)</title>

<genre>Animation</genre >

<link>Hua Mu Lan (1964)</link>

<link>Hua Mulan cong jun</link>

<link>Mulan (1998)</link>

<link>Mulan (1999)</link>

<link>The Secret of Mulan (1998)</link>

</movie>

<movie id=‘‘1180849’’>

<title>Hua Mulan (2009)</title>

<character>Hua Hu (Mulan}’s father)</character>

<character>Young Hua Mulan</character>

<character>Hua Mulan</character>

</movie>

Figure 7.3: Original results of Q9

<movie id=‘‘1492260’’>

<title>The Legend of Mulan (1998) (V) mulan mulan</title>

<genre></genre >

<link>Hua Mu Lan (1964)</link>

<link>Hua Mulan cong jun</link>

<link>Mulan (1998) mulan</link>

<link> (1999)</link>

<link>The Secret of Mulan (1998) mulan </link>

<movie>

<movie id=‘‘1180849’’>

<title>Hua (2009) hua</title>

<character>Hua Hu (Mulan’s father)</character>

<character>Young Hua Mulan mulan mulan hua</character>

<character>Mulan</character>

</movie>

Figure 7.4: Corrupted results of Q9

7.4.4 Examples

We illustrate the corruption process and the relationship between the robustness of the ranking of a query and its

difficulty using INEX queries Q9: mulan hua animation and Q11: ancient rome era, over the IMDB data set. We set

γA = 1, γT = 0.9, γS = 0.8 in Equation 7.10. We use the XML ranking method proposed in [78], called PRSM,

which we discussed in the previous chapter and explain in more detail in Section 7.5. Given queryQ, PRSM computes

the relevance score of entity E based on the weighted linear combination of the relevance scores of the attribute values

of E.
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Example of calculation of λt,j for term t =ancient and attribute Tj =plot in Equation 7.8: In the IMDB data

set, ancient occurs in attribute plot 2132 times in total, and the total number of attribute values under attribute plot is

184,731, so λt,j = 2132/184731 which is 0.0115. Then, since γT = 0.9, the probability that ancient occurs k times

in a corrupted plot attribute is 0.9e−0.0115(0.0115)k

k! .

Q11: Figure 7.1 depicts two of the top results (ranked as 1st and 12th respectively) for query Q11 over IMDB.

We omit most attributes (shown as elements in XML lingo in Figure 7.1) that do not contain any query keywords.

Figure 7.2 illustrates a corrupted version of the entities shown in Figure 7.1. The new keyword instances are under-

lined. Note that the ordering changed according to the PRSM ranking. The reason is that PRSM believes that title is

an important attribute for rome (for attribute weighting in PRSM see Section 7.6.1) and hence having a query keyword

(rome) there is important. However, after corruption, query word rome also appears in the title of the other entity,

which now ranks higher, because it contains the query words in more attributes.

Word rome was added to the title attribute of the originally second result through the second level (attribute-based,

second branch in Equation 7.10) of corruption, because rome appears in the title attribute of other entities in the

database. If no title attribute contained rome, then it could have been added through the third level corruption (entity

set-based, third branch in Equation 7.10) since it appears in attribute values of other movie entities.

The second and third level corruptions typically have much smaller probability of adding a word than the first

level, because they have much smaller λ; specifically, λT is the average frequency of the term in attribute T . However,

in hard queries likeQ11, the query terms are frequent in the database, and also appear in various entities and attributes,

and hence λT and λS are larger.

In the first keyword attribute of the top result in Figure 7.2, rome is added by the first level of corruption, whereas

in the trivia attribute, rome is removed by the first level of corruption.

To summarize, Q11 is difficult because its keywords are spread over a large number of attribute values, attributes

and entities in the original database, and also most of the top results have a similar number of occurrences of the

keywords. Thus, when the corruption process adds even a small number of query keywords to the attribute values of

the entities in the original database, it drastically changes the ranking positions of these entities.

Q9: Q9 (mulan hua animation) is an easy query because most its keywords are quite infrequent in the database.

Only term animation is relatively frequent in the IMDB data set, but almost all its occurrences are in attribute genre.

Figures 7.3 and 7.4 present two ordered top answers for Q9 over the original and corrupted versions of IMDB,

respectively. The two results are originally ranked as 4th and 10th. The attribute values of these two entities contain

many query keywords in the original database. Hence, adding and/or removing some query keyword instances in these

results does not considerably change their relevance score, and they preserve their ordering after corruption.

Since keywords mulan and hua appear in a small number of attribute values and attributes, the value of λ for
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these terms in the second and the third level of corruption is very small. Similarly, since keyword animation only

appears in the genre attribute, the value of λ for all other attributes (second level corruption) is zero. The value of λ

for animation in the third level is reasonable, 0.0007 for movie entity set, but the noise generated in this level alone is

not considerable.

7.5 Efficient Computation of SR Score

A key requirement for this work to be useful in practice is that the computation of the SR score incurs a minimal time

overhead compared to the query execution time. In this section we present efficient SR score computation techniques.

7.5.1 Basic Estimation Techniques

Top-K results: In general, the basic information units in structured data sets – attribute values – are much shorter

than text documents. Thus, a structured data set contains a larger number of information units than an unstructured

data set of the same size. For instance, each XML document in the INEX data-centric collection contains hundreds of

elements with textual content. Hence, computing Equation 7.3 for a large database is so inefficient as to be impractical.

Hence, similar to [161], we corrupt only the top K entity results of the original data set. We re-rank these results and

shift them up to be the top K answers for the corrupted versions of the database. In addition to the time savings, our

empirical results in Section 7.6.2 show that relatively small values for K predict the difficulty of queries better than

large values. For instance, we found that K = 20 delivers the best performance prediction quality in our data sets. We

discuss the impact of different values of K on query difficulty prediction quality further in Section 7.6.2.

Number of corruption iterations (N ): Computing the expectation in Equation 7.3 for all possible values of ~x

is very inefficient. Hence, we estimate the expectation using N > 0 samples over M(|A|× V ). That is, we use N

corrupted copies of the data. Obviously, a smaller N is preferred for the sake of efficiency. However, if we choose

very small values for N , the corruption model becomes unstable. We further analyze how to choose the value of N in

Section 7.6.2.

We can limit the values of K or N in any of the algorithms described below.

7.5.2 Structured Robustness Algorithm

Algorithm 7.5 shows the Structured Robustness Algorithm (SR Algorithm), which computes the exact SR score based

on the topK result entities. Each ranking algorithm uses some statistics about query terms or attributes values over the

whole content of DB. Some examples of such statistics are the number of occurrences of a query term in all attributes

138



values of the DB or total number of attribute values in each attribute and entity set. These global statistics are stored

in M (metadata) and I (inverted indexes) in the SR Algorithm pseudocode.

Figure 7.5: CorruptTopResults(Q,L,M, I,N)

Input: Query Q, top K list L of Q under ranking function g, metadata M , inverted indexes I , corruption1

iterations N .
Output: SR score for Q.

1: SR← 0; C ← {}; //C caches λT , λS for keywords in Q
2: FOR i = 1→ N DO
3: I ′ ← I; M ′ ←M ; L′ ← L; //Corrupted copy of I , M and L
4: FOR each result R in L DO
5: FOR each attribute value A in R DO
6: A′ ← A; //Corrupted versions of A
7: FOR each keywords w in Q DO
8: Compute # of w in A′ by Equation 7.10; //If λT,w, λS,w needed but not in C, calculate and cache them
9: IF # of w varies in A′ and A THEN

10: Update A′, M ′ and entry of w in I ′;
11: Add A′ to R′;
12: Add R′ to L′;
13: Rank L′ using g, which returns L, based on I ′, M ′;
14: SR += Sim(L,L′); //Sim computes Spearman correlation
15: RETURN SR← SR/N ; //AVG score over N rounds

The SR Algorithm generates noise in the DB on-the-fly during query processing. Since it corrupts only the top K

entities, which are always returned by the ranking module, it does not perform any extra I/O access to the database,

except to look up some statistics. Moreover, it uses information which is already computed and stored in inverted

indexes and does not require any additional index.

Nevertheless, our empirical results, reported in Section 7.6.2, show that the SR Algorithm increases query pro-

cessing time considerably. The reasons for SR Algorithm inefficiency include the following: First, Line 5 in the SR

Algorithm loops over every attribute value in each topK result and tests whether it must be corrupted. As noted before,

one entity may have hundreds of attribute values. The attribute values that do not contain any query term still must be

corrupted (Line 8-10 in the SR Algorithm) for the second and third levels of corruption defined in Equation 7.10. This

is because their attributes or entity sets may contain some query keywords. This will greatly increase the number of

attribute values to be corrupted. For instance, for IMDB, which has only two entity sets, the SR Algorithm corrupts

all attribute values in the top K results for all query keywords. Second, ranking algorithms for databases are relatively

slow. The SR Algorithm has to re-rank the top K entities N times, which is time consuming.
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Figure 7.6: SR Algorithm

Figure 7.7: SGS-Approx Algorithm

7.5.3 Approximation Algorithms

In this section, we propose approximation algorithms to improve the efficiency of the SR Algorithm. Our methods are

independent of the underlying ranking algorithm.

Query-specific Attribute values Only Approximation (QAO-Approx): QAO-Approx corrupts only the attribute

values that match at least one query term. This approximation algorithm leverages the following observations:

Observation 1: The noise in the attribute values that contain query terms dominates the corruption effect.

Observation 2: The number of attribute values that contain at least one query term is relatively much smaller than

the number of all attribute values in each entity.

Hence, we can significantly decrease the time spent on corruption if we corrupt only the attribute values that

contain query terms. We add a check before Line 7 in the SR Algorithm to test whether A contains any term in Q.
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Hence, we skip the loop in Line 7. The second and third levels of corruption (on attributes and entity sets, respectively)

corrupt a smaller number of attribute values, so the time spent on corruption becomes shorter.

Static Global Stats Approximation (SGS-Approx): SGS-Approx uses the following observation:

Observation 3: Given that only the top K result entities are corrupted, the global DB statistics do not change

much.

Figure 7.6 shows the execution flow of the SR Algorithm. Once we get the ranked list of top K entities for Q,

the corruption module produces corrupted entities and updates the global statistics of DB. Then, the SR Algorithm

passes the corrupted results and updated global statistics to the ranking module to compute the corrupted ranking list.

The SR Algorithm spends a high percentage of the robustness calculation time on the loop that re-ranks the

corrupted results (Line 13 in SR Algorithm), by taking into account the updated global statistics. Since the value of K

(e.g., 10 or 20) is much smaller than the number of entities in the database, the top K entities constitute a very small

portion of the database. Thus, the global statistics largely remain unchanged or change very little. Hence, we can use

the global statistics of the original version of the database to re-rank the corrupted entities. If we refrain from updating

the global statistics, we can combine the corruption and ranking module. This way, re-ranking is done on-the-fly

during corruption. SGS-Approx is illustrated in Figure 7.7.

We use the ranking algorithm proposed in [78], called PRMS, to better illustrate the details of our approximation

algorithm. PRMS employs a language model approach to search over structured data. It computes the language model

of each attribute value smoothed by the language model of its attribute. It assigns each attribute a query keyword-

specific weight, which specifies its contribution to the ranking score. It computes the keyword-specific weight µj(q)

for attribute values whose attributes are Tj and query q as µj(q) =
P (q|Tj)∑

T∈DB P (q|T ) . The ranking score of entity E for

query Q, P (Q|E) is:

P (Q|E) =
∏
q∈Q

P (q|E) =
∏
q∈Q

n∑
j=1

[µj(q)((1− λ)P (q|Aj) + λP (q|Tj))], (7.11)

where Aj is an attribute value of E, Tj is the attribute of Aj , 0 ≤ λ ≤ 1 is the smoothing parameter for the language

model of Aj , and n is the number of attribute values in E. If we ignore the change of global statistics of DB, then the

µj and P (q|Tj) parts will not change when calculating the score of corrupted version of E or E′, for q. Hence, the

score of E′ will depend only on P (q|A′j), where A′j is the corrupted version of Aj . We compute the value of P (q|A′j)

using only the information of A′j as (# of q in A′j / # of words in A′j). SGS-Approx uses the global statistics of the

original database to compute µj and P (q|Tj), in order to calculate the value of P (q|E). It re-uses them to compute

the score of the corrupted versions of E. However, the SR Algorithm has to finish all corruption on all attribute values

in top results to update the global statistics and re-rank the corrupted results. Similarly, we can modify other keyword

query ranking algorithms over databases that use query term statistics to score entities.
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INEX SemSearch
Size 9.85 GB 9.64 GB

Number of Entities 4,418,081 7,170,445
Number of Entity Sets 2 419,610
Number of Attributes 77 7,869,986

Number of Attribute values 113,603,013 114,056,158

Table 7.1: INEX and SemSearch data sets characteristics

Combination of QAO-Approx and SGS-Approx: QAO-Approx and SGS-Approx improve the performance of ro-

bustness calculation by approximating different parts of the corruption and re-ranking process. Hence, we can combine

these two algorithms to further improve the performance of query difficulty prediction.

7.6 Experiments

7.6.1 Experiments Setting

Data sets: Table 7.1 shows the characteristics of two data sets used in our experiments. The INEX data set is from

the INEX 2010 Data Centric Track [142] discussed in Section 7.1.The INEX data set contains two entity sets: movie

and person. Each entity in the movie entity set represents one movie with attributes like title, keywords, and year. The

person entity set contains attributes like name, nickname, and biography.

The SemSearch data set is a subset of the data set used in the Semantic Search 2010 challenge [133]. The original

data set contains 116 files with about one billion RDF triplets. Since the size of this data set is extremely large, it

takes a very long time to index and run queries over this data set. Hence, we have used a subset of the original data

set in our experiments. We first removed duplicate RDF triplets. Then, for each file in the SemSearch data set, we

calculated the total number of distinct query terms in the SemSearch query workload in the file. Out of the 116 files,

we selected the 20 files that contain the largest number of query keywords for our experiments. We converted each

distinct RDF subject in this data set to an entity whose identifier is the subject identifier. The RDF properties are

mapped to attributes in our model. The values of RDF properties that end with substring “#type” indicate the type of a

subject. Hence, we set the entity set of each entity to the concatenation of the values of the RDF properties of its RDF

subject that end with substring “#type”. If the subject of an entity does not have any property that ends with substring

“#type”, we set its entity set to “UndefinedType”. We added the values of other RDF properties for the subject as

attributes of its entity. We stored the information about each entity in a separate XML file. We removed the relevance

judgment information for the subjects that do not reside in these 20 files. The sizes of the two data sets are quite close;

however, SemSearch is more heterogeneous than INEX as it contains a larger number of attributes and entity sets.

Query Workloads: Since we use a subset of the dataset from SemSearch, some queries in its query workload
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may not contain enough candidate answers. We picked the 55 queries from the 92 in the query workload that have at

least 50 candidate answers in our dataset. Because the number of entries for each query in the relevance judgment file

has also been reduced, we discarded another two queries (Q6 and Q92) without any relevant answers in our data set,

according to the relevance judgment file. Hence, our experiments is done using 53 queries (2, 4, 5, 11-12, 14-17, 19-

29, 31, 33-34, 37-39, 41-42, 45, 47, 49, 52-54, 56-58, 60, 65, 68, 71, 73-74, 76, 78, 80-83, 88-91) from the SemSearch

query workload. 26 query topics are provided with relevance judgments in the INEX 2010 Data Centric Track. Some

query topics contain characters “+” and “-” to indicate conjunctive and exclusive conditions. In our experiments, we

do not use these conditions and remove the keywords after character “-”.

Generally, keyword query systems for databases return candidate answers that contain all terms in the query

[9, 62, 130]. However, queries in the INEX query workload are relatively long (normally over four distinct keywords).

If we retrieve only the entities that contain all query terms, there will not be sufficient (in some cases none) candidate

answers for many queries in the data. Hence, for every query Q, we use the following procedure to get at least 1,000

candidate answers for each query. First, we retrieve the entities that contain |Q| distinct terms in query Q. If they are

not sufficient, we retrieve the entities that contain at least |Q|−1 distinct query keywords, and so on until we get 1000

candidate answers for each query.

Effectiveness Metrics: We used the popular effectiveness metrics Average Precision and Mean Average Precision

(MAP) to measure the quality of rankings delivered by ranking algorithms for a query and a set of queries over a

database, respectively [96].

Ranking Algorithms: To evaluate the effectiveness of our model for different ranking algorithms, we evaluated

the query performance prediction model with two representative ranking algorithms: PRMS [78] and IR-Style [62].

Many other algorithms are extensions of these two methods (e.g., [93, 33]).

PRMS: We explained the idea behind the PRMS algorithm in Section 7.5. We adjust parameter λ in PRMS in our

experiments to get the best MAP and then use this value of λ for query performance prediction evaluations. Varying

λ from 0.1 to 0.9 with 0.1 as the test step, we have found that different values of λ change MAP very slightly on both

data sets, and generally smaller λs deliver better MAP. We use λ = 0.1 on the INEX data set and 0.2 for the SemSearch

data set.

IR-Style: We use a variation of the ranking model proposed in [62] for the relational data model, referred as IR-Style

ranking. Given a query, IR-Style returns a minimal join tree that connects the tuples from different tables in the DB

that contain the query terms, called MTNJT . However, our data sets are not in relational format and the answers

in their relevance judgment files are entities, not MTNJT s. Hence, we extend the definition of MTNJT to be the

minimal subtree that connects the attribute values containing the query keywords in an entity. The root of this subtree

is the root of the entity in its XML file. If an entity has multiple MTNJT s, we choose the one with the maximum

143



INEX SemSearch
training set (γA, γT , γS) correlation (γA, γT , γS) correlation

1 (1, 0.9, 0.8) 0.689 (1, 0.1, 0.6) 0.744
2 (1, 0.9, 0.8) 0.777 (1, 0.1, 0.6) 0.659
3 (1, 0.9, 0.8) 0.695 (1, 0.1, 0.8) 0.596
4 (1, 0.9, 0.8) 0.799 (1, 0.1, 0.6) 0.702
5 (1, 0.8, 0.3) 0.540 (1, 0.1, 0.6) 0.597

Table 7.2: Training and testing of (γA, γT , γS), for K=20.

Figure 7.8: Average precision versus SR score for queries on INEX using PRMS, for K=20.

K 10 20
Method SR URM CR iAA iAES iAE iAS SR URM CR iAA iAES iAE iAS
INEX 0.471 0.247 0.379 0.299 n/a 0.111 0.143 0.556 0.311 0.391 0.370 n/a 0.255 0.292

SemSearch 0.486 0.093 0.091 0.066 0.052 0.040 -0.043 0.564 0.177 0.09 0.082 0.068 0.056 -0.046

Table 7.3: Correlation of average precision against each metric of difficulty.

score, as explained below.

Let M be a MTNJT tree of entity E and let AM be the attribute values in M . The score of M for query Q

is IRScore(M,Q)
size(M) , where IRScore(M,Q) is the score of M for query Q based on an IR ranking formula. If we use

a vector space model ranking formula as in [62] to compute the IRScore(M,Q), we get very low MAP (less than

0.1) for both data sets. Hence, we compute it using a language model ranking formula with Jelink-Mercer smoothing

[158], which is shown in Equation 7.12. We set the value of smoothing parameter α to 0.2, as it returns the highest

MAP for our data sets.

IRScore(M,Q) =
∏
q∈Q

∑
A∈AM

((1− α)P (q|A) + αP (q|T )) (7.12)

Configuration: We performed our experiments on an AMD Phenom II X6 2.8 GHz machine with 8 GB of main

memory that runs 64-bit Windows 7. We used Berkeley DB 5.1.25 to store and index the XML files and implemented

all algorithms in Java.
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Figure 7.9: Average precision versus SR score for queries on SemSearch using PRMS, for K=20.

Figure 7.10: Average precision versus SR score using IR-Style over SemSearch with K=20 and (γA, γT , γS) = (1,
0.1, 0.6).

K 10 20
Correlation score 0.565 0.544

Table 7.4: Effect of K on Pearson’s correlation of average precision and SR score using IR-Style ranking on Sem-
Search

Avg Q-time (ms) Avg SR-time (ms)
INEX 24,177 (88,271 + 29,585)

SemSearch 46,726 (11,121 + 12,110)

Table 7.5: Average query processing time and average robustness computation for K=20, N=250 on SemSearch and
N=300 on INEX.

7.6.2 Quality Results

In this section, we evaluate the effectiveness of the query quality prediction model computed using the SR Algorithm.

We use Pearson’s correlation between the SR score and the average precision of a query to evaluate the prediction

quality of SR score.

Setting the value of N : Let L and L′ be the original and corrupted top K entities for query Q, respectively. The

SR score of Q in each corruption iteration is the Spearman’s correlation between L and L′. We corrupt the results N

times to get the average SR score for Q. In order to get a stable SR score, the value of N should be sufficiently large,

but this increases the computation time of the SR score. We chose the following strategy to find the appropriate value

of N : We progressively corrupt L 50 iterations at a time and calculate the average SR score over all iterations. If the
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last 50 iterations do not change the average SR score over 1%, we terminate. N may vary for different queries in query

workloads. Thus, we set it to the maximum number of iterations over all queries. According to our experiments, the

value of N varies very slightly for different value of K. Therefore, we set the value of N to 300 on INEX and 250 on

SemSearch for all values of K.

Different Values for K: The number of interesting results for a keyword query is normally small [96]. Hence, it

is reasonable to focus on small values of K for query performance prediction. We conduct our experiments for K=10

andK=20. Both values deliver reasonable prediction quality (i.e., the robustness of a query is strongly correlated with

its effectiveness). We achieved the best prediction quality using K=20 for both data sets, with different combinations

of γA, γT , and γS , which we will introduce later.

Training of γA, γT , and γS: We denote the coefficients combination in Equation 7.10 as (γA, γT , γS) for brevity.

We train (γA, γT , γS) by 5-fold cross validation. After preliminary experiments, we found that large γA is effective.

Hence, to reduce the number of possible combinations, we fix γA as 1, and vary the other two during the training

process to find the highest correlation between average precision and SR score. We computed the SR score for γT and

γS from 0 to 3 with step 0.1 for different values of K. Table 7.2 shows the training of γT and γS , and the correlation

between average precision and SR score on the testing sets. It shows that for different training sets, the (γA, γT , γS)

is quite stable for getting the best correlation score. Thus in the following results, we set (γA, γT , γS) to be (1, 0.9,

0.8) on INEX and (1, 0.1, 0.6) on SemSearch.

Figures 7.8 and 7.9 depict the plot of average precision and SR score for all queries in our query workload on

INEX and SemSearch, respectively. In Figure 7.8, we see that Q9 is easy (has high average precision) and Q11 is

relatively hard, as discussed in Section 7.4.4. As shown in Figure 7.9, query Q78: sharp-pc is easy (has high average

precision), because its keywords appear together in few results, which explains its high SR score. On the other hand,

Q19: carl lewis and Q90: university of phoenix have a very low average precision as their keywords appear in many

attributes and entity sets. Figure 7.9 shows that the SR scores of these queries are very small, which confirms our

model.

Baseline Prediction Methods

Clarity score (CR) [132] and Unstructured Robustness Method (URM) [161] are two popular query difficulty predic-

tion techniques over text documents. The prediction quality (i.e., the correlation between average precision of queries

and the metric) of clarity score and URM are 0.21 - 0.51 and 0.30 - 0.61, respectively [161]. We use these methods as

well as the prevalence of query keywords as baseline query difficulty prediction algorithms for databases.

URM and CR: Our goal in this experiment is to find how accurately URM can predict the effectiveness of queries

over a database. We concatenate the XML elements and tags of each entity into a text document and assume all entities

(now text documents) belong to one entity set. The values of all µj in PRMS ranking formula are set to 1 for every
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query term.Hence, PRMS becomes a language model retrieval method for text documents [96]. Similar to URM, we

implement CR by treating each entity in database as a text document. We have used similar parameters as [132, 161]

to compute the CR for queries over our data sets.

Prevalence of Query Keywords: As we argued in Section 7.3.2, if the query keywords appear in many entities,

attributes, or entity sets, it is harder for a ranking algorithm to locate the desired entities. Given query Q, we compute

the average number of attributes (AA(Q)), average number of entity sets (AES(Q)), and the average number of

entities (AE(Q)) where each keyword in Q occurs. We consider each of these three values as an individual baseline

difficulty prediction metric. We also multiply these three metrics (to avoid normalization issues that summation would

have) and create another baseline metric, denoted AS(Q). Intuitively, if these metrics for query Q have higher values,

Q must be harder and have lower average precision. Thus, we use the inverse of these values, denoted as iAA(Q),

iAES(Q), iAE(Q), and iAS(Q), respectively.

Comparison to Baseline Methods: Table 7.3 shows the prediction accuracy (correlation between average precision

and each metric) for SR, URM, CR, iAA(Q), iAES(Q), iAE(Q), and iAS(Q) methods for different K over both

datasets. These results are based on all queries in the query workloads without distinguishing between training and

testing sets as in Table 7.2. The n/a value appears in the table because all query keywords in our query workloads

occur in both entity sets in the INEX data set. The correlation values for the SR Algorithm are significantly higher

than the correlation values of URM and CR, on both data sets. This shows that our prediction model is more effective

than URM and CR over databases. Metric iAA provides a more accurate prediction than all other methods over INEX.

This indicates that one of the main causes of difficulty for the queries over the INEX data set is to find their desired

attributes, which confirms our analysis in Section 7.3.2. SR also delivers far better prediction quality than iAA(Q),

iAES(Q), iAE(Q), and iAS(Q) metrics over both data sets. Hence, SR effectively considers all causes of the difficulties

for queries over databases.

IR-style ranking algorithm: The best value of MAP for the IR-Style ranking algorithm over INEX is 0.105 for

K=20, which is very low. Note that we tried both Equation 7.12 as well as the vector space model originally used

in [62]. Thus, we do not study the quality performance prediction for IR-Style ranking algorithm over INEX. On

the other hand, the IR-Style ranking algorithm using Equation 7.12 delivers larger MAP value than PRMS on the

SemSearch dataset. Due to the lack of space we cannot present all experiments under IR-Style ranking. Hence, we

only present results on SemSearch. Table 7.4 shows Pearson’s correlation of SR score with the average precision for

different values of K, for N=250 and (γA, γT , γS) = (1, 0.1, 0.6). Figure 7.10 plots SR score against the average

precision when K=20. On SemSearch, we also tried IR-Style ranking algorithm using vector space model ranking,

but it achieves very low MAP (0.08) so we do not report results.
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Figure 7.11: Approximations on INEX using QAO-Approx

Figure 7.12: Approximations on INEX using SGS-Approx

7.6.3 Performance Study

In this section we study the efficiency of the SR score computation algorithms.

SR Algorithm: We report the average computation time of an SR score (SR-time) using the SR Algorithm and

compare it to the average query processing time (Q-time) using PRSM, for the queries in our query workloads. These

times are presented in Table 7.5 for K=20. SR-time mainly consists of two parts: the time spent on corrupting K

results and the time to re-rank the K corrupted results. We have reported SR-time using a (corruption time + re-rank

time) format. We see that the SR Algorithm incurs a considerable time overhead on query processing. This overhead

is higher for queries over the INEX data set, because there are only two entity sets, (person and movie), in the INEX

data set, and all query keywords in the query load occur in both entity sets. Hence, according to Equation 7.10, every

attribute value in the top K entities will be corrupted, due to the third level of corruption. This does not happen for

SemSearch, since SemSearch contains far more entity sets and attributes than INEX.
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Figure 7.13: Approximations on INEX using a combination of QAO and SGS

Figure 7.14: Approximations on SemSearch using QAO-Approx

Figure 7.15: Approximations on SemSearch using SGS-Approx
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Figure 7.16: Approximations on SemSearch using a combination of QAO and SGS

QAO-Approx: Figures 7.11 and 7.14 show the results of using QAO-Approx on INEX and SemSearch, respec-

tively. We measure the prediction effectiveness for smaller values of N using the average correlation score. The

QAO-Approx algorithm delivers acceptable correlation scores and corruption times of about 2 seconds for N=10 on

INEX and N=20 on SemSearch. Comparing to the results of the SR Algorithm for N=250 on SemSearch and N=300

on INEX, the correlation score drops, because less noise is added by second and third level corruption. These results

show the importance of these two levels of corruption.

SGS-Approx: Figures 7.12 and 7.15 depict the results of applying SGS-Approx on INEX and SemSearch, re-

spectively. Since re-ranking is done on-the-fly during the corruption, SR-time is reported as corruption time only.

As shown in Figure 7.12, the efficiency improvement on the INEX data set is slightly worse than QAO-Approx, but

the quality (correlation score) remains high. SGS-Approx outperforms QAO-Apporx in terms of both efficiency and

effectiveness on the SemSearch data set.

Combination of QAO-Approx and SGS-Approx: As noted in Section 7.5, we can combine QAO-Approx and

SGS-Approx algorithms to achieve better performance. Figures 7.13 and 7.16 present the results of the combined

algorithm for the INEX and SemSearch databases, respectively. Since we use SGS-Approx, the SR-time consists only

of corruption time. Our results show that the combination of two algorithms works more efficiently than either of

them alone with the same value for N .

Summary of the Performance Results: According to our performance study of QAO-Approx, SGS-Approx,

and the combined algorithm over both data sets, we observe that the combined algorithm delivers the best balance of

improvement in efficiency and decrease in effectiveness for both data sets. On both data sets, the combined algorithm

can achieve high prediction accuracy (correlation score about 0.5) with SR-time around 1 second. On INEX when

the value of N is set to 20, the correlation is 0.513 and the time is decreased to about 1 second using the combined
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algorithm. For the SR Algorithm on INEX, when N decreases to 10, the correlation score is 0.537, but SR-time is

over 9.8 seconds, which is not ideal. If we use the combined algorithm on SemSearch, the correlation score is 0.495

and SR-time is about 1.1 seconds when N=50. However, to achieve similar efficiency, SGS-Approx needs to decrease

N to 10, where SR-time is 1.2 seconds and correlation is 0.49. The SR Algorithm spends over 2.2 and 6 seconds of

SR-time on the same data set when N is set to 10 and 50, respectively. Thus, the combined algorithm is the best

choice to predict the difficulties of queries both efficiently and effectively.
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Chapter 8

Toward a Cost Effective Structure for
Semi-Structured Data

8.1 Background

Imposing structure on unstructured data sets improves the effectiveness of query answering systems [23, 14, 39, 36,

135]. For instance, suppose that a user wants to find information about the athlete Michael Jordan, and submits

keyword query Q1: Michael Jordan to Wikipedia, a fragment of which is shown in Figure 1.1. Many Wikipedia

articles contain Q1’s two terms, and the search system does not have enough evidence to determine which article best

satisfies the information need behindQ1. Thus, the search system may give a high rank to articles that do not satisfy the

information need behind Q1, such as an article whose url is wiki/Michael I. Jordan rather than wiki/Michael Jordan.

Figure 1.2 depicts a more structured representation of the information shown in Figure 1.1. A search system can use

the added structure to improve users’ experience as they search and explore the data.

However, developing programs to annotate the instances of a concept over a very large data set can be an extremely

time-consuming and difficult task [21]. Developers have to identify and implement hundreds of rules or design and

train complex machine learning based modules to annotate instances of each concept. Developers also have to maintain

the modules and update them as new information is added to the database [105]. These efforts may be even more costly

for concepts that are defined in specific domains, such as medicine and the law, as they require collaboration between

developers and domain experts.

Since annotation modules are very complex, it can take a very long time and a great deal of computational resources

to execute and re-execute them over a very large database [1, 70]. Since the budget and resources of any enterprise are

limited, it is vital to identify the concepts whose annotations will most benefit the overall effectiveness of the query

system.

In this chapter, we make the following contributions.

• We propose a formal framework that models the improvement in the quality of search over data sets as we add

particular pieces of additional semantic information to the data.

• We formally define the problem of cost effective concept annotation and show that it is NP-hard in the general
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<article>

<url>wiki/Michael_Jordan</url>

<body>

Michael Jeffrey Jordan

(born February 17, 1963) is a

former American professional

basketball player, ... .

Michael Jordan had spent

his entire career with the Chicago Bulls ... .

</body>

</article>

<article>

<url>wiki/Michael_Jordan_statue</url>

<body>

The Michael Jordan statue, officially

known as The Spirit, ... .

</body>

</article>

<article>

<url>wiki/Michael_I._Jordan</url>

<body>

Michael I. Jordan is a leading

researcher .... . He is currently a full

professor at the University of California,

Berkeley... .

</body>

</article>

...

</collection>

Figure 8.1: Wikipedia article excerpts

case. We show that some widely used heuristics, such as annotating the most popular concepts, are not optimal

in general.

• We propose approximation algorithms that choose which concepts to annotate in pseudo-polynomial time.

• We validate our approach through extensive experiments over standard query workloads and a real-world data

set.

8.2 Basic Definitions

A collection is a set of unstructured or semi-structured documents. Each document in the collection is identified by a

unique identifier, called its URI. An ontology, C, is a collection of concepts. Each concept is a set of named entities
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<collection>

<article>

<url>wiki/Michael_Jordan</url>

<body>

<athlete> Michael Jeffrey Jordan </athlete>
(born

<birthdate> February 17, 1963 </birthdate>
) is a former

<nationality> American </nationality>
professional basketball player, ... .

<athlete> Michael Jordan </<athlete>
had spent his entire career with the

<club> Chicago Bulls </club>
... .

</body>

</article>

<article>

<url>wiki/Michael_Jordan_statue</url>

<body>

<art-form> The Michael Jordan statue </art-form>
, officially known as

<art-form> The Spirit </art-form>
... .

</body>

</article>

<article>

<url>wiki/Michael_I._Jordan</url>

<body>

<scientist> Michael I. Jordan </scientist>
is a leading researcher .... . He is currently a

<position> full professor </position>
at the

<school> University of California, Berkeley </school>
... .

</body>

</article>

...

</collection>

Figure 8.2: A more structured version of Wikipedia article excerpts

which are its instances. Similar to previous work, we refrain from rigorous definition of concepts [32]. Some examples

of concepts are person, location, and organization. Abraham Lincoln is an instance of concept person and Lincoln

Square is an instance of concept location.

Concepts C1 and C2 are mutually exclusive iff when a named entity e belongs to C1, e does not belong to C2 and

vice versa. For instance, concepts person and location are mutually exclusive, as no named entity is both a person

and a location. In this chapter, we assume that all concepts in an ontology are mutually exclusive. Our models can be
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extended to other types of relationships such as a concept that is a subclass of another concept. We focus on this type of

relationship for two reasons. First, this type of relationship is the basic building block of categorization in ontologies.

Second, as we will show later, annotating the instances of the concepts that have this type of relationship is more

useful than annotating other types of concepts, for improving the effectiveness of the keyword queries. Modeling all

types of relationships between concepts is an interesting subject for future work.

An annotator for concept C takes a collection and annotates all instances of C in the collection. Cost(C) is a

real-valued function that reflects the amount of resources used to annotate all instances of concept C. These resources

could include the amount of time and money spent on developing or training an annotator for c, or the computational

resources and time to run the annotator over the collection.

Given keyword query Q, a query system returns a ranked list of documents, where the documents that are deemed

to be more relevant to the information need behind Q reside at the top of the list. In this chapter, we consider queries

that explicitly or implicitly refer to a named entity that belongs to a concept in our ontology. Users may refer to

different named entities by the same name in their queries. For instance, users may use term Lincoln to refer to both

Lincoln Square and Abraham Lincoln. Queries that contain such terms are ambiguous and will benefit from concept

annotation and extraction. In this chapter, we focus on such queries. To answer queries over an annotated collection,

the query system will determine which concept matches the user’s information need, for each of the entities referred

to in the queries. In other words, the query system will annotate the queries.

A query system may use other types of disambiguation when answering a query. For instance, a query system

may use entity resolution techniques to handle different ways of referring to the same named entity. These types of

disambiguation are not the subject of this chapter.

8.3 Modeling the Benefit of Concepts

8.3.1 Basic Model

The probability ranking principle (PRP) is a widely accepted principle for ranking documents [109, 139]. PRP says

that a retrieval system is optimal, i.e., delivers the highest utility for its users, when it ranks documents in decreasing

order of their probability of relevance to the query. We used the classical version of PRP, which assumes that the

probabilities are computed correctly and there are no dependencies between documents [109], in previous chapters

and we also use it here.

Each entry in the relevance information for a given query consists of a documentD and the judgmentR of whether

D is relevant to a particular queryQ. R is 0 for non-relevant documents and 1 for relevant documents. The probability

that D is relevant to Q is P (R = 1 | D,Q), thus, a keyword query system ranks the document in the collection
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according to P (R = 1 | D,Q). For brevity, we abbreviate R = 1 to R and R = 0 to R̄. The effectiveness of a query

interface depends on how well it estimates the probability P (R | D,Q). How to estimate this probability is beyond

the scope of this chapter; our approach works with any reasonable estimate of this probability.

As discussed in above, users may use the same query to refer to named entities that belong to different concepts.

Since probability P (R | D,Q) does not contain any information regarding the concepts behind queries, it will not

precisely reflect the relevance of documents to queries in these settings. To include this information, we rewrite the

probability of relevance for document D to query Q which refers to concept C as:

P (R | D,Q)P (C|D,Q), (8.1)

where P (C|D,Q) is the probability that D and Q contain information about the named entities of concept C.

If we annotate the named entities in conceptC in documents and queries, without any error, the value ofP (C|D,Q)

will be 1 iff the named entities referred to in Q and D belong to the same concepts. However, we would like to esti-

mate the effectiveness of a ranker over a collection where the named entities of concept C have not been annotated or

organized. In other words, the query interface is not aware of the concepts referred to in D and Q.

It has been well established that most information needs over annotated and organized collections are precision-

oriented [36, 23, 7]. Thus, we model the amount of improvement in the ranking quality of the query interface over

a set of queries over an annotated and organized collection. We choose precision at k (P@k), which is an standard

metric for ranking quality of the results of queries, as the objective function in our model [96]. The value of P@k

for query Q is the number of relevant answers in the top k answers returned by the query interface for Q, divided by

k. We use P@k because it accurately reflects a user’s experience. Users usually look at only the very top answers

in keyword search. Thus, in empirical studies the value of k is normally small, e.g., 5 or 10. When the value of k is

sufficiently small, our results will be independent of the value of k chosen for the P@k metric.

Given a query workload Q, we compute the expectation of P@k as:

E[P@k] =
∑

C∈C,Q∈Q
u(C,Q)

1

k

∑
K
P (R | D,Q)P (C|D,Q)×R, (8.2)

where C is the ontology, u(C,Q) is the probability that query Q refers to entities of concept C in Q, K is the set of

top k documents returned by the query interface, and R is equal to one.

Probability P (R | D,Q) models the relevance of D and Q given features and evidence which are not related

to the concepts of the named entities in Q and D. This evidence may be traditional TF-IDF features or features

learned from the query log [96]. Since we focus on ambiguous queries, it is reasonable to assume that there are at

least a relatively small number of documents that have large and almost equal values for P (R | D,Q). Otherwise,
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annotations about the concepts referred to in queries or documents may not be needed, as other features can identify

the relevant documents for Q. Thus, since the value of k is normally very small, we can assume that for all documents

in K:

P (R | D,Q) ≈ p.

We rewrite formula 8.2 as:

E[P@k] =
∑

C∈C,Q∈Q
u(C,Q)

1

k

∑
K
pP (C|D,Q)

= p
∑

C∈C,Q∈Q
u(C,Q)

1

k

∑
K
P (C|D,Q).

Since the query answering system does not have any information regarding the concepts in documents, it is reason-

able to assume that it randomly picks documents that contain information about the various concepts corresponding to

the named entity mentioned in Q. We estimate the value of P (C|D,Q) as d(C), which is the probability of randomly

selecting a document that contains information about the named entity from concept C. We rewrite the expected value

of P@k accordingly as:

E[P@k] = p
∑

C∈C,Q∈Q
u(C,Q)

1

k

∑
K
d(C) (8.3)

= p
∑

C∈C,Q∈Q
u(C,Q)d(C)

= p
∑
C∈C

d(C)
∑
Q∈Q

u(C,Q)

= p
∑
C∈C

u(C)d(C).

Assume that we annotate all entities of concepts in set S ⊆ C in the collection and the queries in Q. The query

interface will answer the annotated and unannotated keyword queries differently. If a query is annotated with concepts

in S, since the query interface knows the documents that contain information about these concepts, it will process the

query over only these documents. We can rewrite equation 8.2 for annotated queries as:

E[P@k] =
∑

C∈S,Q∈Q
u(C,Q)

1

k

∑
K
P (R | D,Q)× 1× 1 (8.4)

=
∑

C∈S,Q∈Q
u(C,Q)

1

k

∑
K
p

= p
∑
C∈S

u(C)
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For queries that are not annotated, we have:

E[P@k] =
∑

C/∈S,Q∈Q

u(C,Q)
1

k

∑
K
P (R | D,Q)P ′(C|D,Q)× 1

=
∑

C∈S,Q∈Q
u(C,Q)

1

k

∑
K
pP ′(C|D,Q)

= p
∑
C∈S

u(C,Q)
1

k

∑
K
pP ′(C|D,Q),

where P ′(C|D,Q) is the probability of selecting a document that contains information about concept C /∈ S . Since

text documents are coherent, they do not usually contain information about named entities with the same name but

from different and mutually exclusive concepts. For instance, it is very unlikely to find a document that contains

information about both Jaguar the vehicle and Jaguar the animal. Therefore, we assume that if a document contains

information about the desired entity of a query, it will not contain any information about other entities with the same

name but from other concepts.

Since the concepts in S and the concepts that are not in S are mutually exclusive, the query system can ignore

documents that match the named entity mentioned in the query if their value of P (R|D,Q) is relatively large, but their

matched named entities are annotated as instances of concepts of S. Hence, we estimate the value of P ′(C|D,Q) as

the probability of randomly selecting a document that contains information about the entity mentioned in Q, which

belongs to C, from the set of all documents that match the entity in Q and refer to concepts that are not in S, i.e., are

not annotated instances. Thus, we have:

P ′(C|D,Q) ≈ d(C)∑
C/∈S d(C)

.

Therefore, the expectation of P@k over both annotated and unannotated queries and documents is:

E[P@k] = p(
∑
C∈S

u(C) +

∑
C/∈S u(C)d(C)∑

C/∈S d(C)
). (8.5)

Our goal is to explore the improvement in the expected value of P@k for annotations of different sets of concepts and

queries, and find the annotation that delivers the largest improvement. Since the value of p does not change across

annotations of different sets of concepts, we ignore it in our analyses and algorithms.

Definition 8.3.1. Given ontology C, collection L, query workload Q, and a set of concepts S ⊆ C, the annotation

benefit of S is:

AB(S) =
∑
C∈S

u(C) +

∑
C/∈S u(C)d(C)∑

C/∈S d(C)
. (8.6)
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The value of an annotation benefit reflects the improvement in the expected value of P@k achieved by annotating

all instances of concepts in set S ⊆ C.

One of the main questions about the extraction is when it is helpful to annotate documents for a concept. The

following proposition states that annotation always increases the expected value of precision at k, under the assumption

that annotation is error-free.

Proposition 8.3.2. The annotation benefit for any non-empty set of concepts, S 6= ∅, is greater than the annotation

benefit for an empty set of concepts.

Proof. In formula (8.4 ) (ignoring p), the value of u(C),C ∈ S is always multiplied by a number less than 1. However,

in formula (8.6), the same value is multiplied by 1. For concepts C ′ /∈ S, the value of their multipliers in formula (8.6)

is greater than the value of their multipliers in formula (8.4). Hence, we have AB(S) > AB(∅)

8.3.2 Errors in Annotating

Annotators generally make mistakes in finding the concepts in the text of documents in a collection. We should con-

sider these errors to provide a realistic estimate of the impact of annotation on the effectiveness of queries. For every

C ∈ S, let |C|, TP (C), and FP (C) denote the total number of instances, the number of true positive annotations, and

the number of false positive annotations for concept C in the collection, respectively. If the query system correctly

detects the desired concept behind query Q whose entity belongs to C, then the probability of finding the desired

entity for Q in the annotated instances of C is:

TP (C)

|C|
× TP (C)

TP (C) + FP (C)
+ (1− TP (C)

|C|
)× 0. (8.7)

The recall of the annotation of concept C, denoted as r(C), is T−P (C)
|C| . Similarly, p(C) denotes the precision of the

annotation for concept C, which is TP (C)
TP (C)+FP (C) . We rewrite formula (8.7) based on the value of recall and precision

of C as r(C)× p(C). Hence, the annotation benefit for the annotated concepts will be
∑
C∈S u(C)r(C)p(C).

Since the annotation processes for the concepts in S might not identify and annotate all instances of these concepts,

some of these instances end up in the unannotated collection. We denote the probability of having such instances in

the collection as fn(S). Similarly, the annotation programs for the concepts in S might mistakenly include some

entities that belong to concepts such as C ′ /∈ S in the annotated collection. The probability of having these instances
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in the collection is fp(C ′). Considering these factors, we rewrite formula (8.6) as:

AB(S) =
∑
C∈S

u(C)r(C)p(C) +

∑
C/∈S u(C)d(C)fp(C)∑
C/∈S d(C) + fn(S)

. (8.8)

The value of fn(S) is:

fn(S) =
∑
C∈S

(1− r(C))d(C).

The process of entity annotation and extraction is generally noisy but informative, and the recall values for annotation

are relatively large [38]. Each collection may contain instances of a large number of concepts, but the available

annotation programs can cover a limited number of such concepts. In other words, the value of
∑
C/∈S d(C) is larger

than
∑
C∈S d(C). Therefore, the value of fn(S) is generally very much smaller than the value of

∑
C/∈S d(C). In

order to simplify the model, we ignore the fn(S) in our model.

The portion of mistakenly annotated instances of concept C ∈ S is (1 − p(C))d(C), and its total value for all

concepts in S is
∑
C∈S(1− p(C))d(C). It is reasonable to assume that the portion of these instances whose concept

is C ′ /∈ S is:

d(C ′)
∑
C∈S

(1− p(C))d(C).

Thus, we have:

fp(C ′) = 1−
∑
C∈S

(1− p(C))d(C).

Using a similar argument as for fn(S), we ignore the value of fp(C) in our model.

8.4 The Optimal Concept Annotation Problem

Since the resources available to develop, maintain, and execute concept annotators are limited, our goal is to find a set

of concepts S such that annotating them in the queries and collection will maximize the annotation benefit. We define

the cost of annotation for concept C ∈ C to reflect the amount of resources spent on annotating instances of concept

C in the collection. Let a fixed number B > 0 denote the amount of resources available to perform the annotation.

Annotating a set of concepts S is feasible if
∑
C∈S w(C) ≤ B. We formally define the problem of optimal concept

annotation as follows:

Problem 8.4.1. Given a collection of concepts C, where each concept has cost of annotation w(C), precision p(C),

and recall r(C), we aim to annotate a set of concepts S ⊂ C such that the value of annotation benefit AB(S) is

maximized, subject to the constraint that
∑
C∈S w ≤ B, B > 0,
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The obvious first step toward a solution for the optimal concept annotation problem is to adopt a greedy solution,

i.e., pick the concepts with the largest value of u(C). However, the following example shows this idea is misleading.

Example 8.4.2. Consider three concepts C1, C2, C3 with perfect precision and recall and the following u and d

values:

C1 C2 C3

u 0.5 0.4 0.1

d 0.8 0.15 0.05

Although C1 has both greater u and d value, annotating C2 is more helpful.

E1 = 0.5 +
1

1− 0.8
(0.4× 0.15 + 0.1× 0.05)

= 0.825

By annotating concept C3, the value of the annotation benefit becomes:

E2 = 0.4 +
1

1− 0.15
(0.5× 0.8 + 0.1× 0.15)

= 0.876

The justification could be that the order of d for C2 and C3 is the same. Nevertheless, C1 has considerably higher d

than the other two. After extracting C1, C2 and C3 would still be indistinguishable, while annotating C2 helps C1 to

be easily accessible as well.

8.4.1 NP Hardness

We prove that the optimal concept annotation problem is NP-hard by a reduction from an NP-complete variant of the

partition problem [81]:

Problem 8.4.3. Given 2m positive integers a1, . . . , a2m that sum up to 2A, such that A
m+1 <ak <

A
m−1 , 1 ≤ k ≤ 2m,

decide whether there exists an index set K such that
∑
k∈K ak = A holds.

Theorem 8.4.4. Problem 8.4.3 is reducible to the optimal concept annotation problem in polynomial time.

Proof. Given an instance of problem 8.4.3, we construct an instance of the optimal concept annotation problem with

2m concepts, where for each concept Ci ∈ C, 1 ≤ i ≤ 2m, wi = ui = ai, di = 1, and B = A. Let S be the

desired answer to our optimal concept annotation problem instance and S =
∑
Ci∈S ui. Since the budget limit for our

instance is A and wi = ui = ai, we have S ≤ A. Since for all uis, we have ui > A
m+1 , then |S| ≤ m, where |S| is the
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size of set S. We can write the objective function of our optimal concept annotation problem instance as AB(S) =

S + 2A−S
2m−|S| . Since AB(S) is an increasing function of S and |S|, it obtains its maximum value when S = A and

|S| = m. Since we have A
m+1 < ui = ai <

A
m−1 , given

∑
C∈S u = A, we have |S| = m. Hence, this solution is a

feasible one for the instance of the optimal concept annotation problem. This implies that the instance of the partition

problem will have a solution iff the corresponding instance of the optimal concept annotation problem has a solution

of value A(1 + 1/m).

Since problem 8.4.3 is NP-complete, the optimal concept annotation problem is NP-hard.

8.4.2 Special Cases

It is helpful to get a sense of the optimal solution by examining some special cases. In this section, we consider

the case where all concepts have equal cost of annotation, and have perfect precision and recall. We propose exact

algorithms for some of these cases. Since all concepts have equal annotation costs, the goal is to find the m concepts

whose annotations will maximize the value of the annotation benefit over the collection.

One of the cases that might occur is the situation where a user accesses different concepts with equal likelihood.

In this setting, the following proposition holds.

Proposition 8.4.5. Given the values of u(C) are equal for all C ∈ C, annotating any set of concepts of size m will

maximize the annotation benefit value.

Proof. Let u(C) = p, C ∈ C, where p is a fixed constant. Before annotation, the value of the annotation benefit is:

AB =
∑
C∈C

u(C)d(C) = p
∑
C∈C

d(C) = p.

After annotating an arbitrary set S of concepts, the value of the annotation benefit will be equal to:

AB(S) =
∑
C∈S

u(C) +

∑
C/∈S

u(C)d(C)∑
C/∈S

d(C)

= mp+
p∑

C/∈S

d(C)

∑
C/∈S

d(C)

= (m+ 1)p.
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This means that in this case, the annotation benefit depends only on the number of annotated concepts, m. We can

justify this fact by considering two effects of extraction on the annotation benefit. When concept C is annotated, it

helps in answering the queries whose entities belong to C. Furthermore, after annotating entities of concept C, we

will increase the value of d(C ′) for all concepts C ′ ∈ C, C ′ 6= C. If d(C) is large, the most of the benefit of the

annotation comes from helping other concepts. If d(C) is low, the amount of benefit we get out of annotation is due

to the improvement in the effectiveness of queries whose entities belong to concept C.

Another case of interest is when the values of d are the same for all concepts in C. This means that all concepts

have the same number of instances in the collection.

Proposition 8.4.6. Given that the values of d(C) are equal for all C ∈ C, choosingm concepts with the largest values

of u provides the maximum annotation benefit.

Proof. Let d(C) = p, C ∈ C, where p is a fixed constant. Before annotation, the value of the annotation benefit is:

AB =
∑
C∈C

u(C)d(C) = p.

After annotating an arbitrary set S of concepts, the value of the annotation benefit will be equal to:

AB(S) =
∑
C∈S

u(C) +

∑
C/∈S

u(C)d(C)∑
C/∈S

d(C)

=
∑
C∈S

u(C) +
p

1−mp
∑
C/∈S

u(C)

= u(S) +
p

1−mp
(1− u(S))

= u(S)(1− p

1−mp
) +

p

1−mp
.

So, the greater u(S) is, the greater annotation benefit we get. If we want to annotate a set of concepts S of size m

from C to maximize the annotation benefit, we should choose the concepts with the m highest u values.

8.4.3 Choosing Between Two Concepts

Now, we examine carefully how the annotation benefit behaves in the general case, without any assumption regarding

u(C) and d(C), when the cost of annotation is the same for all concepts and we are only allowed to anotate one
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concept. By annotating documents with the concept Cs, we have:

AB(Cs) = u(Cs) +
∑
C 6=Cs

u(C)d′(C)

= u(Cs) +
1

1− d(Cs)
×

∑
C 6=Cs

u(C)d(C)

= u(Cs) +
M − u(Cs)d(Cs)

1− d(Cs)

= M ×
1− u(Cs)

M d(Cs)

1− d(Cs)
+ u(Cs)

where M =
∑
C∈C u(C)d(C). Hence, we can state:

Proposition 8.4.7. For two concepts C1 and C2 in C, where d(C1) = d(C2) = p and u(C1) > u(C2), annotating C1

is more beneficial than annotating C2.

Proof. The annotation benefit of C1 is

AB(C1) = u(C1)

+
1

1− p
(

∑
C/∈{C1,C2}

u(C)d(C) + u(C2)d(C2)),

and for the concept C2 is:

ABC2 = u(C2)

+
1

1− p
(

∑
C/∈{C1,C2}

u(C)d(C) + u(C1)d(C1))

So, by letting A =
∑

C/∈{C1,C2}

u(C)d(C), we can write AB(C1)−AB(C2) as the following:

AB(C1)−AB(C2) = u(C1) +
1

1− p
(A+ u(C2)p)

− u(C2)− 1

1− p
(A+ u(C1)p)

= u(C1)(1− p

1− p
)− u(C2)(1− p

1− p
)

= u(C1)− u(C2))(
1− 2p

1− p
)

> 0
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Proposition 8.4.8. For two concepts C1 and C2 where u(C1) = u(C2) = p and d(C1) > d(C2), depending on the

value of M , one of the following cases holds:

• p ≤M . AB(C1) ≥ AB(C2).

• p ≥M . AB(C1) ≤ AB(C2).

Proof. The annotation benefit of C1 is

AB(C1) = p+
1

1− d(C2)
(

∑
C/∈{C1,C2}

u(C)d(C) + pd(C2)),

and for the concept C2 is:

ABC2 = p+
1

1− d(C1)
(

∑
C/∈{C1,C2}

u(C)d(C) + pd(C1)).

So, by letting A =
∑

C/∈{C1,C2}

u(C)d(C), we can write AB(C1)−AB(C2) as:

AB(C1)−AB(C2) = p+
1

1− d(C1)
(A+ d(C2)p)

− p− 1

1− d(C2)
(A+ d(C1)p)

=
1

(1− d(C1))(1− d(C2))
× {A(d(C1)

− d(C2)) + p(d(C2)− d(C1) + d(C1)2 − d(C2)2)}

=
d(C1)− d(C2)

(1− d(C1))(1− d(C2))

× (A+ p(d(C1) + d(C2))− p)

=
d(C1)− d(C2)

(1− d(C1))(1− d(C2))
× (M − p)

So, AB(C1) > AB(C2) iff M > p.

We observe an unintuitive result here, because we expect that a higher u value always guarantees a greater anno-

tation benefit. Consider this example:

Example 8.4.9. Assume three different concepts {C1, C2, C3} with the following u and d values. The goal is to

annotate documents of a concept to get the highest annotation benefit.
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C1 C2 C3

u 0.2 0.4 0.4

d 0.3 0.3 0.4

At first look, one may consider C3 to be the best choice, since both its u and d are dominant. But this is not correct,

and we need to examine it more carefully. The annotation benefit C2 is:

AB(C2) = 0.4 +
1

1− 0.3
(0.2× 0.3 + 0.4× 0.4)

= 0.4 +
0.22

0.7

> 0.4 + 0.3 = 0.7

By extracting concept C3, the value of the expected precision at k becomes,

AB(C3) = 0.4 +
1

1− 0.4
(0.2× 0.3 + 0.4× 0.3)

= 0.4 +
0.18

0.6

= 0.4 + 0.3 = 0.7

This holds because the current initial value of expected precision at k, M , is 0.2 × 0.3 + 0.4 × 0.3 + 0.4 × 0.4 =

0.32 < u(C2) = u(C2) = 0.4. In fact, it can be derived from Proposition 8.4.7.

8.5 Efficient Algorithms

8.5.1 Largest-U Greedy Algorithm

One greedy algorithm we can apply to solve the optimal annotation problem is Largest-U (LU) greedy. LU sorts

concepts in non-increasing order of their u values, and checks them one by one. For each concept Ci, if by picking

Ci the total cost of the selected concepts does not exceed B, it picks Ci and proceeds to the next concept; otherwise,

it omits Ci and goes on to the next concept. We can show that LU has a reasonable approximation ratio for some

variants of the problem.

Theorem 8.5.1. The LU algorithm is an approximation for the optimal concept annotation problem with ratio wmin

wmax
×

B
B+wmin

.

Proof. We use the method of Gal et al. [48] to analyze the algorithm. Let wmax and wmin be respectively the

maximum and minimum value of wi, i ≤ n. It is clear that LU at least picks the B
wmax

concepts with largest u. On the
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other hand, the optimal solution cannot pick more than B
wmin

concepts of C. If the optimal solution picks l concepts,

we will have l + 1 terms in the annotation benefit formula (l for extracted concepts and one for the mixed one). The

total benefit of these terms is less than the sum of the l + 1 largest values of u. Since the annotation benefit of the

output of LU is more than the sum of B
wmax

, the concepts with the largest value of u, AB(SLU ) >
B

wmax
B

wmin
+1

OPT =

wmin

wmax
× B

B+wmin
OPT.

Corollary 8.5.2. For the case that the annotation cost of all concepts is equal, LU is an B
B+1 -approximation algorithm.

Furthermore, we can show that the obtained ratio for LU in Theorem 8.5.1 is sharp. Consider the following

example, similar to Gal et al. [48]. A set C of n+ 1 concepts with the following ui and di is given:

• ui = 1− (i− 1)ε, 1 ≤ i ≤ n; un+1 = 0,

• di = (1− ε− ε2)/(m− 1), 1 ≤ i ≤ n− 1; dn = ε2; dn+1 = ε,

Here, ε is a small positive number. We set wi equal to one for all concepts in C. For B = n, the value of LU is close

to n, while the optimal solution that selects concepts C2, · · · , Cn achieves a benefit of about n+ 1.

8.5.2 Ratio Greedy Algorithm

Consider the following greedy algorithm for the optimal concept annotation problem. Pick concepts according to the

ratio ri = ui

wi
, from the largest to the smallest. If rm is the first place where the total cost of the selected concepts

exceeds the budget B, we compare the annotation benefit of the set {r1, · · · , rm−1} to the concept with maximum

value of u, umax, and return the set with greater annotation benefit. We call this algorithm Largest Ratio (LR) greedy.

Remark. The algorithm does not really stop at the first place that the total cost of the selected concepts exceeds

the budget. It proceeds with the concepts until it traverses all concepts.

Theorem 8.5.3. LR is a 1
3 -approximation algorithm for the annotation benefit optimization problem.

Proof. After annotating documents of l concepts, we have two types of concepts: extracted and mixed. By extracted

concepts, we mean the set of concepts we have selected. The phrase mixed concepts refers to the set of concepts

that remain after removing the selected concepts. We have two types of benefits; one is related to extracted concepts

and the other is obtained by the mixed part. Suppose Cm is the first concept that LR cannot pick. It is clear that

the benefit of the extracted part is less than
∑m
i=1 ui, and we know that in all cases, the benefit of the mixed part is

less than umax. So,
∑m−1
i=1 ui + um + umax > OPT. Since um < umax,

∑m−1
i=1 ui + 2umax > OPT. Hence,

max(
∑m−1
i=1 ui, umax) > 1

3OPT. This shows that LR is a 1
3 -approximation algorithm.

We are required to sort the concepts by their ratio; then we can pick the concepts by traversing them in linear time.

Thus the running time of LR is O(n log n), where n is the number of concepts.
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T1 T2
u M1, · · · ,Mr m1, · · · ,ms

d D1, · · · , Dr d1, · · · , ds
w W1, · · · ,Wr w1, · · · , ws

Table 8.1: The example for the worst case approximation ratio of LR

Furthermore, we can show that the worst case approximation ratio of LR is no more than 1/2. Consider a set of

concepts C = {C1, . . . , Cm+1} such that u1 = d1 = w1 = m and for all i > 1, ui = 1 − ε and di = wi = 1.

LR will pick C1 and its benefit is m + 1 − ε. But the optimal solution can be obtained by picking C2, . . . , Cm+1,

giving m(2 − ε). By choosing m to be arbitrarily large, the approximation ratio of the LR algorithm is 1/2. We

can generalize this case as follows. Given the input concepts that are partitioned in mutually exclusive sets T1 and

T2 as shown in Table 8.1, let B =
∑
i≤rWi =

∑
j≤s wj and mj/wj > Mi/Wi for j ≤ s, i ≤ r. Furthermore,

mj �Mi for j ≤ s, i ≤ r. Thus, we have: r � s. LR picks concepts of type T1 for this example, and its annotation

benefit is r ×M +m. We obtain the annotation benefit of about s×m+M by annotating concepts of type T2. The

approximation ration of this example is (r×M +m)/(s×m+M) ≈ r/(r+ 1) +m/((r+ 1)M) ≈ r/(r+ 1). By

setting r to a sufficiently small value, the approximation ratio of LR becomes sufficiently small.

8.5.3 Psuedo-polynomial Time Algorithm

In this section, we present a pseudo-polynomial time algorithm for the optimal benefit annotation problem. An al-

gorithm is pseudo-polynomial if its running time is polynomial in the size of the unary encoding of the input. Our

algorithm takes advantage of the dynamic programming method for the 0-1 knapsack problem. Without loss of gener-

ality, we assume that u(Ci) and d(Ci) are positive integers for all concepts. We introduce a two-variable function

to solve the problem. We define function f(D, CS) as follows:

f(D, CS) =
1

D
× (D

∑
Ci∈CS

u(Ci) +
∑
Ci /∈CS

u(Ci)d(Ci))

For a set of concepts CS such that
∑
Ci /∈CS d(Ci) ≤ D, f(D, CS) ≤ AB(CS). We define the domain of f to be the set

of concepts C such that
∑
di /∈C d(Ci) ≤ D. For a fixed value ofD, f is a separable function. Thus it is straightforward

to maximize f for a fixed D. The following lemma shows that the maximum value of f() over all possible values of

D is the same as the maximum value of AB().

Lemma 8.5.4. The maximum value of function f() on its domain and AB() on all possible sets is the same.

Proof. Suppose that functionAB() obtains its maximum value at CS∗ . LetD∗ =
∑
C∈CS∗ d(Ci). Then, f(D∗, CS∗) =

AB(CS∗). Thus, maxD,C f(D, C) ≥ maxC AB(C). For the other direction, we know that f(D, C) ≤ AB(C) for all
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C in the domain of f() with respect to D. This implies that maxD,C f(D, C) ≤ maxC AB(C).

So, maxD,C f(D, C) = maxC AB(C). It also implies that the set C that achieves the maximum value of AB

obtains the maximum value of f with proper choice of D, as well.

For maximizing function f we can apply dynamic programming. Let Vinit(D) =
∑
i≤n u(Ci)d(Ci)/D be the

value of function f before annotating any concept (CS = ∅). We can rewrite the formulation of f as

f(D, CS) =
∑
Ci∈CS

v(Ci) + Vinit,

where v(Ci) = u(Ci)(1 − d(Ci)/D). In our algorithm we should take care of two constraints,
∑
Ci∈S d(Ci) ≥

Dtotal −D and
∑
Ci∈S w(Ci) ≤ B, where Dtotal =

∑
i≤n d(Ci).

We define M [i, P,X] to be the minimum required cost we should pay to obtain a benefit of at least P of f(D, C),

with respect to constraint
∑
Ci∈S d(Ci) > D′, by using conceptsC1, . . . , Ci. For a fixed value ofD, we can introduce

a recursive definition of M [i, P,X] as follows:

1. M [0, P, 0] = 0 for all P ≤ Vinit(D)

2. M [0, P,X] =∞ if X > 0 or P > Vinit(D)

3. M [i, P,X] = min(M [i− 1, P,X],

M [i− 1, P − v(Ci), X − d(Ci)] + w(Ci))

Then we need to traverse M [n, P,Dtotal −D] to find the maximum value of P such that M [n, P,Dtotal −D] ≤ B.

The running time of the dynamic program for a fixed D is O(nV D), where V is the maximum possible benefit.

Thus the overall running time (considering all possible values of D) is O(nPD2
total). This algorithm will be signifi-

cantly faster than the brute force algorithm when the number of concepts is relatively large. The optimal answer to the

optimal concept annotation problem will remain the same if we scale the costs and budget limit. Therefore, we can

rescale these values to improve the running time of the pseudo-polynomial algorithm.

8.6 Experiments

8.6.1 Experiment Setting

We used INEX-2009 and INEX-2010 adhoc track data sets, query workloads, and query assessments to evaluate the

quality of our algorithms [52, 51]. These benchmarks use a semantically annotated version of the Wikipedia collection

[43], which is 50.7 GB and contains 2,666,190 articles. The semantically annotated version of the Wikipedia collection
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Query ID Original Query ID Query Query with Annotated Concepts
1 2009002 best movie best award:movie
2 2009036 notting hill film actors movie:notting movie:hill film actors
3 2009042 sun java company:sun java
4 2009055 european union expansion economy:european economy:union expansion
5 2009066 folk metal groups finland music genre:folk music genre:metal groups country:finland
6 2009069 singer in Britain’s got talent singer in series:Britain’s got series:talent
7 2009074 web ranking scoring algorithm invention:web ranking scoring algorithm
8 2009089 world wide web history invention:world invention:wide invention:web history
9 2009110 paul is dead hoax theory person:paul is theory:dead hoax theory
10 2009113 Toy Story Buzz Lightyear 3D rendering Computer Generated Imagery movie:Toy movie:Story series:Buzz series:Lightyear 3D rendering Computer Generated Imagery
11 2010003 monuments of india monuments of country:india
12 2010027 paul auster person:paul person:auster
13 2010033 collapse of housing bubble usa collapse of agency:housing bubble country:usa
14 2010045 messi argentine person:messi country:argentine
15 2010050 novels that won booker prize novels that won award:booker award:prize
16 2010054 indian railways company:indian company:railways
17 2010056 cold war cold conflict:war
18 2010075 volcanic ash cloud flight disruption volcanic ash cloud accident:flight disruption

Table 8.2: Selected queries from the INEX-2009 and INEX-2010 query workloads

uses a schema based on the concepts from WordNet, from wordnet.princeton.edu. The query workload consists of

keyword queries.

To evaluate our algorithms, we should identify the concepts behind the query terms in keyword queries. We

observed that the terms in most queries appear in more than one concept in the relevant documents. In order to

simplify our evaluation, we annotated each query term with its dominant concept in the relevant document, and

created an annotated version for each keyword query. Since our focus is on a set of mutually exclusive concepts, we

picked the queries whose concepts are mutually exclusive. It is well established that the effectiveness of some queries

do not improve by semantic annotation [112]. For instance,, if the terms in a query not do appear in any concept

in the relevant results for a query, the query will not benefit from annotation. We compared the ranking quality of

the queries over annotated and unannotated versions of Wikipedia collection, and selected only those queries whose

ranking qualities have improved. Tables 8.2 shows the selected keyword queries and their corresponding annotated

versions. Some terms in these queries appear very rarely and do not appear in any concept in the relevant answers,

thus, we did not annotate these terms and submitted them to the collection as free text.

We indexed the annotated and unannotated versions of Wikipedia collection using the Lucene inverted index

(lucene.apache.org), and used the Lucene ranker to rank the queries over the collection. We performed our experiments

on a Linux server with 24 GB of main memory and two quad core processors.

8.6.2 Experimental Results

Figures 8.4 and 8.3 show the probability distributions of concepts over query workloads u(C) and the complete

Wikipedia collection d(C), respectively. We do not show the concepts that do not appear in query workloads, as they

do not have any impact in our analysis. Since the number of concepts in the query workloads is very much smaller than

the number of concepts in the collection, the probability values for the concepts over the query workloads are generally

larger than the probability values of the concepts over the collections. We observe that the probability distribution on

the collection does not reflect the probability distribution on the query workload.
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Figure 8.3: Probability distribution of concepts over Wikipedia collection

Figure 8.4: Probability distribution of concepts over used queries

Figure 8.5: Probability distribution of concepts over 50 randomly selected queries

We also randomly selected 50 queries from INEX 2009 and INEX 2010 query workloads to explore the difference

between the probabilities of concepts over the collection and query workload. Figures 8.5 shows that probability

distribution of concepts over the selected 50 queries. We see that the top two dominant concepts, person and country,

in the collection and query workloads are the same. However, this is not true in general. For instance, concept award

is more frequent in the query workload than many other concepts, but has a smaller probability than many of those
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Figure 8.6: MAP of queries with perfect precision and recall in annotation

Figure 8.7: MAP of queries with precision and recall values of 0.9 in annotation

Figure 8.8: MAP of queries with precision and recall values of 0.8 in annotation

concepts in the collection. This is because there are queries in the query workloads about awards and people who won

awards. Interestingly, there are not as many documents about these awards in the collection. Hence, it is not generally

optimal to rely only on the collection statistics to determine the popularity of the concepts and their benefits for users.

We observed that semantic annotation improves the precision of top-K answers of different queries at different

values ofK. For instance, the value of P@5 for query volcanic ash cloud flight disruption increased from 0.60 to 0.80,
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but the value of P@10 and P@20 stayed the same for this query. On the other hand, the value of P@5 remained the

same for query cold war, but its P@10 and P@20 improved from .30 to 0.50 after semantic annotation. Thus, we used

the average precision metric in our experiment, which measures the improvement in ranking over all possible position

[96]. We measured the amount of improvement for the query workload using Mean Average Precision (MAP) [96].

We used the macro model from [24] to introduce error into the annotation of our concepts in the collection. Given

the overall values for recall and precision of the annotation process for all concepts, this model computes the most

probable false positives and false negatives in annotating the concepts in the collection. We updated the Lucene index

by adding and/or removing new annotations, based on the model for different overall values of recall and precision for

the annotation. We also computed the new value for precision and recall of each concept after updating the index. We

tried different values for overall precision and recall from 0.80 to 1.0, which are reasonable values for precision and

recall of current annotators.

The larger the value of d(C) is for concept C, the more computational power we need to annotate instances of

C. Similarly, we need more resources to develop a more precise annotator for a concept. Hence, we set the cost of

annotating a concept C as d(C)× r(C)× p(C) in our experiments.

We used the ratio-greedy and pseudo polynomial algorithms to select concepts in our experiments. The average

running time of the ratio-greedy and pseudo polynomial algorithms over different values of the budget limit were 13.6

and 824.7 milliseconds.

Figures 8.6, 8.7, and 8.8 show the improvement in the value of MAP for different values of the budget limit

and annotation recall/precision for queries, after annotating the output concepts of LR and pseudo polynomial (PS)

algorithms. We have also tried annotating all possible subsets of concepts whose costs do not exceed the value of

the given budget limit, and report the largest resulting value of MAP from annotating one of these subsets as optimal

(OPT).

Generally, for large values of the budget limit, all three algorithms retrieve almost the same set of concepts. This

is because all algorithms have high flexibility to choose the desired concepts. For small values of the budget limit, the

LR algorithm provides the lowest value for MAP as it returns a different set of concepts than the optimal algorithm.

This difference is greater when the algorithm does not have sufficient resources. Since almost all u() values are small

and close to each other, ratio-greedy works generally well. We observed that in the cases that the LR algorithm does

not work well, it has ignored some of the concepts with high u() values such as company. This is the inherent problem

with the LR algorithm. Sometime it is better to consider some concepts with high u() values as well. The pseudo

polynomial algorithm returns a more effective set of concepts and provides a very close MAP value to the optimal

solution. As the values of precision and recall for annotation degrade, the amount of improvement for all algorithms

reduces. The order of the effectiveness of the algorithms remains almost the same over all levels of precision and
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recall.
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Chapter 9

Conclusions

9.1 Concluding Remarks

In this dissertation, we analyzed the effectiveness, efficiency, flexibility, and cost-benefit tradeoffs for keyword query

answering approaches over large scale databases. We showed that when these query systems are based on ad hoc

heuristics, they are not able to satisfy users’ information needs and expectations. We set forth a series of novel,

formal, and rigorous frameworks to model these requirements and developed new query answering approaches that

satisfy these models. We showed the validity of our models and the usability of our query answering approaches

through extensive user studies over real-world large-scale data sets and query workloads. We summarize the main

contributions of this dissertation as follows:

• We proposed coherency ranking, a new ranking method for keyword search over semi-structured data that ranks

candidate answers based on statistical measures of their cohesiveness. Coherency ranks are determined during

a one-time precomputation phase that exploits the structure of the data set. For each type of subtree in the data

set, the precomputation phase computes its normalized total correlation (NTC), a new statistical measure of

the tightness of its relationship. NTC is invariant under equivalence-preserving schema transformations, thus

avoiding overreliance on shallow structural details. As it is too expensive to compute NTCs for all subtrees of an

XML data set, we developed approximation and optimization methods to make precomputation affordable. For

query answering, we extended the SA algorithm to rank candidate answers based on the precomputed NTCs.

For user-supplied queries over two real-world data sets, coherency ranking showed considerable improvements

in precision, mean average precision and recall, compared to six previously proposed methods.

• We addressed a new challenge for keyword queries over semi-structured data: how to provide high-quality,

well-ranked query answers when the data is highly structured but also contains long text fields such as paper

abstracts or movie plot lines. Previous approaches to semi-structured keyword search do not rank query answers

well for such databases. We proposed an approach to measure the correlation between both short and long text

fields in such data sets, based on the new concept of normalized term presence correlation (NTPC). After a
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one-time computation of NTPCs, candidate answers for all subsequent queries are quickly ranked, based on the

NTPC of their structure. We performed a user study to evaluate the effectiveness of an NTPC-based keyword

query system for data-oriented XML with and without long text fields. The study showed that the NTPC-based

approach works as well as NTC for data sets without long fields, and performs better than any previous approach

for data sets that include long fields.

• We introduced a highly desirable property for keyword queries, called design independence. We formalized this

property and analyzed and compared the design independence of current keyword search and schema free query

interfaces. We differentiated between design independence and weak design independence; the latter allows

for data duplication and denormalization. We showed analytically and empirically that among current methods,

only CR, our approach based on NTC, is design independent. Since CR is not weakly design independent, we

provided a novel weakly design independent method, DA-CR. Our empirical studies showed that the average

case design independence of other methods is lower than CR’s, which in turn is lower than DA-CR’s when the

new DB design affects data redundancy. Finally, we found that the ranking quality of DA-CR is generally at

least as good as that of CR.

• We introduced the novel problem of predicting the effectiveness of keyword queries over databases. We set forth

a principled framework and proposed novel algorithms to measure the degree of the difficulty of a potentially

underspecified query over a database, using the ranking robustness principle. Our extensive experiments show

that the algorithms predict the difficulty of a query with relatively low error and negligible time overhead.

• We introduced SLM, a novel formal model for answering keyword queries over structured data effectively. We

rigorously justified SLM based on the probability ranking principle, which is a widely accepted principle for

ranking in search systems effectively. We used principles and heuristics in statistics and information retrieval

to compute the parameters of the model when little or no training data is available. Due to its principled

foundations, SLM does not require extensive manual training and will be reasonably effective over all types of

structured data sets and query workloads given sufficient information. We performed extensive experimental

studies using standard benchmarks, real query logs, and real-world data sets and showed that SLM provides

more effective ranking that other keyword query ranking methods over structured data.

• Imposing additional structure on a data set can improve the effectiveness of keyword queries, but requires

significant resources. We proposed a novel formal model for analyzing the cost-benefit tradeoff of adding more

structure to a data set. Our model shows that current perceptions about the impact of additional structure on the

effectiveness of queries are not generally true. We proposed novel and efficient optimization algorithms to find

the optimal organization for a data set, given the costs and budget for data organization.
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9.2 Future Directions

We plan to extend our research results in the following directions.

Value-aware Information Management: Given finite resources, a value-aware approach can tell us where to

concentrate our efforts to give the most value for the effort and/or money. We plan to expand our current work on

value-aware data organization to encompass all stages in the life cycle of information management systems, from

information acquisition and data cleaning to data integration.

Social Information Communication Paradigms: Users dynamically generate a great deal of unstructured infor-

mation on social platforms. The handful of more structured operations that are popular, such as the like operation in

Facebook and the # tag in Twitter, have had a huge impact on those platforms, because the information created by

these operations is much easier to explore, analyze, and aggregate than pure text. This suggests that the introduction

of additional structured operations can potentially bring great benefits as well, to users at large but perhaps also in

specific domains such as scientific collaborations. However, a more structured communication paradigm must have

compelling benefits and be extremely easy to use, or users will not adopt it. We are interested in determining what

these structured operations could be. Such a platform can also be very beneficial for crowd sourced data processing

and management.

Integrated Search, Analysis, and Decision Making: The models and systems for search, analysis, and decision

making are not usually integrated. Information about the decision spaces could help search and analysis systems to

satisfy users’ needs. For instance, knowing that the motivation behind searching for a product is to buy a set of related

products, a search interface can provide a much more useful ranking for queries over a product data set. By making

search interfaces more expressive, users can use search interfaces to perform complex data analysis tasks, such as What

were the hot topics in operating systems 10 years ago and how have they evolved? We are interested in developing

models, algorithms, and systems that unify these elements.

Reliable Data Search and Exploration: One aspect of the value of the data is its trustworthiness. Not all

information sources and data sets are equally trustworthy. For instance, many Web sites contain inaccurate and invalid

information and many scientific data sets contain noisy and unreliable data. We are interested in principled models and

systems to determine the trustworthiness of information and provide both effective and reliable search and exploration

results.
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