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ABSTRACT

This thesis builds on the recently begun extensfaontinuum thermomechanics to fractal
media which are specified by a fractional massisgahw of the resolution length scdke
The focus is onpre-fractal media(i.e., those with lower and upper cut-offs) thrbug
renormalization analysis into continuum modelswimich the fractal dimensioB is also
the order of fractional integrals employed to s@itehal balance laws. While the original
formulation was based on a Riesz measure—and tlows swited to isotropic media - the
new model is based on a product measure capalilesafibing local material anisotropy.
Other choices of calculus on fractals are discusgate the product measure shows great
simplicity. This formulation allows one to graspethnisotropy of fractal dimensions on a
mesoscale and the ensuing lack of symmetry of thely stress. Two continuum models of
fractal media are formulated: classical continua amcropolar continua, according to
symmetric and asymmetric Cauchy stress. Finallg tkciprocity, uniqueness and

variational theorems are proved for developmermtpgroximate numerical solutions.
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CHAPTER 1: INTRODUCTION

1.1 Motivation

Fractals date back to research by Hausdorff ancc®dsh on monster sets over a hundred
years ago, and then to the seminal work of Mandelfit]. He was then followed by
physicists and mathematicians. The first categoag wrimarily comprise of condensed
matter physicists who focused on the effects oftélageometries of materials on bulk
responses [2]. A number of specialized models halse been developed to particular
problems like wave scattering at fractals [3], comagtional mechanics [4], fracture
mechanics [5-7], or geomechanics [8]. While in reggears mathematicians began to look
at partial differential equations starting with lage's or heat equation on fractal sets
[9-10], an analogue of continuum physics and meiclsastill needs to be developed, which
motivates the present thesis research.

A new step relying on renormalization analysis waeen by Tarasov [11-12], who
developed continuum-type equations of conservatiomass, momentum and energy for
fractal porous media, and on that basis studiedraéviuid mechanics and wave motion
problems. In principle, one can then map a meckamicblem of a fractal onto a problem
in the Euclidean space in which this fractal is edded, while having to deal with
coefficients explicitly involving fractal dimensidd and resolution lengtR. As it turns out,

D is also the order of fractional integrals employedtate global balance laws. This has

very interesting ramifications for formulating contum-type mechanics of fractal media,



which needs to be further explored. The great pserstems from the fact that much of the
framework of continuum mechanics/physics may beegdized and partial differential
equations may still be employed [13-14]. Prior egsh has already involved an extension
to continuum thermomechanics and fracture mechaaigeneralization of extremum and
variational principles, and turbulent flows in ftalcporous media [15-18].

Whereas the original formulation of Tarasov waseldasn the Riesz measure— and
thus more suited to isotropic media— the model psed in this thesis is based on a
product measure that grasps the anisotropy of drag¢ometry (i.e., different fractal
dimensions in different directions) on mesoscaleicty, in turn, leads to asymmetry of the
Cauchy stress. This leads to a framework of midaspmechanics of fractal media to be

examined in this thesis.

1.2 Thesisoutline
In the subsequent chapters, we conduct the stutlieifollowing sequence:

(a) In Chapter 2 we formulate local fractional integrtd reflect materials’ fractal mass
scaling and study calculus formulas of fractiom&grals and derivatives.

(b) Chapter 3 extends continuum models to fractal médka study two continuum
models: classical continua and micropolar contindale to symmetric or
asymmetric Cauchy stress.

(c) Chapter 4 conducts mathematical analysis of fortedlapartial differential
equations on fractal media. We prove the solutiolgueness and their variational

structures.



CHAPTER 2: FRACTAL PRODUCT MEASURE AND
CALCULUS

2.1 Mass power law and fractal product measure

By a fractal solid we understand a mediuBn having a fractal geometric structure. The
mass of the mediumm obeys a power law with respect to the length saale
measuremerR (or resolution)

m(R = kR, D<3, (2.1)
where D is the fractal dimension of mass, aikd is a proportionally constant. We note
that in practice a fractional power law relation1{2is widely recognized and can be
determined in experiments by a log-log plot wf and R [19]. Now, following Tarasov
[11], the fractional integral is employed to renetsmass in a three-dimensional regidh

mW) = [ p(r)dy, = [ A(r) ¢( D ) dV. (2.2)
Here the first and the second equality involve tica@l integrals and conventional
integrals, respectively. The coefficiemt(D,r) provides a transformation between the two.

Using Riesz fractional integrals,(D,r) reads the form

_POr312) o _ [y
c3(D,r)——r(D/2) R i:l(xi) . (2.3)

Note that c,(D,r) above solely depends on the scalar distancevhich in turn confines
the formulations to isotropic fractals. However,ganeral the medium exhibits different
fractal dimensions along different directions -isitanisotropic! A practical example is

given in Carpinteri [6], where the porous concrsteucture is investigated and they



suggested representing the specimen as a Sierpasget in cross-section and in the
longitudinal axis a Cantor set.
This consideration leads us to replace (2.1) byoeergeneral power law relation with
respect to each spatial coordinate
m(x, %, %)~ £ % £ (2.4)
In order to account for such anisotropies the fomel integral representing mass
distribution is specified via a product measure
m(x, %, %)= [[[204 % %) d( P 9 g4 3. (2.5)
Here the length measuremediy, (xK) in each coordinate is provided by
du (%) =q9(a. %) d%, k=1,2,Z (2.6)
Generally, the fractal dimension is not necessatlily sum of each projected fractal
dimension, while as noted by Falconer [20], “Margctals encountered in practice are not
actually products, but are product-like.” It follewhat the volume coefficient, is given
by
¢ =ddid=n ¢, @7
For the surface coefficient, we typically consider a cubic volume element, veheach
surface element is specified by the correspondorgnal vector (along axig, j, ork , see

Fig. 2.1). Therefore, the coefficierd! associated with surfac& is shown to be:

é“:@@ﬁ:é%,iijmwijik (2.8)
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Fig. 2.1: Constructing coefficients, and c, via product measures.

The expressions of length coefficient§” depend on forms of specific fractional
integrals. We adopt a modified Riemann-Liouvilladtional integral recently formulated
by Jumarie [21-22]. It follows that

¥ =a.(, -x)*" k=122 (2.9)
where |, is the total length (integral interval) along axxs. Let us examine it in two
special cases:

1. Uniform mass: The mass is distributed uniforinlg cubic regionW with a power law

relation (2.4). Denoting the mass density jpy and the cubic length by, we obtain
m(W) = p, 2 721% = p |*92*% = p | P, (2.10)
Which is consistent with the mass power law (2.1).
2. Point mass: The distribution of mass is conegatt at one point, so that the mass
density is denoted by the Dirac functign(x, X,, %) = mo( %)o( %)o( %). The fractional
integral representing mass becomes
m(W) = a,a,a, P 1% my=a g o I°°m,. (2.12)

When D - 3(a,,0,.0, - 1), m(W) - nj and the conventional concept of point mass is



recovered [23]. Note that using the Riesz fractiontegral will always give zero@®?)
except whenD =3 (if let 0° =1), which on the other hand shows a non-smoothitians
of the mass with respect to its fractal dimensibhis also supports our choice of the
non-Riesz type expressions faf in (2.9).

Note that the above expressiai’ shows a length dimension and thus the masswill
involve a nonusual physical dimension followingrfraghe fractional integral (2.5). This is
understandable since in mathematics a fractal condg exhibits finite measure with
respect to a fractal dimensional length unit [1]hil¥ practically we prefer to adopt usual
dimensions of physical quantities. An alternate wiy address this issue is to
nondimensionize coefficients . Here we suggest replacin@, —x,) by (I, —x)/l, in

(2.9) (, is acharacteristic scale, e.g. the mean pora@es.si

2.2 Fractional calculus and someintegral theorems
At this point we recall two basic integral theoremdensively employed in continuum
mechanics: the Gauss theorem which relates a mertdiime integral to the integral over
its bounding surface, and the Reynold’s transgwotem concerning the rate of change of
any volume integral for a continuous medium. In fbiéowing, we derive their fractional
generalizations and, moreover, introduce a dedinitf fractal derivatives, which together
provide a stepping-stone to construct a continuwgnltranics in the setting of fractals.

The derivation of a fractional Gauss theorem islagms to Tarasov's [12]
dimensional regularization, albeit formulated ire tframework of product measures

discussed above. First, let us recall the surfaisgial in a fractal medium:



fl=1 f = : 2.12
S[f]=[ frhdg=| fnds (2.12)
Here f = f.e, is any vector field andi=ne, is the unit normal vector of the surface.

The Einstein’s summation convention is assumeardier to compute (2.12), we relate the
integral elementndS, to its conventional formsidS via fractal surface coefficients
c, ), dY. Note that, by definition, any infinitesimal suwéa elementdS, in the
integrand can be regarded as a plane (aligned arlatrary direction with normal vector
f). Since the coefficientx!”'s are built on coordinate planedx; x's, we consider their
projections onto each coordinate plane. The pregeptanesndS can then be specified
by coefficients c{’'s and this totally provides a representation of ifegral element

ndS, (see Fig. 2.2). Thus, we have:

Ld f hdS, = Lz f¢9pds. (2.13)

Integral element  #d5;

mdSy; — of'nds,
ndSy = ol lnds,

My, Cgklnkdgz

Fig. 2.2: Arepresentation of the fractional inegglementndS, under product measures.



Now, following the conventional Gauss theorem, \wé g
[,fcnds=[( &), dv. (2.14)
Note that from the expression (2.8} is independent of the variablg . And we write

(2.14) in the fractional form
[,fnds=[ (1), ¢dyg=[ & ¢ dy= IW ¥ dy=[ 0% Jf dy. (2.15)

This equation is a fractional generalization of @&uss theorem. Here and after we use the

notation of fractal derivativell,; with respect to the coordinatg,

1 0
oP=———(0). 2.16
k C_{k) a)ﬂ( (D] ( )
The definition of 07 is similar to Tarasov's [12] [{; =c¢;*(c,[J, ). But our form is

simplified for product measures. We now examineghpsroperties of the operatat; .

1. It is the “inverse” operator of fractional intats. Since for any functionf (x) we have

1 d 1
PIfX)duP (N =——— | f de—— = 2.17
S Jre9du (g = 10 e ol UxO)= € @)

and

1 df(x)

JO2f00du® (% = j{ —

}(&d jdf(x)d {x (218

For this reason we namg; a “fractal derivative” (so as to distinguish itofn the
fractional derivatives already in existence).

2. The rule of “term-by-term” differentiation istesied

DE(AB)z——(AB)_$¥ B+q—]|:)%(—i) A= B ( A+ R2( B, (2.19)

whereby note that this is invalid in Tarasov’s [bh2}ation.

3. Its operation on any constant is zero.




0F (C) :——):o. (2.20)

Here we recall that the usual fractional derivaijRéemann-Liouville) of a constant does
not equal zero neither in fractional calculus [2&]r in Tarasov [12] formulation.

This fractional calculus can be generalized toaecalculus in fractal space and it is
found that the four fundamental identities of tlmentional vector calculus still holds
[25], a great promise from the product measure.t®she fractional generalization of
Reynold’s transport theorem, we follow the line aafnventional continuum mechanics

distinguishing between the reference and deforroedigurations

%deVD :%I% PJd\g’:wadt( P) d}?:jw(Edt ps Bl }1 v

dt
d

:I%[—PDJ+ POy, Jj d\ = INO(% P+ kaj Jdy

dt
= [[SPePoufav = [S P Rys miy oy
dt ' ot ’
=IM(£F’+(PVK) jd\é-
ot k
(2.21)
Here P is any quantity accompanied by a moving mateyatesn W, v=v,e, is the
velocity field, and J is the Jacobian of the transformation from theemirconfiguration

X, to the referential configuratiorX, . Note that the result is identical to its convendl

representation. The fractal material time derivats/thus the same

(EJ p=9p-9pipy. (2.22)
dt /), dt ot ’
While we note that the alternate form of fractiofynold’s transport theorem which

involves surface integrals is different from theneentional and rather complicated. This is

because the fractal volume coefficieaf depends on all coordinateg's (not like c{



that is independent ok, when deriving fractional Gauss theorem). Contigum (2.22),

the formulation follows as

Ldev {N( P+( Py) jd\g L%— de+[N( RY, €V
= [P+ [ ([(Py), s, ay=[ = pay+[ ([ Ry, sodknsg
= [ =pdv+ [ (Pys-TPre dd( ®)" nds
- L%PdVD +[, Peynds-[ (] A& va)nds.

(2.23)

2.3 Discussions of calculuson fractals
The above formulations provide one choice of caiswn fractals, i.e. through fractional
product integrals (2.5) to reflect the mass scdling (2.4) of fractal media. The advantage
is that it is connected with conventional calculu®ugh coefficientsc, ~ ¢, and therefore
well suited for development of continuum mecharsing partial differential equations on
fractal media as we shall see in the next chapesides, the product formulation allows a
decoupling of coordinate variables, which profoynsimplifies the Gauss theorem (2.15)
and many results thereafter. Now we investigaterotnoices of calculus on fractals to
complement the proposed formulation.

To begin with, we define a mapping“ : L - m(L) that maps the lengthto its mass
m in fractal media with fractal dimensior (0<a <1). The mass scaling law (2.4)

requires thdractality property of P*

P? (bL)= i P(1), 0<bs<1 (2.24)

10



Note that the proposed fractional integral (2.5)ne way to reflect this property. Now
in an analogue of developing integrals on the lieal we decompose the fractal media into
pieces and “combine” them together to recover thele: But the fractality property does
not allow a direct Riemann sum of each piece. [lstilate this, considering a fractal with

lengthL and fractal dimensiorr (0<a <1), it follows that

oL L)_P'(D), P(D
P (Ej-'- P"(EJ_T+T¢ P (D (2.25)

We define an operatoN® on P? satisfying thecombinationproperty:
P (L) =A% (PP (L), P" ()., P" (1)), ,>0, =L (2.26)
=
Let m=P'(D, b =1 /L. Following the fractality property (2.24), we have
m=A"(fmy -, B, 0<b|s1,ip:1 (2.27)
=
A straightforward choice ofA® is an analogue of thenorm in L* space:

A (Py Poree ) =+ BT+ ri’”)a{il lﬁ"’}a (2.28)

In the limit n — o, (2.28) induces another choice &f" :

a la a
P (L)=m=(jL[p(>o] d>§ (2.29)
wherem is the mass of fractal media with lendttand fractal dimensionr (0<a <1),
and p(x) is the local mass density. (2.29) is consisteth Wie fractality property (2.24).
A generalization to 3D fractals follows similarlgrough product formulations. While we

note that (2.29) cannot be transformed to conveatibnear integrals through coefficients

C, ~ ¢; and the corresponding Gauss theorem is much noonglated.

The combination operator (2.28) suggests one wayio up global forms based on

11



established local formulations. To this end, weenibiat the proposed product measure is
suitable for local properties of fractal media. Tdgiebal formulation requires a nonlinear

assembly of local forms through (2.28). To writéoitmally:

P :[ J'(dP")WT (2.30)

It is challenging to obtain analytical forms of lgéd formulations. While we note that
the discrete form can be easier formulated indimitement implementations, where the
assembly of elements is replaced by (2.30). Inftlewing we shall discuss continuum
mechanics based on the proposed local fractionegjial (2.5). The assembly procedure

and finite element implementations are not purguetier beyond this point.

12



CHAPTER 3: CONTINUUM MODELSOF
FRACTAL MEDIA

In Chapter 2 we have discussed fractional integualder product measures and thereby
generalized some basic integral theorems. Now weeed to develop a framework of
continuum mechanics in fractal setting. We willmfadate the field equations analogous to

those in continuum mechanics but based on fradtiategrals.

3.1 Classical continuum models

Note that the notions of continuum mechanics relygeometry configurations of the body.
We shall first examine some physical concepts afthitions on account of the fractal
geometry.

Let us recall the formula of fractal mass (2.2) ebhexpresses the mass power law via
fractional integrals. From a homogenization stamulpihis allows an interpretation of the
fractal (intrinsically discontinuous) medium as antnuum and a ‘fractal metric’
embedded in the equivalent ‘homogenized’ continmiodel, saying that

d,=cdx dS=¢dS dy= ,cd\ (3.1)
Here dl, dS, ,d\, represent the line, surface, volume element infthetal body and
dx, dS, dV¥ denote those in the homogenized model, see Fily. The coefficients

C. G, ¢, provide the relation between the two.

13
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Fig. 3.1: An illustration of the homogenization pess from geometry configurations.

The definitions of stress and strain must be mediticcordingly. The Cauchy stress is
now specified to express the surface foég via fractional integrals
= Lwamnld% = _[,WUM n¢ ds. (3.2)
As to the configuration of strain, we recommendréplace all the spatial derivatives
d/0x, with fractal derivativesl]; introduced in Section 3. This can be understood by

observing from (3.1) that

== (3.3)

For small deformation, the expression of straifréctal solids thus gives

1 1
( q ﬂ q) [C_{l (l lJJI J (34)

Note that the stress-strain pairs must be conjuigate the viewpoint of energy. We
shall examine the consistency of these definitiamsr when deriving wave equations in

the next section. Now, let us consider the baldaweof linear momentum in fractal solids.

14



This gives
d — B S
avadVD =F8+FS, (3.5)
where v =v,e, denotes the velocity vector, arfe’, F° are the body and surface forces,
respectively. Writing the equation (3.5) in indicietation and expressing forces in terms
of fractional integrals, we obtain
d
a_[NkadVD = _[N fd\, + _LWUM ndsg. (3.6)
On observation of fractional Gauss’ theorem (24drf) Reynold’s transport theorem (2.23),

this gives
Lp[%j v dV, = [ (f+070y)dy,. (3.7)
D

Here the operators of fractal derivativé; and material derivativ{%j are employed,
D

which are specified in (2.16) and (2.22), respetyiviNote that the regioW is arbitrary.

On account of (3.7), we obtain the balance equatidocal form

d
p(aj v = f+ 070y (3-8)
D

The specification of constitutive equations invalv@ore arguments in physics. We
recommend keeping the relations of stress andnsivaile modifying their definitions in
fractal setting. This is understood in that thectmh geometry solely influences our
configurations of some physical quantities (likeess and strain) while it takes no effect on
physical laws (like the conservation principlesgd @onstitutive relations that are inherently
due to material properties). We note that thisifjastion is verified in [26] where the scale
effects of material strength are discussed by thetdl argument of stress definitions and

confirmed in experiments of both brittle and plastiaterials.

15



Now, we consider a specific example: linear elastieds with small deformation. The
constitutive equations take linear forms as usual
0; =g, 0; +2U¢, (3.9)

ij !
where A and y are material parameters (Lame constantg), and & are fractal
stress and strain defined in (3.2) and (3.4), retspy.

Under small displacements, the linearization gdsstrequations (3.8) gives

0%y,

ok f +0Po,, (3.10)

Yo,

where u=u,e, is the displacement field. Note that (3.4), (3a®) (3.10) constitute a

complete set of equations describing the problewleing boundary conditions).

3.2 Micropolar continuum models

Analogous to the classical continuum mechanicst fire specify the surface forcé® in
terms of the Cauchy stress tensorvia fractional integrals
To=[ onds. (3.11)
The conservation of linear and angular momentufreictal media can be written as
d
S L2V = [ X+ [ oy pdg (3.12)
and
d _
aLpeh‘k)ﬁ\(d\é__[Nﬁ ?(%(dy"'_[,wij@jnl—klngs (3.13)
Here v denotes the velocity anXl is the body force densitgj is the permutation tensor.
On account of the fractional Gauss theorem (2atf) Reynold's transport theorem (2,23)

we obtain the balance equations of linear and angunbmentum in local form:

d
p(aj Vi = X + 070, (3.14)
D

16



and
& —y = O (3.15)

In general, ¢ # ¢ meaning that the medium exhibits anisotropic fledimensions,
thus making the Cauchy stress tensor asymmetoig+0,,. This can be physically
understood by noting that fractal media displayetetogeneous fine structure at arbitrarily
small scales, also note [27]—this is incorporateth iour formulations by coefficients
C,.C,, G as functions of anisotropic fractal dimensions.dytrast, in classical continuum
mechanics material microstructures are ignored; kbading to a symmetric Cauchy stress.
The micropolar continuum model, which treats itemmstructures as rigid bodies instead of
continuous points [28,29], captures the asymmeitr@anichy stress in a simplest possible
way, and thereby furnishes a good candidate to hicxizal media.

Focusing now on physical fractals (so-called peetls), we consider a body that obeys
a fractal mass power law (2.4) between the lowet apper cutoffs. The choice of the
continuum approximation is specified by the resoluR. Choosing the upper cut-off, we
arrive at thdractal representative volume eleméR\VE) involves a region up to the upper
cutoff L, which is mapped onto a homogenized continuum efenm the whole body. The
micropolar point homogenizes the very fine micnostures into a rigid body (with 6 degrees
of freedom) at the lower cutofff. The two-level homogenization processes are ittt in

Fig. 3.2.

17
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Fig. 3.2: lllustration of the two-level homogenipat processes: fractal effects are present
between the resolutiomsndL in a fractal RVE.

To determine the inertia tensor at any micropolaing) we consider a rigid particje
having volume elememR. Its angular momentum gives
O, = J'P(x-xA)xv(x,t)p(x)dVD (3.16)
Sincep is a rigid body, following [23] v(x,t) is a helicoidal vector field, i.e.
V(X 1) = V(X4 1) o x(X-X,) (3.17)

where ® is the rotational velocity vector. Substituting1(3) into (3.16) we obtain

18



o, = L(x =X )X V(X o, 1) o(X)dV,

(3.18)
+ L(x -X,) x[c) x(x - XA):I,O(X)dVD

The first term above gives angular momentum astatiavith translational motion,
while the second term refers to rotational motiofollows that the mapping
J.: o L(X—XA)x[mX(x—xA)]p(x)dVD (3.19)
is a linear operator representing the inertial dered P with respect to poinA. If Ais the

origin A=0 fixed in P, we have
Jo(u)v = jp,o(x)[XX(u xx) |vdV,
= .[P 0(x) [|x|2 u—(x m)x} vdV, (3.20)
= L 0(X) [|x|2 uly-(xm)(x D/)] dv, = J,(v) M
This shows that the mappin(gJ,v) — J,(u)[¥ has a bilinear symmetric form, from

which we obtain each component of the inertial ¢en, as I, :(Jo)ij =J.(e)l& or

effectively,

L :(Jo)n :fpp

IXIZ—XZ]d\é, b =(3),= [ oxx dy i | (3.21)

In the development of micropolar continuum mechsinee introduce a couple-stress
tensor p and a rotation vectop augmenting, respectively, the Cauchy stress temsor
(thus denoted so as to distinguish it from the sgtnim 6 ) and the deformation vectar.
The surface force and surface couple in the fras#ting can be specified by fractional

integrals of t and p, respectively, as
T = .[)w nnds, M= J;W,Um ndg. (3.22)
Now, proceeding in a fashion similar as before,améve at the balance equations of

linear and angular momentum

19



p(aj v =X +077, (3.23)
D

l; (%)ij =Y +0Pu +g % (3.24)
In the above, X; is the external body force density, is the body force couple, while
V. (=U) and w (=¢ ) are deformation and rotation velocities, respebtive
Let us now consider the conservation of energyas the following form

%fw(u+k)d\/[,:fw()§y+ YW dy+ [ (v my g (3.25)
where k:(1/2)(pvi\(+ L vyvy) is the kinetic energy density anddenotes the internal
energy density. (Note here that, just like in cartianal continuum mechanics, the balance
equations of linear momentum (3.28)d angular momentum (3.2dan be consistently
derived from the invariance of energy (3.2bjth respect to rigid body translations
(V =V +b, w— w and rotations \, — V + €, X« , W— W+ ), respectively.) Next,

we want to obtain the expression for the rate a@inge of internal energy, and so we start

I, wv[ v olal,

= [+ YW+ (1, vt ] v,

with

dy

(3.26)

which yields the local form

[%]Dqup\/i[%]DHle[gdt]DW =(XVH YWV (5 viy W (357

In view of (3.23)and (3.24)and noting the "term by term" rule dVIP, we find

+ 14 V. W (3.28)

d
[a] U=r; [VDV %l Cl

Here and after we consider small deformations, eivee have(d/dt)D u=1u. ltis
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now convenient to define the strain tensgr and the curvature tensot; in fractal

media as
V U —&; C_|(_J)’ K =VPp. (3.29)

so that the energy balance (3.28) can be written as
U= 7575 + 5 (3.30)
Assumingu to be a state function ofy; and ; only, leads to

rp=d = (3.31)
8'in 8’%

which shows that, in the fractal setting,; (y; ) and (z;, x; ) are still conjugate pairs.

ji?
We choose to keep the form of constitutive relaiadnile modifying the definitions of
stress and strain to the fractal setting. Thisoissistent with [26], where scale effects of
material strength and stress (i) are discussed thenstandpoint of fractal geometry rather
than mechanical laws, and (ii) are confirmed byegkpents. Thus, focusing on elastic
materials, we have
Tjj 1k| 'Yk| +C}1f<|3)’?<l v M= QJ;<(I3)% + %2)’% . (3.32)

Equations (3.23), (3.24), (3.29), and (3.32) caousi a complete set of equations

describing the initial-boundary value problemsractal media.
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CHAPTER 4: ANALYSISOF PARTIAL
DIFFERENTIAL EQUATIONS

In this chapter we consider some theoretical isselased to the analysis of these equations.
First, we prove the unigueness theorem following],[8vhere the uniqueness was proved
without any definiteness assumptions on the materaaluli. First a reciprocity relation is
established involving two elastic processes aethffit instants, on which the uniqueness
theorem is subsequently built. We also establistatranal principles starting from balance
equations. The consistency verifies our entire fdation. These results are useful in

theoretical developments, such as uniquenessl|istadnd approximate solutions.

4.1 Reciprocity and uniqueness theorem

To establish the reciprocity relation, we considevo external loading systems
L :{X‘”),Y("),t("),m(")}, resulting in S { @ o ,y“’),x("),r(”),u(")} on the
same material bodya(=1, 2). The reciprocity shows

Theorem 1. (Reciprocity relation) Let

E,(r,s)= L [t ) (2)()(’5)+ fﬁl) X I‘¢(2) g] ds
+ [ [ X200 r)u® (x,9)+ YO (x, )¢ (x, 9] dy (4.1)
= L[ o™ (%, r)u® (%, 9) + L 89 (x.1) ¢ @(x.9)] dY .

Then
E,(r,s)=E,(s 1 (4.2)

Proof. Let
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Jp(r9) =1 (N (D + 4 (NKP (9 (a,.8=12). (4.3)
Substituting constitutive equations (3.32) int@j4ve have

Jop(1.9) = Gl (Y (9+ QIR (059(9

+CR AT (MK + K7 (K9 .
Note that the constitutive coefficient€’ satisfy symmetry relationsC{{’ = Gi
(m=1~3). It follows that J,(r,s)= J,; (s ). On the other hand, on account of the

"term by term" property of the operatCW'jD and in view of (3.23), (3.24) and (3.29), we

have

25009 =00 [17 (D47 (9447 (D47 (3]+ X2 (9P (3+ ¥ 19 (3
—[puf‘” (r)u® (s)+ ! ¢,-(”) (r)g® (s)]
Using the fractional Gauss theorem and (3.22) e f{N Js(r,s) d\, = E4(r 9,

which implies (4.2).] ]
As a consequence we have:
Corollary. Let
P(r,s)= [ [ X(Du(9+ YOI (3] dy+ [ [y s+ i) O g 44)

Then

%.[N(puiq+lij¢l¢i)d\6 :,g[P(t_SH' 3- Rt st )# ds

+ [ {plaou©@+g©u @)+ | [4 @8 ©Or¢ ©f @)} dy 7
Proof. From (4.2) we have
[Eftrst-9ds [ E(t st » d (4.6)
In view of (4.1) and (4.4) we find
[Eattrst-9ds [ R st pds wr

- [ [Leu (9 u(t-9+ g (v 94 (& 3] ay o
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and

J;En(t—s,t+s) ds=J'; Pt st pds

(4.8)
[ LLAu (=9 (e 9+ 48 (- 94 (= 3] dy o
Note that by “integration in part”
[fa+90(t-9 d= 121 g0)- (3 d)}+[ (+ g+ )b d o

[o(t-9 f(t+9 ds gX (X-¢0) 2} [ ¢t 5 €+t 5 d
Combining (4.6) ~ (4.9) we obtain (4.5).
Now we have the uniqueness theorem:

Theorem 2. (Uniqueness) Assume that (p is strictly positive and (ii)I; is positive
definite. Then the initial-boundary value problefdioear micropolar elastodynamics for

fractal media has at most one solution.
Proof. Suppose we have two solutions, then their diffeee{ﬁ,ﬁ} is a solution
corresponding to zero loads and initial-boundanyditions. From (4.5) we have
[ (ouT+ 1,88 ) dy =o0.
Adopting the assumptions (i) and (ii), we firid =0 and @ =0, implying that the two

solutions must be equaD

4.2 Variational principles
As to the variational principles, we consider ayedth displacementsu, and rotations
¢, plus virtual motionséu, and ¢, . In view of the balance equations (3.23) and (8.24

we have

[L(x-pu)au+(y- 14 )04 ] dy +I{Eﬁ°fn Jiu{u@ P )64 gv=0.
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Using the “integration by parts” and the fractio@auss theorem in the second term above,
we obtain

[,[(x—pt)au+(y-|4)o8 ] ay

(4.10)
+ Lw[tia'ui +mag |dg = [ [7,0% +4 o | dy.

Note that the right hand side denotes the variafideternal energydW with respect to

virtual motions, so that we set up the virtual wprlciple

[L(xi=pu)au+(y- 14 )04 ] ay

+ [ [tou +mag]ds = w @1y
The equation (4.11) can be written as
SL- [ [puoy+1,8,3 |dy =W, (4.12)
where
oL=[[Xdy+Yap] dy + [ [Wu+ ndg] ds (4.13)

refers to the external virtual work. Integratingl®) over time interval[tl, tz]
5fwat= fJLdt— f ot [ pus u+ |¢,09 | dy (4.14)

Introducing the variance of kinetic energy,

o o _ o, )
5K :pruiéq dy, +fw L4 86 dY _pra( 5 ) dé/—prilﬁi 0y
0. .
+fvv Iij 5(90;590. )dVD _fw |ij G o dV\
and integrating it also oveft,,t,], and noting thatsu,,6¢, vanish att=t, and t=t,,

we find

5 t:det:—j:Zdth[p'L](ﬁq—i— |4 60 ] d¥ (4.15)

In view of (4.14) and (4.15), we finally obtain iational principles generalized to

micropolar fractal media
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o["(W-K)dt= ["oLadt (4.16)
If the external forces are conservative and deflevelom a potentialV , this shows
5(*(N-K)dt=0 (4.17)

where II =W —V denotes the total potential energy.
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CHAPTER 5: CONCLUSIONS

Our approach builds on, but modifies, Tarasov'sr@ggh in that it admits an arbitrary
anisotropic structure. This involves, in the fifghace, a specification of geometry of
continua via 'fractal metric' coefficients, whidheh allows a construction of continuum
mechanics of fractal solids. The anisotropy of tthgeometry on the mesoscale leads to
the asymmetry of the Cauchy stress and to the agpea of the couple stress, i.e., to a
fractal micropolar continuum. In the situations whéhe resolutiom falls outside thel[ L]
interval of Fig. 3.2 or when the surface and volunaetal dimensionsd(andD) become
conventional integers (2 and 3), all the newly et equations revert back to the
well-known forms of conventional continuum mechareé non-fractal media.

The proposed methodology broadens the applicalofigontinuum mechanics/physics
to studies of material responses. The highly comgtactal-type media which have, so far,
been the domain of condensed matter physics, gsahgnd biophysics, etc. (multiscale
polycrystals, cracked materials, polymer clustgeds, rock systems, percolating networks,
nervous systems, pulmonary systems, ...) will becapen to studies conventionally
reserved for smooth materials. This will allow smos of initial-boundary value problems

of very complex, multiscale materials of both @taand inelastic type.
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