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Abstract

For my thesis, I have worked on two projects: modeling parasite dynamics (Chapter 2) and

complementary dimensionality analysis (Chapter 3).

In the first project, we study a longitudinal data of infection with the parasite Giardia

lamblia among children in Kenya. Understanding the infection and recovery rate from para-

sitic infections is valuable for public health planning. Two challenges in modeling these rates

are (1) infection status is only observed at discrete times even though infection and recovery

take place in continuous time and (2) detectability of infection is imperfect. We address these

issues through a Bayesian hierarchical model based on a random effects Weibull distribution.

The model incorporates heterogeneity of the infection and recovery rate among individuals

and allows for imperfect detectability. We estimate the model by a Markov chain Monte

Carlo algorithm with data augmentation. We present simulation studies and an application

to an infection study about the parasite Giardia lamblia among children in Kenya.

The second project focuses on supervised dimension reduction. The goal of supervised

dimension reduction (SDR) is to find a compact yet informative representation of the original

data space via some transformation. Most SDR algorithms are formulated as an optimization

problem with the objective being a linear function of the second order statistics of the

data. However, such an objective function tends to overemphasize those directions already

achieving large between-class distances yet making little improvement over the classification

accuracy. To address this issue, we introduce two objective functions, which are directly

linked to the classification accuracy, then present an algorithm that sequentially solves the

nonlinear objective functions.
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Chapter 1

Introduction

1.1 Introduction to Modeling Parasite Dynamics

Longitudinal studies play an important role in many areas, such as psychology and sociology.

In this thesis, we focus on a longitudinal study of Giardia lamblia descried by Chunge (1989).

Giardia lamblia, an intestinal parasite, is the most common cause of parasitic gastrointestinal

disease and is especially prevalence in young children. The background information on this

parasite can be found in Svärd et al. (1998), Hetsko et al. (1998), Warrell et al. (2003), and

Huang and White (2006). In the study, eighty-four children were chosen and the stools of

children were examined for the presence of Giardia every week. The weekly testing result of

each child was recorded as 1 if the parasite was found and 0 if the parasite was not found.

Understanding the infection and recovery rate from parasitic infections is valuable for

public health planning. There are three main challenges in modeling this type of data.

First, the disease is often imperfectly detected due to imperfect diagnostic instruments and

procedures. Therefore, the recorded data may not be consistent with the real infected

status. Second, the transition rates may change over time. For example, it is possible

that an individual may have high immunity shortly after the clearance of an infection but

the immunity wanes over time. Third, there is evidence that individuals are heterogeneous

in their infection probabilities and dynamics for many parasitic diseases (Woolhouse et al.,

1997). Such realistic situations complicate the study of malaria dynamics.

In the literature, many methods have been proposed to deal with this type of data. For

example, Bekessy et al. (1976) proposed a first-order Markov model to study the dynam-
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ics of malaria in Garki, Nigeria, without considering the above three issues. Nagelkerke

et al. (1990) generalized Bekessy’s model to the situation with imperfect detectability. Ng

and Cook (1997) introduced a mixed continuous-time two-state process that accommodates

the heterogeneity among individuals by the bivariate log-normal distribution. Cook (1999)

adopted the exponential survival function with random effects to deal with heterogeneity

among individuals. Smith and Vounatsou (2003) and Rosychuk et al. (2009) developed a

hidden two-state Markov model with imperfect detectability. Crespi et al. (2005) developed

Markov and semi-Markov models describing recurrence and time-inhomogeneous transition

rates.

However, none of these methods considers all the three issues together. Thus, in this

project, we aim to address the non-homogeneous transition rates, imperfect detectability

and heterogeneity between individuals simultaneously. We propose a Bayesian hierarchical

model based on a random effects Weibull distribution. The key steps are that we introduce

a latent process to denote the true parasite dynamics and further model the latent process

as a non-Markov continuous stochastic process. To estimate the parameters in such a model,

we propose a Markov chain Monte Carlo algorithm with data augmentation for full Bayesian

inference.

1.2 Introduction to Complementary Dimension

Analysis

Dimension reduction techniques are very crucial in high-dimensional data analysis. One

reason is that many statistical methods are designed for low-dimensional data. Take the

simple linear regression model for example, as the number of the covariates increases, the

standard error of the predicted value will be accumulated. Another reason is that the

computational cost for high-dimensional data analysis is very high. In order to handle real-

word data adequately, it is of primary interest in many applications to perform a dimension
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dimension first.

Due to its importance, many dimension reduction techniques have been proposed in the

literature. Depending on whether or not the response information is considered, dimension

reduction algorithms can be categorized into supervised and unsupervised ones. In this

project, we focus on supervised dimension reduction (SDR) whose goal is to find a compact

yet informative representation of the original data space via some transformation. In the set-

ting of K-class classification problem, the objective of SDR is to transform the p-dimensional

feature space to a lower m-dimensional space while keeping the most discriminative informa-

tion. The most well-known method in this category is Fisher Discriminant Analysis (FDA)

where a transformation matrix is determined by maximizing the Fisher criterion defined

as the between-class over the within-class scatter matrices. The objective function is con-

structed based on a linear function of the second order statistics (L2 norm) of the data, which

is shared by most SDR algorithms. An advantage of using this kind of objective functions

is that the solution is in closed form and can be solved easily by eigen-decomposition.

However, Loog et al. (2001) pointed out that the objective function of FDA is suboptimal

when dealing with multi-class problem as it overemphasizes large class distances. Further-

more, as illustrated in our toy example in Section 3.1, such an objective function tends to

overemphasize those directions already achieving large between-class distances yet making

little improvement over the classification accuracy. In other words, such methods may over-

look the directions leading a small margin of between-class distances but a big improvement

over the classification accuracy. In summary, the sub-optimality of FDA for multi-class

classification is due to the discrepancy between the objective function and the classification

accuracy: classification accuracy does not increase linearly with respect to the between-class

distance.

To address this issue, we introduce two objective functions, which are directly linked to

the classification accuracy: one for parametric case and the other for non-parametric case.

We further provide a general objective function which not only accommodates these two
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particular measures, but also incorporates many existing SDR methods as special cases.

Then the reduced subspace is directly guided by maximizing the accuracy of classification

which is performed in this subspace. The challenge here is that the objective function

may take a nonlinear function of the L2 norm of the data. Therefore, we cannot apply

eigen-decomposition directly in this situation. In this thesis, we present an algorithm that

sequentially solves the nonlinear objective functions. The key motivation of this algorithm is

that each sequentially added direction should boost the discriminative power of the reduced

space. This is why we term our new algorithm as Complementary Dimension Analysis.

We evaluate the performance of our algorithm on several simulated datasets and real world

datasets.
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Chapter 2

Modeling Parasite Infection Dynamics

When There is Heterogeneity and

Imperfect Detectability

2.1 Introduction

Parasitic infections in humans are often characterized by repeated infections and clearance

of parasites; examples include malaria and Giardia lamblia. To understand this dynamic

behavior of parasitic infections, repeated observations of the infection and recovery status in

the same group of individuals are required. This type of longitudinal data is often modeled

as a two-state stochastic process. For example, Bekessy et al. (1976) proposed a first-order

Markov model to study the dynamics of malaria in Garki, Nigeria. Under the assumptions

of constant transition rates and perfect detectability, the model can be easily fitted by the

maximum likelihood method where the results are always based solely on raw counts of

infected and uninfected observations.

However, these assumptions are often not satisfied in real world situations for three

main reasons. First, the disease is often imperfectly detected due to imperfect diagnostic

instruments and procedures. For example, false negatives may be common in the detection

of Giardia lamblia by stool samples because even if a person harbors Giardia lambdlia, these

parasites may not be excreted in every stool sample (Nagelkerke et al., 1990). Second, the

pattern of transitions may not correspond to the first-order Markov model. For example,

it is possible that an individual may have high immunity shortly after the clearance of

an infection but the immunity wanes over time. Third, there is evidence that individuals

are heterogeneous in their infection probabilities and dynamics for many parasitic diseases

(Woolhouse et al., 1997). The assumption of homogeneous infection rates without identifying
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those individuals who are frequently infected from others will introduce biased estimates of

the transition rates. Such realistic situations complicate the study of malaria dynamics.

To address the above issues, many Markov and semi-Markov approaches and correspond-

ing solutions have been proposed. Nagelkerke et al. (1990) generalized Bekessy’s model to

the situation with imperfect detectability, and used numerical maximization of the partial

likelihood to estimate the transition rates and rate of detectability. Ng and Cook (1997)

introduced a mixed continuous-time two-state process that accommodates the heterogeneity

among individuals by the bivariate log-normal distribution. They estimated the model by

maximizing the approximated likelihood through numerical methods. Cook (1999) adopted

the exponential survival function with random effects to deal with heterogeneity among in-

dividuals. Smith and Vounatsou (2003) and Rosychuk et al. (2009) developed a hidden

two-state Markov model with imperfect detectability and designed a Markov chain Monte

Carlo (MCMC) algorithm to estimate the parameters. Crespi et al. (2005) developed Markov

and semi-Markov models describing recurrence and time-inhomogeneous transition rates.

However, none of the above methods considers simultaneously non-homogeneous transi-

tion rates, imperfect detectability and heterogeneity between individuals. This is partly due

to the numerical challenges in obtaining the marginal likelihood function. Here, we propose

a Bayesian hierarchical model based on a random effects Weibull model to explicitly ad-

dress these difficulties. The model assumes that the true parasite dynamics is a continuous

two-state stochastic process which is hidden due to the discrete observations and imperfect

detection. Given the latent process, the observed data is assumed to be conditionally in-

dependent of each other. We further model the latent process as a non-Markov continuous

stochastic process based on a Weibull survival function where the parameters of the Weibull

have a random distribution across individuals; the Weibull distribution allows for more flex-

ible transition rates than the constant transition rates of an exponential distribution, and

the randomness of the Weibull parameters across individuals allows for heterogeneity among

individuals. To estimate the parameters in such a model, we propose a MCMC algorithm
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with data augmentation for full Bayesian inference, and construct a series of efficient moves

to explore the space of the latent process. In the simulation study, we show the performance

of the proposed method for models with different settings. We also apply the proposed

method to the infection study of Giardia lamblia of children in Kenya (Chunge, 1989).

The rest of this chapter is organized as follows. In Section 2.2, we show the longitudinal

data of Giardia lamblia (Chunge, 1989). The statistical model is described in Section 2.3

and the proposed MCMC algorithm is presented in Section 2.4. Next, in Section 2.5, we

evaluate the performance of our method under different settings for both simulated data sets

and real data set. The conclusion is concluded in Section 2.6.

2.2 Data

In this thesis, we focus on a longitudinal study of Giardia lamblia descried by Chunge (1989).

Giardia lamblia, an intestinal parasite, is the most common cause of parasitic gastrointestinal

disease and is especially prevalence in young children. The background information on this

parasite can be found in Svärd et al. (1998), Hetsko et al. (1998), Warrell et al. (2003), and

Huang and White (2006). In the study, eighty-four children were chosen and the stools of

children were examined for the presence of Giardia every week. The weekly testing result of

each child was recorded as 1 if the parasite was found and 0 if the parasite was not found.

At the end of 44 consecutive weeks, 58 children with 10 to 44 consecutive weekly registration

were selected to form the data set. The data are presented in Table 2.1.

2.3 Statistical Model

The observed data is the weekly recorded status of the presence or absence of the parasite

for n individuals. Let Xij = 1 if individual i is infected by the parasite at the jth week and

Xij = 0 if the parasite is not detected (i = 1, · · · , n; j = 1, · · · , ni). Although the data is

recorded at discrete times, the actual infection and recovery take place in continuous time.

7



ID Infection status (negative 0, positive 1)
1 1 0 1 1 0 0 1 1 1 1 1 0
2 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 1 0 1
3 1 1 0 0 0 0 0 0 0 0
4 0 0 0 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
6 0 0 1 0 1 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0
7 1 1 1 1 1 0 0 1 1 1 1 1
8 1 0 1 0 1 1 1 0 0 1 0 0
9 0 0 0 0 0 0 0 0 0 0

10 1 1 1 1 1 1 1 1 0 1 1 0
11 0 1 1 0 0 0 0 0 1 0 0 0 0 0
12 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
13 1 1 1 1 1 0 0 0 0 0 0 1 1 1 0 1 1
14 1 0 0 0 0 1 1 0 0 1
15 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
16 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1
17 1 1 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1
18 0 0 0 0 0 0 0 0 1 1 1 1
19 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
20 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0
21 0 0 0 0 0 0 0 0 0 0
22 1 1 1 1 1 1 1 1 1 1 1 1 1
23 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
24 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
25 1 0 1 1 0 0 1 1 1 1 1
26 1 1 1 1 1 1 1 0 1 1 1 1 1
27 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0
28 0 0 1 1 1 1 1 1 1 1 1 0 1
29 1 0 0 0 1 0 0 0 1 1 1
30 0 1 0 0 0 0 0 0 0 0 0
31 0 0 0 0 0 1 1 0 1 1
32 1 1 1 1 1 1 1 1 0 1
33 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1
34 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
35 0 0 0 0 0 1 1 1 0 0 0 0 0 1
36 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
37 0 0 0 0 1 0 0 1 0 0 0 1
38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
39 0 1 1 1 1 1 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 0 1 0 0 0 1 1 1 0 0
40 0 0 1 1 1 1 0 1 1 0
41 1 1 1 1 1 0 1 1 0 0 1 1
42 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1
43 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 0 0 0 0 0 1 1 0 0
44 0 0 0 0 0 0 0 0 0 0 0 0
45 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
46 1 0 0 0 0 1 1 0 1 1 1 1 0 0 1 1
47 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1
48 0 0 0 0 1 1 1 1 1 1 1 0 1 1
49 1 1 1 1 1 1 1 1 1 1 1
50 1 1 1 1 1 1 1 1 1 0 1 0 0 0 1 1 0 1 1 0 0 1 1 1 1 0 0 0 0 1
51 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
52 1 1 1 1 0 1 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0
53 0 0 1 1 1 1 1 1 1 1 1
54 0 0 0 0 1 1 1 1 1 1
55 0 0 1 0 0 0 0 0 0 0 0 1 0
56 0 1 0 0 0 0 0 0 0 0 1 0
57 1 1 1 1 1 1 0 0 0 0 1 0 0 0
58 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Table 2.1: Weekly infection status of Giardia lamblia on children from Kenya.
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Let Zi(t), 1 ≤ t ≤ ni, denote the hidden continuous true presence or absence of the parasite

for individual i at time t. The underlying true status Zi(t) also takes value 1 or 0 depending

on whether individual i at time t is infected or not. See Figure 2.1 for an illustration. The

primary goal is to model the joint distribution of observed data X= (Xij, i = 1, · · · , n; j =

1, · · · , ni) and latent process Z= (Zi(t), i = 1, · · · , n; 1 ≤ t ≤ ni). We will first address the

relation between X and Z and then discuss the modeling for Z in the following sections.

1 2 3 4 5 6 7 8 9 10

0 0 1 0 1 1 0 0 1 1

0 0 0 0 1 1 0 0 1 1

(a)

(b)

(c)

(d)

Figure 2.1: Relation between observed values and the underlying latent process. (a) Time
index from 1 to 10; (b) The continuous latent process Zi(t) (1 ≤ t ≤ 10); (c) The value of
Zi(t) at discrete time points Zi(j) (j = 1, · · · , 10); (d) The corresponding observed value at
discrete time points, Xij (j = 1, · · · , 10).

2.3.1 Imperfect detectability

Under the perfect detectability assumption, we have Xij = Zi(j) for all i = 1, · · · , n and

j = 1, · · · , ni. If the diagnostic procedure is imperfect, the observation Xij may be different

from the true value Zi(j), which leads to misclassification of Xij. The example shown

9



in Figure 2.1 has a misclassification at time 3. There are two types of misclassification:

imperfect sensitivity (Zi(j) = 1, Xij = 0) and imperfect specificity (Zi(j) = 0, Xij = 1).

To deal with the two-state data with misclassification, several approaches have been

proposed. Nagelkerke et al. (1990) considered the imperfect sensitivity in the continuous-

time Markov model. Bureau et al. (2003) and Rosychuk et al. (2009) incorporated both

types of misclassification. A more detailed review dealing with misclassification issues can

be found in Ji and Fan (2009).

Following Nagelkerke et al. (1990) who also analyzed the Giardia lamblia infection in

Kenya children, we assume the measurement has perfect specificity and imperfect sensitivity.

Moreover, the observed values are assumed to be conditionally independent of each other

given the true process. Let 1− p denote the probability of false negatives, then the relation

between Xij and Zi(j) can be parameterized as

P (Xij = 1|Zi(j) = 1) = p

and

P (Xij = 0|Zi(j) = 0) = 1.

The probability of observing X given Z is

p(X|Z, p) =
n
∏

i=1

ni
∏

j=1

[Zi(j) (pXij + (1− p)(1−Xij)) + (1− Zi(j)) (1−Xij)] . (2.1)

2.3.2 Latent process

The parasite dynamics are dependent on the modeling of the latent process. Through the

modeling, we are trying to learn the transition rate h0i(t) from uninfected state to infected

state and h1i(t) from infected state to uninfected state for individual i at time t, where h0i(t)

10



and h1i(t) are defined by

h0i(t) = lim
∆t→0

P (Zi(t+∆t) = 1|Zi(t) = 0)

∆t
(2.2)

h1i(t) = lim
∆t→0

P (Zi(t+∆t) = 0|Zi(t) = 1)

∆t
. (2.3)

Discrete and continuous time Markov models have been widely used to model the latent

process Zi(t) by assuming constant hazard rates over time for all individuals. However, the

Markov assumption with the same transition rate for all individuals may not be appropriate

for at least two reasons. First, the transition rate may depend on the duration that the

individual has been in a state. For example, an individual may have a high immunity shortly

after clearance of an infection. Second, the transition rates may vary considerably between

individuals (Woolhouse et al., 1997). Also, individuals have different levels of immunity.

Some individuals could have frequent transitions; while other individuals have relatively

inactive transitions. Therefore, to specify a more realistic stochastic process, we consider

the distribution for the transition rates with the flexibility to be time dependent and to

incorporate the heterogeneity.

Here we adopt the random effects Weibull distribution to model the duration time and

include the between-individual variation (Butler and Worrall, 1985; Morris and Christiansen,

1995; Sohn et al., 2007, 2006). Let hsi denote the hazard rate for individual i at state

s (s = 0, 1). We have

hsi(t) = usi h
0
s(t), t ≥ 0, (2.4)

where usi denotes the random effect introduced by between-individual variation and h0
s(t) is

the baseline Weibull hazard function which is defined as

h0
s(t) = α−βs

s βs t
βs−1, t ≥ 0. (2.5)

Here αs > 0 is the scale parameter and βs > 0 is the shape parameter of the distribution.
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This is a versatile family of distributions that can take on many shapes based on the value

of βs. For example, this distribution is degenerated to exponential distribution when βs = 1.

The corresponding probability density function of the hazard function in (2.4) is

fsi(t) = usi α
−βs

s βs t
βs−1e−usiα

−βs
s tβs , t ≥ 0. (2.6)

For the random effects u0i and u1i, gamma distribution with mean 1 and an unknown

variance is used quite often for its conjugacy property. However, the possible correlation

between u0i and u1i is not specified under this situation. We model the random effects u0i

and u1i jointly as a bivariate log-normal distribution. Let Ui = (u0i, u1i)
T , i = 1, · · · , n. We

then assume Ui’s are independent and identically distributed as:

log







u0i

u1i






∼ Normal













−0.5σ2
0

−0.5σ2
1






,







σ2
0 τσ0σ1

τσ0σ1 σ2
1













where σ0 and σ1 are non-negative unknown parameters and τ is the correlation coefficient

between log(u0i) and log(u1i). The mean is chosen to make the expectation of the random

effects equal to 1. Larger values of σ2
s , s = 0, 1, correspond to greater heterogeneity of

individuals and positive or negative correlation between the logarithm of random effects is

determined by the sign of τ .

2.3.3 The likelihood

Let ti = (ti,1, · · · , ti,mi
) denote the times that individual i changes its state in the time

interval from 1 to ni, where mi denotes the total number of transitions. Then the latent

process Zi(t), 1 ≤ t ≤ ni, can be represented by the transition time points ti and its initial

state Zi(1). Assume the latent process Zi started at −∞ and is in equilibrium at time 1.
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Then the density function of the first observed transition given Zi(1) is

p(ti,1|Zi(1) = s) =
Psi(t > ti,1 − 1)

µsi
, (2.7)

where µsi =
∫∞
0

tfsi(t)dt denotes the expected duration time in state s for individual i (Cox

and Isham, 1980). Let πi(s) = P (Zi(1) = s) = µsi/(µ0i + µ1i). Then the density function of

Zi with Zi(1) = s is

p(Zi|α0, α1, β0, β1, usi) = πi(s)
Psi(t > ti,1 − 1)

µsi

×
[

mi−1
∏

k=1

fa(s,k),i(ti,k+1 − ti,k)

]

Pa(s,mi),i(t > ni − ti,mi
), (2.8)

where a(s, k) equals 1− s if k is odd and s if k is even. The likelihood for the complete data

(X,Z) is

p(X,Z|p, α0, α1, β0, β1,U) =

n
∏

i=1

p(Zi|α0, α1, β0, β1, Ui)

ni
∏

j=1

p(Xij |Zi(j), p), (2.9)

where U = (Ui, i = 1, · · · , n).

2.3.4 Prior and posterior distributions

Following the Bayesian framework, we specify the prior distribution for all the parameters

Θ = (α0, α1, β0, β1, σ
2
1, σ

2
2, τ, p) as follows:

p ∼ Beta(γp
1 , γ

p
2)

αs ∼ Gamma(γα
1 , γ

α
2 ), s = 0, 1

βs ∼ Gamma(γβ
1 , γ

β
2 ), s = 0, 1







σ2
0 τσ0σ1

τσ0σ1 σ2
1






∼ Inverse-Wishart(W, v),
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where all the γ’s take positive values, W is a 2× 2 positive definite matrix, and v > 1 is the

degree of freedom. Then, the posterior distribution of interest is

p(Θ,Z,U|X) ∝ p(X|Z,Θ,U)p(Z|Θ,U)p(U|Θ)p(Θ)

∝ p(X|Z, p)p(Z|α0, α1, β0, β1,U)p(U|σ2
0, σ

2
1 , τ)p(Θ). (2.10)

2.4 Markov Chain Monte Carlo Algorithm

In this section we discuss the MCMC algorithm for estimating the parameters in the hier-

archical Bayesian model. As the posterior distribution in (2.10) is too difficult to sample

directly, we use Metropolis-within-Gibbs algorithm (Geman and Geman, 1984; Hastings,

1970; Metropolis et al., 1953) to sample from the conditional distribution of each variable.

We divide the parameters Θ, the latent process Z, and the random effects U into five

groups: L1 = (α0, α1, β0, β1), L2 = p, L3 = (σ2
0, σ

2
1, τ), L4 = U, and L5 = Z. A sketch of

the Metropolis-within-Gibbs algorithm is given in Algorithm 1, where M is the number of

Markov chain iterations and L
(t)
i:j = (L

(t)
i , L

(t)
i+1, · · · , L

(t)
j ).

Algorithm 1 Metropolis-within-Gibbs algortihm

Initialize all the parameters and variables: L
(0)
1 , L

(0)
2 , L

(0)
3 , L

(0)
4 , and L

(0)
5 .

for t = 1 to M do

for i = 1 to 5 do

Given L
(t)
1:i−1, L

(t−1)
i+1:5, generate a sample L⋆

i from a proposal distribution qi(Li|Lt−1
i ).

Let

L
(t)
i =

{

L⋆
i , with probability ri

L
(t−1)
i , otherwise,

(2.11)

where

ri = min

{

p(L⋆
i |L

(t)
1:i−1, L

(t−1)
i+1:5)qi(L

t−1
i |L⋆

i )

p(Lt−1
i |L(t)

1:i−1, L
(t−1)
i+1:5)qi(L

⋆
i |Lt−1

i )
, 1

}

(2.12)

end for

end for
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Here are more details of the algorithm.

Initialization: Assign arbitrary initial values for the parameters L1 = (α0, α1, β0, β1),

L2 = p, and L3 = (σ2
0 , σ

2
1, τ) in the corresponding parameter space. Generate initial values

of L4 = (Ui, i = 1, · · · , n) independently from the log-normal distribution with parameters

L3. For latent process L5 = Z, we first assign values at time points Zi(j), i = 1, · · · , n; j =

1, · · · , ni, using the posterior probability P (Zi(j) = 1|Xij = 1) = 1 and P (Zi(j) = 0|Xij =

0) = 1
2−p

by assuming P (Zi(j) = 0) = P (Zi(j) = 1) = 1
2
; and then generate the transition

points ti = (ti,1, · · · , ti,mi
) for individual i in the following way:

1. Let T = 1, s = Zi(1), and l = 1.

2. Find the next nearest data point d ∈ N, T < d ≤ ni, such that Zi(d) 6= s.

3. Generate ∆t ∼ fsi(t)1{0<t≤d−T}. Let T = T + ∆t. If T < ni, set s = 1 − s, ti,l = T ,

l = l + 1, and go back to step 2; otherwise stop.

Proposal for L1: Generate the four parameters of Weibull distribution (α0, α1, β0, β1)

from a truncated normal distribution with the current values as the means and a small

standard deviation ǫ1 > 0 in one Markov chain iteration, that is,

q(α⋆
s|αold

s ) ∼ N(α;αold
s , ǫ1)1{αs>0}, s = 0, 1

q(β⋆
s |βold

s ) ∼ N(β; βold
s , ǫ1)1{βs>0}, s = 0, 1.

Proposal for L2: Generate the parameter p from a truncated normal distribution with

the current value as the mean and a small standard deviation ǫ2 > 0, that is,

q(p⋆|pold) ∼ N(p; pold, ǫ2)1{0≤p≤1}.

Proposal for L3: The parameters σ2
0, σ

2
1, τ denote the variance and correlation coefficient

15



of the logarithm of the random effects. We perform a random walk on the parameters as:

(σ2
0)

⋆ ∼ (σ2
0)

old Unif(1− ǫ3, 1 + ǫ3)

(σ2
1)

⋆ ∼ (σ2
1)

old Unif(1− ǫ3, 1 + ǫ3)

τ ⋆ ∼ N(τ ; τ old, ǫ4)1{−1≤τ≤1},

where ǫ3 > 0 and ǫ4 > 0 control the scale of the perturbation. All the three parameters are

updated once in one Markov chain iteration.

Proposal for L4: Randomly choose an individual i and generate the random effects of

this individual from a truncated normal distribution with the current values as the means

and a small standard deviation ǫ5 > 0 in one Markov chain iteration, that is,

q(u⋆
0i|uold

0i ) ∼ N(u; uold
0i , ǫ5)1{u0i>0}

q(u⋆
1i|uold

1i ) ∼ N(u; uold
1i , ǫ5)1{u1i>0}.

Proposal for L5: To find a proposal distribution for the latent process L5 = Z, we

need to construct a continuous path where the values of the path at the predetermined

time points match the observed values with imperfect detectability p. We use the following

proposal distribution which works well for our model. Given the current latent process Zi(t)

of an individual i, we consider three possible moves: M1 – randomly perturb a transition

time point; M2 – split a transition interval into three pieces by adding two transition points

in the interval; and M3 – merge three consecutive duration intervals into one long interval.

See Figure 2.2 for an illustration of the three moves. The detailed procedure of updating

the i-th individual’s latent process Zi(t) with transition time points ti = (ti,1, · · · , ti,mi
) is

explained in the following:

1. Let c equal to 1, 2 and 3 with equal probability;

2. If c = 1, the move M1 is chosen. Choose one integer number l from 1 to mi with
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begin l l+1 t
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end

t
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end

Z
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old
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i
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(M1)

t
begin

l,t
end

t
begin t* t** l,t

end

Z
i
old

Z
i
new

(M2)

Figure 2.2: Three moves for latent process Zi. M1 chooses l = 3 and changes ti,l to t⋆ ; M2
chooses l = 3 and inserts two transition time points t⋆ and t⋆⋆ between tbegin and tend; and
M3 chooses l = 5 and deletes two transition time points ti,l and ti,l+1 between tbegin and tend.

equal probability. Randomly generate a value t⋆ from Unif(tbegin, tend), where tbegin =

ti,l−11{l>1}+1{l=1} and tend = ti,l+11{l<mi}+ni1{l=mi}. Let Z
new
i be the old mi transition

points with the l-th element replaced by t⋆. Calculate the proposal probability:

q(Znew
i |Zold

i ) =
1

3mi(tend − tbegin)
,

and q(Zold
i |Znew

i ) is the same.

3. If c = 2, the move M2 is chosen. Choose one integer number l from 1 to mi + 1

with equal probability. Randomly generate two values t⋆ < t⋆⋆ independently from

Unif(tbegin, tend), where tbegin = ti,l−11{l>1}+1{l=1} and tend = ti,l1{l<mi+1}+ni1{l=mi+1}.

Let Znew
i be the old mi transition points with two more transition time points t⋆ and
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t⋆⋆ inserted after the first l components. Calculate the proposal probabilities

q(Znew
i |Zold

i ) =
1

3(mi + 1)

2

(tend − tbegin)2
and q(Zold

i |Znew
i ) =

1

3(mi + 1)
.

4. If c = 3, the move M3 is chosen. Choose one integer number l from 1 to mi − 1 with

equal probability. Let Znew
i be the old mi transition points with two transition time

points ti,l and ti,l+1 deleted. Calculate the proposal probabilities

q(Znew
i |Zold

i ) =
1

3(mi − 1)
and q(Zold

i |Znew
i ) =

1

3(mi − 1)

2

(tend − tbegin)2
,

where tbegin = ti,l−11{l>1} + 1{l=1} and tend = ti,l+21{l<mi−1} + ni1{l=mi−1}.

With the three moves, the Markov chain is irreducible as all possible latent processes can be

reached no matter what the initial latent process is.

2.5 Numerical Studies

In this section, we first evaluate the performance of our model on simulated data, and then

we apply it to the real data introduced in Section 2.2. We start with the simple model with

constant hazard rates, imperfect detectability and homogeneity among individuals (Model

1), then we consider the more complicate model with constant hazard rates, imperfect de-

tectability and heterogeneity among individuals (Model 2), and finally we study the general

model with nonconstant hazard rates, imperfect detectability and heterogeneity among in-

dividuals (Model 3).

Model n ni p α1 β1 α0 β0 σ1 σ0 τ
1 50 (30, 50) 0.95 3.33 1.0 5 1.0 – – –
2 50 (30, 50) 0.95 3.33 1.0 5 1.0 0.2 0.2 0.25
3 50 (30, 50) 0.90 3.33 1.2 5 0.8 0.2 0.2 0

Table 2.2: Simulated data settings for all three models.
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For each model, we simulated 500 data sets with the same parameter values from the

model. Each data set contains n = 50 individuals with the number of observations for each

individual ni ranging from 30 to 50. The true values of the parameters that have been used

to generate the simulated data are given in Table 2.2. In Model 1, there is no heterogeneity

among individuals, so there are no values for the three parameters of the covariance matrix.

As discussed before, the probability density function of Weibull distribution when βs = 1,

s = 0, 1, is degenerated to exponential distribution with rate parameter λs = 1/αs, s = 0, 1.

For Models 1 and 2, we estimate αs only by fixing βs at its true value, which is equivalent

to assuming exponential survival distribution and estimating its rate parameter λs = 1/αs.

To estimate the parameters in each data set, we follow the initialization procedure and

generate samples from the proposal distributions under the MCMC framework described in

Section 2.4. The tuning parameters (ǫ1, ǫ2, ǫ3, ǫ4, ǫ5) of the proposal distributions are set as

(0.1, 0.03, 0.03, 0.05, 0.1) to get a reasonable acceptance rate for each parameter. Then the

posterior mean and 95% posterior credible interval of each parameter are derived based on

samples from Markov chains after some burn-in period. Here the 95% posterior credible

interval of each parameter is derived by using the 2.5-th and the 97.5-th percentiles of the

samples. For the overall performance of each model, we also report the bias and the coverage

probabilities of 95% posterior credible intervals of each parameter based on 500 simulated

data sets.

Model 1: By fixing βs, s = 0, 1, at its true value, we estimate the remaining three param-

eters (λ1, λ0, p) together. The prior distribution for λs (s = 0, 1) is set as Gamma(0.01, 0.01)

and the prior distribution for p is chosen as Beta(0.01, 0.01). All the following estimates are

based on samples from 1,000,000 MCMC iterations with a 400,000 burn-in period.

Let’s first look at the performance for one simulated data set. The trace plots and

histograms of samples from the MCMC procedure are given in Figure 2.3. The trace plots

show that the Markov chain converges quickly and mixes well; the histograms are roughly
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Figure 2.3: Sample trace plots and histograms of the parameters in Model 1 based on one
simulated data set.
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Parameter Posterior Mean 95% Credible Interval True Value
λ1 0.3196 [0.2685, 0.3763] 0.30
λ0 0.2087 [0.1779, 0.2430] 0.20
p 0.9502 [0.9240, 0.9737] 0.95

Table 2.3: Parameter estimation for one simulated data set from Model 1.

bell-shaped with means close to the true values. Table 2.3 gives the posterior means and

95% credible intervals of all parameters. We can see that the bias of each estimate is small

and all the 95% credible intervals cover the true values.

Parameter Bias 95% CI Coverage
λ1 0.0218 94.2%
λ0 0.0133 95.6%
p 0.0121 93.2%

Table 2.4: The bias and coverage probability of 95% credible intervals of each parameter in
Model 1 based on 500 simulated data sets.

For the overall performance of this model, we provide in Table 2.4 the coverage proba-

bility of 95% credible intervals and the bias of each parameter based on 500 simulated data

sets. The averaged bias for each parameter is very small with a maximum value around 0.02.

The coverage probabilities for all parameters are very close to the nominal level 95%. In

summary, we can obtain reasonable estimates of all parameters in this model.

Model 2: Similar to Model 1, we fix βs at its true value and estimate the remaining

parameters (λ1, λ0, p, σ1, σ0, τ) together. The priors for λs, (s = 0, 1) and p are the same

as those of Model 1. The prior distribution for the covariance matrix of the logarithm of

random effects is set as Inverse-Wishart(I2, 3) where I2 is a 2×2 identity matrix. All the fol-

lowing results are based on samples from 1,000,000 MCMC iterations with a 500,000 burn-in

period.

For one simulated data set of Model 2, we show the trace plots and histograms of MCMC

samples in Figures 2.4 and 2.5. Similar to Model 1, the Markov chain exhibits fast conver-
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Figure 2.4: Sample trace plots and histograms of the parameters λ1, λ0 and p in Model 2
based on one simulated data set.
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Figure 2.5: Sample trace plots and histograms of the parameters σ1, σ0 and τ in Model 2
based on one simulated data set.
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Parameter Posterior Mean 95% Credible Interval True Value
λ1 0.2682 [0.2222, 0.3196] 0.30
λ0 0.1751 [0.1461, 0.2062] 0.20
p 0.9547 [0.9269, 0.9791] 0.95
σ1 0.2147 [0.1677, 0.2721] 0.20
σ0 0.1914 [0.1458, 0.2471] 0.20
τ 0.2143 [-0.1280, 0.5381] 0.25

Table 2.5: Parameter estimation for one simulated data set from Model 2.

gence and most of the histograms are centered around the true values. The corresponding

posterior means and 95% credible intervals are given in Table 2.5. The bias of each estimate

is small and all the 95% credible intervals cover the true values.

In this model, we introduced three parameters σ1, σ0 and τ to describe the heterogeneity

among individuals. To see how the individuals behave differently, we plot in Figure 2.6 the

average duration times at infected and uninfected states for all individuals based on one

simulated data set from this model. For infected state, most of the individuals have an

average duration time from 3 to 4 time units, but one individual’s average duration time is 5

time units and another one is 2 time units. Similarly, for uninfected state, all the individuals

have an average duration time from 5 to 6 time units except a few with much larger or

smaller duration times.

Parameter Bias 95% CI Coverage
λ1 0.0227 94.2%
λ0 0.0142 94.4%
p 0.0116 94.8%
σ1 0.0230 96.4%
σ0 0.0239 95.0%
τ 0.1656 95.8%

Table 2.6: The bias and coverage probability of 95% credible intervals of each parameter in
Model 2 based on 500 simulated data sets.

To see the overall performance of this model, we list in Table 2.6 the coverage probability

of 95% credible intervals and the bias of each parameter based on 500 simulated data sets.

The biases of all parameters are small except τ which has a relatively large bias 0.1656. The
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Figure 2.6: Duration times at infected and uninfected states for all individuals based on one
simulated data set from Model 2.
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coverage probabilities of the 95% credible intervals for all parameters are close to the nominal

level 95%. Therefore, the estimates of all parameters in this model are still satisfactory.

Model 3: Here we work on the general model using Weibull survival function with

random effects which allows for nonconstant hazard rates, imperfect detectability and het-

erogeneity among individuals. The parameters are α1, β1, α0, β0, p, σ1, σ0 and τ . We set the

prior distribution for αs and βs, s = 0, 1, as Gamma(0.01, 0.01), the prior distribution of p

as Beta(0.01, 0.01), and the prior distribution for the covariance matrix of the logarithm of

random effects as Inverse-Wishart(I2, 3). All the following results are based on samples from

1,000,000 MCMC iterations with a 500,000 burn-in period.

Parameter Posterior Mean 95% Credible Interval True Value
α1 3.5381 [2.7388, 4.5162] 3.33
β1 1.2395 [0.9519, 1.6884] 1.20
α0 5.7437 [4.1842, 7.9212] 5.00
β0 0.8106 [0.6778, 0.9837] 0.80
p 0.8961 [0.8565, 0.9354] 0.90
σ1 0.2249 [0.1346, 0.3445] 0.20
σ0 0.2270 [0.1323, 0.3564] 0.20
τ -0.0303 [-0.6063, 0.5618] 0

Table 2.7: Parameter estimation for one simulated data set from Model 3.

First, we show in Figures 2.7 and 2.8 the trace plots and histograms of MCMC samples

based on one simulated data set from Model 3. The corresponding posterior means and 95%

credible intervals are given in Table 2.7. We can see that the estimates of all the parameters

are close to the true values and the maximum bias is 0.7437 for parameter α0. For this

specific data set, all the 95% credible intervals cover the true values.

Next, we show in Figure 2.9 the average duration times at infected and uninfected states

for all individuals based on one simulated data set from this model. The heterogeneity among

individuals is quite obvious from the plot.

Table 2.8 shows the coverage probability of 95% credible intervals and the bias of each
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Figure 2.7: Sample trace plots and histograms of the parameters αs and βs (s = 0, 1) in
Model 3 based on one simulated data set.
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Figure 2.8: Sample trace plots and histograms of the parameters p, σ1, σ0 and τ in Model 3
based on one simulated data set.
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Figure 2.9: Duration times at infected and uninfected states for all individuals based on one
simulated data set from Model 3.
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Parameter Bias 95% CI Coverage
α1 0.4907 88.6%
β1 0.1615 87.8%
α0 0.7851 89.0%
β0 0.1119 84.8%
p 0.0205 90.0%
σ1 0.0487 98.0%
σ0 0.0521 98.4%
τ 0.1145 96.2%

Table 2.8: The average bias and coverage probability of 95% credible intervals of each pa-
rameter in Model 3 based on 500 simulated data sets.

parameter based on 500 simulated data sets from this general model. Overall, the coverage

probabilities of the four parameters of Weibull survival function αs, βs, (s = 0, 1) as well as

p are a little smaller than the nominal level 95%, and those of the parameters σ1, σ0 and τ

are a little larger than the nominal level 95%. By introducing two more parameters in the

Weibull survival function, we can still obtain reasonable estimates of all the parameters.

Real data: In this part, we re-analyze the data about the infection of Giardia lamblia

introduced in Section 2.2. Following the same procedure as the simulated data, we start

with the simple model assuming constant hazard rates and continue with the model allowing

for nonconstant hazard rates. The prior distribution of each parameter is chosen to be the

same as in the simulated data.

The results of the three models by assuming constant hazard rates: R1, R2, and R3 are

shown in Table 2.9. Besides the constant hazard rates assumption, model R1 also assumes

perfect detectability and homogeneity among individuals; model R2 assumes homogeneity

among individuals; while model R3 has no additional assumptions. For models R1 and

R2 with the assumptions of constant hazard rates and homogeneity among individuals, the

maximum likelihood estimate (MLE) can be obtained as a result of the Markov property.

Bekessy et al. (1976) gave the MLEs with perfect detectability and later Nagelkerke et al.

(1990) provided the MLEs based on both the partial likelihood and the full likelihood with
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Model Parameter Posterior Mean 95% Credible Interval MLE
R1 λ1 0.3696 [0.3052, 0.4409] 0.3581

λ0 0.3328 [0.2744, 0.3971] 0.3311
R2 λ1 0.2724 [0.2074, 0.3469] 0.2359

λ0 0.3018 [0.2349, 0.3764] 0.3311
p 0.8953 [0.8494, 0.9374] 0.9090

R3 λ1 0.2986 [0.2354, 0.3687] –
λ0 0.3139 [0.2517, 0.3843] –
p 0.9272 [0.8866, 0.9585] –
σ1 0.2706 [0.1604, 0.3656] –
σ0 0.2059 [0.1447, 0.2829] –
τ 0.2150 [-0.2182, 0.5913] –

Table 2.9: Parameter estimation for the longitudinal data of infection with the parasite
Giardia lamblia among children in Kenya by assuming constant hazard rates.

imperfect detectability. For comparison, we also list the MLEs of each parameter in these

two models. Note that all the estimates including MLEs in Table 2.9 use week as the unit

instead of day.

For model R1, we only have two parameters λ1 and λ0. Both posterior means are close

to the MLEs. From the estimates, we observe that the transition rate from infected to

uninfected status (λ1) is slightly higher than the hazard rate from uninfected to infected

status (λ0), but the 95% credible intervals of both parameters overlap a lot, which implies

the difference is not significant.

For model R2, the posterior mean of p is 0.8953, which indicates that the detection

procedure fails to detect around 10.5% infection cases. The posterior means and MLEs are

still close for all the parameters with the 95% credible intervals covering the MLEs. By

allowing for imperfect detectability, the estimates of λ1 and λ0 are different from those of

model R1, especially for λ1. Now the transition rate from infected to uninfected status is

smaller than the hazard rate from uninfected to infected status, but the difference is not

significant. Allowing imperfect detectability makes it possible to discover more about the

underlying disease process.

Compared to model R2, model R3 incorporates the heterogeneity among individuals.
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Figure 2.10: Duration times at infected and uninfected states for all individuals of the real
data in model R3.
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The estimates of λ1, λ0 and p are similar to model R2, which indicates that allowing het-

erogeneity among individuals does not affect the estimates of other parameters. Moreover,

the correlation between the logarithm of random effects is not significantly different from

0 as the corresponding 95% credible interval covers 0. To check the heterogeneity among

individuals, we show in Figure 2.10 the average duration times at infected and uninfected

states for all individuals. The durations times at each state are similar but still show some

variation.

Model Parameter Posterior Mean 95% Credible Interval
R4 α1 1.0937 [0.7007, 1.6612]

β1 0.6089 [0.5119, 0.7564]
α0 1.4741 [0.9172, 2.1138]
β0 0.7236 [0.5574, 0.9022]

R5 α1 1.0679 [0.5318, 2.2026]
β1 0.5220 [0.4201, 0.7166]
α0 1.6608 [1.0737, 2.5884]
β0 0.7935 [0.6089, 1.0025]
p 0.9285 [0.8908, 0.9622]

R6 α1 1.2758 [0.6546, 2.1114]
β1 0.6981 [0.5412, 0.9823]
α0 1.7384 [0.8608, 2.7434]
β0 0.9034 [0.6256, 1.3331]
p 0.9487 [0.9068, 0.9821]
σ1 0.3170 [0.1606, 0.5494]
σ0 0.4683 [0.2135, 0.8676]
τ -0.4531 [-0.8851, 0.2977]

Table 2.10: Parameter estimation for the longitudinal data of infection with the parasite
Giardia lamblia among children in Kenya by allowing nonconstant hazard rates.

Next, we investigate the models allowing for nonconstant hazard rates. The correspond-

ing results are also shown in Table 2.9. Model R4 assumes perfect detectability and homo-

geneity among individuals. We can see that the estimates of β1 and β0 are smaller than 1

and the 95% credible intervals do not cover 1. This indicates the actual hazard rates are

not constant and they decay as the time goes on. Therefore, adopting the Weibull survival

function allows us to detect non-constant hazard rates.
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Figure 2.11: Duration times at infected and uninfected states for all individuals of the real
data in Case R6.
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Model R5 allows imperfect detectability besides nonconstant hazard rates. The posterior

mean of p is 0.9285, which means that the detection procedure fails to detect 7.15% infected

cases. The estimates of the parameters of the Weibull survival function also changed slightly

comparing to model R4. Note that the credible interval for the shape parameter β0 has an

upper bound about 1.

Finally, model R6 considers the most general situation. The estimates of the parameters

of the survival function are similar to those of model R5 and the estimate of the imperfect

detectability is a little higher in model R6. Again, there is no significant correlation between

the logarithm of random effects given that the 95% credible interval of τ includes 0. There

exists heterogeneity among individuals according to Figure 2.10.

Model R6 fits the data better than the other models. First, the imperfect detectability is

non-negligible due to the imperfect diagnostic instruments and procedures. The estimated

value of p is below 0.95. Second, the hazard rates appear to be nonconstant especially for

the infected state given that the 95% credible interval of β1 does not cover 1. Third, the data

reveals clear heterogeneity among individuals. Therefore, we conclude that it is important to

consider nonconstant hazard rates, imperfect detectability and random effects in the model.

In this way, we can detect the influence of imperfect detectability and random effects and

learn more about the underlying true dynamics of parasites.

2.6 Conclusion

We proposed a Bayesian hierarchical model to study the behavior of Giardia lamblia based

on the longitudinal data in Chunge (1989). Our model is flexible by allowing (1) imperfect

detectability, (2) non-constant hazard rates, and (3) heterogeneity among individuals. We

also proposed an MCMC algorithm with data augmentation to estimate the parameters

in such a model. Simulation studies show that we can obtain reasonable estimates of all

parameters under different settings.
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Chapter 3

Complementary Dimensionality

Analysis

3.1 Introduction

Dimension reduction plays an important role in high-dimensional data analysis. The goal

is to map the p-dimensional covariate X to a lower dimensional space while keeping the

meaningful information. Many dimension reduction algorithms have been proposed in the

literature. Depending on whether or not the response information Y is considered, dimension

reduction algorithms can be categorized into supervised and unsupervised ones.

Unsupervised dimension reduction algorithms aim to find the most informative repre-

sentation of the data X . Popular unsupervised algorithms include Principal Component

Analysis (PCA), Independent Component Analysis (ICA) (Comon, 1994), Multidimensional

Scaling (MDS) (Mardia et al., 1979), Locally-Linear Embedding (LLE) (Roweis and Saul,

2000), Locality Preserving Projections (LPP) (He and Niyogi, 2003), and many others.

In the setting of supervised dimension reduction algorithms, the goal is to extract the

the most relevant information in X for the prediction of a response variable Y . For exam-

ple, Fisher Discriminant Analysis (FDA) (Fisher et al., 1936) is one well-known supervised

method to search a linear combination of covariates that maximizes the between-class dis-

tance with respect to within-class distance. Later, Sugiyama (2007) proposed an extension

of FDA to manifolds learning, named Local FDA, by re-weighting the between-class and

within-class distance in FDA. There are also various dimension reduction methods from the

inverse regression perspective including Sliced Inverse Regression (SIR) (Li, 1991) and Sliced

Average Variance Estimation (SAVE) (Cook and Weisberg, 1991).
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On the other hand, dimension reduction algorithms can be categorized into linear or

non-linear ones depending on the form of the transformation. The previously mentioned

PCA, ICA, FDA, Local FDA, LPP, SIR, and SAVE, are linear algorithms, while MDS and

LLE are non-linear algorithms.

In this chapter, we focus on linear supervised dimension reduction. It is equivalent to

finding a projection matrix Vp×m = (v1, · · · , vm), such that the m-dimensional summary

VtX (where m << p) keeps the most discriminative information of Y . Mathematically, the

optimalV is the projection matrix with the smallestm, such that the conditional distribution

of Y |X is the same as the one of Y |VtX (Li, 1991). However, the assumption that the lower-

dimensional representation is a lossless compression of the information in X (relative to the

prediction of Y ) is too stringent in practice. First, in many real data analysis, every feature

is more or less relevant to the prediction. So a lossless representation usually ends up with

the original data. Second, in some applications, the dimension of the reduced representation

m is not up to the user’s choice but subject to exterior constraints such as the capacity of the

transmitting channel or the limit of storage space. In light of these practical concerns, we do

not aim to retrieve a lossless representation of the data, or discuss the “correct” dimension

m. Instead we focus on developing a framework for supervised dimension reduction (SDR),

in which directions vl’s are retrieved sequentially by the order of decreasing importance to

prediction.

Sequential SDR algorithms are often formulated as an optimization problem: the l-th

direction is retrieved by solving

vl = argmax
v⊥Ml−1

G(v), (3.1)

where Ml−1 denotes the linear space spanned by the previously solved (l − 1) directions:

v1, . . . , vl−1. For example, the aforementioned FDA (Fisher et al., 1936) uses the Rayleigh

quotient vtBv/vtWv as the objective function, where B and W are, respectively, the
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between-class and within-class scatter matrices; the corresponding solution is given by the

eigenvectors of W−1B. Note that the objective function of FDA is a linear function of the

second order statistics (L2-norm) of the data, a feature shared by many other SDR algo-

rithms as will be shown in Section 3.2. An advantage of the L2-norm objective functions

is that the solution is in closed form and can be solved by eigen-decomposition. The draw-

back, however, is that the retrieved subspace is suboptimal for multi-class classification or

regression problems1, as illustrated in the following toy example.

Consider a dataset with four classes located in R
3 (see Figure 3.1). The data are generated

from a mixture of four Gaussian distributions with a common identity covariance matrix and

different mean vectors located at a, b, c, and d, where d is relatively far away from the others.

The goal of SDR here is to transform the data into a lower-dimensional subspace while

maintaining the maximum discriminative information. When only one dimension is allowed

to be kept, the direction chosen by FDA is well aligned with Z-axis, which separates all

the classes except classes a and b. In the remaining XY -plane, FDA roughly chooses the

X-axis as the second most important direction, due to the large between-class distance of

class c and the others. This leaves class a and b being still mixed together. Alternatively,

if Y -axis were chosen as the second direction in the reduced space, then class a and b could

be separated. Apparently FDA failed to select the direction which best discriminates the

response variable.

The sub-optimality of FDA for multi-class classification is due to the discrepancy be-

tween the objective function and the classification accuracy: classification accuracy does not

increase linearly with respect to the between-class distance. In other words, a direction that

keeps large between-class distance may not necessarily result in optimal separation of multi-

ple classes. However, the objective function used by FDA, as well as any objective function

that is a linear function of the L2-norm of the data, tends to overemphasize those directions

1Although FDA is designed for classification, we can apply it on regression problems too, simply by
discretizing the continuous response into multiple categories like what has been done in the sliced inverse
regression (Li, 1991). So in the remaining part of the paper, we will just focus on the classification setting.
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Figure 3.1: The 3-dimensional data consists of 4 classes, each of them containing 10000
data points. We generate each class of data from a Gaussian distribution with an iden-
tity covariance but different mean vectors denoted by a(−5, 0, 0), b(5, 0, 0), c(0, 25, 25) and
d(0, 0, 50) in (i) respectively. Each dot represents a whole class of data. The projection of
the 3-dimensional data onto Z-axis, XY -plane, X-axis and Y -axis are shown in (ii), (iii),
(iv) and (vi) respectively.

already achieving large between-class distances yet making little improvement over the clas-

sification accuracy. In contrast, such methods may overlook the directions leading a small

margin of between-class distances but a big improvement over the classification accuracy,

especially if such directions can discriminate classes that have not been well separated yet.

To address this issue, we choose to work with two objective functions that are directly

linked to the classification accuracy of the projected dataVtX . We further generalize the two

specific objective functions and propose a generalized optimization framework to solve the

reduced dimensional subspace. The generalized objective function contains many popular

SDR methods as special cases, including FDA, Local FDA (Sugiyama, 2007), and LPP (He

and Niyogi, 2003). The challenge here is the objective function, which may be a nonlinear

function of the L2 norm of the data, cannot be solved by a simple eigendecomposition any

more. In Section 3.3, we present an algorithm that sequentially solves the nonlinear objective

function. The key motivation of this algorithm is that each sequentially added direction

should boost the discriminative power of the reduced space. Specifically, when retrieving

the l-th direction vl, we update the objective function Gl(v) so that vl complements the

39



previously solved directions v1, · · · , vl−1 in terms of classification accuracy. This is why we

term our new algorithm as Complementary Dimension Analysis (CDA). We evaluate CDA

on several simulated datasets and real world datasets in Section 3.4, and close with discussion

and conclusions in Section 3.5.

Before closing this section, we make some remarks on related work.

• Loog et al. (2001) has pointed out the sub-optimality of FDA, and proposed a new

objective function based on re-weighting, called approximate pairwise accuracy crite-

rion (aPAC). Their approach differs from ours: 1) their approach heavily relies on the

parametric Gaussian assumption and does not consider the non-parametric case, and

2) they didn’t consider updating the weights at each step, therefore the optimality of

directions, except the 1st one, returned by aPAC cannot be justified in their framework.

Nevertheless, our work is indeed motivated by Loog et al. (2001).

• The idea of modifying our utility from a linear function of the L2 norm of the data

to a nonlinear one also appears in many manifolds learning algorithms. For exam-

ple, in the aforementioned Local FDA, Sugiyama (2007) proposed to down-weight the

contribution to the calculation of B and W from data pairs with large L2 distance.

However, the weights, which are nonlinear functions of the L2 distance, are calculated

in the original space and do not depend on the projection matrix V. So the objective

function of Local FDA is still a linear function of the L2 norm, with the data points

being weighted differently a priori.

3.2 A Unified SDR Framework for Classification

A major motivation of our work is to find the reduced dimension subspace directly guided

by maximizing the accuracy of classification which is performed in this subspace. The

classification accuracy, however, may comes at different forms, leading to different solutions

to the optimization. Next we will introduce two criteria measuring the accuracy of multi-
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class classification: one for parametric case and the other for non-parametric case. We then

demonstrate our unified SDR framework and show that it not only accommodates these two

particular measures, but also generalizes several existing dimension reduction methods such

as FDA, Local FDA and SIR, which are made special cases in our framework with proper

specification.

3.2.1 Parametric measure of classification accuracy

As a starting point, assume the data of each class follow a Gaussian distribution with a

common covariance shared by all classes. Let mk, Wk and pk denote the mean, the within-

class covariance and the prior of class k (k ∈ {1, . . . , K}) respectively. The Bayes accuracy

between class k and k′ (k 6= k′) in a reduced space projected by a projection matrix V is

given by

Akk′(V) =
1

2
+

1

2
erf

(

dVkk′

2
√
2

)

, (3.2)

where dVkk′ = ‖VtW− 1
2 (mk − mk′)‖ is the mean distance of class k and k′ in the reduced

space, erf(x) = 2√
π

∫ x

0
e−t2dt is the normal error function, andW =

∑K
k=1 pkWk is the pooled

within class variance. The detailed deduction of the Bayes accuracy is provided in Appendix

A. By rescaling the data by W− 1
2 , we can assume the pooled within class variance is the

identity matrix. Then the between class distance can be simplified as dVkk′ = ‖Vt(mk−mk′)‖.

Write projection matrix at the l-th step as Vl = [v1, . . . , vl−1, v]. Here v1 to vl−1 are

calculated from the previous l − 1 steps, and v is the new direction to solve subject to

v ⊥ Ml−1 where Ml−1 is the subspace spanned by v1, . . . , vl−1. The averaged pairwise Bayes

accuracy

GB(Vl) =

K−1
∑

k=1

K
∑

k′=k+1

pkpk′Akk′(Vl) (3.3)

can be used as a criterion to measure the contribution of a direction v as an addition to

the existing (l − 1)-dimensional subspace. Note that the averaged two-class classification

accuracy is not the same as the actual accuracy of multi-class classification. Nevertheless, it
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provides a reasonable quantification of the discriminative power of a new direction v.

3.2.2 Non-parametric measure of classification accuracy

In some applications, it may not be realistic to make parametric assumptions about the

location or shape of the data. In such a scenario, classification procedures based on the

neighboring information are more robust. Therefore we introduce a non-parametric measure

of classification accuracy. Goldberger et al. (2005) proposed a novel method for learning

a Mahalanobis distance measure which optimizes the expected leave-one-out classification

error on the training data when used with a stochastic neighbor selection rule. Here we

adopt the similar distance measure which aims to optimize the classification error rate for

n-nearest neighbors.

First define the following similarity measure between any pair of data points

A(x, z) = exp (−‖x− z‖2/ǫ), A(x, x) = 0, (3.4)

where ǫ > 0 is a pre-specified scale parameter. Then consider a modified version of the

simple n-nearest neighbors classification rule: given any query data point x∗, classify it as

class k with probability proportional to
∑

i:yi=k A(x
∗, xi).

So at the l-th step when we try to solve vl, the leave-one-out prediction accuracy in the

reduce space is measured by

GNN(Vl) =

∑K
k=1

∑

(i,j),yi=yj=k A(V
t
lxi,V

t
lxj)

∑

(i,j)A(V
t
lxi,V

t
lxj)

= 1−
∑

(i,j),yi 6=yj
A(Vt

lxi,V
t
lxj)

∑

(i,j)A(V
t
lxi,V

t
lxj)

, (3.5)

where Vl = [v1, . . . , vl−1, v] is defined before. The equalities above indicate that maximizing

the objective function JNN(v) is equivalent to maximizing the within-class similarity and

meanwhile minimizing the between-class similarity.
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3.2.3 A unified framework

In the following we propose a unified framework for supervised dimension reduction in clas-

sification. The framework involves a general form of objective function parameterized by the

unknown reduced dimension subspace. The objective function accommodates a wide variety

of forms of classification accuracy, such as the two accuracy measures introduced above.

Interestingly, quite a few existing supervised dimension reduction methods, such as FDA,

Local FDA, SIR, and the unsupervised techniques such as PCA and LPP (He and Niyogi,

2003) can be seen as special cases within this framework, with properly chosen index sets,

weights and functions. The computation of the optimization will be explained in detail in

Section 3.3.

Suppose we have a dataset represented as a p× n matrix X consisting of n data points

xi ∈ R
p (i ∈ {1, . . . , n}) and a set of labels yn×1 = (y1, . . . , yn) where yi takes a value from 1

to K. The general objective function of SDR is constructed in the following form:

G(V) =

∑

I∈I f(‖VtXhI‖2)wI
∑

J∈J f̃(‖VtXh̃J‖2)w̃J

, (3.6)

where I and J are two summation index sets, hI and h̃J are n×1 vectors indicating weights

on the n data points, and constants wI and w̃J are index-dependent weights on the functions

f and f̃ respectively. When I or J is empty, we set the corresponding sum to be 1. The

objective function is constructed using the projected data VtX to establish direct connection

with the classification accuracy in the reduced space. Then the optimal reduced dimension

subspace can be obtained by maximizing G(V), that is,

V = argmax
V,vtivi=1

G(V). (3.7)

Quite a few dimension reduction methods can be written as a special case of our general

framework, such as FDA, Local FDA, SIR and LPP. We demonstrate only with FDA here
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and more examples will be shown in Appendix B. Recall the notation in FDA that the

between-class covariance B =
∑K

k=1 pk(mk − m̄)(mk − m̄)t and within-class covariance W =
∑K

k=1 pkWk, where pk, mk, and Wk are the frequency, within-class mean, and within-class

covariance of class k respectively. By rescaling the data by W− 1
2 , we can assume the pooled

within class variance is the identity matrix. Then the objective function of FDA is vtBv

which can be written in the form of (3.6) by setting I = {1, . . . , K}, f(t) = t, wI = pI ,

hI as a vector with the ℓ-th element equal to (1−pI)
nI

1{yℓ=I} − pyℓ
nyℓ

1{yℓ 6=I}, and J as an empty

set, where nk denotes the number of observations in class k.

The objective function for FDA can be easily solved via eigen-decomposition. As we will

show in the next section, similar results hold true for dimension reduction algorithms where

f ’s and f̃ ’s are linear functions of the L2 norm of the data, namely, ‖vtXhI‖2. However,

there is no analytical solution of the objective function when f ’ and f̃ are nonlinear. We

address this issue in in the following section.

3.3 Algorithm

In this section we present an optimization approach to the proposed unified SDR frame-

work for classification. For notation simplicity, we denote the objective function G(V) by

F (V)/F̃ (V). As we show next, when f and f̃ are linear functions, we can pre-normalize

the data to get rid of the denominator. Then the objective function can be solved easily.

When f and f̃ are nonlinear functions, we propose a numerical method to sequentially solve

the directions in the order of decreasing importance. Specifically, at the l-th step, given the

previously solved (l−1) directions (v1, . . . , vl−1), we solve the following optimization problem

vl = argmax
v⊥Ml−1

Gl(v), (3.8)

Gl(v) = G(Vl) with Vl defined as [v1, . . . , vl−1, v]. It turns out that for the linear case, the

solution given by this sequential approach agrees with the global solution.
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3.3.1 Linear functions

Assume the functions f(‖VtXhI‖2) and f̃(‖VtXh̃J‖2) take the following linear forms:

f(‖VtXhI‖2) = aI‖VtXhI‖2 and f̃(‖VtXh̃J‖2) = ãJ‖VtXhI‖2,

where aI and ãJ are non-zero constants. Then simple calculations reveal that F (V) and

F̃ (V) can be rewritten as tr(VtS1V) and F̃ (V) = tr(VtS2V) respectively where S1 =
∑

I∈I aIwIXhIhI
tX t and S2 =

∑

J∈J ãJXh̃J h̃
t
JX

tw̃J . In this case, we can pre-normalize the

data by S
− 1

2
2 , then the objective function is

G(V) = tr
(

VtS
− 1

2
2 S1S

− 1
2

2 V
)

. (3.9)

Note that the orthonormal matrix V that maximizes the G(V) defined above is different

from the solution of (3.6), due to the pre-normalization procedure. However, the subspaces

spanned by the two matrices are the same. So it suffices for us to maximize the objective

function G(V) defined in (3.9). This becomes a generalized eigen-decomposition problem and

the solutions v1, . . . , vm are given by the eigenvectors corresponding to the top m eigenvalues

of S
− 1

2
2 S1S

− 1
2

2 .

One could also solve the directions using the sequential algorithm described previously.

It is easy to check that the first direction v1 is given by the largest eigenvalue of S
− 1

2
2 S1S

− 1
2

2 .

Similarly we can find the next direction v, orthogonal to v1, such that vtS
− 1

2
2 S1S

− 1
2

2 v is

maximized and the solution v2 is given by the second largest eigenvalue of S
− 1

2
2 S1S

− 1
2

2 , and

so on. Finally, the columns of V are given by the first m largest eigenvalues of S
− 1

2
2 S1S

− 1
2

2 ,

which is indeed equivalent to the global solution.

45



3.3.2 Nonlinear functions

As mentioned before, there is no closed-form analytical solution to solve the multiple direc-

tions simultaneously through the objective function (3.6) when the functions f and f̃ are

nonlinear. An intuitive way is to retrieve the multiple directions sequentially. However, the

sequentially independent approach is not a good choice here as it ignores the influence of the

previously found directions. Instead, we use a sequentially dependent approach where the

objective function dependents on the previously found directions and therefore is updated

at each step. In this way, each new retrieved direction is complementary to the existing di-

rections. Furthermore, we adopt local linearization to approximate the nonlinear functions

by linear functions to keep the simple eigen-decomposition solution as in the case of linear

functions. The major procedures can be summarized as follows:

• Write the objection function at the l-th step as in Equation (3.8) which depends on

the previously found (l − 1) directions;

• Approximate the nonlinear functions f and f̃ through linear formulas through local

linearization;

• Solve for vl by applying eigen-decomposition to the approximated objective function.

Recall that Ml is the subspace spanned by v1, . . . , vl−1. Then Ml =
∑l−1

i=1 viv
t
i is the

projection matrix of Ml and Ip −Ml is the projection matrix for M⊥
l , the orthogonal space

of Ml. Using the property that X = MlX + (Ip −Ml)X , the objective function of vl for our

sequentially dependent approach is

argmax
v

∑

I∈I fI(‖MlXhI‖2 + ‖vt(Ip −Ml)XhI‖2)wI
∑

J∈J f̃J(‖MlXh̃J‖2 + ‖vt(Ip −Ml)Xh̃J‖2)w̃J

(3.10)

Note that the constraint v ∈ M⊥
l is taken into account by the term (Ip −Ml).

When the functions f and f̃ are nonlinear, the eigen-decomposition method cannot

be applied directly to the above objective function. However, it is still desirable to keep
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the simple form of eigen-decomposition solution. Therefore, we approximate the nonlin-

ear functions through linear functions such that the computation can be carried out by

eigen-decomposition and incorporate the previously selected directions to make the search-

ing algorithm efficient. Specifically, to solve vl, we first transform the sequential dependent

Equation (3.10) as linear functions through local linearization under minimum mean squared

error criteria and then apply eigen-decomposition method to derive the projection direction.

Here we only show the approximation procedure for the numerator F (Vl) in (3.10).

Similar approximation can be easily applied to the denominator F̃ (Vl). Define vector

eIl = (Ip − Ml)XhI . Then F (Vl) =
∑

I∈I FI(Vl) in (3.10), by local linearization, can

be approximated by the following linear form

A(Vl) =
∑

I∈I
AI(Vl) =

∑

I∈I
aIlv

teIle
t
Ilv + bIl, (3.11)

where aIl and bIl are unknown constants we need to estimate later.

Similarly, the denominator F̃ (Vl) can be approximated by

Ã(Vl) =
∑

J∈J
ÃG(Vl) =

∑

J∈J
ãJlv

tẽJlẽJlv + b̃Jl, (3.12)

where ãJl and b̃Jl are unknown constants and ẽJl = (Ip − Ml)Xh̃J . Then the objective

function is approximated by:

argmax
v

tr (vtS1v)

tr (vtS2v)
, (3.13)

where S1 =
∑

I∈I aIleIle
t
Il + bIlIp and S2 =

∑

J∈J ãJlẽJlẽ
t
Jl + b̃JlIp. Therefore, the solution

vl is give by applying eigen-decomposition of S−1
2 S1.

Next we consider choosing parameters aIl and bIl that minimize the distance of F (Vl)

and A(Vl) for all possible v’s. First define αIl ∈ (−π/2, π/2] as the angle between v and the

vector eIl, so cosαIl = vteIl/‖eIl‖. Then we reformulate FI(Vl) and AI(Vl) as a function of

47



cos2 αIl:

FI(cos
2 αIl) = f

(

‖MlXhI‖2 + ‖eIl‖2 cos2 αIl

)

wI ,

AI(cos
2 αIl) = aIl cos

2 αIl + bIl.

A simple approach to finding aIl and bIl is through the first order Taylor expansion of

FI(cos
2 αIl) at some particular value of cos2 αIl, which is used in the optimization process

for parametric and non-parametric multi-class classification problems in the next section.

Rigorously, we solve for the parameter aIl and bIl by the minimum mean squared error of

FI(cos
2 αIl) and AI(cos

2 αIl), that is

arg min
aIl, bIl

∫ π
2

−π
2

(

aIl cos
2 α + bIl − fI

(

‖MlXhI‖2 + ‖eIl‖2 cos2 α
)

wI

)2
dα. (3.14)

3.3.3 Two examples of optimization

In the following we give the solutions to the optimization using the parametric classification

accuracy measure and non-parametric measure introduced in Section 3.2.1.

Example 1: Parametric classification accuracy measure. The objective function is given

in (3.3) and the corresponding settings in our general framework are given in Appendix

B. With the non-linear error function involved, the solution of the exact minimum mean

square error is analytically infeasible. We approximate G(Vl) = FI(cos
2 αIl) by its first order

Taylor expansion and then solve for the parameters by minimizing the mean square error

in Equation (3.14). The Taylor expansion is performed at the point cos2 αIl = 1 as shown

below:

FI(cos
2 αIl)=wI

[

1

2
+

1

2
erf

(

1

2
√
2
(‖MlXhI‖2 + ‖eIl‖2 cos2 αIl)

1/2
)]

≈FI (1) + F ′
I (1)

(

cos2 αIl − 1
)

=wI

[

1

2
+

1

2
erf

(‖XhI‖
2
√
2

)]

+
wI

4
√
2π

‖eIl‖2
‖XhI‖

exp

(

−‖XhI‖2
8

)

(cos2 αIl − 1),(3.15)
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where F ′
I(1) denotes the first derivative of FI(t) at the point t = 1. Then the optimal values

for the parameters aIl and bIl of AI(cos
2 αIl) would be:

aIl =
wI

4
√
2π

‖eIl‖2
‖XhI‖

exp

(

−‖XhI‖2
8

)

bIl = wI

[

1

2
+

1

2
erf

(‖XhI‖
2
√
2

)]

− wI

4
√
2π

‖eIl‖2
‖XhI‖

exp

(

−‖XhI‖2
8

)

.

To get more precise approximation of FI(cos
2 αIl), we can use piecewise Taylor expansion

which first divides the value of cos2 αIl into several pieces and then takes the Taylor expansion

for each piece. As the number of pieces grows, we get better and better approximation. Here

we illustrate using the simple one-piece Taylor expansion.

Loog et al. (2001) proposed an approximate pairwise accuracy criterion (aPAC) to ap-

proximate the Bayesian accuracy in (3.3) by using the linear approximation function 1
2
+

1
2
erf

(

‖XhI‖
2
√
2

)

cos2(αIl) where the corresponding parameters are aIl =
1
2
erf

(

‖XhI‖
2
√
2

)

and bIl =

1
2
. With such a linear function, the approximate objective function equals the Bayesian

criteria at the particular points αIl = 0, π
2
, π. We can see there are three major differences

between aPAC and the proposed CDA: (i) the chosen linear approximation function of aPAC

only matches the true Bayesian accuracy at some particular positions where αIl = 0, π
2
, π,

which tends to arise large errors in the other positions; whereas our method is trying to

minimize the mean square error over all the positions jointly. (ii) aPAC always assume

the intercept of the approximation to be 1/2, which restricts the performance of approxi-

mation; while CDA allows for arbitrary intercept. (iii) aPAC solves for multiple directions

in a sequentially independent manner which ignores the influence of the previously found

directions; whereas our method finds the multiple dimensional in a complimentary manner

by updating the objective function at each step.

The approximation curves AI(cos
2 αI1) of our method CDA and aPAC against the true

function curve FI(cos
2 αI1) when solving for the first direction v1 are shown in Figure 3.2.

The figure indicates that our method approximates the Bayesian accuracy better than aPAC
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Figure 3.2: Comparison of the true objective function (solid line) in (3.3) and the approx-
imated linear functions by CDA (dotted line) and aPAC (dashed line) versus angle α (as
shown in (a) and (b)) and cos2(α) (as shown in (c) and (d)) when solving for the first di-
rection v1. Figures (a) and (c) are plotted with ‖XhI‖2 = 1, while figures (b) and (d) are
plotted with ‖XhI‖2 = 1.5.
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and are stable with different class distances ‖XhI‖2. On the other hand, aPAC tends to

underestimate the true function when solving for the first projection vector. This is due

to the restriction that the approximation function should match the true function at the

three particular points and that the intercept is always set to 1/2. As the class distance

DI1 becomes larger, the performance of aPAC is worse. Moreover, the improvement of CDA

becomes more obvious for the second projection direction because we apply the sequentially

dependent searching strategy. More illustration will be shown in the experiment section.

In addition, it’s worth pointing out that the objective function of our method after linear

approximation can be viewed as a weighted FDA. Recall that the objective function of FDA

at the l-th step is given by:

Gl(v) =
∑

I∈I
aIl tr(veIle

t
Ilv

t), (3.16)

where I = {(i, j) ; 1 ≤ i < j ≤ K} and aIl = wI = pipj . Assume the prior probabilities of all

classes are the same, then Gl(v) is simply the summation of all class-pair distance. We can

rewrite our objective function after linear approximation in (3.15) in the same form of (3.16)

with the coefficient aIl =
wI

4
√
2π

‖eIl‖2
‖XhI‖ exp

(

−‖XhI‖2
8

)

. Besides the item wI and the constant, we

have one more item 1
‖XhI‖ exp

(

−‖XhI‖2
8

)

· ‖eIl‖2 where the left part is a decreasing function

of ‖XhI‖ and the right part is an increasing function of ‖eIl‖. Therefore, the large class-pair

distance is weighted down by the first part and the importance of the remaining class-pair

distance is controlled by the second part. Similarly, we can formulate aPAC into the form of

(3.16) by setting aIl = wI
1

2‖XhI‖2 erf(
‖XhI‖
2
√
2
). The extra term 1

2‖XhI‖2 erf(
‖XhI‖
2
√
2
) is a decrease

function of ‖XhI‖, which shrinkages the contribution of large class distance. From this point

of view, we can see that both aPAC and CDA improve the objective function of FDA by

re-weighting and CDA further considers the influence of class distance on the remaining

space at each step.

Example 2: Non-parametric classification accuracy measure. Following the same pro-

cedures as in the parametric case, we first take Taylor expansion of FI(cos
2 αIl) at point
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cos2(αIl) =
1
2
, that is,

FI(cos
2 αIl)=exp

(

−‖MlXhI‖2 + ‖eIl‖2 cos2 αIl

ǫ

)

≈FI

(

1

2

)

+ F ′
I

(

1

2

)(

cos2 αIl −
1

2

)

=

(

1 +
‖eIl‖2
2ǫ

)

exp

(

−‖MlXhI‖2 + ‖eIl‖2/2
ǫ

)

−‖eIl‖2
ǫ

exp

(

−‖MlXhI‖2 + ‖eIl‖2/2
ǫ

)

cos2 αIl. (3.17)

Then we can derive aIl and bIl as:

aIl = −‖eIl‖2
ǫ

exp

(

−‖MlXhI‖2 + ‖eIl‖2/2
ǫ

)

bIl =

(

1 +
‖eIl‖2
2ǫ

)

exp

(

−‖MlXhI‖2 + ‖eIl‖2/2
ǫ

)

.
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Figure 3.3: Comparison of the true objective function (solid line) in (3.5) and the approx-
imated linear functions by CDA (dotted line) and aPAC (dashed line) versus angle α (as
shown in (a)) and cos2(α) (as shown in (b)) when solving for the first direction v1. For both
plots, ‖XhI‖2 is set to be 1.

The approximation curve against the nonlinear objective function is shown in Figure 3.3.
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We can see that the approximation curve by one piece first-order Taylor expansion at point

1/2 is very close to the objective function. The aPAC approximation in the figure has the

form 1+ (exp (−‖XhI‖2/ǫ)− 1) cos2 αIl which matches the true objective function at points

αIl = 0, π
2
, π.

3.4 Experiments

In this section, we evaluate the performance of our proposed optimization approach of the

general framework on a synthetic dataset and several real data sets.

3.4.1 Toy example revisited

We first revisit the toy example introduced in Section 3.1. As discussed before, the solution

given by FDA is not optimal due to the discrepancy between the objective function and

the classification accuracy. Loog et al. (2001) proposed a new objective function named

approximate pairwise accuracy criterion (aPAC) to deal with the sub-optimality of FDA.

However, they did not incorporate the influence of the previously found directions in their

algorithm. Our method CDA first reconstructs the objective function directly linked with

the classification accuracy and then solves for the complementary directions sequentially. We

compare the performance of these methods in Figure 3.4 by showing the data points in the

2-dim reduced space derived by these methods. It is clear that FDA separates two classes

away from others and leaves classes a and b mixed together, which is consistent with the

explanation in Section 3.1. Not surprisingly, aPAC also fails to separate these two classes

even with the revised objective function. Only CDA successfully separates the four classes

in the 2-dim reduced space.
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(a) FDA

(b) aPAC

(c) CDA

Figure 3.4: Visualization of the data points in the 2-dim reduced subspace derived by FDA,
aPAC and CDA for the toy example. We only show the randomly selected 50 data points in
each class for a better view here.
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3.4.2 Synthetic data

In the simulation study we generate K = 15 classes of data in R
15. There are N = 100

data points in each class. Data points in each class are generated from a multivariate normal

distribution with known mean µi (i = 1, . . . , 15) and covariance Σ. The covariance Σ, shared

by all classes, is set as the sample variance of 2p random number generated from Unif(−4, 4).

The means for the 15 classes are generated from the following three different ways:

• C1: Normal distribution with mean 0 and standard deviation 1,

• C2: Log-normal distribution with mean 0 and standard deviation 1,

• C3: t distribution with degree of freedom 10.

To test how our method handles data with outlier classes, we first randomly selected five

classes and then replace one randomly chosen dimension mean with some large number for

each of the five classes.

The reduced subspace with dimensionalitym ranging from 1 to 14 is computed by learning

the projection matrix Vm×p using our parametric measure in (3.3). The performance of the

reduced subspace is measured by classification error, where we use the maximum a posterior

classification based on the mixture of Gaussians. We use 70% of the whole dataset for

training purpose and the rest for testing. Then the classification error rates averaged over 20

experiments with respect to the dimensionality of the reduced space based on FDA, aPAC

and CDA on the training and testing data are reported. Figure 3.5 show the averaged

classification error rates as a function of the subspace dimensionality ranging from 1 to 14.

Table 3.1 lists the averaged classification error rates and the standard deviation of the 2-dim,

4-dim, 6-dim and 8-dim reduced space.

From these figures, we can see that our method CDA achieves the best performance

compared to aPAC and FDA with subspace dimensionality ranging from 1 to 10 for both

training and testing data sets. Take the 4-dim reduced space of the simulated data from C1

for example: FDA achieves 41.47% classification error rate, which is reduced to 35.84% by
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Figure 3.5: Averaged classification error rates as a function of the dimensionality of the
reduced space for training data set (a, c, e) and testing data set (b, d, f) with 15 classes in
15 dimensional space generated by three different ways.
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aPAC and further to 30.99% by CDA. All the three methods perform similarly with larger

subspace dimensionality as there is little information lost in this situation. Moreover, there

is no obvious difference of the performance for the three experiment settings.

C1
m FDA aPAC CDA
2 0.5336 ( 0.0492 ) 0.4690 ( 0.0484 ) 0.4332 ( 0.0408 )
4 0.4147 ( 0.0469 ) 0.3584 ( 0.0393 ) 0.3099 ( 0.0428 )
6 0.3092 ( 0.0440 ) 0.2828 ( 0.0372 ) 0.2507 ( 0.0396 )
8 0.2523 ( 0.0359 ) 0.2447 ( 0.0372 ) 0.2316 ( 0.0414 )

C2
m FDA aPAC CDA
2 0.5083 ( 0.0583 ) 0.4496 ( 0.0503 ) 0.4081 ( 0.0704 )
4 0.3839 ( 0.0442 ) 0.3056 ( 0.0645 ) 0.2523 ( 0.0607 )
6 0.2576 ( 0.0585 ) 0.2318 ( 0.0558 ) 0.1978 ( 0.0581 )
8 0.1994 ( 0.0590 ) 0.1909 ( 0.0601 ) 0.1753 ( 0.0536 )

C3
m FDA aPAC CDA
2 0.5043 ( 0.0665 ) 0.4271 ( 0.0717 ) 0.3979 ( 0.0628 )
4 0.3697 ( 0.0662 ) 0.3028 ( 0.0627 ) 0.2660 ( 0.0586 )
6 0.2712 ( 0.0636 ) 0.2454 ( 0.0582 ) 0.2196 ( 0.0553 )
8 0.2260 ( 0.0573 ) 0.2146 ( 0.0534 ) 0.2003 ( 0.0542 )

Table 3.1: Averaged classification error rates and standard deviation of the testing sets over
20 experiments for the simulation data.

Similarly to the toy example, we also show the data points projected to the 2-dim reduced

space given by FDA, aPAC and FDA in Figure 3.6. With the 15-class data, none of the

methods successfully separates all of them. A direct way to compare the performance of

these methods is to count how many classes are still mixed together. From the figure, we

observe that FDA still leaves many class mixed together, aPAC separates more classes than

FDA but still leaves quite a few classes overlapping with each other, while our method CDA

separates most of the classes.
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(a) FDA

(b) aPAC

(c) CDA

Figure 3.6: Visualization of the data points in 2-dim reduced subspace given by FDA, aPAC
and CDA for the testing set generated by C1.
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3.4.3 PIE database

We further investigate the performance of the proposed method on the CMU PIE database

for face recognition. This database contains 41,368 face images from 68 individuals. For

each individual, face images of varying pose, illumination, and expression are captured by 13

synchronized cameras under 21 flashes. We choose the five near frontal poses (C05, C07, C09,

C27, C29) and use all such images under different illuminations, lighting and expressions,

which leaves us 170 near frontal face images for each individual. The image size is 32× 32,

which gives a 1,024-dim feature. The dimension of each image is reduced to 120 by PCA as

a preprocessing step for all the following experiments. A random subset with 50 images per

individual is taken to form the training set, while the rest of the database is considered to

be the testing set. We report the averaged classification error rates based on 1NN over 20

random splits in Fig. 3.7 and Table 3.2 where results obtained using FDA and aPAC are

also reported respectively.
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Figure 3.7: Classification error rate based on FDA (dashed line), aPAC (dotted line), and
CDA (dash dotted line) versus the reduced dimension for the CMU PIE database.

For this real data set, the performance of CDA is comparable with those of FDA and

aPAC when projected to the subspace with dimensionality ranging from 1 to 3. For ex-
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d FDA aPAC CDA
2 0.7818 ( 0.0207 ) 0.7706 ( 0.0078 ) 0.7815 ( 0.0092 )
4 0.4128 ( 0.0108 ) 0.3655 ( 0.0150 ) 0.3390 ( 0.0167 )
6 0.2631 ( 0.0158 ) 0.2129 ( 0.0273 ) 0.1517 ( 0.0125 )
8 0.1928 ( 0.0084 ) 0.1395 ( 0.0162 ) 0.0915 ( 0.0062 )
10 0.1484 ( 0.0089 ) 0.1000 ( 0.0071 ) 0.0651 ( 0.0052 )
12 0.1175 ( 0.0065 ) 0.0775 ( 0.0055 ) 0.0511 ( 0.0035 )
14 0.1011 ( 0.0068 ) 0.0633 ( 0.0042 ) 0.0434 ( 0.0035 )

Table 3.2: Averaged classification error rates and standard deviation as a function of subspace
dimensionality over 20 experiments for CMU PIE data set

ample, all the three methods can only achieve roughly 22% classification accuracy in the

3-dim reduced space. With larger subspace dimensionalities, the differences among the three

methods become more apparent. When the dimensionality of the subspace is allowed to be

8, our method obtains an averaged classification error rate of 9.15%, followed by 13.95% for

aPAC and 19.28% for FDA.

3.4.4 UCI data

In this part, we evaluate the performance of our criteria of non-parametric classification on

the following four data sets from the UCI repository: a glass with 214 observations belonging

to 6 classes, an E coli dataset with 336 proteins sequences each-labeled as one of the eight

classes, a wine dataset including the quantities of 13 constituents for 178 instances found in

each of the three types of wines, an ionosphere data with 34 continuous variables for 351

observations in 2 classes. For each data set, we use 70% of the observations for training and

the left for testing. We report the averaged classification accuracy rates based on KNN over

20 random splits in Figure 3.8 and Table 3.3 when projected to the 2-dim subspace.

Figure 3.8 shows that our proposed method CDA outperforms PCA and FDA consis-

tently and obtains comparable results with NCA in all the four data sets. Note that NCA

used a gradient based optimizer to solve for the projection directions while our method ap-

plies a simple approximation and derives the projection directions by eigen-decomposition.
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Figure 3.8: Classification accuracy rates in 2-dim subspace given by PCA, FDA, aPAC and
CDA for chosen UCI data sets over 20 experiments.

glass ecoli wine ion
0.3862 ( 0.0382 ) 0.2700 ( 0.0224 ) 0.4391 ( 0.0506 ) 0.4334 ( 0.0511 )
0.2718 ( 0.0285 ) 0.2800 ( 0.0300 ) 0.4655 ( 0.0789 ) 0.5620 ( 0.0600 )
0.6524 ( 0.0397 ) 0.8284 ( 0.0448 ) 0.9560 ( 0.0323 ) 0.9098 ( 0.0427 )
0.5449 ( 0.0243 ) 0.6411 ( 0.0291 ) 0.8062 ( 0.0472 ) 0.7448 ( 0.0382 )

Table 3.3: Averaged classification accuracy rates and standard deviation on the four UCI
data sets over 20 experiments.

Therefore, we can get very good performance using simple optimization approach in this

experiment.

3.5 Discussion and Conclusions

In this paper we proposed a unified dimension reduction framework Complementary Dimen-

sion Analysis for classification. Two objective functions are introduced which are directly

linked to the classification accuracy of the projected data onto the reduced dimension sub-

space. We then presented a unified objective function which generalizes the two particular

objective functions. A numerical algorithm is proposed to solve the proposed general opti-
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mization problem. Wide connections are established between our general framework with

existing dimension reduction methods including PCA, FDA, Local FDA, etc. Experiments

on simulated data and real data demonstrate superior performance of the proposed method.
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Appendix A

Bayes Accuracy for Binary

Classification

Recall that we have a dataset represented as a p × n matrix X consisting of n data points

xi ∈ R
p (i ∈ {1, . . . , n}) and a set of labels yn×1 = (y1, . . . , yn) where yi ∈ 1, . . . , K. The

data X is assumed to follow a mixture of normal distributions, the same as the assumption

for parametric classification in Section 3.2.1.

Here we only show how to derive Bayes accuracy for two classes (K = 2) as K-class

(K > 2) Bayes accuracy can be decomposed into 1
2
K(K − 1) two-class Bayes accuracy. For

simplicity, we set the within-class covariances for both classes as Ip and assume that the

two classes have equal prior probabilities, i.e. p(yi = 1) = 1
2
and p(yi = 2) = 1

2
. Then the

probability density function of X can be written as:

f(X) =
1

2
N(X ;µ1, Ip) +

1

2
N(X ;µ2, Ip)

where µ1 and µ2 are the means for classes 1 and 2 respectively.

For the simple case with p = 1, the optimal classifier is determined by the center of the

two means: µ1+µ2

2
. Without loss of generality, we assume µ1 ≤ µ2. Then the Bayes decision

is

yi =











1, if xi ≤ µ1+µ2

2

2, otherwise
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The corresponding Bayes assuracy can be computed as follows:

A1 =
1

2

∫
µ1+µ2

2

−∞
φ1(x− µ1)dx+

1

2

∫ ∞

µ1+µ2
2

φ1(x− µ2)dx

=

∫
|µ1−µ2|

2

−∞
φ1(z)dz

=
1

2
+

1

2
erf(

|µ1 − µ2|
2
√
2

) (A.1)

where φ1(x) = N(x; 0, 1) and erf( x√
2
) =

∫ x

−x
φ1(z)dz.

When p > 1, the optimal Bayesian decision is given by:

yi =











1, if log p(yi=1|xi)
p(yi=2|xi)

> 0

2, otherwise

where

log
p(yi = 1|xi)

p(yi = 2|xi)
= log

p(xi|yi = 1)p(yi = 1)

p(xi|yi = 2)p(yi = 2)

= −1

2
(xi − µ1)

t(xi − µ1) +
1

2
(xi − µ2)

t(xi − µ2)

= (µ1 − µ2)
txi −

1

2
(µt

1µ1 − µt
2µ2) .

Therefore the decision boundary is given by (µ1−µ2)tX
‖µ1−µ2‖ =

µ1µt
1−µ2µt

2

‖µ1−µ2‖ := C and the Bayes

accuracy is:

Ap =
1

2

∫

φp(x− µ1)1{ (µ1−µ2)
tx

‖µ1−µ2‖
>C}dx+

1

2

∫

φp(x− µ2)1{ (µ1−µ2)
tx

‖µ1−µ2‖
≤C}dx, (A.2)

where φp(x− µi) = N(x;µi, Ip).

Let zi = W txi = (z1, · · · , zp)t where W is a p×p orthogonal matrix such that WW t = Ip,

and the first column of W is equal to (µ1−µ2)t

‖µ1−µ2‖ . Then we have f(zi|yi = k) ∼ N(Wµi, Ip) for

k = 1, 2. Using the transformed variable zi, we could rewrite the Bayesian decision boundary
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as z1 = C and the corresponding Bayes accuracy in Equation (A.2) as:

Ap =
1

2

∫ ∞

C

f(z1|yi = 1)dz1 +
1

2

∫ C

−∞
f(z1|yi = 2)dz1

=
1

2

∫ ∞

C

φ1(z1 −
(µ1 − µ2)

tµ1

‖µ1 − µ2‖
)dz1 +

1

2

∫ C

−∞
φ1(z1 −

(µ1 − µ2)
tµ2

‖µ1 − µ2‖
)dz1

=
1

2

(

1

2
+

1

2

∫ C1

−C1

φ1(z)dz

)

+
1

2

(

1

2
+

1

2

∫ C2

−C2

φ1(z)dz

)

=
1

2
+

1

2

∫ C

−C

φ1(z)dz

=
1

2
+

1

2
erf(

‖µ1 − µ2‖
2
√
2

) (A.3)

where we have used the following two equations in the derivation.

C1 = −(C − (µ1 − µ2)
tµ1

‖µ1 − µ2‖
) =

‖µ1 − µ2‖
2

,

C2 = C − (µ1 − µ2)
tµ2

‖µ1 − µ2‖
=

‖µ1 − µ2‖
2

.

We can see the Bayes accuracy in 1-dim (A.1) and p-dim (A.3) have exactly the same

form. Therefore we can write the Baye accuracy for any two classes in the general form:

A =
1

2
+

1

2
erf(

‖µ1 − µ2‖
2
√
2

).
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Appendix B

Connection of Our General

Framework to Most Popular

Dimension Reduction Algorithms

As mentioned in Section 3.2.3, quite a few dimension reduction algorithms can be reformu-

lated into our general framework in (3.6) and FDA was shown as an example. In this part,

we will include a few more examples.

1. For the objective function of parametric measure of classification accuracy in (3.3),

it can be written in the form of (3.6) by setting I = {(i, j) ; 1 ≤ i < j ≤ K},

f(t) = 1
2
+ 1

2
erf

( √
t

2
√
2

)

, wI = pipj, the ℓ-th (1 ≤ ℓ ≤ n) entry of hI equal to

1{yℓ=yi}n
−1
yi
−1{yℓ=yj}n

−1
yi
, and J as an empty set.

2. Similarly for the objective function of non-parametric measure of classification accuracy

in (3.5), we can set I = {(i, j) ; yi = yj = k, 1 ≤ k ≤ K}, J = {(i, j) ; 1 ≤ i < j ≤ n},

f(t) = f̃(t) = exp(−t/ǫ), wI = w̃J = 1, and the ℓ-th entry of hI and h̃J equal to

1{ℓ=i} − 1{ℓ=j} in our general framework to include it as a special case.

3. Principal Component Analysis (PCA) is a commonly used algorithm for unsupervised

dimension reduction. The goal is to seek a p ×m projection matrix V such that the

maximum variability is reserved on the reduced space, that is,

argmax
V, vtivi=1

tr(VtSV) (B.1)

where S = n−1
∑n

i=1(xi − x̄)(xi − x̄)t and x̄ = n−1
∑n

i=1 xi. We can reformulate the

objective function into our framework by setting I = {i; 1 ≤ i ≤ n}, f(t) = t, wI = 1,

the ℓ-th entry of hI equal to 1{ℓ=i} − n−1, and J as an empty set.
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4. Locality Preserving Projections (LPP) attempts to preserve the the local structure of

the data in the reduced space. The objective function is given by:

argmax
V, vtivi=1

∑

(i,j),1≤i<j≤n ||Vt(Xi −Xj)||2Sij
∑n

i=1 ||VtXi||2
∑

j 6=i Sij

(B.2)

where the weight function Sij = exp (−||Xi −Xj||2/t) if ||Xi − Xj||2 < ǫ and Sij = 0

otherwise. Here t is a non-zero real number and ǫ > 0 defines the radius of the local

neighborhood. Apparently, this objective function can be reformulated into our general

framework by setting I = {(i, j) , 1 ≤ i < j ≤ n}, f(t) = t, wI = SI and the ℓ-th entry

of hI equal to 1{ℓ=i} − 1{ℓ=j} for the numerator, and J = {i, 1 ≤ i ≤ n}, f̃(t) = t,

w̃J =
∑

j,j 6=i Sij and the ℓ-th element of h̃J equal to 1{ℓ=i} for the denominator.

5. Li (1991) introduced Sliced Inverse Regression (SIR) to find the effective dimension

reduction directions to reduce the dimension of input data X without loss of infor-

mation on the conditional distribution of Y |X where Y is the response variable. For

convenience, the input data X is usually standardized as Z = Σ−1/2(X − µ) where µ

and Σ are the mean and variance of the data respectively. When the response variable

Y is discrete, the SIR kernel M is directly defined as M =
∑K

k=1
nk

n
mkm

t
k where nk and

mk denote the number of observations and the mean of class k respectively. When the

response variable Y is continuous, the algorithm first divides Y into K slices according

to its range and then computes the sample mean of each slice. Withe the kernel matrix

M , the objective function of SIR is:

argmax
V, vtivi=1

tr(VtMV). (B.3)

Again, this objective function can be written as a special case of our general form by

setting I = {i, 1 ≤ i ≤ K}, f(t) = t, wI =
ni

n
, the ℓth entry of hI equal to n−1

i 1{yℓ=i},

and J as an empty set.
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6. Local FDA was proposed by Sugiyama (2007) to improve FDA by re-weighting the

contribution to the calculation ofB andW from pairs of the L2 distance. The objective

function is in the same form of FDA but with B and W defined as:

B =
1

2

n
∑

i,j=1

Bi,j(xi − xj)(xi − xj)
t and W =

1

2

n
∑

i,j=1

Wi,j(xi − xj)(xi − xj)
t,

where Bi,j = Ai,j/nk if yi = yj = k, 0 otherwise, and Wij = Ai,j(1/n − 1/nk) if yi =

yj = k, 1/n otherwise. Here A is a n×n affinity matrix with Ai,j ∈ [0, 1] describing the

similarity between data points xi and xj . Similar to FDA, we can include this algorithm

as a special case of our general framework by setting I = J = {(i, j) , 1 ≤ i < j ≤ n},

f(t) = f̃(t) = t, wI = BI , w̃J = WJ , and the ℓ-th entry of hI and h̃J equal to

1{ℓ=i} − 1{ℓ=j}.
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