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ABSTRACT 

 

Estrogen-associated cancers are a leading cause of mortality and morbidity in 

U.S. men and women. Consumption of cruciferous vegetables, such as broccoli, 

cauliflower and cabbage, is associated with reduced risk for these and other cancers. 

The chemoprotective properties of crucifers are traditionally attributed to high levels of 

glucosinolates and their bioactive breakdown products. 

A proposed mechanism of protection against estrogen-associated cancers by 

cruciferous vegetables is alteration of estrogen metabolism toward formation of less 

estrogenic metabolites. Supplementation with the glucosinolate breakdown product 

indole-3-carbinol (I3C) has been shown to increase formation of 2-hydroxyestrogens, 

estrogen metabolites with weak estrogenic activity. However, the observed reduction in 

risk for estrogen-associated cancers with increased consumption of cruciferous 

vegetables may relate to increased formation of anticarcinogenic 2-methoxyestrogens 

derived from further metabolism of 2-hydroxyestrogens. 

In this study, glucosinolate breakdown products found in broccoli enhanced 

formation of 2-methoxyestradiol from the parent compound 17β-estradiol in vitro and ex 

vivo, mainly via upregulation of the phase I detoxification enzyme cytochrome P450 

(CYP) 1A. Broccoli inhibited growth of human prostate and ovarian cancer cells via 

induction of apoptosis, but this was not due to formation of 2-methoxyestradiol. 

Compared to the purified glucosinolate breakdown products I3C and sulforaphane (SF), 

broccoli inhibited cancer cell growth to a greater extent. 
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Both SF and the flavonols quercetin and kaempferol have been shown 

individually to upregulate activity of the phase II detoxification enzyme NAD(P)H 

dehydrogenase, quinone 1 (NQO1). The present study demonstrated that combinations 

of purified SF, quercetin and kaempferol increased NQO1 activity in a synergistic 

manner in murine hepatoma cells. 

Broccoli is an active accumulator of selenium, and the concentration of this 

mineral in the plant tissue may be orders of magnitude greater than that in the soil. 

Selenium enrichment has been shown to enhance the anticarcinogenic property of 

broccoli. An underlying mechanism may be upregulation of CYP1A and NQO1 activities, 

which may result in enhanced inactivation and subsequent excretion of potentially 

carcinogenic compounds. In this study, selenium enrichment resulted in increased 

levels of the indole glucosinolate neoglucobrassicin in the plant tissue, and a 

concomitant increase in CYP1A and NQO1 activities in vitro. Breakdown products of 

neoglucobrassicin, but not selenium, appear to account for the observed increase in 

CYP1A activity; their effect on NQO1 activity remains to be determined. 

Taken together, these results show that I3C and SF, the main bioactive 

glucosinolate breakdown products derived from broccoli, are not solely responsible for 

the anticancer effects of broccoli. Rather, other bioactive compounds present in the 

vegetable, alone or in combination, may contribute to the chemopreventive potential of 

the vegetable. 
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CHAPTER 1 

Introduction 

 

Estrogen-associated cancers are a leading cause of mortality and morbidity in 

U.S. men and women. For 2010, an estimated 39% of all new cancer cases and 24% of 

all cancer deaths in women were attributed to cancers of the breast, ovary and uterus. 

In men, prostate cancer accounted for 28% of all new male cancer cases and 11% of all 

male cancer deaths (1). Comparable incidence patterns are found in other western 

societies, suggesting that environmental factors, including nutrition, play an important 

role in the development of the disease (2).  

The overall incidence of cancer may be reduced significantly by adopting an 

appropriate diet rich in plant-based foods (3). This assumption is reflected in the 

American Cancer Society Guidelines on Nutrition and Physical Activity for Cancer 

Prevention, which emphasize consumption of fruits, vegetables and whole grains (4). Of 

particular interest are the cruciferous vegetables, such as broccoli, cauliflower and 

cabbage. Compared to all fruits and vegetables, consumption of crucifers is associated 

with reduced risk for various cancers, including those influenced by estrogen status (5-

7). This enhanced chemoprotective effect of crucifers is traditionally attributed to high 

levels of glucosinolates and their bioactive breakdown products (5, 8). 

A proposed mechanism of protection against estrogen-associated cancers by 

cruciferous vegetables is alteration of estrogen metabolism toward formation of less 

estrogenic metabolites (9). Supplementation with the broccoli glucosinolate breakdown 

product indole-3-carbinol (I3C) has been shown to increase formation of 2-
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hydroxyestrogens with relatively weak estrogenic activity compared to the alternative 

metabolite 16α-hydroxyestrogen (10), and this change in metabolism is associated with 

lower risk for cancer of the breast (11, 12), ovary (13) and prostate (14). However, 

accumulation of 2-hydroxyestrogens is not necessarily beneficial, since this metabolite 

could undergo subsequent oxidation to highly reactive estrogen quinones and lead to 

formation of stable DNA adducts, which may initiate carcinogenesis (15-17). 2-

Hydroxyestrogens can also be methylated to 2-methoxyestrogens (18). In particular, 2-

methoxyestradiol has emerged as a promising anticancer agent and is currently being 

evaluated in phase I and II clinical trials (19, 20). Presently, the relationship between 

glucosinolate breakdown products found in broccoli and formation of 2-methoxyestradiol 

is essentially unknown. 

Selenium-enriched broccoli has been shown to further enhance activity of the 

detoxification enzymes cytochrome P450 (CYP) 1A and NAD(P)H dehydrogenase, 

quinone 1 (NQO1) (21), which may, in part, be responsible for its greater 

chemoprotective effect compared to standard broccoli. Besides increasing the levels of 

selenium in the plant tissue, enrichment altered the glucosinolate profile of the plant 

(21). Whether the increase in detoxification enzyme activity is directly due to higher 

concentrations of selenium in the plant, or a result of changes in the glucosinolate 

content remain to be determined. 

The overarching goal of this study was to determine the effect of broccoli 

bioactives, either as purified compounds or as a mixture derived from the whole food, 

on formation of anticarcinogenic 2-methoxyestradiol, and on human prostate and 

ovarian cancer cells. Possible interactive effects between purified compounds on cancer 
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cell growth and detoxification enzyme activity were also evaluated, as well as the impact 

of selenium-enrichment on the bioactivity of broccoli. The results of this study will 

provide further insight into which bioactives are responsible for the anticancer effects of 

broccoli, and contribute to the development of broccoli with enhanced health benefit 

through enrichment with bioactive components. 
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CHAPTER 2 

Literature review1 

 

2.1. Estrogen-associated cancers 

Estrogens are involved in numerous biological processes including female 

reproductive development, bone formation and maintenance, cardiovascular and 

neurological health (22). However, prolonged and cumulative exposure to estrogens, as 

a result of early menarche, late menopause, absence of pregnancies or late first 

pregnancy, is thought to increase risk for various cancers, including those of the breast, 

ovary and uterus (23-27). In the United States, estrogen-associated cancers are a 

leading cause of morbidity and mortality in women. In 2010, cancers of the breast, ovary 

and uterus accounted for 39% of all new cancer cases in women, and for 24% of all 

cancer deaths in women. Of these cancers, cancer of the breast was the most 

frequently diagnosed (28% of all new female cancer cases), but had the highest overall 

five-year survival rate (89%). This was in stark contrast to ovarian cancer: although 

women were less likely to be diagnosed with the disease (3% of all new female cancer 

cases), the overall five-year survival rate was less than 50%, thus making ovarian 

cancer the deadliest gynecological malignancy (1, 28). 

Prostate cancer is considered an androgen-associated disease; however, 

estrogens are thought to play an important role in the development of the disease as 

well. Estrogens have been shown to increase growth of prostate cancer cells in vitro 

(29), and enhance androgen-induced prostate cancer in an animal model (26). 

                                                             
1
 Figure 2.4. is reproduced, with permission of Annual Reviews, from Halkier BA, Gershenzon J. Biology 

and biochemistry of glucosinolates. Annu Rev Plant Biol. 2006;57:303-33. 
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Compared to white men, African-American men were shown to have an increased risk 

for prostate cancer (28). Serum estrogen levels were found to be significantly higher in 

African-American men in comparison to their white American counterparts (30). 

Circulating androgen levels, but not estrogen levels, were shown to decrease with 

increased age (31), resulting in a relative estrogen-dominant environment in the aging 

male. Taken together, these observations support the hypothesis that estrogens are a 

contributing factor in the development of prostate cancer. 

Prostate cancer is the most frequently diagnosed male cancer and the second 

leading cause of male cancer deaths. In 2010, prostate cancer made up 28% of all new 

male cancer cases and 11% of all male cancer deaths. Despite these high rankings, the 

overall five-year survival rate for prostate cancer was nearly 100% (1, 28). 

The differences in the overall five-year survival rate between ovarian (less than 

50%) and prostate cancer (nearly 100%) are in part due to the stage of the disease at 

the time of diagnosis: whereas 81% of all prostate cancer cases are diagnosed while 

the cancer is still confined to the primary site, 62% of ovarian cancer cases are 

diagnosed after the cancer had already spread to distant sites of the body. The five-year 

survival rate for prostate cancer drops to less than 30% if the disease has already 

metastasized; the five-year survival rate for women with localized ovarian cancer is 

92.5% (28). These numbers emphasize the importance of early cancer detection and 

the need for effective, reliable screening methods. 
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2.2. Diet and cancer 

Inherited genetic factors have long been viewed as the key determinants of 

cancer development. One of the first lines of evidence indicating that non-genetic 

factors could also play a role in the development of the disease came from the observed 

dramatic increase in malignant lung tumors among smokers in the early twentieth 

century (32). The variation in global cancer incidence between Western and non-

Western societies (Fig. 2.1) also suggests that non-genetic factors are involved in 

cancer development (33). While some of this variation can be explained by differences 

in cancer screening and diagnosis between Western and non-Western societies, the 

idea that non-genetic factors may contribute to cancer development is further supported 

by studies comparing patterns of cancer incidence between native-born and immigrant 

populations. These studies have consistently shown that whereas cancer incidence 

patterns of first-generation immigrants resemble those of their native country, 

subsequent generations tend to acquire the patters of their new country. Adoption of 

new incidence patterns was found to be particularly strong for estrogen-associated 

cancers in migrants moving from developing to developed societies (34-36). For women 

living in Western societies, the risk of developing an estrogen-associated cancer (of the 

breast, ovary or uterus) can be more than 2.5-fold greater compared to the risk for 

women living in non-Western societies (Fig. 2.2). Risk of prostate cancer can vary even 

more dramatically between different societies: Western men have a nearly 20-fold 

increased chance of developing the disease compared to non-Western men (Fig. 2.3). 

These observations show that risk for cancer, including those associated with estrogen 

status, is not determined by genetic factors alone, but also by external factors, such as 
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nutrition. Thus, changes in dietary patterns may alter the incidence rate for these 

diseases. 

The observed differences in global cancer incidence and between immigrants 

and their subsequent generations formed the basis of a landmark study by Doll and 

Peto that highlighted the role of non-genetic factors, including environmental and 

lifestyle factors such as diet, in the development of cancer. One of the conclusions from 

this study was that a diet rich in plant-based foods could reduce cancer incidence by as 

much as 40% (3). These results identified diet as a modifiable risk factor for cancer 

development and led to an extensive evaluation of the association between dietary 

patterns and cancer risk. In 2007, the World Cancer Research Fund, together with the 

American Institute for Cancer Research (AICR), published its Second Expert Report 

"Food, Nutrition, Physical Activity, and the Prevention of Cancer: A Global Perspective", 

an extensive systematic review addressing the causal associations between food, 

nutrition, physical activity and risk for various cancers. The Report stated that 

consumption of fruit and non-starchy vegetables “probably protects” against various 

cancers of the upper gastrointestinal tract, but that evidence suggesting a protective 

effect against other types of cancer, such as those of the lung, ovary and colon and 

rectum, is limited. Evidence suggesting that intake of starchy plant foods, especially 

when consumed whole or minimally processed, protects against colorectal cancer was 

found to be “probable”. The high level of dietary fiber found in these foods was thought 

to be responsible for their protective effect. Despite these less than compelling lines of 

evidence, the Expert Panel recommended consumption of a diet rich in foods of plant 

origin, in particular nutrient-dense foods. This recommendation was in part based on the 
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observation that protection against cancer is most often seen with diets that consist 

largely of plant-based foods. The Panel further justified their recommendation based on 

the observation that high intake of low energy-dense foods, such as fruits, vegetables 

and unrefined cereals, can protect against increased body fatness, a convincing risk 

factor for several types of cancer (37). 

Plant-based foods are a great source of essential nutrients, such as vitamins and 

minerals, but also of bioactive compounds called phytochemicals. Although these non-

nutrient compounds are not needed for optimal growth, development and maintenance 

of the human body, they are thought to be, in part, responsible for the “added health 

benefit” associated with consumption of a diet rich in foods of plant origin (37). 

Phytochemicals are classified based on their chemical structure and functional 

characteristics in the following categories: carotenoids, phenolics, alkaloids, nitrogen-

containing compounds, and organosulfur compounds (38). Most of these compounds 

are secondary plant metabolites and do not play a critical role in the plant‟s survival, but 

appear to have evolved because of their protective properties against herbivores and 

pathogens (39). In humans, phytochemicals may protect against multiple diseases of 

aging, including development of cancer via multiple mechanisms, including antioxidant 

activity, alteration of carcinogen metabolism via enzyme induction, increased DNA 

repair, arrest of cell cycle progression, promotion of apoptosis, suppression of 

proinflammatory responses, or inhibition of angiogenesis and metastasis (40, 41). 

The nutrient and non-nutrient composition of plant-based foods can vary greatly 

between species, but also within a species due to genetic differences as a result of 

selective breeding or genetic modification (42, 43). Environmental factors, agricultural 
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and processing practices, storage conditions and preparation methods can also affect 

the composition and concentration of nutrients and non-nutrients in plant tissue, as well 

as their bioavailability (21, 44-49). The variation in the biological response to these 

compounds may be increased as a result of the differences in composition and 

bioavailability, and this increase in variation could contribute to the relatively weak 

association between consumption of plant-based foods and reduced risk for cancer, as 

described in the second expert report. 

The goals and recommendations of the Second Expert Report were largely 

based on evidence derived from retrospective case-control studies and prospective 

cohort studies (37). Both studies rely on accurate recollection of the diet by study 

participants, and results may be flawed due to recall bias (50). The tendency of study 

participants to overreport intake of fruits, vegetables and whole grains, but underreport 

intake of processed foods and foods high in fat and sugar, can result in an 

underestimation of the association between higher intake of plant-based foods and 

reduced cancer risk. The use of biomarkers, such as blood and urine levels of dietary 

compounds and/or their metabolites, as a measure of dietary intake may be more 

accurate, but expensive and time-consuming methodology makes longitudinal 

measurements not feasible (51). 
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2.3. Cruciferous vegetables and cancer 

Although the Expert Panel judged the evidence supporting an association 

between total fruit and vegetable intake and overall cancer risk to be weak (37), this 

conclusion does not exclude the possibility that specific groups of fruits and vegetables 

may have a stronger protective effect on site-specific cancers (52). 

Within the different groups of non-starchy vegetables, cruciferous vegetables 

have gained considerable attention for their anticarcinogenic potential. Several 

epidemiological studies have suggested that crucifers, compared to all groups of fruits 

and vegetables, offer greater protection against certain types of cancer. These include 

cancers of the lung (5, 53), stomach (7, 53), bladder (6), colon and rectum (5, 7), 

prostate, and the estrogen-associated cancers of the breast (5), ovary (54), 

endometrium (55) and prostate (56). The protective effect of this group of vegetables is 

also highlighted on AICR‟s web site “Foods That Fight Cancer” (57); however, separate 

recommendations for intake of cruciferous vegetables have not been established. 

Cruciferous vegetables include the edible members of the Brassica genus, 

named after their four-petal flowers resembling a cross. They can be divided into 

vegetables that form a head, such as broccoli, cauliflower, cabbage and Brussels 

sprouts, and so-called headless vegetables, including kale, collards and mustard. 

Arugula, (horse)radish and watercress, although not part of the Brassica genus, are 

also considered crucifers (10). Despite their vast differences in appearance, cruciferous 

vegetables are unique in that they all contain high levels of sulfur and nitrogen-

containing glucosides called glucosinolates. These secondary metabolites, although not 

directly involved in growth, development and reproduction of the crucifer, are generally 
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believed to have evolved as part of the plant‟s protection against herbivory (58). 

Likewise, glucosinolates are not an essential component of the human diet; however, 

they are believed to be responsible for the greater protective effect that crucifers seem 

to offer compared to fruits and vegetables in general (59). 

In the plant, glucosinolates are sequestered in vacuoles (60). When the plant 

tissue is ruptured, for instance during mastication or food preparation, glucosinolates 

come into contact with the endogenous plant enzyme myrosinase. This β-

thioglucosidase catalyzes the hydrolysis reaction that removes the glycoside portion 

from the glucosinolates, resulting in the formation of glucose and an unstable aglycone 

intermediate. The aglycone rearranges to form different products, including 

isothiocyanates, nitriles, epithionitriles, oxazolidine-2-thiones, and thiocyanates (Fig. 

2.4). Of these breakdown products, isothiocyanates are thought to be responsible for 

the biological activity of the parent glucosinolate (8, 61). 

Broccoli is the second most consumed crucifer in the U.S. behind cabbage. The 

predominant glucosinolate hydrolysis products derived from broccoli are the 

isothiocyanate breakdown product indole-3-carbinol (I3C) from glucobrassicin, and the 

stable isothiocyanate sulforaphane (SF) from glucoraphanin (62). One of the first 

anticarcinogenic actions reported for broccoli-derived glucosinolate breakdown products 

was upregulation of the phase II detoxification enzyme NAD(P)H dehydrogenase, 

quinone 1 (NQO1) by SF (63). Phase II enzymes play an essential role in the cellular 

defense against damage by electrophiles and reactive oxygen species. Many of these 

enzymes catalyze conjugation reactions, which decrease the reactivity and 

simultaneously increase the water-solubility and excretion of potentially harmful 
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compounds (64). Expression of many of the phase II enzymes, including NQO1, is 

under control of the transcription factor nuclear factor E2-related factor 2 (Nrf2). Under 

normal conditions, Nrf2 is sequestered in the cytoplasma by kelch-like ECH-associated 

protein 1 (Keap1) and undergoes continuous ubiquitination and degradation. Under 

conditions of oxidative or electrophilic stress, Keap1 is inactivated, which allows de 

novo synthesized Nrf2 to translocate into the nucleus. There, it binds to the antioxidant 

response element of target genes, which upregulates their transcription (65, 66). In vitro 

studies have shown that SF is a potent inducer of nuclear Nrf2 accumulation (67, 68). 

This accumulation is thought to be the result of SF interacting with Keap1, thereby 

disrupting the Nrf2-Keap1 complex and releasing Nrf2 from its sequestered state, 

and/or disrupting the binding of Keap1 to newly synthesized Nrf2 molecules so they 

accumulate and pass into the nucleus (69, 70). Subsequent nuclear accumulation of 

Nrf2 was associated with increased expression of the antioxidant response element 

target gene heme oxygenase 1 (68). In Nrf2 knockout mice, both basal and SF-induced 

activity of NQO1 were shown to be substantially diminished compared to wild type mice 

(71). These data show that in vitro and in vivo upregulation of phase II detoxification 

enzymes by SF is, in part, mediated by Nrf2. 

Indole-3-carbinol and its major acid condensation product 3,3'-diindolylmethane 

(DIM), which is formed in the stomach, were first identified as inducers of aryl 

hydrocarbon hydroxylase, or cytochrome P450 (CYP) 1A1 (72). Cytochrome P450 

enzymes catalyze the majority of phase I detoxification reactions, including oxidation, 

reduction and hydrolysis, and both endogenous and xenobiotic compounds can act as 

substrates. Phase I reactions can lead to formation of highly reactive electrophilic 
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intermediates, as is the case with procarcinogens, such as benzo[a]pyrene. However, 

formation of an electrophilic intermediate activates phase II detoxification enzymes, 

which results in inactivation and elimination of the reactive compound, as described 

above (73, 74). 

Indole-3-carbinol and its derivative DIM have been shown to induce gene 

transcription via activation of the aryl hydrocarbon receptor. Upon ligand binding, the 

aryl hydrocarbon receptor moves into the nucleus where it is thought to complex with its 

nuclear translocator and bind to the xenobiotic response element on target genes. 

Activation of the aryl hydrocarbon receptor induces transcription of CYPs and other 

phase I detoxification enzymes, but also of phase II enzymes containing a xenobiotic 

response element in their promoter region. Therefore, I3C and DIM are considered 

bifunctional inducers, whereas SF, which activates phase II enzymes only, is 

considered a monofunctional inducer (75-77).  

Induction of phase I detoxification enzymes by I3C and DIM, and subsequent 

formation of potentially harmful compounds may seem to undermine the 

chemoprotective properties of cruciferous vegetables. However, multiple studies have 

shown that I3C and DIM can protect against formation of DNA adducts by chemical 

carcinogens, such as aflatoxin (78, 79), heterocyclic amines and polycyclic aromatic 

hydrocarbons (80, 81), and cigarette smoke (82). This protective effect may be the 

result of activation of phase II detoxification enzymes by I3C and DIM directly via the 

xenobiotic response element, instead of in response to formation of reactive 

intermediates. Another possibility is that I3C and DIM are relatively weak inducers of 

phase I detoxification enzymes compared to (pro)carcinogenic compounds, thereby 



 

14 

inhibiting carcinogen-induced enzyme activity through competition for binding to the aryl 

hydrocarbon receptor. 

Protection from xenobiotic insult via modulation of hepatic phase I and II 

detoxification enzyme activity is considered one of the main mechanisms by which 

broccoli exerts its anticarcinogenic effect. Chemoprotective actions of glucosinolate 

hydrolysis products that target cancer cells directly have also been identified. These 

include: modulation of drug transporters, which are involved in expelling potentially 

harmful compounds from the cell (83); inhibition of cell proliferation via induction of 

apoptosis and cell cycle arrest; modulation of hormone receptor expression; enhanced 

sensitivity to chemotherapeutic drugs; epigenetic regulation and inhibition of 

angiogenesis and metastasis (84, 85). Many of these effects have been reported in 

ovarian and prostate cancer cells, as well as many other cell types. These in vitro 

studies have revealed an array of molecular targets for purified glucosinolate hydrolysis 

products. Indole-3-carbinol, DIM and SF were shown to arrest cell cycle progression via 

upregulation of the cyclin-dependent kinase inhibitor p21 and the Retinoblastoma tumor 

suppressor protein (86-88). It was also demonstrated that these glucosinolate hydrolysis 

products induced apoptosis via inactivation of the Akt cell survival pathway (88, 89) and 

by shifting the balance between proapoptotic (Bax, Bad) and antiapoptotic (Bcl-2, Bcl-

xL) members of the Bcl-2 family of apoptotic regulator proteins (90, 91). Combinations 

of glucosinolate hydrolysis products with chemotherapeutic or proapoptotic agents were 

shown to augment cellular sensitivity (89, 90, 92, 93), which is of particular interest in 

the treatment of advanced, chemorefractory cancers. In recent years, SF has been 

identified as an inhibitor of histone deacetlyase activity (94) and a mediator of changes 
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in DNA methylation status (95). Epigenetic modifications can lead to alterations in gene 

expression patterns and are thought to play an important role in cancer development. 

Both DNA methylation of the CpG islands in the promoter region of a gene and histone 

deacetylation are associated with compaction of the DNA structure, making it 

inaccessible to the cell‟s transcription machinery and resulting in gene silencing (96, 

97). Sulforaphane has been shown to inhibit histone deacetylation in prostate cancer 

cells, which resulted in increased expression of cell cycle regulator p21, cell cycle arrest 

and induction of apoptosis (86, 98). The isothiocyanate has also been shown to 

demethylate the promoter region of cell cycle regulator cyclin D2 and concomitantly 

induce gene expression in prostate cancer cells, which correlates with reduced tumor 

aggressiveness (99). 

Overall, in vitro studies have given the scientific community tremendous insight 

into the multitude of mechanisms underlying the chemoprotective effects of 

glucosinolate hydrolysis products derived from broccoli. However, in many of these 

studies cell were exposed to much higher concentrations than those that can be 

achieved in the plasma through dietary means (< 5 μM). Therefore, more studies using 

physiologically relevant concentrations, both in vitro and in vivo, are necessary to 

pinpoint which of the many mechanisms identified actually contribute to the added 

health benefit associated with increased consumption of broccoli and other crucifers in 

the diet. 
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2.4. Estrogen metabolism 

A proposed mechanism of protection against estrogen-associated cancers is 

alteration of estrogen metabolism (9). The liver is the primary site of estrogen 

metabolism (100). Estrogens are metabolized mainly by the phase I detoxification 

enzymes CYP3A4 to form 16α-hydroxyestrogens, which retain most of the estrogenic 

activity, or CYP1A to form 2-hydroxyestrogens with weak estrogenic activity. A third, 

minor pathway of hepatic estrogen metabolism involves formation of 4-hydroxyestrogen 

by CYP1B1 (16, 101) (Fig 2.5). In extrahepatic tissues, such as breast, ovary and 

uterus, 4-hydroxylation is the predominant pathway for estrogen metabolism, although 

formation of 2-hydroxyestrogens has also been observed in these tissues. Both 2- and 

4-hydroxyestrogens can be conjugated to glucuronides and sulfates, but when cellular 

levels of conjugates are low, the estrogen metabolites can undergo redox cycling to 

generate free radicals and form reactive quinones. In particular, the estrogen quinone 

derived from 4-hydroxyestrogens is a highly reactive metabolite that can form DNA 

adducts leading to apurinic sites. Local, extrahepatic formation of 4-hydroxyestrogens 

by CYP1B1 is thought to play a major role in the development of breast and endometrial 

cancer (22, 102). 2-Hydroxyestrogen quinones can be reduced back to 2-

hydroxyestrogens by NQO1 (103) (Fig. 2.5). 

2-Hydroxyestrogens, and to a lesser extent 4-hydroxyestrogens, can also be 

methylated by catechol-O-methyltransferase (COMT) (18) (Fig. 2.5). In particular, the 

methylated product 2-methoxyestradiol has emerged as a promising anticancer agent 

and is currently being evaluated in phase I and II clinical trials. This endogenous 

metabolite of estradiol has been shown to selectively inhibit growth of human breast 
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(104, 105), ovarian (106) and cervical cancer cells (107), and suppress growth of 

human prostate cancer cells in vitro (108, 109). The inhibitory effect of 2-

methoxyestradiol on tumor growth and development in vivo has been demonstrated in 

breast (110, 111) and prostate cancer models (112, 113). In humans, 2-

methoxyestradiol was observed to be well tolerated after oral administration with 

evidence of anti-cancer activity in patients with advanced disease, but its therapeutic 

potential appears limited by its low oral bioavailability (19, 20, 114). 

Various mechanisms that underlie the anticancer effects of 2-methoxyestradiol 

have been elucidated in vitro. Exposure to the estrogen metabolite has been shown to 

cause cell cycle arrest either as a result of faulty spindle formation and subsequent 

microtubule disruption (104, 115), or inactivation of cyclin-dependent kinase 1, which 

promotes cell cycle progression in its active form (104, 116). 2-Methoxyestradiol has 

also been shown to induce apoptosis via inactivation of the antiapoptotic regulator Bcl-2 

(105, 117). Besides its direct effects on cancer cells, 2-methoxyestradiol is also thought 

to play a role in halting angiogenesis, the formation of new blood vessels reaching out 

toward a tumor in response to tumor hypoxia (118). Under hypoxic conditions, the 

transcription factor hypoxia-inducible factor-1 mediates secretion of vascular endothelial 

growth factor, a potent angiogenic agent. 2-Methoxyestradiol was found to inhibit the 

expression, nuclear accumulation and transcriptional activity of hypoxia-inducible factor-

1, thereby blocking angiogenesis (115). Angiogenesis is essential for the growth, 

progression and metastasis of a solid tumor (119). Thus, therapeutic agents with 

antiangiogenic properties, such as 2-methoxyestradiol, are of particular interest for the 

treatment of tumors that have advanced to later stages in the carcinogenic process. 
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Compared to its parent compound 17β-estradiol, 2- methoxyestradiol has been 

shown to have very low affinity for the estrogen receptor (120, 121). Furthermore, the 

antiproliferative and proapoptotic effects of 2-methoxyestradiol were shown to be 

unaltered in the presence of an estrogen receptor agonist (106, 122), indicating that the 

anticarcinogenic actions of 2-methoxyestradiol are mediated independently from the 

estrogen receptor. This makes 2-methoxyestradiol an attractive candidate for the 

treatment of hormone-refractory cancers that no longer respond to endocrine 

manipulations. 

 Several studies have shown that the anticarcinogenic actions of 2-

methoxyestradiol have little to no effect on non-tumorigenic cells (104, 106, 107, 123). 

This indicates that 2-methoxyestradiol targets cancer cells specifically, which may 

minimize the incidence of cytotoxic side-effects during treatment. 

Taken together, these studies emphasize the therapeutic potential of 2-

methoxyestradiol. New formulations and delivery methods are currently being tested to 

improve its low oral availability, but thus far results have been inconclusive. Another 

approach to increase blood plasma levels of 2-methoxyestradiol in a non-invasive 

manner is through changes in endogenous estrogen metabolism. 

 

2.5. Glucosinolate hydrolysis products and estrogen metabolism 

Indole-3-carbinol supplementation has been shown to increase the 2-hydroxy- to 

16α-hydroxyestrogen ratio (10), ostensibly via induction of CYP1A1/2 (85, 124). Indole-

3-carbinol treatment is also associated with reduced risk of cancer of the breast (11, 12, 

125, 126), ovary (13) and prostate (14). It has been suggested that the inverse 
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association between formation of 2-hydoxyestrogens and risk of estrogen-associated 

cancers is due to loss of estrogenicity, since 2-hydroxyestrogens display much weaker 

estrogenic activity compared to 17β-estradiol or 16α-hydroxyestrogens. However, 

further oxidation of 2-hydroxyestrogens to estrogen quinones could lead to formation of 

stable DNA adducts, which may initiate carcinogenesis (15-17). In contrast, 2-

methoxyestradiol has potent anticarcinogenic properties, as described above. The 

observed reduction in risk for estrogen-associated cancers with increased consumption 

of cruciferous vegetables may therefore relate to increased formation of 2-

methoxyestradiol from 2-hydroxyestradiol. Presently, the relationship between 

glucosinolate hydrolysis products derived from broccoli and these estrogen metabolites 

is essentially unknown. 

 

2.6. Quercetin and kaempferol 

Although glucosinolate breakdown products are traditionally thought to be solely 

responsible for the chemoprotective effect of broccoli, other compounds present in the 

plant tissue may also contribute to its anticancer potential. These include the flavonoids, 

or more specifically the flavonols quercetin and kaempferol. Flavonols are a subclass of 

polyphenolic compounds that can be found in a wide variety of fruits, vegetables and 

grains. Flavonol-rich foods include teas, apples, berries, onions and broccoli (127, 128). 

A limited number of epidemiological studies have shown an inverse association 

between consumption of flavonoids and cancer risk (129-133). The chemoprotective 

effects of flavonoids, including quercetin and kaempferol, have been attributed to 

various mechanisms, which are discussed below. 
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Flavonoids have been shown to exert potent antioxidant capacity, either directly 

through direct trapping of free radicals, or indirectly via downregulation of oxidative 

enzymes, such as lipoxygenase and NADPH oxidase (134). Quercetin and kaempferol 

were found to be the two main flavonols in broccoli, but both compounds were present 

as flavonol glycosides (quercetin 3-O-sophoroside and kaempferol 3-O-sophoroside are 

the major glycosides). The deconjugated aglycones of quercetin and kaempferol were 

shown to have greater antioxidant capacity compared to their respective sophorosides 

(135). Similar results have been found for quercetin glycosides isolated from onions 

(136). In contrast, glycosylation of quercetin was not shown to affect its ability to inhibit 

lipid peroxidation (135). The antioxidant capacities of quercetin and kaempferol have 

been examined in vitro using chemical assays (135, 137, 138). However, it is unclear 

whether these properties are maintained in vivo due to the much lower plasma and 

tissue levels compared to other antioxidants (such as vitamins C and E), and the rapid 

metabolism of these flavonoids (139, 140). 

Induction of phase I detoxification enzymes is thought to increase risk for cancer 

through generation of potentially mutagenic intermediates (73). Transcription of the 

phase I enzyme CYP1A1 is under control of the aryl hydrocarbon receptor, which, upon 

ligand binding, associates with the xenobiotic response element, as described above. 

Quercetin and kaempferol were found to compete with 2,3,7,8-tetrachlorodibenzo-p-

dioxin, a known human carcinogen, for binding to the aryl hydrocarbon receptor, thereby 

attenuating its inducible effect on CYP1A1 expression (141, 142). Inhibition of CYP1A1 

activity by quercetin was also shown to prevent benzo[a]pyrene-induced DNA adduct 

formation (143). These studies suggest that the weak agonistic actions of quercetin and 
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kaempferol for the aryl hydrocarbon receptor may help protect against chemical 

carcinogens that are strong agonists. 

Flavonoids are also known inducers of phase II detoxification enzymes (127), 

which play an important role in inactivation and elimination of carcinogenic compounds 

from the body, as described above. Quercetin was shown to increase transcription and 

activity of UDP-glucuronosyltransferase (144, 145). Steroid hormones are known 

substrates for this enzyme, and increased glucuronidation, followed by rapid excretion 

of the polar conjugates, may therefore protect against hormone-associated cancers 

(146, 147). Like SF, quercetin and kaempferol have been demonstrated to increase 

transcription and activity of the anticarcinogenic phase II detoxification marker enzyme 

NQO1 (136, 148, 149). In contrast, quercetin-3-O-sophoroside was not shown to induce 

NQO1 activity (136). 

Flavonoids and glucosinolate hydrolysis products have been shown to have 

overlapping targets for inhibition of cancer-related signaling pathways (134, 150). 

Quercetin and kaempferol were found to upregulate expression of p21 and 

concomitantly induce cell cycle arrest in human breast (151, 152), cervical (153) ovarian 

(154) and prostate cancer cells (155). Both flavonoids were also found to induce 

apoptosis via downregulation of the Akt survival signaling pathway (154, 156, 157)  and 

an increase the ratio of proapoptotic to antiapoptotic regulators of the Bcl-2 family (152, 

158, 159). 

Multidrug resistance is a major impediment to the effective treatment of 

advanced cancers (160). Resistance to chemotherapeutic agents is, in part, mediated 

by overexpression of transmembrane transporter proteins, which results in enhanced 
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efflux of xenobiotics (161). Quercetin and kaempferol have been shown to inhibit 

transcription and/or activity of various transporters, including P-glycoprotein, multidrug 

resistance associated proteins and breast cancer resistance protein (162, 163). 

Inhibition of these transport proteins has been demonstrated to markedly increase the 

sensitivity of drug-resistant cancer cells to chemotherapeutics, including breast (164, 

165), prostate (166, 167), ovarian (168, 169) and cervical cancer cells (170, 171). 

These findings suggest that SF, quercetin and kaempferol may positively interact to 

maximize inhibition of transport proteins involved in multidrug resistance. 

 

2.7. Selenium 

Selenium is an essential trace element that is required for various biological 

processes, including thyroid hormone synthesis and metabolism, immune function, and 

the proper functioning of a number of selenium-dependent enzymes, also known as 

selenoproteins. Although 35 selenoproteins have been identified, the function of only a 

few of these proteins has been elucidated. These include the glutathione peroxidases 

and thioredoxin reductases, antioxidant enzymes that are part of the overall defense of 

the cell against oxidative stress (172). Selenium deficiency is associated with 

hypothyroidism, leading to goiter, cretinism and recurrent miscarriage. Other clinical 

disorders that are observed with selenium deficiency are Keshan disease, an endemic 

cardiomyopathy that is linked to increased virulence of the normally dormant Coxsackie 

virus, and Kashin-Beck disease, a chronic, degenerative osteoarthropathy (172, 173). 

Insufficient intake of selenium is also thought to increase risk for cancer. Dietary intake 

of selenium and serum selenium levels have been shown to be inversely correlated with 
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cancer incidence and mortality (174, 175). These studies suggest that adequate or 

supplementary intake of selenium may have a protective effect on the development of 

the disease. 

Selenium is thought to mediate its anticarcinogenic effect through multiple 

mechanism. Besides its antioxidant role as part of the glutathione peroxidases and 

thioredoxin reductases (172), selenium has also been shown to increase repair of 

oxidative stress-induced DNA damage (176). Selenium has been found to modulate 

molecular targets in anticancer signaling pathways similar to those affected by 

glucosinolate breakdown products and flavonols, as described previously. These 

include upregulation of p21 (177) and inactivation of Akt (178), accumulation of Bax and 

downregulation of Bcl-xL (178) and Bcl-2 (179). Selenium was also shown to inhibit 

proangiogenic factors (180) and growth of endothelial cells (181), indicating an inhibitory 

role in angiogenesis. 

Selenium has gained much attention as a cancer preventive agent since the 

publication of the Nutritional Prevention of Cancer (NPC) trial. This placebo-controlled 

study was originally designed to determine whether supplemental selenium (as 

selenized yeast) would decrease the incidences of recurrent basal and squamous cell 

skin cancers. Daily supplementation with 200 μg selenium was not shown to protect 

against these skin cancers. However, secondary endpoint analyses showed that 

selenium supplementation reduced the incidence of total, lung, colorectal and prostate 

cancer (182). 

The major selenium species in selenized yeast is selenomethionine (183), which, 

based on the outcomes of the NPC trial, was selected for the more recent Selenium and 
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Vitamin E Cancer Prevention Trial (SELECT). This large study, with over 35,000 

participants, sought to determine whether selenium, vitamin E or both could prevent 

prostate cancer and other cancers in healthy men. After five years of participant follow-

up, it was shown that daily supplementation of 200 μg selenomethionine (either alone or 

in combination with vitamin E), failed to lower the incidence of prostate cancer (184). 

This lack of benefit was also shown with extended participant follow-up (185). A key 

reason for this lack of effect may have been the choice of selenium formulation. 

Although selenomethionine was the primary bioactive component in selenized yeast, 

other forms of selenium present in the yeast, such as Se-methylselenocysteine (Se-

MSC) (183) may have contributed to the observed reduction in cancer incidence. A 

study comparing the activity of selenized yeast to selenized garlic in prevention of 

chemically induced mammary carcinogenesis found that selenized garlic was more 

effective in suppressing the carcinogenic process, despite lower total tissue selenium 

accumulation compared to selenized yeast.  Subsequent speciation analysis showed 

that the main selenium species in selenized garlic was γ-glutamyl Se-MSC, a metabolite 

of Se-MSC. Compared to selenized yeast, selenized garlic also contained a larger 

proportion of total selenium as Se-MSC (186). These results suggest that 

selenomethionine may not have been solely responsible for the reduction in cancer 

incidence observed in the NPC trial, and that Se-MSC may deserve further study. 

It should also be noted that the strongest protective effect in the NPC trial was 

seen in people with the lowest tertile of plasma selenium at the start of the trial (187). In 

contrast, the subjects enrolled in the SELECT trial had higher initial plasma levels of 

selenium than those in the NPC trial (188). Supplementation of selenium has been 
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shown to increase glutathione peroxidase activity, however, this correlation was found 

to be weaker with increased selenium status (189). These observations suggest that an 

increase of selenium plasma concentrations above a certain threshold level may not 

result in further protection against cancer development, which could have contributed to 

the observed lack of effect in the SELECT trial 

 

2.8. Crucifers and selenium 

Crucifers typically contain low amounts of selenium, but have the ability to 

actively accumulate selenium when grown on selenium-rich soil. As a result, the level of 

selenium found in the plant tissue can be several orders of magnitude greater than 

normal (190, 191). Selenium is primarily taken up from the soil as inorganic selenate. In 

the plant, it is sequentially reduced to selenite and selenide before being incorporated 

into the amino acid selenocysteine. This organic form of selenium can be incorporated 

into selenoproteins in place of cysteine. Another fate of selenocysteine is conversion to 

the amino acid selenomethionine, which is randomly incorporated into proteins in place 

of methionine. In crucifers and other selenium accumulators, such as members of the 

allium species, selenocysteine can also be methylated to form Se-MSC (192, 193). 

Analysis of selenium-enriched crucifers has shown that Se-MSC is the major selenium 

species in these vegetables. In contrast, non-accumulators, such as wheat, when grown 

on high-selenium soils, were shown to incorporate selenium as selenomethionine (183). 

Multiple animal studies have demonstrated the enhanced anticarcinogenic 

potential of selenium-enriched broccoli and other cruciferous vegetables. Selenium-

enriched Japanese radish sprouts and broccoli have shown greater inhibition of 
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chemically induced mammary carcinogenesis in the rat compared to their low-selenium 

equivalents (194, 195). Selenium-enriched broccoli and broccoli sprouts have been 

shown to reduce the number of aberrant colon crypts in chemically induced colon 

cancer in the rat (195), and selenium enriched broccoli has been shown to decrease 

intestinal tumorigenesis in the Min mouse model of colon carcinogenesis (196) to a 

greater extent than their respective low-selenium equivalents. Compared to 

selenomethionine or inorganic selenite, Se-MSC has demonstrated greater antitumor 

effects in a xenograft model of human prostate cancer (197). In human prostate cancer 

cells, SeMSC but not selenite altered expression of various collagen genes, indicating 

anticancer activity through modulation of the extracellular matrix and stroma (198). 

These studies strongly suggest a potential role for Se-MSC, the main form of selenium 

in cruciferous vegetables, and/or its metabolite(s) in cancer prevention. However, more 

definitive studies are needed. 
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2.9. Hypotheses and aims 

 

Central hypothesis: 

Broccoli bioactives, as part of the whole vegetable, have greater anticarcinogenic 

activity compared to purified compounds due to interactive effects between multiple 

bioactives present in the plant tissue. 

 

Study 1: Broccoli enhances metabolism of estradiol toward formation of 

2-methoxyestradiol in vitro and ex vivo 

 

Hypothesis: 

Glucosinolate breakdown products derived from broccoli enhance formation of 2-

methoxyestradiol via combined upregulation of CYP1A and NQO1 activity. 

Aim 1: 

Determine the effect of glucosinolate breakdown products, either derived from the whole 

food or as purified compounds, on CYP1A and NQO1 activity in murine Hepa-1c1c7 

and chicken LMH hepatocellular carcinoma cells, or in chicken liver and ovary. 

Aim 2: 

Determine the effect of glucosinolate breakdown products, either derived from the whole 

food or as purified compounds, on formation of 2-methoxyestradiol from exogenous 

17β-estradiol in Hepa-1c1c7 cells, or in chicken liver. 
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Study 2: Differential and interactive effects of broccoli bioactives on cancer 

cell growth and enzyme induction 

 

Hypothesis: 

Broccoli inhibits growth of the human prostate adenocarcinoma cell line LNCaP and the 

human ovarian adenocarcinoma cell line OVCAR-3 via enhanced formation of 2-

methoxyestradiol, but this inhibition is not solely due to the glucosinolate breakdown 

products I3C and SF. 

Aim 1: 

Determine the effects of glucosinolate breakdown products on 17β-estradiol-induced 

growth of LNCaP and OVCAR-3 cells, both in the presence and absence of  COMT, the 

enzyme that catalyzes formation of 2-methoxyestradiol (Fig. 2.5). 

Aim 2: 

Compare the growth-inhibitory effects of glucosinolate breakdown products in broccoli 

to those of purified I3C plus SF in LNCaP and OVCAR-3 cells. 

Aim 3: 

Evaluate the interactive effects between SF, quercetin and kaempferol on upregulation 

of NQO1activity in Hepa-1c1c7 cells. 
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Study 3: Selenium enrichment of broccoli alters its bioactivity via changes in 

the glucosinolate profile 

 

Hypothesis: 

Enhanced upregulation of CYP1A and NQO1 activity by selenium-enriched broccoli is 

due to accumulation of selenium as Se-MSC in the plant tissue. 

Aim 1: 

Determine the effects of low-selenium broccoli and high-selenium broccoli on CYP1A 

and NQO1 activity in Hepa-1c1c7 cells 

Aim 2: 

Determine the effect of low-selenium broccoli on CYP1A and NQO1 activity in Hepa-

1c1c7 cells in combination with selenium supplementation (as selenite or Se-MSC). 

Aim 3: 

Determine the effect of neoglucobrassicin hydrolysis products on enzyme activity in 

Hepa-1c1c7 cells. 
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2.10. Rationale and experimental approach 

 

The endogenous estrogen metabolite 2-methoxyestradiol has shown promising 

anticarcinogenic potential in multiple in vitro and in vivo studies, but its effectiveness in 

clinical trials is greatly hampered by its low oral bioavailability. New formulations of 2-

methoxyestradiol with presumed improved bioavailability are currently under 

investigation (199). An alternate approach is to increase endogenous levels of 2-

methoxyestradiol through changes in estrogen metabolism, which may also lower 

circulating levels of the parent compound 17β-estradiol and concomitantly reduce its 

mitogenic effects. Glucosinolate breakdown products derived from broccoli have been 

shown to alter estrogen metabolism toward formation of 2-hydroxyestrogens, the 

precursors to 2-methoxyestrogens (10, 85, 124). However, the impact of glucosinolate 

breakdown products on formation of endogenous 2-methoxyestradiol is unknown. 

The in vitro models chosen to fill this gap in the literature were the mouse 

hepatoma cell line Hepa-1c1c7 and the chicken hepatoma LMH cells. Hepa-1c1c7 cells 

have been used extensively in drug metabolism research and are a well-established, 

robust tool for determining the effect of xenobiotics on hepatic detoxification enzymes, 

including CYP1A and NQO1. LMH cells were used to determine the impact of 

glucosinolate breakdown products on chicken hepatic detoxification enzyme activity. 

Not only have detoxification enzymes not been studied previously in this model, but 

data from this model can be expected to most readily compare to studies in the whole 

chicken. The egg-laying hen (Gallus domesticus) was chosen for in vivo studies, since 

this is the only animal model of spontaneous ovarian cancer, with pathogenesis similar 
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to the human disease (200). The outcomes of this study may serve as a rationale for 

dietary intervention studies to determine the impact of glucosinolate breakdown 

products on the development of ovarian cancer in the chicken. 

The growth inhibitory effects of glucosinolate breakdown products via alteration 

of estrogen metabolism were also examined in the human prostate adenocarcinoma cell 

line LNCaP and the human ovarian adenocarcinoma cell line OVCAR-3. Both cell lines 

have been shown to be estrogen-responsive (13, 201) and, individually, purified I3C and 

SF have been shown to inhibit their growth (86, 93, 202, 203). It is currently unknown 

whether this inhibitory effect is, in part due to enhanced formation of 2-methoxyestradiol 

by glucosinolate breakdown products. 

Broccoli contains numerous bioactive compounds, which may interact if the 

whole food is ingested. Possible interactive effects on enzyme activity (Hepa-1c1c7 

cells) and cancer cell growth (LNCaP and OVCAR-3 cells) were determined by 

comparing the effect of a broccoli extract to that of the purified compounds I3C, SF, 

quercetin and kaempferol. 

Broccoli is an active accumulator of selenium, and selenium enrichment has 

been shown to enhance its anticarcinogenic properties, including enhanced activity of 

detoxification enzymes (21, 193). Increased uptake of selenium by the plant has been 

found to alter its glucosinolate profile, which may impact enzyme activity (21, 204). 

Whether the observed enhancement of enzyme activities is due to accumulation of 

selenium in the plant tissue or to increased levels of glucosinolates is currently not 

known. Furthermore, it is not clear whether the selenium species stored in broccoli (Se-

MSC) is more active than inorganic forms. Therefore, the effect of glucosinolate 
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hydrolysis products and selenium, either as purified compounds or as part of the whole 

plant extract, on NQO1 activity was examined in Hepa-1c1c7 cells. 
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2.11. Figures 

Figure 2.1. Global cancer incidence. Estimated age-standardized incidence rate per 
100,000. All cancers excluding non-melanoma skin cancer: both sexes, all ages (205).  
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Figure 2.2. Global incidences of female estrogen-associated cancers. Estimated age-
standardized incidence rate per 100,000. Breast, cervix uteri, corpus uteri, ovary, all 
ages (205). 
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Figure 2.3. Global incidence of prostate cancer. Estimated age-standardized incidence 
rate per 100,000. Prostate, all ages (205). 
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Figure 2.4. Glucosinolate hydrolysis. Myrosinase-catalyzed hydrolysis leads to 
formation of glucose and an unstable aglycone, which rearranges to form 
isothiocyanates, nitriles, epithionitriles, oxazolidine-2-thiones and thiocyanates, 
depending on the specific glucosinolate. Formation of nitriles is favored in the presence 
of epithiospecifier protein (ESP). Brackets indicate unstable intermediates; R: variable 
side chain. Reproduced, with permission of Annual Reviews, from Halkier BA, 
Gershenzon J. Biology and biochemistry of glucosinolates. Annu Rev Plant Biol. 
2006;57:303-33. 
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Figure 2.5. Estrogen metabolism. Estrogens are hydroxylated at the C-2, C-4 or C-16 
position by cytochrome P450 (CYP) 1A1/2, 1B1 or 3A4, respectively. 2-Hydroxy-
estrogens are subsequently methylated by catechol-O-methyltransferase (COMT) to 
form 2-methoxyestrogens, or form quinones, which can be reduced back to 2-
hydroxyestrogens by NAD(P)H dehydrogenase, quinone 1 (NQO1). 
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CHAPTER 3 

Broccoli enhances metabolism of estradiol toward formation of 2-

methoxyestradiol in vitro and ex vivo 

 

3.1. Introduction 

Consumption of cruciferous vegetables, such as broccoli, cauliflower and 

cabbage, is associated with reduced risk for various cancers, including prostate cancer 

(56, 206-208) and the estrogen-associated cancers of the breast (209-211), ovary (54, 

212) and endometrium (55). The chemoprotective effect of crucifers is mainly attributed 

to high levels of glucosinolates and their bioactive breakdown products, the 

isothiocyanates (8). The predominant glucosinolate hydrolysis products derived from 

broccoli are sulforaphane (SF) and indole-3-carbinol (I3C) (62).These hydrolysis 

breakdown products are thought to exert their anticarcinogenic effects, in part, via 

increased activity of phase I and II detoxification enzymes, such as cytochrome P450 

1A (CYP1A) and NAD(P)H dehydrogenase, quinone 1 (NQO1) (63, 72). 

A proposed mechanism of protection against estrogen-associated cancers is 

alteration of estrogen metabolism (9). Estrogens are metabolized mainly in the liver via 

multiple pathways, as shown in Figure 2.5. Increased formation of the weakly estrogenic 

2-hydroxygens, presumably via increased CYP1A activity (85, 124), is associated with 

reduced risk of cancer of the breast (11, 12, 125, 126), ovary (13) and prostate (14). 

However, accumulation of 2-hydroxyestrogens may lead to formation of DNA adducts 

(15-17). 
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2-Hydroxyestrogens can also be methylated to 2-methoxyestrogens by catechol-

O-methyltransferase (COMT) (18) (Fig. 2.5). In particular, 2-methoxyestradiol has 

shown promising anticarcinogenic effects in multiple cancer cell lines as well as animal 

models, and its therapeutic potential as an anti-cancer drug is currently evaluated in 

clinical trials (199, 213). 

We hypothesized that a key protective effect of crucifers against cancers 

influenced by estrogen status may relate not only to endogenous formation of non-

estrogenic 2-hydroxy estradiol, but to anticarcinogenic 2-methoxyestrogens. Presently, 

the relationship between glucosinolate breakdown products and these estrogen 

metabolites is largely unknown. Therefore, the hypothesis was expanded to include that 

glucosinolate breakdown products found in broccoli redirect estrogen metabolism in 

favor of 2-methoxyestradiol, via enhanced formation of 2-hydroxyestradiol, as a result of 

CYP1A1/2 and NQO1 enzyme induction (Fig. 2.5). 

The current study examines the effect of glucosinolate breakdown products 

found in broccoli on formation of 2-methoxyestradiol in vitro and ex vivo. In vitro studies 

were performed using the murine Hepa-1c1c7 and chicken LMH hepatocellular 

carcinoma cells. The egg-laying hen (Gallus domesticus) was chosen for in vivo studies. 

The impact of glucosinolate breakdown products on estrogen metabolism has not been 

determined in this preclinical model of ovarian cancer. 
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3.2. Methods 

Plant material, chemicals and reagents. Broccoli florets (Brassica oleracea var. 

Monaco), freeze-dried and ground to a powder, were obtained from FutureCeuticals 

(Momence, IL) as described previously (21). Unless noted otherwise, chemicals and 

reagents were purchased from Sigma-Aldrich Corp. (St. Louis, MO). 

Cell culture. Murine Hepa-1c1c7 and chicken LMH hepatocellular carcinoma cells 

were obtained from the American Type Culture Collection (Manassas, VA). Hepa-1c1c7 

cells were maintained in Eagle's minimum essential medium with alpha modification, 

supplemented with 2.2 g/L sodium bicarbonate and 10% fetal bovine serum (Atlanta 

Biologicals, Lawrenceville, GA). LMH cells were grown in culture vessels pre-coated 

with 0.1% gelatin and maintained in Waymouth‟s MB 752/1 medium (Invitrogen, 

Carlsbad, CA) supplemented with 10% fetal bovine serum. Cells were cultured at 37C 

in a humidified atmosphere of 95% air and 5% CO2. 

In vitro treatments. Indole-3-carbinol, SF, DIM (LKT Laboratories, Inc. St. Paul, 

MN), α-naphthoflavone (CYP1A inhibitor, CYP1A-i), β-naphthoflavone (β-NF) and Ro 

41-0960 {{}}(COMT inhibitor, COMT-i) were dissolved in DMSO, sterile-filtered and 

stored at -20C. Dicumarol (NQO1 inhibitor, NQO1-i) was dissolved in 1 N NaOH, 

further diluted in 50 mM sodium phosphate buffer, pH 7.4, sterile-filtered and stored at 

4C. Broccoli powder hydrolysis to release I3C and SF from their respective parent 

glucosinolates was performed as described previously (21). In brief, broccoli (Brassica 

oleracea var. Majestic) was harvested, cut 2 inches below the floret and freeze-dried. 

Freeze-dried broccoli powder (50 mg/mL) was suspended in water for 24 h at room 

temperature away from light to allow for maximum formation of glucosinolate hydrolysis 
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products. Broccoli hydrolysate was sterile-filtered to produce an aqueous extract prior to 

treatment of cells. The hydrolyzed broccoli extract was added to the culture medium at 

1-10% final concentration, equivalent to 0.5-5 mg freeze-dried broccoli powder per mL 

culture medium; all other treatments were added to the culture medium at 0.1% final 

concentration. 

Sulforaphane and I3C analysis. Sulforaphane and I3C were extracted from the 

hydrolyzed broccoli extract and analyzed by reverse-phase HPLC with UV detection as 

described previously (21). 

Animal study and experimental design. The animal protocol was approved by the 

University of Illinois Animal Care and Use Committee. Eighteen single-comb White 

Leghorn hens (Gallus domesticus) between 6-12 months of age were obtained from the 

Poultry Research Facility, University of Illinois at Urbana-Champaign. Hens were 

individually housed in wire-bottom cages, provided with feed and water ad libitum and 

exposed to a photoperiod of 16 h light/8 h dark, with lights on at 05:30 h and lights off at 

21:30 h. Hens were provided with standard chicken feed and acclimated for 3 days. On 

day 3, animals were randomly assigned to 3 experimental groups (n = 6). Experimental 

diets included standard feed (control), 10% broccoli powder (broccoli), or purified I3C 

(2,500 ppm). Animals were fed experimental diets for 7 days. Body weights were 

measured before and after the 7-day feeding trial. 

Tissue collection. Blood was collected from the brachial vein before and after the 

7-day feeding trial. Blood was stored at 4C for 24 h and centrifuged for 30 min at 2,000 

x g. Serum was collected and stored at -80C until further analysis. Animals were 

euthanized by CO2 asphyxiation, and livers and ovaries were collected. Post-ovulatory 
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follicles were removed from ovary; tissues were weighed, snap-frozen in liquid nitrogen 

and stored at -80°C until further analysis. 

Enzyme activity. For measuring enzyme activity in vitro, Hepa-1c1c7 cells were 

seeded at 1 x 104 cells per well into flat bottom 96-well plates (Corning); LMH cells were 

seeded at 1.5 x 106 cells per 100 mm culture dish (Corning). Cells were allowed to 

adhere overnight, and medium was replaced with medium containing treatments. Hepa-

1c1c7 cells were treated for 24 h with hydrolyzed broccoli extract at a final concentration 

of 2.5% (equivalent to 1.25 mg freeze-dried broccoli powder per mL culture medium), 

0.125 µM I3C plus 1.25 µM SF, or 1 µM β-NF in the absence or presence of 10 µM 

CYP1A-i or 50 µM NQO1-i. LMH cells were treated for 48 h with 2.5% hydrolyzed 

broccoli extract, 2.5-50 µM I3C or 0.25-12.5 µM DIM. After 24 or 48 h incubation (to 

ensure upregulation of enzymes), medium was removed from Hepa-1c1c7 or LMH cells, 

respectively, and cells were washed with phosphate-buffered saline, pH 7.4. Hepa-

1c1c7 cells were permeabilized by adding 50 µL filtered saturated digitonin per well and 

cells were incubated at 37C for 10 min, followed by horizontal agitation at 100 rpm for 

10 min. LMH cells were trypsinized, washed with PBS, lysed in 0.25 mL 0.05% 

deoxycholate solution and stored at -80°C until further analysis. Fifty µL cell lysate per 

well was used to measure CYP1A or NQO1 activity. 

For measuring enzyme activity in vivo, microsomal and cytosolic fractions were 

prepared from liver and ovary as described previously (21). Fractions were stored at -

80°C until further analysis. Fifty µL microsomal or cytosolic fraction per well was used to 

measure CYP1A or NQO1 activity, respectively. 
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The activity of CYP1A was measured as ethoxyresorufin O-deethylase activity 

(214) in black-walled, flat bottom 96-well plates (Corning, Corning NY), with 

modifications for measurement in whole cells and use of a plate reader. One hundred 

µL incubation mixture containing glucose-6-phosphate dehydrogenase at 1 unit/well, 8 

µM ethoxyresorufin, 50 µM dicumarol and 8 µM MgCl2 in 0.05 M Tris-HCl, pH 7.4, was 

added per well. After 5 min incubation at 37C, 100 µL initiation mixture containing 5 

mM glucose-6-phosphate and 0.5 mM nicotinamide adenine dinucleotide phosphate 

reduced NADPH in 0.05 M Tris-HCl, pH 7.4, was added per well to start the O-

deethylation of ethoxyresorufin. Following a 5 min incubation period at 37C, the 

formation of resorufin was measured fluorometrically using a microplate fluorescence 

reader (model FLX800, BioTek, Winooski, VT) at excitation and emission wavelengths of 

528 nm and 590 nm, respectively, at 37C for 30 min. Amounts of resorufin formed 

during the linear part of the reaction were calculated using a resorufin standard curve 

and specific activity was expressed as pmol resorufin formed/min/mg protein. 

The activity of NQO1 was measured in clear, flat bottom 96-well plates according 

to the method of Prochaska and Santamaria (215) with modification (216). The reaction 

was followed for 5 min using a microplate spectrophotometer (model MicroQuant, 

BioTek). Specific activity was expressed as nmol MTT reduced/min/mg protein. 

Protein content was measured in clear, flat bottom 96-well plates using the Bio-

Rad protein assay (217) with bovine serum albumin standards as per manufacturer's 

instructions (Bio-Rad Laboratories, Hercules, CA). Absorbance was measured using a 

microplate spectrophotometer (model MicroQuant, BioTek). 
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Formation of 2-methoxyestradiol in Hepa-1c1c7 cells. Cells were plated at 1.5 x 

106 cells per 100 mm culture dish (Corning) and allowed to adhere overnight. Medium 

was replaced with medium containing 10% estrogen-depleted fetal bovine serum (Cell 

Media Facility, University of Illinois at Urbana-Champaign). Cells were then exposed to 

hydrolyzed broccoli extract at 2.5% final concentration or 1 µM β-NF for 24 h (to ensure 

upregulation of enzymes). Culture medium was replaced, followed by 24 h simultaneous 

exposure to 10 µM 17β-estradiol plus hydrolyzed broccoli extract at 2.5% final 

concentration, or 1 µM β-NF in the absence or presence of 10 µM CYP1A-i, 50 µM 

NQO1-i or 3 µM COMT-i. 

Formation of 2-methoxyestradiol in liver S9 fractions. Liver S9 fractions were 

prepared as described previously (21). Fractions containing 1 mg/mL protein were 

incubated with 10 µ M 17β-estradiol, 1.5 mM NADPH, 5 mM MgCl2 and 20 mM ascorbic 

acid in 0.05 M Tris-HCl, pH 7.4, at 37C for 30 min. 

Extraction of 2-methoxyestradiol. Collected culture medium, serum or liver S9 

fractions were filtered through a 0.45 µm filter (Corning) and the pH was adjusted to 5.0 

by adding 2 M sodium acetate, pH 5.0. β-Glucuronidase type H-1 from Helix pomatia 

was added at approximately 1,500 units/mL sample, and the samples were incubated at 

37C for 18 h. Methanol was added to each sample to a final concentration of 10%, and 

2-fluoroestradiol was added as an internal standard to each sample at a final 

concentration of 1 µg/mL. Each sample was applied to an Oasis HLB solid phase 

extraction cartridge (Waters Co., Milford, MA), conditioned with 3 mL methanol and 3 

mL distilled water. Cartridges were washed with 3 mL each of 5% methanol and 2% 

ammonium hydroxide in distilled water, 3 mL 40% methanol and 2% ammonium 
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hydroxide in distilled water, and 3 mL distilled water. Samples were eluted with 3 mL 

10% methanol in ethanol, and samples were evaporated under a continuous stream of 

nitrogen. Samples were dissolved in 50% methanol in distilled water containing 2 mM 

ascorbic acid. Internal standard and 2-methoxyestradiol were added to blank matrix 

samples to generate a standard curve. Samples were filtered through a 0.22 µm filter 

(Corning) and analyzed by high-performance liquid chromatography followed by mass 

spectrometry (HPLC-MS/MS), as described below. Protein content was measured as 

described above. 

HPLC-MS/MS analysis. HPLC-MS/MS analysis was performed using an Agilent 

1200 series HPLC system (Agilent Technologies, Foster City, CA), coupled with a 5500 

QTRAP® mass spectrometer equipped with a positive atmospheric pressure chemical 

ionization (APCI) source (AB SCIEX, Foster City, CA). Ten µL of each sample or 

standard was injected onto a Zorbax Eclipse XDB C18 column (50 mm x 2.1 mm i.d., 

particle size 3.5 µm) preceded by a guard cartridge (12.5 mm x 4.6 mm i.d., particle size 

5 µm; Agilent Technologies). The mobile phase, operating at a flow rate of 0.3 mL/min, 

consisted of a starting solvent of 40% methanol in water, maintained for 2 min, then 

raised to 100% methanol over 4 min, and maintained at 100% for 4 min. The mobile 

phase was returned to initial conditions and maintained for 5 min to re-equilibrate the 

column. Each solvent contained 0.1% v/v formic acid. The APCI-MS/MS conditions 

were as follows: spray voltage, 5500 V; drying gas, nitrogen (7.00 L/min); drying 

temperature, 350C; nebulizer gas, nitrogen (60 psi); ionization source temperature, 

600C. For 2-methoxyestradiol, the intensity of fragment m/z 189.1 from the parent ion 

303.2 was monitored. The parent ion of 2-fluoroestradiol could not be detected; instead, 
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the intensity of fragment m/z 177.0 from 273.1 (unique to 2-fluoroestradiol) was 

monitored. Standards in blank matrices were used to identify and quantify 2-

methoxyestradiol. HPLC-MS/MS was performed by Dr. Zhong (Lucas) Li at the 

Metabolomics Center, University of Illinois at Urbana-Champaign. 

Statistical analysis. Data were evaluated by one-way analysis of variance using 

SAS Statistical software (SAS Institute, Cary, NC), and values were considered to be 

different among treatments at p < 0.05 using Fisher‟s least significant difference 

procedure. 

 

3.3. Results 

Effect of glucosinolate breakdown products on enzyme activity in vitro. The effect 

of glucosinolate breakdown products, either as an aqueous hydrolyzed broccoli extract 

or as purified compounds, on CYP1A and NQO1 activity was determined in murine 

Hepa-1c1c7 and chicken LMH hepatoma cells. Exposure of Hepa-1c1c7 cells to 

hydrolyzed broccoli extract at concentrations at 1-10% in the medium resulted in a 

dose-dependent upregulation of CYP1A and NQO1 activity (Fig. 3.1A, B). However, 

loss of total cellular protein, an indicator of cellular toxicity, was observed at hydrolyzed 

broccoli extract concentrations greater than 2.5% (data not shown). To compare the 

effect of the hydrolyzed broccoli extract on detoxification enzyme activity to the effect of 

the individual compounds present in the extract, Hepa-1c1c7 cells were exposed to 

purified I3C plus SF at concentrations equimolar to that in the hydrolyzed broccoli 

extract, as determined previously (21). At 2.5%, the hydrolyzed broccoli extract 

upregulated CYP1A and NQO1 activity in Hepa-1c1c7 cells 17.0- and 3.6-fold, 
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respectively, compared to control. In contrast, purified I3C plus SF (I3C+SF) at 0.125 

and 1.25 µM, respectively, upregulated CYP1A activity only 4.3-fold. However, the 3.4-

fold increase in NQO1 activity was comparable to that obtained with exposure to the 

hydrolyzed broccoli extract (Fig. 3.1C, D). 

In LMH cells, hydrolyzed broccoli extract at 2.5% modestly upregulated CYP1A 

1.4-fold compared to control, but had no effect on NQO1 activity (Fig. 3.2A, B). Under 

acidic aqueous conditions, such as in the stomach, I3C forms condensation products, 

including DIM (218). Therefore, the effect of I3C and DIM on detoxification enzyme 

activity was determined in LMH cells. Purified I3C (2.5-50 µM) or DIM (0.25-12.5 µM) 

increased CYP1A activity in a dose-dependent manner (Fig. 3.2C), but neither 

compound had an effect on NQO1 activity (data not shown). 

In Hepa-1c1c7 cells, background levels of CYP1A and NQO1 activity were too 

low to measure the impact of specific enzyme inhibitors. Thus, the effects of CYP1A 

inhibitor α-NF (CYP1A-i) and NQO1 inhibitor dicumarol (NQO1-i) were evaluated in the 

presence of β-NF, a potent bifunctional enzyme inducer. At 1 µM, β-NF increased 

CYP1A activity nearly 60-fold compared to control; co-treatment with 10 µM CYP1A-i 

decreased enzyme activity by 59% (Fig. 3.3A). Activity of NQO1 was increased 6.8-fold 

by β-NF compared to control, and this activity was decreased by 28% in the presence of 

50 µM NQO1-i (Fig. 3.3B). 

Formation of 2-methoxyestradiol in vitro. Formation of 2-methoxyestradiol from 

exogenous 17β-estradiol was assessed in Hepa-1c1c7 cells. Cells were pre-treated with 

2.5% hydrolyzed broccoli extract for 24 h to allow for upregulation of CYP1A and NQO1 

activity, followed by simultaneous exposure to hydrolyzed broccoli extract and 10 µM 
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17β-estradiol for 24 h. Hydrolyzed broccoli extract enhanced formation of 2-

methoxyestradiol in culture medium 1.7-fold compared to untreated cells (Fig. 3.4A). To 

examine the effect of enzyme inhibition on formation of 2-methoxyestradiol, cells were 

treated with 1 µM β-NF alone or in combination with 10 µM CYP1A-i, 50 µM NQO-i or 3 

µM COMT-i (Ro 41-0960, a specific inhibitor of COMT), since COMT catalyzes the 

methylation of 2-hydroxyestrogens to 2-methoxyestrogens. Exposure to β-NF enhanced 

formation of 2-methoxyestradiol 6.0-fold compared to control. Co-treatment with either 

the CYP1A-i or the NQO1-i decreased formation of 2-methoxyestradiol by 59% and 

27%, respectively, compared to treatment with β-NF alone (Fig. 3.4B, C). Formation of 

2-methoxyestradiol by β-NF was abolished in the presence of the COMT-i (Fig. 3.4D). 

None of the treatments used in vitro affected the pH of the cell culture medium or 

total cellular protein levels (data not shown). 

Animal diet and body weight. Due to the natural feeding behavior of the chicken, 

food intake could not be recorded. No differences in body, liver or ovary weight were 

observed between the dietary groups after the 7-day feeding trial (data not shown).  

Enzyme activity in vivo. The impact of dietary broccoli bioactives on tissue 

detoxification enzyme activity in the chicken is unknown. Figure 3.5 shows that I3C at 

2,500 ppm in the diet enhanced CYP1A activity 10-fold in liver (A) and ovary (C) 

compared to control diet, whereas supplementation of the diet with 10% broccoli powder 

did not increase enzyme activity in either tissue (B). Neither I3C nor broccoli enhanced 

NQO1 activity in either tissue (Fig. 3.5B, D). 

Formation of 2-methoxyestradiol ex vivo. 2-Methoxyestradiol could not be 

detected in the serum of chickens fed the I3C-supplemented diet (data not shown), 
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therefore, formation of 2-methoxyestradiol from exogenous 17β-estradiol was evaluated 

in chicken liver S9 fractions. Compared to control, formation of 2-methoxyestradiol was 

increased 6-fold in liver S9 fractions from I3C-supplemented chickens (Fig. 3.6). Since 

broccoli supplementation to chickens did not increase CYP1A or NQO1 activity in the 

liver (Fig. 3.5A, B), formation of 2-methoxyestradiol was not evaluated in liver S9 

fractions from these chickens. 

 

3.4. Discussion 

This study shows for the first time that broccoli bioactives alter estrogen 

metabolism toward formation of the anticarcinogenic metabolite 2-methoxyestradiol. In 

this study, it was shown that broccoli bioactives upregulated CYP1A and NQO1 activity, 

and increased formation of 2-methoxyestradiol from exogenous 17β-estradiol in vitro 

using the murine Hepa-1c1c7 hepatoma cell line (Fig. 3.1; Fig. 3.4A). Exposure to the 

potent bifunctional enzyme inducer β-NF further enhanced enzyme activity and 

formation of 2-methoxyestradiol (Fig. 3.3; Fig. 3.4B-D). Furthermore, enzyme inhibition 

resulted in a proportional decrease in 2-methoxyestradiol formation (Fig.  3.4B-D). In the 

chicken, I3C supplementation caused upregulation of hepatic CYP1A activity and a 

concomitant increase in 2-methoxyestradiol formation from exogenous 17β-estradiol by 

liver S9 fractions (Fig. 3.5A; Fig. 3.6). Together, these results establish proof of principle 

that broccoli bioactives enhance estrogen metabolism toward formation of 

anticarcinogenic 2-methoxyestradiol through upregulation of CYP1A and NQO1 activity. 

In Hepa-1c1c7 cells, the increase in NQO1 activity was similar for purified I3C 

plus SF and the hydrolyzed broccoli extract. In contrast, hydrolyzed broccoli extract 
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upregulated CYP1A activity to a greater extent than the purified compounds. This may 

indicate that the amount of SF present in the hydrolyzed broccoli extract accounts for 

the increase in NQO1 activity, whereas additional compounds in the extract, alone or in 

combination with I3C, are responsible for the enhanced induction of CYP1A. Potential 

candidates are other hydrolysis breakdown products of indole glucosinolates, such as 

N-methoxyindole-3-carbinol (NI3C) derived from neoglucobrassicin (219). This 

metabolite was found to be a more efficient inducer of CYP1A compared to I3C in vitro 

(220). Although the hydrolyzed broccoli extract was not analyzed for NI3C content, a 

considerable amount of neoglucobrassicin was identified in the broccoli powder (21). 

This study demonstrated for the first time the effect of broccoli bioactives on 

chicken detoxification enzyme activity in vitro and in vivo. Hydrolyzed broccoli extract, 

purified I3C and purified DIM upregulated CYP1A activity in chicken LMH hepatoma 

cells, but both the relative increase over control and the absolute enzyme activity were 

much lower than in the murine Hepa-1c1c7 hepatoma cells (Fig. 3.1; Fig. 3.2). Similar to 

these results, Uno et al. have shown that dioxin-induced CYP1A activity was much 

greater in Hepa-1c1c7 cells compared to human HepG2 hepatoma cells (221). 

Therefore, the well-established Hepa-1c1c7 cell line, with its low background levels and 

high inducibility of enzyme activity, remains the preferred model for in vitro 

characterization of detoxification enzyme modulators. 

To examine the effect of broccoli bioactives on chicken detoxification enzymes in 

vivo, chickens were fed a diet supplemented with 10% broccoli powder or purified I3C at 

2,500 ppm. This dose of I3C has previously been shown to increase the cytochrome 

P450 content of hepatic microsomes, as well as the urinary 2-hydroxy- to 16α-
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hydroxyestrogen ratio in mice (222). Likewise, in this study I3C supplementation 

increased hepatic and ovarian CYP1A activity (Fig. 3.5A, C). Although the pattern of 

enzyme induction was similar between both organs, absolute enzyme activity was 

approximately 10-fold higher in the liver (data not shown). This is not surprising, since 

the liver is the main site for (xenobiotic) metabolism in the body. Broccoli 

supplementation did not affect CYP1A activity in the chicken liver or ovary (Fig. 3.5). 

These differential results between broccoli and I3C supplementation are most likely due 

to the much lower levels of I3C present in the broccoli powder: broccoli powder-

supplementation resulted in 0.01 µmol I3C per g food (upon hydrolysis), whereas the 

I3C-supplemented diet contained 17 µmol I3C per g food. 

Dietary broccoli had no effect on enzyme activity in vivo, but hydrolyzed broccoli 

extract was able to increase CYP1A activity in chicken hepatoma cells (Fig. 3.2A). 

Whereas the chicken hepatoma cells were exposed to a bolus dose of glucosinolate 

hydrolysis products, the intake of broccoli powder by the chicken occurred gradually 

throughout the day. Duration of glucosinolate hydrolysis is much shorter in the broccoli-

fed chickens compared to the 24 h hydrolysis of broccoli powder at the bench prior to 

cell treatment, since the low pH of the stomach content most likely causes degradation 

and inactivation of myrosinase. Thus, the concentration of I3C (and its acid 

condensation product DIM) in the plasma of broccoli-fed chickens was apparently not 

sufficient for upregulation of CYP1A activity in the liver or the ovary. 

In a 7-day feeding trial, standard freeze-dried, powdered broccoli caused no 

increase in chicken hepatic CYP1A activity. In contrast, indole glucosinolate-enriched 

and selenium-enriched broccoli increased hepatic CYP1A activity 1.4- and 1.8-fold, 
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respectively, compared to control (21). The effect of bioactives-enriched broccoli on 

chicken detoxification enzyme activity remains to be determined. 

2-Methoxyestradiol, a naturally occurring metabolite of 17β-estradiol, has shown 

promising activity against multiple estrogen-associated cancers in vitro, in animal 

models and in clinical trials. However, its therapeutic application may be hampered due 

to its low oral bioavailability (19, 20). Reformulations of 2-methoxyestradiol to enhance 

its water solubility and bioavailability are currently being investigated in phase II clinical 

trials, but have thus far shown differential anticancer activity (223-227). Increasing 

endogenous levels of 2-methoxyestradiol may bypass its low oral bioavailability. In this 

study, broccoli bioactives increased formation of 2-methoxyestradiol via upregulation of 

CYP1A and NQO1. The impact of broccoli bioactives on formation of 16α-

hydroxyestrogens was not determined. Supplementation of I3C has been shown to 

increase the 2-hydroxy- to 16α-hydroxyestrogen ratio. This increase was reported to be 

due to enhanced formation of 2-hydroxyestrogens, whereas levels of 16α-

hydroxyestrogens did not change (222, 228). Therefore, enhanced activity of CYP1A 

and NQO1 in vivo may result not only in increased levels of the anticarcinogenic 

metabolite, but also in decreased circulating levels of the mitogenic parent compound, 

17β-estradiol. 

The egg-laying hen is the only model of spontaneous ovarian cancer that 

replicates the human disease (200). This model can be used to conduct large-scale 

dietary intervention studies with greater statistical power than rodent studies (229). 

Although in this study dietary broccoli supplementation did not increase CYP1A or 

NQO1 activity in the chicken, long-term feeding studies aimed at the impact of broccoli 
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bioactives on enzyme activity, 2-methoxyestradiol formation and development of 

ovarian cancer deserve further exploration. 
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3.5. Figures 

Figure 3.1. The effect of glucosinolate breakdown products on enzyme activity in 
murine Hepa-1c1c7 cells. Cells were exposed to hydrolyzed broccoli extract (HBE, 1-
10%) or I3C (0.125 µM) plus SF (1.25 µM) (I3C+SF). Enzyme activity was measured 
after 24 h exposure time. Data, expressed as fold-change over control, represent mean 
± SEM; n=4. Values that differ are indicated by different letters (p < 0.05). 
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Figure 3.1. (continued) 
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Figure 3.2. The effect of glucosinolate breakdown products on enzyme activity in 
chicken LMH cells. Cells were exposed to hydrolyzed broccoli extract (HBE, 2.5%), I3C 
(2.5-50 μM) or DIM (0.25-12.5 μM). Enzyme activity was measured after 48 h exposure 
time. Data, expressed as fold-change over control, represent mean ± SEM; n=3. Values 
that differ are indicated by different letters (p < 0.05). 
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Figure 3.3. The effect of β-NF on (A) CYP1A activity and (B) NQO1 activity with or 
without inhibitors of CYP1A (CYP1A-i) or NQO1 (NQO1-i) in Hepa-1c1c7 cells. Cells 
were exposed to β-NF (1 μM) with or without CYP1A-i (10 μM) or NQO1-i (50 μM). 
Enzyme activity was measured after 24 h exposure time. Data, expressed as fold-
change over control, represent mean ± SEM, n=4. Values that differ are indicated by 
different letters (p < 0.05). 
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Figure 3.4. The effect of broccoli extract or β-NF on 2-methoxyestradiol formation in 
Hepa-1c1c7 cells. (A) Cells were pre-treated with hydrolyzed broccoli extract (HBE, 
2.5%) for 24 h, followed by simultaneous exposure to 17β-estradiol (10 μM) and HBE 
(2.5%) for 24 h. (B) Cells were pre-treated with β-NF (1 μM) or β-NF+CYP1A-i (10 μM)  
for 24 h, followed by simultaneous exposure to 17β-estradiol (10 μM) and β-NF or β-
NF+ CYP1A-i for 24 h. (C) Cells were pre-treated with β-NF (1 μM) or β-NF+NQO1-i (50 
μM) for 24 h, followed by simultaneous exposure to 17β-estradiol (10 μM) and β-NF or 
β-NF +NQO1-i for 24 h. (D) Cells were pre-treated with β-NF (1 μM) or β-NF+COMT-i (3 
μM) for 24 h, followed by simultaneous exposure to 17β-estradiol (10 μM) and β-NF or 
β-NF +COMT-i for 24 h. 2-Methoxyestradiol was extracted from all culture media and 
quantified by HPLC-MS/MS. Data, expressed as fold-change over control, represent 
mean ± SEM, n=3. Values that differ are indicated by different letters (p < 0.05). ND = 
below the level of detection.  
 
A.                 B. 
 
 
 
 
    
 
 
 
 
 
 
 
 
 
 
C.                 D.  

0.0

1.5

3.0

4.5

6.0

7.5

control β-NF +DIC

2
-m

e
th

o
x

y
e

s
tr

a
d

io
l 

fo
rm

a
ti

o
n

 
(f

o
ld

-c
h
a
n
g
e
 o

v
e
r 

c
o
n
tr

o
l)
 

0.0

0.5

1.0

1.5

2.0

control broccoli

2
-m

e
th

o
x

y
e

s
tr

a
d

io
l 

fo
rm

a
ti

o
n

 
(f

o
ld

-c
h
a
n
g
e
 o

v
e
r 

c
o
n
tr

o
l)

 

0.0

1.5

3.0

4.5

6.0

7.5

control β-NF +α-NF 

2
-m

e
th

o
x

y
e

s
tr

a
d

io
l 

fo
rm

a
ti

o
n

 
(f

o
ld

-c
h
a
n
g
e
 o

v
e
r 

c
o
n
tr

o
l)

 

0.0

1.5

3.0

4.5

6.0

7.5

control β-NF +COMTi

2
-m

e
th

o
x

y
e

s
tr

a
d

io
l 

fo
rm

a
ti

o
n

 
(f

o
ld

-c
h
a
n
g
e
 o

v
e
r 

c
o
n
tr

o
l)
 

a 

b 

a 

b 

c 

b 

a 

c 

β-NF 
+CYP1A-i 

β-NF 
+NQO1-i 

β-NF 
+COMT-i 

a 

c 

b 

a 

b 

ND 

HBE 



 

59 

Figure 3.5. The effect of glucosinolate breakdown products on enzyme activity in (A,B) 
chicken liver and (C,D) ovary. Chickens were fed a diet supplemented with broccoli 
powder (10%) or I3C (2,500 ppm) for 7 days. CYP1A activity was measured in 
microsomal fractions; NQO1 activity was measured in cytosolic fractions. Data, 
expressed as fold-change over control, represent mean ± SEM, n=3. Values that differ 
are indicated by different letters (p < 0.05). 
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Figure 3.6. The effect of glucosinolate breakdown products on 2-methoxyestradiol 
formation in chicken liver. Chickens were fed a diet supplemented with I3C (2,500 ppm) 

for 7 days. Liver S9 fractions were incubated with 17β-estradiol (10 M); 2-
methoxyestradiol was extracted from the culture medium and quantified by HPLC-
MS/MS. Data, expressed as fold-change over control, represent mean ± SEM, n=3. 
Values that differ are indicated by different letters (p < 0.05). 
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CHAPTER 4 

Differential and interactive effects of broccoli bioactives on cancer cell growth 

and enzyme induction 

 

4.1. Introduction 

In Western societies, estrogen-associated cancers are a leading cause of 

mortality and morbidity in men and women (2). Cruciferous vegetables, such as 

broccoli, may offer greater protection against these cancers compared to other types of 

fruits and vegetables. This enhanced chemoprotective effect of crucifers, as observed 

for prostate (56, 206-208) and ovarian cancer (54, 212), is traditionally attributed to high 

levels of glucosinolates and their bioactive breakdown products (5, 8). A proposed 

mechanism of protection against estrogen-associated cancers by cruciferous 

vegetables is alteration of estrogen metabolism (9). 

Glucosinolate hydrolysis products enhance formation of 2-methoxyestradiol in 

murine Hepa-1c1c7 hepatoma cells and chicken liver S9 fractions (Chapter 3). 2-

Methoxyestradiol is an endogenous metabolite of 17β-estradiol with anticancer activity, 

formed as a result of the upregulation of the detoxification enzymes cytochrome P450 

(CYP) 1A and NAD(P)H dehydrogenase, quinone 1 (NQO1) (Chapter 3). Estrogens are 

hydroxylated at the C-2 position by CYP1A to form 2-hydroxyestrogens (16), which are 

subsequently methylated to 2-methoxyestrogens by catechol-O-methyltransferase 

(COMT) (18), or oxidized further to a quinone (102). Reactive estrogen quinones can be 

reduced back to 2-hydroxyestrogens by NQO1 (103), again providing substrate for 2-

methoxyestradiol formation (Fig. 2.5). 
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In Hepa-1c1c7 cells, a hydrolyzed extract of freeze-dried broccoli powder 

upregulates CYP1A activity to a greater extent than purified indole-3-carbinol (I3C) plus 

sulforaphane (SF) at concentrations equimolar to those present in the hydrolyzed 

broccoli extract (Chapter 3). Thus, we hypothesized that the growth-inhibitory effects of 

glucosinolate hydrolysis products are, in part, mediated via enhanced formation of 2-

methoxyestradiol. We also hypothesized that the hydrolyzed broccoli extract shows 

greater inhibition of human prostate and ovarian cancer cell growth than purified I3C 

plus SF. 

Induction of phase II detoxification enzymes, such as NQO1, is thought to play a 

major role in protection against cancer via enhanced inactivation and excretion of 

(potential) carcinogens (230, 231). The broccoli bioactives SF, quercetin and 

kaempferol have each been shown to upregulate NQO1 activity (136, 149, 232), but 

interactive effects of these compounds have not been investigated. Therefore, we 

hypothesized that combinations of SF plus quercetin, SF plus kaempferol or quercetin 

plus kaempferol show greater induction of NQO1 activity than any compound 

individually. 

 

4.2. Methods 

Plant material, chemicals and reagents. Broccoli florets (Brassica oleracea var. 

Monaco), freeze-dried and ground to a powder, were obtained from FutureCeuticals 

(Momence, IL) as described previously (21). Unless noted otherwise, chemicals and 

reagents were purchased from Sigma-Aldrich Corp. (St. Louis, MO). 
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Cell culture. Murine Hepa-1c1c7 hepatocellular carcinoma cells and human 

NIH:OVCAR-3 epithelial ovarian carcinoma cells were obtained from the American Type 

Culture Collection (Manassas, VA). The human LNCaP clone FGC epithelial prostate 

carcinoma cell line was a kind gift from Dr. J.W. Erdman, Jr., University of Illinois at 

Urbana-Champaign. Hepa-1c1c7 cells were maintained in Eagle's minimum essential 

medium with alpha modification, supplemented with 2.2 g/L sodium bicarbonate and 

10% fetal bovine serum (Atlanta Biologicals, Lawrenceville, GA). LNCaP and OVCAR-3 

cells were maintained in RPMI-1640 medium without phenol red, modified to contain 2 

mM L-glutamine, 10 mM HEPES, 1 mM sodium pyruvate, 4,500 mg/L glucose, and 

1,500 mg/L sodium bicarbonate, supplemented with 10% (LNCaP) or 20% fetal bovine 

serum and 0.01 mg/ml bovine insulin (OVCAR-3). Cells were cultured at 37C in a 

humidified atmosphere of 95% air and 5% CO2. 

Treatments. Indole-3-carbinol, SF, quercetin, kaempferol (LKT Laboratories, Inc. 

St. Paul, MN) and Ro 41-0960 (COMT inhibitor, COMT-i) were dissolved in DMSO; 17β-

estradiol (Steraloids, Newport, RI) was dissolved in 95% ethanol. Compounds were 

sterile-filtered and stored at -20C. Aqueous broccoli extract was prepared as described 

previously (Chapter 3) and added to the culture medium at 2.5-10% final concentration, 

equivalent to 1.25-5 mg broccoli powder per mL culture medium. All other treatments 

were added to the culture medium at 0.1% final concentration. The concentration of I3C 

in 2.5% hydrolyzed broccoli extract was 0.125 μM; the concentration of SF in the extract 

was 10-fold greater at 1.25 μM, as determined previously (21). 

Enzyme activity. LNCaP and OVCAR-3 cells were seeded at 5 x 104 cells per 

well into flat bottom 96-well plates (Corning, Corning NY) and allowed to adhere for 48 
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h. After 48 h, medium was replaced with fresh medium containing 2.5% hydrolyzed 

broccoli extract (equivalent to 1.25 mg freeze-dried broccoli powder per mL culture 

medium). Hepa-1c1c7 cells were seeded at 1 x 104 cells per well into flat bottom 96-well 

plates (Corning) and allowed to adhere overnight. Medium was replaced with fresh 

medium containing purified SF (0.25-2 µM), quercetin (0.5-15 µM) or kaempferol (0.5-15 

µM). Enzyme activity was determined after 24 h incubation. 

The activity of CYP1A was measured as ethoxyresorufin O-deethylase activity 

(214); NQO1 activity was measured according to the method of Prochaska and 

Santamaria (215) with modification (216), both as described previously (Chapter 3). 

Cell growth and caspase activity. LNCaP and OVCAR-3 cells were seeded at 2.5 

x 103 cells per well into flat bottom 96-well plates (Corning) and allowed to adhere for 48 

h. After 48 h, medium was replaced with estrogen-depleted medium (Cell Media Facility, 

University of Illinois at Urbana-Champaign), and cells were subsequently exposed to 

treatment for 96 h. 17β-Estradiol (10 nM) and the COMT inhibitor Ro 41-0960 (COMT-i, 

3 μM) were added every 24h. Preliminary studies showed that in both cell lines, daily 

treatment with 10 nM 17β-estradiol for 96 h after 48 h of attachment significantly 

increased cell growth compared to untreated controls (data not shown). Daily treatment 

with 3 μM COMT-i, a dose that has previously been shown to abolish formation of 2-

methoxyestradiol (Chapter 3), for 96 h after 48 h of attachment did not affect cell growth 

compared to untreated cells (data not shown). Hydrolyzed broccoli extract (2.5-10%), 

purified I3C (0.125 µM) and SF (1.25 µM) were added every 48 h. Preliminary studies 

showed that treatment with 2.5% hydrolyzed broccoli extract increased NQO1 activity, 

and that this level of activity was maintained for up to 48 h after addition of the treatment 
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(data not shown). The relative number of live cells, as a measure of cell growth, was 

determined by the CellTiter-Fluor™ Cell Viability Assay (Promega, Madison, WI), as per 

manufacturer‟s instruction. The activity of caspase 3 and 7, as a measure of apoptosis, 

was determined by the Caspase-Glo® 3/7 Assay (Promega), as per manufacturer‟s 

instruction. The number of live cells was determined after cells were allowed to adhere 

for 48 h, but prior to exposure to treatment. This measurement, labeled as “control”, 

established the baseline number of cells for these experiments. The number of live cells 

was also determined after the 96 h treatment period. 

Interaction analysis. Possible interactions between purified SF, quercetin and 

kaempferol on NQO1 activity were determined by comparing calculated (additive) and 

experimental (observed) values for various treatment conditions. Experimental values 

that were different from calculated values (p < 0.05) were defined as synergistic 

interactions (233). 

Statistical analysis. Data were evaluated by one-way analysis of variance using 

SAS Statistical software (SAS Institute, Cary, NC), and values were determined to be 

different among treatments using Fisher‟s least significant difference procedure (p < 

0.05). Individual pair-wise comparisons were performed using the two-sample t-test (p < 

0.05). 

 

4.3. Results 

Effect of hydrolyzed broccoli extract on enzyme activity. The effect of hydrolyzed 

broccoli extract on CYP1A and NQO1 activity was determined in human prostate 

(LNCaP) and ovarian (OVCAR-3) carcinoma cells. Both cell lines were allowed to 
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adhere for 48 h, followed by a 24 h treatment period. In LNCaP cells, 2.5% hydrolyzed 

broccoli extract increased CYP1A and NQO1 activity 6.7- and 1.4-fold compared to 

untreated cells (Fig. 4.1A, B). In OVCAR-3 cells, 2.5% hydrolyzed broccoli extract 

modestly increased CYP1A and NQO1 activity 1.9- and 1.5-fold compared to untreated 

cells (Fig. 4.1C, D). 

Effect of hydrolyzed broccoli extract on unstimulated or 17β-estradiol-stimulated 

cancer cell growth. The estrogen-responsive cell lines LNCaP and OVCAR-3 were 

grown in estrogen-depleted medium and allowed to adhere for 48 h (control), followed 

by a 96 h treatment period. Cells were exposed to increasing concentrations (2.5-10%) 

of hydrolyzed broccoli extract in the absence (Fig. 4.2A, 4.3A) or presence (Fig. 4.2B, 

4.3B) of 17β-estradiol. In 17β-estradiol-stimulated cells, the effect of hydrolyzed broccoli 

extract was also determined in the presence of an inhibitor of COMT (Fig. 4.2C, 4.3C) 

The concentration of COMT-i (3μM) was chosen because it was previously shown to 

abolish formation of 2-methoxyestradiol (Chapter 3). 17β-estradiol and COMT-i were 

added every 24 h; hydrolyzed broccoli extract was were added every 48 h. 

During the 96 h treatment period that followed 48 h to allow attachment, the 

number of unstimulated LNCaP cells (grown in the absence of 17β-estradiol) increased 

5.3-fold compared to control. Treatment with hydrolyzed broccoli extract for 96 h 

decreased cell growth in a dose-dependent manner: compared to unstimulated cells, 

the extract inhibited cell growth by 49, 65 and 74% when 2.5, 5 or 10% extract was 

added, respectively. The number of live cells after treatment with 5 or 10% hydrolyzed 

broccoli extract for 96 h was no longer significantly greater than the number of live cells 

at the start of the 96 h treatment (control) (Fig. 4.2A). 
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Treatment of LNCaP cells with 17β-estradiol for 96 h after 48 h of attachment 

increased cell growth by 34% compared to cells that were grown for 96 h in the absence 

of 17β-estradiol. In the presence of 17β-estradiol, treatment with hydrolyzed broccoli 

extract for 96 h decreased cell growth dose-dependently: the extract inhibited cell 

growth by 10, 51 and 74% when 2.5, 5 or 10% extract was added, respectively, 

compared to cells that were exposed to 17β-estradiol only for 96 h (Fig. 4.2B) 

In a similar experiment, LNCaP cells were co-treated with hydrolyzed broccoli 

extract and COMT-i in the presence of 17β-estradiol for 96 h after 48 h of attachment. 

Compared to cells that were exposed to 17β-estradiol only for 96 h, treatment with 17β-

estradiol plus hydrolyzed broccoli extract for 96 h in the presence of COMT-i decreased 

cell growth in a dose-dependent manner: the extract inhibited cell growth by 31, 47 and 

72% when 2.5, 5 or 10% extract was added, respectively (Fig. 4.2C). 

Compared to control, the number of unstimulated OVCAR-3 cells (grown in the 

absence of 17β-estradiol) increased 4.5-fold during the 96 h treatment period that 

followed 48 h to allow attachment. Treatment with hydrolyzed broccoli extract for 96 h 

decreased cell growth in a dose-dependent manner: compared to unstimulated cells, 

the extract inhibited cell growth by 57, 84 and 85% when 2.5, 5 or 10% extract was 

added, respectively. The number of live cells after treatment with 5 or 10% hydrolyzed 

broccoli extract for 96 h was no longer significantly greater than the number of live cells 

at the start of treatment (control) (Fig. 4.3A). 

Treatment of OVCAR-3 cells with 17β-estradiol for 96 h after 48 h of attachment 

increased cell growth by 31% compared to cells that were grown for 96 h in the absence 

of 17β-estradiol. In the presence of 17β-estradiol, treatment with hydrolyzed broccoli 
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extract for 96 h decreased cell growth dose-dependently: the extract inhibited cell 

growth by 65, 82 and 92% when 2.5, 5 or 10% extract was added, respectively, 

compared to cells that were exposed to 17β-estradiol only for 96 h. The number of live 

cells after treatment with 5 or 10% hydrolyzed broccoli extract for 96 h was no longer 

significantly greater than the number of live cells at the start of treatment (control) (Fig. 

4.3B). 

In a similar experiment, OVCAR-3 cells were co-treated with hydrolyzed broccoli 

extract and COMT-i in the presence of 17β-estradiol for 96 h after 48 h of attachment. 

Compared to cells that were exposed to 17β-estradiol only for 96 h, treatment with 

hydrolyzed broccoli extract for 96 h in the presence of COMT-i decreased cell growth in 

a dose-dependent manner: the extract inhibited cell growth by 78, 80 and 87% when 

2.5, 5 or 10% extract was added, respectively. The number of live cells after each 

treatment with hydrolyzed broccoli extract for 96 h was no longer significantly greater 

than the number of live cells at the start of treatment (control) (Fig. 4.3C). 

Effect of hydrolyzed broccoli extract, I3C and SF on cancer cell growth. LNCaP 

and OVCAR-3 cells were grown in estrogen-depleted medium and allowed to adhere for 

48 h (control), followed by a 96 h treatment period. Cells were exposed to purified I3C 

(0.125 μM), SF (1.25 μM), I3C plus SF, or 2.5% hydrolyzed broccoli extract for 96 h. 

In LNCaP cells, following 48 h of attachment, 96 h treatment with purified I3C, SF 

or I3C plus SF did not alter cell growth compared to cells grown in the absence of 

treatment. In contrast, exposure to hydrolyzed broccoli extract for 96 h decreased cell 

growth by 51% compared to cells grown in the absence of treatment (Fig. 4.4A). 
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In OVCAR-3 cells, after 48 h of attachment, 96 h treatment to purified I3C or SF 

did not alter cell growth compared to cells grown in the absence of treatment. Exposure 

to purified I3C plus SF decreased cell growth by 27%, and exposure to hydrolyzed 

broccoli extract decreased cell growth by 58% compared to cells grown in the absence 

of treatment (Fig. 4.4B). 

Effect of hydrolyzed broccoli extract, I3C and SF on caspase activity. LNCaP and 

OVCAR-3 cells were grown in estrogen-depleted medium and allowed to adhere for 48, 

followed by a 96 h treatment period. Cells were exposed to 2.5% hydrolyzed broccoli 

extract or purified I3C (0.125 μM) plus SF (1.25 μM) for 96 h. 

In LNCaP cells, after 48 h of attachment, 96 h treatment with hydrolyzed broccoli 

extract increased activity of caspase 3 and 7 1.9-fold compared to cells grown in the 

absence of treatment. No increase in caspase activity was observed after 96 h 

treatment with I3C plus SF compared to cells grown in the absence of treatment (Fig. 

4.5A). 

In OVCAR-3 cells, after 48 h of attachment, 96 h treatment with hydrolyzed 

broccoli extract increased activity of caspase 3 and 7 2.5-fold compared to cells grown 

in the absence of treatment. No increase in caspase activity was observed after 96 h 

treatment with I3C plus SF compared to cells grown in the absence of treatment (Fig. 

4.5B). 

Dose-dependent effects of SF, quercetin and kaempferol on NQO1 activity. 

Hepa-1c1c7 cells were allowed to adhere for 24 h, followed by a 24 h treatment period. 

Cells were exposed to increasing concentrations of SF (0.25-2 μM), quercetin (0.5-15 

μM) or kaempferol (0.5-15 μM). Sulforaphane, quercetin and kaempferol individually 
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induced NQO1 activity in a dose-dependent manner (Fig. 4.6A-C). At 1.25 μM, SF 

increased NQO1 activity by 190% compared to untreated cells (control); exposure to 2 

μM SF did not further increase enzyme activity (Fig. 4.6A). At 5 μM, quercetin increased 

NQO1 activity by 93% compared to control; exposure to higher concentrations of 

quercetin decreased enzyme activity (Fig. 4.6B). At 5 μM, kaempferol increased NQO1 

activity by 62% over control; exposure to higher concentrations of kaempferol did not 

further increase enzyme activity (Fig. 4.6C).  

Interactive effects among SF, quercetin and kaempferol on NQO1 activity. To 

determine interactive effects among SF, quercetin and kaempferol on NQO1 activity, 

individual doses were selected that provided moderate enzyme induction (~20% of 

maximum activity). The rationale for selecting these doses was to preventreaching 

maximum enzyme induction with combined treatments. The selected doses were: SF 

0.1 μM, quercetin 1 μM, and kaempferol 1 μM. 

Alone, SF at 0.1 or 0.75 μM increased enzyme activity by 69 and 155% over 

control; quercetin at 1 or 1.75 μM increased activity by 9 and 17% (Fig. 4.7A). When 

combined, SF plus quercetin upregulated NQO1 activity to 83% (SF 0.1 μM + Q 1 μM), 

162% (SF 0.1 μM + Q 1.75 μM) and 201% (SF 0.75 μM + Q 1.75 μM) over control. At 

low doses, the observed effect of SF plus quercetin combined (SF 0.1 μM + Q 1 μM) did 

not differ from the calculated additive effect. At higher doses, the effect of SF plus 

quercetin combined (SF 0.1 μM + Q 1.75 μM, and SF 0.75 μM + Q 1.75 μM) was 

greater than each respective calculated additive effect (Fig. 4.7A). 

Kaempferol at 0.5 or 1 μM had no effect on NQO1 activity compared to control 

(Fig. 4.7B). When combined, SF plus kaempferol increased NQO1 activity to 94% (SF 
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0.1 μM + K 1 μM), 210% (SF 0.75 μM + K 0.5 μM) and 273% (SF 0.75 μM + K 1 μM) 

over control. Each combination of SF plus kaempferol had a greater effect on NQO1 

activity than SF alone at the equivalent dose (Fig. 4.7B). 

Quercetin and kaempferol combined increased NQO1 activity to 18% (Q 1 μM + 

K 0.5 μM), 37% (Q 1.75 μM + K 0.5 μM) and 49% (Q 1.75 μM + K 1 μM) over control. 

Each combination of quercetin plus kaempferol had a greater effect on NQO1 activity 

than quercetin alone at the equivalent dose (Fig. 4.7C). 

 

4.4. Discussion 

This study demonstrates for the first time that an aqueous extract of freeze-dried 

broccoli powder inhibits growth of human prostate (LNCaP) and ovarian (OVCAR-3) 

cancer cells, and concomitantly increases activity of caspase 3 and 7 activity. The 

extract, at the effective dose, contained a physiologically relevant level of SF (1.25 μM) 

that can be obtained in the plasma after consumption of a broccoli-rich meal (234-236). 

The study also shows for the first time interactive effects among SF, quercetin and 

kaempferol NQO1 activity in the murine Hepa-1c1c7 hepatoma cell line. 

The hydrolyzed broccoli extract at 2.5% enhances formation of 2-

methoxyestradiol, an endogenous metabolite of 17β-estradiol, via upregulation of the 

detoxification enzymes CYP1A and NQO1 (Chapter 3). 2-Methoxyestradiol has been 

shown to inhibit cell growth and induce apoptosis in human prostate (108, 109) and 

ovarian (106, 117) cancer cell lines. In this study, the hydrolyzed broccoli extract 

increased CYP1A and NQO1 activity (Fig. 4.2), and inhibited cell growth in the presence 

of 17β-estradiol in both human cancer cell lines (Fig. 4.2B and 4.3C). To determine 
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whether this decrease in cell growth was due to increased formation of 2-

methoxyestradiol, cell were co-treated with the COMT inhibitor Ro 41-096 at a dose that 

has previously been shown to abolish formation of 2-methoxyestradiol (Chapter 3). Co-

treatment with the COMT inhibitor did not attenuate the inhibitory effect of the 

hydrolyzed broccoli extract in either cell line (Fig. 4.2C and 4.3C). Furthermore, 

hydrolyzed broccoli extract inhibited growth of both cell lines to a similar extent in the 

absence (Fig. 4.2A and 4.3A) or presence of 17β-estradiol (Fig. 4.2B and 4.3B). These 

results suggest that, in this study, the observed inhibition of cancer cell growth is not a 

result of increased formation of 2-methoxyestradiol. A possible explanation may be that 

only a small amount of 2-methoxyestradiol was formed from 17β-estradiol in LNCaP 

and OVCAR-3 cells exposed to hydrolyzed broccoli extract, and that this amount was 

too small to overcome the growth stimulatory effects of 17β-estradiol. Follow-up studies 

involving stronger inducers of CYP1A and NQO1, such as β-naphthoflavone, or 

overexpression of these enzymes in target cells, are necessary to determine whether 

increased formation of endogenous 2-methoxyestradiol has therapeutic potential in the 

treatment of estrogen-associated cancers. 

Co-treatment with the COMT inhibitor did not alleviate inhibition of cancer cell 

growth by the hydrolyzed broccoli extract (Fig. 4.2C and 4.3C). Thus, it can be 

concluded that the growth-inhibitory effects of glucosinolate hydrolysis products are 

mediated via biological pathways other than estrogen metabolism. Based on in vitro 

studies involving purified bioactive compounds, these include induction of cell cycle 

arrest and apoptosis via suppression of cell survival pathways and an increase of 

proapoptotic regulators, as discussed in Chapter 2. However, most studies evaluate 
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only one bioactive compound at a time, and often at concentrations that far exceed what 

can be obtained in the plasma through dietary means. In addition, the majority of 

purified bioactives are available in their aglycone form, whereas in the plant most 

bioactives are present as conjugated precursors. More studies that involve bioactives as 

part of the whole plant are necessary to identify which compounds and which molecular 

targets are relevant for the prevention of cancer development in humans. 

The enhanced chemoprotective effect of cruciferous vegetables, as observed for 

prostate (56, 206-208) and ovarian cancer (54, 212)  is traditionally attributed to high 

levels of glucosinolates and their breakdown products (5, 8). In this study, the inhibitory 

effect of a hydrolyzed broccoli extract on human prostate and ovarian cancer cell growth 

was compared to the effect of the purified glucosinolate breakdown products I3C and 

SF. The hydrolyzed broccoli extract inhibited growth of both cell lines to a greater extent 

than combinations of purified I3C plus SF at concentrations equimolar to those found in 

the extract (Fig. 4.4). When evaluated individually, neither purified I3C nor SF affected 

growth in either cell line (Fig 4.4). These results indicate that inhibition of cell growth by 

the broccoli extract is not fully accounted for by I3C and SF. 

Indole-3-carbinol and SF have each been shown to induce apoptosis in human 

prostate and ovarian cancer cell lines (88, 91, 203, 237, 238), although most studies 

used supra-physiological doses. This study determined the effect of a hydrolyzed 

broccoli extract on caspase activity in human prostate and ovarian cancer cells, 

compared to a combination of purified I3C plus SF at concentrations equimolar to the 

extract. In both cell lines, the hydrolyzed broccoli extract increased activity of caspases 

3 and 7, whereas the combination of purified I3C plus SF did not have an effect on 
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caspase activity in either cell line (Fig. 4.5). These data suggest that the hydrolyzed 

broccoli extract inhibits growth of LNCaP and OVCAR-3 cells via induction of apoptosis, 

but that I3C and SF present in the extract do not fully account for this effect. It is 

concluded that additional compounds in the hydrolyzed broccoli extract, alone or in 

combination with I3C and/or SF, are responsible for the enhanced growth inhibition and 

induction of caspase activity. 

Caspases 3 and 7 play a central role in the late, execution phase of apoptosis 

and can be activated via the intrinsic pathway (irradiation, genetic and/or metabolic 

stress) as well as the extrinsic, receptor-mediated pathway (239). Whether 

glucosinolate hydrolysis products, as part of the whole food, induce apoptosis via the 

intrinsic and/or extrinsic pathway, remains to be determined. 

Inactivation and subsequent excretion of potentially carcinogenic compounds by 

phase II detoxification enzymes is thought to play a major role in protection against 

cancer (230, 231). Sulforaphane, quercetin and kaempferol have each been shown to 

increase activity of NQO1 (136, 149, 232), a key enzyme involved in the cellular 

defense against oxidative stress (240). This study examined the interactive effects 

between SF, quercetin and kaempferol on NQO1 activity using the murine Hepa-1c1c7 

hepatoma cell line. 

Sulforaphane and quercetin, but not kaempferol, individually increased NQO1 

activity at the levels tested. The impact of SF on enzyme activity was much greater at 

low doses compared to quercetin, indicating that SF is a more potent inducer of NQO1 

activity than quercetin (Fig. 4.7A). 
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Each combination of SF plus quercetin increased NQO1 activity to a greater 

extent than the individual compounds. At low dose combinations, the observed effect of 

SF plus quercetin combined did not differ from the calculated additive effect. At higher 

dose combinations of SF plus quercetin, the observed increase in enzyme activity was 

greater than the calculated effect, which indicates a synergistic interaction (Fig. 4.7A). 

Although kaempferol individually did not have an impact on NQO1 activity, 

combined treatments with SF or quercetin increased enzyme activity compared to SF 

and quercetin alone (Fig. 4.7B, C). For each dose combination of SF plus kaempferol, 

or quercetin plus kaempferol, the observed increase in enzyme activity was greater than 

the calculated additive effect, which is indicative of synergistic interactions (Fig. 4.7A-C). 

Taken together, these results indicate that SF individually is a much more potent 

inducer of NQO1 activity than quercetin or kaempferol. Combined, these compounds 

interact to increase NQO1 activity in a synergistic manner. Possible mechanisms 

underlying the observed synergistic effects among SF, quercetin and kaempferol on 

NQO1 activity are discussed below. 

Upregulation of NQO1 activity by SF is dependent on the transcription factor 

Nrf2. (71, 241, 242). Under homeostatic conditions, Nrf2 is anchored to the cytoplasmic 

protein Keap1 and is constitutively degraded via the ubiquitin-proteasome pathway. 

Under conditions of oxidative stress, or in the presence of chemoprotective compounds 

such as SF, the Nrf2-Keap1 complex becomes unstable. This results in increased 

translocation of Nrf-2 into the nucleus and subsequent activation of antioxidant 

response element (ARE)-containing target genes, including NQO1 (65, 66). 

Sulforaphane has been shown to increase Nrf2 protein levels and to enhance 
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translocation of Nrf2 into the nucleus of human keratinocytes (243). In the human 

HepG2 hepatoma cell line, SF has been shown to stabilize Nrf2, presumably via Keap1-

SF adduct formation (69). Similar effects of quercetin on Nrf2 levels and increased 

Keap-1 turnover have been observed for quercetin (244). Kaempferol has been shown 

to increase translocation of Nrf2 into the nucleus of mouse auditory cells (245). These 

overlapping mechanisms of enhanced Nrf-2 stabilization and translocation may lead to 

the synergistic upregulation of NQO1 activity by combinations of SF, quercetin and 

kaempferol. 

The bifunctional inducer I3C has been shown to induce NQO1 transcription and 

activation in a synergistic manner when combined with crambene, a nitrile product of 

the glucosinolate progoitrin. The observed synergy at the transcriptional level is thought 

to be the result of combined activation of the xenobiotic response element (XRE) and 

the ARE in the regulatory region of the gene by I3C and crambene, respectively (246). 

Quercetin and kaempferol have both been shown to increase transcription of CYP1A1, 

presumably via activation of the XRE (247). Thus, combined activation of the XRE by 

quercetin and kaempferol, and the ARE by SF could also play a role in the synergistic 

upregulation of NQO1 activity. 

Dietary bioactive components have been shown to alter the efficacy of 

pharmacological agents not only through modulation of detoxification enzymes (248, 

249), but also through interaction with efflux transporter systems, which may alter the 

intracellular dose and rate of excretion of a compound (250, 251). Exposure to SF leads 

to its intracellular accumulation, followed by conjugation to glutathione and rapid 

excretion from the cell (252). The efflux of SF and its glutathione conjugate appears to 
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be mediated by the membrane transporters P-glycoprotein (P-gp) and multidrug 

resistance protein 1 (MRP1) (252, 253). Quercetin has been shown to decrease 

expression and activity of P-gp, MRP1 and MRP2 in vitro (254-256, 257). Kaempferol 

has been demonstrated to decrease MRP-mediated efflux in multidrug-resistant cancer 

cells (258) and inhibit cellular export of quercetin (259). Taken together, these data 

suggest that combinations of SF quercetin and kaempferol can enhance the intracellular 

concentration of the individual components via inhibition of transporter-mediated efflux, 

resulting in synergistic upregulation of NQO1 activity. 

The levels of quercetin and kaempferol in the hydrolyzed broccoli extract have 

not been determined. Based on an analysis of 80 commercial broccoli samples (260), 

the amount of quercetin in 2.5% hydrolyzed broccoli extract is expected to be between 

0.01-5 μM, and the amount of kaempferol between 0.1-6 μM. At these levels, quercetin 

could have an impact on cancer cell growth, but the levels of kaempferol may be too low 

to have an effect. Additional bioactive compounds may be present in the hydrolyzed 

broccoli extract at concentrations that, alone or in combination, inhibit cell growth. Of 

particular interest is selenium, whose accumulation in cruciferous vegetables has been 

shown to enhance their chemoprotective potential (261). 

The doses of quercetin and kaempferol that, alone or in combination, had an 

effect on NQO1 activity can be expected to be present in the hydrolyzed broccoli 

extract. However, it was previously shown that the broccoli extract did not enhance 

NQO1 activity compared to purified SF at equimolar concentrations (Chapter 3), 

suggesting a maximum increase in NQO1 activity had been reached. Furthermore, 

although much of the literature evaluates activity of quercetin and kaempferol in their 
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respective aglycone forms, the broccoli extract, even after thio-hydrolysis, may still 

contain O-glycosides of quercetin and kaempferol. The concentration and chemical form 

of quercetin and kamepferol in hydrolyzed broccoli remains to be determined. 

In conclusion, this study showed that broccoli bioactives, at concentrations that 

can be obtained in the plasma through dietary means, inhibit growth of prostate and 

ovarian cancer cells in vitro, possibly via induction of apoptosis. The chemoprotective 

effect of broccoli cannot solely be attributed to glucosinolate hydrolysis products: other 

bioactive components of broccoli, such as polyphenolic compounds, may contribute to 

this effect. Sulforaphane, quercetin and kaempferol were shown to increase NQO1 

activity in an additive or even synergistic manner at concentrations that can be reached 

in the plasma, thus making these interactions physiologically relevant. Therefore, 

possible interactions between multiple bioactive components should be taken into 

consideration when investigating the mechanisms underlying the health-promoting 

properties of broccoli, or other whole foods. 
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4.5. Figures 

Figure 4.1. The effect of hydrolyzed broccoli extract (HBE) on enzyme activity in (A, B) 
human LNCaP prostate carcinoma cells and (C, D) human OVCAR-3 ovarian 
carcinoma cells. Cells were exposed to 2.5% (HBE; enzyme activity was measured after 
24 h exposure time. Data, expressed as fold-change over control, represent mean ± 
SEM, n=4. Values that differ from control are indicated by an asterisk (*, p < 0.05). 
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Figure 4.2. The effect of hydrolyzed broccoli extract (HBE) on cell growth in 
unstimulated or 17β-estradiol-stimulated LNCaP cells. After 48 h attachment, LNCaP 
cells were treated for 96 h with 2.5-10% HBE in (A) the absence or (B) presence of 10 
nM 17β-estradiol (E2), or (C) the presence of both17β-estradiol and 3 μM COMT 
inhibitor (COMT-i). 17β-Estradiol and COMT-i were added every 24 h; HBE was added 
every 48 h. The number of live cells was determined after 48 h attachment, but prior to 
treatment (control, C), and after the 96 h treatment period. Data, expressed as 
fluorescence, represent mean ± SEM, n=3. Values that differ are indicated by different 
letters (p < 0.05). 
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Figure 4.2. (continued) 
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Figure 4.3. The effect of hydrolyzed broccoli extract (HBE) on cell growth in 
unstimulated or 17β-estradiol-stimulated OVCAR-3 cells. After 48 h attachment, 
OVCAR-3 cells were treated for 96 h with 2.5-10% HBE in (A) the absence or (B) 
presence of 10 nM 17β-estradiol (E2), or (C) the presence of both17β-estradiol and 3 
μM COMT inhibitor (COMT-i). 17β-Estradiol and COMT-i were added every 24 h; HBE 
was added every 48 h. The number of live cells was determined after 48 h attachment, 
but prior to treatment (control, C), and after the 96 h treatment period. Data, expressed 
as fluorescence, represent mean ± SEM, n=3. Values that differ are indicated by 
different letters (p < 0.05). 
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Figure 4.3. (continued) 
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Figure 4.4. The effect of hydrolyzed broccoli extract (HBE), I3C and SF on growth of (A) 
LNCaP and (B) OVCAR-3 cells. After 48 h attachment, cells were treated for 96 h with 
purified I3C (0.125 μM), SF (1.25 μM), I3C plus SF or 2.5% HBE. Treatments were 
added every 48 h. The number of live cells was determined after 48 h attachment, but 
prior to treatment (control, C), and after the 96 h treatment period. Data, expressed as 
fluorescence, represent mean ± SEM, n=3. Values that differ are indicated by different 
letters (p < 0.05). No Tx: no treatment added after 48 h attachment. 
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Figure 4.5. The effect of hydrolyzed broccoli extract (HBE) or I3C plus SF on caspase 
activity in (A) LNCaP or (B) OVCAR-3 cells. After 48 h attachment, cells were treated for 
96 h with 2.5% HBE or purified I3C (0.125 μM) plus SF (1.25 μM).Treatments were 
added every 48 h. Activity of caspase 3 and 7 was determined after the 96 h treatment 
period. Data, expressed as fold-change over control, represent mean ± SEM, n=3; 
values that differ from control are indicated by an asterisk (*, p < 0.05). 
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Figure 4.6. Dose-dependent effects of SF, quercetin and kaempferol on NQO1 activity. 

Murine Hepa-1c1c7 hepatoma cells were exposed for 24 h to (A) purified SF (0.25 - 2 

μM), (B) purified quercetin (0.5 - 15 μM), or (C) purified kaempferol (1.25 - 15 μM). 

Enzyme activity was determined after 24 h exposure. Data, expressed as percent 

increase over control (untreated cells, 0%) after 24 h treatment, represent mean ± SEM, 

n=4. 
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Figure 4.7. Interactive effects among SF, quercetin and kaempferol on NQO1 activity. 
Murine Hepa-1c1c7 hepatoma cells were exposed for 24 h to (A) combinations of 
purified SF plus quercetin (Q), (B) purified SF plus kaempferol (K), or (C) purified 
quercetin plus kaempferol. Enzyme activity was determined after 24 h exposure. Data, 
expressed as percent increase over control (untreated cells, 0%) after 24 h treatment, 
represent mean ± SEM, n=4. 
A. 
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Figure 4.7 (continued)  
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CHAPTER 52 

Selenium enrichment of broccoli alters its bioactivity via changes in the 

glucosinolate profile 

 

5.1. Introduction 

Selenium has gained much attention as a cancer preventive agent since the 

publication of the Nutritional Prevention of Cancer trial (NPC), which showed that daily 

supplementation of 200 μg selenium from selenized yeast reduced the incidence of 

lung, colorectal and prostate cancer in men with a history of either basal cell or 

squamous cell carcinoma (182). The major selenium species in selenized yeast is 

selenomethionine (183), which was therefore selected for the more recent Selenium 

and Vitamin E Cancer Prevention Trial (SELECT). In this large study, daily 

supplementation of selenomethionine (either alone or in combination with vitamin E) 

failed to lower the incidence of prostate cancer in relatively healthy men (184). A key 

reason for this lack of effect may have been the choice of selenium formulation. 

Although selenomethionine was the primary bioactive component in selenized yeast, 

other forms of selenium present in the yeast, such as Se-methylselenocysteine (Se-

MSC), may have been responsible for the observed reduction in cancer incidence (186). 

Crucifers typically contain low amounts of selenium, but have the ability to 

actively accumulate selenium when grown on selenium-rich soil (191, 196). Analysis of 

selenium-enriched crucifers has shown that Se-MSC is the major selenium species in 

these vegetables (183). Multiple animal studies have demonstrated the enhanced 

                                                             
2
 Table 5.1. is adapted with permission from Liu AG, Volker SE, Jeffery EH, Erdman JW. Feeding tomato 

and broccoli powders enriched with bioactives improves bioactivity markers in rats. J Agric Food Chem. 
2009 Aug 26;57(16):7304-10. Copyright 2009 American Chemical Society. 
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anticarcinogenic potential of selenium-enriched broccoli and other cruciferous 

vegetables compared to their non-enriched counterparts (194-196). These studies 

suggest a potential role for Se-MSC and/or its metabolite(s) in cancer prevention. 

A possible mechanism for the greater protection against chemically induced 

carcinogenesis by selenium-enriched broccoli is enhanced upregulation of detoxification 

enzyme activity (21). However, selenium enrichment has also been shown to increase 

the glucosinolate content in the plant tissue (21, 204). Whether the observed increase in 

detoxification enzyme activity is a direct effect of selenium accumulation, or mediated 

via alterations in the glucosinolate profile of the plant has not been determined. 

The purpose of this study was to evaluate the role of selenium in enhanced 

upregulation of CYP1A and NQO1 activity by selenium-enriched broccoli using the 

murine Hepa-1c1c7 hepatoma cell line. I hypothesized that selenium-enriched broccoli 

increases CYP1A and NQO1 activity to a greater extent than low-selenium broccoli. I 

also hypothesized that addition of Se-MSC, but not selenite, to low-selenium broccoli 

enhances its bioactivity. 

 

5.2. Methods 

Plant material, chemicals and reagents. Standard, low-selenium (0.25 ppm) 

broccoli florets (Brassica oleracea var. Monaco), freeze-dried and ground to a powder, 

were obtained from FutureCeuticals (Momence, IL); moderate (1.44 ppm) and high-

selenium (4.28 ppm) broccoli (Brassica oleracea var. Majestic) were grown by Dr. Gary 

Banuelos at the USDA-ARS research facility in Parlier, CA. Moderate-selenium broccoli 

was produced via combined treatment with methyl jasmonate and sodium selenate; 
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high-selenium broccoli was produced by sodium selenate treatment only, all as 

described previously (21). The glucosinolate and selenium profiles of these broccoli 

powders are summarized in Table 1. Unless noted otherwise, chemicals and reagents 

were purchased from Sigma-Aldrich Corp. (St. Louis, MO). 

Cell culture. Murine Hepa-1c1c7 hepatocellular carcinoma cells were obtained 

from the American Type Culture Collection (Manassas, VA). Cells were maintained in 

Eagle's minimum essential medium with alpha modification, supplemented with 2.2 g/L 

sodium bicarbonate and 10% fetal bovine serum (Atlanta Biologicals, Lawrenceville, 

GA). Cells were cultured at 37C in a humidified atmosphere of 95% air and 5% CO2. 

Treatments. Aqueous broccoli extracts were prepared as described previously 

(Chapter 3) and added to the culture medium at 2.5% final concentration, equivalent to 

1.25 mg broccoli powder per mL. Selenite and Se-MSC were dissolved in water, sterile-

filtered and stored at -20C, and added to the broccoli hydrolysis extracts prior to cell 

treatment. Purified neoglucobrassicin was kindly provided by Dr. M.A. Berhow, USDA-

ARS Peoria, IL. Neoglucobrassicin (20 mM) was hydrolyzed in the presence of 

myrosinase (β-thioglucosidase; E.C. 3.2.1.147, 20 mU/mL) for 24 h at room temperature 

away from light, sterile-filtered and added to cell culture medium at 0.4% final 

concentration. All other treatments, except broccoli hydrolysis extracts, were added to 

the culture medium at 0.1% final concentration. 

Enzyme activity. For measuring enzyme activity in vitro, Hepa-1c1c7 cells were 

seeded at 1 x 104 cells per well into flat bottom 96-well plates (Corning) and allowed to 

adhere overnight. Medium was replaced with medium containing treatments, and cells 

were treated for 24 h. Cellular CYP1A and NQO1 enzyme activity was measured as 
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described previously (Chapter 3). The activity of CYP1A was measured as 

ethoxyresorufin O-deethylase activity (214); NQO1 activity was measured according to 

the method of Prochaska and Santamaria (215) with modification (216), both as 

described previously (Chapter 3). 

Statistical analysis. Data were evaluated by one-way analysis of variance using 

SAS Statistical software (SAS Institute, Cary, NC), and values were considered to be 

different among treatments at p < 0.05 using Fisher‟s least significant difference 

procedure. 

 

5.3. Results 

Effect of selenium-enrichment on detoxification enzyme activity. The effect of 

selenium-enrichment on CYP1A and NQO1 activity was determined in murine Hepa-

1c1c7 hepatoma cells. Enzyme activity was measured after 24 h treatment. 

Low-selenium broccoli hydrolysis extract (2.5%) increased CYP1A activity 14.2-

fold compared to control; high-selenium broccoli hydrolysis extract increased enzyme 

activity 25-fold over control (Fig. 5.1A). NQO1 activity was increased 4.1- and 5.2-fold 

over control by low- and high-selenium hydrolysis broccoli extracts, respectively (Fig. 

5.1B). 

Addition of selenium as purified selenite to low-selenium broccoli hydrolysis 

extract, at concentrations equimolar to high-selenium broccoli, increased CYP1A activity 

11.4-fold compared to control, but this increase was not significantly different from the 

level of enzyme activity observed after treatment with low-selenium broccoli hydrolysis 

extract alone. Addition of selenium as purified Se-MSC to low-selenium broccoli 
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hydrolysis extract, at concentrations equimolar to high-selenium broccoli hydrolysis 

extract, increased CYP1A activity 12.9-fold compared to control. Although this increase 

in enzyme activity was greater than the one observed after treatment with low-selenium 

broccoli hydrolysis extract alone, it was still significantly lower than the level of CYP1A 

activity observed after treatment with high-selenium broccoli hydrolysis extract (Fig. 

5.1C). 

Addition of selenium, either as purified selenite or Se-MSC, to low-selenium 

broccoli hydrolysis extract, at concentrations equimolar to high-selenium broccoli 

hydrolysis extract, increased NQO1 activity ~4.3-fold compared to control, but this 

increase was not significantly different from the level of enzyme activity observed after 

treatment with low-selenium broccoli hydrolysis extract alone (Fig. 5.2D). 

Moderate-selenium broccoli hydrolysis extract increased CYP1A activity 27.2-fold 

over control; high-selenium broccoli hydrolysis extract increased enzyme activity 26.2-

fold over control (Fig. 5.1E). NQO1 activity was increased 4.1-fold over control by both 

medium- and high-selenium broccoli hydrolysis extracts (Fig. 5.1F). 

Effect of neoglucobrassicin hydrolysis products on CYP1A activity. 

Prehydrolyzed neoglucobrassicin, at levels that are expected to be found in the high-

selenium broccoli hydrolysis extract, increased CYP1A activity in a dose-dependent 

manner: enzyme activity was increased 3.7-13.7-fold compared to control when 7.5 - 50 

μM prehydrolyzed neoglucobrassicin was added (Fig. 5.2). 
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5.4. Discussion 

This study examined the bioactivity (measured as CYP1A and NQO1 activity in 

Hepa-1c1c7 cells) of broccoli powders with different levels of selenium in vitro. In this 

study, a high-selenium broccoli hydrolysis extract increased CYP1A and NQO1 activity 

to a greater extent than a low-selenium broccoli hydrolysis extract (Fig. 5.1A, B). 

Addition of selenium, either as purified selenite or Se-MSC, to the low-selenium broccoli 

hydrolysis extract had a marginal effect on CYP1A activity (Fig. 5.2C) and no effect on 

NQO1 activity (Fig. 5.1D). These results suggest that preharvest selenium enrichment 

of broccoli enhances its bioactivity, whereas postharvest addition of selenium, as either 

selenite or Se-MSC, to low-selenium broccoli does not. 

This study also showed that hydrolysis extracts of broccoli powders with different 

levels of selenium (1.44 vs. 4.28 ppm), but comparable levels of the indole glucosinolate 

neoglucobrassicin (13.15 vs. 11.99 μmol/g dry weight), increased CYP1A and NQO1 

activity to a similar extent (Fig. 5.1E, F). In addition, hydrolysis products of 

neoglucobrassicin, at levels expected to be present in the selenium-enriched broccoli 

powder hydrolysates, increased CYP1A activity. Taken together, these results suggest 

that the enhanced bioactivity observed for selenium enriched broccoli is not due to a 

direct effect of selenium on detoxification enzyme activity. Instead, increased levels of 

neoglucobrassicin in the plant tissue appear to account, in part, for the observed 

increased bioactivity. 

Selenium enrichment has been shown to increase formation of neoglucobrassicin 

and concomitantly decrease formation of glucobrassicin (21). Since neoglucobrassicin 

is formed from glucobrassicin via a methylation step (262), it is possible that increased 
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levels of selenium in the plant tissue alter biosynthesis of glucosinolates to favor 

formation of neoglucobrassicin from its precursor. The enzyme that catalyzes 

methylation of glucobrassicin to form neoglucobrassicin is currently unknown. 

The neoglucobrassicin hydrolysis product N-methoxyindole-3-carbinol (NI3C) has 

been shown to be a more efficient inducer of CYP1A activity compared to I3C in vitro 

(220). Therefore, NI3C is proposed to be, in part, responsible for the observed induction 

of CYP1A by selenium-enriched broccoli. N-methoxyindole-3-carbinol has also been 

shown to induce cell cycle arrest in human colon cancer cells via upregulation of the cell 

cycle regulator p21, which may contribute to the enhanced chemoprotective properties 

of selenium-enriched broccoli (263). 

Although selenium-enriched broccoli has been shown to offer enhanced 

protection against chemically induced cancers in vivo, previous reports have cautioned 

that high levels of selenium uptake may interfere with sulfur uptake and, subsequently, 

glucosinolate formation. Selenium enrichment has been shown to reduce glucosinolate 

levels in the plant, but this was at much greater levels of selenium in the plant tissue. 

Selenium accumulation at 879 μmol/g dry weight resulted in a 43% decrease in aliphatic 

glucosinolates, while indole glucosinolate levels were not affected (204). However, in 

another study selenium accumulation decreased levels of both aliphatic and indole 

glucosinolates (264). In this study, we have shown that selenium enrichment enhanced 

the bioactivity of broccoli by increasing its glucosinolate content, but the extent of this 

effect may depend on the amount of selenium applied to the plant, and possibly the 

genotype of the broccoli (265). 
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In this study, high-selenium (4.28 ppm) broccoli hydrolysis extract enhanced 

CYP1A and NQO1 activity by 80% and 25% over low-selenium (0.25 ppm) broccoli 

hydrolysis extract in Hepa-1c1c7 cells (Fig 5.1A, B). A similar increase in hepatic 

CYP1A and NQO1 activity was observed in rats fed high -selenium broccoli powder 

compared to low-selenium broccoli powder (21). This validates the use of Hepa-1c1c7 

cells to evaluate the role of selenium-enrichment in enhancement of broccoli bioactivity. 

Whether selenium accumulation in the plant also resulted in elevated levels of 

selenium in culture medium remains unanswered. Glutathione peroxidase assays will 

be used in future studies to assess selenium bioavailability from the different broccoli 

powders. Culture medium is routinely found to be selenium deficient, which may inhibit 

glutathione peroxidase activity (266). A dose-dependent increase in enzyme activity by 

broccoli hydrolysis extracts will show that, while selenium from the broccoli powders 

was available and bioactive, it did not affect CYP1A and NQO1 activity. 
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5.5. Tables and figures 

Table 5.1. Glucosinolate and selenium profile of broccoli powders. Adapted with 
permission from Liu AG, Volker SE, Jeffery EH, Erdman JW. Feeding tomato and 
broccoli powders enriched with bioactives improves bioactivity markers in rats. J Agric 
Food Chem. 2009 Aug 26;57(16):7304-10. Copyright 2009 American Chemical Society. 
 

 

 

Glucoraphanin 

(μmol/g dry weight) 

Glucobrassicin 

(μmol/g dry weight) 

Neoglucobrassicin 

(μmol/g dry weight) 

Se 

(ppm) 

low-Se 3.05 ± 0.36 2.17 ± 0.06   1.97 ± 0.06 0.25 

medium-Se 3.53 ± 0.04 0.70 ± 0.02 13.15 ± 0.33 1.44 

high Se 3.36 ± 0.55 0.73 ± 0.05 11.99 ± 0.75 4.28 
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Figure 5.1. The effect of broccoli selenium-enrichment on detoxification enzyme activity 
in murine Hepa-1c1c7 hepatoma cells. Cells were exposed for 24 h to broccoli extract 
(2.5%) with or without selenium as either selenite (sel) or Se-MSC. Enzyme activity was 
measured after 24 h exposure time. Data, expressed as fold-change over control, 
represent mean ± SEM, n=4; values that differ are indicated by different letters (p < 
0.05). B-SeL = low selenium broccoli; B-SeM = medium selenium broccoli; B-SeH = 
high-selenium broccoli; Se = selenite 
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Figure 5.1. (continued) 
 
 
C. 
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Figure 5.1. (continued) 
 
 
E.                 F. 
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Figure 5.2. The effect of neoglucobrassicin hydrolysis products on detoxification 
enzyme activity in murine Hepa-1c1c7 hepatoma cells. Cells were exposed for 24 h to 
increasing amounts of hydrolyzed neoglucobrassicin (2.5 - 50 μM). Enzyme activity was 
measured after 24 h exposure time. Data, expressed as fold-change over control, 
represent mean ± SEM, n=4; values that differ are indicated by different letters (p < 
0.05). 
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CHAPTER 6 

Conclusions and future directions 

 

A healthy lifestyle includes a diet rich in fruits and vegetables. Not only do fruits 

and vegetables provide vitamins and minerals that are essential for maintaining 

fundamental functions of the body, they also contain bioactive compounds, which are 

nonessential components that are associated with reduced risk for chronic diseases, 

including cancer. Within the different groups of fruits and vegetables, cruciferous 

vegetables have gained considerable attention for their protective effect against various 

types of cancer, including those associated with estrogen status. A proposed 

mechanism for protection against these cancers is alteration of estrogen metabolism. 

This study showed for the first time that broccoli increased formation of the 

anticarcinogenic estrogen metabolite 2-methoxyestradiol, which may contribute to the 

chemoprotective properties of the vegetable. 

In Chapter 3, broccoli was not able to inhibit estrogen-induced cancer cell 

growth, but this may have been due to specific experimental conditions, such as high 

concentrations of estrogen in the culture medium. Supplementation with the purified 

glucosinolate breakdown product I3C was shown to increase 2-methoxyestradiol 

formation in chicken liver after a 7-day feeding trial. Based on this result, a long-term 

feeding study involving whole broccoli and purified I3C is proposed in the chicken, a 

preclinical model for ovarian cancer. Outcomes of this study will hopefully provide a 

better understanding of the impact of broccoli on whole-body estrogen metabolism, and 

on the development of ovarian cancer and other estrogen-associated cancers. 
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Epidemiological studies that highlight the health-promoting properties of fruits 

and vegetables focus on consumption of the whole food. In contrast, many of the plant 

compounds that are thought to be responsible for this added health benefit are studied 

in vitro in their purified form. While these studies have provided insight into the possible 

mechanisms underlying the health benefits, they may not accurately reflect the effect of 

the whole food. Bioactive compounds are often present in the plant as conjugates or 

(inactive) precursors, which may differ in bioavailability and stability from their purified 

form. In addition, many bioactive compounds are metabolized extensively in the 

intestine prior to absorption into the blood stream. Therefore, both the dose and 

chemical form of a bioactive compound found in the plasma following consumption of 

the whole food may be very different from those used for in vitro studies, which limits 

the physiological relevance of the study outcomes. Whole foods usually contain multiple 

bioactive components, whose interactions may result in antagonistic, additive or 

synergistic effects. 

Chapter 4 showed that broccoli as a whole food had a greater effect on multiple 

study endpoints (induction of detoxification enzyme activity, inhibition of cancer cell 

growth, induction of caspase activity) compared to a combination of the purified 

glucosinolate breakdown products I3C plus SF. Chapter 4 also showed interactive 

effects between SF and other bioactive compounds found in broccoli, the flavonols 

quercetin and kaempferol, on NQO1 activity. Taken together, these results clearly show 

that broccoli provides bioactive compounds other than the glucosinolate hydrolysis 

products. It can also be concluded that these hydrolysis products, as often found in 

dietary supplements, are not solely responsible for the health benefits of broccoli. More 



 

104 

likely, they are the result of interactive effects between multiple bioactive components 

present in the plant. Therefore, the added health benefit associated with a diet rich in 

plant-based foods, may not be achieved through consumption of dietary supplements 

(which often contain only a single bioactive) alone. 

The results of Chapter 4 emphasize the need for research that tries to connect 

the health benefits of the whole food to the effects observed for the purified compounds. 

More information is needed regarding the chemical form and concentration of bioactives 

present in the plasma when consuming a diet that is associated with reduced cancer 

risk. In vitro studies using the physiologically relevant forms and concentrations of these 

bioactives may help identify compounds that are most likely to have a protective effect 

in humans, and their underlying mechanisms. 

Another approach to bridge the gap between whole foods and purified bioactives 

is enrichment of foods with specific bioactives, either through agronomic measures or 

selective breeding. An example is selenium enrichment of crucifers, which have been 

shown to offer greater protection against chemically-induced carcinogenesis (186, 190, 

194-196). Chapter 5 showed that selenium enrichment of broccoli enhanced its 

chemoprotective potential through alterations in its glucosinolate profile. Selection of 

different phenotypes may help identify or develop a broccoli with even greater 

anticarcinogenic properties. 

Ultimately, the outcomes of future studies may lead to the development of foods 

that can provide superior health benefits to entire populations. 
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