
c© 2013 Philbert R. Lin

A LAZY DIRECTORY-BASED IMPLEMENTATION OF CONSISTENT
REPLICATED STORAGE

BY

PHILBERT R. LIN

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2013

Urbana, Illinois

Adviser:

Professor Nitin H. Vaidya

Abstract

Recent work in replicated datastores has focused on making availability and

low latency the primary requirements. We present two directory-based data-

stores which make strong application semantics a primary requirement based

on ideas from cache coherence in multiprocessors and distributed shared

memory. The two datastores are implemented and evaluated against the

Apache Cassandra distributed datastore in a simulated geo-distributed envi-

ronment with workloads generated by the Yahoo! Cloud Serving Benchmark.

We find that while there are cases where our systems perform with better

average latency, the variability in the request latencies is undesirable due to

expensive synchronization operations.

ii

To my parents,

who have done more for me than I could ever do for myself

iii

Acknowledgments

I would like to thank Dr. Nitin H. Vaidya for his continued support and

guidance over the past year and a half. This work was supported in part

by Boeing and I would like to thank them. Additionally conversations with

Larry Kai, Adrian Djokic, Danyang Zhuo, Stephen Abraham and Ghazale

Hosseinabadi have been helpful. I would also like to thank Brian Cho for

teaching me how to effectively work with systems research. Last but not least,

I would like to thank my family and friends for their continued support.

iv

Table of Contents

Chapter 1 Introduction . 1

Chapter 2 Related Work . 3
2.1 Application Semantics . 3
2.2 Consistency . 5
2.3 System Coordination . 9
2.4 Data Partitioning and Load Balancing 10
2.5 Fault-Tolerance . 11
2.6 Summary . 12

Chapter 3 Background . 13
3.1 Cache Coherence and Distributed Shared Memory 13
3.2 Cassandra . 14

Chapter 4 System Design and Implementation 18
4.1 Goals . 18
4.2 Directory-Based Strong Consistency 19
4.3 Release Consistency . 27
4.4 Implementation . 31

Chapter 5 Experiments . 32
5.1 Experimental Setup . 32
5.2 Workloads . 34
5.3 Row Contention and Workload Distribution 43
5.4 Directory Placement . 44
5.5 Summary . 45

Chapter 6 Conclusions and Future Work 46

Appendix A Network Delay Simulation in Linux 47

References . 49

v

Chapter 1

Introduction

With the rise of big data and cloud computing the amount of information

that backend infrastructure must handle with high performance is growing

rapidly. The issue of replicated data storage has received increasing attention

in recent years [1]–[12].

A replicated datastore consists of multiple physical copies of an object and

logically one or more copies of application clients. Replication can improve

performance, availability and fault-tolerance at the cost of maintaining those

replicas. The most concise characterization of the complex design trade offs

in any replicated storage system was described by Brewer [13] and is known as

the CAP theorem. The CAP theorem says that a system can simultaneously

provide at most two of the following three attributes: consistency, availability,

and tolerance to network partitions.

Consistency in this context refers to whether or not the replicas are all

matching. Availability describes how often the data can be read or written

to. And tolerating a network partition means that the system can continue

to function even if part of the system cannot be contacted or fails.

Systems were designed to tolerate network partitions and prioritize either

consistency [1, 2] or availability [3]–[7]. Although the CAP theorem stated

that systems could only have two of the three properties, it was clarified in

[14] that the former statement is misleading. Systems can provide all three,

but not 100% of each trait simultaneously. Other systems were developed

which provided a better balance [8]–[12]. Recent systems have also started

looking at the problem of geo-replicated storage [2], [9]–[12]. Geo-replicated

storage is when objects are replicated across datacenters located over many

geographic locations. This is also known as wide-area replication.

Besides the issues covered by the CAP theorem, there are other factors

involved when we consider building a highly scalable, distributed replicated

datastore. Some of these issues include application semantics, system coordi-

1

nation, how the updates are propagated through the system, how and where

data is logically and physically placed, and how to handle fault-tolerance.

These additional factors will influence the CAP characteristics and perfor-

mance of the system.

These recent systems have been looking at making the worst case scenario

as best as possible, attempting to minimize the latency that 99.9% of requests

experience [3]. Typically this has been done by compromising the consistency

of the system. In this thesis we discuss potential ways to maintain strong con-

sistency semantics to the client while also keeping the average of the request

times as low as possible in a geo-replicated setting. We present and evaluate

two different methods using ideas from cache coherence in multiprocessors

and distributed shared memory.

The remainder of the thesis is organized as follows. In Chapter 2, we

present a survey of the existing literature on replicated datastores structured

around how each of the core issues are addressed. Chapter 3 presents related

background ideas from multiprocessor cache coherence, distributed shared

memory, and details on the Cassandra datastore. In Chapter 4, we present

the design of two directory-based datastores. In Chapter 5, we evaluate the

two directory-based datastores along with Cassandra. Finally in Chapter 6

we conclude the work and discuss future work.

2

Chapter 2

Related Work

There has been ample work in the theory and building of replicated data-

stores. This chapter will describe how various systems have tackled the

problems that distributed replicated datastores face. The core issues are

what semantics to present to the application, which consistency model to

use, how should the system coordinate among its replicas, how should up-

dates be propagated through the system, how and where data is logically

and physically placed, and how faults are handled.

2.1 Application Semantics

The main purpose of a datastore is to allow a client to read and write persis-

tent information. There are various ways of presenting this interface to the

client and here we present a few. In order of increasing complexity:

• Key-Value: The simplest abstraction is a key-value store, similar to

a map data structure. A client provides a key and value when writing,

and then can retrieve the value with a key. This abstraction does not

have logical order or grouping to it but keeps the design simple.

• File System: A file system, similar to one encountered on a modern

operating system, provides a hierarchy of files which can be manipu-

lated. In a simplified sense, a file system is a key-value store with the

path and name of a file as the key and the contents as the value. Al-

though a file system provides additional organization, it does not lend

itself naturally to manipulating multiple objects.

• Database: A database provides an easier interface to manipulate

structured data. Typically a query language is used to semantically

express what information the client would like to read or write. A

3

common type of database is a relational database which emphasizes

the relationships between records.

None of these abstractions need to be implemented in a distributed or repli-

cated fashion, but doing so increases the performance and fault-tolerance of

the system at the cost of increased complexity.

Amazon’s Dynamo [3] is primarily a key-value store. The Google File

System (GFS) [6] is not surprisingly a file system, but departs from the

standard POSIX API to improve performance. Some of the interesting design

choices were to make the default block size 64MB and make most of the files

append-only. PNUTS [1], BigTable [5] and Cassandra [4] are in between a

key-value store and database. In BigTable and Cassandra clients can access

their data with multiple attributes. Data is primarily indexed by a row

key but clients can also optionally specify which column they would like

to access. Each row has various column elements. Google’s Spanner [10],

Megastore [2] and recent versions of Cassandra are most similar to a relational

database and support SQL-like queries. The additional functionality and

overhead of maintaining structure of the data may come at the cost of lower

performance. Many applications only need a datastore similar to a key-value

store [3], however, as application complexity grows the benefit from having

a richer data model increases as well [10]. Systems can layer together these

abstractions. One example is that BigTable is built on top of GFS.

Ideally when data is replicated the client is unaware of the fact. It is most

intuitive for an application when there is one logical copy of the data and one

or more physical copies. However, to improve performance the system can

ask the application for assistance regarding the multiple physical copies, thus

increasing the number of logical replicas. This is necessary during optimistic

operations when state diverges and the application has more knowledge of

how to recognize and resolve conflicts. This technique is used in Bayou [7]. A

less intrusive method of giving the application is allowing the client to specify

a timestamp. This method is used by Spanner, BigTable, and PNUTS. This

approach lets applications potentially receive a stale copy of the data, but

it will be correct in the version history unlike what could happen in an

eventually consistent system where reads may return inconsistent values [1].

4

2.2 Consistency

Consistency of data in a distributed system is an inherent problem due to

occasional ambiguity in the ordering of events between processes [15]. In

order to correctly keep each replica consistent, the concurrent operations on

them need to be ordered. Another option is to relax the ordering and allow

the state to diverge. While there are many consistency models, we will only

cover a few here. Ordering them approximately from strongest to weakest:

• Linearizability: also known as atomic consistency, is the strongest

guarantee that a replicated system can provide. It guarantees 1) the

system’s execution of the operations is consistent with the real finishing

times and 2) any read of an object will occur after its corresponding

write in the interleaving [16]. Linearizability provides the illusion that

each operation takes effect instantaneously at some point between its

invocation and its response [17].

• Sequential Consistency: is a slightly weaker version of strong con-

sistency. It approximates linearizability and guarantees 1) the system

will be in the same state for any interleaving of individual processes

and 2) any read of an object will occur after its corresponding write

in the interleaving [16]. It is similar to linearizability but without the

real finishing time constraint. One way to intuitively understand se-

quential consistency is to imagine that the shared memory can only be

connected to one of the multiprocessors at any time. All processors see

the same memory state and have their actions completed in the order

they specified.

• Causal Consistency: maintains the ordering of relative operations

which are causally related [18]. In this model reads respect the or-

der of causally related writes. An operation is potentially causal with

1) previous operations performed by the same thread of execution, 2)

operations that wrote the value this operation has read, and 3) opera-

tions which are causally after an operation from rule 1) or 2) [11]. One

weakness of how causal consistency is typically implemented is that

operations can only be ordered based on the actions observable by the

system.

5

• Eventual Consistency: is a form of weak consistency where if there

are no new updates to an object, then eventually all replicas will have

the same copy [19]. Although an upper bound to the inconsistency

window can be approximated for a system, this model does not dictate

one. In this model updates can reach replicas in different orders.

The consistency model and guarantee of a system depend on how and when

the data is replicated from one server to another. The data can be replicated

either synchronously or asynchronously whenever there is a client request.

Synchronously replicating data requires that a group of servers will agree on

a value before replying to the client while asynchronously replicating data

takes that action off the critical path, resulting in better performance.

2.2.1 Strong Consistency

Megastore uses Paxos to replicate user data across datacenters for every

write to achieve snapshot consistency, which provides sequential consistency

within an entity group (a collection of data) [2]. Paxos [20] is a well known

consensus protocol. It is an expensive operation consisting of a couple rounds

of messages to a quorum, but it is currently the best known technique to

achieve consistent fault-tolerant ordering between a set of replicas. Although

many systems use Paxos to synchronize values, Megastore was the first at

the time to use it to replicate data on the critical path in wide-area storage.

MDCC [12] also uses Paxos and a few of its extensions such as Generalized

Paxos.

Spanner similarly uses Paxos during client updates, however by using extra

hardware (atomic clocks and GPS) the system is able to globally order oper-

ations across datacenters with even better performance. The extra precision

from their TrueTime API allows the timestamps to be useful globally, thus

achieving linearizability. Additionally, Spanner provides consistent read-only

snapshots of the system at any previous timestamp.

Azure [8] provides strong consistency at an object granularity by coupling

their stream layer and partition layer together. The append-only stream layer

provides high availability while the partition layer asynchronously replicates

the data. The stream manager within the stream layer uses Paxos, but

mainly for fault tolerant purposes.

6

PNUTS [1] achieves per-record timeline consistency (sequential consistency

for each record) by designating one of the replicas of an object the master

and funneling all of the write operations through it. The system allows for

reads off any of the replicas if stale information is acceptable, otherwise the

master is contacted for the latest update.

Azure, PNUTS, and BigTable provide strong consistency within a datacen-

ter but Spanner with TrueTime and Paxos is able to totally order operations

across datacenters.

2.2.2 Weak Consistency

Bayou [7] allows a client to write to the system in almost all conditions, even

when the client is off-line and completely partitioned from the rest of the

system. However, this design can lead to many conflicts. Bayou tackles this

problem by presenting the application with an interface to detect and merge

the conflicts. Another limitation of their design is that previously written

updates may be modified by the system before the data is labeled committed.

Dynamo [3] and Cassandra [4] use a quorum-like technique whenever up-

dates or reads are made. Clients can configure the number of replicas which

must synchronously respond to reads or writes. Cassandra calls this tunable

consistency. If we let N be the total number of replicas, W be the number

of replicas which acknowledge a write, and R be the number of replicas that

are accessed on a read operation, then setting W + R > N results in strong

consistency while W + R ≤ N results in eventual consistency. However in

the background there is asynchronous replication to reach the other N nodes

in charge of the data.

Eiger [11] uses causal consistency in order to achieve better performance in

a geo-distributed setting. All operations from clients are served from the lo-

cal datacenter from which they arise. Operations are asynchronously pushed

to remote datacenters but committed only after all causally dependent oper-

ations have been previously committed.

7

2.2.3 Mixed Consistency

Gemini [9] takes a different approach and categorizes operations as either

red or blue. Each color has a different consistency guarantee, but both are

executed together in the system. Blue operations are executed locally and

quickly while the red operations require the coordination of other servers.

2.2.4 Consistency Discussion

Systems such as PNUTS, Megastore, Azure, and Spanner provide stronger

consistency but do not perform as well as systems which provide weaker

consistency guarantees such as GFS, Dynamo, and Cassandra.

The stronger consistency stores become unavailable if the network becomes

partitioned in order to preserve the consistency among the replicas. If some

of the replicas were able to proceed then the data could diverge. This un-

availability is the cost of keeping the state consistent. However since a system

like Spanner is spread across datacenters, it is unlikely that a majority of the

datacenters will go down and prevent the system from making progress.

The performance benefits from eventual consistency come at a cost of

less intuitive semantics and increased application concern. The optimistic

replication allows state to diverge and lead to conflicts. Bayou requires the

application to define how to both detect and merge conflicts, while Gemini

also requires modifications to the application to support the classification of

operations. Dynamo uses vector clocks to detect conflicts but prefers client

side resolution. Replication is no longer transparent to the application since

it needs to prepare itself to receive different copies of the data. General

methods of resolving conflicts include letting the “last-writer win” based on

a timestamp or requiring manual intervention.

Note that some centralized designs are meant for replication within a data-

center while others are meant to take care of replication between datacenters.

Typically the intra-datacenter system is built on top of the inter-datacenter

system as in the case of BigTable and Megastore, Colossus (the successor

of GFS) and Spanner, and the two layers of Azure. Typically the intra-

datacenter layer provides a weaker consistency model but higher availability

while the inter-datacenter layer provides stronger consistency guarantees.

8

2.3 System Coordination

Section 2.2 glossed over the details about how the replicas were asynchronously

updated and how servers communicated among each other. In this section

we discuss how the information is disseminated throughout the system. This

is challenging in an asynchronous system, such as over the Internet, because

it is impossible to tell whether a replica is slow, or has failed [21].

Bayou, Dynamo, and Cassandra use Gossip-like protocols in order to

spread data such as the current membership view, detect failures, and update

replicas in the background [3, 4, 7]. A Gossip-like protocol will occasionally

send information to a random partner to reconcile their state. The advan-

tage of gossiping is high availability and scalability. The architecture avoids

a single point of failure while allowing each replica to contact a few others

without each replica having a consistent membership view. This method of

communication contributes to the eventually consistent nature of the sys-

tems.

PNUTS uses Yahoo! Message Broker (YMB) as a publish and subscribe

(pub/sub) system to accomplish asynchronous replication while the master

based system for each record takes care of synchronous replication. The pub-

/sub system works by replicas publishing updates to YMB and then letting

YMB deliver the update to all the subscribers. PNUTS chose to use the pub/-

sub system over gossip because it can be optimized for geographically distant

replicas and the replicas do not need to know the location of other replicas

[1]. The broker can maintain a consistent membership view with occasional

heartbeat messages. However, using a single broker for each datacenter in-

troduces a single point of failure and potential performance bottleneck even

though it is off the critical update path.

BigTable and Megastore both use Chubby to maintain a consistent view

of the group [22]. Chubby is a distributed lock service based on Paxos.

BigTable also uses Chubby for any coordination needed between replicas

(such as leader election) and to store metadata such as access control lists.

Megastore is also built on top of BigTable, so any communication used by

BigTable is inherently used by Megastore. This extra layer makes Megastore

slower than a system like Spanner which is only built on top of a file system.

GFS has a master node in charge of information about the chunk servers

which hold data [6]. It keeps track of data locations with regular heartbeats

9

and the data is spread through the system sequentially from one chunkserver

to another.

The main difference between the design choices here is having a completely

distributed architecture vs. having a centralized server in a hierarchy. When

information is completely decentralized and lazily spread with gossip the

system is highly available but not suited for real-time applications [23]. Fun-

neling requests through a master or using a consensus protocol like Paxos

allows the system to order the request among replicas and keep more consis-

tent state.

2.4 Data Partitioning and Load Balancing

Another key issue is determining where to place the data across the replicas so

that certain replicas do not become overburdened and slow down the system.

Knowing where data is located is also an important aspect to request routing.

2.4.1 Distributed Hash Table

Dynamo and Cassandra both use a variant of consistent hashing to partition

the key space [3, 4]. The output to a hash function can be treated as a posi-

tion on a circle. Servers are assigned a position on the circle and designated

the primary for all the keys that fall clockwise between its position and the

next one. Given an object’s key the corresponding replicas in charge of the

value can be found in constant O(1) time. In Dynamo however, servers are

assigned multiple positions (“tokens”) and treated as virtual nodes along the

circle to evenly balance the load while Cassandra reassigns the position of

lightly loaded nodes to resolve the same problem. In the current systems,

the load balancing is done manually by sending commands to the replicas.

2.4.2 Centralized Master

PNUTS, GFS, BigTable, Spanner and Azure have centralized servers which

keep direct mappings of the data to the server. They occasionally load bal-

ance according to metrics such as disk space and traffic. This process is

automated unlike what is the current norm when using consistent hashing.

10

Having a single master allows the system to make globally optimal deci-

sions when choosing data placement and rebalancing, although it introduces

a potential bottleneck in performance. The bottleneck is typically alleviated

by introducing another layer of servers that serve client requests while the

master holds metadata.

2.4.3 Physical Location of Data

To improve performance, data can be placed to take advantage of 1) data

locality, 2) geographic locality, and 3) network topology.

Spanner allows the application to configure which datacenter holds its data,

how far data is from the users (affecting read latency), how far replicas are

from each other (affecting write latency) and how many replicas there are

[10]. Additionally, clients can define locality relationships between multiple

tables so that Spanner knows what data is typically accessed together [10].

Another consideration to the physical placement of replication is fault-

tolerance to natural disasters and other incidents such as a switch going

off-line. GFS creates three replicas for each object. One in the same server,

one in the same rack, and then one in another rack [6] while systems such as

Spanner focus on spreading the data across datacenters.

2.5 Fault-Tolerance

Fault-tolerance refers to the system’s ability to function correctly even in the

presence of faults. Failures are treated as the norm due to the underlying

commodity hardware that many of these systems use [6]. However there is a

separation of concerns. Lower levels can primarily address the common hard-

ware faults while higher levels can be abstracted away from those problems.

One example of the lower level is GFS, while the higher level is BigTable.

Fault-tolerance is inherently provided by having multiple replicas of the

data. The systems which use Paxos can tolerate up to f failures in n = 2f +1

where n is the total number of replicas. Typically f = 1, n = 3.

The number of faults that Dynamo and Cassandra can tolerate depend on

the values of W,R and N as discussed in Section 2.2.2. They optimize for high

availability by using hinted handoff and sloppy quorums during temporary

11

failures [3]. If a replica does not respond immediately, another replica may

hold a “hint” until it recovers and still quickly respond to the client [3].

To recover from crash failures, Dynamo, Cassandra and PNUTS synchro-

nize the replicas as discussed in Section 2.3. GFS, BigTable, and Azure use

replicated commit logs to replay the operations and bring the replica up to

date.

2.6 Summary

Depending on the factors that the system wants to optimize for, there are

many different design choices available. Spanner, Azure, Megastore and

MDCC have shown that keeping data consistent with Paxos is an option

that performs well while Dynamo and Cassandra make availability and per-

formance the primary concern. Eiger manages to find a good balance point

between performance and consistency. Systems such as Bayou and RedBlue

show that giving the application more responsibility and not making the

replication transparent can lead to improved performance as well.

12

Chapter 3

Background

This chapter will present related background material from cache coherence

in multiprocessors and distributed shared memory. Then Cassandra is cov-

ered in more detail. These components contribute to the design and under-

standing of the systems introduced in Chapter 4.

3.1 Cache Coherence and Distributed Shared Memory

Caching is a form of replication typically used to improve performance in

systems, specifically to reduce the latency of data access. Multiprocessors

have had to deal with keeping their caches and memory consistent with each

other for a long time. There are numerous techniques for doing so. The

protocols for cache coherence depend on whether the underlying network

is a bus supporting broadcast messaging or a different architecture which

only supports message passing [24]. Snoopy protocols are used for broadcast

networks while directory-based protocols are used when message passing is

used. Blocks within the cache are typically associated with a state so that the

protocol knows how to handle requests appropriately. An example is the MSI

protocol [25]. The protocol defines the Modified, Shared, and Invalid states.

These states indicate to the processors which blocks are clean or dirty and

can be used to fulfill the current request or need to contact main memory or

other cache controllers.

Multiprocessors have also benefited from having shared virtual memory

when their physical memory is distributed. This notion is known as dis-

tributed shared memory (DSM). [26] simulated shared virtual memory over

physically distributed memory. [26] uses a manager to maintain memory

coherence. The manager in this context is very similar to a directory in

directory-based cache coherence. The manager keeps track of the state,

13

owner, and copy set of a page. They considered both a centralized and

distributed manager taking care of either statically located pages, or dynam-

ically located pages. The main idea to satisfying coherence is that a processor

is only allowed to update data when no other process is reading or modifying

it, however, multiple processors can simultaneously read data.

The DASH shared-memory multiprocessor [27] used a directory-based cache

coherence protocol in hardware, and also introduced the notion of release con-

sistency. The idea is that memory that is within a critical section does not

need to be synchronized with other processors until the end of the region since

other processors may not access that memory simultaneously. This section

is surrounded by a call to two synchronization operations, acquire() and

release(). [28] implemented release consistency in software for the Munin

distributed shared memory system. However, they were the first system to

support multiple consistency protocols. Previous systems only supported

sequential consistency. Munin allows programmers to annotate all shared

variables with their expected access pattern to improve performance. [29] re-

duced the number of messages and amount of unnecessary data exchanged by

using a lazy synchronization method (also known as optimistic replication).

They propagate updates at acquire() rather than release().

Maintaining consistency across a wide area network (WAN) in a distributed

system has very similar issues to those faced in memory coherence and DSM.

In Chapter 4 we will use similar ideas to those presented here to design

systems which present strong application semantics.

3.2 Cassandra

The Cassandra project was originally started by Facebook as a way to power

their inbox search [4] and was eventually opened sourced to the Apache

foundation. It is a distributed datastore without a single point of failure and

meant to provide high availability in the face of failures while being highly

scalable. The backend architecture is very similar to Amazon’s Dynamo

while the data model is similar to Google’s BigTable. This section will give

a brief overview to better understand Cassandra and how client requests are

processed.

14

3.2.1 Data Model

Cassandra uses the column-family data model [4, 5]. This is a multidimen-

sional map indexed by a key. We will refer to this data structure as a row.

The first mapping is from the row key to a set of named column families. The

next layer of mapping is from each column families to another set of named

columns, each of which may optionally have a value. An additional super

column mapping can be added to wrap a set of columns. The column-family

data model provides more structure than a simple key-value store and can be

used to effectively describe the information used by many applications such

as social networks to a web crawler [5, 11].

3.2.2 Client API

To manipulate the data within Cassandra, clients can use the Thrift inter-

face or the Cassandra Query Language (CQL). This section will talk about

the Thrift interface. Thrift provides remote procedure calls (RPC) to read,

write and query system state. A client can read data by using get to re-

trieve a single value from a column while multiple columns and rows can

be accessed with get slice or multiget slice. insert and batch mutate

provide similar functionality for updates. Cassandra does not differentiate

between inserts and updates, both are treated the same way. More informa-

tion can be found at [30].

3.2.3 System Architecture

Each node in Cassandra operates as a coordinator for client requests in a

logical ring. There is a logical ring for each datacenter. Rows are stored

based on a consistent hash function which allows for each node to determine

which node is responsible for that row. The replication factor of the row is

configurable based on the reliability, availability and storage costs desired.

Let the number of total copies of the row be N . For each request, clients can

choose a consistency level depending on the values W and R, the number of

replicas which must respond to a write and read request respectively. When

a request comes to any node, this coordinator node ensures that W or R

replicas have responded before replying to the client. If W +R ≤ N then the

15

system will be eventually consistent with concurrent operations being ordered

by a timestamp provided by the client. If W + R > N then the system will

be strongly consistent. This is a quorum system which guarantees that there

will always be an up-to-date replica common in any two requests. Regardless

of the values of W or R, all requests are sent to all replicas, the values only

represent the number which must have responded to proceed in the operation.

Instead of specifying the actual number for W and R, Cassandra of-

fers a few consistency levels such as: ONE and QUORUM and additionally

LOCAL QUORUM and EACH QUORUM when there are multiple datacenters. A

quorum is defined as bRF/2c + 1 where RF is the replication factor for a

datacenter. When an operation is set to LOCAL QUORUM only the quorum

from that datacenter must respond to the coordinator before returning to

the Client, while EACH QUORUM must wait for a quorum from each datacen-

ter. Currently the best way to guarantee strong consistency across multiple

datacenters is to write to EACH QUORUM while reading from LOCAL QUORUM.

Figure 3.1 shows an example when N = 3, R = 1 and W = 2. Note that

this configuration only guarantees eventual consistency. The Client issues

a read request to node 7 (shown as step 1 in Figure 3.1). Node 7 is now

the coordinator node which forwards the request to all replicas based on

the distributed hash table (shown as step 2). Since R is 1, the coordinator

responds back to the client after only one reply from node 5 (shown as step

3 and 4). If the client issued a write request then the coordinator would

respond back to the client after two replies.

When Cassandra is configured to operate across datacenters, there are

additional parameters the system must take care of. The system allows the

user to adjust the number of replicas per datacenter, along with W and

R for local or remote datacenters. Figure 3.2 depicts this situation when

the replication factor is three for both datacenters and EACH QUORUM must

respond for the coordinator node to proceed with the client write request.

16

Client	

5	

1	

8	
 2	

3	

4	
 6	

7	

1	

2	

2	

2	

3	

4	

Figure 3.1: Cassandra client request within a datacenter. Figure
is based on DataStax client request documentation.

Client	

5	

1	

8	
 2	

3	

4	
 6	

7	

5	

1	

8	
 2	

3	

4	
 6	

7	

Datacenter	
 1	
 Datacenter	
 2	

Figure 3.2: Cassandra client request across datacenters. Figure is
based on DataStax client request documentation.

17

http://www.datastax.com/docs/1.1/cluster_architecture/about_client_requests
http://www.datastax.com/docs/1.1/cluster_architecture/about_client_requests

Chapter 4

System Design and Implementation

This chapter will describe the goals of our system design and then talk about

the various design choices made before going into more detail about two

directory-based system designs. One uses a directory-based scheme similar to

directory-based cache coherence [31] to achieve strong consistency. The other

uses the directory to achieve release consistency [27]. Both systems manage

consistency using a two-level hierarchy in order to provide strong application

semantics. The chapter will conclude with implementation details.

4.1 Goals

The primary goal of our datastore is to provide strong application semantics

while keeping client requests as low-latency as possible in a geo-replicated

environment. We use strong semantics here to denote that a client should

read the most recent write to the shared object when using the system cor-

rectly.1 While recent datastores have focused on optimizing the latency times

for a single request for a client, a directory-based approach can lead to lower

average request completion times when contention on a shared object is not

frequent. Scalability is treated as a secondary goal in our work, although

various design choices can be altered to provide better scalability at a cost

of other parameters.

To summarize, our goal is to construct a datastore that presents clients

with strong semantics and can fulfill client requests as quickly as possible

while a directory maintains consistency of the objects across datacenters.

Within datacenters we assume there exists a linearizable storage layer that

we have access to which takes care of intra-datacenter consistency. The Di-

1In the presence of concurrent operations, a read can see the most recently completed
write or a concurrent write.

18

rectory and the Frontends work together to maintain inter-datacenter con-

sistency.

4.2 Directory-Based Strong Consistency

Typically datastores have kept their data coherent by keeping the actual ob-

ject strongly consistent and using pessimistic replication. Instead of keeping

the actual data consistent between all of the replicas we use a directory-based

approach [31] to keep the metadata always up-to-date. The location of the

most recently written copy is the key metadata to track so that future reads

can be directed to it. There are various design choices to make when design-

ing a system based around a directory-based consistency protocol. The most

important factors are:

1. Object states

2. Update propagation

3. Centralized or distributed directory

4. Object granularity

The next few subsections will go into more detail about how each design

choice was addressed in order to meet our goals from Section 4.1.

4.2.1 Object States

The states of the shared objects in the datastore are similar to states in the

MSI cache coherence protocol [25]. Objects can be either Modified, Shared

or Invalid. Below we define what each state signifies:

• Modified: denotes that this copy of the object is the only valid copy

of data because state has been changed but not yet updated to the

other replicas. When a replica has this state it can be considered the

owner of the object. After synchronizing the object with other replicas

the state will return to Shared.

19

• Shared: denotes that there are multiple valid copies of this row in the

system. A replica can consider this a read-only copy and can serve read

requests locally.

• Invalid: denotes that the current object is out of date and needs to

synchronize with the most up to date copy. A possible choice is to

allow a client to request stale data, however, we do not consider that

here.

4.2.2 Update Propagation

Updates can be propagated to other replicas through either write-update or

write-invalidate in order to maintain strong consistency in a DSM system

[16]. A write-update approach is similar to how Cassandra handles write

requests when W = N .2 This write-update approach is pessimistic in the

sense that other replicas will update their copy regardless of there being a

demand to read that object. This adds extra latency to the completion of

the request and is unnecessary when another write comes subsequently before

any client reads the other copies.

Instead we use a write-invalidate approach with lazy replication to prop-

agate the changes across replicas. This is beneficial in our context of geo-

replicated storage. When a datacenter is performing operations on an object

without concurrent accesses from other datacenters, there is at most one in-

validation message sent out. The rest of the operations can be performed

locally to the datacenter. This will drastically reduce latency of every opera-

tion at the cost of higher initial access times when a remote datacenter does

want to access the object.

4.2.3 Centralized or Distributed Directory

As mentioned in Chapter 2 many systems have chosen to make their compo-

nents as distributed as possible. This is typically done to remove the single

point of failure and allow for the scalability of the system. However, this

complicates other aspects of the system. Since scalability is not our primary

2Refer to Section 3.2.3 for more detail.

20

concern, we have chosen to use a centralized directory to manage the meta-

data. Using a centralized directory has various benefits when considering 1)

data partitioning 2) consistency guarantees and 3) simplifying the design.

If the directory was distributed we would have to deal with properly par-

titioning the data across them. Methods such as consistent hashing used in

[3, 4] are not ideal for this situation because of the geo-distributed nature of

the datacenters. A replica looking to fulfill numerous requests may have to

contact the numerous directories and face variables delays resulting in un-

predictable performance. By using a centralized directory the latency to the

directory will remain consistent and the replica could even batch numerous

objects’ requests into one message.

Another benefit of a centralized directory is that we can be more flexible

with the consistency guarantees that the system offers. Since we are serializ-

ing the operations through a single logical point, we can achieve linearizability

if desired or relax the ordering to provide a weaker model.

Lastly a centralized directory simplifies the design. Simplicity should not

be overlooked since it eases the pain when having to implement, debug, and

reason about normal and edge case behavior.

4.2.4 Object Granularity

Our system uses the column-family data model3 used by Cassandra, Apache’s

HBase and Google’s BigTable [4, 5]. We choose to use the row key within

one column family as the granularity that the metadata tracks. This level of

granularity is similar to the decision made in [1] and maintains the appropri-

ate balance between fine granularity and performance overhead.

4.2.5 System Overview

Figure 4.1 shows an overview of the system architecture. We imagine a

Frontend and Storage component representing a datacenter.4 The underly-

ing Storage components are reliable and strongly consistent replicated data-

stores such as Apache Cassandra or Apache HBase. These Storage com-

3 Refer to Section 3.2.1 for more detail.
4 The terms Frontend and datacenter will be used interchangeably when referring to

the process that a Client contacts.

21

Storage	

Frontend	

Storage	

Frontend	

Storage	

Frontend	

Directory	
 Client	
 Client	

Global	
 Datastore	

Figure 4.1: Overview of system architecture

ponents maintain consistency within the datacenter and among the Clients

who contact the same Frontend. The Frontend components are processes

which wrap the underlying datastores and coordinate with the Directory to

maintain strong consistency across datacenters. Frontends will message each

other when they need to synchronize data. They are also the only processes

which interact with Clients. The Directory is the central entity which tracks

the metadata of all the objects in the system.

4.2.6 Directory State

The centralized Directory has to hold the metadata for every object in the

system. The Frontends need to query the Directory whenever they are unsure

whether they can access the shared object. It acts as a serialization mecha-

nism which enforces strong consistency among datacenters, however, no data

flows through the Directory. The Directory provides pointers to other Fron-

tends whom they request to synchronize the data from. This process is also

responsible for invalidating copies of the data, although this logic could be

pushed to the requesting Frontend. The object state and list of replicas is

maintained for each row key. Each replica in the list is a Frontend associated

with a Storage component. The replicas in the Directory metadata do not

22

refer to the actual replicas that hold the data at the Storage level, but only

to the Frontends that are responsible for each datacenter.

4.2.7 Frontend State

The Frontend processes each hold a local directory with entries for keys that

are in their Storage component and their current state. Based on the local

state of the key, they will know whether they need to contact the Directory

or not. The Frontends act as a serialization mechanism for each datacenter

since each Client only communicates through them. This is sufficient for

strong consistency because the system always maintains up-to-date meta-

data. Unlike the Directory, the Frontends do not need to know about all of

the keys in the system. Additionally the Frontends do not need to keep track

of the replica list, unless we want them to take care of the invalidation.

4.2.8 Client Requests

Clients only contact Frontend processes. We assume they will contact the

geographically closest one. The Frontend exposes an interface similar to a

subset of Cassandra’s 1.0 Thrift interface. Essentially this allows the Client

to read and update the columns of a row when given the row key. More

specifically we support the following operations: get, get slice, insert,

and batch mutate. One limitation of our operations is they currently operate

only on one key at a time. This is different from Cassandra’s interface which

allows for multiple keys to be accessed at a time (however, the modifications

are not atomic or transactions).

To discuss the roles that the Directory and Frontend have during the re-

quest protocol we will simplify the discussion to get requests which encap-

sulate all reads and put requests which function as inserts and updates.

Get Requests: When a Client wishes to read a key it will send the

request to a Frontend. The Frontend checks the local state and will return

the value from his Storage component if the local state is either Modified

or Shared. If the state is Invalid then the Frontend will need to request

access from the central Directory and block until receiving a response. On a

successful response the Frontend will synchronize with a replica given from

23

the Directory, write the value into his local Storage component and return

to the Client. The Frontend must use a lock locally for each row in order

to prevent different Clients from seeing different row states at this Frontend.

Algorithm 4.1 gives the read pseudocode for the Frontend.

Algorithm 4.1 Frontend code for Read requests

1: procedure Read on receipt of get(Row) from Client
2: lock(local directory[Row])
3: local state := local directory[Row]
4: if local state = Modified or Shared then . Value is up-to-date
5: return Value from Storage component[Row]
6: else if local state = invalid then
7: send request (Row, Shared) to Directory
8: block until response (success, replica) from Directory
9: if response = success then

10: local directory[Row] := Shared
11: send row synchronize message (Row) to replica
12: block until response (new value) from replica
13: perform write to local Storage component[Row]
14: return Value from Row
15: else
16: throw failure exception
17: end if
18: end if
19: unlock(local directory[Row])
20: end procedure

When the Directory receives a shared request from a Frontend one of three

events may happen. At the end of normal behavior the first two possible

events result in the row state being changed to Shared and the requesting

Frontend being added to the replica list.

• If the state at the Directory is Shared then the requesting replica can be

added to the list of replicas without needing to contact other Frontends.

The Directory would then send back a message indicating its success

along with a Frontend replica that it needs to synchronize with and get

the data from.

• If the state at the Directory is Modified then the behavior is similar

to the Shared case except that an invalidation message is sent to the

current owner of the row telling it that it should reduce the state of

24

the row in its local directory from Modified to Shared. The Directory

will need to block until an ACK is received.

• If the state at the Directory is Invalid or there is not yet an entry for

the row then the entry has either been deleted, or was never in the

datastore. The Directory can respond with a failed response and note

that this entry does not exist.

When there is a concurrent request to the row, the Directory will fail the

later requests in order to avoid a deadlock at the later requesting Frontends.

The Processing state allows the Directory to keep track of when concurrent

accesses occur. The Frontend blocks on the request to the Directory, but also

requires exclusive access to the row when handling the invalidation message

from the Directory. The failed request will allow the Frontend to begin

processing other operations on that row, such as the invalidation, which

allow other Frontends to proceed. The Frontend who has failed can attempt

to access the row again afterwards until it succeeds. Algorithm 4.2 gives the

Directory pseudocode for both read and write requests.

Put Requests: When a Frontend receives a write request from a Client

the behavior is very similar to a get request. The only difference is that the

data synchronization does not occur and the state that the replica requests

from the Directory is Modified.

The Directory behavior is similar to the second case of the get request

where the Directory needs to send out invalidations. In this case the Direc-

tory will send an invalidation to either the owner of the row if the state is

Modified already or will need to invalidate all the replicas with a read-only

copy if the state is Shared. The invalidation messages require that the Fron-

tends change their local row state to Invalid. The Directory will block until

receiving an ACK for each invalidation before responding to the Frontend.

In the case that the state at the Directory is Invalid or missing an entry, the

Directory can set the state to Modified and return success to the Frontend

without sending any invalidations. The Directory will locally lock the row

on each request to prevent data races on the state of the row. The code for

the Directory is shown in Algorithm 4.2.

25

Algorithm 4.2 Code for Directory, D

directory = {x ∈ (Row)→Metadata)}, initially := ∅
Metadata = (State, Replica List)
State = {Modified, Shared, Processing, Invalid}

1: procedure on receipt of request(Row, New State) from Frontend F
2: lock(directory[Row])
3: current state := directory[Row]
4: if current state = Processing then . Avoid deadlock
5: unlock(directory[Row])
6: return send (failure) to F
7: end if
8: directory[Row] := Processing
9: unlock(directory[Row])

10: if New State = Modified then
11: ∀r ∈ Replica List send Invalidation(Row, Invalid)
12: block until received success response ∀r
13: lock(directory[Row])
14: directory[Row] := (Modified, F)
15: unlock(directory[Row]) . F is only valid replica now
16: return send (success) to F
17: else if New State = Shared then
18: if current state != Shared then
19: ∀r ∈ Replica List send Invalidation(Row, Shared)
20: block until received ACK ∀r
21: end if
22: replica sync := pick replica(Replica List) . Choose r somehow
23: lock(directory[Row])
24: directory[Row] := (Shared, F ∪Replica List) . Add F to list
25: unlock(directory[Row])
26: return send (success, replica sync) to F
27: end if
28: end procedure

26

4.2.9 Fault-Tolerance

One of the main criticisms of traditional approaches to DSM is their poor

tolerance of faults. Our system improves on the fault-tolerance of some of the

older DSM systems by splitting the coherence protocol into two hierarchal

levels, similar to [27]. The lower level of replication is within a datacenter,

while the higher level of replication is across datacenters. The underlying

storage system, such as Cassandra, provides its own (possibly tunable) con-

sistency protocol while the Frontend manages the wide area replication pro-

tocol. This means that the system can tolerate a certain amount of faults

within each datacenter before affecting inter-datacenter behavior. Each of

the Frontends or Directory can be considered a single point of failure but

state machine replication can be used to make them reliable [20].

In the case that Frontends become partitioned from the rest of the network,

they may still be able to fulfill requests that only depend on local state.

For example, writes can proceed if the local state is Modified and reads

can be fulfilled in either Modified or Shared state. This provides a limited

set of operations for disconnected operation while still maintaining strong

consistency.

4.2.10 Drawbacks

One of the undesired behaviors of the system is when there is thrashing. This

occurs when there is frequent contention of the same object and invalidation

messages will constantly be sent between the requesting parties. One solution

is to fail the requests which see concurrent behavior and have them wait

using an exponential backoff [32] before trying again. Another solution is

to add “global locks” to each object and have replicas acquire and release

them before other replicas can access them. This will change the consistency

model to release consistency and will be discussed in Section 4.3.

4.3 Release Consistency

One variation on the strong consistency model used in Section 4.2 is to use

release consistency to provide strong application semantics [27]. The system

27

still uses a two-level protocol but we introduce two synchronization oper-

ations acquire and release. Both of these operations are blocking calls.

Each operation takes a row key as an argument and essentially “locks” and

“unlocks” global access to the shared object for a Frontend (which may still

serve more than one Client). Within this critical region, Frontend replicas do

not need to push out the updates done to the object until the next acquire

operation. Objects now only have two states, owned and not owned. The

intuition here is that only one Frontend process may be in the critical region

at once so the shared variables are only being used by one datacenter at any

moment. Within the datacenter the Storage component maintains strong

consistency among the clients. Additionally, synchronizing lazily at the next

acquire rather than on the release reduces unnecessary messages [29].

4.3.1 System Overview

The architecture does not need to change when we change the consistency

model. Figure 4.1 still clearly represents the system. However, the state

at the Directory and Frontend have changed. Also we require the Client

to acquire rows they wish to access from the Frontend and releasing them

when finished. The Frontend must acquire the rows from the Directory. The

Frontend aggregates the acquire and release operations for the clients

at one datacenter and will send its own fe acquire and fe release when

appropriate. The Directory only allows one datacenter to access a row, while

the underlying Storage layer will take care of keeping access to that row

consistent within that datacenter.

Now the only requests that flow through the Directory are the fe acquire

and fe release operations. More specifically it is the first acquire and the

last release that a Frontend receives from its Clients that require communi-

cation with the Directory. Intuitively each Frontend is acquiring the row for

the datacenter so that multiple Clients in the same area may concurrently

operate on that row. However, Clients which want to access the same row

from a different datacenter through a different Frontend must wait until the

holder of the row lock has released the row and the Directory has granted

the Frontend admission into the critical region.

At the Frontend there is an atomic counter for each row. On each acquire

28

from different Clients the counter is incremented while each release decre-

ments the counter. Only on the first Client acquire does the Frontend

send a fe acquire to the Directory and a fe release on the last Client

release. This is necessary because there may be multiple Clients contacting

each Frontend.

At the Directory a FIFO queue is held for each row. The Directory en-

queues the Frontend on fe acquire and dequeues it on fe releases. The

Frontend is notified when it is at the head of the queue and can enter the

critical region. The Frontend will then respond to all of the Clients blocking

on acquire.

4.3.2 Client Request Example

This section will walk through an example scenario where three clients are

attempting to access the same key. Two of the Clients are accessing the same

datacenter and can operate on the row concurrently while the third Client

needs to wait until the others have released access. Figure 4.2 depicts this

situation. Each number represents at least one sent message. The following

bullets explain what message is sent and the associated events which occur

with it.

1. Client 1 and 2 both are attempting to access key k. They both send

an acquire to Frontend 1 and block until they receive a response.

2. Frontend 1 only sends one fe acquire() message to the Directory

and also blocks until a response. In this case since no Frontend is

holding the lock for k the Directory can immediately respond with a

success message. The Frontend will respond back to both Client 1

and 2 and they can proceed to perform their operations. The Storage

component still maintains the strong consistency within the datacenter

when processing both clients’ operations.

3. Client 3 attempts to access k by sending an acquire to Frontend 2

before Client 1 and 2 have released their lock on k.

4. Frontend 2 asks the Directory for the lock on k with a fe acquire.

The Directory enqueues it on the queue for row k. Frontend 2 will wait

29

Storage	

Frontend	
 2	

Storage	

Frontend	
 1	

Storage	

Frontend	
 3	

Directory	
 Client
1	

Client	

3	

Global	
 Datastore	

Client
2	

1,5	

2,6	

3,9	

4,7	

8	
 1,5	

Figure 4.2: Client Request Example for Release Consistency.
Each number is a message event and described in detail in
Section 4.3.2.

until it gets to the front of the queue. Additional Clients who wish to

access k through Frontend 2 will also block.

5. Once both Clients 1 and 2 have finished their access to k they will send

the release messages to Frontend 1.

6. Only after receiving all of the releases on k will Frontend 1 ask the

Directory to dequeue itself by sending a fe release.

7. The Directory will dequeue Frontend 1 and notify the head of the queue

it can enter the critical section along with which Frontend it can receive

the most up-to-date version of k from. In this case Frontend 2 will

receive a message from the Directory informing it Frontend 1 has the

most up-to-date version of k.

8. Frontend 2 will ask Frontend 1 to synchronize on k by sending it a copy

of k.

9. Frontend 2 will respond back to Client 3 who may now access k.

30

4.3.3 Drawbacks

Like with other locking schemes there are a few potential drawbacks with this

approach. The largest drawback is that deadlocks are possible whenever a

release is not called appropriately. Other Clients will be blocked indefinitely

until the holder of the lock gives it up. One possible solution to this is a

heartbeat and timeout mechanism [23]. If a process does not respond saying

that it is still actively accessing the row, then the Directory could force it to

release the lock.

Another inherent problem is when replicas are waiting to access a row

there is an unbounded amount of time they have to wait. However, if all

processes are behaving properly then we expect progress to be maintained in

a timely fashion.

4.4 Implementation

We have chosen to implement the Frontend and Directory in both system

designs as separate processes which communicate with the underlying Storage

component. The alternative was to integrate the two systems tightly but this

design allows for more flexibility in how the Storage component will replicate

the data within the datacenter.

The Frontend and Directory processes build on the message passing and

Staged Event Driven Architecture (SEDA) [33] of Cassandra and added only

around 2800 lines of code. To interface with the Cassandra backend we

use Netflix’s Astyanax driver. This driver provides connection pooling to

Cassandra and is easier to work with than the Thrift interface.

Building on the same source code as Cassandra gives us numerous benefits.

Some of the benefits were not having to recreate the Client Thrift interface,

having the well structured SEDA architecture and the possibility to use the

JMX monitoring. Currently the Directory and Frontend both store their

state only in memory, but with the embedded Cassandra database layer

it would not be difficult to store it on disk. Besides the implementation

advantages there are also benchmarks for Cassandra that are easily adapted

to our datastore such as the Yahoo! Cloud Serving Benchmark.

31

Chapter 5

Experiments

In this chapter we evaluate the performance of multi-datacenter Cassan-

dra, our directory-based strongly consistent system, and our system using

release consistency. For convenience we will abbreviate Cassandra as C*,

the strongly consistent system as SC and the release consistency system as

RC. Our evaluation will focus on the factors and parameters that influence

latency. Since the network delay is considerably higher in a geo-replicated

setting than other environments, throughput is constrained by that delay.

For example, if the average delay is 200ms, then there can only be five re-

quests per second regardless of processing time. Additionally since both

directory-based systems are using Cassandra as the underlying storage layer

we do not need to focus on low level details such as I/O cost and how rows

are stored physically. Those costs will be reflected in all measurements. This

chapter will cover the experimental setup and then discuss the overall results

before going into more detail on various factors.

5.1 Experimental Setup

The experiments were conducted using seven computers in the Illinois Cloud

Computing Testbed (CCT) [34] and two other computers within the Univer-

sity of Illinois network. Each physical machine in the CCT has dual 64-bit

quad-core processors with 16 GB of RAM, gigabit Ethernet and CentOS

5.9 with Linux Kernel 2.6. The servers in CCT use shared storage accessed

through Network File System (NFS). The other two computers have dual

64-bit six-core processors with 24 GB RAM, 2x1 TB disks, gigabit Ethernet

and CentOS 6.3 with Linux Kernel 2.6. The CCT servers are running the

datastore systems while the other computers are running the Yahoo! Cloud

Serving Benchmark (YCSB) 0.1.4 client [35]. We run Cassandra 1.1.10 in its

32

Table 5.1: Sample ping latencies (round-trip delay) from CCT to
Destination (ms)

Destination Mean Min Max Std. Dev
China (220.181.111.86) 352.9 350.7 469.2 10.5
Australia (139.130.4.5) 215.2 214.2 215.9 0.6
France (87.98.182.37) 102.7 101.7 107.9 0.9
US West (64.37.174.140) 73.4 72.2 101.7 2.6
US East (199.108.194.38) 27.1 25.2 144.2 10.2
Simulated Datacenter 201.2 190.6 244.2 9.9
Simulated Directory 101.3 95.6 129.6 5.6

multi-datacenter mode when evaluating Cassandra and in single-datacenter

mode when used as the backend to the other systems.

To evaluate the performance of the systems in a geo-distributed environ-

ment we use emulated delays in the network layer. More detail is provided

in Section 5.1.1.

5.1.1 Delay Simulation

In order to simulate the behavior of a real geo-replicated datastore, delays

were added to the network layer in the Linux kernel using the tc tool. tc

uses the Network Emulator, netem component to add delays to packets for

preconfigured destinations. More information on the tools and configuration

can be found in Appendix A.

The given parameters to use for the delays were chosen based on pings

to servers in various geographic locations. Table 5.1 shows some sample

latencies based on 200 pings from the Illinois CCT to the specified destination

along with the two simulated delays in the last two rows.

We chose to use a one way 100ms delay between datacenters and a 50ms

delay from the Directory to each datacenter for the experiments. To model

the variation of network delays, each one is augmented with an additional

delay that has a Pareto distribution with tc parameters 8ms and 4ms re-

spectively, as shown in Appendix A. 200ms RTT was chosen to simulate a

large enough practical delay that shows the cost of geo-replication.

33

5.1.2 Multi-Datacenter Cassandra

To evaluate the performance of Cassandra in a multiple datacenter configura-

tion, six CCT servers were divided into two groups of three. Each three-server

cluster acts as a datacenter and has a remote delay to the other one. The

client writes to Cassandra with consistency level EACH QUORUM and reads at

consistency level LOCAL QUORUM in order to maintain strong consistency. The

keyspace is configured to have three replicas of each object in each datacen-

ter. This results in six total copies of the object with four replicas having

to respond to writes (two per datacenter), and only two for reads (from the

local datacenter). The writes will have to wait on both datacenters while

reads can be served locally. Refer to Section 3.2 for more information on

Cassandra.

5.1.3 Directory-Based Systems

To evaluate the performance of the SC and RC systems, six CCT servers

were divided into two groups of three. Each group forms a Cassandra cluster

configured for a single datacenter and a Frontend process is run on one of

the servers in each group. A Directory process is running on a separate CCT

server. Each Cassandra cluster has a delay to the other one. Both servers

running the Frontend have a delay to the Directory. The Frontends and

Directory can be configured to be in either the strong consistency or release

consistency mode. This setup is depicted in Figure 5.1. The dotted lines

surrounding processes shows the physical boundaries of the machine. The

underlying Cassandra storage layer is unaware of the Directory and other

Cassandra clusters. They only contact the Frontend associated with that

cluster. Underlying Cassandra clusters are operating at QUORUM for both

reads and writes to maintain strong consistency at the storage level.

5.2 Workloads

We use Yahoo! Cloud Serving Benchmark (YCSB) to evaluate the perfor-

mance of the datastores. YCSB is a framework that allows users to bench-

mark various datastores. The system predefines various workloads and distri-

34

=	
 Physical	
 Machine	

C*	
 =	
 Cassandra	
 Instance	
 Directory	

C*	

Frontend	
 1	

C*	
 C*	

Client
1	

C*	

Frontend	
 2	

C*	
 C*	

Client	

2	

Figure 5.1: Experimental Setup for Directory-based Schemes

butions to randomly generate the client load [35]. Among the choices, we run

update heavy workload A (50% writes), read heavy workload B (95% reads),

read only workload C, and read latest workload D. The distributions that

were used include Zipfian, Uniform, and Latest. The Zipfian distribution is

one where a small amount of rows are being accessed most often (the head

of the distribution) while the remaining rows are infrequently accessed (the

tail of the distribution) [35]. In the Zipfian distribution the head has most

of the area while its tail is long. The Latest distribution is like the Zipfian

distribution but the most recently inserted rows are in the head of the dis-

tribution and have the highest access frequency. A uniform distribution has

equal probability of accessing any of the rows. We additionally modify vari-

ous parameters such as grouping more operations into the read-modify-write

operation for workload F and a workload which performs only writes. To use

the client we have had to slightly modify the existing Cassandra driver in

YCSB to support multi-datacenter strong consistency and also to conform

to the release consistency interface.

The benchmarking process is composed of two parts, the load phase and the

transaction phase. The load phase inserts all of the records in the datastore

while the transaction phase performs requests to the system based on the

workload distribution and given parameters. The load phase is typically

35

Table 5.2: Overall latency metrics (ms)

50% 90% 95% 99% Mean Std Dev.
Read

Strong Consistency 2 812 823 845 253.42 211.60
Release Consistency 150 319 333 400 207.67 112.01
Cassandra 1 2 3 4 2.56 32.46

Write
Strong Consistency 197 211 216 228 122.81 61.05
Release Consistency 293 319 334 400 226.65 122.65
Cassandra 198 211 220 292 212.96 29.43

only run once while the run phase is repeated multiple times with different

workloads and parameters. The metrics here mainly concern the transaction

phase. Unless otherwise specified each workload consisted of 60,000 records

with 5,000 operations from each of two clients. Each workload was performed

at least 5 times and the overview of the combined results are presented in

Table 5.2 and Figures 5.2 and 5.3. Table 5.2 gives precise measurements that

show the characteristics of the read and write operations for all the systems.

Table 5.2 shows the latency that N% of requests finished under and lists

the mean and standard deviation of all the requests. Figure 5.2 conveys

the mean and standard deviation visually. Figure 5.3 shows the cumulative

distribution (CDF) of latencies for the overall system when read and writes

are combined. Note that the CDFs are plotted on a logarithmic scale due

to the high variance of the latencies. One artifact of using the CCT is the

occasional high delays from NFS writing to all the servers. This is one of the

factors which contribute to the high variance, but affects all of the systems.

In general C*’s performance is much more predictable and consistent than

SC or RC. C*’s behavior does not depend on the current system state nor the

state at other datacenters while SC and RC are more complicated. C* has

quick local reads while writes have higher latency from the remote datacenter

messages. SC can perform local operations very quickly if the Frontend has

the appropriate state for the Client request but suffers heavily from a “row

miss” and must contact the Directory and potentially other Frontends. RC

suffers from the overhead of acquire operations and must wait until no other

Frontend is accessing the row. Additionally the acquire operation forces us

to synchronize with the Frontend for the latest copy of the row if necessary.

36

This is apparent in Figure 5.3. None of the requests can finish faster than

the delay to the Directory, which is around 100ms, but also a tail to around

400ms when it must retrieve the row from the remote datacenter. Figure 5.3

also shows the two spikes in each system which is the result of quick local

operations vs. slower remote operations. These factors lead SC and RC to

have much more variance in their latencies, but can outperform C* in certain

circumstances. For example, from Table 5.2 we can see the average SC write

latency is 122.81ms while C*’s is 212.96ms. C* must wait for the remote

datacenter to respond on every write request whereas SC can perform many

local operations if there is no contention on the row. However, once there

are other datacenters attempting to access that row, there are more messages

passed between the Directory and Frontends, along with the time it takes to

synchronize the row between Frontends.

SC RC C*
0

100

200

300

400

500

La
te

n
cy

 (
m

s)

Read
Write

Figure 5.2: Average read/write latency with stddev. (ms)

One issue when evaluating the performance of SC is that the latency de-

pends on the current key state. The numbers used in this section are the

average of the best and worst case scenarios. We present more detail in

Section 5.2.2. When evaluating RC, we came across a similar problem be-

cause Clients may only access a row after they have acquired it. While the

acquire is an expensive operation, Clients may quickly access the row after-

wards numerous times before the release. The measurements for RC in this

37

100 101 102 103

Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

%
 o

f
re

q
u
e
st

s
fi
n
is

h
e
d

SC

RC

C*

Figure 5.3: CDF of request latency

section are the result of accessing the row once between the synchronization

operations. More detail is presented in Section 5.2.3.

5.2.1 Read-Write Ratio

C* writes to remote datacenters for every write request but reads only the

local datacenter. SC optimizes for writes by the same datacenter or many

reads to shared objects. SC should outperform C* whenever C* is pessimisti-

cally1 contacting the remote datacenter. RC should not be affected much by

the read-write ratio since it has to acquire before it attempts to read or

write to a row.

Figure 5.4 shows the average latency as the fraction of writes increases

for all of the systems. SC-1 and SC-2 represent the average latency that

Client 1 and Client 2 experience when the system is in SC mode. SC is the

average of those latencies. SC-1 is the Client that loaded all of the rows into

the datastore so the Frontend that it is contacting has all of its rows in the

Modified state initially. This means that it can serve both read and write re-

quests locally. SC-2 however must contact the Directory on practically every

1Pessimistic in this context means that the operation was not necessary at that moment
to maintain consistency.

38

request and often synchronize its row state with the remote datacenter. As

the fractions of writes increase, all of the system average latencies approach

around 200ms delay. C* must contact the remote datacenter on every write,

and SC-2 does not need to synchronize its data because it is writing, but

still must wait for the Directory to change the state of the row to Shared at

the other Frontends. As expected, RC’s performance is independent of the

read-write ratio.

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of writes

0

100

200

300

400

500

A
v
e
ra

g
e
 l
a
te

n
cy

 (
m

s)

C*
SC-1
SC-2
SC
RC

Figure 5.4: Average latency as write fraction increases. SC-1 and
SC-2 are each Clients while SC is the overall system latency.

5.2.2 State Dependency

The performance of SC depends heavily on the state of the rows accessed as

we have seen in Figure 5.4. If an operation can be served locally in either the

Modified or Shared state then the request will finish two orders of magnitude

faster than an operation which requires remote messaging. The average local

operation can finish in the single digit microseconds while an operation which

requires remote accesses can take from 100 to 600ms depending on if the

Frontends need to synchronize to the most up-to-date version. When a Client

request cannot be served locally, we call that a row miss. Such misses are

one of the reasons why the variation in latencies is high for SC.

39

Figure 5.5 shows a time series trace of SC performing workload C with a

Zipfian distribution with a linear regression line fitted. Each data point is the

average of the requests within a five second interval. This workload is entirely

reads. As more of the rows at the Frontend become Shared, latency decreases

since reads can be made locally instead. The regression line shows this trend.

However, the Zipfian distribution has a very long tail, so the Frontend still

must synchronize on rows it has not accessed before. Additionally, if there

are other Frontends attempting to write to those rows then there would need

to be more expensive synchronization operations occurring.

0 200 400 600 800 1000 1200 1400 1600
Time Elapsed (s)

100

200

300

400

500

600

La
te

n
cy

 (
m

s)

Figure 5.5: Time series trace of SC running workload C. The
fitted linear regression line shows latency dropping as time
progresses since the Frontend has more rows with Shared state.

To account for this variation, all runs in this chapter were done in the fol-

lowing way for SC. One Frontend runs the load phase of YCSB, thus changing

all rows to the Modified state for that Frontend. Then both Frontends run

the run phase of YCSB. One Frontend will be able to serve most requests

locally while the other Frontend will need to perform expensive row synchro-

nizations on almost every update. However, if eventually there are no more

writes to the shared rows, then both Frontends will have Shared access to

those rows and enable them to serve reads locally. After many operations

the state should become steady with Clients just reading the rows locally.

40

The throughput of the YCSB client is defined as the number of operations

completed per second [35]. The YCSB client allows us to specify a target

throughput which allows us to control the rate of which requests are gen-

erated. When the client cannot reach the target throughput, requests are

generated immediately after the previous operation completes. In the case

that the throughput is higher than the target throughput, the YCSB client

waits for the appropriate amount of time before issuing the next request.

The waiting time is not included in the latency of the request. The target

throughput of the Client at the Frontend who performed the load phase is

throttled so that both Clients are accessing the datastore simultaneously for

the entire duration of the run phase (otherwise one Client would finish much

earlier than the other). The average of the runs from both clients is what is

used in most of the results. However, the cost of a row miss is extremely high

and we see that they can quickly dominate the advantage of local operations.

The variation of misses accounts for the large variation in latencies.

5.2.3 Batch Size

Most of the YCSB workloads are tailored toward single operations which have

no state dependency between operations. For all of the results presented in

Section 5.2 Clients issued only one request for each pair of acquire and

release when accessing RC. However, with release consistency we should

have very high performance on the acquired row amortized across many op-

erations. The expensive acquire operation will not matter as much per

operation if there are many requests before the following release. We call

the number of operations between acquire and release the batch size. We

can model the average cost of each operation as such: Let D be the round-

trip delay from each of the datacenters to the Directory, R be the delay it

costs to perform the read synchronization, L be the round-trip delay from

the client to the local datacenter, B be the batch size. The average time for

each operation is then roughly

top =
D + R + BL

B
(5.1)

Figure 5.6 shows Equation 5.1 with D = 100, R = 200, and L = 0.45

along with the experimental values. The experimental values were attained

41

0 5 10 15 20 25 30
Number of requests per batch (B)

0

50

100

150

200

250

300

350

400

450

A
v
e
ra

g
e
 l
a
te

n
cy

 p
e
r

re
q
u
e
st

 (
m

s)

Experimental
Theoretical

Figure 5.6: Experimental and theoretical performance of RC
using Equation 5.1 with D = 100, R = 200, and L = 0.45.
Experimental values are averages and error bars are standard
deviation.

by modifying YCSB workload F to only use read-modify-write operations

and performing B reads and writes per batch operation. For each B we

used at least 2,000 batch operations, which means that each run had at least

2∗2, 000B requests between both clients. The latency of the batch operation

is divided by B to calculate the average per request. The average per request

latency is plotted in Figure 5.6 with the standard deviation as error bars.

The benefits from RC are not as apparent in the normal YCSB workloads

since we are not performing many operations within each critical section. The

default behavior is to acquire and release for every request. Although the

theoretical result presented in Figure 5.6 does not take into account the wait-

ing time associated with getting into the critical section it seems that the

experimental results actually perform slightly better than predicted. The

reason is that Equation 5.1 is pessimistic and assumes that every batch op-

eration will need to perform a read synchronization between the Frontends.

When the Frontend was the previous replica to release the row, then no

synchronization is needed. Additionally we could also extend the implemen-

tation of acquire to gain access to more than one row at a time. This

42

would allow us to reduce the overhead of acquire at the cost of introduced

complexity.

5.3 Row Contention and Workload Distribution

The performance of both SC and RC suffers when there is row contention be-

tween datacenters. For SC, alternating reads and writes between datacenters

will force the Frontend to contact the Directory and possibly synchronize the

row from the remote Frontend. Contention in RC will cause a Frontend to

wait whenever another Frontend is currently holding the lock for a row.

The probability of row contention should be dependent on the workload

distribution. The workload distributions used in our experiments are Zipfian,

Latest and Uniform. Zipfian and Latest distributions model realistic work-

loads [35]. The Zipfian distribution is one where the head has most of the

area but its tail is long. The Latest distribution is where the most recently

inserted rows have the highest access frequency. A uniform distribution has

equal chance of accessing any of the rows. Figure 1 in [35] shows an example

of the distributions that are used in YCSB.

If the workload behaves Zipfian then the most common records will be

accessed most of the time. This can work to our advantage in SC if all

processes are reading the data, but will be disadvantageous if multiple parties

are attempting to modify the row. This distribution should not be good for

RC because multiple parties will need to wait for the lock to be released. For

uniform workloads contention should be relatively lower.

C*’s performance does not depend on the row contention while there is pos-

sibility for write thrashing and expensive synchronization for SC and waiting

on rows for RC.

Figure 5.7 shows the effects of the distributions on average read and write

times for all three systems for workload B with the request distribution as

either Zipfian, Latest, or Uniform. As expected the choice of workload dis-

tribution does not influence C* much. SC is heavily affected by the Zipfian

distribution since writes to the common rows will cause expensive read syn-

chronizations to occur. With Latest and Uniform this effect is mitigated

slightly, but we still see high variation in the latencies. The workload dis-

tribution does not seem to affect RC very much, but the batch size was set

43

to one. We expected to see higher delays in Zipfian while the Frontend is

waiting for access, but the effect would probably be more observable if the

batch size were higher so each Frontend held the row longer.

SC RC C*
0

50

100

150

200

250

300

350
La

te
n
cy

 (
m

s)
Zipfian
Latest
Uniform

Figure 5.7: Average combined read/write latencies for workload
B with various workload distributions. Standard deviation is
plotted as error bars.

5.4 Directory Placement

Both directory-based systems can give priority to selected datacenters by

placing the Directory server geographically closer to those datacenters. This

is effectively giving priority to those regions since the communication delay

between the Directory will decrease. However, the latency between datacen-

ters will remain the same so the cost of synchronizing data will still be high.

This approach is simpler than setting priorities through scheduling or quality

of service but is harder to change dynamically.

44

5.5 Summary

Through experimental evaluation we have seen that the latency for SC and

RC is affected significantly by the expensive synchronization operations that

both systems must perform in order to maintain their respective consistency

guarantees. While there are scenarios where SC and RC have better per-

formance than C*, such as write-heavy workloads where there are not many

row conflicts, the variability of the latency requests leads to unpredictable

behavior where the average latency depends heavily on the workload the sys-

tem faces. However, if users of the system know that the workload that the

datastore will face has many read operations to shared rows while the rows

that are modified are not accessed by geographically separated datacenters,

often then SC could be an appropriate system choice. If there is low row

contention and many operations are issued within a critical section then RC

could be a preferred system design.

45

Chapter 6

Conclusions and Future Work

In this thesis, we have presented two directory-based datastores which sup-

port strong application semantics. Their designs are based on ideas from the

multiprocessor and distributed shared memory literature which has dealt

with memory coherence problems in a different environment. When these

techniques are used to maintain consistency in a geo-distributed environment

the performance suffers for workloads commonly encountered in replicated

datastores. The costs of synchronization are high. However, there are sit-

uations in which the directory-based systems do provide good performance.

One of these situations is when there is not much row contention between

geographically separate datacenters.

Replicated datastores will become increasingly important as the demands

for accessing data grow. In particular, better ways for handling geo-distributed

data need to be developed. Perhaps expanding the consistency models of-

fered by the system to fit the needs of the application will be one of the

correct decision choices [9, 11]. Another useful primitive that has been de-

veloped by recent replicated datastores is transactions [10, 11]. Transactions

have been used for decades by relational databases but have been difficult to

implement efficiently in replicated datastores. The complex interactions of

a distributed replicated datastore bring together the problems faced in both

the distributed systems and database community and present new challenges

in the future.

46

Appendix A

Network Delay Simulation in Linux

This appendix will cover some background of the command line tools and

commands used in the experiments of this thesis in order to simulate a geo-

replicated environment for the datastore systems.

The netem kernel component provides Linux with the ability to emulate

various network functionality. Some of the features in the current version

include variable delay, loss, duplication and re-ordering. The module is con-

trolled by the command line utility tc by creating qdiscs, which are queues

which hold packets and can optionally do extra processing. The kernel en-

queues a packet onto an interface’s qdisc whenever it wishes to send a packet

to that interface. netem can be used by creating a qdisc and specifying netem

as one of the parameters. As an example, the following command will add

an additional 100ms of delay to all outgoing traffic on interface eth0.

$ tc qd i s c add dev eth0 root netem delay 100ms

For the remainder of the appendix we assume that the network interface that

we want to manipulate is eth0. We may also specify additional parameters to

modify the variability of the delay and the distribution of the variation. The

following command adds 100ms ± 20ms of delay with a normal distribution

to all outgoing traffic on eth0.

$ tc qd i s c change dev eth0 root netem delay 100ms 20ms
d i s t r i b u t i o n normal

However, we may not want to always add the delay to all traffic, or we may

wish to specify different delays for different hosts. In order to do so we must

use tc filters. We will present the commands used in the experiment and

then explain them line by line. The commands used in the experiments on

one server are presented below in order to add a 100ms ± 8ms delay where

the variations follow a Pareto distribution.

$ tc qd i s c add dev eth0 root handle 1 : p r i o

47

$ tc qd i s c add dev eth0 parent 1 :1 handle 2 : netem delay 100ms
8ms d i s t r i b u t i o n pareto

$ tc f i l t e r add dev eth0 p ro to co l ip parent 1 :0 p r i o 1 u32
match ip dst 172 . 22 . 28 . 99/32 f l ow id 1 :1

The first line creates a classful qdisc that contains three classes with the

assigned handle number 1:. The PRIO qdisc is a special qdisc that auto-

matically creates these three classes for us. Classes are ways for qdiscs to

group behaviors. The next line attaches a netem qdisc underneath one of

the automatically created classes with the specified parameters. The three

generated classes are by default called 1:1, 1:2, and 1:3. In this example we

choose to attach to the first one. The last line of the example creates a filter

attached to the root PRIO qdisc and puts any packet with an outgoing IP

address of 172.22.28.99 into the 1:1 class (which we have added our delay

behavior to). By using this same method we can now add various delays to

different hosts. To add additional hosts to the already created netem qdisc

we just make additional filters. To add a different delay we need to create

another netem qdisc and also create filters for it (if we do not want all other

outgoing traffic to end up in this qdisc). One pitfall is that an additional

qdisc with zero delay and a filter for all other IP addresses may be necessary

to avoid having other packets being enqueued onto the qdisc with delays.

An example of a command which generates such a qdisc is below.

$ tc qd i s c add dev eth0 parent 1 :3 handle 4 : netem delay 0ms
$ tc f i l t e r add dev eth0 p ro to co l ip parent 1 :0 p r i o 2 u32

match ip dst /0 f l ow id 1 :3

Additional information can be found in the man pages for tc along with in-

formation at http://www.linuxfoundation.org/collaborate/workgroups/

networking/netem and http://lartc.org/howto/lartc.qdisc.classful.

html.

48

http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://lartc.org/howto/lartc.qdisc.classful.html
http://lartc.org/howto/lartc.qdisc.classful.html

References

[1] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein,
P. Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni,
“PNUTS: Yahoo!’s hosted data serving platform,” Proc. VLDB
Endow., vol. 1, no. 2, pp. 1277–1288, Aug. 2008. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1454159.1454167

[2] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin, J. Larson,
J.-M. Leon, Y. Li, A. Lloyd, and V. Yushprakh, “Megastore: Providing
scalable, highly available storage for interactive services,” in Proceedings
of the Conference on Innovative Data System Research (CIDR), 2011,
pp. 223–234.

[3] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” in Proceedings of Twenty-
First ACM SIGOPS Symposium on Operating Systems Principles, ser.
SOSP ’07. New York, NY, USA: ACM, 2007. [Online]. Available:
http://doi.acm.org/10.1145/1294261.1294281 pp. 205–220.

[4] A. Lakshman and P. Malik, “Cassandra: A decentralized structured
storage system,” vol. 44, no. 2. New York, NY, USA: ACM, Apr.
2010. [Online]. Available: http://doi.acm.org/10.1145/1773912.1773922
pp. 35–40.

[5] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable:
A distributed storage system for structured data,” in Proceedings
of the 7th USENIX Symposium on Operating Systems Design and
Implementation - Volume 7, ser. OSDI ’06. Berkeley, CA, USA:
USENIX Association, 2006. [Online]. Available: http://dl.acm.org/
citation.cfm?id=1267308.1267323 pp. 15–15.

[6] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,”
in Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles, ser. SOSP ’03. New York, NY, USA: ACM, 2003. [Online].
Available: http://doi.acm.org/10.1145/945445.945450 pp. 29–43.

49

http://dl.acm.org/citation.cfm?id=1454159.1454167
http://doi.acm.org/10.1145/1294261.1294281
http://doi.acm.org/10.1145/1773912.1773922
http://dl.acm.org/citation.cfm?id=1267308.1267323
http://dl.acm.org/citation.cfm?id=1267308.1267323
http://doi.acm.org/10.1145/945445.945450

[7] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J.
Spreitzer, and C. H. Hauser, “Managing update conflicts in Bayou,
a weakly connected replicated storage system,” in Proceedings of
the Fifteenth ACM Symposium on Operating Systems Principles, ser.
SOSP ’95. New York, NY, USA: ACM, 1995. [Online]. Available:
http://doi.acm.org/10.1145/224056.224070 pp. 172–182.

[8] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold,
S. McKelvie, Y. Xu, S. Srivastav, J. Wu, H. Simitci, J. Haridas,
C. Uddaraju, H. Khatri, A. Edwards, V. Bedekar, S. Mainali,
R. Abbasi, A. Agarwal, M. F. U. Haq, M. I. U. Haq, D. Bhardwaj,
S. Dayanand, A. Adusumilli, M. McNett, S. Sankaran, K. Manivannan,
and L. Rigas, “Windows azure storage: A highly available cloud
storage service with strong consistency,” in Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles, ser.
SOSP ’11. New York, NY, USA: ACM, 2011. [Online]. Available:
http://doi.acm.org/10.1145/2043556.2043571 pp. 143–157.

[9] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguia, and R. Rodrigues,
“Making geo-replicated systems fast as possible, consistent when neces-
sary,” ser. OSDI ’12. ACM, 2012, pp. 265–278.

[10] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S. Kan-
thak, E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle,
S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor,
R. Wang, and D. Woodford, “Spanner: Googles globally-distributed
database,” ser. OSDI ’12. ACM, 2012, pp. 251–264.

[11] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen,
“Stronger semantics for low-latency geo-replicated storage,” in
Proceedings of the 10th USENIX Conference on Networked Systems
Design and Implementation, ser. nsdi’13. Berkeley, CA, USA: USENIX
Association, 2013. [Online]. Available: http://dl.acm.org/citation.cfm?
id=2482626.2482657 pp. 313–328.

[12] T. Kraska, G. Pang, M. J. Franklin, S. Madden, and A. Fekete,
“MDCC: Multi-data center consistency,” in Proceedings of the 8th
ACM European Conference on Computer Systems, ser. EuroSys
’13. New York, NY, USA: ACM, 2013. [Online]. Available:
http://doi.acm.org/10.1145/2465351.2465363 pp. 113–126.

[13] E. Brewer, “A certain freedom: Thoughts on the CAP theorem,”
in Proceedings of the 29th ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing, ser. PODC ’10. New York, NY,
USA: ACM, 2010. [Online]. Available: http://doi.acm.org/10.1145/
1835698.1835701 pp. 335–335.

50

http://doi.acm.org/10.1145/224056.224070
http://doi.acm.org/10.1145/2043556.2043571
http://dl.acm.org/citation.cfm?id=2482626.2482657
http://dl.acm.org/citation.cfm?id=2482626.2482657
http://doi.acm.org/10.1145/2465351.2465363
http://doi.acm.org/10.1145/1835698.1835701
http://doi.acm.org/10.1145/1835698.1835701

[14] E. Brewer, “CAP twelve years later: How the “rules” have changed,”
Computer, vol. 45, pp. 23–29, 2012.

[15] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, vol. 21, no. 7, pp. 558–565, July 1978.
[Online]. Available: http://doi.acm.org/10.1145/359545.359563

[16] G. Coulouris, J. Dollimore, and T. Kindberg, Distributed Systems: Con-
cepts and Design, 4th ed. USA: Addison-Wesley Publishing Company,
2005.

[17] M. P. Herlihy and J. M. Wing, “Linearizability: A correctness
condition for concurrent objects,” ACM Trans. Program. Lang.
Syst., vol. 12, no. 3, pp. 463–492, July 1990. [Online]. Available:
http://doi.acm.org/10.1145/78969.78972

[18] M. Ahamad, G. Neiger, J. Burns, P. Kohli, and P. Hutto, “Causal
memory: Definitions, implementation, and programming,” Distributed
Computing, vol. 9, no. 1, pp. 37–49, 1995. [Online]. Available:
http://dx.doi.org/10.1007/BF01784241

[19] W. Vogels, “Eventually consistent,” Queue, vol. 6, no. 6, pp. 14–19, Oct.
2008. [Online]. Available: http://doi.acm.org/10.1145/1466443.1466448

[20] L. Lamport, “Paxos made simple,” SIGACT News, vol. 32, no. 4, pp.
51–58, Dec. 2001. [Online]. Available: http://research.microsoft.com/
users/lamport/pubs/paxos-simple.pdf

[21] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,” in Proceedings of the
2nd ACM SIGACT-SIGMOD Symposium on Principles of Database
Systems, ser. PODS ’83. New York, NY, USA: ACM, 1983. [Online].
Available: http://doi.acm.org/10.1145/588058.588060 pp. 1–7.

[22] M. Burrows, “The Chubby lock service for loosely-coupled distributed
systems,” in Proceedings of the 7th Symposium on Operating
Systems Design and Implementation, ser. OSDI ’06. Berkeley,
CA, USA: USENIX Association, 2006. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1298455.1298487 pp. 335–350.

[23] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair, Distributed Sys-
tems: Concepts and Design, 5th ed. USA: Addison-Wesley Publishing
Company, 2011.

[24] J. Sustersic and A. Hurson, “Coherence protocols for bus-based
and scalable multiprocessors, internet, and wireless distributed
computing environments: A survey,” ser. Advances in Computers.
Elsevier, 2003, vol. 59, pp. 211 – 278. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0065245803590052

51

http://doi.acm.org/10.1145/359545.359563
http://doi.acm.org/10.1145/78969.78972
http://dx.doi.org/10.1007/BF01784241
http://doi.acm.org/10.1145/1466443.1466448
http://research.microsoft.com/users/lamport/pubs/paxos-simple.pdf
http://research.microsoft.com/users/lamport/pubs/paxos-simple.pdf
http://doi.acm.org/10.1145/588058.588060
http://dl.acm.org/citation.cfm?id=1298455.1298487
http://dl.acm.org/citation.cfm?id=1298455.1298487
http://www.sciencedirect.com/science/article/pii/S0065245803590052

[25] D. E. Culler, A. Gupta, and J. P. Singh, Parallel Computer Architecture:
A Hardware/Software Approach, 1st ed. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1997.

[26] K. Li and P. Hudak, “Memory coherence in shared virtual
memory systems,” in Proceedings of the Fifth Annual ACM
Symposium on Principles of Distributed Computing, ser. PODC
’86. New York, NY, USA: ACM, 1986. [Online]. Available:
http://doi.acm.org/10.1145/10590.10610 pp. 229–239.

[27] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy,
“The directory-based cache coherence protocol for the DASH
multiprocessor,” in Proceedings of the 17th Annual International
Symposium on Computer Architecture, ser. ISCA ’90. New York, NY,
USA: ACM, 1990. [Online]. Available: http://doi.acm.org/10.1145/
325164.325132 pp. 148–159.

[28] J. B. Carter, J. K. Bennett, and W. Zwaenepoel, “Implementation
and performance of Munin,” in Proceedings of the Thirteenth
ACM Symposium on Operating Systems Principles, ser. SOSP
’91. New York, NY, USA: ACM, 1991. [Online]. Available:
http://doi.acm.org/10.1145/121132.121159 pp. 152–164.

[29] P. Keleher, A. L. Cox, and W. Zwaenepoel, “Lazy release consistency
for software distributed shared memory,” in Proceedings of the
19th Annual International Symposium on Computer Architecture, ser.
ISCA ’92. New York, NY, USA: ACM, 1992. [Online]. Available:
http://doi.acm.org/10.1145/139669.139676 pp. 13–21.

[30] “Cassandra Thrift API,” http://wiki.apache.org/cassandra/API, ac-
cessed: 2013-05-16.

[31] C. K. Tang, “Cache system design in the tightly coupled multiprocessor
system,” in Proceedings of the June 7-10, 1976, National Computer
Conference and Exposition, ser. AFIPS ’76. New York, NY, USA: ACM,
1976. [Online]. Available: http://doi.acm.org/10.1145/1499799.1499901
pp. 749–753.

[32] M. Herlihy and J. E. B. Moss, “Transactional memory: Architectural
support for lock-free data structures,” in Proceedings of the 20th
Annual International Symposium on Computer Architecture, ser.
ISCA ’93. New York, NY, USA: ACM, 1993. [Online]. Available:
http://doi.acm.org/10.1145/165123.165164 pp. 289–300.

52

http://doi.acm.org/10.1145/10590.10610
http://doi.acm.org/10.1145/325164.325132
http://doi.acm.org/10.1145/325164.325132
http://doi.acm.org/10.1145/121132.121159
http://doi.acm.org/10.1145/139669.139676
http://wiki.apache.org/cassandra/API
http://doi.acm.org/10.1145/1499799.1499901
http://doi.acm.org/10.1145/165123.165164

[33] M. Welsh, D. Culler, and E. Brewer, “SEDA: An architecture for
well-conditioned, scalable internet services,” in Proceedings of the
Eighteenth ACM Symposium on Operating Systems Principles, ser.
SOSP ’01. New York, NY, USA: ACM, 2001. [Online]. Available:
http://doi.acm.org/10.1145/502034.502057 pp. 230–243.

[34] “Illinois cloud computing testbed (CCT),” accessed: 2013-05-16.
[Online]. Available: http://cloud.cs.illinois.edu/

[35] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears, “Benchmarking cloud serving systems with YCSB,” in
Proceedings of the 1st ACM Symposium on Cloud Computing, ser.
SoCC ’10. New York, NY, USA: ACM, 2010. [Online]. Available:
http://doi.acm.org/10.1145/1807128.1807152 pp. 143–154.

53

http://doi.acm.org/10.1145/502034.502057
http://cloud.cs.illinois.edu/
http://doi.acm.org/10.1145/1807128.1807152

	Chapter 1 Introduction
	Chapter 2 Related Work
	Application Semantics
	Consistency
	Strong Consistency
	Weak Consistency
	Mixed Consistency
	Consistency Discussion

	System Coordination
	Data Partitioning and Load Balancing
	Distributed Hash Table
	Centralized Master
	Physical Location of Data

	Fault-Tolerance
	Summary

	Chapter 3 Background
	Cache Coherence and Distributed Shared Memory
	Cassandra
	Data Model
	Client API
	System Architecture

	Chapter 4 System Design and Implementation
	Goals
	Directory-Based Strong Consistency
	Object States
	Update Propagation
	Centralized or Distributed Directory
	Object Granularity
	System Overview
	Directory State
	Frontend State
	Client Requests
	Fault-Tolerance
	Drawbacks

	Release Consistency
	System Overview
	Client Request Example
	Drawbacks

	Implementation

	Chapter 5 Experiments
	Experimental Setup
	Delay Simulation
	Multi-Datacenter Cassandra
	Directory-Based Systems

	Workloads
	Read-Write Ratio
	State Dependency
	Batch Size

	Row Contention and Workload Distribution
	Directory Placement
	Summary

	Chapter 6 Conclusions and Future Work
	Appendix A Network Delay Simulation in Linux
	References

