
c© 2013 Rajesh Kumar

EFFICIENT EXECUTION OF FINE-GRAINED ACTORS ON
MULTICORE PROCESSORS

BY

RAJESH KUMAR

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2013

Urbana, Illinois

Doctoral Committee:

Professor Gul Agha, Chair
Professor Darko Marinov
Professor Ralph Johnson
Dr. Mark S. Miller, Research at Google

ABSTRACT

The Actor model is a promising model for programming new computing plat-

forms such as the multicores and cloud computers, primarily due to features

such as inherent concurrency and isolation of state. However, the model is

often perceived to be fundamentally inefficient on stock multicore processors.

Consequently, we find that standard semantic properties of the model, includ-

ing encapsulation and fairness, are ignored even by languages and frameworks

that claim to be based on the Actor model.

In this work, we propose and implement both static (compiler) and dy-

namic (runtime) techniques that overcome these perceived inefficiencies, while

retaining key actor semantics, even in a framework setting. We compare the

performance of ActorFoundry with other frameworks for small benchmarks

and programs. The results suggest that key actor semantics can be supported

in an actor framework without compromising execution efficiency.

We also validate our results for a large real-world application, i.e. a Java

game called Quantum [1] having more than 25k lines of code. Quantum is

a real-time strategy game, which employs a few threads for handling IO, UI

and network events. We port the Quantum game to ActorFoundry, so that

the asynchrony due to threads and communication between them is expressed

using actors and messages.

Next, we introduce additional concurrency in Quantum by actorizing all

game objects. This results in relatively fine-grained actors. We are able to

run a game instance with more than 10,000 game objects, which keeps an

8-core computer at full throttle. According to our knowledge, this is the

largest execution of a real client-side actor program. The performance is

comparable to an Actor framework implementation that does not provide

the standard actor semantics. Moreover, our set of static (compiler) and

dynamic (runtime) techniques allow an actor framework to compare well

against a shared memory model in terms of execution efficiency.

ii

To my parents, siblings and my wife, for their love and support.

iii

ACKNOWLEDGMENTS

First of all, I would like to thank my advisor and mentor, Gul Agha, for his

faith, encouragement, advice and an unreasonable level of support through

my graduate school. It has been an honor to interact with and learn from

him on many aspects of academic and general life. He will always remain an

inspiration and a fatherly figure.

Next I would like to thank my committee member Darko Marinov for his

prompt advice and words of support. I had the pleasure of working with him

for a significant part of my graduate school. I enjoyed my conversations with

him and will always remember his frank and humorous style.

My committee members Ralph Johnson and Mark Miller have been instru-

mental in getting this dissertation to completion with their generous advice

and invaluable time.

I have had the pleasure of learning from many professors in the department

including P Madhusudan, Vikram Adve, Indranil Gupta, Robin Kravets, and

Grigore Rosu. Members of the OSL Research Group have provided valu-

able feedback to my research and great company. I have been fortunate to

make many friends along the way. I would like to give a shout-out to Timo

Latvala, Vijay Korthikanti, Vilas Jagannath, Kirill Mechitov, Peter Dinges,

Parya Moinzadeh, Reza Shiftehar, Koushik Sen, Amin Shali, Liping Chen,

Myungjoo Ham, Sameer Sundresh, Ashish Vulimiri, and Minas Charalam-

bides. Outside the OSL, I had some very good interactions with and had

the pleasure of working along with Samira Tasharofi, Stas Negara, Nicholas

Chen, Steven Lauterburg, and Noyan Baykal.

I would like to thank the department staff for their timely help in all

matters related to fellowships, travel, and other paperwork. I would like

to acknowlege the support of Mr and Mrs Sohaib Abbasi for their support

through a generous fellowship.

Over the course of graduate program, I met with some amazing people

iv

and made some very good friendships that I will cherish all my life. I will

intentionally make the mistake of trying to name them: Yaniv, Santiago, Ar-

tur, Noomi, Emma, Fakhruddin, Sarika, Anshu, Kiran, Brian, Lee, Anusha,

Soumyadeb, Akash, Lavanya, Natarajan, Yoav, Alina, Regina, Neha, Preeyaa,

Aneel, Rakesh, Rekha, Pratim, Ankur, Shruti, Sruthi, Pavithra, Sarah, Jay,

Amandeep, Supreet, Vrashank, Komal, Piyush, Tarun, Rajhans, Neha, Nis-

hana, Jayanthi, Nisha, Abhishek, Utsav, Piyush, Kiran, Meghana, Cosmin,

Camilo, Ralf, Mara, Anthony, Cassie, Megan, Sibin, Radha, Shweta, Mo-

hit, Asfand, Ibraheem, Usman, Bilal, Hassaan, Atif, Asma, Aya, Gina and

many others whom I sincerely apologize to. I will keep looking out for them

through my life and meet them whenever possible.

I can not forget the support and patience of my friends and family through

the challenging times of graduate school.

v

TABLE OF CONTENTS

LIST OF FIGURES . viii

CHAPTER 1 INTRODUCTION . 1
1.1 Not In Scope . 5
1.2 Outline . 5

CHAPTER 2 BACKGROUND . 6
2.1 The Actor Model . 6
2.2 Actor Properties . 7

CHAPTER 3 PROGRAMMING AND EXECUTION MODEL 13
3.1 ActorFoundry - a Java-Based Actor Framework 13

CHAPTER 4 RELATED WORK . 17
4.1 Comparison . 18

CHAPTER 5 PERFORMANCE ISSUES FOR IMPLEMENTING
SEMANTIC PROPERTIES . 22
5.1 A Qualitative Analysis . 22
5.2 A Quantitative Analysis . 23

CHAPTER 6 TECHNIQUES FOR IMPROVING PERFORMANCE
- ROUND 1 . 28
6.1 Continuations-Based Actors 28
6.2 Fair Scheduling . 29
6.3 Zero-Copy Messaging on Shared Memory Platforms 30
6.4 Performance Revisited . 31
6.5 Discussion . 32

CHAPTER 7 SAFE AND EFFICIENT MESSAGING 34
7.1 Ownership Transfer . 34
7.2 Illustrative Example . 34
7.3 Static Analysis Algorithm . 38
7.4 Algorithm Properties . 43
7.5 Implementation and Evaluation 45

vi

CHAPTER 8 REAL-WORLD CASE STUDIES 55
8.1 Case Study - Quantum Game 56
8.2 Other Game Scenarios . 58

CHAPTER 9 CONCLUSION AND FUTURE WORK 59
9.1 Multicore Architecture . 59
9.2 Distribution . 60
9.3 Lessons Unrelated to Performance 61

REFERENCES . 62

vii

LIST OF FIGURES

2.1 Actors are concurrent entities that exchange messages asyn-
chronously. 7

2.2 A program written in the Scala Actors shows violation of
temporal encapsulation which may cause two actors to si-
multaneously execute the critical section. 8

2.3 A program written in the Scala Actors showing an Actor
“busy-waiting” for a reply. In the absence of fair schedul-
ing, such an actor can potentially starve other actors. 10

5.1 Actor Anatomy in Actor Foundry v0.1.14 22
5.2 Threadring Performance - Actor Foundry v0.1.14 compared

with other concurrent languages and frameworks 25
5.3 Graph showing the cost of sending messages in ActorFoundry

by reference versus by making a deep copy. 27

6.1 Overhead of Fairness for (a) Threadring (b) Chameneos-
redux (c) Näıve fibonacci calculator 31

6.2 Threadring Performance . 32
6.3 Chameneos-redux Performance 32

7.1 A simplified version of RefMessenger example in Actor-
Foundry v1.0. 35

7.2 A code example, whose analysis is highly affected by context-
sensitivity of the call graph. 37

7.3 A running example of an actor program. Import state-
ments are omitted due to space considerations. 50

7.4 Filtered call graph for the code fragment from Figure 7.3. . . . 51
7.5 Filtered points-to graph for the code fragment from Figure 7.3. 51
7.6 Overview of our algorithm for interprocedural live variable

analysis. 52
7.7 Collecting all call graph nodes that reach initNodes. 53
7.8 Performing local live variable analysis for reachingNodes

and storing its relevant part in callSiteLiveVariables. 53
7.9 Propagating live variables through reachingNodes. 54

viii

7.10 Two phases of our live variable analysis. In the first phase
(marked with number 1) we consider internal control flow
graphs of individual call graph nodes for the classical in-
traprocedural live variable analysis. In the second phase
(marked with number 2) we propagate live variables for-
ward in the call graph, disregarding the internal control
flow of the call graph nodes. 54

ix

CHAPTER 1

INTRODUCTION

Due to the ubiquity of platforms such as the multicore processors, cloud com-

puters and sensor networks, Actor-oriented programming has been getting

increasing attention from both scientists and practitioners [2].

The key features that make the Actor model promising are isolation of

state, modular reasoning and scalable execution. Because actors are isolated

and do not share state, the programs do not suffer from low-level memory

hazards such as data races. Because the actor model facilitates modular

reasoning about certain safety and liveness properties, it is simpler to as-

sign blame for program bugs. For example, an actor that is unable to make

progress has only itself to blame for blocking during the processing of a

message. Because programs are decomposed into concurrent actors, the pro-

grams can theoretically scale to as many processors as the number of actors.

These features are enabled due to some key semantic properties of the Actor

model, namely encapsulation, fairness, location transparent naming and mo-

bility [3]. The actor model guarantees encapsulation in two ways: temporal

encapsulation and safe messaging. Temporal encapsulation means that an

actor interacts with the environment, including other actors, only through

messaging. (The word temporal does not imply any timing requirement here

as it does in an earlier description of the term in [4].)

Possibly because of one or more of the above-mentioned features, many

new frameworks and languages based on the Actor model have been put out

recently by both researchers and practitioners. It is not unusual to come

across a new actor library or framework on a monthly basis.

However, a closer observation suggests that these frameworks compromise

some key semantic properties of the Actor model [5]. There may be multiple

reasons for this: lack of awareness, time-to-market, or trade-off for efficiency.

It is known that encapsulation, and specifically safe messaging is compro-

mised in frameworks such as Scala Actors and Kilim [6, 7] in order to obtain

1

execution efficiency .

In this dissertation, we seek to refute the perception about inefficiency, and

show that all key semantic properties of Actor model can be implemented,

even in an actor framework, with performance comparable to other imple-

mentations. More specifically, we challenge the notion, with partial success,

that message-passing models such as the Actor model are fundamentally less

efficient on multicores than shared memory models.

In the model that we consider, there are two important deviations from the

pure actor model [8]. In our model, not every program entity is an actor. Tra-

ditional objects are first-class entities as well and can be part of the internal

state of an actor. This deviation is tolerated for pragmatic reasons associated

with building an actor framework for an existing object-oriented language,

and leveraging its existing code base. Almost all the existing frameworks

that we considered have made this deviation. Asynchronous Sequential Pro-

cesses describe a similar model in a formal way [9]. Secondly, actors can

block during the processing of messages, typically when they are waiting to

receive the reply of a “query” message. This deviation is made to accomodate

the mainstream programmers’ familiarity with sequential control flow. Such

a linguistic construct was introduced in high-level actor languages early on

and in current frameworks. For example, both Scala Actors [6] and Kilim [7]

provide such constructs.

Observe that by restricting accessibility of sequential objects to single ac-

tors, no concurrent access to the state of an actor is introduced. Thus, such

a system can be easily modeled by the actor semantics provided in [3].

In our quest for these semantics and improved performance, we analyze

various JVM-based Actor frameworks, and compare their semantics and per-

formance for small benchmarks and programs. We observe that frameworks

that provide these semantic properties are significantly more inefficient than

frameworks that do not provide these properties.

We implement static and dynamic techniques in order to improve the per-

formance of a framework called ActorFoundry [10] that enforces actor proper-

ties. Specifically, we first introduce lightweight stacks and a CPS transform

from the Kilim project [11] in order to implement actors with a low cost

of creation and context-switching. Second, we introduce a scheduler with

a monitoring-based technique for guaranteeing scheduling fairness. Third,

we exclude known immutable types in Java such as String and Integer from

2

being copied inside a message that is sent to a local actor. (This work was

published in [5].)

As a result of implementing these techniques, the performance of Actor-

Foundry is comparable to other frameworks and languages. However, in this

work, we made a compromise regarding a key property, safe messaging. The

programmer has to explicitly annotate the messages that are safe to send

without making a copy of the message contents.

In order to have a uniform semantics for message passing, we then im-

plement a static analysis framework for Java bytecode that (conservatively)

removes the need for copying message data on shared memory hardware.

The static analysis infers instances of messages that result in transfer of

ownership. Such messages can be sent without copying resulting in efficient

execution. The tool implementation SOTER is found to be effective and

useful for a suite of examples [12].

To summarize, we implement both static and dynamic techniques to mit-

igate the perceived inefficiencies and improve the performance of an Actor

framework. The initial results suggest good performance for Actor frame-

works, when measured for small benchmarks and programs. We then validate

these results for a large real-world program. We also compare its performance

against a shared memory implementation.

In this regard, we focus on games as the application domain. Games are

particularly promising because games, especially of the real-time strategy

genre, tend to have internal concurrency (with complex interactions), inde-

pendent of the number of external user requests. Morever, games represent

a popular domain among client-side applications. For example, games con-

sistently dominate the list of top apps in Google Play market and Apple’s

App Store. According to Business Insider Intelligence, in a recent check of

Apple’s iPhone App Store, games represented 55 percent of the top 200 paid

apps, and 33 percent of the top 200 free apps.

Specifically we look at an open-source game called Quantum [1], which has

more than 25k lines of Java code. Quantum is a real-time strategy game that

involves multiple players controlling pre-owned planets, trees, and creatures

that orbit planets. Players can create more creatures by building trees, and

colonize other planets in the universe by moving creatures to them. The

goal of the game is it to eliminate all enemy creatures and take over enemy

planets.

3

The original version from the web has a strict game loop that updates all

games objects every game cycle. This version has some concurrency for I/O

operations. For example, it has separate threads for receiving user input,

producing sound and network play. In the first stage of actorizing Quantum,

we replace these threads with actors.

In the second stage, we introduce new concurrency by converting game

objects such as planets, trees and creatures into actors. We replace the

strict game loop, and instead enable each game object to update itself asyn-

chronously and send messages for exchanging state information with other

games objects. We are able to run a game instance with more than 10,000

game objects and run the computer (a Core 2 Duo and an 8-core i7) at full

throttle. According to our knowledge, this is the largest execution of a real

client-side actor program.

Although the game implementation has some communication-computation

overlap, many CPU cycles are spent in delivering a message (by the sender),

and later by the receiver in pulling it from its mailbox, and then repeating

these steps for the reply, if needed. Independent experiments on a Core 2

Duo processor suggest that it takes two orders of magnitude more time for a

request-reply message in comparison to reading the value simply through a

method call.

Next, we introduce a “short-circuit” implementation for request-reply mes-

sages. If the recipient actor of such a message is local, and is neither busy nor

blocked, the sending actor calls the message handler in its own stack instead

of delivering a message to recipient’s mailbox [13]. Experimental results sug-

gest that this technique improves performance by an order of magnitude.

The work presented in this dissertation suggests that key actor semantics

can be supported in an Actor framework without compromising execution

efficiency. Moreover, our set of static (compiler) and dynamic (runtime)

techniques allow an Actor framework to compare well against a shared mem-

ory model in terms of execution efficiency, even on a hardware with a low

number of cores.

4

1.1 Not In Scope

For large-scale distributed systems, such as supercomputers, modern server

infrastructures that power Google, Amazon, Facebook and Twitter, and

cloud infrastructures there is no choice but to think in terms of message-

passing. However, the scalability of servers in client-server architectures is

out of scope for this work. We look at the efficiency of local execution on

multicore processors and interactive concurrency.

A large body of research work has been published on various aspects of

the Actor model. In the terms of efficiency, we acknowledge that garbage

collection for Actor systems [14, 15, 16] is not in scope for this work. Similarly,

power efficiency of actor execution on multicores [17, 18] is not in the scope.

Considerable amount of work has been done on expressing concurrency

in the Actor model including coordination [19, 20, 21, 22, 23, 24, 25, 26],

session types [27], real-time constraints [28, 29], and combining actor model

with other models of concurrency [30, 31, 32].

Recent work has also focused on building tools for model checking [33, 34,

35, 36] and testing [37, 38, 39, 40] of actor programs. This is not further

discussed in this work.

1.2 Outline

The dissertation is organized as follows. In the next chapter, we describe the

Actor model and its key semantic properties. In chapter 3, we describe the

programming model and its execution semantics model that we consider in

this work.

In chapter 4, we discuss the related work in this area. In chapter 5, we dis-

cuss the perceived inefficiencies of implementing key properties of the model

in both qualitative and quantitive sense. In the next chapter, we discuss op-

timization strategies in order to mitigate some of the perceived inefficiencies.

In chapter 7, we discuss a static analysis algorithm that enables efficient yet

safe messaging in many cases. In chapter 8, we present our experience with

looking at real-world programs and converting them into Actor programs.

Finally, we conclude our thesis and present some ideas for future work in

chapter 9.

5

CHAPTER 2

BACKGROUND

In this chapter we present a concise definition of the Actor model, its key

semantic properties, and describe their implications on programmability and

performance.

2.1 The Actor Model

The Actor model is an inherently concurrent model of programming [8].

In the Actor model, programs comprise of concurrent, autonomous entities,

called actors, which can send and receive messages. Each actor has its own

mutable local state; actors do not share this local state with other actors.

Each actor is responsible for updating its local state in its own thread of

control.

Actors send asynchronous messages for exchanging data as well as syn-

chronizing with each other (see Figure 2.1). The receiving actor processes

the messages, one message at a time, in a single atomic step. Each step

consists of all the actions taken in response to a given message, enabling a

macro-step semantics [3]. The union of all potential responses by an actor

constitute its behavior.

Each actor has a unique, immutable name which is required to send a

message to that actor. An actor name cannot be forged but may be commu-

nicated to other actors.

The standard Actor semantics provide encapsulation, fairness, location

transparent naming, and mobility. These properties enable compositional

design, high-level reasoning [3], and scalable performance as applications

and architectures scale [13]. For example, because actors communicate using

asynchronous messages, an actor does not occupy any system resources while

sending and receiving a message. This is in contrast to the shared memory

6

[msg_a]

[create]

Mailbox

Methods

Thread
State

Mailbox

Methods

Thread
StateMailbox

Methods

Thread
State

Figure 2.1: Actors are concurrent entities that exchange messages
asynchronously.

model where threads occupy system resources such as a system stack and

possibly other locks while waiting to obtain a lock. Thus actors provide

failure isolation while potentially improving performance.

Asynchronous messaging is a key source of nondeterminism in Actor pro-

grams: the order in which messages are processed affects the behavior of an

actor. In many applications, application programmers want to prune some

of the nondeterminism by restricting the possible orders in which messages

are processed. Two commonly used abstractions that constrain the mes-

sage order are request-reply messaging and local synchronization constraints

(See [5]).

2.2 Actor Properties

We discuss four important semantic properties of actor systems: encapsula-

tion, fairness, location transparency and mobility. Using examples, we argue

the advantages of preserving these semantics in Actor implementations.

2.2.1 Encapsulation

Encapsulation is one of the core principles of object-oriented programming.

Preserving encapsulation boundaries between objects facilitates reasoning

about safety properties such as memory safety, data race freedom, safe mod-

ification of object state. For example, Java is considered a memory-safe lan-

guage because it hides memory pointers behind object references that provide

7

import scala.actors.Actor
import scala.actors.Actor.

object semaphore {
class SemaphoreActor() extends Actor {

...

def enter() {
if (num < MAX) {

// critical section

num = num + 1;
} } }

def main(args : Array[String]) : Unit = {
var gate = new SemaphoreActor()
gate.start
gate ! ”enter”
gate.enter

}
}

Figure 2.2: A program written in the Scala Actors shows violation of
temporal encapsulation which may cause two actors to simultaneously
execute the critical section.

safe access to objects (e.g. pointer arithmetic is not allowed). Memory-safety

is important for preserving object semantics: it permits access to an object’s

state only using well-defined interfaces. In the context of the Actor model

of programming, there are two important requirements for encapsulation:

temporal encapsulation and safe messaging.

Temporal Encapsulation An actor cannot directly (i.e., in its own stack)

access the internal state of another actor. An actor may affect the state of

another actor only by sending a message to the other actor.

The code in Figure 2.2 shows an implementation of a counting semaphore

in the Scala Actors. The main actor, in addition to sending an enter()

message, executes enter() in its own stack. Because of a lack of enforcement

of Actor encapsulation in the library, the code violates the Actor property

that an actor may not directly access the internal state of another actor. As

8

a consequence, in a multi-threaded, shared memory implementation of the

Actor model, two actors can concurrently enter the critical section and thus

violate the semantics of a counting semaphore.

Actor implementations that enforce temporal encapsulation do so using

indirection. Because such indirection also provides location transparency, we

discuss this separately later in this section.

Safe Messaging There is no shared state between actors. Therefore, mes-

sage passing should have call-by-value semantics. This may require making

a copy of the message contents, even on shared memory platforms.

We believe that both aspects of encapsulation are important for writ-

ing large-scale actor programs. Without enforcing encapsulation, the Actor

model of programming is effectively reduced to guidance for taming multi-

threaded programming on shared memory machines. It is difficult to pro-

vide semantics for, or reason about the safety properties of actor-oriented

languages that do not guarantee encapsulation. For example, a macro-step

semantics [3] simplifies testing and reasoning about safety properties in actor

programs [41]. Two concurrent messages that require m and n instructions

for processing would need an exponential number of schedules in m and n

to completely reason about their behavior. However, given macro-step se-

mantics, it needs executing only two schedules! Without enforcing actor

encapsulation, it would be incorrect to assume the macro-step semantics.

2.2.2 Fair Scheduling

The Actor model assumes a notion of fairness : a message is eventually de-

livered to its destination actor, unless the destination actor is permanently

“disabled” (in an infinite loop or trying to do an illegal operation). Another

notion of fairness states that no actor can be permanently starved i.e. every

actor makes progress. Note that if an actor is starved (i.e. never scheduled),

pending messages directed to it cannot be delivered. Thus, the notion of

guarantee of message delivery implies that no actor is permanently starved.

A notion of fairness that is weaker than both previous notions is that the

system makes progress. However, in this case, a given actor may not be

making any progress.

9

import scala.actors.Actor
import scala.actors.Actor.

object fairness {
class FairActor() extends Actor {

...

def act() { loop { react {
case (v : int) => {

data = v

}
case (”wait”) => {

// busy-waiting section

if (data > 0) println(data)
else self ! ”wait”

}
case (”start”) => {

calc ! (”add”, 4, 5)
self ! ”wait”

}
} } }

} }

Figure 2.3: A program written in the Scala Actors showing an Actor
“busy-waiting” for a reply. In the absence of fair scheduling, such an actor
can potentially starve other actors.

Without a fairness assumption, one cannot reason about liveness proper-

ties of concurrent programs [3]. For example, with fairness, composing an

actor system A, with an actor system B that consists of actors which are

permanently busy does not affect the progress of the actors in A. Note that

fairness in itself, however, does not guarantee liveness.

Consider the program in Figure 2.3 in which an actor is “busy-waiting”

for a reply from another actor, say a calculator actor. In the absence of

fairness, the calculator actor may never be scheduled (starvation). Therefore,

the first actor never receives the desired reply, and the system cannot make

progress. Similarly non-cooperative actors (i.e. actors running an infinite

loop or blocked on an I/O or system call) can occupy a native thread and

potentially starve other actors.

10

A commonly occurring example of this scenario is the composition of native

application components with 3rd party plug-ins. For example, if browsers do

not provide any fairness guarantee for the execution of different browser

components and plug-ins, the plug-ins may result in crashes and hang-ups.

Moreover, more than one message may be sent to an actor concurrently (by

the same sender–due to asynchronous messaging, or by different senders–due

to asynchronous operation of these senders). Without a fairness requirement

guaranteeing that each message be eventually delivered, one cannot ensure

reason about a liveness property that depends on the delivery of a message.

2.2.3 Location Transparency

In the Actor model, the actual location of an actor does not affect its name.

Actors communicate by exchanging messages; each actor has its own address

space which could be completely different from that of others. The actors

that an actor knows could be on the same core, on the same CPU, or on a

different node in a network. Location transparency provides an infrastructure

for programmers so that they can program without worrying about the actual

physical locations. Location transparency enables building robust, scalable

programs by providing the runtime the flexibility to distribute and replicate

components.

Because one actor does not know the address space of another actor, a

desirable consequence of location transparency is temporal encapsulation.

Location transparent naming also facilitates runtime migration of actors to

different nodes, or mobility. Such mobility may be guided by annotations

or a meta-level logic either to facilitate efficiency in execution or to ensure

security.

2.2.4 Mobility

Mobility is defined as the ability of a computation to move across different

nodes. In their seminal work, Fuggetta et al. classify mobility as either

strong or weak [42]. Strong mobility is defined as the ability of a system to

move code, data and the execution state. Weak mobility, on the other hand,

only allows movement of code and data.

11

In an actor system, strong mobility implies that the system is allowed to

migrate an actor even when it is busy (i.e., it is processing a message), while

weak mobility implies migrating an actor only when it is not processing a

message.

Because actors provide encapsulation and modularity of control, mobility

is natural to the Actor model. Object-oriented languages may allow mobility

at the level of objects but all thread stacks executing through the object

need to be made aware of this migration, even in the case of weak mobility.

Moreover, when the stack frame requires access to an object on a remote

node, the execution stack needs to be moved to the remote node to complete

the execution of the frame and then migrated back to the original node [43].

At the system level, mobility can enable runtime optimizations for load

balancing, reconfiguration and certain aspects of fault-tolerance [44, 45]. Pre-

vious work has shown that mobility is helpful in achieving scalable perfor-

mance, especially for dynamic, irregular applications over sparse data struc-

tures [46]. In such applications, different stages may require a different distri-

bution of computation. In other cases, the optimal distribution is dependent

on runtime conditions such as data and work load. We should point out

that strong mobility (when augmented with discovery services) enables the

programmer to declaratively exploit heterogeneous system resources such

as GPUs, DSPs, other task-specific accelerators, and high clock frequency

cores.

12

CHAPTER 3

PROGRAMMING AND EXECUTION
MODEL

In this work, we are interested in actor programs developed in a mainstream

language such as Java (referred to as host language), which are typically

imperative in style and can leverage a large body of existing code.

In the model that we consider, one can think of an actor as a sequential

program augmented with three (actor) operators: receive, send and create.

An actor program can be viewed as a collection of reactive entities that

concurrently execute the following sequence of statements in a loop: receive

a message (and block if no message is available), decode the message, and

process it. During the processing of a message, an actor can send more

messages to its acquaintances, create new actors, and update its local state

by assigning new values to variables.

An actor can also send a blocking or RPC-like message. This blocks the

sending actor, and behaves like a future that must be resolved before the

sender can make any further progress. The blocking message returns with a

response value or an acknowledgement.

Note that we do not allow composition of actor programs with any existing

abstraction of concurrency such as threads or processes that are available for

the host language.

We also assume that there is no intra-actor or internal concurrency. How-

ever, the implementations can choose to parallelize the processing of messages

in cases where it is safe, i.e. it preserves one-message-at-a-time semantics, or

in other words, serializability.

3.1 ActorFoundry - a Java-Based Actor Framework

In order to illustrate the model, consider a simple imperative actor language

called ActorFoundry that runs on the JVM and extends Java syntax. In

13

essence, we describe restrictions on Java programs that make them legal

ActorFoundry programs. For a similar approach, see the Joe-E language [47].

A class that extends osl.manager.Actor defines a certain actor behav-

ior. New actors are created as “instances” of such classes by calling the

create(class, args) method, where args correspond to the arguments of

a constructor in the corresponding class. Each newly created actor has a

unique name that is initially known only to the creator at the point where

the creation occurs.

The instance variables of an actor class comprise the local state of its

instance actor. These variables are created by, owned by and visible to only

the corresponding instance actor. ActorFoundry does not restrict the type

of instance variables; the variables may be ordinary Java objects, mutable or

immutable, or names of actors.

Note that Java allows static variables that implicitly introduce global,

shared state among objects. We assume that programmers do not use static

variables, or the static variables only refer to immutable objects as in [47].

The ActorFoundry compiler does not currently enforce this restriction.

Certain (public) methods are annotated with @message. These serve as

handlers for incoming messages. If a corresponding method is not available,

the message is processed with just the no-op instruction.

Example: Listing 1 shows the HelloWorld program in ActorFoundry. The

program comprises of two actor definitions, HelloActor and WorldActor. An

instance of the HelloActor can receive one type of message, the greet mes-

sage, which triggers the execution of greet method. The greet method serves

as P ’s entry point, similar to how the main method serves as the point of

entry in a Java program.

3.1.1 Execution Semantics

The semantics of ActorFoundry closely follow the semantics described in [3],

and can be informally described as follows. Consider an ActorFoundry pro-

gram P that consists of a set of actor definitions.

At the beginning of execution of P , the mailbox of each actor is empty

and some actor in the program must receive a message from the runtime

or the environment. The ActorFoundry runtime first creates an instance of

14

pub l i c c l a s s Hel loActor extends Actor {

ActorName other = nu l l ;

@message
pub l i c void g r e e t () throws RemoteCodeException
{

ca l l (stdout , ” p r i n t ” , ”He l lo ”) ;
other = create (WorldActor . c l a s s) ;
send (other , ” audience ”) ;

}
}

pub l i c c l a s s WorldActor extends Actor {

@message
pub l i c void audience () throws RemoteCodeException
{

send (stdout , ” p r i n t ” , ”World”) ;
}

}

Listing 1: HelloWorld program in ActorFoundry

HelloActor and then sends the greet message to it, which serves as P ’s entry

point. Because only one instance of each actor definition is created in this

example program, we refer to the instance of HelloActor as helloActor.

Each actor can be viewed as executing a loop with the following steps:

remove a message from its mailbox (often implemented as a queue), decode

the message, and execute the corresponding method. If an actor’s mailbox is

empty, the actor blocks–waiting for the next message to arrive in the mailbox.

Such blocked actors are referred to as idle actors.

The processing of a message may cause the actor’s local state to be up-

dated, new actors to be created and messages to be sent. Because Actor-

Foundry does not restrict the syntax or control structures available in Java,

an actor may execute an infinite loop inside the body of its methods or

method calls made on its encapsulated objects. Because of the encapsula-

tion property of actors, there is no interference between messages that are

concurrently processed by different actors.

An actor communicates with another actor that it knows in P by sending

asynchronous (non-blocking) messages using the send statement: send(a,msg)

has the effect of eventually appending the contents of msg to the mailbox of

the actor a. Thus, messages have by-copy semantics. However, the call to

send returns immediately i.e. the sending actor does not wait for the message

to arrive at its destination.

15

The model also allows blocking or RPC-like messages expressed using the

call statement. The call to call blocks the sending actor, and returns

the return value of the corresponding method in the receiving actor, or an

implicit, empty acknowledgement if the return type is void.

An exception that is raised by a actor during the processing of an asyn-

chronous message is handled by itself or the runtime. It is never sent back im-

plicitly by the runtime to the sending actor. On the other hand, if an ex-

ception is raised during the processing of an RPC-like message, and it is not

handled by the receiver itself, the runtime sends an asynchronous exception

message back to the sender. When a waiting actor receives an exception

message, and it matches the identity of the message that it was waiting on,

the sender gets unblocked and the control transfers to an exception message

handler.

Because actors operate asynchronously, and the network has indeterminate

delays, the arrival order of messages is nondeterministic. However, we assume

that messages are eventually delivered (by relying on the guarantee provided

by underlying communication layers), and are eventually processed by the

destination actors (as fair as the JVM scheduler).

An actor program ‘terminates’ when every actor created by the program

is idle and the actors are not open to the environment (otherwise the envi-

ronment could send new messages to their mailboxes in the future). Note

that an actor program need not terminate–in particular, certain interactive

programs and operating systems may continue to execute indefinitely.

Going back to our example, on receiving a greet message, the helloActor

sends a (blocking) print message to the stdout actor (a built-in actor repre-

senting the standard output stream) along with the contents “Hello”. As a

result, “Hello” will be printed on the standard output stream. Next, it cre-

ates an instance of the WorldActor. The helloActor sends an asynchronous

audience message to the worldActor, which in turn sends a print message to

stdout along with the contents “World”. Thus the helloActor delegates the

printing of “World” to the worldActor. Note that because the message sent

by helloActor to stdout is blocking, “Hello” will always be printed before

“World”. Further details about ActorFoundry programming environment

can be found on its webpage [10].

16

CHAPTER 4

RELATED WORK

The ubiquitous availability of multicore processors has made it imperative for

application programmers to consider introducing parallelism and concurrency

in their programs [48]. The dominant model for concurrent programming,

popularized traditionally by OS programming and recently by Java, is a

shared memory model: multiple threads working with a shared memory.

The shared memory model is unnatural for developers, leading to programs

that are error-prone and unscalable [49]. Not surprisingly, researchers and

practitioners have shown an increasing interest in alternate models, such as

the actor model of programming. Some languages based on the Actor model

include Erlang [50], E language [51, 52], SALSA [53], Ptolemy [54] Axum [55]

and Dart [56].

Ed Lee [49] has argued that in adopting a new language or library, pro-

grammers are motivated as much by its syntax as by its semantics. Perhaps

for this reason, despite the development of a number of novel Actor languages,

there continue to be efforts to develop Actor frameworks based on familiar

languages such as C/C++ (Act++ [57], Broadway [58], Thal [59]), Smalltalk

(Actalk [60]), Python (Stackless Python [61], Parley [62]), Ruby (Stage [63]),

.NET (Microsoft’s Asynchronous Agents Library [64] and Orleans [65], Ret-

lang [66]) and Java (Scala Actors library [67], Kilim [7], Jetlang [68], Actor-

Foundry [69], Actor Architecture [70], AmbientTalk [71], Actors Guild [72],

JavAct [73], AJ [74], Jsasb [75], and JCoBox [76]).

We analyze various actor-oriented frameworks that execute on the JVM

platform. A programming framework can be analyzed along two dimensions:

the linguistic support the framework provides for programmers, and the ef-

ficiency of executing code written using the framework. In case of the actor

frameworks, linguistic support comes in two forms. First, by supporting

the properties of the Actor model, a framework can enable scalable concur-

rency which facilitates compositional programming. Second, by providing

17

programming abstractions that simplify expression of communication and

synchronization between actors, a framework can allow programming idioms

to be expressed in succinct notation.

Supporting actors through frameworks in a language with a different

programming model can be complicated. Moreover, because the actor code

runs on compilers and runtime systems for other languages, the resulting

execution can be inefficient. Either to simplify the implementation, or to

improve performance, many actor-oriented frameworks compromise one or

more semantic property of the standard Actor model. For example, execu-

tion efficiency may be improved by unfair scheduling, or by implementing

message-passing by passing references rather than copying messages. Our

goal is to understand the semantic properties of actor-oriented frameworks,

and how they are implemented.

Table 4.1: Comparison of Execution Semantics (SL = SALSA v1.1.2, SA =
Scala Actors v2.7.3, KA = Kilim v0.6, AA = Actor Architecture v0.1.3, JA
= JavAct v1.5.3, AF = ActorFoundry v1.0, JL =Jetlang v0.1.7, X means
the property is satisfied, × means the property is not satisfied)

SL SA KA AA JA AF JL
Temporal Encapsulation X × × X X X X

Safe Message-passing X × × X × X ×
Fair Scheduling X X × X × X ×

Location Transparency X × × X X X X
Mobility X × × X X X ×

4.1 Comparison

Table 4.1 summarizes semantic properties supported by some of the more

popular Actor frameworks on the JVM platform. Some frameworks improve

execution efficiency by ignoring aspects of the Actor semantics. For example,

as we mentioned earlier, actor message-passing entails sending the message

contents by value. In languages such as C, C++ or Java, which can have

arbitrary aliasing patterns, sending messages by value involves making a

deep copy of the message contents, up to the Actor’s name, to prevent any

18

unintended sharing among actors. Deep copying is an expensive operation,

even when performed at the level of native instructions (see §6).

Actor implementations such as Kilim and Scala Actors violate the tempo-

ral encapsulation property. In Kilim, actors have memory references to other

actors’ mailboxes, while Scala actors have direct reference to the object rep-

resentation of other actors.

Moreover, Kilim [7] and Scala Actors [67] provide by-reference semantics

for message-passing, thus introducing shared state between the actors. These

frameworks leave the responsibility of making a copy of message contents to

the programmers, when required. We argue that such an approach creates a

double hazard for the programmers. To begin with, they have to think in a

message-passing Actor model, then they need to revisit their design in order

to figure out which messages actually need to be copied, and finally, they

need to ensure that the contents of these messages are actually copied.

A similar approach is adopted by JavAct and Jetlang a message carries

references to its contents on shared memory platforms. These frameworks

also encourage the programmers to use immutable objects inside their ob-

jects. An alternate proposal is to add a type system based on linear types

to enable safe, zero-copy messaging [7]. Such a type system is not part of

currently available distributions. While such a type system would be useful,

the current proposal may be too restrictive and complex to be widely used

in practice.

The temptation to ignore encapsulation is stronger in the case of an Actor

framework as opposed to an Actor language. For example, in order to ensure

that an actor is unable to access the state of another actor directly, a language

may provide an abstraction such as a mailbox address or a channel but

implement it using direct references in the compiled code for efficiency. This

is similar to how Java implements object references to abstract away pointers.

In an Actor-based framework, such abstractions (or indirections) have to be

resolved at runtime, something that is relatively inefficient.

Even the notion of scheduling fairness is subtle in Actor implementations.

Note that the execution of actor programs is message-driven, i.e. actors are

scheduled for execution on the arrival of a message, and actors are assumed

to be cooperative, (i.e., an actor ’yields’ control when no message is pending

for it). However, nothing prevents an actor from executing an infinite loop,

or blocking indefinitely on an I/O or system call.

19

In order to provide fair scheduling, the implementation requires some sup-

port for pre-emption. In frameworks where each actor is mapped to a JVM

thread (also called the 1:1 architecture) the Actor implementation is as fair

as the underlying virtual machine or operating system (on many platforms,

a JVM thread maps to a native thread). This is the model adopted by JVM-

based frameworks such as Scala Actors, ActorFoundry, SALSA and Actor

Architecture. As discussed, such a guarantee is limited by the resource con-

straints of the JVM and the underlying platform. In other cases, explicit

scheduling by the frameworks may be required to support fair scheduling.

Note that fairness is an abstraction in the sense that it ignores the problem

of such resource limitations. This is analogous to how recursion is defined

in sequential languages by ignoring memory limitations [77]. For our pur-

poses, for example, assuming no message loss and a first-in-first-out (FIFO)

scheduling of messages arriving at an actor would be considered fair, while

a last-in-first-out (LIFO) protocol would not be. This is despite the fact

that there may be some suitably large limit on memory available to store

messages.

Location transparency is supported by SALSA, Actor Architecture, JavAct,

ActorFoundry and Jetlang, while in Scala Actors and Kilim, an actor’s name

is a memory reference, respectively, to the object representation of the actors

(Scala) and to the actors’ mailbox (Kilim).

Weak mobility is supported by SALSA, Actor Architecture, JavAct and

ActorFoundry. Strong mobility can be provided in frameworks such as Actor-

Foundry, which allow capturing the current execution context (continuation)

and enforce Actor encapsulation.

We already discussed the significance of each of these properties in order

to understand the impact of compromising the property from the “ease of

programming” point of view (§2.2). Next, we discuss the costs associated

with näıve implementations of these properties. Later, we study how the

cost of providing actor properties may be mitigated (§6). Our analysis sug-

gests that while a näıve implementation of actor properties may be highly

inefficient, a sophisticated implementation of actor framework on JVM may

provide efficient execution without compromising essential actor properties.

Recently, Pritish et al. propose runtime optimizations to improve perfor-

mance for Charm++ actors or chares on multicore processors [78]. However,

note that chares do not observe by-value semantics for messaging on multi-

20

cores.

21

CHAPTER 5

PERFORMANCE ISSUES FOR
IMPLEMENTING SEMANTIC

PROPERTIES

In this chapter, we study the perceived inefficiencies associated with imple-

menting actor properties. Perhaps not so surprisingly, we observe that these

perceived costs are the true costs of a straightforward or näıve implementa-

tion of these properties.

5.1 A Qualitative Analysis

Figure 5.1 illustrates the structure of an actor in a system which supports

the semantic properties discussed in previous section. Similar to an object,

the actor encapsulates state and behavior. Since actors are concurrent and

autonomous, every actor maintains separate control information or stack. In

addition, every actor has a mailbox, which has an explicit address represented

by ActorName in the figure. An actor can communicate (send messages) with

other actors in the system if it knows their address.

Figure 5.1: Actor Anatomy in Actor Foundry v0.1.14

We now address the question: can standard Actor semantic properties

such as encapsulation, fair scheduling, location transparency and mobility

be provided efficiently in an Actor framework on the JVM? Before we do

22

so, it would be instructive to analyze qualitatively what may be required to

implement the above mentioned components in a framework written for an

existing language, such as Java, which we will refer to as host language.

The state and behavior together can be represented simply as an object

in the host language. The control of an actor can be encoded in the host

language’s abstraction of concurrency, such as a thread in Java. This allows

the implementation to be as fair as the underlying language or VM. This ap-

proach may work well if the framework is targetted for writing coarse-grained

actors as in SALSA, E, AmbientTalk, and CHARM++. On the other hand,

it may have serious performance implications for fine-grained actors due to

costs associated with creation and context-switching. Many light-weight im-

plementations, such as Stackless Python and Kilim, allow multiple actors to

be mapped to a single native thread. However, such implementations would

have to implement fairness in their scheduling strategy.

The mailbox can be implemented as a queue object in the host language.

Every actor may have a separate mailbox, or alternatively multiple actors

that are mapped to a single thread may have a common mailbox.

As discussed in section 2.2, object-level state encapsulation (as in Java)

is not sufficient to enforce actor encapsulation. On the other hand, the

reference of an actor’s mailbox can be used as the actor address to enforce

actor encapsulation. This technique is implemented in Kilim. However, in

order to implement location independence and mobility, some proxy object

which maps to a physical address is still required. Location independence

and mobility also require a naming and routing service, and a transportation

layer to send actors and messages from one node to another.

5.2 A Quantitative Analysis

As noted in Table 4.1, SALSA, Actor Architecture and ActorFoundry (since

v0.1.14) faithfully preserve Actor semantic properties such as fairness (as fair

as the underlying JVM and OS scheduler), encapsulation, location trans-

parency and mobility. We choose Actor Foundry v0.1.14 as our research

framework not only because it supports the standard properties, we find it

to be highly modular and extensible. Moreover, its source distribution along

with many (small) examples is available off-the-web. On the flip side, the

23

original version was not under active development or usage, and we did not

find any programs written by independent developers.

In order to address the questions we posed earlier, we quantitatively an-

alyze the performance of Actor Foundry v0.1.14 to understand the costs

associated with actor semantics.

For our experiments we used a Dell XPS laptop with Intel CoreTM 2 Duo

CPU @2.40GHz, 4GB RAM and 3MB L2 cache. The software platform is

Sun’s JavaTM SE Runtime Environment 1.6.0 and Java HotSpotTM Server

VM 10.0 running on Linux 2.6.26. We set the JVM heap size to 256MB for

all experiments (unless otherwise indicated).

5.2.1 A Crude Comparison using the Threadring Benchmark

In order to analyze the cost of supporting these properties, we implement

a small benchmark called Threadring [79] in which 503 concurrent entities

pass a token around in a ring 10 million times. Threadring provides a crude

estimate for the overhead of message-passing and context switching.

The Actor Foundry v0.1.14 takes about 695s to execute this benchmark.

Both SALSA and Actor Architecture have similar execution times. In con-

trast, Kilim and Scala Actors perform an order of magnitude faster. JavaAct

performs better than Actor Foundry v0.1.14 but does not come close to either

Kilim or Scala’s efficiency. For comparison, note that, an Erlang implemen-

tation takes about 8s while a Java Thread implementation takes 63s. See

Figure 5.2 for a full comparison.

These results suggest that a faithful but näıve implementation of the stan-

dard actor semantics can have a significantly high execution overhead. We

analyze the performance bottlenecks in a framework supporting the seman-

tic properties. For this purpose, we choose Actor Foundry v0.1.14 as our

implementation platform.

5.2.2 Overview of ActorFoundry

Actor Foundry v0.1.14 was originally designed and developed at the Open

Systems Laboratory by Astley et al. around 1998-2000 [69]. The goal was

to develop a modular Actor framework for a new, upcoming object-oriented

24

Figure 5.2: Threadring Performance - Actor Foundry v0.1.14 compared
with other concurrent languages and frameworks

language called Java. Actor Foundry v0.1.14 provides a simple, elegant model

in which the control and mailbox are hidden away in the framework while

the programmer is concerned with an actor’s local state and behavior only.

To leverage the Actor semantics, programmers are provided with a small set

of methods as part of the Actor Foundry v0.1.14 API. The API includes:

• send(actorAddress, message, args). Sends an asynchronous message

to the actor at specified address along with arguments.

• call(actorAddress, message, args). Sends an asynchronous message

and waits for a reply. The reply is also an asynchronous message which

is either simply an acknowledgment, or contains a return value.

• create(node, behavior, args). Creates a new actor with the given

behavior at the specified node. The argument node is optional, if it is

not specified, the actor is created locally.

Actor Foundry v0.1.14 maps each actor onto a JVM thread. Messages are

dispatched to actors by using the Java Reflection API. The message string is

matched to a method name at runtime and the method is selected based on

the runtime type of arguments. Any Java object can be part of a message in

Actor Foundry v0.1.14; the only restriction being that the object implements

java.lang.Serializable interface. All message contents are sent by mak-

ing a deep copy by using Java’s Serialization and Deserialization mechanism.

25

Note that this approach towards deep copying is tolerant of any cycles in

the object graph. Actor Foundry v0.1.14 also supports distributed execu-

tion of actor programs, location transparency and weak mobility [42]. Actor

Foundry v0.1.14 does not implement an automatic actor garbage collection

mechanism [14].

5.2.3 Cost of Creating Actors

Since each actor in Actor Foundry v0.1.14 maps to a JVM thread, actor

creation entails thread creation. Therefore, the cost of creating an actor is a

function of the cost of creating a JVM thread.

5.2.4 Cost of Context Switching

Similarly, switching an actor entails thread context switching. Thread con-

text switching involves saving the complete computation stack of the thread,

program counter and state of other registers. Another source of context

switching overhead in the kernel mode is due to kernel crossings.

As these results suggest, the creation of actors and context switches in Ac-

tor Foundry v0.1.14 are a major source of inefficiency for this actor imple-

mentation.

5.2.5 Cost of Sending Messages

We further profile the execution to identify performance bottlenecks. A faith-

ful implementation of the actor message-passing semantics in Actor Foundry

v0.1.14 means that message contents are deep-copied using Java’s Serializa-

tion and Deserialization mechanism, even for immutable types. It turns out

that deep copying of message contents result is another large source of in-

efficiency. Figure 5.3 compares the overhead of deep copying versus that of

sending message contents by reference for the Threadring benchmark. Note

that in Threadring, the message content is an Integer (token), which is an

immutable type and can be safely shared between actors.

Despite such a high overhead, frameworks such as SALSA, Actor Architec-

ture and Actor Foundry v0.1.14 are useful for programming coarse-grained

26

Figure 5.3: Graph showing the cost of sending messages in ActorFoundry
by reference versus by making a deep copy.

concurrency (relatively higher computation-to-communication ratio) or dis-

tributed applications (higher tolerance for communication overhead and typ-

ically coarse-grained).

However, these overheads are prohibitive for an application with fine-

grained actors. In the next two sections, we discuss implementation strategies

which reduce the cost of supporting actor semantics.

27

CHAPTER 6

TECHNIQUES FOR IMPROVING
PERFORMANCE - ROUND 1

In this chapter, we study strategies that mitigate the inefficiences and opti-

mize performance, without compromising the semantic properties.

6.1 Continuations-Based Actors

Note that each actor in Actor Foundry v0.1.14 maps to a thread; hence actor

creation and switching entails thread creation and thread context switch-

ing, which are typically expensive operations. In particular, thread context

switching involves saving the complete computation stack of the thread, pro-

gram counter and state of other registers. Although this saves the execution

state of an Actor, it is an overkill since actors do not share state.

Prior experience with ThAL language [59] suggests that light-weight con-

tinuations provide significant performance improvement in the creation as

well as context switching of actors. The ThAL compiler creates continuation

methods for blocks of code that need to be executed when an actor resumes

after blocking. An alternate approach is to create continuation actors, which

correspond to actor semantics in terms of execution driven by asynchronous

messages.

In order to provide similar support in ActorFoundry, we integrate Kilim’s

light-weight Task abstraction and its bytecode post-processor (“weaver”) [11].

In our context, Kilim’s post- processor transformation presents two chal-

lenges.

First, the transformation does not work when messages are dispatched

using Java Reflection API, since the weaver is unable to transform Java

library code. This prevents the continuations from being available in the

actor code. To overcome this, we generate custom reflection for each actor

behavior. A method matching a message is found by comparing the message

28

string to a method’s name and the type of message arguments to type of

method’s formal arguments. Once a match is found, the method is dispatched

statically. A desirable side-effect is that static dispatch is more efficient than

Java Reflection.

Second, the transformation requires introducing a scheduler for Actor-

Foundry which is aware of cooperative, continuations-based actors. We

introduce such a scheduler as follows. The scheduler employs a fixed number

of JVM threads called worker threads. All worker threads share a common

scheduler queue. Each worker thread dequeues an actor from the queue and

calls its continuation. Actors are assumed to be cooperative; an actor con-

tinues to process messages until it runs out of message. At this point, it goes

into the idle state and waits for a new message to arrive. When scheduled,

an actor may process multiple messages. This scheduling strategy increases

locality and reduces actor context switches. On the other hand, it can cause

starvation in the system. We discuss this issue in the context of fairness in

§6.2. Our scheduler is message-driven: an actor is put on the scheduler queue

if and only if it has a pending message.

With this implementation, the running time for Threadring example is

reduced to about 267s. Further cleanup of the framework and disabling the

logging service brings the running time down to about 190s.

6.2 Fair Scheduling

In order to guarantee scheduling fairness, we modify the scheduler described

earlier to include a monitoring thread. At regular intervals, the monitoring

threads checks whether the system has made “progress”. A system is said to

have made progress if any of the worker threads have scheduled an actor from

the schedule queue in the preceding interval. If the monitoring thread does

not “observe” any system progress and the schedule queue has actors waiting

to be scheduled, it spawns a new JVM thread. This lazy thread creation

mechanism ensures that enabled actors are not permanently starved.

There are some trade-offs in lazy thread creation. If the duration between

observations is too small and actors carry out relatively coarse-grained com-

putations, the monitoring thread may incorrectly observe that no progress

has been made. In the worst case, this approach may result in some extra na-

29

tive threads. An unfortunate worst case is when the number of native threads

exceeds what can fit in the available JVM heap size, resulting in long delays

and potentially program crash. (This scenario could be prevented by check-

ing the heap size before creating a thread). Moreover, frequently checking

progress incurs a higher overhead. On the other hand, a large gap between

observations may decrease the responsiveness of an application in the pres-

ence of non-cooperative actors. In other words, there is a trade-off between

responsiveness, overhead and precision. In our current implementation, the

monitoring thread wakes up every 250ms to make observations.

We implemented another small benchmark called Chameneos-redux [79].

Chameneos-redux comprises of two sets of concurrent entities called Chame-

neos and another concurrent entity called Broker. The first set contains three

Chameneos while the second set contains ten. Initially each Chameneos in

the first set sends a message to the Broker. The Broker provides match-

making service by picking two random Chameneos and sending each of them

the other’s information. After a match, the Chameneos send another mes-

sage to the Broker and so on. The Broker is required to complete six million

matches, after which it polls each Chameneos for total individual matches.

At the end, the Broker prints the sum of matches across all Chameneos (in

this case, twelve million). After the first round, the same interaction occurs

for the second set which has ten Chameneos.

We compare the overhead of fairness for Threadring, Chameneos-redux

and a näıve implementation of fibonacci. These benchmarks consist of

cooperative actors only. Figure 6.1 shows that the modified (fair) scheduler

incurs negligible overhead for the three benchmarks.

6.3 Zero-Copy Messaging on Shared Memory

Platforms

Note that in Threadring, the message content is an Integer (token), which is

an immutable type and can be safely shared between actors. As a first

solution, we disable deep-copying for some known immutable Java types

such as Number, Integer and String. This brings down the running time

of Threadring to 30s.

We also introduce two new methods in the ActorFoundry framework:

30

Figure 6.1: Overhead of Fairness for (a) Threadring (b) Chameneos-redux
(c) Näıve fibonacci calculator

sendByRef() and callByRef(). These respectively correspond to send() and

call(), but allow the programmer to send message contents by reference.

Thus, these methods enable an explicit declaration of ownership transfer se-

mantics for messages. However, we believe it is desirable to have a compiler

and runtime system to infer cases when it is safe to do so.

6.4 Performance Revisited

Figure 6.2 compares the performance of Threadring benchmark written for

an optimized implementation of the ActorFoundry (v1.0) with its perfor-

mance in Kilim, Scala and Jetlang. We do not include SALSA and Actor

Architecture as their performance is almost an order of magnitude worse.

We also include numbers for Erlang which currently holds the undisputed

position of being the most widely used Actor language. Figure 6.3 provides

a similar comparison for Chameneos-redux benchmark.

Observe that Kilim outperforms the rest (including Erlang) for both bench-

marks, since the framework provides light-weight actors and basic message

passing support only. The programming model is low-level as the program-

mer has to directly deal with mailboxes, and as noted in Table 4.1, it does not

provide standard Actor semantics and common programming abstractions.

This allows Kilim to avoid the costs associated with providing these features.

Note that ActorFoundry’s performance is quite comparable to the other

frameworks. This is despite the fact that ActorFoundry v1.0 preserves en-

31

capsulation, fairness, location transparency and mobility. We believe that

further significant optimizations for location transparency and mobility are

possible.

Figure 6.2: Threadring Performance

Figure 6.3: Chameneos-redux Performance

6.5 Discussion

Engineering is mainly about picking the right tool for the job. Our experience

suggests that, despite a growing interest in the Actor model, the model may

not be generally well-understood beyond the basic concept of actors and

32

asynchronous messages. Perhaps this is to be expected as the mindset of the

majority of the programmers is ingrained in the currently dominant object-

oriented paradigm, and the Actor model of programming requires a shift in

that mindset. Such a shift will be as significant as the shift object-oriented

programming brought in the world of procedural programming. It may be

hard for programmers, and sometimes even for the designers of an Actor

framework, to understand the implications of the various design decisions in

building or using a particular framework. We have tried to take an open

view in the work since we realize that Actor frameworks are still evolving.

Preliminary results suggest that safe messaging is the dominant source

of inefficiency in actor systems. Thus, safe efficient messaging remains an

active research topic. We believe static analysis can determine some cases

where messages contents can be safely passed by reference. Such an analysis

largely relieves the programmer of the burden of reasoning in terms of a

dual semantics for message passing. Although a static analysis is necessarily

conservative, we believe it is effective much of time. We present details in

the next section.

33

CHAPTER 7

SAFE AND EFFICIENT MESSAGING

In this chapter, we present our static analysis algorithm that detects message

contents that can be safely passed by reference. It does so by inferring

whether a message site has transfer of ownership semantics. This chapter is

part of the joint work that we did with Stas Negara, and we would like to

acknowledge his significant contributions.

7.1 Ownership Transfer

An important observation is that many message passing programs tend to

have simple structure where messages have an ownership transfer semantics,

i.e. an actor hands off an object or data stream to another actor by passing it

in a message [80]. For example, actors in different stages of a pipeline transfer

the data to the next stage after processing it. If message sites that result in

transfer of data ownership can be identified in Actor programs, performance

may be significantly enhanced [5] by sending references to data instead of

making a copy.

7.2 Illustrative Example

We discuss a couple of examples to illustrate the problem of identifying mes-

sages that transfer the ownership of its contents, as well as to motivate the

different techniques we use to solving the problem. Figure 7.1 presents a code

fragment of a RefMessenger actor in ActorFoundry v1.0: a RefMessenger

actor can receive two types of messages, store and transfer (lines 3 and

6); in response to message transfer, it sends two messages compute to the

actor that is bound to relayActor by calling the method relayPrint (lines

8-9). We would like to check whether a RefMessenger actor transfers the

34

ownership of item to the relayActor at line 13, which would make it safe

to pass by reference the object data to relayActor (through the call at line

8).

In order to answer this question, we perform a static points-to analysis;

the analysis detects all objects that may “escape” to relayActor through

the message at line 13. We also perform a static live variable analysis in

order to check whether, after sending the message at line 13, an “escaped”

object may be accessed by the RefMessenger actor. Both these analyses are

interprocedural and are performed on a call graph, a directed graph that rep-

resents calling relationships between procedures (subroutines) in a program.

We provide a brief overview of call graph construction later in the section.

1 public class RefMessenger extends Actor {

...

2 StringBuffer localName = null;

3 @message public void store(String name) {

4 localName = new StringBuffer(name);

5 }

6 @message public void transfer() {

7 StringBuffer data = new StringBuffer("Hi ");

8 relayPrint(data);

9 relayPrint(localName);

10 data.append(localName);

11 }

12 void relayPrint(StringBuffer item) {

13 send(relayActor, "compute", item);

14 }

15 }

Figure 7.1: A simplified version of RefMessenger example in ActorFoundry
v1.0.

Points-to Analysis: A points-to analysis produces a points-to graph, which

establishes what variables may point to what memory locations. For example,

a points-to graph can tell that the two reference variables, data and item,

point to the same StringBuffer object allocated at line 7. This particular

graph is a result of interprocedural points-to analysis, where allocated objects

are represented as nodes denoted with si:T, where i shows the line number

where the object is allocated, and T represents its type.

An object that is pointed by variable item may escape to relayActor

through the message at line 13 (Figure 7.1). Thus, performing an inter-

procedural points-to analysis enables detection of the fact that the object

s7:StringBuffer has been sent or escaped. However, this analysis is not

sufficient to answer the question whether this object is accessed by the

35

RefMessenger actor after having escaped to relayActor. We employ a live

variable analysis in order to answer the latter question.

Live Variable Analysis: A live variable analysis of a program is a

dataflow analysis that calculates the set of variables that may be read be-

fore being written to in the program. An interprocedural live variable anal-

ysis performed on the code fragment in Figure 7.11 detects that variable

data is live after the call to method relayPrint at line 8 completes, be-

cause its value is read and modified at line 10. Although the scope of

the variable data is limited to the method transfer, and is not visible

inside the method relayPrint, the object it points to is live throughout

the method relayPrint, including at the point right after the message to

actor relayActor is sent (line 13). We require an interprocedural analysis

to detect the escaping of the object pointed to by variable data, because its

intraprocedural counterpart treats every method in isolation and misses the

fact that the object is live in method relayPrint.

Earlier in the section, we established that the variable data points to the

object s7:StringBuffer, and that this object escapes to actor relayActor.

Live variable analysis shows that this object is live in actor RefMessenger

after escaping to actor relayActor. Consequently, we conclude that it

is not safe to pass the variable data by reference, because passing it by

reference would result in sharing the object s7:StringBuffer between the

RefMessenger actor and relayActor.

Call Graph Construction: The construction of a call graph has a signifi-

cant impact on both the precision and the speed of interprocedural analysis.

Note that our model is that of an open system, i.e. we do not assume any

information about the outside world while analyzing a particular actor. Thus

we need to consider all possible messages that an actor can receive from the

outside world.

Consider the RefMessenger actor in Figure 7.1. The actor can receive two

types of messages, store and transfer. The execution of RefMessenger

actor starts when it receive either one of them, and hence the methods store

1Static analysis performed directly on Java source code serves only for the demonstra-
tion purposes. Our tool SOTER performs both points-to and live variable analises on a
low-level intermediate representation (IR) in a static single assignment (SSA) form.

36

and transfer serve as two separate entry-points. Our analysis recognizes

that they are received by the same instance of RefMessenger. This enables

us to handle code such as that given in Figure 7.1 where the instance field

localName is initialized in one message handler (line 4) but escapes in another

one (line 13, through the call at line 9). Our analysis correctly detects that

the object s4:StringBuffer escapes to actor relayActor at line 13.

Context sensitivity plays an important role in call graph construction. A

context-insensitive analysis produces more imprecise and smaller call graph

compared to a context-sensitive analysis. In a context-insensitive call graph,

every invoked method, distinguished by its signature, is represented with a

single node regardless of the context in which this method is invoked.

Consider the code example from Figure 7.2 and its context-insensitive call

graph. Were we to use this call graph for our points-to analysis, we would

decide that linked list l1 has to be passed to actor myActor by value because

there are objects that l1 transitively points to that are live after the program

point where l1 is passed to actor myActor (line 7). Although this decision is

safe (i.e., it does not produce a data race), it is too conservative and misses

an opportunity for optimization.

1 public class TestActor extends Actor {

...

2 @message public void test(){

3 LinkedList<A> l1 = new LinkedList<A>();

4 LinkedList<A> l2 = new LinkedList<A>();

5 l1.add(new A(1));

6 l2.add(new A(2));

7 send(myActor, "process", l1);

8 l2.add(new A(3));

9 }

10 }

Figure 7.2: A code example, whose analysis is highly affected by
context-sensitivity of the call graph.

An example of a context-sensitive call graph is a graph that distinguishes

invocations of the same method on different receiver instances. Such a call

graph would have many more nodes than its context-insensitive counterpart.

However it provides much better precision. A receiver instance context call

graph has two distinct nodes for method add of class LinkedList < A >: one

node represents invocations on the linked list l1, and another node repre-

sents invocations on the linked list l2. The corresponding points-to graph

shows that linked lists l1 and l2 transitively point to non-intersecting sets

of instances of class A, and, consequently, an analysis based on such points-

37

to graph would correctly decide to pass linked list l1 to actor myActor by

reference (line 7).

Therefore, for our static analysis, we construct a receiver instance context

call graph in order to exploit the better precision such a call graph offers.

Although a context-sensitive call graph is much bigger, it is also considerably

sparser than a context-insensitive call graph. As a result, Andersen’s points-

to analysis performed on a context-sensitive call graph does not take much

longer as demonstrated in [81]. For the final step of our analysis, namely the

live variable analysis, we describe a custom interprocedural algorithm that

scales well for large programs.

7.3 Static Analysis Algorithm

We describe our static analysis using a simple, illustrative actor program

presented in Figure 7.3. The program consists of four classes, the last two of

which specify actor behavior:

1. Class MutableValue is a wrapper around an integer value. The value

is assigned when an instance of class MutableValue is created and may

be changed during the lifetime of this object.

2. Class ValueHolder holds a field MutableValue and provides a method

getMutableValue to access the encapsulated object. Instances of class

ValueHolder are passed between actors. In ActorFoundry, objects be-

tween actors are passed by copy, which is implemented using serial-

ization/deserialization of objects. Therefore, both ValueHolder and

MutableValue classes implement the java.io.Serializable interface.

3. Class SumActor specifies an actor that can receive message sum with

two arguments of type ValueHolder. This message computes the sum

of two integer values of MutableValue fields of the arguments, stores

this sum in the MutableValue field of the second argument, and then

prints it to the console.

4. Class ExecutorActor specifies an actor that can receive message boot.

The message handler creates an instance of SumActor and several in-

38

stances of MutableValue and

ValueHolder, and then sends two sum messages to the created SumActor.

7.3.1 Call Graph Construction

In the first step of our analysis, we construct the program’s call graph. As

noted earlier, we construct a receiver instance context call graph. It requires

identifying all messages that actors of this program can receive, since these

serve as entry-points in the constructed call graph. The call graph for the

program in Figure 7.3 has two entry-points: one for message sum of SumActor

and another one for message boot of ExecutorActor.

Figure 7.4 shows a fragment of the constructed call graph that starts from

the entry-point for message boot. We have omitted the part of the call

graph that starts from the entry-point for message sum: it does not present

any interesting case for our analysis because the functionality of this message

does not involve sending messages to other actors. Moreover, we do not show

calls to methods that are not defined within the code of class ExecutorActor

(e.g. framework calls that are inside the body of methods create and send),

and calls that construct the output String at line 8. The omitted parts

do not affect the analysis, and have been omitted in order to simplify the

presentation.

7.3.2 Points-to Analysis

We use the call graph to perform flow-insensitive Andersen’s points-to anal-

ysis [82]. Figure 7.5 illustrates a fragment of the resulting points-to graph

for the code from Figure 7.3. This fragment is relevant to our analysis: it

presents objects that escape to the actor sumActor (lines 20 and 21) and

pointers that point to them directly or indirectly.

Our points-to analysis is both context-sensitive and field-sensitive, i.e. it

distinguishes instance fields of different instances of the same class. This al-

lows us to distinguish instance field mv of different instances of ValueHolder

as shown in Figure 7.5, where every instance field mv is represented with a

separate pointer, whose name prefix corresponds to the name of the contain-

ing ValueHolder instance (s18.mv, s19.mv, s6.mv).

39

7.3.3 Live Variable Analysis

The crux of our algorithm is a custom interprocedural live variable analysis,

which takes the call graph and points-to graph as input. We perform the live

variable analysis in order to detect objects that may be accessed after being

passed to other actors. Even the fastest, polynomial time algorithms for this

analysis that are precise, for example the algorithm in [83], can effectively

handle only small size programs as shown in [84]. Because any actor program

is analyzed together with the ActorFoundry framework, which is a relatively

large 38.7KLOCs software, we cannot employ such algorithms (e.g. applying

an implementation of the algorithm from [83] we ran out of memory even for

the smallest actor programs). In order to be able to handle programs of such

a large scale, we elaborate a custom algorithm which conservatively assumes

that every instance field is live as long as the containing object is live.

The key idea behind our approach is to split an interprocedural analysis

into two intraprocedural phases. Figure 7.10 illustrates our two-phase ap-

proach. In the first phase (marked with number 1), we perform a standard

intraprocedural live variable analysis for a subset of call graph nodes. In the

second phase (marked with number 2), we solve a forward data-flow problem

defined on the nodes of the constructed call graph. For this problem we do

not consider the internal control flow of the call graph nodes. As a result,

this analysis is just like a regular intraprocedural analysis, except that we

use call graph nodes instead of basic blocks, and call edges instead of control

flow edges. Our evaluation (Section 7.5) shows that this algorithm scales well

for large programs.

The algorithm takes as input the receiver instance context call graph, call-

Graph, and the results of points-to analysis, pointstoGraph, for a given pro-

gram. The output of the algorithm, passByValue, specifies for each argument

of every message passing site in the program, whether it needs to be copied.

For a particular argument arg of a call site cs the value of passByValue[cs,arg]

is true when arg needs to be copied, and false when it is safe to pass arg by

reference.

The initialization of our algorithm (lines 1-14 in Figure 7.6) computes the

set of all message passing sites in a program, passingCallSites, and the set of

all call graph nodes, passingNodes, that contain at least one message passing

site. Also, it initializes all entries of passByValue to false. The algorithm

40

visits each call site of every call graph node. For every visited call site

cs, the procedure isMessagePassingCallSite(cs) returns true if cs involves

sending a message to another actor (and thus, may escape objects), and

false in the contrary case. If a call site cs may send messages, it is added

to passingCallSites (line 8) and its containing call graph node is added to

passingNodes (line 7). In ActorFoundry call sites that may send messages

to other actors are calls to methods send, call, and create of class Actor.

For the program in Figure 7.3, the set passingCallSites contains call sites at

lines 12, 20, and 21. And the set passingNodes includes call graph nodes that

contain these call sites. In Figure 7.4 these are executorActor.add node for

call sites at lines 20 and 21, and executorActor.execute node for call site

at line 12.

The algorithm then computes reachingNodes (line 15 in Figure 7.6) - the

set of all call graph nodes that can reach passingNodes. The reachingNodes

is computed by the procedure transitiveClosure, which takes the callGraph

and the passingNodes as arguments.

Figure 7.7 shows the procedure transitiveClosure, which computes all reach-

ing nodes, reachingNodes, that can reach the initial set of nodes, initNodes,

as a transitive closure of initNodes in a particular call graph callGraph. The

nodes in reachingNodes are the only nodes in the call graph, from which

the control flow may reach message passing call sites. So, reachingNodes

contains all call graph nodes that are relevant to our analysis. For our ex-

ample program reachingNodes includes the following nodes from Figure 7.4:

executorActor.add, executorActor.execute, and executorActor.boot.

Next, our algorithm applies a standard intraprocedural live variable anal-

ysis to collect local variables that are live just after the relevant call sites

(line 16 in Figure 7.6). A call site is relevant to our analysis if it is either

a message passing call site or is represented as a node in the set reachingN-

odes. Figure 7.8 presents procedure computeLiveVariables that takes as input

reachingNodes and returns callSiteLiveVariables which specifies the set of live

variables at the program point just after a relevant call site.

For every node n from reachingNodes, procedure computeLiveVariables

performs a standard local live variable analysis (line 2) that calculates the

set of live variables for every program point in the analyzed node n. In

order to reduce the memory consumption, we keep the results only for the

program points that are relevant to our analysis, i.e. those program points

41

that are just after relevant call sites (lines 4-9). Relevant call sites and

the corresponding sets of live variables for the example program shown in

Figure 7.3 are as follows: line 7 - {mv}; line 12 - {sumActor, vh}; line 13 -

{}; line 20 - {sumActor, vh2, vh3}; line 21 - {}.
As we demonstrated in Section 7.2, if a variable var is live at the program

point just after a call site that represents a call of some call graph node n,

then it is live in node n as well. We call such variable var a node live variable

for node n, because it is live at every program point inside node n. If node

n contains other call sites, which represent calls of other call graph nodes,

then variable var is live in those nodes too and so on. This propagation

of variable var is a forward data-flow problem defined on the nodes of the

underlying call graph. Our algorithm uses procedure propagateLiveVariables

to compute node live variables for every node from reachingNodes (line 17 in

Figure 7.6).

Figure 7.9 shows procedure propagateLiveVariables that propagates live

variables forward in the call graph. It takes as input reachingNodes and

the sets of live variables for all relevant call sites, callSiteLiveVariables. The

output of this procedure is nodeLiveVariables, which specifies for every node

from reachingNodes the set of node live variables. The initialization part of

the procedure (lines 1-8) defines for every node n from reachingNodes initial

values for sets IN[n] and OUT[n], which represent correspondingly the set of

node live variables at the entry and at the exit of node n. Both initial entry

and exit sets are a union of all live variables from all call sites that call node

n (lines 2-7). The computation part of the procedure (lines 9-17) is a fixed-

point algorithm for a forward data-flow problem, where the transfer function

is identity (line 15), and the meet operator is union (line 13). Procedure

getPredecessors (line 11) returns a set of call graph nodes that immediately

precede the given node. For reachingNodes and callSiteLiveVariables shown

previously for our code example in Figure 7.3, procedure propagateLiveVari-

ables computes the following nodeLiveVariables : executorActor.boot - {},
executorActor.execute - {mv}, executorActor.add - {mv}.

In the end (lines 18-31 in Figure 7.6), our algorithm computes for every

call site cs from passingCallSites the set of all live variables, liveVariables, as

a union of local live variables for call site cs and node live variables of the call

graph node that contains call site cs (line 21). Next, we use pointstoGraph to

compute the set of all live objects (lines 22-24). Then, for every argument arg

42

of call site cs we compute all objects that arg points to, which is the set of

objects that may escape to other actors (line 26). Finally, if the intersection

of the objects that are live after call site cs, liveObjects, and the objects that

may escape, escapedObjects, is not empty, we mark that arg should be passed

by value (lines 27-29).

For the example program in Figure 7.3, our algorithm establishes that:

call site at line 20 – argument vh1 can be passed by reference, argument vh2

should be passed by value; call site at line 21 – argument vh2 can be passed by

reference, argument vh3 should be passed by value. Argument vh2 of the call

site at line 20 should be passed by value, because variable vh2 is live at the

program point right after the call site at line 20. Argument vh3 of the call site

at line 21 should be passed by value, because according to the points-to graph

in Figure 7.5, it transitively points to the object s5:MutableValue, which is

live, as it is the same object node live variable mv of node executorActor.add

points to.

7.4 Algorithm Properties

Our interprocedural live variable analysis consists of two related but distinct

phases. In the first phase, we perform a standard intraprocedural live variable

analysis for a subset of call graph nodes. Specifically, as shown above, we

consider only those nodes of the call graph that are relevant to our analysis.

Program statements of a call graph node are translated into an intermediate

representation (IR) in a static single assignment (SSA) form, where every

variable is assigned exactly once. Such representation significantly reduces

both the time and the complexity of intraprocedural live variable analysis.

In the second phase, we solve a forward data-flow problem defined on the

nodes of the constructed call graph. For this problem we do not consider the

internal control flow of the call graph nodes. As a result, this analysis is just

like a regular intraprocedural analysis, except that we use call graph nodes

instead of basic blocks and call edges instead of control flow edges.

Figure 7.10 illustrates our two-phase approach. In the first phase (marked

with number 1) we perform intraprocedural live variable analysis on the con-

trol flow graphs of individual call graph nodes. In the second phase (marked

with number 2) we propagate live variables forward in the call graph, dis-

43

regarding the internal control flow of the call graph nodes. Splitting an

interprocedural analysis into two phases, both of which are intraprocedu-

ral by nature, makes our algorithm fast and scalable for large programs as

demonstrated in Section 7.5. The trade off is the reduced precision of our

analysis. Although our analysis conservatively assumes that every instance

field is live as long as the containing object is live, the evaluation results

presented in Section 7.5 show that it is able to detect the majority of opti-

mization opportunities for a variety of actor programs.

Complexity. Our algorithm consists of a standard Andersen’s points-to

analysis, followed by a standard intraprocedural live variable analysis for

a subset of call graph nodes n, and a forward data flow problem for live

variable propagation. The last two phases are intraprocedural by nature and

have a comparable complexity. Hence, the complexity of our algorithm is

O(complexity of Andersen’s points-to analysis +(n + 1)∗ complexity of the

intraprocedural live variable analysis).

Soundness. An argument arg of a message passing call site cs in a call graph

node n is marked by our algorithm to be passed by value, if arg transitively

points to at least one object o that is live after message passing call site cs

(lines 18-31 in Figure 7.6). Considering that the employed Andersen’s points-

to analysis is sound, it is sufficient to demonstrate that our interprocedural

live variable algorithm does not miss any objects that are live after some

message passing call site. If there is a live object o then there should be at

least one live variable var that transitively points to o. There are three kinds

of variables that can be live after some message passing call site cs in a call

graph node n:

• Variable var is a local variable in the call graph node n. Such variable

is detected as live at the program point right after the message passing

call site cs in the first phase of our algorithm, where we perform a

standard intraprocedural live variable analysis.

• Variable var is a local variable in an immediate or a transitive caller

node of the call graph node n. The second phase of our algorithm

propagates such variable to the call graph node n, and variable var

becomes a node live variable for node n.

• Variable var is an instance field of the class whose method is represented

44

with the call graph node n. Our algorithm conservatively assumes that

every instance field is live as long as the containing object is live. In

this case, the containing object for variable var is object this in the

method represented with the node n. Object this is always live in any

instance method, and so var is live as well.

Thus, if variable var is live after some message passing call site, our al-

gorithm detects this regardless of the kind of var. Consequently, all objects

variable var points to are detected as live, including object o.

Termination. Observe that the first phase of our algorithm performs a stan-

dard intraprocedural live variable analysis for a subset of call graph nodes,

reachingNodes. An intraprocedural live variable analysis for a call graph node

terminates, and the number of nodes in a call graph is finite. Thus, the first

phase terminates. In the second phase of our algorithm, we solve a data-flow

problem using a fixed-point algorithm (lines 9-17 in Figure 7.9). For every

node n from the set of nodes reachingNodes the set OUT[n] of node live vari-

ables never shrinks. Considering that the number of variables in a program is

finite and the number of call graph nodes is finite, the fixed-point algorithm

eventually reaches a point, when OUT[n] does not change for any node n

∈ reachingNodes, and terminates. Thus, the second phase terminates. Both

phases of our algorithm terminate and so, our algorithm terminates.

7.5 Implementation and Evaluation

SOTER (for Safe Ownership Transfer enablER2) is a Java implementation

of the static analysis described in Section 7.3. SOTER uses IBM T. J.

Watson Libraries for Analysis (WALA) framework [85] that provides a flow-

insensitive Andersen’s points-to analysis and an infrastructure for implement-

ing data-flow analysis. For both the call graph construction and the point-to

analysis, we only specify the entry points as well as some configuration op-

tions such as context-sensitivity.

Our analysis algorithm is language-independent. The current implemen-

tation takes Java bytecode as input, and thus can be easily extended to

2Soter is also the name of the Greek god of safety, deliverance, and preservation from
harm.

45

handle programs in any language or framework that compiles to Java byte-

code (e.g. Kilim, Jetlang, SALSA). We initially implemented support for

ActorFoundry [10]. Later, we extended SOTER to support Scala [67] pro-

grams, which took only a couple of weeks of part-time effort. SOTER’s source

code as well as ActorFoundry and Scala subject programs can be found at

http://osl.cs.uiuc.edu/soter

We performed all experiments on a 4-core 2.4GHz, 3GB RAM machine.

Any ActorFoundry actor program is analyzed together with ActorFoundry

framework, a relatively large software, whose bytecode size is 726KB. In the

worst case our analysis took around 24 seconds.

The goal of the evaluation is to assess the effectiveness and usefulness of

SOTER. To achieve this goal, we applied SOTER on a variety of Actor-

Foundry programs.

7.5.1 ActorFoundry

For ActorFoundry actor programs, we would like to answer two questions:

• Effectiveness: How many opportunities to safely pass a message con-

tents by reference are detected by SOTER in comparison to the total

number of such opportunities and to what fairly sophisticated program-

mers can manually achieve?

• Usefulness: What is the performance improvement achieved by

SOTER?

Table 7.1 presents results that assess the effectiveness of SOTER. Each

row displays data for a particular actor program, whose name appears in the

second column. The first column reflects the general category of an actor

program.

These categories include programs from the ActorFoundry distribution,

’Benchmarks’ refers to the programs used in an earlier study [35, 38], ’Syn-

thetic’ category is attributed to actor programs written specifically to test

our analysis, and ’Real world’ programs are those written by advanced stu-

dents in the Software Engineering course in Computer Science at Illinois. All

presented actor programs except those from Synthetic category were writ-

ten without the knowledge of a tool such as ours. The third column, LOC,

46

Table 7.1: The effectiveness of SOTER on different ActorFoundry actor
programs. Size of ActorFoundry library, AFL=726KB. #1 = threadring,
#2 = concurrent, #3 = copymessages, #4 = performance, #5 = pingpong,
#6 = refmessages, #7 = rpcping, #8 = sor, #9 = chamenos, #10 =
fibonacci, #11 = leader, #12 = philosophers, #13 = pi, #14 =
shortestpath, #15 = quicksortCopy, #16 = quicksortCopy2, #17 =
clownfish, #18 = rainbow fish, #19 = swordfish, #20 = threadfin

Program LOC Passed Ideal SOTER Human SOTER/ Analysis
args. by ref. by ref. misses Ideal ratio time (se)

AF distribution
#1 43 7 7 7 1 100% 3.4
#2 204 12 12 7 N/A 58% 3.8
#3 80 19 18 10 5 56% 12.5
#4 126 14 14 12 N/A 86% 3.6
#5 62 9 9 8 N/A 89% 3.5
#6 20 3 3 2 2 67% 3.3
#7 65 9 9 9 N/A 100% 3.4
#8 320 36 36 18 10 50% 3.8

Benchmarks
#9 187 12 12 4 1 33% 3.5
#10 53 28 28 24 N/A 86% 3.5
#11 81 12 12 2 N/A 17% 3.4
#12 77 6 6 6 N/A 100% 3.3
#13 73 6 6 4 N/A 67% 3.4
#14 126 59 59 52 N/A 88% 3.5

Synthetic
#15 76 3 3 3 N/A 100% 12.5
#16 92 8 8 6 N/A 75% 12.4

Real world
#17 700 87 87 59 N/A 68% 24.0
#18 591 68 68 67 N/A 99% 3.6
#19 615 83 83 13 N/A 16% 4.1
#20 471 101 101 98 N/A 97% 12.8

47

Table 7.2: The performance improvement achieved by SOTER.

Program # actors
Execution time (ms)

Speed up
Ideal execution

Before After time (ms)

threadring 504 25870 1880 13.76 1880

concurrent 601 187510 15990 11.73 1390

copymessages 31810 7730 3710 2.08 610

sor 6402 76960 61620 1.25 5890

chameneos 14 56890 36640 1.55 1620

leader 30001 14050 8190 1.72 7380

philosophers 60001 9550 1380 6.92 1380

pi 3002 4210 3890 1.08 3880

quicksortCopy 200002 24660 4530 5.44 4530

quicksortCopy2 200002 16320 4870 3.35 3580

shows the number of lines of code in the program (not counting comments

and blank lines). Although the size of the programs may seem relatively

small, they represent a wide variety of programmers and purpose. Moreover,

these programs are written on top of an Actor library. A library encapsu-

lates much of the functionality required to express an actor program, and

therefore the actor code itself has a smaller size than it would have without

a library-based approach.

The fourth column, Passed arguments, represents the total number of

message passing call site arguments present in the code of an actor program.

The following two columns show correspondingly the number of arguments

that could be safely passed by reference, having an ideal understanding of the

analyzed program,3 and the number of arguments that SOTER reports as

safe to be passed by reference. The next column, Human misses, presents

the number of arguments that are safe to be passed by reference, which

are missed by developers (advanced CS students at Illinois), who manually

optimized the program. N/A in this column means that the program is

not manually optimized. The following column displays the effectiveness of

SOTER, i.e. the ratio of detected opportunities to safely pass arguments by

reference to the total number of such opportunities.

SOTER is quite effective: on average it is able to detect around 71% of

available optimization opportunities. Moreover, it detects some opportunities

missed by developers. The last column shows how long it takes SOTER to

3Note that complete knowledge of the semantics of the analyzed program yields far
better results than any possible static analysis.

48

analyze the corresponding actor program. Our analysis is quite fast: for

ActorFoundry actor programs it does not exceed 24 seconds.

Table 7.2 shows the performance improvement achieved by SOTER by

comparing the execution time of actor programs before and after applica-

tion of SOTER. We exclude actor programs whose execution time is too

small to base our evaluation on. For the majority of actor programs eval-

uated, SOTER speeds up the execution more than twice, and for two of

them, by more than an order of magnitude. The last column reflects the

execution time of actor programs, where all arguments that could be safely

passed by reference having an ideal understanding of the actor program are

indeed passed by reference. Note that for the majority of actor programs, the

ideal execution time and the execution time after applying SOTER are very

close. However, for some actor programs, there is still considerable room for

improvement even after applying SOTER, which is mainly due to the conser-

vatism of our static analysis. We discuss possible extensions of our analysis

in the paper [12].

49

public class MutableValue implements java.io.Serializable{

private int value;

public MutableValue(int value){

this.value = value;

}

public int getValue(){

return value;

}

public void setValue(int value){

this.value = value;

}

}

public class ValueHolder implements java.io.Serializable{

private MutableValue mv;

public ValueHolder(MutableValue mv){

this.mv = mv;

}

public MutableValue getMutableValue(){

return mv;

}

}

public class SumActor extends Actor{

@message public void sum(ValueHolder vh1, ValueHolder vh2){

int val = vh1.getMutableValue().getValue();

MutableValue mv = vh2.getMutableValue();

mv.setValue(mv.getValue() + val);

System.out.println("Sum:" + mv.getValue());

}

}

1 public class ExecutorActor extends Actor{

2 @message

3 public void boot(Integer val)

4 throws RemoteCodeException{

5 MutableValue mv = new MutableValue(val);

6 ValueHolder vh = new ValueHolder(mv);

7 execute(vh);

8 System.out.println("val:" + mv.getValue());

9 }

10 private void execute(ValueHolder vh)

11 throws RemoteCodeException{

12 ActorName sumActor = create(SumActor.class);

13 add(sumActor, vh);

14 }

15 private void add(ActorName sumActor, ValueHolder vh3){

16 MutableValue mv1 = new MutableValue(1);

17 MutableValue mv2 = new MutableValue(2);

18 ValueHolder vh1 = new ValueHolder(mv1);

19 ValueHolder vh2 = new ValueHolder(mv2);

20 send(sumActor, "sum", vh1, vh2);

21 send(sumActor, "sum", vh2, vh3);

22 }

23 }

Figure 7.3: A running example of an actor program. Import statements are
omitted due to space considerations.

50

ex
ec

ut
or

A
ct

or
.b

oo
t(

In
te

ge
r) mv.init(I)

ex
ec

ut
or

A
ct

or
.e

xe
cu

te
(V

al
ue

H
ol

de
r)

vh.init(MutableValue)

mv.getValue()

System.out.println(String)

executorActor.create(Class, Serializable[])

executorActor.add(ActorName, ValueHolder)

mv1.init(I) mv2.init(I)

vh1.init(MutableValue) vh2.init(MutableValue)

executorActor.send(ActorName, String, Serializable[])

Figure 7.4: Filtered call graph for the code fragment from Figure 7.3.

vh1

s16:MutableValue

vh2

s18:ValueHolder

s18.mv

vh3 vh

s19:ValueHolder s6:ValueHolder

s19.mv s6.mv

s17:MutableValue s5:MutableValue

mv1 mv2 mv

field field field

Figure 7.5: Filtered points-to graph for the code fragment from Figure 7.3.

51

input: callGraph, pointstoGraph

output: passByValue

1 passingNodes = �;
2 passingCallSites = �;
3 foreach (Node n: callGraph){
4 callSites = getContainedCallSites(n);

5 foreach (CallSite cs: callSites){
6 if (isMessagePassingCallSite(cs)){
7 passingNodes = passingNodes ∪ n;

8 passingCallSites = passingCallSites ∪ cs;

9 foreach (Argument arg : cs){
10 passByValue[cs,arg] = false;

11 }
12 }
13 }
14 }
15 reachingNodes =

transitiveClosure(callGraph, passingNodes);

16 callSiteLiveVariables =

computeLiveVariables(reachingNodes);

17 nodeLiveVariables =

propagateLiveVariables(reachingNodes,

callSiteLiveVariables);

18 foreach (CallSite cs: passingCallSites){
19 Node n = getContainingNode(cs);

20 liveObjects = �;
21 liveVariables =

callSiteLiveVariables[cs] ∪ nodeLiveVariables[n] ;

22 foreach (LiveVariable var : liveVariables){
23 liveObjects = liveObjects ∪

getPointedObjects(pointstoGraph, var);

24 }
25 foreach (Argument arg : cs.getArguments()){
26 escapedObjects =

getPointedObjects(pointstoGraph, arg);

27 if ((escapedObjects ∩ liveObjects) 6= �){
28 passByValue[cs,arg] = true;

29 }
30 }
31 }

Figure 7.6: Overview of our algorithm for interprocedural live variable
analysis.

52

procedure transitiveClosure

input: callGraph, initNodes

output: reachingNodes

1 reachingNodes = �;
2 foreach (Node n: initNodes){
3 workList = {n};
4 while (workList 6= �){
5 workNode = pop(workList);

6 if (workNode /∈ reachingNodes){
7 reachingNodes = reachingNodes ∪ workNode

8 callers = getCallers(callGraph, workNode);

9 append(workList, callers);

10 }
11 }
12 }
13 return reachingNodes;

Figure 7.7: Collecting all call graph nodes that reach initNodes.

procedure computeLiveVariables
input: reachingNodes
output: callSiteLiveVariables
1 foreach (Node n: reachingNodes){
2 OUT = performLocalLiveVariableAnalysis(n);
3 callSites = getContainedCallSites(n);
4 foreach (CallSite cs: callSites){
5 if (isMessagePassingCallSite(cs) OR
6 (getCalledNode(cs) ∈ reachingNodes)){
7 callSiteLiveVariables[cs] = OUT[cs] ;
8 }
9 }
10 }
11 return callSiteLiveVariables;

Figure 7.8: Performing local live variable analysis for reachingNodes and
storing its relevant part in callSiteLiveVariables.

53

procedure propagateLiveVariables

input: reachingNodes, callSiteLiveVariables

output: nodeLiveVariables

1 foreach (Node n: reachingNodes){
2 IN[n] = �;
3 callSites = getCallingCallSites(n);

4 foreach (CallSite cs: callSites){
5 IN[n] = IN[n] ∪ callSiteLiveVariables[cs] ;

6 }
7 OUT[n] = IN[n] ;

8 }
9 do{
10 foreach (Node n: reachingNodes){
11 predecessors = getPredecessors(n);

12 foreach (Node pred : predecessors){
13 IN[n] = IN[n] ∪ OUT[pred] ;

14 }
15 OUT[n] = IN[n] ;

16 }
17 } while (changes to any OUT occur);

18 foreach (Node n: reachingNodes){
19 nodeLiveVariables[n] = OUT[n] ;

20 }
21 return nodeLiveVariables;

Figure 7.9: Propagating live variables through reachingNodes.

2

1 1 1

Figure 7.10: Two phases of our live variable analysis. In the first phase
(marked with number 1) we consider internal control flow graphs of
individual call graph nodes for the classical intraprocedural live variable
analysis. In the second phase (marked with number 2) we propagate live
variables forward in the call graph, disregarding the internal control flow of
the call graph nodes.

54

CHAPTER 8

REAL-WORLD CASE STUDIES

Our work thus far suggests good performance improvements can be achieved

for Actor frameworks; however the performance has been measured for small

benchmarks and programs. We would like to observe how these techniques

scale to large programs, and be able to validate these results for real-world ap-

plications. Specifically, the applications characteristics we are looking for are

a large number of actors including many fine-grained actors, and sufficiently

complex but arbitrary interactions between them. (Data parallelization or

map-reduce do not qualify since a large body of research work on optimizing

these specific patterns already exists.)

We believe that an application with such characteristics magnifies the effect

of (a) multicore architecture, and (b) distribution, on efficient execution.

However, in this work we focus on the effect of multicores only.

In our quest for large real-world applications, domains such as transaction

processing systems, NoSQL databases, simulations, and games fit the char-

acteristics discussed above. Games are particularly promising because they

tend to have internal concurrency (with complex interactions), independent

of the number of external user requests. Morever, games is a popular domain

among client-side applications. For example, games consistently dominate

the list of top apps in Android Market and Apple Store. According to the

business and technology news website, Business Insider Intelligence, in a re-

cent check of Apple’s iPhone App Store, games represented 55 percent of the

top 200 paid apps, and 33 percent of the top 200 free apps. Many studies

report that games represent more than a third of the time spent on mobile

apps and three-fourth of the money spent on mobile apps.

We look at multiple games, both of the real-time strategy and turn-based

strategy genres. For example, Herzog3D is a single-threaded, real-time strat-

egy game. For every user input, the game loop updates the state of every

game object. This approach results in an over-constrained and inefficient

55

execution. In a natural implementation of a real-time strategy game such

as Herzog3D, many games objects would execute autonomously in parallel,

react to events from the environment and interact with each other obeying

the relaxed constraints. Actors are a natural model for describing these game

objects. Although we did not complete porting Herzog3D to ActorFoundry,

we next describe our experience with a similar real-time strategy game called

Quantum.

8.1 Case Study - Quantum Game

Specifically, we look at an open-source Java game called Quantum [1]. Quan-

tum is an open-source port of the Dyson game to Java, and has more than

25k lines of source code. Dyson is a real-time strategy game that involves

multiple players controlling pre-owned planets, trees, and creatures that or-

bit planets. Players can create more creatures by building trees, and colonize

other planets in the universe by moving creatures to them. Creatures can be

in one of three modes: orbit, move or attack. The goal of the game is it to

eliminate all enemy creatures and take over enemy planets.

The game play comprises of three kinds of objects: planets, creatures and

trees. The original version of Quantum from the web has a strict game loop

that updates all games objects in every iteration or game cycle. In every it-

eration, creatures interact with planets and other creatures. This version has

some concurrency for I/O operations. For example, it has separate threads

for receiving user input, producing sound and network play.

8.1.1 Porting Quantum to ActorFoundry

First, we boot this game on ActorFoundry runtime by writing an actor with

a single message, whose handler invokes the main method of the original

game. This message serves as the application’s entry point.

In the first stage of actorizing Quantum, we replace the built-in threads

with actors. These include the SoundManager.

In the second stage, we introduce new concurrency by converting game

objects such as planets, trees and creatures into actors. We replace the

strict game loop, and instead enable each game object to update itself asyn-

56

chronously by sending an “update” message to itself. The objects also send

messages for exchanging state information with other games objects.

After this transformation, we are able to run a game instance with more

than 10,000 game objects and run the computer (a Core 2 Duo and an 8-core

i7) at full throttle. According to our knowledge and from publicly available

information, this is the largest execution of a real-world client-side actor

program.

8.1.2 Game Architecture

The execution of the game makes one important assumption: a fair scheduler

that enables actors to make progress ”uniformly”. This ensures that every

game object or actor gets updated at the same rate relative to other objects.

Furthermore, the graphics renderer executes in a separate thread and is able

to read the internal state of all actors directly without exchanging messages.

8.1.3 Further Performance Issues

We also compare its performance with that of the multi-threaded version,

and observe that it is significantly slower than the two versions (4 minutes

45 seconds vs 35 seconds).

We note that during each update step, a creature sends a message to

its host planet. A creature also sends some messages to another creature at

nearly every step. Although the game implementation has some communication-

computation overlap, many CPU cycles are spent in delivering a message (by

the sender), and later by the receiver in pulling it from its mailbox, and then

repeating these steps for the reply, if needed. Separate experiments on a Core

2 Duo processor suggest that it takes two orders of magnitude more time for

a request-reply message in comparison to reading the value simply through

a method call.

Next, we introduce a “short-circuit” implementation for request-reply mes-

sages. If the recipient actor of such a message is local, and is neither busy

nor blocked, the sending actor calls the message handler in its own stack

instead of delivering a message to recipient’s mailbox [13]. Separate ex-

periments suggest that this technique improves performance by an order of

57

magnitude. As a result, the performance of Quantum improves to 4 minutes

15 seconds. While this suggests a fine-grained actor implementation is con-

siderably slower than a multi-threaded version on shared memory multicore

processors, it should be noted that we have not implemented a number of

low-level optimization techniques such as those related to improving cache

performance. Moreover, observe that as multicore architectures scale and

behave like distributed computers, shared memory may not be available at

the same scale [86, 87, 88]. These arguments are further discussed in Section

9.1.

8.2 Other Game Scenarios

We also look at another open-source Java game called Domination [89]. Dom-

ination is a turned-based strategy game with a multi-threaded, networked

implementation. The game implementation employs Java threads for han-

dling IO, UI and network events. We convert the multi-threaded game into

an actor version, where the asynchrony due to threads and communication

between them is expressed using actors and messages. However, no new

concurrency or parallelism is introduced. Hence the actors in this version

are coarse-grained. Similar to Quantum, additional parallelism can be intro-

duced in Domination by actorizing other objects in the game and the search

algorithm. This will naturally result in relatively fine-grained actors. We

are able to boot the coarse-grained version of the game in ActorFoundry and

resulting performance is comparable to the original multi-threaded version.

58

CHAPTER 9

CONCLUSION AND FUTURE WORK

We believe that this work makes a significant impact in identifying ineffi-

ciencies and improving the performance for executing fine-grained actors on

modern multicore processors.

A recent paper describing an industrial strength implementation of the

Actor model (Akka actors) suggests that some of the design choices and

implementation were in part influenced by the questions we raised, and the

static and dynamic techniques we proposed in this work [90].

The source code and the documentation for ActorFoundry and our case

study is available for download on this link:

http://osl.cs.illinois.edu/software/actor-foundry.

9.1 Multicore Architecture

The two key features of multicore architecture that impact performance are

shared memory and cache hierarchy. In our current implementation, actors

are mapped dynamically to threads that share a scheduler queue (through

the shared memory and shared cache). Because the worker threads share a

common scheduler queue, there exists thread contention over accessing this

protected data structure. The performance cost of this contention can be

prohibitive, specially if there is a large number of threads or the computation

per message is small.

Moreover, it is possible that an actor is scheduled by Thread-1 for its first

message, and it is scheduled by Thread-2 for its next message. Since there

is no static assignment of actors to the threads, an actor with a pending

message can be scheduled by any idle thread. While this strategy seems ap-

propriate for achieving load-balancing, it may be detrimental for the overall

performance due to its sub-optimal cache behavior– given that it produces

59

poor temporal and spatial locality. The effects of poor locality such as fre-

quent cache misses and degraded performance have been well-studied, even

in the context of sequential computing [91, 92]. This strategy is akin to

managing and switching between multiple contexts, and has shown to have

a high cache-performance cost [93].

Our work establishes a research platform to study this trade-off. The initial

tasks could be to distribute and isolate the currently shared data structures

(including the work load) between the different threads running on a single

shared memory multicore node (processor). The goal would be to find a sweet

spot in terms of an implementation strategy that provides a static mapping

to improve cache behavior, and yet allows some dynamicity to achieve load-

balancing. We anticipate the resulting runtime architecture on the single

multicore node to be nearly distributed. This trend of distributing computa-

tion on a single node is also suggested by some processor architectures from

Intel [86] and Tilera [87].

Further down, our study can also provide insights into finding the optimal

number of actors per thread that results in optimal cache behavior. A similar

problem in the context of virtual machines on cloud computers has been

recently studied [94].

It has also been argued recently that for certain classes of programs, such

as those with a divide-and-conquer pattern, can be solved efficiently by com-

bining the Actor model with task-based approaches [30]. Such an integration

allows parallel code to be written inside an actor where the parallel threads

can share state or access separate portions of a shared data structure.

9.2 Distribution

Our current work does not focus on optimizations related to distribution

of computation across nodes in a grid or cloud. As a large number of ac-

tors are created and distributed, the inefficiency of managing name tables is

exacerbated. Note that the name tables are required to implement location-

independence and mobility. A näıve implementation that adds an entry into

name tables for every actor that is ever created can result in a large space

overhead as well as (cumulative) lookup time. However, we believe this

overhead can be mitigated through various implementation strategies. We

60

propose a runtime technique that adds entries in name tables selectively and

reactively. Specifically, an entry in the name table is required when actors

or their names escape their original “birth” node. The dynamic technique

can be augmented with a static analysis that will try to identify the coupling

between actors so that highly-coupled actors can be clustered together on

the same node.

9.3 Lessons Unrelated to Performance

In this work, as we converted the various game objects into actors, we faced

some challenges in expressing the (relaxed but semantically correct) game

constraints between the fine-grained actors.

During the exercise of actorizing games, we also learned some of the design

patterns of actor-oriented programming. Also note that we are manually

converting multi-threaded and single-threaded programs into actor programs.

We hope to document these steps for future research on automatic or semi-

automatic refactorings for introducing actor design into existing programs.

61

REFERENCES

[1] M. Zechner, “Quantum,” http://code.google.com/p/quantum-game/,
2009.

[2] R. K. Karmani and G. Agha, “Actors,” Springer’s Encyclopedia of Par-
allel Computing, 2011.

[3] G. Agha, I. A. Mason, S. Smith, and C. Talcott, “A Foundation for Actor
Computation,” Journal of Functional Programming, vol. 7, no. 01, pp.
1–72, 1997.

[4] H. Kopetz, “Component-based design of large distributed real-time sys-
tems,” in Journal of IFAC, Pergamon Press, 1997, pp. 53–60.

[5] R. K. Karmani, A. Shali, and G. Agha, “Actor frameworks for the JVM
platform: a comparative analysis,” in PPPJ ’09: Proceedings of the 7th
International Conference on Principles and Practice of Programming in
Java. New York, NY, USA: ACM, 2009, pp. 11–20.

[6] P. Haller and M. Odersky, “Capabilities for uniqueness and borrowing,”
in ECOOP 2010 Object-Oriented Programming, ser. Lecture Notes in
Computer Science, T. DHondt, Ed. Springer Berlin / Heidelberg, 2010,
vol. 6183, pp. 354–378.

[7] S. Srinivasan and A. Mycroft, “Kilim: Isolation typed actors for Java,”
in Procedings if the European Conference on Object Oriented Program-
ming (ECOOP), 2008.

[8] G. Agha, Actors: a model of concurrent computation in distributed sys-
tems. Cambridge, MA, USA: MIT Press, 1986.

[9] D. Caromel, L. Henrio, and B. P. Serpette, “Asynchronous sequential
processes,” Information and Computation, vol. 207, no. 4, pp. 459 – 495,
2009.

[10] The Actor Foundry: A Java-based Actor Programming Environment,
Open Systems Laboratory, University of Illinois at Urbana-Champaign,
1998-09. [Online]. Available: http://osl.cs.uiuc.edu/af

62

[11] S. Srinivasan, “A thread of one’s own,” in Workshop on New Horizons
in Compilers, vol. 4. Citeseer, 2006.

[12] S. Negara, R. K. Karmani, and G. Agha, “Inferring ownership transfer
for efficient message passing,” in In proceedings of the 16th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP). New York, NY, USA: ACM, 2011.

[13] W. Kim and G. Agha, “Efficient support of location transparency in
concurrent object-oriented programming languages,” in Supercomputing
’95: Proceedings of the 1995 ACM/IEEE conference on Supercomputing.
New York, NY, USA: ACM, 1995, p. 39.

[14] N. Venkatasubramanian, G. Agha, and C. Talcott, “Scalable distributed
garbage collection for systems of active objects,” in in Y. Bekkers and
J. Cohen (editors), International Workshop on Memory Management,
ACM SIGPLAN and INRIA, St. Malo, France, Lecture Notes in Com-
puter Science, vol. 637, pp 134-148, Springer-Verlag, September, 1992.

[15] A. Vardhan and G. Agha, “Using passive object garbage collection al-
gorithms for garbage collection of active objects,” in ISMM ’02: Pro-
ceedings of the 3rd international symposium on Memory management.
New York, NY, USA: ACM, 2002, pp. 106–113.

[16] W.-J. Wang, C. Varela, F.-H. Hsu, and C.-H. Tang, “Actor garbage col-
lection using vertex-preserving actor-to-object graph transformations,”
in Advances in Grid and Pervasive Computing, ser. Lecture Notes in
Computer Science, vol. 6104. Springer Berlin Heidelberg, 2010, pp.
244–255.

[17] V. A. Korthikanti and G. Agha, “Towards optimizing energy costs
of algorithms for shared memory architectures,” in Proceedings of the
22nd ACM symposium on Parallelism in algorithms and architectures,
ser. SPAA ’10. New York, NY, USA: ACM, 2010. [Online]. Available:
http://doi.acm.org/10.1145/1810479.1810510 pp. 157–165.

[18] X. Zhao and N. Jamali, “Fine grained per-core frequency schedul-
ing for power efficient multicore execution,” in Proceedings of the 2nd
IEEE International Green Computing Conference (IGCC 2011) [Work-
in-Progress Workshop]. Orlando, Florida: IEEE, July 2011, pp. 1–8.

[19] S. Frlund and G. Agha, “A language framework for multi-object coordi-
nation,” in ECOOP, ser. Lecture Notes in Computer Science, O. Nier-
strasz, Ed., vol. 707. Springer, 1993, pp. 346–360.

63

[20] S. Frølund and G. Agha, “Abstracting interactions based on message
sets,” in ECOOP ’94: Selected papers from the ECOOP ’94 Workshop
on Models and Languages for Coordination of Parallelism and Distribu-
tion, Object-Based Models and Languages for Concurrent Systems, ser.
Lecture Notes In Computer Science. Springer-Verlag, 1995, pp. 107–
124.

[21] S. Frølund, Coordinating distributed objects: an actor-based approach to
synchronization. Cambridge, MA, USA: MIT Press, 1996.

[22] G. Agha and C. J. Callsen, “Actorspace: an open distributed program-
ming paradigm,” in Proceedings of the fourth ACM SIGPLAN sym-
posium on Principles and Practice of Parallel Programming (PPoPP).
New York, NY, USA: ACM, 1993, pp. 23–32.

[23] N. Jamali, P. Thati, and G. A. Agha, “A actor-based architecture for
customizing and controlling agent ensembles,” Intelligent Systems and
their Applications, IEEE, vol. 14, no. 2, pp. 38–44, 1999.

[24] G. Agha, N. Jamali, and C. Varela, “Agent naming and coordination:
Actor based models and infrastructures,” in Coordination of Internet
agents. Springer-Verlag, 2001, pp. 225–246.

[25] N. Jamali and G. Agha, “Cyberorgs: A model for decentralized re-
source control in multi agent systems,” in Proceedings of Workshop
on Representations and Approaches for Time-Critical Decentralized Re-
source/Role/Task Allocation, at the Second International Joint Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS 03), Mel-
bourne, Australia, July, 2003.

[26] P. Dinges and G. Agha, “Scoped synchronization constraints for large
scale actor systems,” in COORDINATION, ser. Lecture Notes in Com-
puter Science, M. Sirjani, Ed., vol. 7274. Springer, 2012, pp. 89–103.

[27] M. Charalambides, P. Dinges, and G. Agha, “Parameterized concurrent
multi-party session types,” in Proceedings 11th International Workshop
on Foundations of Coordination Languages and Self Adaptation, New-
castle, U.K., September 8, 2012, ser. Electronic Proceedings in Theoret-
ical Computer Science, N. Kokash and A. Ravara, Eds., vol. 91. Open
Publishing Association, 2012, pp. 16–30.

[28] S. Ren and G. A. Agha, “Rtsynchronizer: language support for real-time
specifications in distributed systems,” SIGPLAN Not., vol. 30, no. 11,
pp. 50–59, 1995.

64

[29] S. Ren, G. Agha, and M. Saito, “A modular approach for programming
distributed real-time systems,” in Journal of Parallel and Distributed
Computing, vol. 36, no. 1, pp 4-12, 1996. Also published in School on
Embedded Systems, European Educational Forum 1996, pp 52-, 1996.

[30] S. Imam and V. Sarkar, “Integrating task parallelism with actors,” in
ACM SIGPLAN Notices, vol. 47, no. 10. ACM, 2012, pp. 753–772.

[31] S. Tasharofi, P. Dinges, and R. Johnson, “Why do scala developers
mix the actor model with other concurrency models?” in ECOOP’13 -
Object-Oriented Programming, 27th European Conference, Montpellier,
France, July 1–6, 2013, 2013, accepted for publication.

[32] S. T. Heumann, V. S. Adve, and S. Wang, “The tasks with effects model
for safe concurrency,” in Proceedings of the 18th ACM SIGPLAN sym-
posium on Principles and practice of parallel programming. ACM, 2013,
pp. 239–250.

[33] K. Sen, A. Vardhan, G. Agha, and G. Rosu, “Efficient decentralized
monitoring of safety in distributed systems,” in ICSE ’04: Proceedings
of the 26th International Conference on Software Engineering. IEEE
Computer Society, 2004, pp. 418–427.

[34] M. M. Jaghoori, A. Movaghar, and M. Sirjani, “Modere: the model-
checking engine of rebeca,” in Proceedings of the 2006 ACM symposium
on Applied computing. ACM, 2006, pp. 1810–1815.

[35] S. Lauterburg, M. Dotta, D. Marinov, and G. Agha, “A framework
for state-space exploration of java-based actor programs,” in ASE ’09:
Proceedings of the 2009 IEEE/ACM International Conference on Auto-
mated Software Engineering. Washington, DC, USA: IEEE Computer
Society, 2009, pp. 468–479.

[36] P. Bokor, J. Kinder, M. Serafini, and N. Suri, “Efficient model checking
of fault-tolerant distributed protocols,” in Dependable Systems Networks
(DSN), 2011 IEEE/IFIP 41st International Conference on, 2011, pp.
73–84.

[37] K. Sen and G. Agha, “Automated systematic testing of open dis-
tributed programs,” in Fundamental Approaches to Software Engineer-
ing. Springer Berlin Heidelberg, 2006, pp. 339–356.

[38] S. Lauterburg, R. K. Karmani, D. Marinov, and G. Agha, “Evaluating
ordering heuristics for dynamic partial-order reduction techniques,” in
Fundamental Approaches to Software Engineering (FASE) with ETAPS,
2010.

65

[39] V. Jagannath, M. Gligoric, S. Lauterburg, D. Marinov, and G. Agha,
“Mutation operators for actor systems,” in Software Testing, Verifi-
cation, and Validation Workshops (ICSTW), 2010 Third International
Conference on, 2010, pp. 157–162.

[40] S. Tasharofi, R. K. Karmani, S. Lauterburg, A. Legay, D. Marinov, and
G. Agha, “Transdpor: a novel dynamic partial-order reduction tech-
nique for testing actor programs,” in Formal Techniques for Distributed
Systems. Springer, 2012, pp. 219–234.

[41] K. Sen and G. Agha, “Automated systematic testing of open dis-
tributed programs,” in Fundamental Approaches to Software Engi-
neering (FASE), ser. Lecture Notes in Computer Science, vol. 3922.
Springer, 2006, pp. 339–356.

[42] A. Fuggetta, G. P. Picco, and G. Vigna, “Understanding code mobility,”
IEEE Transactions on Software Engineering, vol. 24, no. 5, pp. 342–361,
1998.

[43] T. Walsh, P. Nixon, and S. Dobson, “As strong as possible mobility: An
Architecture for stateful object migration on the Internet,” 6th ECOOP
Workshop on Mobile Object Systems: Operating System Support, Secu-
rity and Programming Languages, Sophia Antipolis (France), 2000.

[44] S. Chakravorty, C. L. Mendes, and L. V. Kalé, “Proactive fault tol-
erance in mpi applications via task migration,” in High Performance
Computing-HiPC 2006. Springer, 2006, pp. 485–496.

[45] C. Engelmann, G. R. Vallee, T. Naughton, and S. L. Scott, “Proactive
fault tolerance using preemptive migration,” in Parallel, Distributed and
Network-based Processing, 2009 17th Euromicro International Confer-
ence on. IEEE, 2009, pp. 252–257.

[46] R. Panwar and G. Agha, “A methodology for programming scalable
architectures,” in Journal of Parallel and Distributed Computing, vol.
22 pp 479-487, 1994.

[47] A. Mettler, “Language and framework support for reviewably-
secure software systems,” Ph.D. dissertation, EECS Department,
University of California, Berkeley, Dec 2012. [Online]. Avail-
able: http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-
244.html

[48] H. Sutter and J. R. Larus, “Software and the concurrency revolution,”
ACM Queue, vol. 3, no. 7, pp. 54–62, 2005.

[49] E. A. Lee, “The problem with threads,” Computer, vol. 39, no. 5, pp.
33–42, 2006.

66

[50] J. Armstrong, Programming Erlang: Software for a Concurrent World.
Pragmatic Bookshelf, 2007.

[51] M. S. Miller, “Robust composition: Towards a unified approach to access
control and concurrency control,” Ph.D. dissertation, 2006.

[52] “The E language,” http://www.erights.org/elang, 2000.

[53] C. Varela and G. Agha, “Programming dynamically reconfigurable open
systems with SALSA,” ACM SIGPLAN Notices, vol. 36, no. 12, pp. 20–
34, 2001.

[54] E. A. Lee, “Overview of the ptolemy project,” University of California,
Berkeley, Tech. Rep. UCB/ERL M03/25, 2003.

[55] Microsoft Corporation, “Axum programming language,”
http://msdn.microsoft.com/en-us/devlabs/dd795202.aspx.

[56] The Dart Team, “Dart programming language specification,”
http://www.dartlang.org/docs/spec, 2013.

[57] D. Kafura, “ACT++: building a concurrent C++ with actors,” Journal
of Object-Oriented Programming, vol. 3, no. 1, pp. 25–37, 1990.

[58] D. Sturman and G. Agha, “A protocol description language for cus-
tomizing failure semantics,” in Proceedings of 13th Symposium on Reli-
able Distributed Systems, Oct 1994, pp. 148–157.

[59] W. Kim, “Thal: An actor system for efficient and scalable concur-
rent computing,” Ph.D. dissertation, University of Illinois at Urbana-
Champaign, 1997.

[60] J. Briot, “Actalk: a Test bed for Classifying and Designing Actor Lan-
guages in the Smalltalk-80 Environment,” in Proceedings of the 1989
European Conference on Object-Oriented Programming. Cambridge
University Press, 1989, p. 109.

[61] C. Tismer, “Stackless python,” http://www.stackless.com/, 2004-09.

[62] J. Lee, “Parley,” http://osl.cs.uiuc.edu/parley/, 2007.

[63] J. Sillito, “Stage: exploring erlang style concurrency in ruby,” in IWMSE
’08: Proceedings of the 1st international workshop on Multicore software
engineering. New York, NY, USA: ACM, 2008, pp. 33–40.

[64] Microsoft Corporation, “Asynchronous agents library,”
http://msdn.microsoft.com/en-us/library/dd492627(VS.100).aspx.

67

[65] S. Bykov, A. Geller, G. Kliot, J. Larus, R. Pandya, and J. Thelin,
“Orleans: A framework for cloud computing,” Microsoft Research, Tech.
Rep. MSR-TR-2010-159, 2010.

[66] M. Rettig, “Retlang,” http://code.google.com/p/retlang/, 2007-09.

[67] P. Haller and M. Odersky, “Actors That Unify Threads and Events,”
in 9th International Conference on Coordination Models and Languages,
ser. Lecture Notes in Computer Science, vol. 4467. Springer, 2007.

[68] M. Rettig, “Jsasb,” https://jsasb.dev.java.net/, 2008.

[69] M. Astley, The Actor Foundry: A Java-based Actor Pro-
gramming Environment, Open Systems Laboratory, University
of Illinois at Urbana-Champaign, 1998-99. [Online]. Available:
http://osl.cs.uiuc.edu/foundry

[70] M.-W. Jang, The Actor Architecture Manual, Department of Computer
Science, University of Illinois at Urbana-Champaign, March 2004.
[Online]. Available: http://osl.cs.uiuc.edu/aa

[71] J. Dedecker, T. Van Cutsem, S. Mostinckx, T. DHondt, and
W. De Meuter, “Ambient-oriented programming in ambienttalk,”
ECOOP 2006–Object-Oriented Programming, pp. 230–254, 2006.

[72] T. Jansen, “Actors guild,” http://actorsguildframework.org/, 2009.

[73] S. R. J.-P. Arcangeli, F. Migeon, “Javact : a java middleware
for mobile adaptive agents,” February 2008. [Online]. Available:
http://www.irit.fr/PERSONNEL/SMAC/arcangeli/JavAct.html

[74] W. Zwicky, “Aj: A systems for buildings actors with java,” M.S. thesis,
University of Illinois at Urbana-Champaign, 2008.

[75] R. Young, “Jetlang,” http://code.google.com/p/jetlang/, 2009.

[76] J. Schäfer and A. Poetzsch-Heffter, “JCoBox: Generalizing active ob-
jects to concurrent components,” in ECOOP 2010–Object-Oriented Pro-
gramming. Springer, 2010, pp. 275–299.

[77] W. D. Clinger, “Foundations of actor semantics,” Ph.D. dissertation,
Massachusetts Institute of Technology, 1981.

[78] P. Jetley and L. V. Kale, “Optimizations for message driven applica-
tions on multicore architectures,” in 18th annual IEEE International
Conference on High Performance Computing (HiPC 2011), December
2011.

68

[79] Open Source, “The computer language benchmarks game,”
http://shootout.alioth.debian.org/, 2004-2008.

[80] M. Fähndrich, M. Aiken, C. Hawblitzel, O. Hodson, G. Hunt, J. R.
Larus, and S. Levi, “Language support for fast and reliable message-
based communication in Singularity OS,” SIGOPS Oper. Syst. Rev.,
vol. 40, no. 4, pp. 177–190, 2006.

[81] M. Sridharan and S. J. Fink, “The complexity of Andersen’s analysis in
practice,” in SAS ’09: Proceedings of the 16th International Symposium
on Static Analysis. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 205–
221.

[82] L. O. Andersen, “Program analysis and specialization for the C program-
ming language,” Ph.D. dissertation, University of Copenhagen, DIKU,
1994.

[83] T. Reps, S. Horwitz, and M. Sagiv, “Precise interprocedural dataflow
analysis via graph reachability,” in POPL ’95: Proceedings of the 22nd
ACM Symposium on Principles of Programming Languages, 1995, pp.
49–61.

[84] M. Sridharan, S. J. Fink, and R. Bodik, “Thin slicing,” in PLDI ’07:
Proceedings of the 2007 ACM SIGPLAN conference on Programming
language design and implementation. New York, NY, USA: ACM,
2007, pp. 112–122.

[85] “WALA Static Analysis Library,” http://wala.sourceforge.net/.

[86] Intel Corporation, “Single-chip Cloud Computer,”
http://techresearch.intel.com/ProjectDetails.aspx?Id=1.

[87] Tilera Corporation, “TILE-Gx Processor Family,”
http://tilera.com/products/processors/TILE-Gx Family.

[88] R. Murphy, “On the effects of memory latency and bandwidth on
supercomputer application performance,” in Proceedings of the 2007
IEEE 10th International Symposium on Workload Characterization, ser.
IISWC ’07. Washington, DC, USA: IEEE Computer Society, 2007, pp.
35–43.

[89] Y. Mamyrin, “Domination,” http://domination.sourceforge.net/, 2005-
10.

[90] P. Haller, “On the integration of the actor model in mainstream tech-
nologies: the scala perspective,” in Proceedings of the 2nd edition
on Programming systems, languages and applications based on actors,
agents, and decentralized control abstractions. ACM, 2012, pp. 1–6.

69

[91] W. W. Hwu and P. P. Chang, “Achieving high instruction cache
performance with an optimizing compiler,” in Proceedings of the
16th annual international symposium on Computer architecture, ser.
ISCA ’89. New York, NY, USA: ACM, 1989. [Online]. Available:
http://doi.acm.org/10.1145/74925.74953 pp. 242–251.

[92] S. Carr, K. S. McKinley, and C.-W. Tseng, “Compiler optimizations
for improving data locality,” in Proceedings of the sixth international
conference on Architectural support for programming languages and
operating systems, ser. ASPLOS-VI. New York, NY, USA: ACM,
1994. [Online]. Available: http://doi.acm.org/10.1145/195473.195557
pp. 252–262.

[93] J. C. Mogul and A. Borg, “The effect of context switches on cache
performance,” in Proceedings of the fourth international conference
on Architectural support for programming languages and operating
systems, ser. ASPLOS-IV. New York, NY, USA: ACM, 1991. [Online].
Available: http://doi.acm.org/10.1145/106972.106982 pp. 75–84.

[94] Q. Wang and C. A. Varela, “Impact of cloud computing virtualization
strategies on workloads’ performance,” in 4th IEEE/ACM International
Conference on Utility and Cloud Computing(UCC 2011), Melbourne,
Australia, December 2011.

70

