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Abstract 

Antibiotics have been used in animal feed to promote weight gain, improve feed 

efficiency, and control disease since the 1950s.  Concerns about antibiotic resistance have 

increased since the widespread use of in-feed antibiotics began, but a clear connection between 

antibiotic use in animals and adverse human health effects has not been established.  

Understanding the mechanisms behind antibiotic growth promoters is an important step in 

determining the safety of in-feed antibiotics.  Our study tested the hypothesis that diets with 

virginiamycin would increase intestinal surface area and nutrient processing capacity compared 

with diets without virginiamycin.  Littermate barrows with similar body weight (n=72; 23.0±1.3 

kg; 9 weeks of age) were randomized to pens and pens were randomized to one of three 

treatment groups (0, 11, or 27.5 mg virginiamycin/kg corn-soybean diet).  Within each pen, pigs 

were further randomized to a time point (7 or 14 days).  Intestinal samples were obtained for 

assessment of gross morphology, histomorphology, immunohistochemistry, biochemical 

measurements, disaccharidase activity, and nutrient and ion transport.  Analysis of variance was 

used to statistically analyze the data using the Mixed Model of SAS fitted with a split plot design 

(treatment as the whole plot and time as the subplot).  Preplanned contrasts between 

virginiamycin and control groups were completed.   Pigs fed diets supplemented with 

virginiamycin gained an average of 10% more weight per day with about 12% better feed 

conversion compared with control.  Virginiamycin impacted intestinal functional capacity to a 

greater extent than structural indices.  Glutamine and arginine transport were increased 2-fold in 

the jejunum of virginiamycin fed pigs compared with control (p=0.010, p=0.046, respectively).  

Ileal carbachol induced chloride secretion was lower at day seven, but it increased over time with 

virginiamycin resulting in increased secretion at day fourteen with virginiamycin compared with 
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control (p=0.017).  Virginiamycin directly impacted proximal gut nutrient transport with a more 

delayed response in the distal gut by providing protection against loss in nutrient transport and 

secretory capacity.  Increased nutrient transport was observed without increases in absorptive 

surface area indicating that increased functional capacity may be a mechanism by which 

antibiotic promote growth.  Increasing our knowledge on the mechanisms behind antibiotic 

growth promoters will help direct government policy on antibiotic use in animals. 
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Chapter 1: Introduction and Literature Review 

Antibiotics have been used in animal feed to promote weight gain and feed efficiency for 

over 60 years.  Antibiotics can be defined as naturally occurring substances produced by yeasts, 

molds, and other microorganisms that, at low concentrations, suppress or inhibit the growth of 

microorganisms (Cromwell, 2002).  In 1949, it was discovered that “mash” fermented with 

Streptomyces aureofaciens increased the growth of chickens (Stokstad et al., 1949).  The 

fermentation product was found to contain the antibiotic chlortetracycline, which was identified 

to be responsible for the growth response.  Similar growth responses were demonstrated in pigs 

soon after (Cunha et al., 1949; Jukes et al., 1950; Lepley et al., 1950; Luecke et al., 1950).  

Further developments revealed a few parts per million (ppm) of antibiotics in diets were effective 

(Jukes, 1955) and, thus, began widespread use of in-feed antibiotics for growth promotion, feed 

efficiency, and disease control in livestock and poultry. 

Since the widespread use of antibiotics began, there has been increased concern about the 

development of antibiotic resistance.  Although it has been debated for years, in-feed antibiotics 

have been proposed to result in resistant bacteria with the potential to be transferred to human 

pathogens.  The concern of antibiotic resistance has led to political involvement all over the 

world including the banning of in-feed antibiotic use in the European Union.  Political focus in 

the United States has increased since the banning of antibiotic growth promoters in the European 

Union.  Antibiotics continue to play a large role in animal health and production.  Discussions of 

banning such substances have been increasing and it is important to understand the most safe and 

effective use of growth promoting antibiotics.  An understanding of the mechanism(s) behind 

antibiotic growth promoters is essential to better assess antibiotic resistance and its potential 

impact on human health. 
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Antibiotic Growth Promoters 

Antibiotics have been used as growth promoters for years because of the improvement in 

animal weight gain, feed efficiency, and performance.  Antibiotics used for growth promotion 

are given at sub-therapeutic levels and are usually given for an extended period of time.  

Research demonstrating the effectiveness of antibiotics as growth promoters is well documented.   

Cromwell (2002) reported values from data compiled up to 1985 on antibiotic-feed pigs in 

reviews by Hays (1981) and Zimmerman (1986).  Dietary supplementation with antibiotics 

improves average daily gain by an average of 16.4% and feed per unit of gain by 6.9% during the 

starter period (Cromwell, 2002).  Antibiotics fed during the grower period resulted in an average 

increase of 10.6% in average daily gain and a 4.5% decreased in feed per unit of gain (Cromwell, 

2002).  Improvements averaged over the entire grower-finisher period were 4.2% for average 

daily gain and 2.2% for feed per unit of gain (Cromwell, 2002; Figure 1.1).  In-feed antibiotics 

also improve sow performance and can increase farrowing rate up to ten percent (Zimmerman, 

1986).  Currently, over 81% of pig production sites for grower-finisher pigs use in-feed 

antibiotics and almost 33% of sites use in-feed antibiotics continuously (USDA, 2007).   

 

Virginiamycin and Swine Performance 

Several antibiotics are used for growth promotion in animals, but, for the purpose of this 

review, the focus will be on virginiamycin use in swine.  Virginiamycin (trade name: Stafac®) 

has been used in animals as a growth promoter for many years.  Virginiamycin was approved in 

1975 for use in turkeys, swine, cattle, and chickens in the United States (FDA, 2004).  

Virginiamycin has been shown to improve average daily gain by 11%, 10.7%, and 5.7% in 

starter, grower, and finisher pigs, respectively, and feed per unit of gain by 5%, 6.6%, and 3.3%, 
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respectively (Hays, 1981).  Zimmerman (1986) also reported improvements with virginiamycin 

in his review.  In that report, virginiamycin improved average daily gain by 8% and feed per unit 

of gain by 3.6% in starter pigs and average daily gain by 2.5% and feed per unit of gain by 1.4% 

in grower-finisher pigs (Zimmerman, 1986). 

Virginiamycin has continued to be an effective growth promoter in pigs.  Lewis and 

Giesemann (1991) reported significant improvements in daily gain (5.8%) and feed efficiency 

(3.5%) when virginiamycin was feed at 11 mg/kg diet to grower pigs for six weeks but no 

significant differences when fed at 5.5 mg/kg diet for nine weeks during the finishing period.  

Schinckel (1993) found significant improvements in daily gain and feed conversion during 

growing-finishing periods when pigs were fed diets supplemented with 20 mg/kg of 

virginiamycin during the grower period and 10 mg/kg during the finisher period.  Virginiamycin 

improved daily gain by 7.7% and 2.9 to 3.5% in grower and finisher periods, respectively, and 

improved feed per unit of gain by 6.5% and 2.4 to 3.1% in grower and finisher periods, 

respectively (Schinckel, 1993).  Virginiamycin improved feed conversion in grower (1.4%; 

Gaines et al., 2005) and finisher pigs (4.6 to 10.4%; Gramm et al., 2006) when supplemented at 

11 mg/kg diet.  Gramm and colleagues (2006) also reported a trend toward improved weight gain 

(6.4 to 12%) in finisher pigs fed a diet supplemented with 11 mg/kg of virginiamycin.  Percent 

improvements in weight gain are greater than those of feed per unit of gain.  This may suggest 

that feed intake is increased in pigs consuming antibiotics, but improvements in weight gain and 

feed efficiency are observed without increases in daily feed intake (Gramm et al., 2006; Harper 

& Kornegay, 1983; Lewis & Giesemann, 1991; Schinckel, 1993; Stahly et al., 1980). 

Dietary supplementation with virginiamycin also improves sow performance.  

Virginiamycin increases sow body weight at each farrowing, decreases sow weight loss from 
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farrowing to weaning, and decreases time between weaning to conception (Kantas et al., 1998; 

Kyriakis et al., 1992).  Kyriakis and colleagues (1992) observed increases in milk fat content in 

sows fed virginiamycin.  Virginiamycin, fed at levels of 20, 40, and 60 mg/kg diet from six 

months of age through three breeding cycles, increased both blood cholesterol and total lipids 

concentration in sows during each pregnancy, farrowing, and weaning and improved milk quality 

during the third lactation by increasing fat, protein, lactose, and total solids content (Alexopoulos 

et al., 1998).  Virginiamycin fed at these three levels also increased litter size, birth weight, 

number of piglets weaned, and piglet weaning weight (Kantas et al., 1998; Kyriakis et al., 1992).  

Virginiamycin is effective in market pigs and at other stages of swine production. 

 

Antibiotic Resistance 

Concerns about bacterial resistance began to arise shortly after the performance benefits 

of in-feed antibiotics were discovered.  Resistance became a new concept when descriptions of it 

were published in 1960 in Japan (Akiba et al., 1960).  The increased concern about development 

of resistance started a movement against use of antibiotics in animal feed around 1967 (Jukes, 

1972).  Concerns about adverse human health effects associated with antibiotic use in animals 

were brought about worldwide when a report by The Joint Committee on the Use of Antibiotics 

in Animal Husbandry and Veterinary Medicine was issued to the British Parliament (Chowdhury 

et al., 2009).  That report, known as the Swann Report, proposed that antibiotics used for growth 

promotion should be limited to those that make a significant economic difference in livestock 

production, have little or no application as therapeutic agents in humans or animals, and/or do 

not impair efficacy of a prescribed therapeutic drug through development of resistant strains 

(Swann, 1969).  It was almost 30 years after the movement began before there was global 
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interest or surveillance on the public health impact of antibiotic use in animals (WHO, 1997).  

Research has shown an increase in antibiotic resistance in humans and the plausibility of transfer 

of resistant bacteria from animals to humans; however, substantial data are lacking on how much 

this is a consequence of antibiotic use in animals and if it has a significant effect on human 

health. 

 

Government Regulations   

World Organizations 

A 1969 Report of the Joint Committee on the Use of Antibiotics in Animal Husbandry 

and Veterinary Medicine, commonly known as the Swann Report, reported that antimicrobial use 

in food-producing animals poses a hazard to human and animal health.  In the report, a 

recommendation was made to only use antibiotics that are not used as therapeutic agents in 

humans or animals in animal feed (Swann, 1969).  In 1970, a FDA task force report 

recommended antimicrobial drugs used in human medicine should meet certain guidelines to be 

used for growth promotion (FDA, 1970).  This report led to a code of federal regulations that 

required companies to submit research demonstrating their product does not promote bacterial 

drug resistance (FDA, 2000).  The FDA proposed to withdraw approvals for sub-therapeutic uses 

of penicillin and tetracycline in animal feed due to safety issues; however, reports from the 

National Academy of Sciences in 1980 and the Institute of Medicine in 1988 showed there was 

limited epidemiological research and a lack of direct evidence to either prove or disprove the 

safety of these antibiotics (FDA, 2012a). 

Almost a decade later, the World Health Organization (WHO) issued a report in which 

they concluded all uses of antimicrobials led to selection of resistant bacteria and stated a low 
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dose over a longer period of time is more likely to lead to resistance than higher doses over a 

short period of time (WHO, 1997).  The WHO also reported antibiotic resistance has adverse 

effects on human health and steps should be taken towards a more responsible use of antibiotics 

in animals (WHO, 1997).  The United States government accountability office (GAO) published 

a report in 1999 stating that the extent to which bacterial resistance, as a result of antibiotic use 

in animals, has led to human illness or death could not be estimated at that time (GAO, 1999). 

The Food and Agriculture Organization (FAO), the World Organization for Animal 

Health (OIE), and WHO concluded in 2003 there was accumulating evidence of adverse human 

health effects due to resistant bacteria from antimicrobial use in animals, the food borne route is 

the major route of transmission, and the consequences are most severe when the antibiotics are 

critical to humans (FAO, 2003)  Also in 2003, the Institute of Medicine (IOM) recommended the 

FDA ban all antibiotics used for growth promotion that are in the same class as antibiotics used 

in human medicine (IOM, 2003).  

In 2004, FAO, OIE, and WHO released a second joint report recommending the 

establishment of a list of antibiotics deemed critically important to human health.  The report 

also suggested that good agricultural practices could eliminate the need for in-feed antibiotics 

and expressed the necessity for resistance surveillance systems (FAO, 2004).  A 2004 GAO 

report was similar to the second joint report by the FAO, OIE, and WHO.  GAO recommended 

the FDA expedite risk assessments of critically important antibiotics to determine if use of those 

antibiotics should be prohibited in animals and that the Secretary of Agriculture and Health and 

Human Services develop a plan for collecting data on antibiotic use in animals (GAO, 2004).  

The American Academy of Microbiology published a report in 2009 stating that “resistance is a 

natural phenomenon that cannot be eliminated” and recommended an approach to find new ways 
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to deal with current resistance and try to control future resistance by prudent and responsible use 

of antibiotics in animals (American Academy of Microbiology, 2009).  In 2011, the WHO wrote 

a report which included recommendations to eliminate the use of antibiotics for growth 

promotion and require a veterinary prescription for antibiotic use while only using antibiotics 

deemed critically important for humans when justified (WHO, 2011). 

 

Current Documents in the United States 

The FDA has written Guidance for Industry (GFI) documents regarding antimicrobial 

drug use in food-producing animals.  These guidance documents contain non-binding 

recommendations and are intended to help the industry or sponsors develop products which are 

considered safe in regards to human health.  The FDA currently uses GFI #152 regarding 

approval of new antimicrobial drugs for use in animals.  The FDA must determine that the drug 

is safe and effective for its intended use in the animal and that it is safe with regard to human 

health (FDA, 2000).  The FDA defines a drug as “safe” if there is reasonable certainty of no 

harm to human health from the drug’s use in food-producing animals (FDA, 2003).  

Responsibility falls upon the sponsor to provide sufficient evidence of the drug’s safety for the 

FDA to review and either approve or deny its use. 

The recommendations from the WHO in 2011 are reflected in the most recent FDA 

publications.  The FDA’s Center for Veterinary Medicine published a final guidance document 

on April 13, 2012 that describes the rising concern for antimicrobial resistance in humans and 

steps which can be taken to reduce this risk from antibiotic use in animals (FDA, 2012a).  GFI 

#209 recommended two additional principals about the appropriate or judicious use of medically 

important antimicrobial drugs in food-producing animals which were not included in GFI #152.  
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These principles include voluntary adoption of the use of these drugs be limited to those uses that 

are considered necessary for assuring animal health and that antimicrobial use include veterinary 

oversight or consultation (FDA 2012a). 

Antimicrobial drugs for use in feed or water approved prior to 1993 may have been 

approved for over-the-counter use.  Most antimicrobial drugs for use in food-producing animals 

approved after 1993 must have a veterinary prescription or veterinary feed directive (FDA, 

2012b).  In the draft of GFI #213, the FDA recommends drug sponsors voluntarily revise the 

conditions of use for drugs approved prior to 1993.  The FDA states their approach in the 

guidance document is based on the potential of increased bacterial exposure to antimicrobial 

drugs leads to a greater risk of bacterial resistance (FDA, 2012b). 

 

Government regulation outside the United States 

The recommendations are similar from the “Swann Report” in 1969 to the FDA’s GFI in 

2012 (Table 1.1).  Several countries outside the United States have eliminated the use of 

antibiotics for growth promotion.  Sweden banned the use of all antibiotics for growth promotion 

in animals in 1986 (Butaye et al., 2003).  Norway prohibited the use of virginiamycin in 1998 

and Denmark banned it in 1999 (Butaye et al., 2003).  The European Union banned avoparcin in 

1997, bacitracin, spiramycin, tylosin, and virginiamycin in 1999, and passed regulation for the 

phasing out of the use of all antibiotics for growth promotion in farm animals in 2003 

(Regulation 1831/2003).  The European Union ban on all antibiotics used for growth promotion 

went into effect on January 1, 2006. 

These bans were taken as precautionary steps to the possible risk of antibiotic use in 

animals leading to adverse human health consequences.  Attention has focused mainly on 
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consequences of using of antibiotic growth promoters, but little attention has been given to the 

contrary: what are the consequences of discontinuing antibiotic use for growth promotion?  

Some studies have indicated that bacterial illness rates and resistance levels in humans have 

increased since the ban in Europe (Hayes & Jensen, 2003).  Cox (2005) developed a Rapid Risk 

Rating Technique (RRRT) which is a multiplicative, top-down approach that starts with data on 

the number of clinical cases per year and assesses the estimated fraction that would be prevented 

by interventions.  This technique was developed to estimate the impact that antibiotic use in 

animals has on rates of adverse human health effects; it can be viewed as a risk/benefit analysis 

of continued use of antibiotics (Cox, 2005).  Based on the results from the RRRT, Cox 

concluded that the expected human health benefits from continued virginiamycin use are much 

larger than the expected human health risks (Cox, 2005).  This risk assessment was based on 

virginiamycin use in chickens but is estimated to amplify the results if cattle and pigs were 

included. 

 

Resistance to Streptogramins 

Virginiamycin belongs to the antibiotic class Streptogramins.  Quinupristin-dalfopristin 

(QD; trade name: Synercid®) is a semi-synthetic antibiotic which belongs to the same class as 

virginiamycin.  Synercid® was approved for use in the United States in 1999 for treatment of 

Enterococcus faecium infections in humans and Staphylococcus aureus and Streptococcus 

pyogenes skin and soft tissue infections (FDA, 2004).  Vancomycin is the antibiotic most 

frequently used to treat E. faecium infections in humans (Cox, 2005).  In cases where E. faecium 

expresses vancomycin resistance genes, QD may be used to treat vancomycin-resistant E. 

faecium (VREF; Cox, 2005).  QD is considered critically important for human medicine by the 
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WHO (WHO, 2007) and highly important by the FDA (FDA, 2003).  Concerns exist that animals 

given virginiamycin may produce Streptogramin resistant E. faecium (SREF) strains that will 

colonize or transfer genes to enterococci of the human intestine and lead to treatment failures 

(Bafundo et al., 2003). 

Streptogramin resistance was first reported in staphylococci in 1962 (Butaye et al., 2003).  

The Center of Veterinary Medicine conducted a virginiamycin risk assessment investigating 

Streptogramin resistance in E. faecium attributable to the use of Streptogramins in animals 

(FDA, 2004).  The FDA began the risk assessment in 2000 and released a draft in 2004, but a 

final document was never published.  The  FDA’s preliminary conclusions in the draft included: 

(1) SREF has been found in poultry and swine from the United States and Europe and appears to 

be related to the usage of virginiamycin on farms; (2) resistant bacteria has been found on food 

animal products from retail sources; (3) resistance occurs at low frequencies in the non-

hospitalized population; (4) transfer of resistance from animal to human via food is biologically 

plausible but the extent cannot be currently estimated; and (5) SREF isolates from animals are 

associated with high level resistance but not in humans (FDA, 2004).  The FDA also calculated 

risk assessments for the population and reported that if 10% of resistant-E. faecium is a result of 

virginiamycin use in animals, a person in the United States has an estimated 14 in 100 million to 

7 in 1 billion chance of having impaired Synercid® therapy.  If 100% of resistant-E. faecium 

result from virginiamycin use in animals, the estimated number of impaired Synercid® therapy 

cases would increase 10-fold (FDA, 2004).  

Research investigating the prevalence of virginiamycin-resistant bacteria in swine in the 

United States is limited.  European studies have demonstrated resistance to streptogramins in up 

to 60% of isolates from poultry, swine, and cattle, whereas, Australian studies have observed 
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only a 10 to 20% rate of resistant bacteria (Kieke et al., 2006).  Some studies have shown a 

decrease in virginiamycin-resistant E. faecium in broilers in Denmark after the banning of 

antimicrobial growth promoters (Aarestrup et al., 2001; Emborg et al., 2003).  Resistance may 

occur within the animal and in isolates obtained from the animal, but it can also occur in water 

run-off from production farms.  Sapkota and colleagues (2007) observed a higher percentage of 

virginiamycin resistant enterococci isolated from surface waters down-gradient from a swine 

facility compared with up-gradient from the facility.  

The risks of either banning or continued use of virginiamycin on human health have not 

been fully evaluated.  While there are indications that antibiotic use in animals could potentially 

have adverse human health effects, there is not a clear, definite connection between antibiotic use 

in animals causing critical human illness.  It is vital to keep investigating the relationship 

between antibiotic use in animals and human health.  An important component is to better 

understand the mechanisms by which antibiotics promote growth.   

 

Streptogramins Mechanism of Action 

Virginiamycin belongs to the class Streptogramins that are naturally occurring 

compounds produced predominately by members of the genus Streptomyces (FDA, 2004).  

Streptogramins include two types, A and B, and virginiamycin is a mixture of both components 

termed virginiamycin M and virginiamycin S, respectively.  Individually the A and B 

components only cause bacteriostasis, but together they are bactericidal (Abou-Youssef et al., 

1979; Butaye et al., 2003).  Virginiamycin binds to bacterial 23S rRNA of the 50S ribosomal 

subunit, interfering with peptidyltransferase activity and inhibiting protein synthesis, resulting in 

cell death (Cocito et al., 1997; FDA, 2004).  The A component inhibits the elongation phase in 
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ribosomal assemblage of the protein by interfering with peptidyltransferase function and triggers 

a conformational change in the ribosome which increases binding affinity for component B 

(Bouanchaud, 1997; Cocito et al., 1974).  The B component prevents extension of polypeptides 

and induces detachment of incomplete protein chains (Chinali et al., 1988).  Streptogramins have 

a narrow-spectrum including gram positive bacteria (mainly staphylococci, streptococci, and 

enterococci) and some gram negative cocci.  Most gram negative bacteria are naturally resistant 

due to impermeability of their cell wall (Butaye et al., 2003; Goto et al., 1992). 

 

Antibiotic Modes of Action for Growth Promotion 

The proposed mechanisms by which antibiotics work as growth promoters are mainly 

described under three categories: metabolic, nutritional, and disease-control effects (Figure 1.2).  

Metabolic processes that are directly influenced by antibiotics fall within the metabolic effect 

category.  Research has shown that antibiotics can increase water and nitrogen excretion, liver 

protein synthesis, and gut alkaline phosphatase and decrease fatty acid oxidation, 

phosphorylation reactions, and bile degradation products (Braude & Johnson, 1953; Brody et al., 

1954; Gaskins et al., 2002; Hash et al., 1964; Moser et al., 1980; Weinberg, 1957). 

The nutrition effect includes several proposed mechanisms (Table 1.2).  One mechanism 

is that antibiotics can cause a shift in the microbial population of the gut, which may increase the 

availability of nutrients to the host.  A second proposed mechanism is the protection against 

thickening of the intestinal epithelium secondary to an immune response to intestinal insult, 

resulting in protection of nutrient absorption capacity (Braude et al., 1955; Henderickx et al., 

1981; Niewold, 2007).  A third mechanism is a reduction in gut mass resulting in lower energy 
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expenditure for gut maintenance; therefore, more energy is available for growth (Braude et al., 

1955; Koong et al., 1982; Webster, 1981).  

The disease-control effect is the most widely accepted theory on how antibiotics promote 

growth in animals.  Early research has focused on this concept.  Evidence noted to support this 

effect is that younger animals, whom are more susceptible to infection, have a greater growth 

response to antibiotics than older animals and growth response to antibiotics is greater when 

hygiene is poor (Visek, 1978).  The disease control effect includes suppressing disease-causing 

organisms and production of bacterial toxins, therefore, inhibition of sub-clinical infections 

(Butaye et al., 2003; Carlson & Fangman, 2000; Cocito, 1979; Feighner & Dashkevicz, 1987; 

Gaskins et al., 2002; Hays, 1981). 

 

Impact on the Microbiota and Microbial Products 

Many of the proposed mechanisms of action relate to changes in the microbiota and, 

therefore, changes in products produced by intestinal microbiota.  Much of the early research has 

focused on changes associated with the intestinal microbiota.  The generally accepted hypothesis 

is that “antibiotics improve efficiency of animal growth via inhibition of normal microbiota, 

leading to increased nutrient utilization and reduction in maintenance costs of the gastrointestinal 

system” (Gaskins et al., 2002). 

Virginiamycin decreases the number of lactobacilli in the upper gastrointestinal tract in 

pigs (Agudelo et al., 2007; Decuypere et al., 1973; Langlois et al., 1978).  Song and colleagues 

(2008) observed a reduction in the total number of bacterial cells in ileal digesta and feces with a 

reduction in some bacterial species in ileal digesta of growing pigs fed diets supplemented with 

virginiamycin.  In vitro data confirm that virginiamycin decreases lactobacilli in gastric and ileal 
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contents (van Assche et al., 1975; Vervaeke et al., 1979).  Lactobacilli are one of the main 

producers of lactic acid, which is the major end product of microbial carbohydrate metabolism.  

Virginiamycin has also been shown to reduce lactic acid production to 30% of control pigs and 

eliminate lactic acid production in vitro (Hedde et al., 1981; van Assche et al., 1975).  A 

reduction in lactic acid indicates a reduction in glucose utilization by gut bacteria, which has 

been demonstrated in vitro (Hedde & Lindsey, 1986).  Langlois and colleagues (1978) found that 

the differences in lactobacilli were not sustained when virginiamycin was removed from the diet.  

These findings indicate that supplementation with virginiamycin has a direct effect on the 

microbiota and result in more glucose available to the pig for digestion and absorption. 

Agudelo and colleagues (2007) observed significant decreases in lactobacilli in ileal 

contents of pigs fed virginiamycin supplemented diets with normal phosphorus content, but they 

did not obverse a reduction in pigs fed a phosphorus-deficient diet supplemented with 

virginiamycin.  They also reported a numerical increase in phytate-utilizing bacteria in 

virginiamycin fed pigs compared with pigs fed diets without virginiamycin in both normal and 

phosphate-deficient diets (12.45% and 17.2%, respectively).  This group is the first to report the 

effect of virginiamycin on phytate-utilizing bacteria. 

Virginiamycin reduced ammonia production by 50% compared with control in vitro (van 

Assche et al., 1975).  Dierick and colleagues (1986) demonstrated that virginiamycin-fed pigs 

had 10% and 15% less ammonia in the small and large intestine, respectively.  Ammonia and 

amines are products of the decarboxylation of amino acids and are toxic, which is not supportive 

of digestion and absorption.  Virginiamycin has been shown to reduce amine production in pigs 

(Henderickx et al., 1993).  Escherichia coli is a gram negative bacterium that is a major producer 

of amines; however, virginiamycin is not active against E. coli.  Henderickx and colleagues 
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(1993) proposed the reduction in amine production is a result of increased acidity mediated by 

lactobacilli.  A reduction in ammonia and amines indicate a reduction in the loss of amino acids 

and, therefore, an increase in amino acids available for the host animal. 

Volatile fatty acid production in gastric and ileal contents has been shown to be 50% 

lower in virginiamycin fed pigs that that of pigs fed diets without virginiamycin (Hedde et al., 

1981; Vervaeke et al., 1979).  Some researchers have shown a slight increase in coliforms in the 

gastrointestinal tracts of pigs fed diets supplemented with virginiamycin (Decuypere et al., 1973; 

Langlois et al., 1978).  However, Vervaeke and colleagues (1979) failed to show a difference in 

coliforms in gastric and ileal contents.  Additionally, differences in coliforms and lactobacilli 

were not sustained when virginiamycin was removed from the diet (Langlois et al., 1978).  These 

findings indicate that antibiotics may have direct, immediate effects on the microbiota that are 

not sustained once removed from the diet. 

 

Impact on Immune Response 

As stated previously, a large portion of the literature has focused on direct antibiotic 

effects on the microbial population and products.  A more recent proposal is a direct effect on the 

immune response with an indirect effect on the microbiota.  Niewold (2007) proposed a concept 

where antibiotics work to permit growth by inhibiting the production and excretion of catabolic 

mediators by intestinal inflammatory cells.  Niewold (2007) believes the changes observed in the 

microbiota are a result of altered conditions of the intestinal tissue.  Niewold supports this theory 

by interpreting previous microbiota studies in a different manner.  Antibiotics accumulate in 

inflammatory cells (Labro, 1998; 2000; van den Broek, 1989), which results in lower levels of 

proinflammatory cytokines and a lower catabolic stimulus; thus, energy is spared in the animal 
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and can be used for growth.  Intestinal inflammation results from the accumulation of 

inflammatory cells in the mucosa and leads to thicker intestinal epithelium.  The thinner 

intestinal tissue cited for improved nutrient absorption could be reduced inflammation resulting 

from reduced influx and accumulation of inflammatory cells (Larsson, 2006).  Therefore, 

Niewold proposed that antibiotics directly impact the immune response with secondary effects 

on the microbiota. 

 

Impact on Rate of Nutrient Passage and Nutrient Digestibility 

Researchers have investigated the influence of antibiotics on rate of passage and 

digestibility of energy, protein, and some minerals.  These variables are commonly viewed as 

secondary effects of antibiotics.  Rate of passage has been studied in virginiamycin fed pigs.  

Fausch (1981) reported the average time of passage was 4 to 11% longer in pigs fed 11 mg/kg of 

virginiamycin for one week compared with control.  This was in agreement with Hedde and 

colleagues (1981) and Ravindran and colleagues (1984) who demonstrated slower passage rates 

(2.6 to 29% longer) in grower and finisher pigs fed virginiamycin.  A slower rate of passage of 

feed through the intestine indicates more time for digestion and absorption that could lead to 

increased uptake and improved feed efficiency. 

Virginiamycin improves apparent digestibility of amino acids in the small intestine of 

pigs by up to 9% compared with controls (Decuypere et al., 1978; Dierick et al., 1986; Stewart et 

al., 2010).  Virginiamycin increased ileal digestibility of nitrogen, lysine, glycine, valine, and 

methionine by 1.4 to 4.8% compared with control (Dierick et al., 1986).  Dierick and colleagues 

(1986) also observed an inhibition of amino acid breakdown in the small intestine and increased 

nitrogen retention.  Digestibility of dry matter and energy are improved in pigs fed diets 
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supplemented with 11 mg/kg of virginiamycin (Agudelo et al., 2007; Lindemann et al., 2002; 

Ravindran et al., 1984).  Increased mineral digestibility and retention have also been shown in 

pigs fed virginiamycin (Agudelo et al., 2007; Lindemann et al., 2002).  Virginiamycin 

supplemented at 11 mg/kg diet has been shown to improve digestibility and retention of 

magnesium, copper, zinc, and manganese by 17 to 45% (Ravindran et al., 1984).  An increase in 

ileal digestibility by 3.3 to 5% has also been demonstrated for calcium, phosphorus, and zinc 

with virginiamycin supplementation in pigs (Agudelo et al., 2007; Lindemann et al., 2002).  

Increased utilization of phosphorus may provide an economic benefit via a reduction in inorganic 

phosphorus required in feed (Agudelo et al., 2007).  Improved digestibility of energy, protein, 

and minerals indicate that pigs fed virginiamycin are able to utilize feed more efficiently and 

able to gain weight at a faster rate than pigs fed diets without virginiamycin. 

 Stewart and colleagues (2010) were the first to investigate amino acid digestibility in 

corn-soybean meal diets.  Grower pigs were fed diets supplemented with 11 or 22 mg/kg of 

virginiamycin for four weeks.  Virginiamycin supplemented at 11 mg/kg diet improved apparent 

ileal digestibility of all indispensable amino acids, except arginine, histadine, and leucin by 2 to 

6.7%.  Virginiamycin also improved apparent ileal digestibility of alanine, proline, and tyrosine.  

Virginiamycin supplemented at 22 mg/kg diet improved apparent ileal digestibility of tryptophan 

and valine during the four weeks of feeding.  These effects were lost in all but lysine and 

tryptophan when virginiamycin was removed from the diet for two weeks (Stewart et al., 2010).  

The loss of effect when virginiamycin is removed for the diet indicates a more direct effect of 

virginiamycin on nutrient digestibility.  Increased amino acid digestibility with virginiamycin 

indicates this may be a mode by which virginiamycin promotes growth in pigs. 
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Impact on Intestinal Structure 

Virginiamycin has been shown to impact the microflora of pigs and influence 

digestibility and rate of passage.  Few studies have investigated the impact of in-feed antibiotics 

on pig intestinal structure.  Only one research project was found in the literature to report 

virginiamycin and intestinal structure in pigs (van Leeuwen et al., 2002).  Pigs weaned at 21 days 

of age were fed diets containing either 0 or 40 mg/kg of virginiamycin for 32 days, starting at 

seven days post-weaning.  At day 31 post-weaning, pigs were challenged with E. coli.  The 

section observed was mid-jejunum taken 5.5 meters distal from the ligament of Treitz.  Crypt 

depth was significantly decreased and the number of crypt goblet cells was significantly 

increased in the virginiamycin group.  In the second trial, pigs were fed for 14 days starting on 

day fourteen post-weaning.  The virginiamycin-fed pigs had longer villi, but crypt depth was 

unchanged (van Leeuwen et al., 2002). 

 

Impact on Nutrient Transport 

 Few studies have investigated the impact of in-feed antibiotics on nutrient transport in 

pigs.  No reports were found in the literature on virginiamycin and nutrient transport in pigs.  

Walsh and colleagues (2012) recently published a study investigating the antibiotic carbadox in 

newly weaned pigs and nutrient transport before and after a Salmonella challenge.  Carbadox-fed 

piglets had less glucose, phosphorus, and glutamine transport at 7 days post weaning compared 

with control pigs, but transport did not differ at any time post-Salmonella challenge (Walsh et al., 

2012).  Several gut-associated changes occur during weaning so comparability between nutrient 

transport data in weaning piglets and grower pigs may be limited. 
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Thesis objective 

The effects of in-feed antibiotics on growth and feed conversion have been known for 

decades.  However, the mechanisms by which this occurs are not well defined.  In lieu of recent 

debates on the safety of public health in relation to antibiotic-fed animals, it is important to 

understand the mechanisms by which these antibiotics work.  Beneficial effects of in-feed 

antibiotics on energy and nitrogen utilization have been shown in several animal species, 

including swine (Dierick et al., 1986; Vervaeke et al., 1979).  Previous studies on the nutritional 

effect of in-feed antibiotic have focused on digestibility and utilization of protein, energy, and 

phosphorus.  To our knowledge, no study has investigated the effect of virginiamycin on 

intestinal structure and nutrient and ion transport in grower pigs.  Therefore, our study aimed to 

investigate the structural and functional indices of the intestine in grower pigs feed corn-soybean 

diets supplemented with virginiamycin.  We hypothesized that diets with virginiamycin would 

increase intestinal surface area and nutrient processing capacity compared with diets without 

virginiamycin.  The mechanism by which in-feed antibiotics promote growth in pigs is most 

likely multifaceted and intestinal structure and function is an important component in 

determining the true manner of virginiamycin. 
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Table 1.1 Summary of agencies’ conclusions, recommendations, and actions from 1969 to 2012 regarding antibiotic use in food-producing 

animals1   

Year Organization Conclusion Recommendation/Action 

1969 
Joint 

Committee2 

Antimicrobial use in food-producing 

animals poses a hazard to human and 

animal health 

1. Only use antibiotics in animal feed that are not used as 

therapeutic agents in humans or animals 

1970 FDA  

1. Antimicrobial drugs used in human medicine should meet 

certain guidelines to be used for growth promotion 

2. Resulted in code of federal regulations that require 

companies to submit research demonstrating product does 

not promote bacterial drug resistance 

1980 NAS 

Limited epidemiological research 

available on antimicrobials in animal 

feed 

1. Gain evidence to either prove or disprove the safety of 

penicillin and tetracycline use in animals 

1988 IOM 

Unable to find direct evidence that 

penicillin or tetracycline in animal feed 

propose a human health hazard 

1. Further study on antibiotic use in animals and associated 

human health effects 

1997 WHO 

All uses of antimicrobials led to 

selection of resistant bacteria 

 

1. Do not use same drugs used in humans or with known cross-

resistance to antimicrobials used in humans 

2. Develop a systematic approach to replacing antimicrobials 

3. Risk management needed including prudent use of 

antibiotics, education and veterinary approval 

1999 NRC  

1. Establish national databases to support policy development 

for approval and use of antibiotics in animals 

2. FDA establish panel of experts for oversight of development 

and use of antibiotics 

1999 GAO 

Extent to which bacterial resistance, as a 

result of antibiotic use in animals, has 

led to human illness or death cannot be 

estimated at this time 

1. Departments of Agriculture and Health and Human Services 

work together to develop a plan to determine use of 

antibiotics in agriculture 
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Table 1.1 Continued  

Year Organization Conclusion Recommendation/Action 

1999 ECR 
Actions should be taken promptly to 

reduce overall use of antimicrobials 

1. Antimicrobials used prudently 

2. Research new ways to prevent and treat infections 

2003 
FAO/OIE/ 

WHO 

There is accumulating evidence of 

adverse human health effects due to 

resistant bacteria from antimicrobial use 

in animals 

1. WHO appoint a group of experts and develop risk 

assessments 

2. Codex collaborate with OIE for a risk management system 

2003 IOM 

Determined 13 factors that account for 

the emergence of new or enhanced 

microbial threats 

1. FDA ban all antibiotics used for growth promotion that are 

in the same class as antibiotics used in human medicine 

2003 
FDA 

(GFI#152) 
 

1. FDA must determine that a drug is safe and effective for its 

intended use in animals and safe with regard to human health 

2004 
FAO/OIE/ 

WHO 

Good agricultural practices could 

eliminate the need for in-feed antibiotics 

1. Establish a list of antibiotics deemed critically important to 

human health by WHO 

2. Implement resistance surveillance systems 

3. Codex/OIE task force to develop risk management options 

2004 GAO 
Resistant bacteria can be transferred and 

may pose a threat to human health 

1. FDA expedite risk assessments of critically important 

antibiotics to see if use of those antibiotics should be 

prohibited in animals 

2. Secretary of Agriculture and Human and Health Services 

develop a plan for collecting data on antibiotic use in 

animals 

2005 Codex 

Provided guidance for the responsible 

and prudent use of antimicrobials in 

animals 

1. Veterinary prescription for antibiotic use 

2. Do not use antibiotics for growth promotion if cross-

resistance occurs 

2009 AAM 
Resistance is natural phenomenon that 

cannot be eliminated 

1. Find new ways to deal with current resistance 

2. Try to control future resistance by prudent and responsible 

use of antibiotics in animals 
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Table 1.1 Continued 

Year Organization Conclusion Recommendation/Action 

2011 WHO 

Approach a solution to antibiotic 

resistance in a holistic and multifaceted 

manner 

1. Eliminate the use of antibiotics for growth promotion 

2. Require veterinary prescription for antibiotics use and only 

use antibiotics deemed critically important for humans when 

justified 

2012 
FDA 

(GFI#209) 

Antimicrobial resistance in humans is a 

rising concern 

1. Voluntary adoption of limiting use of medically important 

drugs to times when they are necessary for assuring animal 

health 

2. Veterinary oversight or consultation for antimicrobial use 

1Abbreviations: NAS, National Academy of Sciences; IOM, Institute of Medicine; WHO, World Health Organization; NRC, National 

Research Council; GAO, U.S. Government Accountability Office; ECR, European Commission Report; FAO, Food and Agriculture 

Organization; OIE, World Organization for Animal Health; AAM, American Academy of Microbiology  
2The Joint Committee on the Use of Antibiotics in Animal Husbandry and Veterinary Medicine, Her Majesty’s Stationery Office 
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Table 1.2 Mechanisms by which in-feed antibiotics may promote growth in animals 

Mechanism Result 

Shifts in microbiota Decrease in microbial use of nutrients resulting in increased nutrients 

available to the host 

Decrease in pathogenic microbiota 

Decrease in toxic products 

Immunity Lower levels of proinflammatory cytokines 

Reduced influx of inflammatory cells into the mucosa 

Transit time Slower digesta passage rate resulting in increased time for absorption 

Nutrient digestibility Increased digestibility of protein, energy, and minerals 

Intestinal structure Increase in absorptive surface area 

Nutrient transport Increased nutrient uptake via increased surface area or up-regulation of 

nutrient transporters 
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Figure 1.1 Percent improvement in daily gain and feed per unit of gain in 

swine fed in-feed antibiotics over pigs fed diets without antibiotics.  

Antibiotics improve daily gain in pigs by 16.4% during the starter period, 

10.6% during the grower period, and 4.2% during the entire grower-finisher 

period.  Antibiotics improve feed per unit of gain in pigs by 6.9% during the 

starter period, 4.5% during the grower period, and 2.2% during the entire 

grower-finisher period.  Adapted from Cromwell, 2002. 
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Metabolic 

• Increase 

• Water and nitrogen excretion 

• Liver protein synthesis 

• Gut alkaline phosphatase 

• Decrease 

• Fatty acid oxidation 

• Phosphorylation reactions 

• Bile degradation products 

Nutritional 

• Increase 

• Nutrient availability via shifts in 
microbiota 

• Digestibility of nutrients 

• Absorption of nutrients 

Disease-Control 

• Decrease 

• Disease-causing organisms 

• Sub-clinical infections 

Figure 1.2 The three categories of mechanisms by which subtherapeutic levels of antibiotics may promote growth in animals. (Braude & 

Johnson, 1953; 1955; Brody et al., 1954; Butaye et al., 2003; Carlson & Fangman, 2000; Cocito, 1979; Feighner & Daskevicz, 1987; 

Gaskins et al., 2002; Hash et al., 1964; Hays, 1978; Henderickx et al., 1981; Koong et al., 1982; Moser et al., 1980; Webster, 1981; 

Weinberg, 1957) 



26 

 

Chapter 2: Impact of Virginiamycin on the Development of Intestinal Structure and 

Functional Capacity in Growing Pigs 

Introduction 

 Growth promoting effects of antibiotics are well documented in several animal species, 

including swine.  However, the mechanisms behind how these antibiotics enhance growth and 

feed efficiency are not completely understood.  Increasing public concern about antibiotic 

resistance has led to increased political pressure to determine if antibiotic use in animals plays a 

role in antibiotic resistance and potential treatment failure in humans. Understanding the 

mechanisms behind antibiotic growth promoters will aid in determining the relationship between 

in-feed antibiotic use in animals and human health. 

 The proposed mechanisms by which antibiotics promote growth are described in three 

main categories including metabolic, nutritional, and disease control effects (Gaskins et al., 

2002).  Early research mainly focused on how antibiotics suppress the growth of pathogenic 

antibiotics while more recent research has investigated the nutritional effects of antibiotics.  The 

impacts of in-feed antibiotics on shifts in microbial populations, nutrient availability, rate of 

passage, and nutrient digestibility have been investigated.  However, little research has been 

done on the impact of antibiotics on intestinal structure and nutrient transport capacity. 

 Virginiamycin, approved for use in the United States in 1975, is an in-feed antibiotic used 

for swine (FDA, 2004).  Virginiamycin improves average daily gain and feed efficiency in swine 

(Gaines et al., 2005; Gramm et al., 2006; Hays, 1981; Lewis & Giesemann, 1991; Schinckel, 

1993; Zimmerman, 1986).  Research has shown that virginiamycin reduces lactic acid bacteria, 

ammonia production, and volatile fatty acid production (Agudelo et al., 2007; Decuypere et al., 

1973; Hedde et al., 1981; Henderickx et al., 1993; Langlois et al., 1978; van Assche et al., 1975; 



27 

 

Vervaeke et al., 1979).  Virginiamycin also reduces the rate of passage (Fausch, 1981; Hedde et 

al., 1981; Ravindran et al., 1984) and improves ileal digestibility of nutrients in pigs (Agudelo et 

al., 2007; Decuypere et al., 1978; Dierick et al., 1986; Lindemann et al., 2002; Stewart et al., 

2010).  Research has shown impacts of virginiamycin within the gastrointestinal tract, but the 

exact mechanisms behind virginiamycin remain largely unknown. 

 The overall objective of this study was to assess the structural and functional 

developments induced in the intestine by the consumption of virginiamycin in grower pigs and to 

determine how these developments may be mechanistically related to the differences in growth 

observed among treatments.  We examined the hypothesis that feeding grower pigs diets with 

virginiamycin is associated with increased intestinal surface area and nutrient processing 

capacity compared with pigs consuming diets without virginiamycin. 

 

Materials and Methods 

Experimental Design 

All animal procedures were approved by the Illinois Institutional Animal Care and Use 

Committee at the University of Illinois Urbana-Champaign.  These piglets were the first 

generation of pigs housed in clean facilities following a depopulation and extensive cleaning at 

the Swine Research Center at the University of Illinois at Urbana-Champaign.  These piglets 

were given one injection of Excede® (ceftiofur crystalline free acid) after birth, weaned at 3 

weeks of age and raised in a weaning facility consuming a non-medicated swine weaning diet.  

At allocation, littermate barrows with similar body weight (n=72; 23.0±1.3 kg; pigs nine weeks 

of age) were randomized to pens in a grower facility.  Pens were randomized to one of three 

treatment groups: 1) a basal corn-soybean meal diet, 2) the basal diet + 11 mg/kg of 
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virginiamycin, or 3) the basal diet + 27.5 mg/kg of virginiamycin.  Within each pen, pigs were 

further randomized to a time point (7 or 14 days).  The control diet was fed to all pigs during 

their acclimation to the new environment from allocation to experimental day zero (3 to 4 days).  

The experiments were conducted in three replicates (n=24 pigs/replicate, 4 pigs/pen, 2 

pens/treatment/replicate).  Feed was a basal corn-soybean meal swine grower diet (Table 2.1).  

Feed was mixed and divided before adding virginiamycin.  Before the trial began, feed 

medication assays were conducted to ensure proper levels of antibiotic in each feed (0, 11, and 

27.5 mg/kg of virginiamycin).  Virginiamycin at the 11 mg/kg diet level is currently approved 

for use in pigs up to 120 pounds for growth promotion and feed efficiency.  Virginiamycin at the 

27.5 mg/kg diet level is currently approved for use in pigs up to 120 pounds for prevention of 

swine dysentery.  These levels of virginiamycin were chosen, in conjunction with our funding 

agency, to understand the impacts on intestinal function and structure at the level used for 

improved performance and for prevention of disease. 

 

Body Weight and Feed Intake 

Pigs were allowed to consume the feed and water ad libitum.  Pigs were weighed 

individually on allocation day, experimental day zero, and every other day throughout the study 

with final body weight taken on euthanasia day.  Feeders were weighed empty, before adding 

feed, and every other day to record feed consumption of each pen.  Feed bags were weighed 

before being added to the feeder.  Feed intake and feed per unit of gain were assessed by pen 

because individual assessment was not feasible.  Total feed intake for each pen was divided by 

the number of pigs in the pen and then divided by the number of days to determine average daily 

feed intake per pig.  For each individual pig, final weight was subtracted from day zero weight 
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and divided by days of treatment to determine daily weight gain.  Daily weight gain and feed 

intake was averaged within pens.  Average daily feed intake per pig was divided by average 

daily weight gain to determine feed per unit of gain. 

 

Sample Collection 

After the specified time period (7 or 14 days), a telazol, ketamine, and xylazine 

intramuscular anesthetic was followed by intravenous sodium pentobarbital (Fatal Plus; Vortech 

Pharmaceuticals, Chicago, IL) for euthanasia.  The intestine was quickly removed starting with 

the duodenum excised proximal to the ligament of Treitz and distal of the stomach.  The intestine 

distal to the ligament of Treitz and proximal to the ileocecal valve was removed and divided 

equally in half with the proximal half designated as jejunum and distal half designated as ileum.  

The entire large intestine was removed distal to the ileocecal valve.  Segments were flushed with 

ice-cold saline and weighed.  The length of duodenum was measured by suspending it 

longitudinally with a 10 g weight attached to the distal end while the remaining segments were 

laid out and measured with a measuring tape.  Sample location was consistent among pigs to 

reduce variation due to sampling location.  A 4-cm sample of each intestinal segment was taken 

and placed in oxygenated Kreb’s for electrophysiological analysis.  Two 1-cm samples of each 

segment were immediately snap frozen in liquid nitrogen and stored at -80°C for analysis of 

DNA, RNA, protein, and disaccharidase activity.  A 1-cm section of each segment was scraped 

free of mucosa and placed on separate slides for mucosa and submucosa weight.  An additional 

1-cm section of each segment was opened longitudinally, stapled to a square of cardstock at the 

proximal and distal ends, mucosa side up, and placed in 10% neutral buffered formalin (Sigma-

Aldrich, St. Louis, MO) for histomorphology and immunohistochemistry analysis. 
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Mucosa and Submucosa Mass 

Mucosal and submucosal mass was determined gravimetrically by desiccating samples on 

glass slides and subtracting the mass of the slide from that of slide plus sample.  Glass slides 

were dried in an oven at 120°C for 10 minutes, cooled in a desiccator with a vacuum for 10 

minutes, and weighed.  Intestinal samples of a specific length were collected as described above.  

Samples sat at room temperature for at least 24 hours and were then dried for one hour in a 

drying oven at 95°C.  Samples were removed from the oven and immediately placed in a 

desiccator for one hour.  Samples were then removed and weighed immediately. 

 

DNA, Protein, RNA Quantification 

Intestinal homogenates for DNA and protein quantification were prepared with 0.25 g 

intestinal tissue into 1 ml of  diethyl pyrocarbonate (DEPC; 2 mL/L; Sigma-Aldrich, St. Louis, 

MO) homogenized (Tissue Tearor, model 23 985370, BioSpec Products Inc., Bartlesville, OK) 

individually for 30 seconds.  After preparing the appropriate dilution, DNA content of the 

intestinal samples was determined using the Hoechst microplate method (Latt & Stetten, 1976).  

Briefly, each well of a black 96-well microplate (Fisher Scientific, Pittsburg, PA) was filled with 

8 µl of intesinal homogenate or prepared herring sperm standard and 200 µl of a buffer solution 

containing 10 mM Tris, 1 mM EDTA, 200 mM NaCl, and 1.6 nmol 33258 bisBenzimide 

Hoechst dye (Sigma B2883) at pH 7.4.  Intestinal DNA concentration was quantified in sample 

homogenate using fluorescence at an excitation of 360 nm, emission of 450 nm (SpectraMax 

Gemini XS  fluorometer, Molecular Devices, Sunnyvale, CA), and standard curve methodology 

with a  Herring sperm DNA standard (PromegaD1811, Madison, WI).   
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Intestinal protein concentration was determined using the BSA method (Pierce 

Biotechnology, Rockford, IL) following the manufacturer’s protocol.  Briefly, each well of a 96-

well plate was filled with 25 μl of each standard or sample replicate and 200 μl of the working 

reagent.  The plate was placed on a plate shaker for 30 seconds and then covered and incubated 

at 37°C for 30 minutes.  The plate was cooled to room temperature and the absorbance was 

measured at 562 nm using a SpectraMax Plus 384 (Molecular Devices LLC., Sunnyvale, CA).  

Protein concentration was calculated from a bovine serum albumin (Sigma) standard curve. 

RNA concentration was determined spectrophotometrically.  RNA was isolated from 

intestinal tissue samples using TRIzol® reagent (Life Technologies, Inc., Gaithersburg, MD), 

according to the manufacturer’s specifications.  An overnight cleaning step was performed by 

adding 10 μL of 3M sodium acetate at pH 5.2 and 250 μL of 100% ethanol to samples, briefly 

vortexing and placing samples in a -20°C freezer.  The following morning, samples were 

centrifuged for 15 minutes and the resulting pellet was washed an additional time with 75% 

ethanol.  Total RNA was quantified with a NanoDrop 1000 spectrophotometer (Thermo Fisher 

Scientific Inc, Waltham, MA) at OD260 absorbance, and purity was assessed by determining the 

OD260/OD280 and OD260/OD230 ratios. 

 

Morphometric Analysis of the Mucosal Architecture 

Intestinal sections were fixed in formalin and then transferred to 50% ethanol.  Samples 

were infiltrated with paraffin wax and sectioned to approximately 5 μm thickness with a 

microtome.  Slides were cleared of paraffin with xylene and then rehydrated with a series of 

ethanol washes (100%, 95%, 80%).  Slides were rinsed in tap water for 4 minutes.  Hematoxylin 

stain was applied for 3 minutes, acid ethanol for 15 seconds, and Scott’s Bluing solution for 4 
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minutes.  Slides were washed with water between each application.  Slides were then dehydrated 

in increasing ethanol baths (80%, 95%, 100%) and Eosin Y (diluted 50% in 95% EtOH) was 

applied for 30 seconds in the middle of the 95% EtOH bath.  Slides were placed in xylene and 

cover slipped.  Sections were visualized with Nanozoomer Slide Scanner Digital Pathology 

System (Hamamatsu, Bridgewater, NJ) and NDP View imaging software.  Villus height, mid-

villus width and crypt depth were measured in 8 to 20 vertically well-orientated villi and crypts 

within each sample.  Villus surface area was calculated for each villus by multiplying villus 

height by villus width. 

 

Epithelial Cell Proliferation 

The immunohistochemical detection of proliferating cell nuclear antigen (PCNA) was 

used as an index of crypt cell proliferation.  Formalin-fixed, paraffin-embedded sections sliced to 

approximately 5 µm thickness were cleared of paraffin with xylene and then rehydrated through 

graded ethanol washes (100%, 95%, 80%, and 70%).  Slides were then rinsed in tap water for 5 

minutes.  Antigen retrieval was performed by placing slides in a 95°C citrate buffer (10mM citric 

acid, 0.05% Tween 20, pH 6.0, Sigma-Alrdich, St. Louis, MO) bath for 5 minutes.  After 5 

minutes, the citrate bath with slides was placed at room temperature for 20 minutes followed by 

two-5 minute washes in room temperature phosphate buffered saline (PBS; 2 mM Na2H2PO4 

H2O, 8.5 mM Na2HPO4, 1.5 mM NaCl, pH 7.4).  Endogenous peroxidase activity was quenched 

with 3% hydrogen peroxide (Fisher Scientific) for 10 minutes followed by two-5 minute washes 

in PBS.  Five percent normal horse serum (NHS) was applied to the slides for 20 minutes to 

block non-specific binding sites and then slides were incubated for 60 minutes with primary 

PCNA antibody (Millipore Billerica, MA) diluted 1:325 in 1% NHS PBS.  A biotinylated 
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universal secondary antibody and ABC complex (Vectastain Elite ABC kit, Vector, Burlingame, 

CA) were prepared and utilized according to manufacturers’ instructions.  Slides were washed 

twice for 5 minutes after each application of the primary and secondary antibodies, and ABC 

complex.  Finally, sections were stained for 3 to 4 minutes with VIP (Peroxidase Substrate Kit, 

Vector), dehydrated in increasing ethanol baths (70-100%), finishing with xylene and cover 

slipped.  Nanozoomer Slide Scanner Digital Pathology System and NDP View imaging software 

were used to capture images at 20x magnification.  PCNA positive cells in 8-10 well-oriented 

crypts of each sample were counted using ImageJ software (National Institutes of Health, 

Bethseda, MD). 

 

Disaccharidase Specific Activity 

Intestinal homogenates were prepared with 0.25 g intestinal tissue into 1 mL of 

homogenation buffer containing protease inhibitors (0.45 mol/L sodium chloride, 0.001 mol/L 

phenylmethylsulfonyfluoride, 0.002 mol/L iodoacetic acid).  After preparing the appropriate 

dilution in homogenation buffer (50 ul homogenate + 50 ul buffer), sucrase and lactase specific 

activities were determined by the method of Dahlquist (Messer & Dahlqvist, 1966).  Briefly, the 

intestinal homogenates were incubated in either lactose or sucrose buffer for 60 minutes at 37°C.  

The hydrolysis of the disaccharide by the action of the disaccharidase in the tissue homogenate 

was stopped by the addition of 2.0% zinc sulfate and 1.8% barium hydroxide.  Following 

centrifugation and transfer of supernatant to a 96-well microplate, the amount of glucose released 

was detected with a glucose oxidase reagent (Thermo Scientific, Middletown, VA) using a 

microplate spectrophotometer (Molecular Devices, Sunnyvale, CA).  Liberated glucose was 

quantified using standard curve methodology after subtracting each sample’s internal control for 
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endogenous glucose.  Disaccharidase activity was normalized to cellular protein content of the 

same homogenate as measured by BCA assay and expressed as the amount of glucose release per 

hour per milligram of protein. 

 

Mucosal Ion and Nutrient Transport 

Modified Ussing chambers (Physiologic Instruments, San Diego, CA) were used for 

electrophysiological analysis of nutrient transport and secretory capacity across intestinal 

segments as previously described (Kles et al., 2001).  Duplicate sections of duodenum, jejunum, 

ileum and colon were stripped of muscularis (outer serosal layer), cut longitudinally along the 

mesentery, and mounted in modified Ussing chambers to expose 0.5 cm
2
 of tissue.  The tissue 

was bathed in 8 mL of oxygenated (95% O2/5% CO2) modified Kreb’s buffer maintained at 37°C 

with a circulating water bath (Fischer Scientific, Itasca, IL).  Dual channel voltage current 

clamps (VCC MC2, Physiologic Insruments Inc.) were utilized to voltage clamp the 

transepithelial potential of the intestinal segments to zero.  Basal transmucosal short-circuit 

current (Isc; uA/cm
2
), resistance (R; Ω•cm

2
), and potential difference (Pd; mV) were measured 

after an equilibration period. 

Active transport was determined by measuring the change in short-circuit current induced 

by the addition of 10 mM glucose, glutamine, or arginine (Sigma-Aldrich, St. Louis, MO) to the 

medium on the mucosal side.  Each addition to the mucosal side was osmotically balanced by the 

addition of 10 mM mannitol (Sigma-Aldrich) to the serosal reservoir.  Neurally mediated 

secretion was measured by the addition of 0.1 mM serotonin and immune mediated secretion 

was measured by the addition of 0.1 mM carbachol (Sigma-Aldrich) to the serosal medium.  

Dual-channel voltage/current clamps (VCC MC2, Physiologic Instruments) with a computer 
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interface allowed for real time data acquisition and analysis (Acquire & Analyze software, 

Physiologic Instruments). 

 

Statistical Analysis 

Analysis of variance was used to statistically analyze the data using the Mixed Model 

fitted with a split plot design.  Treatment (0, 11, 27.5 mg/kg of virginiamycin) was included in 

the whole plot, whereas time (7 or 14 days) was included in the subplot.  Treatment, time, and 

the interaction between treatment and time were the main fixed effects.  Replicate, the interaction 

between replicate and treatment, and pen nested within treatment were included as the random 

effects.  Preplanned contrasts between virginiamycin and control groups were completed. When 

specific intestinal segment data were analyzed, each respective segment was analyzed separately 

from one another (i.e. duodenal values were not compared with jejunal values).  All data were 

checked for normality by the Shapiro-Wilk statistic.  A log 10, square root, or reciprocal 

transformation was applied to all non-normal data.  After p-values were obtained, data were re-

transformed to acquire the correct mean estimate and the standard error of retransformed data are 

presented as an average of standard error (SE) values calculated from both the upper and lower 

retransformed confidence intervals of group means.  If the main effect of time, treatment, or the 

interaction between time and treatment was significant, means were separated using the least 

significant difference and considered significant at p≤0.05. 

Principal component analyses (PCA) were completed on data derived from the control 

and 11 mg/kg virginiamycin groups at day seven (PCA 1; n=23 piglets; 77 variables) and day 

fourteen (PCA 2; n=24 piglets; 73 variables) as outlined by Jolliffe (2002).  Data were not 

included from the 27.5 mg/kg virginiamycin group because this level of virginiamycin is not 
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FDA approved for use for growth promotion and feed efficiency.  Our primary objective was to 

obtain an overview of changes in structure and function along the intestinal tract with 

virginiamycin used for growth promotion and feed efficiency.  In both initial PCAs, seventy-five 

percent of the total variance was accounted for by ten factors; therefore, we retained ten factors 

in the final analyses.  Variables that did not load on any factor retained (correlation coefficient 

between variables and factors │r│≤ 0.5) were excluded from the final analyses.  When several 

variables were significantly correlated (│r│> 0.6, p<0.05) within a group of similar variables, 

only the variables with the highest factor loadings were kept for the final analyses.  T-tests were 

conducted on rotated component scores to detect if the principal components discriminated 

between treatment groups.  Statistical analyses were performed using SAS (Version 9.3; SAS 

Institute, Cary, North Carolina). 

 

Results 

 A total of 71 pigs completed this study.  The one pig not included in the final analysis 

was eliminated from the study due to illness.  Weights from three pens at day seven were not 

included in final analysis due to equipment malfunction resulting in inaccurate weights for those 

pigs. 

 

Dietary Intake and Pig Growth 

Body weight did not differ among groups at allocation or experimental day zero.  Main 

effect treatment differences were not observed for feed efficiency or feed intake.  Average daily 

gain tended to be higher in the 11 mg/kg virginiamycin group compared with control at day 

seven (p=0.056; Table 2.2).  Final body weight (7d pooled=31.2±1.1, 14d pooled=36.6±1.0 kg, 
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p<0.00005), daily feed intake (7d pooled=1.46±0.07, 14d pooled=1.73±0.07 kg, p<0.00005), and 

feed per unit of gain (7d pooled=1.86±0.13, 14d pooled=2.09±0.12 kg/kg, p=0.015) were higher 

at day fourteen day compared with day seven (Table 2.2).   

 

Gross Intestinal Morphology 

Gross intestinal structure was assessed by intestinal weight, length, mucosal and 

submucosal mass.  Duodenal length per body weight (7d pooled=1.26±0.07, 14d 

pooled=1.15±0.07 cm/kg) and weight per body weight (7d pooled=1.39±0.08, 14d 

pooled=1.26±0.08 g/kg) were less at day fourteen compared with day seven (p=0.032, p=0.041, 

respectively; Table 2.3).  Duodenal mucosal mass increased over time in the control pigs, but it 

did not in pigs fed diets supplemented with virginiamycin which resulted in less duodenal 

mucosa in the 11 mg/kg virginiamycin group at day fourteen compared with control (p=0.038; 

Table 2.4; Figure 2.1).  Submucosal mass tended to be less in the duodenum with virginiamycin 

treatment at day fourteen compared with control (p=0.066; Table 2.4). 

Jejunal length per body weight decreased over time (7d pooled=22.4±0.89, 14d 

pooled=18.8±0.88 cm/kg, p<0.00005; Table 2.3).  Virginiamycin supplemented at 11 mg/kg diet 

tended to increase jejunal mass at seven days compared with control (p=0.069; Table 2.3).  

Submucosal mass decreased over time in the jejunum (7d pooled=0.173±0.021, 14d 

pooled=0.142±0.021 g/cm, p=0.014; Table 2.4).  Virginiamycin increased jejunal submucosal 

mass compared with control when virginiamycin treatment groups were contrasted with control 

(p=0.037; Table 2.4; Figure 2.2).   

 Ileal length per body weight (7d pooled=22.4±0.89, 14d pooled=18.8±0.88 cm/kg) and 

weight per body weight (7d pooled=33.5±0.87, 14d pooled=29.1±0.86 g/kg) were less at day 
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fourteen compared with day seven (p<0.00005, p=0.0002, respectively; Table 2.3).  Mucosal 

mass (7d pooled=0.292±0.022, 14d pooled=0.356±0.022 g/cm) and submucosal mass (7d 

pooled=0.197±0.018, 14d pooled=0.229±0.018 g/cm) increased over time in the ileum (p=0.002, 

p=0.028, respectively; Table 2.4). 

Colon length per body weight (7d pooled=9.65±0.26, 14d pooled=8.03±0.25 cm/kg) and 

weight per body weight (7d pooled=45.2±1.2, 14d pooled=41.3±1.2 g/kg) were less at day 

fourteen compared with day seven (p<0.00005, p=0.005, respectively; Table 2.3).  However, 

mucosal mass increased over time in the colon (7d pooled=0.398±0.044, 14d 

pooled=0.464±0.051 g/cm, p=0.019; Table 2.4). 

 

Histomorphology 

Crypt-villus architecture (villus height, mid-villus width, and crypt depth) was measured 

by histomorphology to assess the effects of virginiamycin on epithelial architecture.  

Virginiamycin treatment increased villus surface area in the duodenum compared with control 

when virginiamycin treatment groups were contrasted with control (p=0.048; Table 2.5; Figure 

2.3).  Villus surface area in the duodenum increased with time (7d pooled=78,280±3544, 14d 

pooled=92,196±3491 µ
2
, p=0.003) and involved increases in villus height (7d pooled=377±12.6, 

14d pooled=416±12.4 µ, p=0.016) and width (7d pooled=205±5.0, 14d pooled=221±4.9 µ, 

p=0.009; Table 2.5).  Pigs fed the diet containing 27.5 mg/kg of virginiamycin had shallower 

crypts in the jejunum at day fourteen compared with day seven (p=0.023; Table 2.5; Figure 2.4).  

Ileal villus surface area tended to increase with time (7d pooled=61,247±2654, 14d 

pooled=66,537±2716 µ
2
, p=0.080; Table 2.5).  Colonic crypts were deeper in virginiamycin fed 

pigs when the 11 mg/kg virginiamycin group was contrasted with control (p=0.044; Table 2.5; 
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Figure 2.5).  Colonic crypts were deeper at fourteen days compared with seven days (7d 

pooled=451±19, 14d pooled=481±19 µ, p=0.013; Table 2.5). 

 

Epithelial Cell Proliferation 

Epithelial cell proliferation, measured by immunohistochemistry for PCNA-positive 

cells, was assessed in pigs fed diets containing 0 mg/kg and 11 mg/kg of virginiamycin for seven 

days.  Pigs consuming the diet containing 11 mg/kg of virginiamycin had more PCNA-positive 

cells per ileum crypt than control pigs (p=0.003; Figure 2.6) with a similar trend in the 

duodenum (duodenum, p=0.055; Table 2.6). 

 

DNA, RNA, and Protein Concentration 

The effects of virginiamycin at the cellular level of intestinal tissue were assessed 

through quantification of intestinal DNA, RNA, and protein concentration.  Intestinal DNA, 

RNA, and protein concentration were not impacted by virginiamycin treatment (Tables 2.7-2.9).  

Cellular RNA concentration tended to be lower at fourteen days compared with seven days in the 

proximal small intestine (duodenum, 7d pooled=3.93±0.78, 14d pooled=3.07±0.78, p=0.061; 

jejunum, 7d pooled=0.349±0.013, 14d pooled=0.327±0.016 mg RNA/mg DNA, p=0.083; Table 

2.7).  DNA concentration was greater at fourteen days compared with seven days in the 

duodenum (7d pooled=1.20±0.13, 14d pooled=1.55±0.13 mg/mg tissue, p=0.011; Table 2.9). 

 

Intestinal Disaccharidase Activity 

Sucrase activity in the duodenum of pigs fed diets containing 11mg/kg of virginiamycin 

was lower at day seven compared with control but increased over time in the virginiamycin 
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treatment groups resulting in no differences among groups at day fourteen (p=0.039; Table 2.10; 

Figure 2.7).  Lactase activity tended to increase over time with virginiamycin treatment in the 

duodenum resulting in a trend towards increased lactase activity with virginiamycin treatment 

compared with control at day fourteen (p=0.086, Table 2.10).  Sucrase activity was lower at day 

fourteen compared with day seven in the ileum (7d pooled=88.6±27, 14d pooled=70.1±22 U/g 

protein, p=0.041; Table 2.10).  

 

Mucosal Ion and Nutrient Transport 

Mucosal resistance, a measure of passive ion transport, was not impacted by 

virginiamycin treatment.  Potential difference, a measure of total ion transport, tended to be 

lower in the duodenum with virginiamycin when values from pigs fed the diet containing 11 

mg/kg of virginiamycin were contrasted with control (p=0.095; Table 2.11).  Mucosal resistance 

(7d pooled=103±10, 14d pooled=127±13 Ω∙cm
2
) and potential difference (7d pooled=1.57±0.40, 

14d pooled=2.80±0.62 mV) increased over time in the jejunum (p=0.033, p=0.035, respectively; 

Table 2.11).  Potential difference tended to increase over time in the ileum (7d pooled=1.11±1.1, 

14d pooled=1.99±1.1 mV, p=0.066; Table 2.11).  Ileal potential difference tended to be higher 

with virginiamycin treatment when the values from pigs fed the diet containing 11 mg/kg of 

virginiamycin were contrasted with control (p=0.094; Table 2.11).  Potential difference was 

increased in the colon of pigs fed the diet containing 27.5 mg/kg of virginiamycin compared with 

control (p=0.048; Table 2.11; Figure 2.8).  Basal short-circuit current, a measure of active ion 

transport, tended to be greater in the colon with virginiamycin treatment when values from 

virginiamycin fed pigs were contrasted with control (p=0.056; Table 2.11). 
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Sodium-coupled glucose transport was increased with virginiamycin treatment in the 

duodenum when virginiamycin treatments groups were contrasted with control (p=0.025; Table 

2.12; Figure 2.9).  Virginiamycin tended to increase glutamine transport in the duodenum when 

the 11 mg/kg virginiamycin group was contrasted with control (p=0.083; Table 2.12).  Duodenal 

glutamine transport was lower at day fourteen compared with day seven (7d pooled=3.12±0.71, 

14d pooled=1.63±0.69 µA/cm
2
, p=0.007; Table 2.12).  Virginiamycin increased glucose 

transport in the jejunum when virginiamycin treatments were contrasted with control (p=0.045; 

Table 2.12; Figure 2.10).  Jejunal glucose transport was greater at day fourteen compared with 

day seven (7d pooled=2.33±1.6, 14d pooled=4.68±1.9 µA/cm
2
, p=0.028; Table 2.12).  

Virginiamycin treatment increased electrogenic glutamine transport in the jejunum compared 

with control (p=0.010; Table 2.12; Figure 2.11).  Jejunal glutamine transport tended to decrease 

over time (7d pooled=2.99±0.65, 14d pooled=2.00±0.44 µA/cm
2
, p=0.088; Table 2.12).  

Virginiamycin supplemented at 11 mg/kg diet increased arginine transport in the jejunum 

compared with control (p=0.046; Table 2.12; Figure 2.12).  Pigs consuming diets supplemented 

with virginiamycin had less ileal arginine transport compared with pigs consuming the control 

diet at day seven; however by day fourteen, pigs consuming the diet supplemented with 11 

mg/kg of virginiamycin had greater ileal arginine transport compared with control (p=0.042; 

Table 2.12; Figure 2.13). 

Serotonin induced chloride secretion tended to increase over time in the duodenum (7d 

pooled=0.614±0.40, 14d pooled=0.863±0.44 µA/cm
2
, p=0.087; Table 2.13).  Serotonin induced 

chloride secretion was decreased in the 27 mg/kg virginiamycin group compared with the 11 

mg/kg group in the jejunum (p=0.028; Table 2.13).  However, it tended to be higher in the 11 

mg/kg virginiamycin group compared with control when the 11 mg/kg virginiamycin group was 
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contrasted with control (p=0.060; Table 2.13).  Carbachol induced chloride (CCH) secretion 

decreased over time in the jejunum (7d pooled=24.6±11, 14d pooled=13.0±6.0 µA/cm
2
, p=0.033; 

Table 2.13).  Ileal carbachol induced chloride secretion decreased in control pigs, but it increased 

in pigs fed the diet supplemented with 11 mg/kg of virginiamycin over time resulting in 

increased carbachol induced chloride secretion in the 11 mg/kg virginiamycin group at day 

fourteen compared with control (p=0.017; Table 2.13; Figure 2.14). 

 

Principal Component Analysis 

PCA 1 

PCA of data from day seven was optimized by removing from the analysis the variables 

that did not load on any factor retained.  Variables that did not load on the retained factors 

include: mass of the small intestine (SI), mucosal mass of the duodenum, jejunum, and ileum, 

ileal submucosal mass, duodenal and jejunal villus height, duodenal crypt depth, protein 

concentration in the duodenum, jejunum, and colon, duodenal DNA, jejunal RNA, duodenal 

short circuit current (Isc), glucose, glutamine, and arginine transport, jejunal glucose transport, 

jejunal sucrase and lactase activities, ileal resistance, Isc, potential difference, and CCH, colonic 

sucrase activity, colonic resistance and glucose transport, and duodenal epithelial cell 

proliferation (PCNA). 

Redundant variables were also removed as described earlier.  For example, feed per unit 

of gain and average daily gain were highly correlated (r -.88) and average daily gain was used 

for the final analysis.  Similarly, significant correlations were observed between: colonic 

mucosal and submucosal mass (r 0.63); RNA and DNA within the ileum and colon (r -0.91 and r 

-0.74, respectively); duodenal glutamine transport and serotonin-induced chloride secretion 
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(5HT); jejunal Isc and potential difference (r 0.98); jejunal glutamine transport with arginine 

transport (r 0.82), 5HT (r 0.89), and CCH (r 0.72); ileal glucose transport and 5HT with  

glutamine transport (r 0.92; r 0.68, respectively) and arginine transport (r 0.85; r 0.71, 

respectively); colonic arginine transport, 5HT and CCH (r >0.77). 

The final analysis included twenty-three pigs and thirty-seven variables (Table 2.14).  

Eighty-four percent of the variance among pigs was accounted for by the ten retained factors.  

The first seven factors are shown in Table 2.14.  Factor 1 explained 17.8% of total variance.  The 

variables with the highest loadings on factor 1 were: duodenal resistance, colonic arginine 

transport, ileal 5HT and glucose transport, and jejunal DNA and resistance.  Factor 2 explained 

14.1% of the total variance.  Factor 2 was associated with length of small intestine and colon, 

average daily gain, duodenal RNA and glutamine transport, and submucosal mass of duodenum 

and jejunum.  Factor 3 explained 12.3% of the total variance.  Factor 3 was associated with ileal 

PCNA and crypt depth, colonic DNA, mass, and glutamine transport, jejunal crypt depth, 

average daily gain, and duodenal submucosal mass.  Factor 4 explained 9.6% of the total 

variance and was associated with potential difference in the duodenum and colon, jejunal sucrase 

activity, PCNA, and crypt depth, and submucosal mass in the duodenum.  Factor 5 explained 

7.6% of the total variance and was associated with colonic crypt depth and PCNA, jejunal Isc, 

crypt depth, and resistance, and ileal villus height and crypt depth.  Factor 6 explained 6.3% of 

the total variance and was associated with duodenal lactase activity, sucrase activity, and 

glutamine, lactase activity in the jejunum, and colonic Isc and submucosal mass.  The remaining 

retained factors each explained less than 6% of the total variance.   

Proximal gut mucosal resistance and distal gut nutrient transport account for the greatest 

percent of the total variance compared with all other factors at day seven.  The second and third 
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factors are mainly associated with structural components of the gut.  Virginiamycin impacted 

functional indices to a greater extent than structural components which is reflected in this 

principal component analysis. 

 

PCA 2 

PCA of data from day fourteen was optimized by removing from the analysis the 

variables that did not load on any factor retained.  Variables that did not load on the retained 

factors include: mucosal and submucosal mass in the jejunum and colon, duodenal and jejunal 

villus height, colonic crypt depth, duodenal and ileal protein concentration, RNA, and DNA, 

jejunal RNA and DNA, colonic protein concentration and DNA, duodenal sucrase activity, 

duodenal and jejunal potential difference and CCH, ileal glucose transport, and colonic 

resistance and CCH.  

Redundant variables were removed as described previously.  Significant correlations 

were observed between: feed per unit of gain and average daily gain (r -0.84); length of the small 

intestine and colon (r 0.62); mucosal and submucosal mass within the duodenum and ileum (r 

0.70 and r 0.68, respectively); duodenal arginine transport and 5HT (r 0.69); within the jejunum, 

5HT was correlated with Isc (r 0.72), glucose transport (r 0.75), and glutamine transport (r 0.74); 

within the ileum, resistance was negatively correlated with glutamine (r -0.64) and 5HT (r -0.62) 

while 5HT was positively correlated with Isc (r 0.70), arginine transport (r 0.81), and CCH (r 

0.86); colonic sucrase and lactase activities (r 0.79); colonic Isc and potential difference (r 0.90).   

The final analysis included twenty-four pigs and thirty-four variables (Table 2.15).  

Eighty-five percent of the variance among pigs was accounted for by the ten factors retained.  

The first seven factors are shown in Table 2.15.  Factor 1 explained 16.6% of the total variance.  
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The variables with the highest loadings were: ileal crypt depth, potential difference, and sucrase 

and lactase activities, duodenal and jejunal arginine transport, and jejunal protein concentration.  

Factor 2 explained 12.2% of the total variance.  Factor 2 was associated with crypt depth in 

duodenum and jejunum, glucose transport in duodenum and colon, duodenal lactase activity, and 

jejunual 5HT.  Factor 3 explained 10.6% of the total variance.  Factor 3 was associated with 

duodenal submucosal mass, arginine and glutamine transport in colon, and jejunal resistance.  

Factor 4 explained 9.8% of the total variance and was associated with SI mass, feed per unit of 

gain, and SI length.  Factor 5 explained 7.9% of the total variance and discriminated between 

control and 11 mg/kg virginiamycin groups (p=0.015).  Factor 5 was associated with colonic 

potential difference, jejunal lactase and sucrase activities and resistance, and duodenal lactase 

activity.  Factor 6 explained 7.2% of the total variance and was associated with mass of the 

colon, duodenal resistance, glucose transport, and Isc, and jejunal resistance and sucrase activity.  

Factor 7 explained 6.5% of the total variance and discriminated between control and 11 mg/kg 

virginiamycin groups (p=0.050).  Factor 7 was associated with CCH, resistance, submucosal 

mass, and villus height in the ileum and glucose transport in the colon.  The remaining factors 

each explained less than 6% of the total variance. 

Small intestine functional indices account for the greatest percent of total variance 

compared with all other factors at day fourteen.  Proximal gut disaccharidase activity and distal 

gut ion and nutrient transport dominate the factors that discriminate between control and 

virginiamycin fed pigs.  These variables are indicative of intestinal alteration differences 

between groups and further support the treatment effects observed for increased intestinal 

functional capacity in virginiamycin fed pigs. 
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Discussion 

Feed accounts for approximately two-thirds of the cost of producing market-weight swine 

(Ewan, 2001).  Around 75 to 85% of the total feed used per unit of pork marketed is consumed 

during the growing-finisher period (Cline & Richert, 2001).  An improvement in feed efficiency 

would result in less total feed used and cost-savings for a swine production farm.  In addition, 

higher daily gains would indicate a quicker time to market weight, less time per pig on the farm, 

and lower costs associated with housing and care.  Over 86% of grower-finisher pigs in the 

United States receive in-feed antibiotics (USDA, 2007).  The net economic benefit of using 

antimicrobials in pig production has been estimated to be $2.64 to $3.93 per market hog 

(Zimmerman, 1986; Cromwell, 1999).  Market hog inventory in the United States as of 

December 2012 was 60.5 million head (NASS, 2012).  Miller and colleagues (2003) analyzed 

swine data from the National Animal Health Monitoring System and estimated an improvement 

of 9% in net profits with the use of antibiotics in pigs for growth promotion and feed efficiency 

in the United States. 

The primary outcome of this research was the impact of virginiamycin on intestinal 

structure and function, but the improvements in growth and feed efficiency observed in this 

study are comparable to what is reported in the literature.  A review by Hays (1981) stated that 

virginiamycin improved average daily gain by 10.7% and feed per unit of gain by 6.6% in 

grower pigs.  In our study, virginiamycin supplemented at 11 mg/kg improved daily weight gain 

by 12.2% and feed per unit of gain by 12.9% and virginiamycin supplemented at 27.5 mg/kg 

improved daily weight gain by 8.0% and feed per unit of gain by 12.1%.   Increases in weight 

gain and feed conversion of this magnitude can have substantial financial benefits for producers 

and consumers and greatly impact the amount of pork produced each year. 
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The use of sub-therapeutic levels of antibiotics in food-producing animals has been under 

increasing scrutiny due to concerns of antibiotic resistance.  These concerns resulted in a ban of 

antibiotic use for growth promotion in the European Union.  Impacts of the ban on pig 

production and economic effects are beginning to be reported in the literature.  Aarestrup and 

colleagues (2010) analyzed productivity data before and after the ban, from 1992 to 2008.  They 

showed a steady increase in the number of pigs per sow per year over the entire study period.  

Average daily gain actually increased after the ban; however, the increase in finisher pigs was 

greater prior to the ban.  Total antibiotic was highest in 1992, decreased to half that amount in 

1998, and remained fairly stable at the level until 2008.  No effect on mortality rate was observed 

for weaned pigs (Aarestrup et al., 2010).  The effects of antibiotic growth promoters are well 

documented, but improvements in performance are observed after the ban indicating that growth 

promotion is being supported by other factors.  Understanding the mechanisms behind how 

antibiotics improve performance will aid in determining those factors and provide insight into 

the safety of continued use of antibiotic growth promoters. 

We hypothesized that pigs fed diets supplemented with virginiamycin would have 

increased intestinal surface area compared with pigs fed diets without virginiamycin.  

Interestingly, few significant changes in absorptive surface area were observed among treatment 

groups.  Others have failed to show increased absorptive surface area in the small intestine of 

weaned piglets fed antibiotics (Bosi et al., 2011; Shen et al., 2009).  Van Leeuwen and 

colleagues (2002) observed mixed effects on jejunal surface area of weaned pigs fed 

virginiamycin supplemented diets.  Miles and colleagues (2006) actually observed a decrease in 

ileal surface area of broilers fed virginiamycin.  Our results indicate that increased absorptive 

surface area is not likely a major mechanism by which virginiamycin promotes growth.  
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Recently, a mechanism was proposed by which antibiotics promote growth via reduced 

immunologic stress on the animal (Niewold, 2007).  In our study, virginiamycin appeared to 

protect against an increase in thickness of the mucosa and submucosa in the duodenum over 

time.  Additionally, carbachol induced chloride secretion, used as a measure of immune mediated 

secretion, was increased with virginiamycin in the ileum by day fourteen.  These structural and 

functional changes may support the proposed mechanism by which antibiotics protect the 

intestine against microbial insult and the subsequent infiltration of immune cells into the 

intestinal mucosa (Niewold, 2007).  We did observe an increase in submucosa in the jejunum but 

submucosa is the supporting layer of connective tissue directly under the mucosa and less likely 

directly involved in the immune response.  These aspects are only a portion of the immune 

response mechanism and future studies should investigate immune response parameters, such as 

pro-inflammatory cytokines, to fully elucidate this mechanism. 

Increased digestibility combined with increased growth rate indicates that intestinal 

functional capacity is greater in pigs fed antibiotics.  Virginiamycin has been shown to increase 

absorption of glucose and arginine in mice (Madge, 1969) and improve digestibility of amino 

acids and minerals in the small intestine of pigs (Decuypere et al., 1978; Dierick et al., 1981; 

Dierick et al., 1986; Ravindran et al., 1984; Stewart et al., 2010).  In our study, proximal gut 

nutrient transport was increased by around 2 fold with virginiamycin treatment without an 

increase in cellular protein abundance.  An increase in the number of cells is not responsible for 

the increase in nutrient transport.  This indicates that virginiamycin is not working by creating 

more mature cells but by enhancing the functional capacity of each, already existing cell.  The 

concentration of virginiamycin would be highest in the proximal gut and that is reflected in the 

direct impact on structure and functional capacity in the proximal gut. 
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A unique functional response occurred in the ileum.  Increased ileal arginine transport 

was delayed until day fourteen.  Arginine transport may be lower in the ileum at seven days 

because of increased absorption in the jejunum and, therefore, the nutrients are not reaching the 

distal small intestine.  Additionally, the cells may be rapidly proliferating, immature cells that 

develop into more mature, functional cells by day fourteen.  Virginiamycin has been shown to 

inhibit amino acid breakdown via bacteria in the small intestine (Dierick et al., 1986).  This may 

result in a secondary effect where more amino acids are available in the ileum for transport by 

day fourteen.  This would support the nutrient sparing effect as a proposed mechanism by which 

antibiotics promote growth.  The nutrient sparing effect is thought to be due to an increase in the 

amount of nutrients available to the host due to a reduction in nutrient use by bacteria and, 

therefore, increased absorption.  This direct connection would be true if absorption is based on a 

concentration gradient.  Nutrient concentrations are held constant within the Ussing chambers.  

Increased nutrient transport observed within the Ussing chambers, without increased absorptive 

surface area, indicate the intestinal tissue has the capability of absorbing more nutrients given the 

same concentrations. 

In this study, pigs fed virginiamycin supplemented diets had greater nutrient transport 

capacity in the small intestine without increases in absorptive surface area beyond the duodenum.  

Dierick and colleagues (1981; 1986) suggest that virginiamycin may enhance the activity of 

alkaline phosphatase, Na
+
-K

+
 adenosine triphosphatase, and amino peptidases which are all 

enzymes associated with nutrient absorption.  Given the age and diet of grower pigs, maltase 

activity may provide better insight into discaccharidase activity.  Increases in nutrient transport 

without increases in structural indices may also indicate up-regulation of nutrient transporters or 

enzymes associated with digestion and absorption.  Additionally, virginiamycin increases digesta 
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passage rate which indicates more time for digestion and absorption.  More nutrients available to 

the pig plus an increase in nutrient transport plus increased time for digestion and absorption 

may be partly responsible for the increase in pig performance associated with antibiotics. 

Principal component analysis was completed to provide an overview of the effects of 

virginiamycin along the intestinal tract and to derive a smaller set of variables that account for 

most of the variance to identify a limited number of variables that might indicate mechanisms of 

virginiamycin.  The second PCA identified two factors (factors 5 and 7) that discriminate 

between control and virginiamycin fed pigs.  The factor scores for control were negative which 

indicates that variables negatively correlated with either factor 5 or 7 are associated with control 

pigs and may be decreased in control pigs compared with virginiamycin-fed pigs.  The factor 

scores for the 11 mg/kg virginiamycin were positive which indicates that variables positively 

correlated with either factor 5 or 7 are associated with virginiamycin-fed pigs and may be 

increased in virginiamycin-fed pigs compared with control.  Variables associated with control 

pigs were confined to the ileum, indicating a decrease in absorptive surface area and a decrease 

in resistance indicating increased intestinal permeability.  Variables associated with 

virginiamycin-fed pigs involved increases in functional capacity along the entire intestinal tract 

(Table 2.16).  Although differences in all of these variables were not statistically significant, this 

may indicate more subtle differences, that, when applied over the entire intestinal tract can have 

an impact on growth and feed efficiency. 

One limitation to our study was inherently adopted by the study design.  Split plot design 

takes precision away from the main plot to increase precision in the subplot.  Virginiamycin 

treatment effects were our primary interest but treatment had to be the whole plot.  Due to 

limitations in space, pigs were unable to be housed individually and, therefore, dietary treatment 
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had to be assigned on a pen basis.  It was not feasible to feed different diets within the same pen.  

Another limitation to our study was that it was conducted in a relatively clean facility.  Research 

has shown that growth responses are greater when hygiene is poor (Visek, 1978) and that growth 

responses are two to three times greater on commercial farms than university settings 

(Zimmerman, 1986).  This may help explain our lack of statistically significant differences in 

growth response and feed efficiency. 

The mechanism behind antibiotic growth promoters is likely multifaceted.  With concerns 

of antibiotic use in animals resulting in adverse human health effects, it is important to 

understand the mechanism by which antibiotics promote growth.  Our study demonstrated that 

virginiamycin impacted functional capacity to a greater extent than structural indices (Figure 

2.15).  Virginiamycin directly impacted proximal gut nutrient transport with a more delayed 

response in the distal gut by both increasing nutrient transport and secretion over time and 

providing protection against loss in nutrient transport and secretory capacity.  Increasing our 

knowledge on the mechanisms of antibiotic growth promotion will help to better understand the 

safety of in-feed antibiotics and direct government policy on antibiotic use in animals 
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Table 2.1 Nutrient composition of diets (g/kg) 

 Virginiamycin (mg/kg) 

Ingredient 0 11 27.5 

Ground corn 694.6 694.6 694.6 

Soybean meal 272.1 272.1 272.1 

White grease 10.0 10.0 10.0 

Lime 9.60 9.60 9.60 

Dicalcium phosphate 9.20 9.20 9.20 

Trace mineral mix1 3.50 3.50 3.50 

Vitamin mix2 1.00 1.00 1.00 

Virginiamycin premix3 - 0.10 0.25 
1The premix supplied the following per kilogram of diet: 125 mg Fe (iron sulfate), 

100 mg Zn (zinc oxide), 60 mg Mn (manganese sulfate), 10 mg Cu (copper sulfate), 

1.26 mg I (potassium iodate), 0.3 mg Se (sodium selenite) 
2The premix supplied the following per kilogram of diet: 11,128 IU vitamin A, 2,204 

IU vitamin D3, 66 IU vitamin E, 44 mg niacin, 23.5 mg D-pantothenic acid, 6.58 mg 

riboflavin, 1.58 mg folic acid, 1.42 mg vitamin K, 0.44 mg biotin, 0.24 mg 

pyridoxine, 0.24 mg thiamin, 0.03 mg vitamin B12 
3Contained 110 g of virginiamycin activity per kilogram (V-MaxTM50, Phibro Animal 

Health, Ridgefield Park, NJ) 
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Table 2.2 Body weight, feed intake, feed efficiency, and daily weight gain1-2 

 
Virginiamycin (mg/kg) 

P-value 

Mixed model Contrast 

0 11 27.5 Txt Time Interaction 0 vs. 11 0 vs. 27.5 0 vs. txt 

Allocation  

Body Weight 

   
0.356 0.445 0.280 0.226 0.256 0.208 

        7d 23.3 ± 1.3 22.4 ± 1.3 23.3 ± 1.3  

        14d 23.4 ± 1.3 23.1 ± 1.3 22.3 ± 1.3 

Day 0 

Body Weight 

   
0.343 0.390 0.188 0.248 0.231 0.210 

        7d 25.6 ± 1.1 24.1 ± 1.1 25.4 ± 1.1  

        14d 25.5 ± 1.1 25.2 ± 1.1 23.8 ± 1.1 

Final  

Body Weight 

   
0.490 <0.00005 0.244 0.428 0.460 0.435 

        7d 30.8 ± 1.4 30.7 ± 1.7 31.9 ± 1.6  

        14d 37.3 ± 1.4 36.8 ± 1.4 35.8 ± 1.4 

Daily Gain    0.303 0.336 0.056 0.176 0.262 0.184 

        7d 0.758 ± 0.09 0.960 ± 0.10 0.857 ± 0.09  

        14d 0.834 ± 0.09 0.827 ± 0.09 0.864 ± 0.09 

Daily Feed Intake    0.345 <0.00005 0.184 0.245 0.239 0.212 

        7d 1.50 ± 0.10 1.45 ± 0.10 1.44 ± 0.10  

        14d 1.82 ± 0.10 1.68 ± 0.10 1.68 ± 0.10 

Feed per Unit of Gain  

(kg/kg body weight) 

   
0.217 0.015 0.114 0.139 0.150 0.117 

        7d 2.13 ± 0.18 1.64 ± 0.20 1.81 ± 0.19  

        14d 2.17 ± 0.19 2.11 ± 0.18 1.98 ± 0.18 
1Data are expressed as mean ± SEM 
2Unit of measure for weight and feed intake is kilograms 
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Table 2.3 Intestinal weight and length1 

 
Virginiamycin (mg/kg) 

P-value 

Mixed model Contrast 

0 11 27.5 Txt Time Interaction 0 vs. 11 0 vs. 27.5 0 vs. txt 

Intestinal 

Weight2 
  

   Duodenum    0.351 0.041 0.481 0.221 0.378 0.265 

        7d 1.35 ± 0.11 1.46 ± 0.11 1.38 ± 0.11  

        14d 1.23 ± 0.11 1.30 ± 0.11 1.27 ± 0.11 

   Jejunum    0.193 0.164 0.069 0.101 0.250 0.131 

        7d 23.8 ± 1.4 28.7 ± 1.5 27.1 ± 1.4  

        14d 25.7 ± 1.4 26.1 ± 1.4 24.8 ± 1.4 

   Ileum    0.210 0.0002 0.227 0.179 0.355 0.361 

        7d 32.2 ± 1.5 35.6 ± 1.6 32.8 ± 1.5  

        14d 29.8 ± 1.5 29.7 ± 1.5 27.9 ± 1.5 

   Colon    0.465 0.005 0.476 0.388 0.376 0.365 

        7d 44.4 ± 2.1 45.5 ± 2.2 45.8 ± 2.1  

        14d 41.1 ± 2.1 41.4 ± 2.1 41.4 ± 2.2 

     

Intestinal 

Length3 
  

   Duodenum    0.498 0.032 0.329 0.472 0.492 0.479 

        7d 1.27 ± 0.12 1.28 ± 0.12 1.22 ± 0.12  

        14d 1.12 ± 0.12 1.13 ± 0.12 1.18 ± 0.12 

   Jejunum/Ileum    0.431 0.00005 0.436 0.430 0.372 0.465 

        7d 22.6 ± 1.3 22.8 ± 1.4 21.7 ± 1.3  

        14d 18.7 ± 1.3 19.1 ± 1.3 18.5 ± 1.3 

   Colon    0.416 0.00005 0.446  0.398 0.378 0.488 

        7d 9.68 ± 0.45 9.87 ± 0.45 9.39 ± 0.43  

        14d 8.01 ± 0.43 8.11 ± 0.43 7.96 ± 0.43 
1Data are expressed as mean ± SEM  
2Unit of measure is grams per kilogram of body weight 
3Unit of measure is centimeters per kilogram of body weight 
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Table 2.4 Mucosa and submucosa mass1-3 

 
Virginiamycin (mg/kg) 

P-value 

Mixed model Contrast 

0 11 27.5 Txt Time Interaction 0 vs. 11 0 vs. 27.5 0 vs. txt 

Mucosa   

   Duodenum    0.235 0.0008 0.038 0.129 0.259 0.154 

        7d 0.279 ± 0.030b 0.280 ± 0.029b 0.308 ± 0.029b  

        14d 0.411 ± 0.029a 0.318 ± 0.028b 0.334 ± 0.029ab 

   Jejunum    0.368 0.437 0.315 0.467 0.277 0.381 

        7d 0.481 ± 0.043 0.451 ± 0.043 0.455 ± 0.041  

        14d 0.465 ± 0.041 0.503 ± 0.041 0.436 ± 0.043 

   Ileum    0.306 0.002 0.350 0.232 0.194 0.183 

        7d 0.251 ± 0.038 0.311 ± 0.038 0.314 ± 0.037  

        14d 0.339 ± 0.037 0.358 ± 0.037 0.370 ± 0.037 

   Colon    0.322 0.019 0.088 0.224 0.205 0.182 

        7d 0.401 ± 0.057 0.376 ± 0.061 0.417 ± 0.051  

        14d 0.519 ± 0.057 0.460 ± 0.058 0.417 ± 0.041 

     

Submucosa   

   Duodenum    0.366 0.251 0.066 0.346 0.215 0.248 

        7d 0.155 ± 0.037 0.184 ± 0.037 0.173 ± 0.037  

        14d 0.191 ± 0.037 0.147 ± 0.037 0.142 ± 0.037 

   Jejunum    0.077 0.014 0.347 0.058 0.044 0.037 

        7d 0.140 ± 0.026 0.180 ± 0.026 0.198 ± 0.025  

        14d 0.118 ± 0.025 0.158 ± 0.025 0.151 ± 0.026 

   Ileum    0.391 0.028 0.246 0.359 0.260 0.281 

        7d 0.183 ± 0.031 0.209 ± 0.031 0.198 ± 0.031  

        14d 0.213 ± 0.031 0.218 ± 0.031 0.255 ± 0.031 

   Colon    0.347 0.099 0.101 0.413 0.206 0.275 

        7d 0.553 ± 0.049 0.473 ± 0.049 0.433 ± 0.047  

        14d 0.504 ± 0.048 0.563 ± 0.047 0.545 ± 0.047 
1Data are expressed as mean ± SEM 
2Unit of measure is grams per centimeter of tissue 
3
Within intestinal segment, different superscripts indicate statistically significant differences 
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Table 2.5 Intestinal crypt-villus architecture1-2 

 
Virginiamycin (mg/kg) 

P-value 

Mixed model Contrast 

0 11 27.5 Txt Time Interaction 0 vs. 11 0 vs. 27.5 0 vs. txt 

Villus height3   

   Duodenum    0.202 0.016 0.241 0.314 0.093 0.149 

        7d 373 ± 22 381 ± 22 378 ± 21  

        14d 394 ± 21 407 ± 21 446 ± 21 

   Jejunum    0.488 0.134 0.424 0.432 0.491 0.465 

        7d 456 ± 26 458 ± 27 449 ± 26  

        14d 478 ± 27 467 ± 27 487 ± 26 

   Ileum    0.317 0.083 0.356 0.208 0.473 0.299 

        7d 362 ± 27 409 ± 27 376 ± 30  

        14d 407 ± 27 419 ± 30 398 ± 27 

     

Villus width3   

   Duodenum    0.173 0.009 0.236 0.091 0.165 0.097 

        7d 202 ± 8.6 208 ± 8.6 205 ± 8.2  

        14d 207 ± 8.2 231 ± 8.2 224 ± 8.2 

   Jejunum    0.274 0.483 0.333 0.174 0.196 0.155 

        7d 194 ± 7.9 178 ± 8.1 182 ± 7.9  

        14d 188 ± 8.1 184 ± 8.1 182 ± 7.9 

   Ileum    0.469 0.299 0.181 0.369 0.438 0.388 

        7d 165 ± 6.7 153 ± 6.9 163 ± 7.7  

        14d 161 ± 6.7 167 ± 7.9 161 ± 6.9 
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Table 2.5 Continued 

 
Virginiamycin (mg/kg) 

P-value 

Mixed model Contrast 

0 11 27.5 Txt Time Interaction 0 vs. 11 0 vs. 27.5 0 vs. txt 

Villus surface 

area4 
  

   Duodenum    0.110 0.003 0.289 0.112 0.046 0.048 

        7d 75,586 ± 6220 79,695 ± 6220 79,559 ± 5955  

        14d 83,027 ± 5955 93,889 ± 5955 99,673 ± 5955 

   Jejunum    0.350 0.127 0.441 0.223 0.290 0.226 

        7d 88,123 ± 5840 80,717 ± 6067 81,491 ± 5840  

        14d 90,269 ± 6067 86,100 ± 6067 88,771 ± 5840 

   Ileum    0.302 0.080 0.420 0.200 0.454 0.332 

        7d 59,611 ± 4240 62,944 ± 4438 61,186 ± 4885       

        14d 65,962 ± 4240 70,284 ± 5198 63,365 ± 4438       

          

Crypt Depth3          

   Duodenum    0.304 0.101 0.427 0.167 0.248 0.171 

        7d 562 ± 25 590 ± 25 575 ± 24       

        14d 588 ± 24 597 ± 24 601 ± 24       

   Jejunum    0.358 0.086 0.023 0.322 0.372 0.467 

        7d 520 ± 32ab 561 ± 32a 556 ± 32a       

        14d 546 ± 32ab 539 ± 32ab 486 ± 32b       

   Ileum    0.269 0.310 0.396 0.162 0.219 0.159 

        7d 310 ± 27 349 ± 27 328 ± 29       

        14d 316 ± 27 345 ± 29 349 ± 27       

   Colon    0.111 0.013 0.086 0.044 0.277 0.090 

        7d 424 ± 23 467 ± 24 463 ± 23       

        14d 483 ± 23 496 ± 23 463 ± 23       
1Data are expressed as mean ± SEM 
2
Within intestinal segment, different superscripts indicate statistically significant differences 

3Unit of measure is microns 
4Unit of measure is microns squared 
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Table 2.6 Epithelial Cell Proliferation at day 71-3 

 Virginiamycin (mg/kg) P-value 

 0 11 Txt 

Duodenum 39.6 ± 2.5 44.3 ± 3.1 0.055 

Jejunum 33.2 ± 1.9 36.6 ± 2.0 0.130 

Ileum 25.9 ± 1.9b 29.9 ± 1.9a 0.003 

Colon 51.8 ± 3.9 59.3 ± 4.0 0.144 
1Data are expressed as mean ± SEM 
2Unit of measure is number of proliferating cell nuclear antigen positive cells per crypt 
3Within intestinal segment, different superscripts indicate statistically significant differences 
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Table 2.7 Cellular RNA Concentration per Cell1-2 

 
Virginiamycin (mg/kg) 

P-value 

Mixed model Contrast 

0 11 27.5 Txt Time Interaction 0 vs. 11 0 vs. 27.5 0 vs. txt 

Duodenum    0.320 0.061 0.401 0.188 0.305 0.211 

        7d 3.37 ± 1.0 4.20 ± 1.0 4.20 ± 1.0  

        14d 2.66 ± 1.0 3.70 ± 1.0 2.85 ± 1.0 

Jejunum    0.247 0.083 0.233 0.135 0.188 0.130 

        7d 0.314 ± 0.027 0.365 ± 0.018 0.369 ± 0.022  

        14d 0.321 ± 0.026 0.337 ± 0.023 0.323 ± 0.031 

Ileum    0.495 0.110 0.166 0.493 0.461 0.481 

        7d 0.265 ± 0.037 0.292 ± 0.038 0.270 ± 0.037  

        14d 0.262 ± 0.037 0.234 ± 0.037 0.268 ± 0.037 

Colon    0.404 0.266 0.246 0.311 0.281 0.271 

        7d 1.20 ± 1.5 1.48 ± 1.9 1.41 ± 1.6  

        14d 1.46 ± 2.1 1.38 ± 1.8 1.48 ± 1.5 
1Data are expressed as mean ± SEM 
2Unit of measure is milligram of RNA per milligram of DNA 
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Table 2.8 Cellular Protein Concentration1-2 

 
Virginiamycin (mg/kg) 

P-value 

Mixed model Contrast 

0 11 27.5 Txt Time Interaction 0 vs. 11 0 vs. 27.5 0 vs. txt 

   Duodenum    0.337 0.103 0.338 0.279 0.212 0.215 

        7d 57.0 ± 9.5 64.5 ± 9.5 70.9 ± 9.3  

        14d 55.0 ± 9.3 58.1 ± 9.3 55.8 ± 9.3 

   Jejunum    0.473 0.111 0.145 0.477 0.383 0.418 

        7d 8.98 ± 0.70 9.13 ± 0.58 9.83 ± 0.69  

        14d 9.05 ± 0.52 9.00 ± 0.68 8.70 ± 0.57 

   Ileum    0.385 0.281 0.250 0.437 0.310 0.421 

        7d 7.63 ± 0.61 8.04 ± 0.63 8.10 ± 0.61  

        14d 7.80 ± 0.61 7.14 ± 0.61 8.12 ± 0.61 

   Colon    0.404 0.179 0.477 0.289 0.313 0.275 

        7d 32.8 ± 2.5 31.8 ± 2.6 32.0 ± 2.5  

        14d 34.9 ± 2.5 32.9 ± 2.5 33.1 ± 2.5 
1Data are expressed as mean ± SEM 
2Unit of measure is milligram of protein per milligram of DNA 
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Table 2.9 Tissue DNA Concentration1-2 

 
Virginiamycin (mg/kg) 

P-value 

Mixed model Contrast 

0 11 27.5 Txt Time Interaction 0 vs. 11 0 vs. 27.5 0 vs. txt 

   Duodenum    0.435 0.011 0.299 0.357 0.323 0.318 

        7d 1.35 ± 0.22 1.20 ± 0.22 1.05 ± 0.22  

        14d 1.55 ± 0.22 1.50 ± 0.22 1.60 ± 0.22 

   Jejunum    0.487 0.230 0.061 0.414 0.461 0.428 

        7d 9.68 ± 0.76 9.99 ± 0.63 9.09 ± 0.66  

        14d 9.97 ± 0.62 9.29 ± 0.65 10.4 ± 0.69 

   Ileum    0.492 0.413 0.053 0.465 0.433 0.441 

        7d 11.5 ± 1.1 9.83 ± 1.1 10.0 ± 1.1  

        14d 9.53 ± 1.1 10.9 ± 1.1 10.5 ± 1.1 

   Colon    0.425 0.214 0.287 0.327 0.298 0.287 

        7d 1.62 ± 0.15 1.43 ± 0.15 1.46 ± 0.15  

        14d 1.46 ± 0.15 1.53 ± 0.15 1.48 ± 0.15 
1Data are expressed as mean ± SEM 
2Unit of measure is milligram of DNA per milligram of tissue 
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Table 2.10 Intestinal disaccharidase activity1-3 

 
Virginiamycin (mg/kg) 

P-value 

Mixed model Contrast 

0 11 27.5 Txt Time Interaction 0 vs. 11 0 vs. 27.5 0 vs. txt 

Sucrase Activity   

   Duodenum    0.269 0.003 0.039 0.200 0.147 0.138 

        7d 59.7 ± 49ab 33.5 ± 27c 38.8 ± 32bc  

        14d 58.6 ± 49ab 76.5 ± 63a 61.4 ± 51a 

   Jejunum    0.442 0.099 0.124 0.342 0.315 0.314 

        7d 3243 ± 1260 2853 ± 1143 2672 ± 1055  

        14d 2804 ± 1100 3622 ± 1419 3974 ± 1656 

   Ileum    0.362 0.041 0.443 0.452 0.277 0.389 

        7d 87.3 ± 36 78.0 ± 33 102 ± 42  

        14d 63.1 ± 26 64.6 ± 27 84.6 ± 35 

   Colon    0.180 0.368 0.092 0.099 0.452 0.190 

        7d 11.3 ± 50 83.0 ± 40 79.0 ± 40  

        14d 10.3 ± 50 64.0 ± 30 13.8 ± 70 

     

Lactase Activity   

   Duodenum    0.462 0.086 0.086 0.380 0.445 0.347 

        7d 61.0 ± 28 46.0 ± 21 52.0 ± 25  

        14d 51.6 ± 24 71.7 ± 34 69.0 ± 33 

   Jejunum    0.479 0.227 0.297 0.451 0.391 0.407 

        7d 2831 ± 813 3399 ± 962 2721 ± 814  

        14d 2514 ± 745 2248 ± 127 3033 ± 1147 

   Ileum    0.463 0.231 0.130 0.467 0.396 0.457 

        7d 7.1 ± 1.4 5.2 ± 1.6 6.6 ± 1.3  

        14d 4.9 ± 2.3 7.0 ± 1.4 4.6 ± 1.8 

   Colon    0.349 0.272 0.233 0.361 0.322 0.475 

        7d 22.3 ± 7.0 23.1 ± 8.0 17.4 ± 6.0  

        14d 18.3 ± 6.0 20.3 ± 7.0 19.7 ± 6.0 
1Data are expressed as mean ± SEM 
2Unit of measure is µmol hydrolyzed substrate per hour (unit (U) of activity) per gram of protein 
3
Within intestinal segment, different superscripts indicate statistically significant differences 
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Table 2.11 Basal ion transport1 

 
Virginiamycin (mg/kg) 

P-value 

Mixed model Contrast 

0 11 27.5 Txt Time Interaction 0 vs. 11 0 vs. 27.5 0 vs. txt 

Short circuit current2   

   Duodenum    0.293 0.277 0.202 0.204 0.171 0.151 

        7d 13.8 ± 5.5 16.0 ± 6.6 13.7 ± 5.1  

        14d 27.7 ± 11 9.30 ± 4.7 18.7 ± 9.5 

   Jejunum    0.450 0.130 0.436 0.391 0.335 0.342 

        7d 12.1 ± 5.5 11.8 ± 6.7 14.8 ± 5.5  

        14d 14.3 ± 7.4 19.2 ± 8.2 18.5 ± 7.6 

   Ileum    0.375 0.424 0.423 0.331 0.233 0.253 

        7d 7.88 ± 6.1 12.1 ± 7.5 13.0 ± 5.5  

        14d 10.9 ± 4.4 11.3 ± 4.4 12.5 ± 4.1 

   Colon    0.115 0.453 0.129 0.092 0.061 0.056 

        7d 21.6 ± 14 22.0 ± 14 28.1 ± 16  

        14d 11.6 ± 14 31.1 ± 14 30.8 ± 15 

     

Transmucosal 

Resistance3 
  

   Duodenum    0.153 0.311 0.185 0.268 0.208 0.462 

        7d 100 ± 30 71.8 ± 15 114 ± 20  

        14d 92.5 ± 21 98.9 ± 21 110 ± 36 

   Jejunum    0.423 0.033 0.427 0.349 0.296 0.293 

        7d 95.1 ± 18 99.9 ± 21 113 ± 17  

        14d 122 ± 19 132 ± 21 127 ± 32 

   Ileum    0.382 0.111 0.126 0.498 0.269 0.359 

        7d 103 ± 24 128 ± 20 135 ± 25  

        14d 148 ± 22 121 ± 25 144 ± 20 

   Colon    0.398 0.440 0.311 0.299 0.476 0.397 

        7d 35.6 ± 17 40.0 ± 19 41.6 ± 20  

        14d 41.1 ± 20 44.7 ± 21 34.5 ± 16 
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Table 2.11 Continued 

 
Virginiamycin (mg/kg) 

P-value 

Mixed model Contrast 

0 11 27.5 Txt Time Interaction 0 vs. 11 0 vs. 27.5 0 vs. txt 

Potential 

Difference4 
         

   Duodenum    0.155 0.394 0.411 0.095 0.468 0.224 

        7d 1.49 ± 0.64 0.446 ± 0.13 1.40 ± 0.61  

        14d 1.27 ± 0.54 0.861 ± 0.37 1.45 ± 0.61 

   Jejunum    0.298 0.035 0.285 0.238 0.184 0.175 

        7d 1.40 ± 0.82 1.27 ± 0.61 2.03 ± 0.61  

        14d 1.82 ± 0.76 3.51 ± 1.4 3.06 ± 1.0 

   Ileum    0.209 0.066 0.180 0.094 0.343 0.116 

        7d 0.761 ± 1.1 1.30 ± 1.1 1.28 ± 1.1  

        14d 1.49 ± 1.1 3.35 ± 1.8 1.27 ± 1.1 

   Colon    0.048 0.170 0.107 0.265 0.017 0.046 

        7d 0.744 ± 0.14 0.583 ± 0.16 1.78 ± 0.63  

        14d 0.488 ± 0.26 0.946 ± 0.25 0.771 ± 0.09 

        Mean5-6 0.603 ± 0.18b 0.743 ± 0.13ab 1.17 ± 0.32a  
1Data are expressed as mean ± SEM 
2Unit of measure is µA/cm2 
3Unit of measure is Ω●cm2 
4Unit of measure is millivolts 
5Means pooled within treatment 
6Different superscripts indicate statistically significant differences 
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Table 2.12 Nutrient transport1-3 

 
Virginiamycin (mg/kg) 

P-value 

Mixed model Contrast 

0 11 27.5 Txt Time Interaction 0 vs. 11 0 vs. 27.5 0 vs. txt 

Glucose transport   

   Duodenum    0.075 0.236 0.310 0.032 0.097 0.025 

        7d 0.637 ± 0.49 1.05 ± 0.63 0.713 ± 0.57  

        14d 0.549 ± 0.44 1.42 ± 0.81 1.04 ± 0.61 

   Jejunum    0.123 0.028 0.186 0.094 0.078 0.045 

        7d 2.09 ± 1.4 2.06 ± 1.3 2.87 ± 1.5  

        14d 2.41 ± 1.6 5.85 ± 2.5 6.33 ± 4.1 

   Ileum    0.312 0.136 0.206 0.174 0.335 0.215 

        7d 18.8 ± 11 11.0 ± 8.4 19.9 ± 11  

        14d 15.6 ± 9.9 11.9 ± 9.1 10.2 ± 8.4 

   Colon    0.260 0.443 0.119 0.131 0.335 0.169 

        7d 1.34 ± 0.85 2.80 ± 1.4 1.00 ± 0.75  

        14d 1.30 ± 0.94 1.58 ± 1.1 2.31 ± 1.4 

   

Glutamine transport   

   Duodenum    0.187 0.007 0.286 0.083 0.352 0.143 

        7d 2.36 ± 1.0 4.71 ± 1.8 2.53 ± 0.92  

        14d 1.35 ± 0.65 1.89 ± 0.73 1.67 ± 0.82 

   Jejunum    0.010 0.088 0.356 0.006 0.038 0.002 

        7d 1.90 ± 0.60 4.61 ± 2.1 2.75 ± 1.0  

        14d    0.964 ± 0.25 2.65 ± 0.71 2.68 ± 1.4 

        Mean4 1.39 ± 0.28b 3.56 ± 0.95a 2.72 ± 0.81a  

   Ileum    0.096 0.352 0.327 0.280 0.130 0.425 

        7d 5.06 ± 2.1 4.97 ± 1.8 4.03 ± 1.4  

        14d 4.20 ± 1.5 6.03 ± 2.4 2.93 ± 1.3 

   Colon    0.449 0.048 0.104 0.459 0.368 0.450 

        7d 5.66 ± 2.3 9.14 ± 4.5 9.02 ± 2.9  

        14d 6.84 ± 2.5 3.47 ± 2.0 5.36 ± 2.2 
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Table 2.12 Continued 

 
Virginiamycin (mg/kg) 

P-value 

Mixed model Contrast 

0 11 27.5 Txt Time Interaction 0 vs. 11 0 vs. 27.5 0 vs. txt 

Arginine 

transport 

  

   Duodenum    0.470 0.201 0.347 0.373 0.402 0.364 

        7d 0.643 ± 0.18 0.833 ± 0.29 0.870 ± 0.32  

        14d 1.01 ± 0.34 0.957 ± 0.41 0.873 ± 0.44 

   Jejunum    0.046 0.338 0.404 0.025 0.084 0.014 

        7d 0.768 ± 0.19 1.49 ± 0.52 1.05 ± 0.38  

        14d 0.515 ± 0.19 1.17 ± 0.62 1.24 ± 0.82 

        Mean4 0.630 ± 0.13b 1.32 ± 0.38a 1.14 ± 0.42ab  

   Ileum    0.356 0.283 0.042 0.326 0.245 0.250 

        7d 4.06 ± 2.4a 1.44 ± 1.2c 2.20 ± 1.6bc  

        14d 1.53 ± 1.1c 3.12 ± 2.1b 1.77 ± 1.7bc 

   Colon    0.360 0.409 0.329 0.367 0.335 0.482 

        7d 1.93 ± 0.79 2.13 ± 0.91 2.61 ± 1.1  

        14d 2.61 ± 1.1 1.57 ± 0.65 3.16 ± 1.4 
1Data are expressed as mean ± SEM 
2Unit of measure is µA/cm2 

3Within intestinal segment, different superscripts indicate statistically significant differences 
4Means pooled within treatment 
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Table 2.13 Serotonin and Carbachol induced-chloride secretion1-3 

 
Virginiamycin (mg/kg) 

P-value 

Mixed model Contrast 

0 11 27.5 Txt Time Interaction 0 vs. 11 0 vs. 27.5 0 vs. txt 

Serotonin   

 Duodenum    0.122 0.087 0.318 0.105 0.308 0.279 

        7d 0.456 ± 0.31 0.917 ± 0.47 0.514 ± 0.34  

        14d 0.909 ± 0.42 1.06 ± 0.48 0.643 ± 0.36 

  Jejunum    0.028 0.088 0.090 0.060 0.208 0.292 

        7d 1.62 ± 0.87 3.96 ± 1.5 0.828 ± 0.42  

        14d 1.15 ± 0.51 1.46 ± 0.64 1.12 ± 0.48 

        Mean4 1.37 ± 0.46ab 2.56 ± 0.68a 0.970 ± 0.30b 

  Ileum    0.381 0.326 0.184 0.238 0.428 0.301 

        7d 1.28 ± 0.94 0.916 ± 0.48 0.789 ± 0.35  

        14d 0.621 ± 0.25 1.86 ± 1.0 1.28 ± 1.0 

  Colon    0.490 0.384 0.311 0.454 0.472 0.489 

        7d 1.50 ± 0.87 1.92 ± 0.89 1.70 ± 0.81  

        14d 1.82 ± 0.91 1.24 ± 0.78 1.74 ± 0.81 

   

Carbachol   

 Duodenum    0.200 0.107 0.109 0.258 0.238 0.496 

        7d 1.56 ± 0.66 2.58 ± 1.3 2.11 ± 5.2  

        14d 1.96 ± 0.77 1.78 ± 0.77 0.974 ± 0.42 

  Jejunum    0.423 0.033 0.427 0.349 0.296 0.293 

        7d 18.7 ± 8.5 97.6 ± 47.5 8.13 ± 3.6  

        14d 11.8 ± 5.3 16.2 ± 7.4 11.5 ± 5.2 

  Ileum    0.352 0.406 0.017 0.326 0.338 0.485 

        7d 1.71 ± 0.68ab 0.727 ± 0.17bc 0.982 ± 0.33abc  

        14d 0.703 ± 0.14c 2.78 ± 1.0a 0.780 ± 0.17abc 

  Colon    0.486 0.382 0.079 0.432 0.482 0.472 

        7d 7.71 ± 3.4 14.3 ± 6.5 8.44 ± 3.7  

        14d 11.6 ± 5.2 5.42 ± 2.4 11.1 ± 5.0 
1Data are expressed as mean ± SEM 3Within intestinal segment, different superscripts indicate statistically significant differences 
2Unit of measure is µA/cm2   4Means pooled within treatment
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Table 2.14 Description of the major factors obtained by principal component analysis 

(PCA) of thirty-seven variables characterizing the gut structure and function of pigs in 

control and 11 mg/kg virginiamycin groups at day 71-2  

Factor 1 2 3 4 5 6 7 

Variance explained (%) 17.8 14.1 12.3 9.6 7.6 6.3 5.1 

Cumulative (%) 17.8 31.9 44.2 53.8 61.4 67.7 72.8 

Loadings of variables3        

Duodenum resistance 0.92       

Jejunum DNA -0.79       

Jejunum resistance 0.60    0.43   

Ileum glucose transport 0.53       

Ileum 5HT 0.87       

Colon arginine transport 0.92       

Average daily gain  -0.74 0.43     

SI length  0.78      

Duodenum RNA  0.72      

Duodenum glutamine transport  0.55    -0.41  

Jejunum submucosal mass  -0.43      

Colon length  0.82      

Duodenum submucosal mass  -0.40 0.41 0.41    

Jejunum crypt depth   0.52 -0.46 0.47   

Ileum crypt depth   0.73  0.41   

Ileum PCNA   0.79     

Colon mass   0.71     

Colon DNA   -0.79     

Colon glutamine transport   0.53     

Duodenum potential difference    0.92    

Jejunum sucrase activity    0.83    

Jejunum PCNA    -0.57    

Colon potential difference    0.89    

Jejunum Isc     0.75   

Ileum villus height     0.53   

Colon crypt depth     0.80   

Colon PCNA     0.75   

Duodenum sucrase activity      0.81  

Duodenum lactase activity      0.83  

Jejunum lactase activity      0.71  

Colon submucosal mass      -0.48  

Colon Isc      0.59  

Duodenum CCH       0.86 

Ileum protein       0.75 

Ileum RNA       -0.74 

Jejunum glutamine transport4        

Colon lactase activity4        
1Abbreviations: 5HT, serotonin induced chloride secretion; SI, small intestine; PCNA, 

proliferating cell nuclear antigen; Isc, short circuit current; CCH, carbachol induced 

chloride secretion.  
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2Extraction method: PCA; rotation method: varimax with Kaiser normalization 
3Only correlations with │r│ ≥ 0.40 are indicated. 
4Variables included in final analysis but did not load on the first 7 factors 
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Table 2.15 Description of the major factors obtained by principal component analysis 

(PCA) of thirty-four variables characterizing the gut structure and function of pigs in 

control and 11 mg/kg virginiamycin groups at day 141-3 

Factor 1 2 3 4 5 6 7 

Variance explained (%) 16.6 12.2 10.6 9.8 7.9 7.2 6.5 

Cumulative (%) 16.6 28.8 39.4 49.2 57.1 64.3 70.8 

Loadings of variables4        

Duodenum arginine transport 0.84       

Jejunum protein -0.55       

Jejunum arginine transport 0.84       

Ileum crypt depth 0.84       

Ileum sucrase activity 0.61       

Ileum lactase activity 0.58       

Ileum potential difference -0.68       

Duodenum crypt depth  0.73      

Jejunum crypt depth  0.86      

Jejunum 5HT  0.47      

Colon glucose transport  0.77     0.41 

Duodenum submucosal mass   0.79     

Jejunum resistance   0.49  0.40 0.49  

Colon glutamine transport   0.75     

Colon arginine transport   0.78     

Feed per unit of gain    0.84    

SI length    0.76    

SI mass    0.88    

Duodenum lactase activity  -0.58   0.62   

Jejunum lactase activity     0.75   

Colon potential difference     0.90   

Duodenum resistance      0.76  

Duodenum Isc      -0.47  

Duodenum glucose transport  0.43    0.53  

Jejunum sucrase activity     0.45 0.51  

Colon mass      -0.79  

Ileum submucosal mass       -0.42 

Ileum villus height       -0.42 

Ileum resistance       -0.80 

Ileum CCH       0.85 

Duodenum glutamine transport5        

Colon RNA5        

Colon sucrase activity5        

Colon 5HT5        
1Abbreviations: 5HT, serotonin induced chloride secretion; SI, small intestine; Isc, short circuit 

current; CCH, carbachol induced chloride secretion 
2Extraction method: PCA; rotation method: varimax with Kaiser normalization  
3Factor scores for control and 11 mg/kg groups are significantly different (factor 5: p=0.015; factor 7: 

p=0.050) 
4Only correlations with │r│ ≥ 0.40 are indicated 
5Variables included in final analysis but did not load on the first 7 factors 
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Table 2.16 Summary of factors 5 and 7 of the Principal Component Analysis (PCA) completed 

with data from control and 11 mg/kg virginiamycin groups at day 141-2  

Control  (-)
3 

11 mg/kg virginiamycin (+)
4 

Ileal submucosal mass 

Ileal mucosal mass 

Duodenal lactase activity 

Ileal villus height Duodenal glucose transport
5 

Ileal resistance Jejunal disaccharidase activity 

 Jejunal resistance 

 Ileal carbachol-induced chloride secretion
5 

Ileal serotonin-induced chloride secretion 

 Colonic potential difference
5 

Colonic short-circuit current 
1
Factors 5 and 7 of PCA 2 discriminate between control and 11 mg/kg virginiamycin-fed 

pigs 
2
Ileal mucosal mass, ileal serotonin-induced chloride secretion, and colonic short-circuit 

current were not included in the final PCA but were significantly correlated with the 

variable within the same cell in the table and, therefore, can be used in the interpretation 
3
Factor scores for control were negative 

4
Factor scores for 11 mg/kg virginiamycin were positive 

5
Variable significant by split-plot or contrast analysis 
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Figure 2.1 Duodenal mucosal mass expressed as grams per centimeter of 

tissue. Data are expressed as mean ± standard error measurement (SEM). 

Different letters above bars indicate a statistically significant difference. 

In the duodenum, mucosal mass increased over time in the control pigs, 

but it did not in pigs fed diets supplemented with virginiamycin resulting 

in less mucosal mass in the duodenum in the 11 mg/kg virginiamycin 

group at day fourteen (p=0.038).   
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Figure 2.2 Jejunal submucosal mass expressed as grams per centimeter 

of tissue. Data are expressed as pooled treatment mean ± (SEM).  In the 

jejunum, virginiamycin-fed pigs had more submucosal mass compared 

with control when virginiamycin groups were contrasted with control 

(p=0.037). 
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Figure 2.3 Duodenal villus surface area for control, 11 mg/kg, and 27.5 

mg/kg virginiamycin. Magnification of 5X with hematoxylin and eosin 

stain. Villus surface area was greater in the duodenum of virginiamycin-

fed pigs compared with control when virginiamycin groups were 

contrasted with control (p=0.048). 
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Figure 2.4 Crypt depth in the jejunum. Data are expressed as mean ± 

SEM. Different letters above bars indicate a statistically significant 

difference.  Crypt depth decreased in pigs fed the diet supplemented with 

27 mg/kg of virginiamycin over time in the jejunum (p=0.023) 
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Figure 2.5 Colonic crypt depth. Data are expressed as pooled treatment 

mean ± (SEM).  Pigs fed diets containing 11 mg/kg of virginiamycin had 

deeper crypts in the colon compared with control when the 11 mg/kg 

group was contrasted with control (p=0.044). 
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Figure 2.6 Ileal epithelial cell proliferation at 7 days in control and 11 

mg/kg virginiamycin-fed pigs, as measured by quantifying the number of 

proliferating cell nuclear antigen (PCNA)-positive cells per crypt.  Black 

arrows indicate PCNA positive cells.  Magnification of 5X with VIP 

stain.  Virginiamycin treatment increased the number of PCNA-positive 

cells per crypt in the ileum at seven days compared with control 

(p=0.003). 
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Figure 2.7 Sucrase activity in the duodenum expressed as unit of activity 

per gram of protein. Data are expressed as mean ± SEM. Different letters 

above bars indicate a statistically significant difference. Sucrase activity 

in the duodenum was lower in the 11 mg/kg virginiamycin group 

compared with control at day seven, but it increased over time in the 

virginiamycin groups (p=0.039). 
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Figure 2.8 Potential difference in the colon. Data are expressed as 

pooled treatment mean ± SEM.  Different letters above bars indicate a 

statistically significant difference. Potential difference was increased in 

the colon with the highest virginiamycin treatment compared with 

control (p=0.048). 
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Figure 2.9 Sodium-coupled glucose transport in the duodenum. Data are 

expressed as pooled treatment mean ± SEM.  Virginiamycin treatment 

increased glucose transport in the duodenal mucosa compared with 

control when virginiamycin treatments were contrasted with control 

(p=0.025).  
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Figure 2.10 Sodium-coupled glucose transport in the jejunum. Data are 

expressed as pooled treatment mean ± SEM.  Virginiamycin treatment 

increased glucose transport in the jejunum compared with control when 

virginiamycin treatments were contrasted with control (p=0.045). 
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Figure 2.11 Electrogenic glutamine transport in the jejunum. Data are 

expressed as pooled treatment mean ± SEM. Different letters above bars 

indicate a statistically significant difference. Virginiamycin treatment 

increased electrogenic glutamine transport in the jejunual mucosa 

compared with control (p=0.010). 
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Figure 2.12 Electrogenic arginine transport in the jejunum. Data are 

expressed as pooled treatment mean ± SEM. Different letters above bars 

indicate a statistically significant difference. Jejunal arginine transport 

was significantly greater in the 11 mg/kg virginiamycin group compared 

with control (p=0.046). 
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Figure 2.13 Electrogenic arginine transport in the ileum. Data are 

expressed as mean ± SEM. Different letters above bars indicate a 

statistically significant difference. Pigs consuming diets supplemented 

with virginiamycin had less ileal arginine transport compared with 

control pigs at day seven. Ileal arginine transport decreased over time in 

control pigs while increasing over time in the pigs fed diets containing 

11 mg/kg of virginiamycin resulting in more arginine transport in the 

ileum of pigs fed diets supplement with 11 mg/kg of virginiamycin diets 

compared with control at day fourteen (p=0.042). 
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Figure 2.14 Carbachol induced chloride secretion (CCH) in the ileum. 

Data are expressed as mean ± SEM. Different letters above bars indicate 

a statistically significant difference. Ileal carbachol induced chloride 

secretion was decreased in the control pigs, but it increased in pigs 

consuming the diet supplemented with 11 mg/kg of virginiamycin at day 

fourteen compared with day seven.  This resulted in greater carbachol 

induced chloride secretion in the 11 mg/kg virginiamycin group at day 

fourteen compared with control (p=0.017). 
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Figure 2.15 Virginiamycin impacts on intestinal structure and function observed in our study. 

Duodenum 

- ↓Mucosal mass 

- ↑Villus surface area 

- ↓Sucrase activity 

- ↑Glucose transport 

Jejunum 

- ↑Submucosal mass 

- ↑Glucose transport 

- ↑Glutamine transport 

- ↑Arginine transport 

Ileum 

- ↑Proliferation 

- ↓↑Arginine transport 

- ↑Carbachol-induced 

chloride secretion 

Colon 

- ↑Crypt depth 

- ↑Potential difference 
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Chapter 3: Future Directions 

  In-feed antibiotics play a large role in animal health and production by improving 

performance and feed efficiency and, thus, increasing affordable pork supply.  The safety of in-

feed antibiotics has come into question regarding human health.  Understanding how antibiotics 

promote growth will help determine the safety of their use and provide a knowledge basis for 

alternatives if the use of antibiotics for growth promotion is prohibited.  Therefore, the objective 

of this research was to investigate the structural and functional developments induced in the 

intestine by the consumption of virginiamycin in grower pigs and to determine how these 

developments may be mechanistically related to the differences in growth. 

 Results of this study demonstrate that virginiamycin impacts functional capacity to a 

greater extent than structural indices.  Pigs fed diets supplemented with virginiamycin had 

increased absorptive surface area in the duodenum but significant increases in nutrient transport 

along the entire small intestine.  Future research is needed to ascertain the mode of action of 

virginiamycin in grower pigs and investigate the relationship between increased nutrient 

transport and virginiamycin.   

Future direction for this line of research includes investigating: 

1) cellular kinetics in the intestinal epithelium  

2) nutrient transporters 

3) digestive enzyme activity 

4) immune response markers 

5) microbiota analysis 
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 Future research should focus on the 11 mg/kg level of virginiamycin, because that is the 

level currently approved for growth promotion and feed efficiency in grower pigs.  Grower pigs 

are good subjects to use for investigating the effects of antibiotics on growth promotion and feed 

efficiency because growth responses are greater than in finisher pigs without the added dynamics 

of weaning-associated changes in weaning piglets. 

 Increased proliferation was observed at seven days in the ileum without increases in the 

crypt-villus axis.  Future work should investigate if there is a subsequent increase in apoptosis at 

day seven.  If apoptosis is not increased at this time point, it may be necessary to investigate time 

points beyond fourteen days to determine if structural changes occur along the crypt-villus axis 

at later time points.  Additionally, cellular differentiation should be investigated.  Immature, 

rapidly proliferating cells at day seven but more mature, differentiated cells by day fourteen may 

explain the unique functional response observed in the ileum with virginiamycin. 

Nutrient transport was significantly increased along the small intestine with 

virginiamycin.  However, increased absorptive surface area was not observed beyond the 

duodenum.  This suggests that pigs fed diets supplemented with virginiamycin may have up-

regulation of nutrient transporters or increased enzyme activity associated with digestion and 

absorption.  Sucrase and lactase activities were not greatly impacted by virginiamycin, but future 

studies should investigate additional digestive enzymes such as maltase and peptidase activities.  

Nutrient transporter mRNA expression should be quantified to investigate, in more detail, the 

molecular basis for treatment differences in functional indices. 

Decreased mucosal mass in the duodenum and increased carbachol induced chloride 

secretion in the ileum may support the immune response theory proposed by Niewold (2007).  

Future research should investigate immune response markers of innate and acquired immunity.  
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Assessing intestinal and plasma cytokines and antibody response may provide further support to 

this mechanism.  Pro-inflammatory cytokines are early mediators produced in response to tissue 

damage and may be impacted by in-feed antibiotics.  Virginiamycin has been shown to enhance 

systemic antibody response to soluble antigens in chickens (Brisbin et al., 2008).  Lymphocyte 

stimulation assays would also provide insight to the effect of virginiamycin on the immune 

response. 

 Mucins contribute to the health of the intestinal epithelium by producing a mucus layer to 

protect the tissue through lubrication and preventing bacterial adhesion.  Van Leeuwen and 

colleagues (2002) observed a significant increase in crypt goblet cells in the jejunum of piglets 

fed virginiamycin supplemented diets.  Studying goblet cells and mucins in the intestinal lumen 

will provide insight on the effect of virginiamycin on this protection mechanism. 

The most widely-accepted mechanism of action for growth promotion via antibiotics is 

the effect on the microbiota.  The intestinal microbial populations greatly impact the intestinal 

environment and likely play a role in several of the other proposed mechanisms.  Previous 

research has shown that virginiamycin impacts the microbial population in the intestinal tract of 

pigs.  However, those studies have been done with varying amounts of the antibiotic, many of 

them much higher than the current approved level for growth promotion in swine.  Future studies 

should include analysis of the intestinal microbiota in grower pigs fed diets supplemented with 

11 mg/kg of virginiamycin.  Microbial analysis should be included with nutrient transport studies 

and the aforementioned variables to gain a cohesive understanding of the mechanisms behind 

antibiotic growth promotion. 

Overall, the future directions of this research would be aimed at unveiling the 

mechanisms by which virginiamycin promotes faster weight gain and feed efficiency in pigs.   



90 

 

Understanding how virginiamycin works in grower pigs will provide an evidenced-based 

working knowledge from which regulatory decisions can be made on the judicious and prudent 

use of antibiotics in food-producing animals.  In the event that the United States decides to ban 

the use of antibiotics for growth promotion in animals, alternative strategies are needed to 

maintain the level of uniform performance seen with sub-therapeutic levels of antibiotics.  A ban 

on antibiotic use in pigs for growth promotion, without an adequate alternative or change in 

practice, may lead to decreased pork production and a decline in animal health. 

Antibiotic use for growth promotion has been prohibited in the European Union since 

2006; therefore, the European Union provides a valuable reference for evaluating the impact of 

banning antibiotics and assessing alternative practices.  Improving animal husbandry practices 

can greatly impact animal health and productivity.  A reduction in overcrowding and infection 

control techniques may result in improved animal health and performance.  Depopulation and 

repopulation of farms and commercial feedlots can result in cleaner facilities with lower 

microbial loads.  Increasing the weaning age of piglets may also improve the health and 

performance of pigs.  Early weaned piglets have been associated with inconsistent growth rates, 

abnormal feed intake, higher cortisol concentrations, and decreased cellular immune reactivity 

(Johnson et al., 2013).  In Europe, as of the beginning of 2013, piglets are not to be weaned at 

less than 28 days of age.  The law also states that “…piglets may be weaned up to seven days 

earlier if they are moved into specialized housings which are emptied and thoroughly cleaned 

and disinfected before the introduction of a new group…” (Defra, 2011).  This practice was 

adopted in the European Union to produce healthier piglets, increase survival post-weaning, and 

increase the number of live pigs per sow per year. 
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In addition to improve husbandry practices, dietary alternatives to antibiotics have been 

proposed.  In-feed enzymes may be added to feed to help break down certain components of the 

feed to improve digestion.  Probiotics and prebiotics have also been proposed as alternative to 

antibiotics for growth promotion and there is increasing evidence showing the effects of these on 

pigs, primarily regarding intestinal adaptation.  Proposed mechanisms by which probiotics work 

are similar to some of the proposed mechanisms of antibiotics, including improving microbial 

balance in the gut, impacting the immune response, and influencing intestinal metabolic 

activities.  Prebiotics, such as fructooligosaccharides, have been postulated to enhance growth 

responses in livestock.  Zinc and copper have also been investigated as alternatives to in-feed 

antibiotics.  Understanding the mechanisms behind virginiamycin may lead to selection of 

alternatives that can mimic the growth performance effects of virginiamycin. 
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