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Abstract 

The main objective of this study was to develop an automated agricultural vehicle 

guidance system that can be easily transplanted from vehicle to vehicle. The proposed 

solution to this problem is to first perform a tractor model identification, and then use a pole 

placement technique to place the closed loop dominant poles in their desired locations. One 

of the most difficult aspects of designing a controller for vehicle guidance is arriving at a 

good model of vehicle lateral dynamics.  

This study presents a new approach for identifying the lateral dynamics of an 

automated off-highway vehicle. A second order model is proposed to represent the vehicle 

lateral dynamics. An Iterative Learning Identification (ILI) method is used to identify the 

model parameters. Simulation and experimental results show the convergence of parameters 

with arbitrarily chosen initial estimations. The estimation results are compared to other 

traditional identification methods: least squares estimation and gradient based adaptive 

estimation. The results highlight the practical benefits of the ILI approach – i.e. that it can be 

performed in a relatively small section of field and therefore done prior to actual usage or 

engagement with crops 
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ya    inertial acceleration of the vehicle at the c.g. in the direction of y axis 

fC    cornering stiffness of the front tires 

rC   cornering stiffness of the rear tires 

sd    distance from vehicle mass center to the output measurement sensor 

   front wheel steering angle 
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zI   yaw moment of inertia of the vehicle 
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rl    distance form vehicle c.g. to the rear axle 

m   mass of the vehicle 

R    road radius 

   yaw angle 

   yaw rate 

ry   lateral distance between the vehicle c.g. and the center line of road 
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Chapter 1     

Introduction 

This thesis presents a new approach for identifying the lateral dynamics of an 

automated off-highway agricultural vehicle. This method will allow the vehicle to be 

identified in a relatively small section of field and therefore done prior to the actual usage or 

engagement with crops. A feedback controller can then be designed based on the identified 

model. This will allow for easier tuning of feedback controllers for different vehicles. A 

second order model is proposed to represent the vehicle lateral dynamics. An Iterative 

Learning Identification (ILI) method is used to identify the model parameters. Simulation 

and experimental results show the identified model to be very representative of the actual 

tractor dynamics. The feedback controller designed based on the identified model is capable 

of achieving the design specifications for closed loop performance. The estimation results are 

compared to other traditional identification methods: least squares estimation and gradient 

based adaptive estimation. Relative benefits and drawbacks of the alternate approaches are 

also discussed. 

The organization of this introductory chapter is as follows. First, a motivation for off-

highway agricultural vehicle research is given, with specific emphasis on automatic steering. 

Second, a short literature review of the area of automatic agricultural vehicle research is 

given. Third, the specific goals of this thesis are described, including the motivation for using 

the particular type of identification method chosen. An introduction for Iterative Learning 

Identification is also presented. Finally, a summary of the remaining chapters in the thesis is 

provided.  
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1.1 Motivation for agricultural vehicle research 

Agriculture has always been central to the development of human civilization. The 

world population is slated to grow from 7 billion currently to over 9 billion by the year 2050. 

At the same time, a growing world population demands space to live thereby reducing the 

arable land available for generating crops. If one adds in the growing burden on current water 

resources by the growing population it becomes readily apparent that future agriculture will 

have to ‘do more with less.’ In short, the yields of future agricultural systems will have to 

greatly outperform those of the present if we are to meet the predicted need. There are 

several ways in which to make gains in agriculture. Improved crop genetics is a clear one, 

along with improved fertilizers. However, a large factor in the gains of modern agriculture is 

the increased mechanization and automation of the entire agricultural process. A key facet of 

the overall mechanization is the improved functionality of modern machines that work to 

plant, monitor, harvest, and condition the fields of operation.  

The concept of precision farming, or precision agriculture, first emerged in the United 

States in the early 1980s. As defined, precision agriculture is a farming practice of using 

remote sensing, soil sampling and information management tools to optimize agriculture 

production. The goal of precision agriculture is to optimize field-level management with 

regard to crop science, environmental protection and economics. Precision agriculture uses 

information technologies, like Global Positioning Systems (GPS), Geographical Information 

Systems (GIS), and remote sensing to target inputs and management practices to variable 

field conditions. In this study, we will be focusing on agricultural GPS guidance, which is an 

important step in the whole precision farming process. 

Automatic guidance can effortlessly perform monotonous field operations, which 

involve parallel swathing, and repetitive passages over similar rows. It can also improve an 

operator’s ability to control complex farm machinery, which frequently includes monitoring 

many machine sub-systems. Overlapping or skipping field areas in simple operations like 

tillage or chemical applications can be reduced by using a GPS based guidance system. Work 

in low visibility situations can also be made possible with the help of GPS based automatic 

guidance systems. 
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 The economic paybacks in using a GPS based automatic guidance system was 

analyzed summarized by Samuel Gan-Mor and Rex L. Clark from the University of Georgia 

in 2001 [1]. Table1.1 demonstrates that the market value for, or the profit in, using these GPS 

technologies ranges from a few cents up to a few dollars per acre. 

Table 1.1 The additional cost farmers are paying for conventional operation performed 

with a GPS controlled system vs. Manual control [1] 

The field operation The automatic technology vs. 

the manual control 

Cost difference 

$/acre 

Variable rate application of 

fertilizers or lime 

GPS controller driven +1.08 

Variable rate application of 

chemicals 

GPS controller driven +0.09 

Variable rate seedings GPS controller driven +2.56 

Matt Watson and Jess Lowenberg- Deboer from Purdue University have also 

demonstrated the benefit of using a GPS based guidance system [2]. They examined at a 

1800 acre farm on a 50/50 corn-soybean rotation, which was considered a typical size crop 

operation in west central Indiana. It was indicated in the study that with the use of GPS 

guidance system, the average field operating speed can be increased by 20%. This will result 

in a saving of around 85 hours per season, not counting harvest, which would allow for work 

on additional farm land. Clearly, it has been previously demonstrated that use of automation 

in agriculture can both increase efficiency of resource use and reduce the time needed to 

perform necessary tasks. 

1.2 Literature review on agricultural automatic guidance design 

The historical development of an automatic tractor can be dated back to the early 20
th

 

century. In 1924, Willrodt [3] developed a steering attachment for tractors. This device can 

be adapted to be coupled to the forward axle of a tractor to follow a furrow that is previously 

formed, thus provide guidance for the tractor.  The schematic of this type of steering 

attachment, and its relative position to a tractor is shown in Fig. 1.1. In 1941, Andrew [4] 
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developed a complete system of spiral farming based on piano wire winding upon a large 

diameter spool positioned centrally in a field. These early attempts of automatic steering are 

mostly mechanical, and did not receive much attention at the years they were proposed.   

With the change in the agricultural industry over the past several decades, automatic 

guidance steering using electronic systems is well recognized not only by researchers, but 

also by manufacturers and agricultural producers. The advancement in sensors and 

technologies enabled the automatic steering system to be easily accessible and affordable. 

Many research works have been aimed at the development of guidance systems using 

location sensors that are based on image analysis, GPS, leader cable, laser beams, or other 

technologies. The research works that were conducted in the early 21
st
 century are reviewed 

by Reid et al [5], Keicher and Seufert [6], and Torii respectively [7]. A more recent review is 

conducted by Li et al [8]. The framework for automation is shown in Fig. 1.2, and the closed 

loop architecture for an automatic guidance system is presented in Fig. 1.3. 

 

Figure 1.1 steering schematic of tractor guidance (scanned from U.S. Patent 1506706) 
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Figure 1.2 Basic elements of agriculture vehicle automation systems [5] 
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Figure 1.3 Closed loop architecture for automatic guidance system 

 

Navigation sensors are used to provide information on vehicle position and vehicle 

heading. There are different types of navigation sensors used in the guidance study. The key 

heading and position sensors have included machine vision, GPS, with some work taking 

place with geomagnetic direction sensors (GDS) and inertial sensors. Mechanical feelers are 

capable of sensing the relative position of the tractor to the desired trajectory using a linkage. 
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These systems are quite effective at speed up to 10 km/h in maize, where the course is 

limited to straight rows. At slower speed, the systems can be used on curved rows [9]. 

Machine vision, incorporating a sensor mounted on the vehicle, is also a sensing modality 

that is capable of providing both relative position and heading of the vehicle. Previous 

research [10] has illustrated some performance equivalence of different sensing systems. For 

example, [10] illustrated that a machine vision based system was capable of guiding a small 

grain combine at the same accuracy level as the GPS recording system available.  

In this research, a Global Positioning System (GPS) based guidance system was 

developed for a tractor. GPS based guidance system research has been extensive throughout 

the world due to their low cost, high accuracy and absence of drift and bias. In 1995, 

researchers in Stanford University successfully developed a Carrier-Phase GPS system for 

guiding a John Deere 7800 tractor [11]. A kinematic model was used in the research, and the 

discrete model was identified using recursive transfer function system identification 

techniques base on a Least Mean Squares algorithm. Least Mean Squares algorithm is a 

recursive type approach. Feed-forward U-turn trajectories were designed to require sufficient 

excitation of the vehicle dynamics, providing rich data for identification of an appropriate 

vehicle model in post-processing. A 1
st
 order model is used to describe the ‘control to 

steering angle’ transfer function, and a 2
nd

 order model is used to describe the ‘control to 

heading angle’ transfer function. The technique used for vehicle automatic control was a 

discrete Linear Quadratic Regulator/ Estimator. The control gains were chosen to minimize a 

quadratic cost function based on control inputs and state deviations from nominal. The 

experimental result shows zero mean with standard deviation of 5 centimeters. In 2000, this 

work of CDGPS based automatic tractor guidance has been generalized to non-linear 

trajectories, real-time model identification, and control along sloped terrain [12].  

Researchers at the University of Illinois have also developed a GPS based automatic 

guidance system for agriculture vehicles operating at high field speed [13]. In the study [13], 

a second order model is developed for agriculture vehicles based on open loop frequency 

response test. The dynamics of steering equipment is also found to be important for 

controller design. A second order differentiator was implemented as the steering controller, 
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and the model-based guidance controller can provide adequate guidance system performance 

at forward velocities up to 6.8m/s. 

1.3 Goals of current research 

The studies we have listed above have focused on the design of a steering controller 

for a particular tractor. However, the level of performance degrades for so-called retrofit 

systems that effectively bolt-on to existing vehicles. If those types of method need to be 

transplanted to other vehicles, the whole design process needs to be repeated, a key aspect of 

this re-design involves accurately identification of vehicle parameters. The main difficulties 

lie in the different structure/ dynamics of each vehicle and the different tasks each vehicle 

needs to perform. Those variations in plant parameters or operating conditions will in turn 

change the controller performance. If the same level of closed loop performance needs to be 

maintained for different operating conditions, the controller needs to be designed for each 

application.  

One of the possible solutions to this problem can be represented using a flowchart 

shown in Fig. 1.4. The idea of this type of steering controller design approaches involves the 

identification of the tractor model, and controller design based on the identified tractor 

model. The first two steps in the flowchart correspond to the tractor model identification, 

where the third step in the flowchart gives the specification for controller design. The fourth 

step is the controller design based on the identified plant model, with the last step being the 

evaluation of the closed loop performance. This design process can be iterated if the designed 

controller does not meet the initial design requirement.  

One of the most difficult aspects of designing a controller for vehicle guidance is 

arriving at an appropriate model of vehicle dynamics and disturbances.  Ground vehicle 

dynamics range from very simple to overwhelmingly complex, and there is no single model 

that is widely accepted in the literature [11]. Especially for the purpose of controller design, a 

very complex model is not always the most appropriate to use. Tractor dynamics model 

identification can be based on vehicle parameter estimation, which includes vehicle mass, 

moment of inertia, and cornering stiffness [14]. With those parameter measurements, an 
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accurate dynamics model can be obtained. However, these parameters are sometimes hard to 

measure and not always accessible.  

Open loop tests [13] for tractors using sinusoidal (frequency domain) or pseudo-

random binary sequence (time domain) control inputs posed a problem in our experimental 

conditions. Only a limited amount of data could be taken before the vehicle traveled to the 

end of the particular test field of operation. For this reason, a closed loop identification 

scheme is required. Since the identification experiment usually requires some level of 

excitation, an open-field with no crop is thus optimal for the identification purpose. Since 

field area is a very valuable resource in agriculture, the identification needs to be conducted 

in as small an area of field as is feasible. In addition, with the current agriculture steering 

products, the choices of reference signals are limited. Those reasons differentiate the 

identification of a tractor model from other general system identification problems, and these 

constraints need to be taken into consideration in choosing an appropriate identification 

algorithm. 

1. Vehicle Response Test

5. Evaluation of Vehicle Response 

4. Calculate appropriate P,I,D Gains to place 

the closed loop poles

3. Determine the desired closed loop poles

2. Determine Plant Transfer Function Based on 

the Simplified Model

Satisfied?

END

YES
NO

 

Figure 1.4 Automatic steering controller development flowchart 
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The goal of this research is to develop a practical tractor dynamics identification 

protocol for the purpose of controller design with constraints in identification field area and 

limitation in the selection of reference trajectories. Since the tractors are capable of repeating 

its trajectories, iterative learning identification is one of the possible solutions.  

 

1.4 Introduction of Iterative Learning Identification (ILI) 

Iterative Learning Identification (ILI) is a novel approach for closed loop 

identification [15] [16] [17]. This method achieves identification by applying Iterative 

Learning Control (ILC) [18]concepts in the presence of measurement noise without any 

knowledge of the feedback controllers in the loop.  

A comparison between ILI and ILC can be found in Fig. 1.5. The purpose of ILI is to 

find an optimal set of parameters in the estimated plant model to minimize the model error 

model

je measured in Fig. 1.5 (a). It stores the estimated parameters in j-th trial, and multiplies it 

by a learning gain L
. It then measures the model error from the current trial and multiply it 

by a learning gain of eL . The estimated parameters at a future j+1-th trial is thus updated 

based on the summation of the previous terms. In ILC, the purpose is to find an optimal set of 

feedforward signal to minimize the output error. The architecture is shown in Fig. 1.5 (b), 

where the current feedforward signal is updated based on the feedforward signal generated 

from the previous trial, and the output error measured from the current trial.  

ILI considers systems that repeat the same reference trajectory with a view to 

sequentially improving parameter estimation accuracy. The algorithm generates the 

estimation of parameters from the new trial by adding a ‘correction’ term to the est imated 

parameters from the previous trial. ILC is based on the notion that the performance of a 

system that executes the same task multiple times can be improved by learning from previous 

executions (trials, iterations, passes). 

 

 

 



 10  

 

( )

( )

o

o

B z

A z

( )je z

( )u z

+

MEMORY

-

eL

( )

( )

j

j

B z

A z

L

Estimated Plant Model

True Plant Model
 

(a) 

 

(b) 

Figure 1.5 (a) ILI architecture (b) ILC architecture [18] 

The effectiveness of ILI has been previously demonstrated through numerical 

examples. One of the most important reasons for using ILI is that this type of algorithms can 

be repeated in a relatively small area, which enables us to identify the tractor dynamics 

model in a relatively small amount of field.  
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1.5 Overview of remaining chapters 

The remaining chapters are organized as follows. In chapter2, a second order 

agricultural vehicle model is developed based on a well-known bicycle model. Chapter 3 

discusses the parameter identification methods, including Iterative Learning Identification 

(ILI), and two classical identification approaches – Least Square Estimation and Gradient 

Adaptive Estimation. In chapter 4, the simulation results for both the ILI method and the 

classical approaches are presented with a highlight in the benefits for ILI. Chapter 5 

compares the experimental identification results between ILI and the classical identification 

methods. In chapter 6, a controller is developed based on the identified model from ILI, and 

the setup and results for the hardware-in the loop test are also presented. Conclusions and 

future works are discussed in Chapter 7. 
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Chapter 2     

Lateral Vehicle Dynamics 

The purpose of the study is to develop a lane-keeping system, which is capable of 

automatically controlling the steering to keep the vehicle in its lane. Therefore, controlling 

the lateral vehicle dynamics are the main interest of this study. In this chapter, low order 

vehicle lateral dynamics model is developed.  

A vehicle lateral dynamics model can range from simple to very complex. However, 

those complex models are not proper to use, especially since controller and estimator design 

require a simple, typically linearized model of plant dynamics. For most vehicle control 

applications, it has been demonstrated that a relatively low order ‘bicycle model’ dynamics 

are usually sufficient for a linearized version of the plant.  

This chapter is organized as follows. Section 2.1. describes two widely recognized 

lateral vehicle models: kinematic model and bicycle model. Section 2.2 gives the simplified 

result of a bicycle model. The structure of this simplified bicycle model will be adopted in 

the following chapters for the tractor machine. The nomenclature of this chapter is included 

in the end of the chapter. 

2.1 Lateral Vehicle Model 

2.1.1 Kinematic Model [19] 

A kinematic model describes the vehicle motion without consideration of the forces 

that cause the motion.  It is obtained purely based on the geometric relationships governing 

the system with a ‘bicycle model’ assumption.  
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The basic assumptions in ‘bicycle’ model are that both the left and right front wheels 

were represented by one front wheel, and both the left and right rear wheels were represented 

by one rear wheel for an all-wheel steering vehicle (Figure 2.1). From the Ackerman turning 

geometry, this assumption is not exactly true because the wheels on the inside and outside of 

a turn need to trace out circles of different radii. However, when the turning radius is 

sufficiently big comparing to the vehicle geometry, the left and right steering angles are 

approximately equal, and the difference is ignored.  

The geometric relationships of a ‘bicycle’ model with two degrees of freedom are 

shown in Figure 2.1. The two degrees of freedom are represented by vehicle lateral position 

y, and vehicle yaw angle  , which describes the orientation of the vehicle. The influence of 

road bank angle is not taken into account in developing the model. Assuming all-wheel 

steering vehicle, the steering angles for the front and rear wheels are represented by f  and 

r , respectively. For a front-steered vehicle, the rear steered wheel angle r  equals to 0 for all 

the time. The center of gravity (c.g.) is at point C. The distances from the vehicle c.g. to the 

front and rear wheels axles are fl  and rl , respectively. The vehicle slip angle   is the angle 

between the vehicle velocity at c.g. and the vehicle longitudinal axis. 

From geometric analysis, the following equations of motion can be obtained [19]. 

 

cos( )

sin( )

cos
(tan tan )f r

f r

x V

y V

V

l l

 

 


  

 

 

 


 ( 2.1 ) 

In this model, V denotes the longitudinal velocity of the vehicle, and can be time 

varying. One major assumption of a kinematic model is that the velocity vectors at point A 

and B are in the direction of the orientation of the front and rear wheels respectively. This 

equals to assuming that there are no ‘slip angles’ on both wheels. This is a reasonable 

assumption for low speed motion of the vehicle.  

This model has been adopted for low speed agricultural vehicle guidance design. 

Researchers in Stanford University have successfully developed a Carrier- Phase GPS system 
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for guiding a John Deere 7800 tractor based on a kinematic tractor model [20]. The 

experimental result shows zero mean with standard deviation of 5 centimeters.  

However, since this study is hoping to generalize the design of an autonomous 

controller to high speed operations as well, the kinematic model is not adopted. Instead, a 

more generalized ‘bicycle’ model which released the assumption of no ‘slip angles’ is being 

used in this work.  

 

 

Figure 2.1 Kinematics of lateral vehicle motion (scanned from [19]) 

 

 

2.1.2 Bicycle Model [19] 

At higher vehicle speeds, instead of using a kinematic model, a dynamic model needs 

to be developed. This dynamics model takes into account the fact that the velocity at each 

wheel is not in the direction of the wheel. In other words, ‘slip angles’ are not zero.  
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As shown in Fig. 2.2, there are two degrees of freedom considered in the vehicle 

model. The two degrees of freedom are represented by vehicle lateral position y and vehicle 

yaw angle  . The vehicle lateral position is measured along the lateral axis of the vehicle to 

a point O which is the center of rotation of the vehicle. The vehicle yaw angle   is measured 

with respect to the global X axis. The longitudinal velocity of the vehicle at the center of 

gravity (c.g.) is denoted by 
xV .  

 

Figure 2.2 Lateral Vehicle Dynamics 

 

By applying Newton’s second law for motion along the y axis,  

 y yf yrma F F   ( 2.2 ) 

where  

2

2y

d y
a

dt
  is the inertial acceleration of the vehicle at c.g. in the direction of the y axis 

and yfF  and yrF  are the lateral tire forces of the front and rear wheels respectively. Two 

 


Vf

Vr

fV

rV

x

y

X

Y



O
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terms contribute to ya : the acceleration which is due to motion along the y axis and the 

centripetal acceleration 
xV . Hence 

 y xa y V    ( 2.3 ) 

Substituting from Eq. 2.3 into Eq. 2.2, the equation for the lateral translation motion 

of the vehicle is obtained as 

 ( )x yf yrm y V F F     ( 2.4 ) 

Moment balance about the z axis yields the equation ofr the yaw dynamics as 

 z f yf r yrI l F l F     ( 2.5 ) 

where fl and rl  are the distances of the front tire and the rear tire respectively from the c.g. of 

the vehicle.  

Experimental results show that the lateral tire force of a tire is proportional to the 

“slip-angle” for small slip-angle. The slip angle of a tire is defined as the angle between the 

orientation of the tire and the orientation of the velocity vector of the wheel. Fig. 2.2, the slip 

angle of the front wheel is 

 
ff V      ( 2.6 ) 

where 
fV  is the angle between the velocity vector of the front wheel makes with the 

longitudinal axis of the vehicle and   is the front wheel steering angle. The rear slip angle is 

similarly given by  

 
rr V     ( 2.7 ) 

By taking the assumption that the lateral tire force of a tire is proportional to the ‘slip 

angle’, the lateral force for the front wheels of the vehicle can therefore be written as 

 ( )
fyf f VF C      ( 2.8 ) 
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where the proportionality constant fC  is called the cornering stiffness of both front tires,   

is the front wheel steering angle.  

Similarly, the lateral tire for the rear wheels can be written as 

 ( )
ryr r VF C      ( 2.9 ) 

where rC  is called the cornering stiffness of the rear tires, 
rV  is the angle between the 

velocity vector of the rear wheel makes with the longitudinal axis of the vehicle. 

To calculate 
fV   

 tan( )
f

y f

V

x

V l

V





  ( 2.10 ) 

Using small angle approximation and use the notation yV y ,  

 
f

f

V

x

y l

V





   ( 2.11 ) 

Similarly, 
rV  can be calculated as,  

 tan( )
r

y r

V

x

V l

V





  ( 2.12 ) 

 
r

r
V

x

y l

V





   ( 2.13 ) 

Substituting from Eqs, 2.6, 2.7, 2.11, and 2.13 into Eqs. 2.4 and 2.5, the state space 

model can be written in ( 2.14 ). 

 

2 2

0 1 0 0 0

0

0 0 0 1 0

0

f r f r f f r r f

f ff f r r f f r r f f r r

zz z z

C C C C l C l Cy y C

y ymV m mV md

dt

l Cl C l C l C l C l C l C

II V I I V

      

     


 

 

   
                  

       
      
               

  

 ( 2.14 ) 
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where  y  is the vehicle lateral position,   denotes the yaw angle, fC  and 
rC  are 

called the cornering stiffness of the front tires and rear tires respectively, m  is the vehicle 

mass, V  is the longitudinal velocity, 
zI  is the vehicle inertia, and   is the front wheel 

steering angle.  

Equation ( 2.14 ) defines vehicle lateral dynamics in vehicle coordinate. When the 

objective is to develop a steering control system for automatic guidance, it is useful to utilize 

a dynamic model in which the state variables are in terms of position and orientation error 

with respect to the road. 

Hence the lateral model developed in Eq. ( 2.14 ) will be re-defined in terms of the 

following error variables [21]:  

ry , the distance of the c.g. of the vehicle from the center line of the road as shown in 

Figure 2.3 

d  , the orientation error of the vehicle with respect to the road as shown in 

Figure 2.3, where desired road yaw angle is d , the yaw angle of the vehicle body respect to 

the vehicle longitudinal axis is  .  

Now, assume that the road radius R  is large so that the small angle assumptions as in 

the ‘bicycle model’ can be made. Define the rate of change of the desired orientation of the 

vehicle as 

 
x

d

V

R
 

 
 ( 2.15 ) 

 
( )r x desy y V    

 
 ( 2.16 ) 

Substitute Eqs. (2.15) and (2.16) into Eq. ( 2.14 ), a state space model with the state 

variables defined as the position and orientation error with respect to the road can be written 

as 
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0
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d d
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


2

2 2

0

1

0

f f r r

f f r r

z

l C l C
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l C l C

I
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 
   
   
  

   
  
   
  

  

 ( 2.17 ) 

Making the small angle assumption, the output taken as the measurement of lateral 

deviation from a sensor located a distance sd  ahead of the vehicle c.g., can be expressed as: 

 ( ) [1,0, ,0]

r

r

s r s d s

d

d

y

y
y y d d 

 

 

 
 
    
 
 

 

  ( 2.18 ) 

The state space model in ( 2.17 ) and ( 2.18 ) can be expressed using transfer 

functions from the front wheel steering angle, ( )s , to the lateral measurement from the 

sensor, ( )sy s . The road curvature 
1

R
 can be looked as a disturbance term in in ( 2.17 ). 

This model has been widely recognized for automatic vehicle designs [20] [22] [23] 

[24].  
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Figure 2.3 Vehicle lateral dynamics with respect to desired road 

 

2.2 Simplified Bicycle Model 

2.2.1 Simplification of the bicycle model 

Substitute a typical set of agricultural tractor parameters [25] from Table 2.1 into Eqs 

( 2.17 ) and ( 2.18 ), then assume that the vehicle longitudinal velocity is fixed at 5mph and 

the sensor is placed 0.5 meter ahead of vehicle c.g. If the road curvature is zero, the state 

space model can be expressed as in Eq. ( 2.19 ). 
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Table 2.1 A typical set of tractor parameters 

Parameter symbol value 

Longitudinal Velocity V 5 mph 

Moment of Inertia 
zI
 

35709Kg-m^2 

Vehicle Mass m  9391Kg 

CG to front wheel 
fl  1.7m 

CG to rear wheel 
rl  1.2m 

Rear cornering Stiffness 
rC  

486N/rad 

Front cornering Stiffness 
fC  

220N/rad 

CG to magnetic sensor 
sd
 

3m 

 

 

 

0 1 0 0 0

0 5.058 12.44 3.906 6.897

0 0 0 1 0

0 1.379 3.391 12.09 7.304

0 6.897 0 7.304

r r

r r

d d

d d

r

r

s

d

d

y y

y yd

dt

y

y
y


   

   

 

 

      
      

 
       
       
      

        

 
 
 
 
 

 

 ( 2.19 ) 

The transfer function from ( )s  to ( )sy s  is expressed as: 

 
2

( 8.3455)( 1.7497)
( ) 62.3202

( 39.2902)( 10.8859)

s s
G s

s s s

 


 
  ( 2.20 ) 

Agriculture vehicles usually operate in a relatively low frequency range as compared to on-

highway vehicles due to their relatively low sampling frequency. Examining Eq. ( 2.20 ) 

shows that the fourth order vehicle model has two poles (-39.2902, -10.8859) and one zero (-

8.3455) which characterize dynamics at least 4 times faster than the other poles (0,0) and 

zero (-1.7497). The root locus plot of the 4
th

 order model Eq. ( 2.20 ) is shown in Figure 2.4 . 
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Therefore, the 4
th
 order model in Eq. ( 2.20 ) can be further simplified by truncating the high 

frequency poles and zeros into a simple second order formulation in the form of 

  1 0

2 2
( )

b s bs a
G s k

s s


    ( 2.21 ) 

where 
1b  and 

0b  are positive constants which depend on the vehicle parameters and operating 

conditions.  

Using the parameters from Table 2.1, the simplified second order model is expressed 

as: 

 
2

1.7497
( ) 2.1276

s
G s

s


   ( 2.22 ) 

and its root locus plot is shown in Figure 2.4 . 

 

 

Figure 2.4 Root locus plot of the 4
th

 order and 2
nd

 order system 
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2.2.2 Frequency and time domain verification of the simplified model 

The Bode plot comparison of the 4
th

 order model from and the 2
nd

 order model from 

is shown in Figure 2.5. From the plots, we see that the 2
nd

 order model ( 2.22 ) is 

representative of the 4
th
 order model ( 2.20 ) for low frequency operations.  

 

 

Figure 2.5 Bode plot for a 4
th

 order and 2
nd

 order model 

Open loop simulations are also performed to confirm that the responses of the 2
nd

 

order model  ( 2.22 ) are representative of a 4
th

 order model ( 2.20 ) under typical low 

frequencies.  

Three types of input signals are used in the simulation: sinusoidal, ramp and 

trapezoidal [26]. For the steering commands shown in Figure 2.6, the simulated responses by 

the 4
th

 order model and the second order model are shown in Figure 2.7. According to Figure 

2.7, a 2
nd

 order model is representative of a 4
th
 order one in the open loop simulation. 

Previous investigation [27] has also demonstrated the suitability of a 2
nd

 order model 

for agricultural vehicle application. In their study, the 2
nd

 order model is obtained from 

experiment by taking the sinusoidal sweep of an agricultural vehicle. This model structure is 

verified in Chapter 4 with experimental results. 
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Figure 2.6 Steering commands in open loop simulation 

 

Figure 2.7 response of vehicle in open loop simulation 
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Chapter 3     

Parameter Estimation Methods 

In the previous chapter, a low order vehicle dynamics model structure is developed. 

The controller design will be made possible if the parameters in the vehicle dynamics model 

are determined. This chapter will introduce three different parameter estimation approaches – 

Least Square Estimation, Adaptive Estimation, and Iterative Learning Identification – which 

will be adopted in the study to estimate the parameters in the tractor dynamics model.   

3.1 General Description and Input Signal Selection 

3.1.1 General Description of Parameter Estimation 

There are two ways to obtain the parameters in the vehicle dynamics model. One is to 

estimate the vehicle dynamics model based on vehicle parameters estimation, which includes 

vehicle mass, moment of inertia, and cornering stiffness. However, these parameters are hard 

to measure and not always accessible.  

Another way to obtain the vehicle parameters is by using system identification 

methods. System identification is the field of modeling dynamic systems from experimental 

data. A dynamic system – in our example, tractor dynamics system – can be characterized by 

their structures and parameters. The structure of a dynamic system can be determined either 

by analytic approach or by experimental approach. The structure of the tractor dynamics 

model is obtained analytically from vehicle dynamics analysis, and is discussed in Chapter 2. 

When the structure of the system is known, parameter estimation is used to determine the 

system parameters. When input signals are applied to a system, response signals are 
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generated by the system. Parameter estimation uses a collection of available system signals, 

based on certain system structure information and optimality criteria, to produce estimates of 

the system parameters.  

In general terms, an identification experiment is performed by exciting the system 

and observing its input and output over a time interval [28]. These signals are recorded. We 

then try to fit a parametric model of the process to the recorded input and output sequences. 

The first step is to determine an appropriate form of the model (in our case, the tractor model 

structure is determined in chapter 2). As a second step, some parameter identification method 

is used to estimate the unknown parameters of the model. Three different parameter 

estimation methods are introduced in this chapter to estimate the unknown parameters. The 

model obtained is then tested to see whether it is an appropriate representation of the system. 

Both simulation and experimental validations are shown respectively for the case of tractor 

dynamics model identification in Chapter 4 and 5. The procedures for system identification 

in general are illustrated in Fig. 3.1. 
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Figure 3.1 Schematic flowchart of system identification [28] 
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3.1.2 Identification in Closed Loop 

A set of sinusoidal tests within a range of frequencies are analyzed to determine the 

system’s frequency response. This open loop sinusoidal sweep approach is challenging in 

agricultural settings due to the limited area available to perform the necessary tests. The two 

integrators present in the vehicle dynamics suggest a spatial drift during open loop tests. 

Since land, and the resident crops, in an agricultural setting are very valuable, the open loop 

sine sweep approach is limited.  

There are many systems work under feedback control. This is typical, for example, in 

the process industry for the production of paper, cement, glass, etc. For some systems, the 

open loop system may be unstable or so poorly damped that no identification experiment can 

be performed in open loop. This is true for the case of a tractor dynamics model. If open loop 

experiment is used for the identification, tractor would soon reach the boundary of the field. 

Closed loop identification is considered more appropriate for farm vehicle identification.  

3.2 Classic Approaches 

3.2.1 Least Squares Estimation (LSE) 

3.2.1.1 System Description 

Least squares estimation is one of the most common system identification 

approaches. This section presents a discussion and analysis of linear regression and its 

application to the tractor model structure. The linear regression is the simplest type of 

parametric model. The corresponding model structure in discrete domain can be written as 

  ( 3.1 ) 

Where  -- system output – is called regressed variable, and is a measurable 

quantity.  is called regression variables or regressors, and is also a known quantity.  is 

called the parameter vector, and is a vector of unknown parameters.  

( ) ( )Ty t t 

( )y t

( )t 
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The problem is to find an estimate  of the parameter vector  from measurements 

, , …, , , where N denotes the number of data points.  

The system linear equations are: 

   ( 3.2 ) 

This can be written in matrix notation as 

   ( 3.3 ) 

Where 

   ( 3.4 ) 

   ( 3.5 ) 

3.2.1.2 LSE Algorithm 

Assume we have already obtained an estimate of the parameter vector . Now, 

introduce the equation of error, which is also known as the residuals. 

   ( 3.6 ) 

The error is defined as 

   ( 3.7 ) 

Therefore,  
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   ( 3.8 ) 

Define a loss function 

 
 
  ( 3.9 ) 

Substitute ( 3.6 ) into ( 3.9 ), we have 

   ( 3.10 ) 

The second term,  does not depend on . Since  is 

positive definite, the first term  is always greater 

than or equal to zero. Thus can be minimized by setting the first term to zero. This gives 

  ( 3.11 ) 

Therefore, least squares estimate gives an estimate of parameter vector  by 

minimizing the cost function defined in ( 3.9 ). 

 

Example 

Let us apply the theorem to the case of tractor dynamics model structure. From 

Chapter 2, the tractor lateral model can be written in the form of Eq. ( 3.12 ).  

 1 0

2 2
( )

b s bs a
G s k

s s


    ( 3.12 ) 

Rewrite Eq. ( 3.12 ) in z-domain gives,  
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2

1 0 1

2

( )
( )

( ) 2 1

bTz b T bY z
G z

U z z z

 
 

 
  ( 3.13 ) 

Using Euler approximation, Eq. ( 3.13 ) can be reformulated as Eq. ( 3.14 ) where T 

denotes the sampling time.  

 

2

1 0 1( 2) 2* ( 1) ( ) * * ( 1) ( )* ( )y k y k y k b T u k b T bT u k          ( 3.14 ) 

Define 

 

1

2

0 1

bT

b T bT


 
  

 
  ( 3.15 ) 

A comparison with Eq. ( 3.3 ) gives 
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    
   

    
     
   
   
           

  ( 3.16 ) 

The estimate of   is obtained through ( 3.11 ). 

3.2.2 Gradient based Adaptive Estimation 

3.2.2.1 System Model 

Consider a linear time-invariant system described by the differential equation [29] 

     ( ) ( ) ( )A s y t B s u t  ( 3.17 ) 

Where, y(t) and u(t) are the measured system input and output;  

 
1

1 1 0( ) n n

nA s s a s a s a

      ( 3.18 ) 

   1

1 1 0

m m

m mB s b s b s b s b

      ( 3.19 ) 

are polynomials in s with s being the time differentiation operator,  ( ) ( )s x t x t ; and ,i ia b  

are the unknown but constant system parameters to be estimated.  
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We can define 

  0 1 0m nb b a a   ( 3.20 ) 

 
( 1) ( 1)( ) ( ) ( ) ( )m nY u t u t y t y t        ( 3.21 ) 

And solve Eq. ( 3.17 ) for the highest derivative to get 

 

( )n Ty Y   ( 3.22 ) 

3.2.2.2 Gradient Algorithm 

A normalized gradient algorithm for updating the parameter estimate ( )t  is to 

choose the derivative of ( )t , in a steepest descent direction, to successively generate ( )t  to 

minimize a normalized quadratic cost function. 

Choose a stable polynomial . Operating both sides 

of by the stable filter , we have 

  ( 3.23 ) 

Define a regressor vector 

 
1 11 1 1

: ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

m ns s
Y u t u t y t y t

s s s s s


  
    
     

  ( 3.24 ) 

Substitute Eq. ( 3.24 ) and Eq. ( 3.23 ) into Eq. ( 3.22 ), we can get the normalized output, z: 

 Tz    ( 3.25 ) 

According to Eq. ( 3.25 ), the prediction of z can be defined as: 

 ˆˆ Tz    ( 3.26 ) 

Since the output signal y is measurable, the normalized output z is also measurable. 

Define normalized estimation error to be the error between the normalized measured output 

and the normalized estimated output as in Eq.( 3.27 ) .  

1

1 1 0( ) n n

ns s s s  

     

1

( )s

( )1
:

( ) ( )

n
n s

z y y
s s

 
 
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z z
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   ( 3.27 ) 

where  

 
2 21 sm n    ( 3.28 ) 

and 
sn  is a normalizing signal such that L

m


 . 

Define the cost function 

 
2 2

2

ˆ( ) (( ) )ˆ( ) :
2 2

T

ne m
J

m

  



    ( 3.29 ) 

also note that J is convex in sn .  

 ˆ( ) nJ e     ( 3.30 ) 

The steepest descent direction of ˆ( )J   is 
ˆ( )

ˆ

J 







. For the above chosen ˆ( )J  , this suggests 

the adaptive update law for ˆ( )t  : 

 ˆ
ne     ( 3.31 ) 

Example 

Rewrite Eq. ( 3.12 ) in the general form for adaptive estimation as in Eq. ( 3.17 ) 

 

( )n Ty Y   ( 3.32 ) 

Where 

 
 1 0

T
b b    ( 3.33 ) 

 
  ( )

T

Y u t u t      ( 3.34 ) 

Let us choose m = 1, 2( ) 1s s s   
 
and 

1 0
0.1

0 1

 
   

 
, the regressor vector can be 

expressed as: 
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( ) 1 1

su t u t
Y

s s s s s


 
        

  ( 3.35 ) 

The parameter update law can be obtained using Eq. ( 3.31 ) 

 

3.3 Iterative Learning Identification 

Iterative learning identification (ILI) is a novel approach for closed loop identification 

[30] [31] [32]. This method achieves identification by applying Iterative Learning Control 

(ILC) [33] concepts in the presence of measurement noise without any knowledge of the 

feedback controller in the loop. Iterative Learning Identification (ILI) considers a system that 

repeats the same reference trajectory with a view to sequentially improving parameter 

estimation accuracy. The algorithm generates the estimation of parameters from the new trial 

by adding a ‘correction’ term to the estimated parameters from a previous trial.   

3.3.1 System Description 

Consider a continuous time SISO system described by transfer function 
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  ( 3.36 ) 

This transfer function describes the relationship between the input signal ( )u s , and 

output signal ( )y s , where ( 1,2,..., )o

ia R i n   and ( 1,2,..., )o

ib R i m 
 

are coefficient 

parameters.  Define p as a differential operator, and reformulate Eq. ( 3.36 ) to express the 

relationship between the input ( )u t  and output signal ( )y t  in the time domain. This results 

in: 
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  ( 3.37 ) 
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Basic assumptions for ILI are similar to those of its counterpart, ILC. We assume the 

following. 

 Plant is stable or stabilized with a feedback controller K(p) 

 Though the true plant parameters ( 1,2,..., )o

ia R i n   and 

( 1,2,..., )o

ib R i m  are unknown, ( )oA p  and ( )oB p  are coprime and their 

orders n and m are known. 

 Assume the trial itself is repeatable during time interval [0,T] with the same 

initial condition 

 Assume white noise 

The goal is to find the true estimates of ( )oA p  and ( )oB p  based on the measurement 

of input and output data. Let sT
 
denotes the sampling time, and sNT T . 

3.3.2  ILI Algorithm 

Choose a reference signal r(t), that is at least max(m,n) times continuously 

differentiable. Here, we consider the case when the system is not stable, and is stabilized by a 

feedback controller K(p). At the j-th iteration, inject the reference signal ( )r t  into the closed 

loop architecture shown in Fig.3.2. Collect the error signal ( )je t  when the estimates of 

0 1, ,j j

na a   
and 0 1, ,j j

mb b   from the previous trial are given. 

r(t)

( )

( )

o

o

B p

A p

( )je t

( )jA p

( )K p ( )jB p( )jB p
r(t)

+ -

+
+

+-

( )j

ffu p

 

Figure 3.2 Closed Loop Architecture for ILI 

 

Equations ( 3.38 ) and Eq.( 3.39 ) define the estimates of the denominator and 

numerator at j-th trial. 
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2 1

0 1 2 1( )j j j j j n n

nA p a a p a p a p p

        ( 3.38 ) 

 
2 1

0 1 2 1( )j j j j j m

mB p b b p b p b p 

       ( 3.39 ) 

Now we compute the feed-forward signal ( ) ( ) ( )j j

ffu t A p r t , and inject ( )j

ffu t
 
into the 

physical system 
( )

( )

o

o

B p

A p
. Subsequently we can obtain error signal ( )je t  from the closed loop 

architecture in Fig. 3.2. 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )j j je t S p B p r t T p A p r t    ( 3.40 ) 

where 

 

( )

( )
( )

( )
1 ( )

( )

o

o

o

o

B p

A p
T p

B p
K p

A p


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  ( 3.41 ) 

and 

 

1
( )

( )
1 ( )

( )

o

o

S p
B p

K p
A p





  ( 3.42 ) 

Now, denote the estimated parameters at j-th trial to be: 

 0 1 0 1... ...
T

j j j j j

n ma a b b  
      ( 3.43 ) 

The iterative identification procedure can be described as follows: 

 Step1: define an initial estimate 0 , set j = 0; 

 Step2: Generate je  from j  according to the closed loop architecture in Fig. 

3.2. 

 Step3: Update parameter set for the j+1-th trial based on the parameter set for 

j-th trial using Eq. ( 3.44 ) 

 
1j j j

eL L e      ( 3.44 ) 
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Where L  
and 

eL  are the learning gains for j  and je  respectively.  

3.3.3  ILI Update Law 

3.3.3.1 Recursive type learning law 

Similar to the tracking problem in ILC, where we want to write the tracking error in 

terms of ILC input ( )ju t , the estimation error in ILI also needs to be expressed in terms of 

parameter set j . Rewriting Eq. ( 3.40 ) in terms of j , we obtain  

 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

j j j

j j n

A B

j n

e t S p B p r t T p A p r t

T p r t S p r T p p r t

M T p p r t

 



 

   

  

  ( 3.45 ) 

Where 

 

( 1)( ) ( ) '( ) 0 0n

Ar t r t r t r       ( 3.46 ) 

 

( 1)( ) 0 0 ( ) '( ) ( )m

Br t r t r t r t      ( 3.47 ) 

 
 [ ( ) ( ) ( ) ]A BM T p r t S p r t     ( 3.48 ) 

There are N samples between time interval [0,T], ( 1) 1j Ne R   and 
1 ( )( ) m n

Ar t R   , 

1 ( )( ) m n

Br t R   ,
( )N m nM R   . 

Matrix 
( )N m nM R   , and is not invertible. If we want to update the estimated 

parameters based on the estimation error, the dimension of the estimation error and the 

estimated parameter set must be the same. In other words, a transformation matrix is needed 

to project the estimation error to have the same dimension as the parameter set.  

Choose a base function dfV  of dimension 
( 1) ( )N m n

dfV R    . Let the QR decomposition 

of  dfV  be 

 , T

df n mV QR Q Q I    ( 3.49 ) 

Define ( ) 1j m nR   , the projected error can then be written as: 
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 1j T jR Q    ( 3.50 ) 

Also, define 
( ) ( )j m n m nH R      

 1 TH R Q M   ( 3.51 ) 

 
L I    ( 3.52 ) 

 
1

eL kH    ( 3.53 ) 

Substitute into , the parameter update law can be rewritten as  

 
1j j j

eL L       ( 3.54 ) 

where 0 1k  . Substitute Eq. ( 3.45 ),3.51 3.52 and ( 3.53 ) into ( 3.44 ) 

 

1 1 1

1 1

( ( ) ( ))

(1 ) ( ) ( )

j j j T n

j T n

kH H R Q T p p r t

k kH R Q T p p r t

  



  

 

   

  
  ( 3.55 ) 

The stability for the update on the parameter set is guaranteed when 0 1k  . 
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Chapter 4     

Parameter Estimation Simulation Results 

Three parameter estimation methods – Least Squares Estimation (LSE), Gradient 

Adaptive Method and Iterative Learning Identification (ILI) – were introduced in the 

previous chapter. Parameter estimation results from each estimation algorithm are presented 

in this chapter. The estimations are based on simulated data, and the robustness of each 

estimation algorithm with the presence of measurement noise is also evaluated. 

The purpose of this chapter is to evaluate the identification algorithms in simulation 

before their application in experiments. The simulation setup is modeled after the 

experimental setup. Identification algorithms discussed in the previous chapter are applied to 

the tractor model structure. In this research, as detailed in the previous chapters, a vehicle 

model from steer command to lateral position of a look-ahead point in front of the vehicle is 

a simplified second order model: 

 1 0

2
( )

b s b
G s

s


   ( 4.1 ) 

The closed loop response of the tractor is recorded for the identification. The 

reference signal used is a step, which is equivalent to a crop row change in experiment. For 

analysis purposes, the steering command recorded from the actual closed loop experiment is 

used as the input signal in the identification. By injecting the input signal to a model of the 

form in Eq. (4.1) with known parameters, the simulated output is recorded as the output 

signal used in identification.   
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4.1 Identification Results from classical methods 

4.1.1 Least Squares Estimation (LSE) 

 

In this study, the input signal is the recorded steering command from a closed loop 

experiment where the tractor is given a series of step reference signals. This input signal 

sequence is given in Fig. 4.1 

 

Figure 4.1 Identification Input Signal 

The plant model used in simulation is:  

 
2

0.7 1.56
( )

s
G s

s


   ( 4.2 ) 

Comparing Eq.4.2 with Eq. 4.1, the parameter values of 1b  and 0b  are: 0.7  and 1.56  

respectively. Injecting the input signal shown in Fig. 4.1 into the plant model given in Eq. 

4.2, the simulated output is shown in Fig. 4.2 .  
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Figure 4.2 Identification Output Signal 

Using the input and output data to estimate the parameters 1b  and 0b  based on the 

model structure of Eq. 4.1 , the estimated parameters are presented in Table 4.1.  

Table 4.1 Estimated parameter values using LSE 

 Parameter’ 1b ’ Parameter’ 0b ’ 

True parameter values 0.7 1.56 

Estimated 

parameter 

values 

Noise 

variance 

 

0 0.7 1.56 

0.0001 2.0207 1.3456 

0.001 4.87 0.8821 

0.006 10.9303 -0.1006 

Here, we inject a noise signal on the output of the plant. The noise is assumed 

Gaussian and white with different levels of variance. The estimation results with respect to 

different noise variance levels are also presented in Table 4.1. It can be observed from the 

table that noise level will significantly affect the estimation results. With a low noise level, 

the estimated parameter values are close to the true values. When the noise level is increased, 

the estimation accuracy is degraded. The estimated plant is actually non-minimum phase 
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when the noise variance is 0.006. Experimental estimation results using LSE also indicated a 

non-minimum phase system, and one of the explanations is the effect of noise as indicated in 

the simulation. The noise given here was assumed white and Gaussian; we anticipate that 

colored noise would have a similar negative effect, possibly even more severe. 

We then construct the vehicle dynamics model using Eq. (4.1) by substituting the 

estimated parameter values in Table 4.1. Injecting the measured input into our estimated 

plant, the estimated plant output is obtained.  Fig. 4.3 compares the estimated output with the 

different noise levels shown in Table 4.1. As evidenced, the estimated output matches the 

measured output from simulation when there is no measurement noise. Estimation results 

degrade with the increasing of noise level. Figure 4.3 (d) indicated a non-minimum phase 

estimate.  

 

(a) 

Figure 4.3 Comparison between estimated and measured output using LSE 

(cont. on next page) 
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(b) 

 

(c) 

Figure 4.3 Comparison between estimated and measured output using LSE 

(cont. on next page) 
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(d) 

Figure 4.3 Comparison between estimated and measured output using LSE (a) Noise 

variance = 0 (b) Noise variance = 0.0001 (c) Noise variance = 0.001 (d) Noise variance = 

0.006 

4.2 Gradient based Adaptive Estimation Results 

Use the same input and output signal as shown in Fig. 4.1 and Fig. 4.2, we performed 

gradient based adaptive estimation as detailed in chapter 3. The estimation results with 

respect to different noise levels are shown in Table 4.2. The estimated parameter values are 

calculated as an average of the last 30 data points where we made the assumption that the 

estimation has converged for the last 30 data points. The estimated parameter values are quite 

consistent with different noise levels. Comparing the estimated parameter values in Table 4.2 

with the values in Table 4.1, we can see that gradient based adaptive estimation is more 

robust to noise compared with LSE when estimating this particular input signal and model 

structure.  
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Table 4.2 Estimated parameter values using gradient based adaptive estimation 

 parameter’
1b ’ parameter’

0b ’ 

True parameter values 0.7 1.56 

Estimated 

parameter 

values 

Noise 

variance 

 

0 0.6705 1.5614 

0.0001 0.6734 1.5666 

0.001 0.6797 1.5777 

0.006 0.6931 1.6013 

 

(a) 

Figure 4.4 Comparison between estimated and measured output using gradient 

adaptive estimation 
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(b) 

 

(c) 

Figure 4.4 Comparison between estimated and measured output using gradient 

adaptive estimation 
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(d) 

Figure 4.4 Comparison between estimated and measured output using gradient 

adaptive estimation (a) Noise variance = 0 (b) Noise variance = 0.0001 (c) Noise variance 

= 0.001 (d) Noise variance = 0.006 

Fig. 4.4 (a)-(d) compares the estimated output with different noise levels shown in 

Table 4.2. As evidenced in Fig. 4.4, the transient behavior is captured quite well even with 

high noise levels. Comparing Fig. 4.4 with Fig. 4.3, the adaptive estimation approach appears 

to be more robust to noise than the LSE method using this particular type of input and model 

structure.  

To evaluate the time that is necessary for the parameters to converge, we compare the 

estimation results when the reference signal consists of one, two, and seven series of steps. 

The case when the output is contaminated with a noise variance of 0.001 is considered. The 

parameter convergence results correspond to different lengths of reference signal are shown 

in Fig 4.6. The corresponding output trajectories are shown in Fig 4.5.  

In Fig. 4.6 (a), the parameter values are consistent after the step change has occurred 

at about 10 sec which can be seen from the measured output trajectory in Fig 4.5 (a). In Fig. 
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4.6 (b),  without the consideration of noise, the estimated parameter values are quite 

consistent after the second step change which occurred at about 30secs as indicated in Fig 4.5 

(b). In Fig. 4.6 (c), the time it takes for the parameters to converge is the same as in Fig 4.5 

(b). It indicates that after 2 steps, the estimated parameter values are quite constant. 

Therefore, we conclude that the time it takes for the parameters to converge is at least 40 sec, 

which includes two step changes.  

The estimated parameter values for 
1b  and 

0b  are taken as the average of the last 30 

data points in Fig. 4.6 (a) – (c) respectively. The vehicle dynamics model is constructed 

based on the estimated parameters. The estimated outputs are calculated by injecting the 

measured input into the estimated plant model, and are shown in Fig 4.5 (a) –(c). In Fig. 4.5 

(a), the error between the estimated and measured output are quite large with the estimated 

parameters error for 1b  and 0b   being 2% and 14% respectively. Both Fig. 4.5 (b) and (c) 

have a good match between the estimated and measured output. This is consistent with the 

parameter convergence result shown in Fig. 4.6 (a) – (c) and the analysis above. The results 

from both Figure 4.5 and 4.6 indicate that the estimated parameter values will converge after 

two step changes. 

One of the key limitations of using an adaptive estimation is that the parameter 

estimation results are also affected by noise and disturbances. As shown in Fig. 4.6 (c), 

although parameter convergence is achieved after approximately 40 sec, there are still a lot of 

variation in the estimated parameters at the data points when the tractor is changing lanes – 

e.g. estimation results at around 90sec. Therefore, the absolute converged values of the 

estimated parameters are hard to claim with the presence of noise. 
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(a) 

 

(b) 

Figure 4.5 Comparison between estimated and measured output using gradient adaptive 

estimation (cont. on next page) 
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(c) 

Figure 4.5 Comparison between estimated and measured output using gradient 

adaptive estimation (a) single step change -- 20 sec of data  (b) two step changes -- 40 sec 

of data (c) a series of step changes --155 sec of data 
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Figure 4.6 Parameter convergence results (cont. on next page) 

0 20 40 60 80 100 120 140 160
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Time(sec)

O
u
tp

u
t

 

 

Measured output

Estimated Output

0 5 10 15 20 25
0.7

0.8

0.9

1

1.1

Time(sec)

C
o

e
ff
ic

ie
n

t 
(b

1
)

b1

0 5 10 15 20 25
0.5

1

1.5

2

Time(sec)

C
o

e
ff
ic

ie
n

t 
(b

0
)

b0



 51  

 

 

(b) 

 

(c) 

Figure 4.6 Parameter convergence results (a) single step change -- 20 sec of data  (b) 

two step changes -- 40 sec of data (c) a series of step changes --155 sec of data 
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4.3 Iterative Learning Identification Results 

4.3.1 Simulation Setup 

The description of ILI is detailed in chapter 3. In this section, we will make it specific 

to our particular class of system. The closed loop architecture for a general ILI problem is 

shown in Figure 3.2. It requires the user to specify both a reference signal ( )r t  and a feed-

forward control input signal ( )ffu t , where the feed-forward control input signal ( )ffu t  will be 

changing from trial to trial. However, in our particular experimental system, only the 

reference signal can be specified. To accommodate our specific class of system, the scheme 

in Figure 3.2 is modified to the scheme in Fig. 4.7 and made specific to the plant given in Eq. 

(4.1). 

We define the denominator and numerator of the system at the j-th trial as: 

 2( )A p p  ( 4.3 ) 

 0 1
ˆ ˆˆ ( )j j jB p b b p    ( 4.4 ) 

where ‘p’ is defined as a differential operator. The reason this differential operator is used 

instead of Laplace operator is because that we are working in time domain in this study, and 

Laplace operator is defined in frequency domain. 

Here we exploit process knowledge to identify only the numerator. The system 

denominator is known, and is therefore fixed for all trials. Parameters of the system 

numerator, on the other hand, will be updated at each trial. We define the unknown parameter 

set at the j-th trial to be.  

 0 1
ˆ ˆ

T
j j jb b  

 
 ( 4.5 ) 
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Figure 4.7 Closed loop identification architecture 

With the new closed loop configuration as shown in Fig. 4.7, the estimation error can 

now be written as, 

   2

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) '( ) ( ) ( )

j j j

j

e t S p B p r t T p A p r t

S p r t r t T p p r t

 

 
 ( 4.6 ) 

Where 

 

( )

( )
( )

( )
1 ( )

( )

o

o

o

o

B p

A p
T p

B p
K p

A p





  ( 4.7 ) 

 

1
( )

( )
1 ( )

( )

o

o

S p
B p

K p
A p





  ( 4.8 ) 

Define 

  ( ) ( ) '( )M S p r t r t  ( 4.9 ) 

the estimation error can be further simplified to 

 
2( ) ( ) ( )j je t M T p p r t    ( 4.10 ) 

Observing Eq. 4.9, we see that each entry in the matrix can be obtained experimentally.  

If we inject reference signal ( )r t  into the closed architecture shown in Fig. 4.8, and 

collect the error signal ( )err t , the error signal is equal to the sensitivity function times the 
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reference signal. The error signal can therefore be expressed as in Eq 4.11. The second entry 

in the M matrix of Eq. 4.9 is the derivative of the error signal ( )err t . 

 ( ) ( ) ( )err t S p r t   ( 4.11 ) 

Therefore, the matrix M can be estimated from system closed loop test, and can be simplified 

to: 

  ( ) '( )M err t err t  ( 4.12 ) 

 

Figure 4.8 Closed loop architecture for estimating matrix M 

Assume the time interval [0,T] is sampled at a frequency of 1/ sT  and sNT T . The 

base function dfV  can be defined as 

 

(0) '(0)

( ) '( )

( ) '( )

s s

df

s s

r r

r T r T
V

r NT r NT

 
 
 
 
 
 

  ( 4.13 ) 

Let the QR decomposition of dfV  be: 

 , T

df n mV QR Q Q I     ( 4.14 ) 

The learning law is defined as: 

 
1 1j j j

eL L R Qe      ( 4.15 ) 

Where 

 
L I    ( 4.16 ) 

    

r(t) err(t) 
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1

eL kH    ( 4.17 ) 

 1 TH R Q M   ( 4.18 ) 

Where 0 1k   In this particular example, k is chosen to be 0.8. Stability is 

guaranteed with this choice of learning gains, and is discussed in more detail in Chapter3. 

4.3.2 Simulation Results 

Ten iteration trials were performed with a time window of 16 sec, which corresponds 

to a single step change as in Fig 4.5 (a). The feedback controller K(p) is a proportional-

integral-derivative (PID) controller. The parameter updating results in Fig.4.9 start from two 

different initial conditions. With no noise in the simulation system, estimates of both 
1b  and 

0b
 
converge to their true values. At iteration 6, the estimation percentage errors for both 

parameters are 0.69% and 1.5% respectively when the initial estimates are both 1. Fig.4.9 

also shows that the estimated parameters are almost the same as the true parameters after six 

iterations for the given reference trajectory. Comparing the convergence results from 

different initial conditions in Fig.4.9, the converged values of 1b  and 0b  are apparently 

insensitive to the choice of initial values.
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Figure 4.9 Convergence of parameters with initial estimates [1,1] and [0.5, 0.5] 

 

Figure 4.10 RMS Error 
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convergence results shown in Fig.4.9. After approximately 6 trials, the RMS error is very 

close to zero. The RMS error is reduced to zero when there is no noise in the estimation.  

Table 4.3 also summarizes the parameter estimation results when noise is present in 

the system. It is evidenced from the table that the ILI estimation result is very robust to the 

measurement noise levels introduced here. 

Table 4.3 Estimated parameter values using ILI 

 Parameter ’ 1b ’ Parameter ’ 0b ’ 

True parameter values 0.7 1.56 

Estimated 

parameter 

values 

Noise 

variance 

 

0 0.7 1.56 

0.0001 0.7004 1.5559 

0.001 0.6996 1.5528 

0.006 0.6979 1.5462 

 

4.4 Practical Benefits of ILI 

From the analysis above, LSE is not able to give a faithful estimation of the plant 

parameters when noise is present in the system. Both gradient based adaptive estimation and 

ILI are capable of giving faithful estimation for the plant parameters when the same level of 

noise is present in the system. Fig 4.5 (a) indicated that a single step maneuver is not 

sufficient for the parameters to converge using gradient based adaptive estimation. However, 

using the same reference and output signal, ILI can achieve parameter convergence. While 

there are other approaches available for parameter identification, there were significant key 

benefits in this application which made ILI particularly attractive. As mentioned, the field 

available for identification is limited. Contrary to a gradient based adaptive approach, which 

is suitable for on-line parameter identification, the ILI can be carried out on a small field 

section. In addition, the parameter convergence result can be noisy and easily affected by 

output noise disturbances in the case of adaptive estimation. ILI, on the other hand is capable 
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of retaining converged values in the presence of output noise with minimal parameter 

fluctuations. 
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Chapter 5     

Parameter Identification Experimental Results 

In the previous chapter, parameter estimation results from simulated data are 

discussed. In this chapter, we will introduce the experimental system, and the parameter 

identification results from experimental data.  

The chapter will start by introducing the experimental tractor, followed by presenting 

the sensors used in the experimental system. Similar to the previous chapter, three different 

identification algorithms are discussed for parameter estimation. Experimental identification 

results from different identification algorithms showed different level of accuracy, and 

iterative learning identification shows the practical benefit that it can be performed in a 

relatively small section of field and therefore can be done prior to actual usage or 

engagement with crops.  

5.1 Experimental Tractor 

The identification approaches were tested on a full scale John Deere 8330 tractor 

equipped with StarFire
TM

 RTK receiver and an integrated AutoTrac
TM

 steering system. 

Fig.5.1 shows the system on which experimental data was obtained.  

The automatic tractor is capable of following some designated trajectories: arcs, 

straight lines, and lane shifts. It is also capable of following user-defined arcs, which need to 

be programed before experiments. However, for a trajectory with high frequency reference 

content, the integrated AutoTrac
TM

 steering system will have a protection program to stop the 

tractor from following those trajectories. For the purpose of evaluating the identification 

algorithms, the chosen reference signal is a step trajectory, which corresponds to a lane shift, 
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and is easily available from the current integrated AutoTrac
TM

 steering system. Since the step 

reference signal will contain significant high frequency content, the corresponding plant 

input signal — steered wheel angle — is sufficient excitation for the identification.  

 

 

Figure 5.1 John Deere 8330 tractor equipped with StarFire
TM

 RTK receiver and an 

integrated AutoTrac
TM

 steering system 

 

5.2 Sensors and Measurements 

In this research, as detailed in the previous chapters, a vehicle model from steer wheel 

angle to lateral position of a look-ahead point in front of the vehicle is a simplified second 

order model: 

 1 0

2

( )
( )

( )

b s by s
G s

s s


    ( 5.1 ) 

 

where the input is steered wheel angle, and output is the lateral position. In this section, the 

measurement methods for input and output signal are introduced. Direct measurements are 

not possible due to the unavailability of sensors. However, based on mathematical / physical 

relationships between the signals, those measurements can be calculated from available data.  

The introduction is divided into two parts, output signal measurement and input signal 

measurement.  
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5.2.1 Output Signal Measurement 

The model output signal is the lateral position of a look-ahead point in front of the 

vehicle. A StarFire
TM

 RTK receiver that is used to measures the lateral position of the tractor 

is mounted on the top of the vehicle, which is not a look-ahead point. In the first half of the 

section, we will introduce the measurement of lateral position from this StarFire
TM

 RTK 

receiver. In the next half, the method of calculating the lateral position from a look-ahead 

point is introduced.  

5.2.1.1 Lateral position measurement from StarFire
TM

 RTK receiver 

Tractor position is measured from a StarFire
TM

 RTK receiver that is mounted on the 

top of the vehicle (see Fig.5.1). Inaccuracy in the GPS is primarily due to distortion from 

‘billows’ in the ionosphere, which introduce propagation delays that makes the satellite 

appear farther away than it really is. dGPS corrects for these errors by comparing the position 

measured using GPS with a known highly-accurate ground reference and then calculating the 

difference and broadcasting it to users. StarFire instead uses an advanced receiver to correct 

for ionospheric effects internally. To do this, it captures the military only P(Y) signal that is 

broadcast on two frequencies, L1 and L2, and compares the effects of the ionosphere on the 

propagation time of the two. Using this information, the ionospheric effects can be calculated 

to a very high degree of accuracy, meaning StarFire dGPS can compensate for variations in 

propagation delay.  

The latitude and longitude position of the tractor obtained from the StarFire
TM

 RTK 

receiver is in earth-fixed coordinates, and is converted to Cartesian coordinates for 

calculation purpose. A typical tractor trajectory of a lane shift experiment is shown in Fig. 

5.2 (a).  
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  (a)        (b) 

Figure 5.2(a) tractor trajectory in Cartesian coordinate  

(b) tractor trajectory in tractor coordinate 

Examining Eq. 4.1, we are only interested in the lateral movement of the tractor. 

Therefore, the x-y coordinates in Cartesian coordinates should be transferred to the tractor 

coordinates to evaluate lateral position of the tractor. Eq. 5.2 shows the transformation from 

Cartesian coordinates to tractor coordinates, where   denotes the orientation of the tractor 

trajectory as shown in Fig. 5.2 (a). Fig. 5.2 (b) illustrates the tractor trajectory in tractor 

coordinates, where the y axis denotes the tractor lateral position.   

 
_ cos( ) sin( ) _

_ sin( ) cos( ) _

Trac x Cartesian x

Trac y Cartesian y

 

 

     
     

     
 ( 5.2 ) 

5.2.1.2 Lateral position measurement from a look ahead point 

The benefit of using this algorithm can be explained by a simple driving example. We 

all have the experience that if we fix our eyes on a location near the front of the vehicle when 

driving a straight line, the trajectory the car makes will be quite oscillatory. However, if the 

eyes are fixed on a location several vehicle length ahead of the vehicle, the trajectory the car 

makes is more likely to be straight and smooth. For the current ATU system, the StarFireTM 

RTK receiver that acts as the vehicle ‘eyes’ is mounted on top of the tractor as shown in Fig. 

5.3. If no look ahead algorithm is used, the driving result will be quite similar to the case 

when our eyes are fixed on a location near the vehicle front axle when driving a straight line. 
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As shown Fig. 5.4 (a), when the look ahead distance is very small, the tractor trajectory is not 

stable when tracking a straight line. With a bigger look ahead distance, as shown in Fig 5.4 

(b), using the same feedback controller, the tractor is stable when tracking a straight line.  

One of the possible solutions is to move the position of the StarFire
TM

 RTK receiver 

and install it in front of the tractor using some mounting mechanisms. However, even if we 

can build a mounting mechanism on this experimental tractor, it will be quite difficult to 

commercialize, and make it standard on every tractor machine. On the other hand, if an arm 

is mounted in front of the tractor to position the StarFire
TM

 RTK receiver, the vibration of the 

arm will be bigger than the vibration of the tractor body. This will cause another control 

problem, which is similar to the header-height problem in a harvester [34]. If no control is in 

action, then the obtained data from the StarFire
TM

 RTK receiver will be quite oscillatory. 

 One other possible solution is to approximate the lateral deviation measured from a 

look ahead point using the data measured from the StarFire
TM

 RTK receiver that is mounted 

on top of the tractor. The scheme is shown in Fig. 5.3. In chapter2, the model output defined 

in Eq. 2.4 sy  is the measurement of lateral deviation from a sensor located a distance sd  

ahead of the vehicle center of gravity, and can be expressed as: 

 

( )s r s dy y d       ( 5.3 ) 

where ry  is defined as the lateral distance between the vehicle c.g. and the center line of the 

road, and sd  is the look ahead distance. An assumption is made in this equation that the error 

between the measured heading angle   and desired heading angle d  is small, and small 

angle approximation can be used. This equation enables us to calculate the lateral deviation 

even if the sensor is not located at a distance sd  ahead of the vehicle center of gravity. In our 

case, the sensor is located close to the center of gravity, and we assume that the sensor is 

located  1d  ahead of the center of the gravity. The measurement of lateral deviation from the 

StarFire
TM

 RTK receiver can be expressed in Eq. 5.4 

 

1 1( )r dy y d       ( 5.4 ) 
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Now, assume we want to place the sensor at a distance 
1d  ahead of the current location of the 

sensor, the measurement of lateral deviation at this look ahead point can be expressed in Eq. 

5.5 

 

1 2( )s dy y d       ( 5.5 ) 

where the choice of the look ahead distance 
2d  can be determined experimentally.  

 

Figure 5.3 Look ahead algorithm 
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(a) 

 

(b) 

Figure 5.4 Effect of look ahead distance (a) look ahead distance is 0.3m (b) look ahead 

distance is 5m 
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5.2.2 Input Signal Measurement 

In this section, we will introduce an alternative way to estimate the tractor steered 

wheel angle. Vehicle yaw rate can be measured from the StarFire
TM

 RTK receiver, and is 

available for tractors with both integrated AutoTrac
TM

 steering system and AutoTrac
TM

 

universal steering system. Therefore, if we can approximate steered wheel angle with yaw 

rate, then no additional sensor is needed for the tractors with an AutoTrac
TM

 universal 

steering system. Yaw rate is defined as the rate of rotation of vehicle heading angle; the 

relationship between yaw rate and steered wheel angle can be expressed in Eq. 5.6 [35]. 

 
2

/

1

U L

KU

gL








 ( 5.6 )  

Definition of nomenclatures in Eq. 5.6 can be found in Table. 5.1 

Table 5.1 Nomenclatures in Eq. 5.6 

 : yaw rate  : steered wheel angle U : velocity 

L: wheel base K: understeer gradient g: earth gravity 

Note from Eq. 5.6 , for a certain vehicle in a certain operation condition, K, L and g 

are fixed. Therefore, the ratio between yaw rate and steered wheel angle is only velocity 

dependent. In the beginning of the study, we have already made the assumption that the 

longitudinal velocity of a vehicle is constant during operation. Since the lateral velocity in 

the tractor is small comparing to its longitudinal velocity in straight line/lane shift tracking, 

we further relax the assumption to that vehicle velocity is constant during operation. 

Therefore, the ratio between yaw rate and steered wheel angle is a constant: 

 k



  ( 5.7 ) 

To evaluate the relationship between velocity and the ratio between yaw rate and 

steered wheel angle, three different velocities were used in an experiment. Experimental 

tractors were equipped with an integrated AutoTrac
TM

 steering system where the 
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measurement of steered wheel angle is available. For each velocity, yaw rate and steered 

wheel angle are recorded to calculate the ratio.  

Fig.5.5 shows the experimental relationship between longitudinal velocity U and ratio 

k.   

 

Figure 5.5 Relationship between velocity U and ratio k  

To evaluate the relationship between operation conditions and the ratio between yaw 

rate and steered wheel angle, experiments were conducted on two different ground conditions 

and three different turning radii. The two different ground conditions are: (a) farm land on 

test site A, and (b) pavement grounds on test site B. The relationships are shown in Fig. 5.6.  

 

Figure 5.6 Relationship between operating conditions and ratio k 

4 5 6

0.7

0.8

0.9

1

velocity(mile/hour)

R
a

tio
 (

1
/s

e
c)

Fox Farm Ratio Test

 

 
 Ratio Test 

40 60 80 100 120
0.65

0.7

0.75

0.8

0.85

0.9

0.95

Radius (feet)

R
a
ti
o
 (

1
/s

e
c
)

 

 

Fox Farm

Ankeny Airport

  

  

  



 68  

 

From Fig. 5.6 , we can see that the effect of turning radius on the ratio is not 

significant compared to the ground conditions. It is in accordance with the assumption we 

made at the beginning of the study that the ratio between yaw rate and steered wheel angle is 

only velocity dependent for a certain vehicle in a certain operation condition. 

Steered wheel angle can be approximated by substituting the estimated ratio into Eq. 

5.6.  

 

Figure 5.7 Yaw rate estimated and rate gyro measured steered wheel angle 

Fig.5.7 compares the yaw rate estimated and rate gyro measured steered wheel angle. 

There is a pure delay between the yaw rate estimated and rate gyro measured steered wheel 

angle. This is caused by an inherent filter in the yaw rate sensor. From experimental data, the 

average pure delay can be approximated.  

By rewriting Eq. 5.6 and taking the delay in the sensor into consideration, we can get Eq. 5.8 

 
Tse

k


   ( 5.8 ) 

Eq.5.9 can be obtained by substituting Eq. 5.8 into Eq. 4.1,. 

 1 0

2

( )
( )

( ) /Ts

b s by s
G s

s e k s 


   ( 5.9 ) 

Here, k is a constant and can be determined experimentally, Tse  is a pure delay in the 

system. Comparing Eq. 4.1 with Eq. 5.9, the dynamics of the system are not changed. Since 

the measurement of yaw rate is easily available from the StarFire
TM

 RTK receiver, in the 
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following research, we will evaluate the system transfer function using Eq. 5.9 instead of Eq. 

4.1. Additionally, when referring to ‘measured input signal’ or ‘steered wheel angle’ this 

value will be result of measuring yaw rate and using Eq. 5.8 to determine the steering input.  

5.3 Experimental Identification Results from classical ID methods 

5.3.1 Least Square Estimation Results 

In this section, we will evaluate the parameter estimation result from LSE using 

experimental data. The chosen reference is a series of step lateral signals with an amplitude 

of 3 meters, equivalent to a series of crop row changes. The controller is a well-tuned 

integrated AutoTrac
TM

 steering system. During the tests, the longitudinal speed is fixed at 

5mph.  

 

Figure 5.8 Experimental Input and Output Signal 

The input (steered wheel angle) and output (lateral output) signals are recorded as 

discussed in Section 5.1, and are shown in Fig. 5.8. Using the LSE method discussed in 

Section 3.1, the estimation results of parameters 1b  and 1b  are shown in Table. 5.2. We can 

construct the vehicle lateral dynamics model using Eq. 5.9 by substituting the estimated 

parameter values. Injecting the measured input to our estimated plant, we obtained the 

estimated plant output. Fig. 5.9 compares the estimated output and the measured output for 

series of step maneuvers. The estimated model from LSE is a non-minimum phase system, 

which is clearly not true for the tractor model. One of the main reasons for the insufficiency 
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of LSE is that the input signal does not contain enough information, which is in accordance 

with the simulation result when we have a small SNR. The reasons of the failure of LSE 

algorithm is expected and discussed in detail with simulation results in Section 4.1. 

 

Figure 5.9 Comparison between the estimated output and measured output using the 

model from LSE 

5.3.2 Adaptive Estimation Identification Results 

The same input and output signals from Fig. 5.8 are used for the identification. Using 

the gradient based adaptive estimation method as discussed in Section 3.1, the estimation 

results of parameters 1b  and 0b  are also shown in Table, 5.2. Fig. 5.10 compares the 

estimated output and the measured output for a series of step maneuvers. As can be seen in 

the figure, the transient response is captured quite well.  
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Figure 5.10 Comparison between the estimated output and measured output suing the 

model from gradient based adaptive estimation 

5.4 Experimental Identification Results from ILI 

The chosen reference for this identification approach is a single step maneuver with 

an amplitude of 3 meters. For consistency, the experiment is repeated for ten times with a 

time window of 16sec. Fig. 5.11 shows the measured input signal (steered wheel angle) and 

output signal (lateral output measured from the GPS sensor) for 10 iterations, and each input 

and output pair corresponds to one iteration.  

 

(a)                                                    (b) 

Figure 5.11 (a) Experimental Inputs (b) Experimental Outputs 

The experimental parameter update results are shown in Fig.5.12. The estimated 

parameter values are quite consistent after 6 iterations as the simulation results indicated in 

Section 4.3. Fig. 5.12 also compares the parameter convergence results by starting at 
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different initial values. As expected, the convergence result is not affected by the choice of 

initial values. Note from Fig. 5.12 that the convergence of parameters is not monotonic, and 

monotonic convergence is not guaranteed from the ILI algorithm we discussed here. It can be 

seen that some further work can be done to guarantee the monotonic convergence of the 

parameters. 

 

 

Figure 5.12 Convergence of parameters in experiment with initial estimates [1,1] and 

initial estimates [0.5, 0.5] respectively 

The estimation results of parameters are taken as the average of the parameter values 

when convergence is observed. In this case, at iteration 8,9 and 10. The estimated parameter 

values 1b  and 0b  are 0.6398 and 1.8733 respectively. These values are compared with the 

estimated parameter values from the other identification algorithms in Table 5.2. The 

estimated output and the measured output are compared in Fig. 5.13. As evidenced, the 

transient behavior is captured quite well; this is sufficient information to supply a model-

based controller design scheme.  
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Figure 5.13 Comparison between the estimated output and the measured output using 

the model from ILI 

 

Table 5.2 Estimated Parameters using three different identification algorithms 

Identification 

Algorithm 

System 

gain and zero 

Model 

Parameters 

‘ k ’ ‘ a ’ 
‘ 0b

’ ‘ 1b
’ 

LSE -3.510 0.6150 2.1585 -3.510 

Gradient 0.5941 -2.9830 1.7722 0.5941 

ILI 0.6592 -3.0052 1.981 0.6592 

 

From Table 5.2, the estimated system gain and zero from the ILI and gradient 

methods are very close. This indicated that the estimated vehicle models are quite consistent. 

The estimated system gain and zero from LSE is less reliable than the other two methods, as 

is indicated in the analysis in Section 5.2. 

From the results given above, ILI was demonstrated to be successful in identifying 

model parameters for an agricultural tractor vehicle. While there are other approaches 

available for parameter identification, there were significant key benefits in this application 

which made ILI particularly attractive. The field area available for identification was limited. 

Contrary to a gradient based adaptive approach, which is suitable for on-line parameter 

identification, the ILI can be carried out on a small field section. In addition, the ILI is 

capable of identifying system parameters with a step signal which is easily available from the 
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current AutoTrac
TM

 system. As a result, it provides better estimation results than a batch least 

squares type of off-line approach.  

5.5 Estimated Model Uncertainties 

The estimated models from the LSE were non-minimum phase, which are clearly 

inaccurate for tractor models. Both gradient based adaptive estimation and ILI approaches 

provide faithful estimates of the tractor models. In this section, we will repeat the 

identification experiments, and find the estimated model uncertainties.  

Adaptive estimation was repeated 5 times, and the corresponding estimation results 

were compared with the ILI approach. The estimated system gains and zeros are compared in 

Table 5.3.  

 

Table 5.3 Estimated parameters from different tests 

Algorithms Tests Estimated Gains Estimated Zeros 

Gradient  

based  

adaptive 

estimation 

1 0.7112 -2.4741 

2 0.6911 -2.3230 

3 0.6793 -2.4060 

4 0.6830 -2.4671 

5 0.6213 -2.5205 

ILI 10 tests 0.7742 -2.4764 

The Bode and Root locus plot for each estimated model is plotted and compared in 

Fig. 5.14. 



 75  

 

 

Figure 5.14 Estimated models from different tests 

From the figure, the Bode and Root locus plots for the estimated models from 

different tests are very similar. It indicates that the estimated models are quite consistent. To 

analyze the model uncertainties at different frequencies, we first found a ‘nominal’ model by 

taking the average magnitude and phase values from different tests for each frequency. Then, 

we can calculate the maximum percentage magnitude and phase difference between the 

estimated models and the ‘nominal’ model for each frequency using formula Eq. 5.10. 
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    ( 5.10 ) 

The bode plot of the maximum percentage difference between the estimated model 

and the ‘nominal’ model is shown in Fig.5.15. 

 

Figure 5.15 Model Uncertainties 
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From Fig.5.15 , the phase difference between the estimated model and the ‘nominal’ 

model is quite small for all frequencies. Since the sampling rate of the sensor in the tractor 

system is quite low, the tractor controller is operating in low frequency ranges. The 

magnitude difference in low frequencies is relatively small as shown in Fig. 5.15. This 

indicates that the model uncertainty is small in the range of tractor operating frequencies. 

This low uncertainty will be beneficial for any controller design. 

5.6 Steering actuator model identification 

In the closed loop configuration shown in Fig. 1.3, the controller output is the hand 

wheel angle command. Therefore, for the purpose of controller design, we need to know the 

model from the hand wheel angle to the vehicle lateral position. The relationship between the 

hand wheel angle and lateral position is shown in Eq. 5.11 

 
lateral position steered wheel angle yaw rate lateral position

hand wheel angle hand wheel angle steered wheel angle yaw rate
  ( 5.11 ) 

In the previous sections, we identified the vehicle model from yaw rate to lateral 

position. In this section, we will focus on the dynamic model from hand wheel angle to the 

yaw rate. The steering actuator model is from the hand wheel angle to the steering wheel 

angle, and the relationship between steering wheel angle and yaw rate is linear in a fixed 

operating condition, and is discussed with more detail in section 5.2.2. Therefore, the main 

challenge in identifying the model from hand wheel angle to the yaw rate now lies in the 

identification of the actuator model. 

As mentioned in section 5.2.2, the measurement of steered wheel angle is not 

available in the current AutoTrac Universal kit. When tractor is static, the steered wheel 

angle can be measured manually using a protractor. An experiment is designed to evaluate 

the static relationship from the hand wheel angle to the steered wheel angle. The hand wheel 

angle is manipulated manually and is recorded from the vehicle Control Area Network 

(CAN). Its corresponding steered wheel angle is measured using a protractor when the tractor 

is parked. The measurement of steered wheel angle is shown in Fig. 5.16. The relationship 

between the hand wheel angle and the steered wheel angle is plotted in Fig. 5.17 , where each 

dot in the figure represents an experiment point. There is a maximum encoder counts that the 
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‘actual hand wheel angle’ can reach, this is also the maximum data point we can measure as 

shown in Fig. 5.17. From Fig. 5.17 we can see that the static relationship between the hand 

wheel angle and the steered wheel angle is linear.  

 

                             

Figure 5.16 Static measurement of steered wheel angle 

 

Figure 5.17 Relationship between hand wheel and steered wheel angle 
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wheel angle to identify the model from the  hand wheel angle to yaw rate. The identified 

model is linear with a pure delay and a d.c. shift, and can be written in Eq. 5.12 

 0.20.0041 0.02se      ( 5.12 ) 

The comparison between the estimated yaw rate from Eq. 5.12 and the measured yaw rate is 

shown in Fig. 5.18. It is shown from the figure that the identified model is capable of 

capturing the dynamics of the system. 

 

(a) 

 

(b) 

Figure 5.18 Comparison between estimated and measured yaw rate (cont. on 

next page) 
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(c) 

Figure 5.18 Comparison between estimated and measured yaw rate (a) Chirp input: 

low frequency range (b) Chirp input: mid frequency range, (c) chirp input: high 

frequency range 

To sum up, the relationship between the hand wheel angle and yaw rate is linear. The 

model from yaw rate to vehicle lateral position is described in Eq. 5.9. The study for the 

identification of those two models is complete. Therefore, if the actual hand wheel angle can 

follow exactly what it is commanded to be, then a controller can be readily designed to 

achieve desired performance using a pole placement method. However, it is observed in the 

study that rate limit and saturation exists in the steering actuator, and the relationship 

between the desired/ commanded hand wheel angle and the actual hand wheel angle is shown 

in Fig. 5.19. In Fig. 5.19, the red line represents the desired/commanded wheel angle, and the 

magenta line is the actual wheel angle. In the simulation, two nonlinearity blocks are used to 

represent the nonlinear dynamics of the actuator – a saturation block and a rate limit block. 

The values of those two nonlinearities are determined experimentally. The blue line in Fig. 

5.19 represents the simulated hand wheel angle. It can be observed from Fig. 5.19 that rate 

limit and saturation are the main nonlinearity that can be observed for the actuator. 
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Figure 5.19 Rate limit and nonlinearity in steering actuator 
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Chapter 6     

Automatic Controller Design and Experimental 

Results 

In the previous chapters, we have introduced a method of determining the tractor 

lateral dynamics model from experimental data. However, verification of the identification 

should be seen in the light of the intended purpose of the model [28]. As is detailed in the 

first chapter, the purpose of system identification is to enable us to design an automatic 

controller for an agriculture vehicle. In this chapter, we will show the design of a feedback 

controller based on the identified model, and the system closed loop performance with the 

designed controller in the loop. We will also introduce the setup of a hardware-in the loop 

test system, a controller design method, and the experimental test results with the prototype 

controller in the loop.  

An overview of the hardware-in the loop test system is shown in Fig. 6.1. The 

reference signal is user defined. In this study, dSPACE is used as rapid control prototyping 

tool, and it will be introduced with more details in the following sections. The output from 

the prototyping controller is hand wheel angle command. The inner closed loop for the hand 

wheel angle is not considered in the study, and it is integrated in ATU system. The output 

from the steering actuator is the actual steered wheel angle of the tractor. The tractor 

dynamics model measures from the steered wheel angle (input) to the lateral position 

(output). The position of the tractor is measured by a StarFire
TM

 RTK receiver. Experimental 

system identification is detailed in Chapter5 which takes into account both the dynamics of 

the steering actuator and the dynamics of the vehicle. The controller is designed based on the 
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identified system model. This controller is prototyped on the dSPACE system, and the loop 

can be completed. 

This chapter is organized as follows; Section 1 will introduce the rapid control 

prototyping system used in the study. Section2 will be focusing on the controller design with 

Section3 presenting the experimental result with the prototyping controller used as a 

feedback controller.  

 

Figure 6.1 Hardware-in the loop test system configuration 

6.1 Introduction of the rapid prototyping controller: dSPACE 

dSPACE is a rapid prototyping system that was mainly designed for automotive 

research. No C-code programming is needed to design the controller. Block diagrams and 

state diagrams in Simulink are the starting points for the function prototyping. To perform a 

prototyping, the Simulink block diagrams are implemented on a dSPACE prototyping 

system. dSPACE prototyping systems therefore act as a real prototype control unit. To 

analyze a prototyping experiment, dSPCE prototyping systems record all the data in real 

time, and any desired control parameters can be optimized online.  
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There are different types of dSPACE hardware systems available in the market for 

different research purposes. The product used in this research is called MicroAutoBox (see 

Figure 6.2), which has comprehensive automotive I/O channels, and can be easily installed 

for tests on different vehicles. The MicroAutoBox also offers interfaces for the vehicle 

Controller Area Network (CAN), which is a vehicle bus standard designed to allow devices 

to communicate with each other without a host computer. 

 

Figure 6.2 MicroAutoBox 

In our experimental system, all the devices communicate via the vehicle CAN, and 

the command for the hand wheel angle can also be transmitted using a CAN message to the 

steered wheel actuator. There are two main files that need to be built to enable the 

MicroAutoBox to talk to the vehicle CAN; One is the Simulink file, which specifies the 

prototyping controller; the other is an experimental file that is built within the window of  the 

dSPACE control desk, which will plot and save the messages available from the CAN.  

As shown in Fig. 6.1, a dSPACE MicroAutoBox is a feedback controller in the 

hardware in the loop test. Therefore, the input to the prototype system is sensor information, 

and the output from the prototype system is the controller output. Correspondingly, there are 

two types of CAN message blocks used in the Simulink file: one is the receiver, and the other 

is the transmitter. On top of that, a ‘CAN controller setup’ block is also used to specify the 

attributes of the CAN messages. For each CAN message received/transmitted from the 



 84  

 

Simulink block, its message identifier, message length and message composition need to be 

specified.  

After specifying all the input and output CAN messages in the Simulink file, a 

designed controller can be implemented using the Simulink block diagrams the same way as 

building a regular Simulink file. Once the design is completed, this Simulink file can be built, 

and all the signals generated from this Simulink file are available in the dSPACE control 

desk.  

Building the experiment file for the dSPACE Control Desk is quite straight forward. 

The signals that are generated from the Simulink file can be logged/ viewed by directly 

dragging them to a scope block. Fig. is a screen shot for the dSPACE experiment file, which 

contains a scope block. After connecting the actual hardware with the MicroAutobox, the 

hardware will be shown in the platform of the dSPACE control desk. The experiment is 

ready to go when green light is shown in the platform window. 

 

Figure 6.3 dSPACE experimental file 
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6.2 Feedback Controller Design 

In this section, feedback controller design techniques are introduced. The first 

subsection introduces the determination of desired closed loop pole location from control’s 

perspective with the second subsection introducing pole placement methods.  

6.2.1 Determining desired closed loop poles 

Control systems are designed to perform specific tasks. The requirements imposed on 

the control system are usually spelled out as performance specifications. The specifications 

may be given in terms of transient response requirements and steady state requirements. The 

specifications must be given before the design process begins. In this study, transient 

response specifications such as settling time and maximum overshoot are given. The 

locations of desired closed loop poles are therefore calculated based on the specifications.  

There are certain limitations that exist in the current tractor system, such as: system 

delay, slow sampling rate, saturation and rate limit in the actuator. Those limitations will 

limit the closed loop performance. A possible set of transient response specifications is to 

have a settling time st  of 10sec, and a maximum percentage of overshoot 
pM  of 10%. Eq. 

6.1 and Eq. 6.2 illustrate the relationship between the transient specification and the damping 

ratio and natural frequency of the desired closed loop poles.  

 
4

s

n

t
w

  (2% criteria) ( 6.1 ) 

 
2( / 1 )

pM e
   

   ( 6.2 ) 

The locations of desired closed loop poles can thus be determined from the 

specifications. The vehicle dynamics model is second order, and if we assume the controller 

is 1
st
 order, the minimum number of closed loop poles is going to be 3. Therefore, other than 

these two dominant closed loop poles, there is one non-dominant pole that we need to 

specify. If the non-dominant pole is not specified, the location of this non-dominant pole can 

actually have an effect on the overall system performance. In this study, we are placing the 
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non-dominant pole at a position that is 5 times faster than the dominant closed loop poles. 

Based on the specifications, the dominant closed loop poles should be placed at 

 
1,2 0.4 0.5458s i     ( 6.3 ) 

The non-dominant closed loop poles should be placed at  

 
3 2s     ( 6.4 ) 

The relationship between the location of pole in s-plane and z-plane is illustrated in 

Eq. 6.5, where s denotes the pole location in s-plane, and  
sT  denotes the sampling rate.  

 ssT
z e   ( 6.5 ) 

Thus, the desired closed loop pole locations in z-plane are can be calculated using Eq. 6.5 

6.2.2 Pole placement 

There are different techniques to place the closed loop poles at the desired locations. 

Those we have covered in this study are: root locus design, state space method, and direct 

solution of the characteristic equations. The designs in s-plane and z-plane are very similar, 

and the designs between each domain can be easily mapped using Eq. 6.5. Transfer functions 

between each domain are transformed using Zero Order Hold (ZOH), which assumes the 

control inputs are piecewise constant over the sampling period T.  

Root locus design is one way of placing the closed loop poles. From the location of 

the desired dominant closed loop poles, angle deficiency can be calculated. A lead/lag 

controller can then be designed to compensate the angle deficiency. Root locus design is very 

efficient in placing the dominant closed loop poles. However, one of the problems is that if 

we want to specify the location of the non-dominant pole, root locus design can become very 

hard to use. The characteristic of the root-locus design is its being based on the assumption 

that the closed-loop system has a pair of dominant closed loop poles [36]. In our control 

system, the locations of all three closed loop poles need to be specified to ensure the 

performance. In addition, root locus is very nice to use when the plant model is fixed. 

However, since the system model can be arbitrary, and the controller design is to be made 

automatic, root locus design is not the best choice.  
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One other way to place the closed loop poles is by using state space method. There 

are two steps in the design. The first step is to place the dominant closed loop poles at the 

desired locations using state space feedback controller design assuming all states are 

observable. The next step is to design a reduced order observer to place the observer pole at 

the non-dominant location. An important assumption is made here that the system is both 

controllable and observable. Although from the experiments, the identified system is both 

controllable and observable, there is no guarantee that this assumption is valid.   

Another way to place the closed loop poles is to directly solve the characteristic 

equations. Assume a lead/lag compensator can be denoted by the following equation, 

 1 2

3

k z k

z k




 ( 6.6 ) 

There are three unknown parameters in the compensator, 1 2 3, ,k k k . The identified vehicle 

system model from previous chapters in continuous form can be written as:  

 

1 0

2
( )

b s b
G s

s


   ( 6.7 ) 

ZOH is used to transform the design from Laplace domain to Z-domain, and Eq. 6.8 shows 

the transformation: 

 

1 ( )
( ) (1 )

G s
G z z

s

  
   

 
  ( 6.8 ) 

where 
( )G s

s

 
 
 

 is the shorthand for 
1 ( )G s

L
s

  
  

  
 and   , L  denote the z and 

Laplace transforms respectively. By applying the transform shown in Eq. 6.8 to Eq. 6.7, the 

discretized vehicle system model can be written as: 

 1 0

2
( )

2 1

z zb z b
G z

z z




 
  ( 6.9 ) 

Thus, From Eq. 6.6 and Eq. 6.9, the closed loop characteristic equation can be calculated as: 

 2

3 1 0 1 2( 2 1)( ) ( )( ) 0z zz z z k b z b k z k        ( 6.10 ) 
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The desired characteristic equation calculated based on the locations of desired closed loop 

poles can be written as: 

  1 2 3( )( ) 0z z z z z z      ( 6.11 ) 

To place the closed loop poles at the desired locations, Eq. 6.10 should be set equal to Eq. 

6.11 . To set the equivalence, there are going to be three equations. There are also three 

unknown variables, 
1 2 3, ,k k k , and the solution should be unique. This type of solution 

requires the least computational cost. 

6.3 Controller Performance Analysis 

In this section, we will present the tractor closed loop performance with the prototype 

controller in the loop. This prototype controller is designed with the following time domain 

requirement: dominant closed loop poles are placed to satisfy the following transient 

specifications: settling time is 10 sec, and maximum overshoot is 10%. The non-dominant 

pole is to be placed 5 times faster than the dominant poles. The overall closed loop system 

configuration is shown in Fig.6.. The steering actuator and vehicle model are identified 

experimentally using the methods detailed in Chapter 5. The linear models of the steering 

actuator and vehicle model are lumped together as an overall plant model, and this model is 

used for the controller design. The steering controller is designed by solving the 

characteristic equations as illustrated in Section 6.2. Figure 6. compares the simulated and 

measured lateral position from a look ahead point that is ds ahead of vehicle c.g. From the 

figure, we can see that the simulated output is capable of capturing the transient behavior of 

the system. First of all, this is an indication that the controller designed can meet the 

expectation set at the beginning of the study. In addition, it has also demonstrated that the 

model identified from chapter 5 is accurate enough for the purpose of controller design.  
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Figure 6.4 Closed loop configuration 

 

 

 

Figure 6.5 Simulated and measured lateral position from a look ahead point 

Figure 6. shows the tractor lateral position that is measured from the Star Fire 

receiver which is mounted on top of the vehicle. This will represent the actual tractor lateral 
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going to be better than measured from a look ahead point. The figure shows the tractor 

changing from one crop lane to the other, and the transition is rather smooth.  

 

 

Figure 6.6 Measured lateral position from Star Fire receiver 
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Chapter 7     

Field Test Results 

In this chapter, extensive field test results for both the prototype controller and an 

well-tuned ATU controller are presented for comparison purpose. Two different types of 

trajectories have been used, a straight line trajectory, and a curve trajectory. The tests were 

conducted in two different speeds, 5mph and 10mph. Except for line acquiring; a planter is 

mounted and kept down in the field for all of the tests performed at 5mph.  

This chapter is organized as follows; section1 will introduce the test setups. Section2 

will present the field test result for steady state tracking, which includes results for a straight 

line tracking and curve tracking with section3 presenting the line acquiring result  

7.1 Test Setup 

All tests shown in this chapter were conducted on a John Deere 8410 tractor with 

AutoTrac
TM

 Univeresal system installed.  Hardware setup for this test follows the same 

hardware setup as discussed in Chapter 6. Tests were performed in a John Deere 

experimental farmland, where the slope of the test farm is representative for a typical farm 

land.  

Controller design follows the steps discussed in Chapter 6. An adaptive estimation is 

performed to find a model for the tractor. A controller is then designed based on the 

identified model and the desired closed loop pole locations.  This designed controller is used 

as the prototype controller for all tests shown in this chapter. The ATU controller has been 

tuned before the experiment by an expert. 
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7.2 Steady State Tracking 

7.2.1 Straight line following 

Straight line following has been tested on both ATU and the prototype controller. 

Two different speeds are used in the experiment, 5mph and 10 mph. For a 5mph test, a 

planter was attached. The planter was lifted up for 10mph test to protect the equipment from 

damage.  

Assume that the data is normally distributed, at a 95% confidence level, the lateral 

error and heading error are shown in Table 7.1.  

Table 7.1 Straight line following 

 Speed Lateral Error (m) Heading Error (deg) 

ATU 5mph 0.0460 0.6105 

Prototype 5mph 0.0453 0.7014 

ATU 10mph 0.1026 1.1023 

Prototype 10mph 0.0955 1.1149 

From the table, we can see that the prototype controller achieves similar performance 

as the ATU controller in straight line following.  

7.2.2 Curve following 

Curve following has also been tested on both ATU and the prototype controller. Two 

different speeds are used in the experiment, 5mph and 10 mph. For a 5mph test, a planter was 

attached. The planter was lifted up for 10mph test to protect the equipment from damage.  

The trajectory of a prototyping controller following the curve is shown in Fig. 7.1. 

Assume that the data is normally distributed, at a 95% confidence level, the lateral error and 

heading error are shown in Table 7.2. 
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Figure 7.1 Curve following 

Table 7.2 Curve following 

 Speed Lateral Error (m) Heading Error (deg) 

ATU 5mph 0.096 1.6815 

Prototype 5mph 0.1056 1.9407 

ATU 10mph 0.6871 2.3724 

Prototype 10mph 0.8384 4.0178 

Comparing Table 7.2 with Table 7.1, lateral error and heading error for curve 

following are bigger than straight line following as expected. From Table 7.2, the prototype 

controller is having a bigger level of error compared to the ATU controller especially for the 

case of fast speed curve following.  

In current design, the curvature of a desired path is seen as a disturbance to the 

control system. In other words, the control system is not modified for a curve tracking from a 

straight line following. One of the possible ways to improve the curve following accuracy is 

to add the curvature information as a feedforward signal in the control loop. In this way, the 

controller will react to the curvature information before the lateral error is showing up, and 

performance improvement can be expected. 

0 100 200 300
-25

-20

-15

-10

-5

0

X(m)

Y
(m

)

tractor trajectory in field



 94  

 

7.3 Line acquiring 

In this part of the experiment, the tractor is starting from a parallel line 1.54 m away 

from the desired trajectory. Only 5mph tests are performed, and the planter is lifted up 

throughout the test. 

For the ATU controller, during 20 tests, 0% overshoot is achieved. Using 5% criteria, 

the average settling time of system step response is 8.3 sec. A typical line acquiring plot for 

ATU controller is shown in Fig.7.2  

 

Figure 7.2 ATU Line Acquiring 

 

For the prototype controller, during 20 tests, 15 line acquiring trajectories don’t 

include an overshoot. For the rest 5 tests, an average of 1.92% overshoot is observed. Using 

5% criteria, the average settling time is 7.07 sec. A typical line acquiring plot with and 

without overshoot are shown in Figure 7.3 (a) and (b) respectively. It can be observed from 

the plots that the prototype controller is capable of achieving similar level of performance as 

an expert-tuned ATU controller in line acquiring. 
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(a) 

 

(b) 

Figure 7.3 Prototype line acquiring (a) with overshoot (b) no overshoot 
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Chapter 8    

Conclusion and Future Work 

The main objective of this study was to develop an automated agricultural vehicle 

guidance system that can be easily transplanted from vehicle to vehicle. One of the possible 

solutions to this problem is to perform system identification, and then design a feedback 

controller based on the identified system model. A method to perform practical tractor 

dynamics identification with constraints is the main contribution of this paper. The 

identification can be broke down into two major parts: determining a tractor model structure 

and identifying unknown parameters in the tractor model. A summary of each of these 

components and possible extensions of the research will be given in this chapter. 

8.1 Determine Tractor Model Structure 

The first step in performing tractor model identification is to determine a model 

structure based on the tractor’s dynamic analysis. Instead of using a well-known 4
th

 order 

bicycle model, a simplified 2
nd

 order model is developed to represent the tractor dynamics. 

From the simulation results presented in this study, a 2
nd

 order model can be representative 

for tractor dynamics in low frequency operations that are typical of most field operations. 

This 2
nd

 order model structure was also tested using experimental data, and it is shown in this 

study that a 2
nd

 order model is suitable for the intended closed loop application. In this 2
nd

 

order model, there are two unknown parameters to be estimated, and the results for 

determining the unknown parameters are presented in section 7.2. 
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8.2 Parameter Estimation Methods  

The purpose of parameter estimation is to identify the unknown parameters in a pre-

determined tractor model structure for the purpose of controller design. The current work has 

further challenged associated with constraints in identification field area and limitations in 

the selection of reference trajectories. This work has compared two classic parameter 

estimation approaches (LSE and adaptive estimation) with a new parameter estimation 

approach (ILI). LSE is one of the most popular methods for parameter identification. 

However, for this particular type of tractor model structure with the consideration of 

constraints on sensor Signal Noise Ratio (SNR) and selection of reference trajectories, the 

model estimated from LSE is not faithful in its convergence to appropriate plant parameters. 

Gradient based adaptive estimation is capable of giving a faithful estimation for the tractor 

model. However, the area needed for identification is quite large. For the system under study 

here, the area constraints are exceeded for the gradient based approaches. In addition, 

although gradient based adaptive estimation is quite robust to noise, the estimation result is 

easily affected by ground disturbances such as a big bump that occurred towards the end of 

the test. 

This work presented the framework for Iterative Learning Identification (ILI) and, to 

the knowledge of the author, presented one of the first implementations of ILI on an 

experimental system. The ILI was demonstrated to be successful in identifying model 

parameters for an agricultural tractor vehicle. While there are other approaches available for 

parameter identification, there were significant key benefits in this application which made 

ILI particularly attractive. As discussed in Chapter 5, the field available for identification is 

limited. Contrary to a gradient based adaptive approach, which is suitable for on-line 

parameter identification, the ILI can be carried out on a small field section. Additionally, the 

ILI is capable of identifying system parameters with a step signal which is easily available 

from the current AutoTrac
TM 

system. As a result, it provides better estimation results than a 

batch type of least square type identification.  

A feedback controller is designed based on the identified model using the ILI 

approach. This controller was prototyped and tested on a John Deere 7700 tractor. The tractor 

closed loop performance is capable of satisfying the desired performance. A closed loop 
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simulation is capable of representing the tractor transient behaviors. It has demonstrated that 

the model identified is accurate enough for the controller design.
 

8.3 Future Work 

While ILI has shown to be a very viable technique in this work, there is room for 

improvement. As shown in the simulation and experimental results for ILI, the parameter 

convergence is not monotonic. Using techniques from available ILC results [33], alternative 

update designs for ILI will be developed. This may include a norm-optimal design for the 

parameter update law. 

In addition, the current ILI framework is in Laplace domain indicative of continuous 

time system representation. As indicated in Chapter 4, implementing this algorithm requires 

taking derivatives for the reference signal and the error signal. The number of derivatives 

depends on the model order. For example, for a first order model, we need to take a 1
st
 order 

derivative for the reference and error signal. For a 4
th
 order model, we need to take 4

th
 order 

derivative for the reference and error signal. This can be implemented for a low order model. 

However, the implementation of this algorithm for a high order model will be limited. In 

addition, to implement the design in experiment, all data needs to be sampled. Therefore, it 

will be very beneficial for both the design procedure and the actual implementation 

procedure to translate the design from Laplace domain to z-domain indicative of a discrete 

time system representation. 
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