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Abstract

Our first topic is the study of self-inversive polynomials. We establish sufficient conditions for self-inversive

polynomials to have all zeros on the unit circle. We examine how such polynomials are used to generate

further such polynomials. We also analyze the distribution of zeros of certain families of self-inversive

polynomials and evaluate their discriminants. Our second topic is the sum of distances between points on

the unit circle. We consider the sums over the vertices of the regular N -gon with some stretching factors.

We also consider the N vertices of a regular N -gon with charges on the unit circle and obtain the maximal

sum of squared distances from a point on the unit circle to the charged N -gon. For a certain set of charges,

we study the minimal polynomial of the maximum value and its generating function.
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Chapter 1

Introduction

A polynomial P (z) = a0 + a1z + · · ·+ anz
n is self-inversive if ak = ζ an−k for 0 ≤ k ≤ n and |ζ| = 1. It is

easy to see that if a polynomial has all its zeros on the unit circle {z ∈ C : |z| = 1} then it is self-inversive. In

fact, A. Cohn proved that a polynomial P (z) has all zeros on the unit circle if and only if it is self-inversive

and its derivative P ′(z) has all its zeros in the closed unit disc {z ∈ C : |z| ≤ 1}.

In Chapter 3, we will establish sufficient conditions for self-inversive polynomials to have all zeros on the

unit circle. We will also examine how such polynomials may be used to generate further such polynomials.

Chapter 4 analyzes the distribution of zeros of certain families of self-inversive polynomials and evaluates

their discriminants.

A central problem in the study of root distribution is the distribution of the roots of P ′(z) relative to

those of P (z). One approach is to consider for an arbitrary α ∈ C how the distances from α to the roots

of P (z) compare on average with distances to the roots of P ′(z). As the Gauss-Lucas theorem shows that

the roots of P ′(z) are dominated by the roots of P (z) in the sense that the convex hull of the roots of P (z)

contains that of the roots of P ′(z), a theorem of De Bruijn-Springer [5] shows a similar result about the

distances. In particular, it asserts that on average the distances to the roots of P (z) exceeds the distances

to the roots of P ′(z). Now S. M. Malamud [18] has obtained very general results of the De Brujin-Springer

type by generalizing the concept of vector majorization to apply to complex vectors. In fact, his method also

yields majorization results for complex vectors of which the Gauss-Lucas theorem is a special case. Many

of these results were also proved independently by R. Pereira [22]. This is a motivation for the inclusion of

problems involving sums of distances between points. Another motivation is the problem maximizing the

discriminant of a monic polynomial all of whose roots lies on the unit circle. This is the same as maximizing

the product of all mutual
(
n
2

)
distances and of course the answer is that they form a regular n-gon. But

what about the sums (or sums of powers) of mutual distances?

For the sum of λth powers of such distances, the problem has a simple solution for λ = 2: the center

of mass must be at the origin. For 0 < λ < 2, the problems is non-degenerate. For 0 < λ ≤ 1, there is a

relatively elementary solution based on convexity [8], but for 1 < λ < 2, the problem is very difficult and
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was only solved recently using, among other techniques, the theory of orthogonal polynomials [4]. For an

appropriate normalization of the λ→ 0 case, this reduces to the discriminant maximization problem.

In this thesis, we examine perturbations in the radial direction (henceforth called stretchings) of the

vertices of the regularN -gon and try to determine their effect on the distance sums. For stretching parameters

{qa1 , · · · , qaN }, we associate the vector {a1, · · · , aN}. Then to a great extent whether the stretching a =

{a1, · · · , aN} gives a smaller distance sum than b = {b1, · · · , bN} depends upon whether or not a ≺ b in the

sense of vector majorization, but the precise behavior is somewhat more subtle.

In Section 5.1, we consider the sums over the vertices of the regular N-gon with some stretching factors.

In Section 5.2, we consider the N vertices {pj}Nj=1of a regular N -gon with charges {cj}Nj=1 on the unit circle

and we obtain the maximum of
∑N
j=1 cj |eiθ − pj |2. For a certain set of charges, we study the minimal

polynomial of the maximum value and its generating function.
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Chapter 2

Preliminaries

2.1 Hypergeometric Functions

In this section, we give the definition of the hypergeometric function and its important properties and

transformation formulas which we will use later.

Definition 2.1. The hypergeometric function 2F1(a, b; c;x) is defined by the series

∞∑
n=0

(a)n(b)n
(c)nn!

xn

for |x| < 1, and by analytic continuation elsewhere where (a)n denotes the rising factorial defined by

(a)n = a(a+ 1) · · · (a+ n− 1) for n > 0, (a)0 = 1.

When x = 1, we have the following theorem.

Theorem 2.2 (Gauss). For <(c− a− b) > 0, we have

2F1

(
a, b

c
; 1

)
=

Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

.

The corollary below is the special case where one of the upper parameters is a negative integer, thereby

making the 2F1 a finite sum.

Corollary 2.3 (Chu-Vandermonde).

2F1

(
−n, a
c

; 1

)
=

(c− a)n
(c)n

.

Next, we have linear and quadratic transformations.
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Theorem 2.4.

2F1

(
a, b

c
;x

)
= (1− x)−a2F1

(
a, c− b

c
;

x

x− 1

)
(Pfaff), (2.1)

2F1

(
a, b

c
;x

)
= (1− x)c−a−b2F1

(
c− a, c− b

c
;x

)
(Euler). (2.2)

Theorem 2.5. For all x where the two series converge,

2F1

(
a, b

a− b+ 1
;x

)
= (1− x)−a2F1

(
a/2, (1 + a)/2− b

a− b+ 1
;
−4x

(1− x)2

)
, (2.3)

2F1

(
a, b

2b
;

4x

(1 + x)2

)
= (1 + x)2a2F1

(
a, a+ 1

2 − b
b+ 1

2

;x2
)
. (2.4)

2.2 Classical Orthogonal Polynomials

In this section, we define Jacobi polynomials, ultraspherical polynomials, and Chebyshev polynomials and

give some of their properties.

Definition 2.6. The Jacobi polynomial of degree n is defined by

P (α,β)
n (x) :=

(α+ 1)n
n!

2F1

(
−n, n+ α+ β + 1

α+ 1
;

1− x
2

)
.

The Jacobi polynomials {P (α,β)
n (x)} are orthogonal with respect to the weight function (1− x)α(1 + x)β

on the interval [−1, 1] for α > −1 and β > −1. We can represent the Jacobi polynomials in terms of

hypergeometric functions:

P (α,β)
n (x) = P (β,α)

n (−x)

= (−1)n
(β + 1)n

n!
2F1

(
−n, n+ α+ β + 1

β + 1
;

1 + x

2

)
=

(α+ 1)n
n!

(
1 + x

2

)n
2F1

(
−n,−n− β

α+ 1
;
x− 1

x+ 1

)
=

(n+ α+ β + 1)n
n!

(
x− 1

2

)n
2F1

(
−n,−n− α
−α− β − 2n

;
2

1− x

)
. (2.5)

We will use the last hypergeometric function representation later.

The next theorem gives us the discriminant of the Jacobi polynomial P
(α,β)
n (x).
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Theorem 2.7 (Theorem 8.5.3, [1]). The discriminant of the Jacobi polynomial P
(α,β)
n (x) is

2n(n−1)
n∏
j=1

jj(α+ j)j−1(β + j)j−1

(α+ β + n+ j)n+j−2
.

Define the Klein’s symbol by

E(u) =


0, if u ≤ 0,

[u], if u > 0, u non-integral,

u− 1, if u = 1, 2, 3, · · · .

The following theorem gives us the zero-distribution of the general Jacobi polynomials.

Theorem 2.8 (Stieltjes, [27]). Let α, β be arbitrary real values, and set

X = X(α, β) = E

(
1

2
(|2n+ α+ β + 1| − |α| − |β|+ 1)

)
,

Y = Y (α, β) = E

(
1

2
(−|2n+ α+ β + 1|+ |α| − |β|+ 1)

)
,

Z = Z(α, β) = E

(
1

2
(−|2n+ α+ β + 1| − |α|+ |β|+ 1)

)
.

Then the numbers of the zeros of the general Jacobi polynomial P
(α,β)
n (x) in −1 < x < 1, −∞ < x < −1,

1 < x <∞, respectively, are

N1 = N1(α, β) =


2[(X + 1)/2] if (−1)n

(
n+α
n

)(
n+β
n

)
> 0,

2[X/2] + 1 if (−1)n
(
n+α
n

)(
n+β
n

)
< 0,

N2 = N2(α, β) =


2[(Y + 1)/2] if

(
2n+α+β

n

)(
n+β
n

)
> 0,

2[Y/2] + 1 if
(
2n+α+β

n

)(
n+β
n

)
< 0,

N3 = N3(α, β) =


2[(Z + 1)/2] if

(
2n+α+β

n

)(
n+α
n

)
> 0,

2[Z/2] + 1 if
(
2n+α+β

n

)(
n+α
n

)
< 0.

Some special cases of Jacobi polynomials are:

1. the ultraspherical polynomials, for α = β,

2. the Chebyshev polynomials of the first kind, for α = β = −1/2,
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3. the Chebyshev polynomials of the second kind, for α = β = 1/2.

Definition 2.9. The ultraspherical polynomials Cλn(x) are defined by

Cλn(x) :=
(2λ)n

(λ+ 1/2)n
P (λ−1/2,λ−1/2)
n (x). (2.6)

They are orthogonal with respect to the weight function (1−x2)λ−1/2 when λ > −1/2 and their generating

function is

(1− 2xz + z2)−λ =

∞∑
n=0

Cλn(x)zn.

There is another representation of Cλn(x) [1, (2.6.4)]:

Cλn(x) =
(λ)n
n!

(2x)n2F1

(
−n/2, (1− n)/2

1− n− λ
;

1

x2

)
. (2.7)

Definition 2.10. The Chebyshev polynomials of the first and second kinds, denoted respectively by Tn(x)

and Un(x), are defined by

P (−1/2,−1/2)
n (x) =

(2n)!

22n(n!)2
Tn(x) =

(2n)!

22n(n!)2
cosnθ

and

P (1/2,1/2)
n (x) =

(2n+ 2)!

22n+1[(n+ 1)!]2
Un(x) =

(2n+ 2)!

22n+1[(n+ 1)!]2
sin(n+ 1)θ

sin θ
, (2.8)

where x = cos θ.

We also have explicit formulas for the Chebyshev polynomials:

Tn(x) =
(x+

√
x2 − 1)n + (x−

√
x2 − 1)n

2
=n

n∑
k=0

(−2)k
(n+ k + 1)!

(n− k)!(2k + 1)!
(1− x)k (n > 0),

Un(x) =
(x+

√
x2 − 1)n+1 − (x−

√
x2 − 1)n+1

2
√
x2 − 1

=

n∑
k=0

(−2)k
(n+ k − 1)!

(n− k)!(2k)!
(1− x)k (n > 0). (2.9)

The three-term recurrence relations are given by

2xTn(x) = Tn+1(x) + Tn−1(x) and 2xUn(x) = Un+1(x) + Un−1(x). (2.10)
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The Chebyshev polynomials of the first and second kinds are related by the following equations:

Tn(x) =
1

2
(Un(x)− Un−2(x)),

Tn+1(x) = xTn(x)− (1− x2)Un−1(x),

Tn(x) = Un(x)− xUn−1(x).

If we differentiate the Chebyshev polynomials in their trigonometric forms, it is easy to find their deriva-

tives:

dTn(x)

dx
= nUn−1(x),

dUn(x)

dx
=

(n+ 1)Tn+1(x)− xUn(x)

x2 − 1
.

Both the Chebyshev polynomials of the first and second kinds have extrema at the end points of the

interval [−1, 1], given by:

Tn(1) = 1, Tn(−1) = (−1)n, Un(1) = n+ 1, and Un(−1) = (−1)n(n+ 1).

The following theorem helps us to find the distribution of zeros of families of polynomials in next chapter.

Theorem 2.11 (Theorem 5.4.1, [1]). Suppose {Pn(x)} is a sequence of orthogonal polynomials with respect

to the distribution dα(x) on the interval [a, b]. Then Pn(x) has n simple zeros in [a, b].

7



Chapter 3

Self Inversive Polynomials with All
Zeros on the Unit Circle

Definition 3.1. A polynomial P (z) =
∑n
k=0 akz

k of degree n is self-inversive if

P (z) = ζP ∗(z)

for some ζ ∈ C with |ζ| = 1, where

P ∗(z) := znP

(
1

z

)
for all z 6= 0.

The zeros of a self-inversive polynomial either lie on the unit circle or occur in pairs conjugate to the

unit circle [24, Chap.7].

We will show that certain self-inversive polynomials have all their zeros on the unit circle U = {x ∈ C :

|x| = 1} and examine how such polynomials may be used to generate further such polynomials. We call

them U -polynomials.

Our initial method is to take a polynomial with all zeros in the closed disc {z ∈ C : |z| ≤ 1} and

symmetrize it(Section 3.1).

Another procedure is to start with a self-inversive real polynomial P (x) = a0 + a1x + · · · + anx
n, so

A = a0 = an for some A, and increase |A| to a sufficient extent. Recently there have been a number of

results in this direction. Lakatos [11] proved that all zeros of the self-reciprocal polynomial P (z) =
∑n
k=0 akz

k

of degree n ≥ 2 with real coefficients ak ∈ R (i.e. an 6= 0 and ak = an−k for all k = 1, · · · , [n/2]) are on U if

|an| ≥
n−1∑
k=1

|ak − an|.

Schinzel [23] generalized this result for self-inversive polynomials: all zeros of the self-inversive polynomial

P (z) =
∑n
k=0 akz

k are on U if

|an| ≥ inf
c,d∈C,|d|=1

n∑
k=0

|cak − dn−kan|.
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which can be deduced from our theorem (Theorem 3.5). For more results in this direction, see [12, 13, 14,

15, 17].

Next, if we start with a single self-inversive polynomial P (x) of even degree that has all its zeros on U ,

the following two procedures will lead to further U -polynomials.

Procedure 1. Define

P (x, s) =
P (x) + P (−x)

2
+ s

P (x)− P (−x)

2

and choose |s| sufficiently close to 1. We can get the value of s from the set of the roots of the

discriminant of P (x, s) with respect to x.

Procedure 2. Take any self-inversive factor of the numerator of

Q(x) =
d

dx

(
x−n/2P (x)

)

where n is the degree of P (x).

Procedure 2 is proved in [7] (Lemma 4.2.1).

In Section 3.2, we will show that in certain situations Procedure 1 and Procedure 2 are closely related.

One may also generate further such polynomials starting with two of them. One could simply multiply them

together. A more sophisticated approach would be to take their Schur-Szegö convolution product. The

methods could of course be combined with Procedure 1 and Procedure 2. In Section 3.3, we shall show

how this approach leads to 2 variable sums for a polynomial p(t) of a sort that do not seem to have been

studied previously. These have the form

m+1∑
k=1

c(k)tm+1−kp(t)k

1− kx

where the c(k) are constants. Note that if the terms are combined, the resulting denominator is a polynomial

generator for Stirling numbers of the first kind.

3.1 Symmetrization

A. Cohn’s theorem helps us determine whether a polynomial has all zeros on the unit circle.

Theorem 3.2 (Theorem 7.1.3, [24]). Suppose that the polynomial P (z) of degree n is self-inversive and let

τ be the number of zeros of P (z) on the unit circle and ν be the number of zeros of P ′(z) in the closed disc

9



{z ∈ C : |z| ≤ 1}. Then

τ = 2(ν + 1)− n.

A. Cohn’s theorem is the case ν = n− 1.

Corollary 3.3 (A. Cohn). For a self-inversive polynomial P (z), all zeros of P (z) are on the unit circle if

and only if all zeros of P ′(z) lies in {z : |z| ≤ 1}.

To use A. Cohn’s theorem, we need to analyze the zero-distribution of the derivative P ′(z). For example,

see [26]. In this section, we will give another method to determine whether all zeros are on the unit circle.

The following theorem (a generalization of Problem 1 in [24, p. 232]) shows that symmetrizing a poly-

nomial with all zeros in the closed disc {z ∈ C : |z| ≤ 1} will provide a U -polynomial.

Theorem 3.4. Let Q(z) be a polynomial of degree n with all zeros in {z ∈ C : |z| ≤ 1}. Then, for each ζ

on the unit circle and for all nonnegative integers N ,

zNQ(z) + ζQ∗(z)

has all its zeros on the unit circle.

Proof. Let z1, z2, · · · , zn be zeros of Q(z). Then |zk| ≤ 1 for k = 1, · · · , n, and we have

Q(z) = an

n∏
k=1

(z − zk) and Q∗(z) = an

n∏
k=1

(1− zkz).

If |zk| = 1 for all k = 0, · · · , n, then

Q∗(z) =
an

an
∏n
k=1(−zk)

Q(z).

Hence

zNQ(z) + ζQ∗(z) =

(
zN +

ζan
an
∏n
k=1(−zk)

)
Q(z)

has all zeros on the unit circle since ∣∣∣∣ ζan
an
∏n
k=1(−zk)

∣∣∣∣ = 1.

Now, suppose that we have at least one zk strictly inside the unit circle. Let xNQ(x) + ζQ∗(x) = 0. We

will show that |x| = 1. If Q∗(x) = 0, |x| ≥ 1 and xNQ(x) = 0. Thus, x is on the unit circle. If Q∗(x) 6= 0,
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consider the following Blaschke product:

B(z) =
Q(z)

Q∗(z)
=
an
an

n∏
k=1

z − zk
1− zkz

.

We have |B(z)| < 1 for |z| < 1, |B(z)| = 1 for |z| = 1, and |B(z)| > 1 for |z| > 1. Since xNQ(x)+ζQ∗(x) = 0,

B(x) =
Q(x)

Q∗(x)
= − ζ

xN
.

If |x| < 1, 1 > |B(x)| = |x|−N > 1. And, if |x| > 1, 1 < |B(x)| = |x|−N < 1. Therefore, |x| = 1.

Note that any self-inversive polynomial can be represented as the form of xNQ(x) + ζQ∗(x) for some

polynomial Q(z). One of these representations is the following:

From Definition 3.1, for the self-inversive polynomial P (z) = a0 + a1z + · · · + anz
n, we can show that

ak = ζan−k for 0 ≤ k ≤ n. If we let

Q(z) =


N−1∑
k=0

aN+kz
k if n = 2N − 1,

aN
2 +

N∑
k=1

aN+kz
k if n = 2N,

(3.1)

then, for n = 2N − 1,

Q∗(z) =

N−1∑
k=0

an−kz
k = ζ−1

N−1∑
k=0

akz
k

and therefore

zNQ(z) + ζQ∗(z) = zN
N−1∑
k=0

aN+kz
k +

N−1∑
k=0

akz
k = P (z).

Similarly, for n = 2N , we have that zNQ(z) + ζQ∗(z) = P (z).

Then we have the theorem on the sufficient condition for a self-inversive polynomial to have all zeros on

the unit circle.

Theorem 3.5. Let P (z) = zNQ(z) + ζQ∗(z) be a self-inversive polynomial. If Q(z) has all zeros in the

closed unit disc {z ∈ C : |z| ≤ 1}, then P (z) is a U -polynomial.

In [3], Chen proved a sufficient and necessary condition for a self-inversive polynomial to have all its

zeros on the unit circle.

Theorem 3.6 (Theorem 1, [3]). A necessary and sufficient condition for all the zeros of p(z) =
∑n
k=0 akz

k

with complex coefficients to lie on the unit circle is that there is a polynomial qn−l(z) with all its zeros in or
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on the unit circle such that

pn(z) = zlqn−l(z) + eiθq∗n−l(z)

for some nonnegative integer l and real θ.

It is the same as our result which is proved independently. The sufficient condition is Theorem 3.5. The

necessary condition is easy to prove by setting Q(z) = 1
2P (z). We will now give applications of our theorem.

From known results on the maximum moduli of the zeros, we obtain some corollaries. We begin with

the theorem of Eneström-Kakeya.

Theorem 3.7 (Eneström-Kakeya, [19]). If all ak are real and if a0 ≥ a1 ≥ · · · ≥ an > 0, then
∑n
k=0 akz

k 6= 0

for |z| < 1.

Our theorem together with the Eneström-Kakeya Theorem provides a very large class of self-inversive

polynomials having roots on the unit circle with decreasing symmetric coefficients.

Corollary 3.8. (i) For a0 ≥ a1 ≥ a2 ≥ · · · ≥ aN ≥ 0,

a0 + a1z + a2z
2 + · · ·+ aN−1z

N−1 + aNz
N + aNz

N+1 + aN−1z
N+2 + · · ·+ a0z

2N+1

is a U -polynomial.

(ii) For a0 ≥ a1 ≥ a2 ≥ · · · ≥ aN
2 ≥ 0,

a0 + a1z + a2z
2 + · · ·+ aN−1z

N−1 + aNz
N + aN−1z

N+1 + · · ·+ a0z
2N

is a U -polynomial.

Proof. Set Q(z) = aN + aN−1z+ aN−2z
2 + · · ·+ a0z

N . By the Eneström-Kakeya theorem, all zeros of Q(z)

are in {z ∈ C : |z| ≤ 1}.

Example 3.9. From this corollary, the following families of polynomials have all their zeros on the unit

circle:
n∑
k=0

zk(
n
k

)α for α > 0, and

qN + qN−1z + qN−2z2 + · · ·+ qzN−1 + zN + zN+1 + qzN+2 + q2zN+3 + · · ·+ qNzN+1 for q ≥ 1.

Also, we can show that self-inversive polynomials with slow increasing coefficients have all their zeros on

the unit circle.

12



Corollary 3.10. If 0 ≤ aN − aN−1 ≤ aN−1 − aN−2 ≤ · · · ≤ a2 − a1 ≤ a1 − a0 ≤ a0, then

P (z) = a0 + a1z + a2z
2 + · · ·+ aN−1z

N−1 + aNz
N + aNz

N+1 + aN−1z
N+2 + · · ·+ a0z

2N+1

is a U -polynomial.

Proof. Let Q(z) = (aN −aN−1) + (aN−1−aN−2)z+ · · ·+ (a1−a0)zN . Then it has all its zeros in the closed

disc by the Eneström-Kakeya theorem. And it is easy to check (z− 1)P (z) = zN+2Q(z)−Q∗(z). Therefore

P (z) has all its zeros on the unit circle.

Corollary 3.11. Let P (z) = zNQ(z) + ζQ∗(z) be a self-inversive polynomial with Q(z) =
∑N
k=0 akz

k. If∑N−1
k=0 |ak| ≤ |aN |, then all zeros of P (z) are on the unit circle.

Proof. From the Gershgorin circle theorem [9], we know that if z0 is a root of Q(z) then either |z0| ≤ 1 or

|z0| ≤
∑N−1
k=0 |ak|/|aN |.

Corollary 3.12. Let P (z) = zNQ(z) + ζQ∗(z) be a self-inversive polynomial with Q(z) =
∑N
k=0 akz

k. If

|a0| ≤ |a1| and 2|ak| ≤ |ak+1| for 1 ≤ k ≤ N − 1, then all zeros of P (z) are on the unit circle.

Proof. Kojima [19, p. 107, Exercise 6] proved that all zeros of f(z) = a0 + a1z + · · ·+ anz
n lie in the circle

|z| ≤ r, r = max (|a0|/|a1|, 2|ak/ak+1|) for k = 1, 3, · · · , n− 1.

Corollary 3.13. Let P (z) = zNQ(z) + ζQ∗(z) be a self-inversive polynomial with Q(z) =
∑N
k=0 akz

k. If

|a0|+
∑N−1
k=0 |ak+1 − ak| ≤ |aN |, then all zeros of P (z) are on the unit circle.

Proof. From the result of Montel-Marty [19, p. 107, Exercise 8], we have that all zeros of the polynomial

f(z) = a0 + a1z + · · · + zn lie in the circle |z| ≤ max
(
L,L1/(n+1)

)
where L is the length of the polygonal

line joining in succession the points 0, a0, a1, · · · , an−1, 1; i.e. L = |a0| + |a1 − a0| + · · · + |an−1 − an−2| +

|1− an−1|.

Last, we deduce the result of Schinzel from our theorem.

Corollary 3.14 (Schinzel, [23]). All zeros of the self-inversive polynomial P (z) =
∑n
k=0 akz

k are on the

unit circle if

|an| ≥ inf
c,d∈C,|d|=1

n∑
k=0

|cak − dn−kan|.

Proof. Let d = 1 and P (z) = ζP ∗(z) for some ζ ∈ C with |ζ| = 1. Then

ζan−k = ak for k = 0, 1, · · · , n. (3.2)

13



Set Q(z) as in (3.1). For n = 2N − 1, we have the following inequality:

|aN |+
N−1∑
k=1

|aN+k − aN+k−1|

=
1

2

(
|aN |+ |ζaN |+

N−1∑
k=1

|aN+k − aN+k−1|+
N−1∑
k=1

|ζaN+k − ζaN+k−1|

)
since |ζ| = 1

=
1

2

(
|aN |+ |aN−1|+

N−1∑
k=1

|aN+k − aN+k−1|+
N−1∑
k=1

|ak − ak−1|

)
by (3.2)

≤ 1

2
|
n∑
k=1

|ak − ak−1|

≤ 1

2

(
n∑
k=1

∣∣∣ak − an
c

∣∣∣+

n∑
k=1

∣∣∣ak−1 − an
c

∣∣∣)

=

n∑
k=0

∣∣∣ak − an
c

∣∣∣− 1

2

(∣∣∣a0 − an
c

∣∣∣+
∣∣∣n0 − an

c

∣∣∣)
≤

∣∣∣an
c

∣∣∣− 1

2

(∣∣∣ζan − an
c

∣∣∣+
∣∣∣an − an

c

∣∣∣)
≤ |an|

for any nonzero c ∈ C. Similarly, we have the same inequality for the case when n = 2N . By Corollary 3.13,

P (z) has all zeros on the unit circle. Since |d| = 1, P (dz) has all its zeros on the unit circle.

3.2 Procedure 1 and Procedure 2

We begin with Pn(t) =
∑2n
k=0 t

k which clearly has all zeros on the unit circle. Its generating function is

∞∑
n=0

Pn(t)xn =
1 + tx

(1− x)(1− t2x)
.

Theorem 3.15. For m = 1, 2, · · · , let

∞∑
n=0

P (m)
n (t)xn =

1 + tx

(1− x)m(1− t2x)m
.

Then P
(m)
n (t) is a U -polynomial. Also, P

(m+1)
n−1 (t) is the result of applying Procedure 2 to P

(m)
n (t).

Proof. Replace x by x/t to get

∞∑
n=0

t−nP (m)
n (t)xn =

1 + x

(1− x
t )m(1− tx)m

.
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By taking the derivative with respect to t, we have

∞∑
n=1

d

dt

(
t−nP (m)

n (t)
)
xn =

mx(1 + x)(1− 1
t2 )

(1− x
t )m+1(1− tx)m+1

.

Replacing x by xt and multiplying by t
x will give us

∞∑
n=1

d

dt

(
t−nP (m)

n (t)
)
tn+1xn−1 =

m(1 + xt)(t2 − 1)

(1− x)m+1(1− t2x)m+1

= m(t2 − 1)

∞∑
n=0

P (m+1)
n (t)xn.

Hence, it follows that

d

dt

(
t−nP (m)

n (t)
)
tn+1 = m(t2 − 1)P

(m+1)
n−1 .

i.e. P
(m+1)
n−1 (t) is the result of applying Procedure 2 to P

(m)
n (t). Therefore, P

(m)
n (t) has all zeros on the

unit circle.

Now, the generating function for the polynomials defined in this setting by Procedure 1, namely

Hn(s, t) = 1 + t2 + t4 + · · ·+ t2n + s(t+ t3 + · · ·+ t2n−1), is

∞∑
n=0

Hn(s, t)xn =
1 + stx

(1− x)(1− t2x)
.

Theorem 3.16. For m = 1, 2, · · · , let

∞∑
n=0

H(m)
n (s, t)xn =

1 + stx

(1− x)m(1− t2x)m
.

Then the generating function of H
(m)
n (1 + 2m−1

n ,−t) is

∞∑
n=1

H(m)
n

(
1 +

2m− 1

n
,−t
)
xn−1 = m(1− t)2

∞∑
n=0

P (m+1)
n (t)xn

and hence exactly the result of Procedure 2.

Proof. Let
∞∑
n=0

h(m)
n (t)xn =

1

(1− x)m(1− t2x)m
.
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Then H
(m)
n (s, t) = h

(m)
n (t) + st h

(m)
n−1(t) for n = 1, 2, · · · . By differentiating with respect to x, we obtain

∞∑
n=0

n h(m)
n (t)xn =

m(1 + t2 − 2t2x)

(1− x)m+1(1− t2x)m+1
.

Now, when s = 1 +
2m− 1

n
, we have

∞∑
n=1

H(m)
n

(
1 +

2m− 1

n
,−t
)
xn−1 =

∞∑
n=1

n

{
h(m)
n (−t)−

(
1 +

2m− 1

n

)
t h

(m)
n−1(−t)

}
xn−1

=
m(1− tx)(1 + t2 − 2t2x)

(1− x)m+1(1− t2x)m+1
− 2mt

(1− x)m(1− t2x)m

= m(1− t)2 1 + tx

(1− x)m+1(1− t2x)m+1

= m(1− t)2
∞∑
n=0

P (m+1)
n (t)xn.

Thus, there is a strong connection between Procedure 1 and Procedure 2 in this case. The connection

is somewhat weaker for polynomials such as

4 + 3t+ 2t2 + t3 + 2t4 + 3t5 + 4t6

which, by Theorem 3.5, have all their zeros on the unit circle. Here the generating function is

L(t, x) =
1− 4t2x2 + 2t2x3 + 2t4x3 − t4x4

(1− x)2(1− tx)(1− t2x)2

=

∞∑
n=0

Ln(t)xn

= 1 + (2 + t+ 2t2)x+ (3 + 2t+ t2 + 2t3 + 3t4)x2 + · · · .

In this case, examples show that Procedure 1 and Procedure 2 give different results. Procedure 2

applied to

L4(t) = 5 + 4t+ 3t2 + 2t3 + t4 + 2t5 + 3t6 + 4t7 + 5t8

gives, by removing the 2(t2 − 1) from the numerator,

p1(t) = 10 + 6t+ 13t2 + 7t3 + 13t4 + 6t5 + 10tt.
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For Procedure 1, we evaluate the discriminant with respect to t of

5 + 3t2 + t4 + 3t2 + 5t8 + s(4t+ 2t3 + 2t5 + 4t7),

which is

−6400(−17 + 12s)(17 + 12s)(178605 + 47777s2 + 4985s4 + 3200s6)2.

The result of Procedure 1 with s = −17/12 and the (1− t)2/6 factor removed is

p2(t) = 30 + 26t+ 40t2 + 37t3 + 40t4 + 26t5 + 30t6.

Hence, p1(t) 6= p2(t). However, p1(t) and p2(t) both have roots near −.139 ± .990i that are remarkably

close, and for Ln(t) for n large, the zeros of the two different polynomials produced by Procedure 1 and

Procedure 2 appear to be remarkably close.

3.3 Combined Procedure

In our use of Procedure 1 or Procedure 2, we always reduce the degree of the polynomial by 2. We

now consider Procedure 2 in the case in which the polynomial P (x) is first multiplied by a self-inversive

quadratic polynomial before introducing the factor t−
degree

2 and differentiating. Thus, we will generate a

sequence of polynomials of the same degree.

Example 3.17. Start with P
(1)
3 (t) = 1 + t+ t2 + t3 + t4 + t5 + t6. Do Procedure 2 with premultiplication

by (1 + at+ t2). Let the resulting sequences of sixth degree polynomials be Q
(3)
n (t) with Q

(3)
0 (t) = P

(1)
3 (t).

d

dt

(
t−4P

(1)
3 (t)(1 + at+ t2)

)
=

d

dt

(
t−3P

(l)
3 (t)(t−1 + a+ t)

)
= t−3P

(l)
3 (t)(−t−2 + 1) + t−4(t2 − 1)P

(2)
2 (t)(t−1 + a+ t).

Multiplying by
t5

t2 − 1
gives us

Q
(3)
1 (t) =

t5

t2 − 1

d

dt

(
t−4P

(1)
3 (t)(1 + at+ t2)

)
=
{
P

(1)
3 (t) + P

(2)
2 (t)(1 + at+ t2)

}
.
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Similarly, we have the following:

t5

t2 − 1

d

dt

(
t−4P

(2)
2 (t)(1 + at+ t2)2

)
= 2(1 + at+ t2)

{
P

(2)
2 (t) + P

(3)
1 (t)(1 + at+ t2)

}
,

t5

t2 − 1

d

dt

(
t−4P

(3)
1 (t)(1 + at+ t2)3

)
= 3(1 + at+ t2)2

{
P

(3)
1 (t) + P

(4)
0 (t)(1 + at+ t2)

}
,

t5

t2 − 1

d

dt

(
t−4P

(4)
0 (t)(1 + at+ t2)4

)
= 4(1 + at+ t2)3.

Hence,

Q
(3)
2 (t) =

t5

t2 − 1

d

dt
Q

(3)
1 (t)

=
t5

t2 − 1

d

dt

{
P

(1)
3 (t) + P

(2)
2 (t)(1 + at+ t2)

}
(1 + at+ t2)

=
t5

t2 − 1

d

dt

{
P

(1)
3 (t)(1 + at+ t2) + P

(2)
2 (t)(1 + at+ t2)2

}
=

{
P

(1)
3 (t) + P

(2)
2 (t)(1 + at+ t2)

}
+ 2(1 + at+ t2)

{
P

(2)
2 (t) + P

(3)
1 (t)(1 + at+ t2)

}
= P

(1)
3 (t) + (1 + 2)P

(2)
2 (t)(1 + at+ t2) + 2P

(3)
1 (t)(1 + at+ t2)2

and

Q
(3)
3 (t) =

t5

t2 − 1

d

dt
Q

(3)
2 (t)

=
t5

t2 − 1

d

dt

{
P

(1)
3 (t) + 3P

(2)
2 (t)(1 + at+ t2) + 2P

(3)
1 (t)(1 + at+ t2)2

}
(1 + at+ t2)

= P
(1)
3 (t) + 7P

(2)
2 (t)(1 + at+ t2) + 12P

(3)
1 (t)(1 + at+ t2)2 + 6(1 + at+ t2)3.

If we consider the generating function
∞∑
n=0

Q(3)
n (t)xn,

then

Q(3)
n (t) = an,1P

(1)
3 (t) + an,2P

(2)
2 (t)(1 + at+ t2) + an,3P

(3)
1 (t)(1 + at+ t2)2 + an,4(1 + at+ t2)3

where an,1, an,2, an,3, and an,4 can be founded by the recurrence relations:

an,1 = 1, an,2 = an−1,1 + 2an−1,2, an,3 = 2an−1,2 + 3an−1,3, and an,4 = 3an−1,3 + 4an−1,4

so that an,1 = 1, an,2 = 1 · 2n − 1, an,3 = 1 · 3n − 2 · 2n + 1, and an,4 = 1 · 4n − 3 · 3n + 3 · 2n − 1. We note

18



that there are binomial coefficients involved. Therefore, we obtain the generating function:

∞∑
n=0

Q(3)
n (t)xn =

1

1− x

{
P

(1)
3 (t)− P (2)

2 (t)(1 + at+ t2) + P
(3)
1 (t)(1 + at+ t2)2 − (1 + at+ t2)3

}
+

1

1− 2x

{
P

(2)
2 (t)(1 + at+ t2)− 2P

(3)
1 (t)(1 + at+ t2)2 + 3(1 + at+ t2)3

}
+

1

1− 3x

{
P

(3)
1 (t)(1 + at+ t2)2 − 3(1 + at+ t2)3

}
+

1

1− 4x
(1 + at+ t2)3

=
(−1 + 2a+ a2 − a3)t3

1− x
+

(−2− 2a+ 3a2)t2(1 + at+ t2)

1− 2x

+
(1− 3a)t(1 + at+ t2)2

1− 3x
+

(1 + at+ t2)3

1− 4x
.

With similar computation, we can get the generating function for the combined procedure of the polynomial

P
(1)
4 (t) = 1 + t+ · · ·+ t8.

∞∑
n=0

Q(4)
n (t)xn =

(1 + 2a− 3a2 − a3 + a4)t3

1− x
+

(−2 + 6a+ 3a2 − 4a3)t3(1 + at+ t2)

1− 2x

+
(−3− 3a+ 6a2)t2(1 + at+ t2)2

1− 3x
+

(1− 4a)t(1 + at+ t2)3

1− 4x
+

(1 + at+ t2)4

1− 5x
.

In general, we have

∞∑
n=0

Q(l)
n x

n =

l∑
k=0

1

1− (k + 1)x

l∑
i=k

P i+1
l−i (t)(1 + at+ t2)i(−1)i−k

(
i

k

)
. (3.3)

Conjecture 3.18. Let

C(l)(a, x, t) =

l∑
k=0

(−1)ktl−k(1 + at+ t2)k d
kRl(a)
dak

/k

1− (1 + k)x
,

where

Rl(a) =

l∑
j=0

al−k(−1)l−dj/2e
(
l − dj/2e
bj/2c

)
=

(−t)l

α− β
(
αl+1 − αl − βl+1 + βl

)
with

α =
a+
√
a2 − 4

2
and β =

a−
√
a2 − 4

2
.

For −2 ≤ a ≤ 2, the polynomials generated by C(l)(a, x, t) have all their zeros on the unit circle.

We claim that C(l)(a, x, t) is the generating function of Q
(l)
n (t), i.e.,

C(a, x, t) =

∞∑
n=0

Q(l)
n x

n.
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If we could verify the equation

l∑
i=0

P
(i+1)
l−i (t)(1 + at+ t2)i(−1)i = tl

l∑
j=0

al−k(−1)l−dj/2e
(
l − dj/2e
bj/2c

)
,

then it would follow by induction that

l∑
i=k

P
(i+1)
l−i (t)(1 + at+ t2)i(−1)i−k

(
i

k

)
= tl−k

dkR(a)

dak
(−1)k

k
, for k > 0.

Hence, from (3.3), we can show that C(l)(a, x, t) would be the generating function of Q
(l)
n (t) and this would

prove Conjecture 3.18.

3.4 Related Generating Functions

The following is a generalization of Theorem 3.15.

Theorem 3.19. For any real number p > 0, the polynomials generated by

K(p, t, x) :=
1 + tx

(1− x)p(1− t2x)p

are U -polynomials.

Proof. By using the binomial theorem, we can expand K(p, t, x) as follow:

K(p, t, x) = (1 + tx)(1− x)−p(1− t2x)−p

= (1 + tx)

∞∑
j=0

(
−p
j

)
(−x)j

∞∑
k=0

(
−p
k

)
(−t2x)k

= (1 + tx)

∞∑
n=0

(−x)n
n∑
k=0

(
−p
n− k

)(
−p
k

)
t2k

= (1 + tx)

∞∑
n=0

(p)n
n!

xn
n∑
k=0

(−n)k(p)k
k!(1− p− n)k

t2k

= (1 + tx)

∞∑
n=0

(p)n
n!

xn2F1

(
−n, p

1− p− n
; t2
)
.

Hence, the polynomial generated by K(p, t, x) is

(p)n
n!

2F1

(
−n, p

1− p− n
; t2
)

+
(p)n−1
(n− 1)!

t2F1

(
−n+ 1, p

2− p− n
; t2
)
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which is

(p)n
n!

(1 + t2)n2F1

(
−n/2, (1− n)/2

1− p− n
;
(

2t
1+t2

)2)
+

(p)n−1
(n− 1)!

t(1 + t2)n−12F1

(
(1− n)/2, (2− n)/2

2− p− n
;
(

2t
1+t2

)2)
by (2.3) and (2.1)

= tn
{
Cpn

(
1 + t2

2t

)
+ Cpn−1

(
1 + t2

2t

)}
by (2.7)

= tn
{

(2p)n
(p+ 1/2)n

P (p−1/2,p−1/2)
n

(
1 + t2

2t

)
+

(2p)n−1
(p+ 1/2)n−1

P
(p−1/2,p−1/2)
n−1

(
1 + t2

2t

)}
by (2.6)

= tn
(2p)n−1(−1)n

(p+ 1/2)n

{
(2p+ n− 1)P (p−1/2,p−1/2)

n

(
−1 + t2

2t

)
− (p+ n− 1/2)P

(p−1/2,p−1/2)
n−1

(
−1 + t2

2t

)}
,

where P
(α,β)
n (x) is a Jacobi polynomial. Recall an identity for Jacobi polynomials((6.4.21), [1]):

(2n+ α+ β + 1)P (α,β)
n (x) = (n+ α+ β + 1)P (α+1,β)

n (x)− (n+ β)P
(α+1,β)
n−1 (x).

From this, we have that the polynomial generated by K(p, t, x) is

2
(2p)n−1

(p+ 1/2)n−1
tnP (p−1/2,p−3/2)

n

(
1

2

(
t+

1

t

))
.

For p > 0, the Jacobi polynomial has all zeros in the interval [−1, 1]. Hence, P
(p−1/2,p−3/2)
n ( 1

2 (t+ 1/t)) has

all zeros on the unit circle because 1
2 (t+ 1/2) ∈ [−1, 2]⇔ |t| = 1. Therefore, they have all zeros on the unit

circle.

The following conjectures are related to Theorem 3.19.

Conjecture 3.20. If p > r ≥ 1, then the polynomials generated by

1 + tx

(1− x)p(1− t2x)r

have all zeros t satisfying |t| ≥ 1. If r > p ≥ 1, all zeros t satisfy |t| ≤ 1.

Conjecture 3.21. For any integer p ≥ 1, the function K(p, t, x)2 generates U -polynomials.
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Chapter 4

The Root Distribution of Families of
Polynomials

In this chapter, we analyze the root distributions of certain families of polynomials. We also evaluate their

discriminants and related resultants. We connect them with classical orthogonal polynomials such as Jacobi

polynomials, and Chebyshev polynomials of the first and second kind.

4.1 The U-Polynomials G(n, d, x)

Two extreme U -polynomials are u1(x) = (x− 1)2n and u2(x) = (x+ 1)2n. We can imagine all roots of u1(x)

separating away from each other and away from their initial value of 1 with half moving along the unit circle

above the x-axis and half below until all roots again get closer together and finally coincide at x = −1. This

gives a transition from u1 to u2. We shall show there is a simply described family of U -polynomials whose

coefficients depend on a single parameter d such that as d goes from −1/2 to ∞ the polynomial goes from

a constant multiple of u1 to a constant multiple of u2 with the value
∑2n
k=0 z

k when d = n. See Figure 4.1.

In general, the coefficients of these polynomials, after the highest power of (x − 1) has been factored out,

increase in magnitude as the central term is approached, so considerations of the sort used in Corollary 3.8

are not applicable. Our proof is based on properties of Jacobi polynomials. One might expect that the roots

are most evenly spread apart on the unit circle when d = n. However, a very natural measure of spread (see

the discussion after Theorem 4.6) indicates that the spread is maximal for values of d asymptotic to
√
n/2.

For d ≥ − 1
2 , let

G(n, d, x) :=

n∑
j=−n

Γ(d+ 1− j)Γ(d+ 1 + j)

(n− j)!(n+ j)!
x(n+j).

Note that as d goes from −1/2 to ∞, the G(n, d, x) goes from
π

(2n)!
u1(x) to

1

(2n)!
u2(x) with G(n, n, x) =

2n∑
k=0

zk.

Theorem 4.1. If d > n− 3
2 , G(n, d, x) is a U -polynomial.
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Figure 4.1: The root distribution of G(50, d, x)
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Proof. We can rewrite G(n, d, x) as follows:

G(n, d, x) =

n∑
j=−n

Γ(d+ 1− j)Γ(d+ 1 + j)

(n− j)!(n+ j)!
x(n+j)

=

2n∑
j=0

Γ(d+ 1− j + n)Γ(d+ 1 + j − n)

(2n− j)!j!
xj

=
Γ(d+ 1− n)Γ(d+ 1 + n)

(2n)!
2F1

(
−2n, d+ 1− n
−d− n

;x

)
=

Γ(d+ 1− n)Γ(d+ 1 + n)

(2n)!
(1− x)2n2F1

(
−n,−d− 1/2

−d− n
;
−4x

(1− x)2

)
by (2.3)

=
Γ(d+ 1− n)Γ(d+ 1)

(1/2)n
(−x)nP

(−n+d+ 1
2 ,−

1
2 )

n

(
1

2

(
x+

1

x

))
by (2.5).

If −n+d+ 1
2 > −1, P

(−n+d+ 1
2 ,−

1
2 )

n

(
1
2 (x+ 1

x )
)

has all zeros in the interval [−1, 1]. Since (x+1/x) ∈ [−2, 2]⇔

|x| = 1, G(n, d, x) has all zeros on the unit circle.

Lemma 4.2. For k = 0, 1, · · · , n− 1,

G(n, k − 1

2
, x) =

(2k)!Γ(k + 1
2 − n)

(2n)!Γ(n+ 1
2 − k)

(1− x)2(n−k)G(k, n− 1

2
, x).

Proof. By Euler’s transform (2.2), we have that

2F1

(−2n, k + 1
2 − n

−k + 1
2 − n

;x

)
= (1− x)2(n−k)2F1

(
n− k + 1

2 ,−2k

−k + 1
2 − n

;x

)
.

Hence, we obtain

G(n, k − 1

2
, x) =

Γ(k + 1
2 − n)Γ(k + 1

2 + n)

(2n)!
2F1

(−2n, k + 1
2 − n

−k + 1
2 − n

;x

)
=

Γ(k + 1
2 − n)Γ(k + 1

2 + n)

(2n)!
(1− x)2(n−k)2F1

(
n− k + 1

2 ,−2k

−k + 1
2 − n

;x

)
=

Γ(k + 1
2 − n)Γ(k + 1

2 + n)

(2n)!
(1− x)2(n−k)

(2k)!

Γ(n+ 1
2 − k)Γ(n+ 1

2 + k)
G(k, n− 1/2, x)

=
(2k)!Γ(k + 1

2 − n)

(2n)!Γ(n+ 1
2 − k)

(1− x)2(n−k)G(k, n− 1/2, x).

Theorem 4.3. G(n, k − 1

2
, x) is a U -polynomial for k = 0, 1, · · · .

Proof. If k − 1/2 > n − 3/2, the result follows from the previous theorem. Let k ≤ n − 1. By Lemma 4.2,
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we have

G(n, k − 1

2
, x) =

(2k)!Γ(k + 1
2 − n)

(2n)!Γ(n+ 1
2 − k)

(1− x)2(n−k)G(k, n− 1

2
, x).

Since n− 1/2 > k − 3/2, G(k, n− 1
2 , x) has all its zeros on the unit circle by Theorem 4.1.

We have analyzed the root distribution of G(n, d, x) for d > n− 3
2 or d = k − 1

2 for k = 0, 1, · · · , n− 1.

There remains the case d < n− 3
2 with d+ 1/2 /∈ Z+. Since we have shown that

G(n, d, x) =
Γ(d+ 1− n)Γ(d+ 1)

(1/2)n
(−x)nP

(−n+d+ 1
2 ,−

1
2 )

n

(
1

2

(
x+

1

x

))

in the proof of Theorem 4.1, we can use the root distribution of the general Jacobi polynomials.

Theorem 4.4. Let n − 3/2 − k < d < n − 1/2 − k for k ∈ Z+. If 1 ≤ k ≤ n − 1, the number of zeros of

G(n, d, x) on the unit circle is 2(n-k).

Proof. In the Stieltjes’ Theorem (Theorem 2.8), for

G(n, d, x) =
Γ(d+ 1− n)Γ(d+ 1)

(1/2)n
(−x)nP

(−n+d+ 1
2 ,−

1
2 )

n

(
1

2

(
x+

1

x

))
,

we have

X = E

(
1

2
(|2n− n+ d+ 1/2− 1/2 + 1| − | − n+ d+ 1/2| − | − 1/2|+ 1)

)
= E(d+ 1)

= dde

since n− 3/2− k < d < n− 1/2− k for k = 1, 2, · · · , n− 1. Here,

(−1)n
(
n+ α

n

)(
n+ β

n

)
= (−1)n

(
d+ 1/2

n

)(
n− 1/2

n

)
> 0

⇔ (−1)n(d+ 1/2) · · · (d− n+ 3/2 + k)(d− n+ 1/2 + k) · · · (d− n+ 1/2 + 1) > 0

⇔ (−1)n+k > 0.

If (−1)n+k > 0, n−k is even. For n−k−3/2 < d ≤ n−k−1, X = n−k−1 so that N1 = 2

[
n− k − 1 + 1

2

]
=

n− k. And, for n− k − 1 < d < n− k − 1/2, X = n− k so that N1 = 2

[
n− k + 1

2

]
= n− k. Similarly, if

(−1)n+k < 0, we can get N1 = n− k. Therefore, there are (n− k) zeros of P
(−n+d+ 1

2 ,−
1
2 )

n

(
1
2

(
x+ 1

x

))
in the

interval [−1, 1] which implies that there are 2(n− k) zeros of G(n, d, x) on the unit circle.
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In the next theorem, we can obtain the discriminant of G(n, d, x) when it has all zeros on the unit circle.

Recall that the discriminant of the polynomial f(x) of degree n is defined by

∆xf(x) = (−1)n(n−1)/2a2n−2n

∏
j<k

(rj − rk)

where an is the leading coefficient of f(x) and {rj} is the set of roots of f(x).

Theorem 4.5. The discriminant of G(n, d, x) for d > n− 3/2 is

∆xG(n, d, x) = 2n(n−1)
{

Γ(d+ 1− n)Γ(d+ 1)

(2n)!

}4n−2
 2n∏
j=1

jj


×

n∏
j=1

(d+ j)2(n−j)(2d− 2n+ 2j + 1)2j−1.

Proof. Since d > n− 3/2, the set of zeros of G(n, d, x) is {αj , αj}nj=1 with |αj | = 1. So, the discriminant of

G(n, d, x) is

∆xG(n, d, x) = (−1)2n(2n−1)/2
{

Γ(d+ 1− n)Γ(d+ 1 + n)

(2n)!

}4n−2 n∏
j=1

(αj − αj)2

×

∏
j<k

(αj − αk)(αj − αk)(αj − αk)(αj − αk)

2

.

First, we compute the first product
n∏
j=1

(αj − αj)2:

n∏
j=1

(αj − αj)2 =

n∏
j=1

(2i=αj)2

= (−1)n
n∏
j=1

4
{

1− (<αj)2
}

since |αj | = 1

= (−1)n
n∏
j=1

(2− 2<αj)
n∏
j=1

(2 + 2<αj).

Since

G(n, d, x) =
Γ(d+ 1− n)Γ(d+ 1 + n)

(2n)!
2F1

(
−2n, d+ 1− n
−d− n

;x

)
=

Γ(d+ 1− n)Γ(d+ 1 + n)

(2n)!

n∏
j=1

(z − αj)(z − αj),
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by using the Chu-Vandermonde theorem (Theorem 2.3) and (2.3), we get

n∏
j=1

(2− 2<αj) = 2F1

(
−2n, d+ 1− n
−d− n

; 1

)
=

(−2d− 1)2n
(−d− n)2n

and

n∏
j=1

(2 + 2<αj) = 2F1

(
−2n, d+ 1− n
−d− n

;−1

)

= 22n2F1

(
−n,−d− 1/2

−d− n
; 1

)
= 22n

(−n+ 1/2)n
(−d− n)n

.

Hence,
n∏
j=1

(αj − αj)2 =
24n(1/2)n(−d− 1/2)n

{(d+ 1)n}2
.

For the second product, from

(αj − αk)(αj − αk)(αj − αk)(αj − αk) = 4(<αj −<αk)2,

we get ∏
j<k

(αj − αk)(αj − αk)(αj − αk)(αj − αk) = 2n(n−1)
∏
j<k

(<αj −<αk)2.

Since

G(n, d, x) =
Γ(d+ 1− n)Γ(d+ 1)

(1/2)n
(−x)nP

(−n+d+ 1
2 ,−

1
2 )

n

(
1

2

(
x+

1

x

))
,

{<αj}nj=1 is the set of zeros of P
(−n+d+ 1

2 ,−
1
2 )

n (x). Recall Theorem 2.7: the discriminant of the Jacobi

polynomial P
(α,β)
n (x) is

2n(n−1)
n∏
j=1

jj(α+ j)j−1(β + j)j−1

(α+ β + n+ j)n+j−2
.

Thus

∏
j<k

(αj − αk)(αj − αk)(αj − αk)(αj − αk) = 22n(n−1)
n∏
j=1

jj(j − 1/2)j−1(d− n+ j + 1/2)j−1

(d+ j)n+j−2
.
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Therefore, the discriminant of G(n, d, x) is

∆xG(n, d, x) = 2n(n−1)
{

Γ(d+ 1− n)Γ(d+ 1)

(2n)!

}4n−2
 2n∏
j=1

jj


×

n∏
j=1

(d+ j)2(n−j)(2d− 2n+ 2j + 1)2j−1.

Lastly, consider sums of squared distances between zeros of G(n, d, x).

Theorem 4.6. For fixed n, let Rd be the set of zeros of G(n, d, x). Then, for d > n− 3
2 or d−1/2 = 0, 1, · · · ,

the sum of squared distances between zeros of G(n, d, x) and zeros of G(n, d+ k, x) is

∑
r∈Rd

∑
s∈Rd+k

|r − s|2 = 8n2
(2d+ 1 + k)(2n− 1)

(d+ 1 + k)(d+ n)
.

Proof. For d > n− 3
2 or d− 1/2 = 0, 1, · · · , all zeros of G(n, d, x) are on the unit circle by Theorem 4.1 and

Theorem 4.3. Since G(n, d, x) is self-inversive, the set of zeros of G(n, d, x) is Rd = {αd,j , αd,j}nj=1 where

|αd,j | = 1. Hence, we have

∑
r∈Rd

∑
s∈Rd+k

|r − s|2 = 2

n∑
i=1

n∑
j=1

(
|αd,i − αd+k,j |2 + |αd,i − αd+k,j |2

)
= 8

n∑
i=1

n∑
j=1

(1−<αd,i<αd+k,j)

= 8n2 − 2

(
n∑
i=1

2<αd,i

) n∑
j=1

2<αd+k,j


= 8n2 − 2

(
n∑
i=1

(αd,i + αd,i)

) n∑
j=1

(αd+k,j + αd+k,j)

 .

Since
n∑
i=1

(αd,i + αd,i) = −2n(d+ 1− n)

d+ n
,

the sum of squared distances between zeros of G(n, d, x) and zeros of G(n, d+ k, x) is

∑
r∈Rd

∑
s∈Rd+k

|r − s|2 = 8n2 − 8n2
(d+ 1− n)(d+ k + 1− n)

(d+ n)(d+ k + n)
= 8n2

(2d+ 1 + k)(2n− 1)

(d+ 1 + k)(d+ n)
.
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We get the maximal sum when d is asymptotic to (−1 +
√

2n− 1)/2. We expect that the zeros are most

evenly spread apart on the unit circle when d = n so that the maximal sum occurs for this case. But, for

d ≤ n− 3/2, G(n, d, z) has all zeros on the unit circle when d is k − 1/2 where k is nonnegative integer. As

k increases from 0 to n − 1, 2k zeros are moving close to z = −1 with 2(n − k) zeros at z = 1 so that we

could not get the maximal sum from the case when zeros are well distributed on the unit circle.

4.2 A Family of Salem Polynomials

A self-inversive polynomial is called self-reciprocal if it has only real coefficients. Then the zeros of self-

reciprocal polynomials are symmetric with respect to the unit circle and the real line. A monic reciprocal

polynomial with integer coefficients having exactly one zero of multiplicity 1 outside the unit circle is called

a Salem polynomial [2]. Hence a Salem polynomial provides a Salem number which is a real algebraic integer

α > 1 of degree ≥ 4, all of whose conjugates, apart form α and α−1, lie on the unit circle. In this section,

we discuss a family of Salem polynomials. Consider the polynomials with increasing odd coefficients

Rn(x) =

n∑
k=0

(2k + 1)xk.

Let

Sn(x) = Rn(x2) + x2n+1Rn(1/x2).

Then Sn(x) are the self-reciprocal polynomial of degree 2n+ 1 with all odd coefficients. For example,

S6(x) = 1 + 13x+ 3x2 + 11x3 + 5x4 + 9x5 + 7x6 + 7x7 + 9x8 + 5x9 + 11x10 + 3x11 + 13x12 + x13.

Since Sn(−1)=0 for all n, replace Sn(x) by Sn(x)/(x+ 1). It is easy to show that

Sn(x) =
x2n+4 − 1 + 2(n+ 1)x(x2n+2 − 1) + (2n+ 3)x2(x2n − 1)

(x2 − 1)(x+ 1)2
(4.1)

with generating function

1− (1− x)2t− x2t2

(1− t)2(1− tx2)2
=

∞∑
n=0

Sn(x)tn.

Theorem 4.7. Sn(x) has all zeros on the unit circle except exactly two. i.e. Sn(x) is a Salem polynomial.

29



Proof. From (4.1), we can write Sn(x) as the sum of hypergeometric functions as follows:

(1 + x2)Sn(x) =
x2n+4 − 1 + 2(n+ 1)x(x2n+2 − 1) + (2n+ 3)x2(x2n − 1)

(x2 − 1)

=

n+1∑
l=0

x2l + (2n+ 2)x

n∑
l=0

x2l + (2n+ 3)x2
n−1∑
l=0

x2l

= 2F1

(
−n− 1, 1

−n− 1
;x2
)

+ (2n+ 2)x2F1

(
−n, 1
−n

;x2
)

+ (2n+ 3)x22F1

(
−n+ 1, 1

−n+ 1
;x2
)

= (1 + x)2n+2
2F1

(
−n− 1,−n− 3/2

−2n− 3
;

4x

(1 + x)2

)
+(2n+ 2)x(1 + x)2n2F1

(
−n,−n− 1/2

−2n− 1
;

4x

(1 + x)2

)
+(2n+ 3)x2(1 + x)2n−22F1

(
−n+ 1,−n+ 1/2

−2n+ 1
;

4x

(1 + x)2

)
by (2.4).

By the change of variable x 7→ x+
√
x2 − 4

2
, we have

(
x+
√
x2 − 4

2

)−n
Sn

(
x+
√
x2 − 4

2

)
= (x+ 2)n2F1

(
−n− 1,−n− 3/2

−2n− 3
;

2

1− (−x/2)

)
+(2n+ 2)(x+ 2)n−12F1

(
−n,−n− 1/2

−2n− 1
;

2

1− (−x/2)

)
+(2n+ 3)(x+ 2)n−22F1

(
−n+ 1,−n+ 1/2

−2n+ 1
;

2

1− (−x/2)

)
.

By using (2.5), (2.8), and Un(−x) = (−1)nUn(x), we can represent these hypergeometric functions as

Chebyshev polynomials of the second kind:

(x+ 2)n2F1

(
−n,−n− 1/2

−2n− 1
;

2

1− (−x/2)

)
= (−1)nUn

(
−x

2

)
= Un

(x
2

)

so that

(
x+
√
x2 − 4

2

)−n
Sn

(
x+
√
x2 − 4

2

)
=

1

x+ 2

{
Un+1

(x
2

)
+ (2n+ 2)Un

(x
2

)
+ (2n+ 3)Un−1

(x
2

)}
.

Lastly, use the recurrence relation of the Chebyshev polynomials of the second kind (2.10) to get

Sn

(
x+
√
x2 − 4

2

)
=

(
x+
√
x2 − 4

2

)n
(x2 + n+ 1)Un

(
x
2

)
+ (n+ 1)Un−1

(
x
2

)
x
2 + 1

. (4.2)
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Since (−1 + n+ 1)Un
(−2

2

)
+ (n+ 1)Un−1

(−2
2

)
= 0,

(x2 + n+ 1)Un
(
x
2

)
+ (n+ 1)Un−1

(
x
2

)
x
2 + 1

is a polynomial of degree n, and (x2 + n+ 1)Un
(
x
2

)
+ (n+ 1)Un−1

(
x
2

)
has only real roots since

(x2 + n+ 1)Un
(
x
2

)
+ (n+ 1)Un−1

(
x
2

)
x
2 + 1

= det(A− xI)

where

A =



−(2n+ 2)
√

2n+ 2 0 0 · · · 0 0
√

2n+ 2 0 −1 0 · · · 0 0

0 −1 0 −1 0

0 0 −1 0
. . .

...
...

. . .
. . .

. . .

0 0
. . . 0 −1

0 0 0 −1 0


which is real symmetric.

For x = 1 + u with u > 0 and n ≥ 2, from (2.9), we have

Un+1(1 + u) + 2(n+ 1)Un(1 + u) + (2n+ 3)Un−1(1 + u)

=

n+1∑
k=0

(2u)k
(n+ 2 + k)!

(n+ 1− k)!(2k + 1)!
+ 2(n+ 1)

n∑
k=0

(2u)k
(n+ 1 + k)!

(n− k)!(2k + 1)!

+(2n+ 3)

n−1∑
k=0

(2u)k
(n+ k)!

(n− 1− k)!(2k + 1)!
.

For 0 ≤ k ≤ n− 1, the coefficient of uk is

2k+1(n+ k)!

(n+ 1− k)!(2k + 1)!

{
k2 − n(2n+ 3)k + 2(n+ 1)3

}
> 0.

The coefficient of un is 2n+3(n+ 1) > 0 and the coefficient of un+1 is 2n+1 > 0. Hence,

Un+1(1 + u) + 2(n+ 1)Un(1 + u) + (2n+ 3)Un−1(1 + u)

has all positive coefficients. By Decartes’s rule of signs, there is no root > 1. Similarly, for x = −1− u with
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u > 0,

Un+1(−1− u) + 2(n+ 1)Un(−1− u) + (2n+ 3)Un−1(−1− u)

= (−1)n+1
n+1∑
k=0

(2u)k
(n+ 2 + k)!

(n+ 1− k)!(2k + 1)!
+ 2(n+ 1)(−1)n

n∑
k=0

(2u)k
(n+ 1 + k)!

(n− k)!(2k + 1)!

+(−1)n−1(2n+ 3)

n−1∑
k=0

(2u)k
(n+ k)!

(n− 1− k)!(2k + 1)!
.

For 0 ≤ k ≤ n− 1, the coefficient of uk is

(−1)n
2k(n+ k)!

(n+ 1− k)!(2k + 1)!

k

2n− 1

{
k − (n+ 2 +

4

2n− 1
)

}
.

The coefficient of un is 0 and the coefficient of un+1 is (−1)n+12n+1 > 0. By Decartes’s rule of signs, there

is exactly one root < −1. Therefore, Un+1(x/2) + 2(n+ 1)Un(x/2) + (2n+ 3)Un−1(x/2) has all its zeros in

the interval [−2, 2] except one. From (4.2), we can conclude that Sn(x) has all its zeros on the unit circle

except exactly two.

We found above a family of self-reciprocal polynomials of odd degree with increasing positive coefficients

a2k that have all zeros on the unit circle except two. We have the following conjecture for polynomials with

those properties.

Conjecture 4.8. Let P (x) = a0 + a1x+ a2x
2 + · · ·+ anx

n. Suppose 0 < a0 < a1 < · · · < an. Then

P (x2) + x2n+1P (1/x2) = a0 + anx+ a1x
2 + an−1x

3 + a2x
4 + · · ·+ a1x

2n−1 + anx
2n + a0x

2n+1

has all zeros on the unit circle except two.

If we consider P (x2)+x2n−NP (1/x2) for any nonnegative integer N , by Theorem 3.5 and the Eneström-

Kakeya Theorem (Theorem 3.7), we will have all zeros on the unit circle. However, for the case N = −1,

there seem to be two exceptions.

4.3 The Procedure 1 Polynomials v2n(p, x)

Consider the following example:

v8(p, x) = 1 + px+ x2 + px3 + x4 + px5 + x6 + px7 + x8.
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By studying its discriminant

∆xv8(p, x) = (5− 4p)(5 + 4p)(400 + 204p2 + 93p4 + 32p6)2,

we can see that for |p| ≤ 5/4 all its zeros are on the unit circle and for |p| > 5/4 there is exactly one pair

not on the unit circle. These root distributions are true in general for

v2n(p, x) := (1 + x2 + · · ·+ x2n) + px(1 + x2 + · · ·+ x2n−2).

Theorem 4.9. v2n(p, x) has all zeros on the unit circle for |p| ≤ n+ 1

n
and has exactly one pair not on the

unit circle for |p| > n+ 1

n
.

Proof. First, v2n(p, x) can be written as a linear combination of two successive Chebyshev polynomials of

the second kind:

v2n(p, x) = (1 + x2 + · · ·+ x2n) + px(1 + x2 + · · ·+ x2n−2)

=
x2(n+1) − 1

x2 − 1
+ px

x2n − 1

x2 − 1

= xn
(
xn+1 − x−(n+1)

x− x−1
+ p

xn − x−n

x− x−1

)
= xn

{
Un

(
1

2

(
x+

1

x

))
+ pUn−1

(
1

2

(
x+

1

x

))}
.

Let

un(p, x) = Un(x) + pUn−1(x).

Consider un(1 + x) for x > 0. By (2.9), we can analyze its coefficients:

un(p, 1 + x) =

n∑
k=0

(2x)k
(n+ k + 1)!

(n− k)!(2k + 1)!
+ p

n−1∑
k=0

(2x)k
(n+ k)!

(n− k − 1)!(2k + 1)!
.

For 0 ≤ k ≤ n− 1, the coefficient of xk is

2k(n+ k)!

(n− k)!(2k + 1)!
{(n+ k + 1) + p(n− k)}

which is positive for p > −n+ 1

n
and negative for p < −n+ 1

n
. And the coefficient of xn is 2n > 0. By

Decartes’s rule of signs, un(p, x) has no root > 1 for p ≥ −n+ 1

n
and exactly one root > 1 for p < −n+ 1

n
.

Similarly, by considering un(p,−1−x) for x > 0, we can show that un(p, x) has no root < −1 for p ≤ n+ 1

n
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and has exactly one root < −1 for p >
n+ 1

n
. Therefore, v2n(p, x) has all zeros on the unit circle for

|p| ≤ n+ 1

n
and all zeros on the unit circle except one pair for |p| > n+ 1

n
since |z| = 1 ⇐⇒ −1 ≤ x ≤ 1

when z = 1
2 (x+ 1

x ).

By Corollary 3.1 in [6], the discriminant of v2n(p, x) with respect to x is

∆x(v2n(p, x)) = (−1)n
{

(n+ 1)2 − n2p2
}
an−1(p)2,

where

an−1(p) = 2n(n−1)(−1)n
(2n+ 1)npn

(n+ 1)2 − n2p2

[
Un

(
−n+ 1 + np2

(2n+ 1)p

)
+ pUn−1

(
−n+ 1 + np2

(2n+ 1)p

)]

is an even polynomial in k of degree 2n− 2 with positive integer coefficients. By Theorem 4 in [6],

∆x(un) = 2n(n−1)an−1(p).

Hence, ∆xv2n/(∆xun)2 has only simple factors, namely

(−1)n
(n+ 1)2 − n2p2

22n(n−1)
.

Now, we consider similar properties for Chebyshev polynomials of the first kind. Let

tn(p, x) = Tn(x) + pTn−1(x).

We want to find a sequence of polynomials Qn(x) such that for

s2n(p, x) = Qn(x2) + pxQn−1(x2),

we have the following two properties:

1. All zeros of Qn(x) are on the unit circle and

2. ∆xs2n(p, x)/(∆xtn(p, x))2 has only simple factors.

Let

Qn(t) =
(t+ 1 +

√
t2 + t+ 1)n + (t+ 1−

√
t2 + t+ 1)n

2
.
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Then we can easily see that

Qn(t2) = tnTn(t+ 1/t)

with generating function
∞∑
n=0

Qn(t)xn =
1 + t− tx

1− 2(t+ 1)x+ tx2
.

From Qn(t2) = tnTn(t + 1/t), we have the first property: Qn(x) has all roots on the unit circle since

Chebyshev polynomials have all zeros on the interval [−1, 1] and −1 ≤ t+ 1/t ≤ 1⇒ |t| = 1. And we have

more information on the distribution of roots: the real parts of the roots are ≤ −1/2 since

Qn(eiθ) = einθ/2Tn(2 cos θ) = 0⇒ −1 ≤ 2 cos
θ

2
≤ 1⇒ Re(x) ≤ −1/2.

Let s2n(p, x) := Qn(x2) + pxQn−1(x2). i.e. s2n(p, x) = xntn(p, x + 1/x). We evaluate the discriminant of

tn(p, x) which is not done in either [6] or [10].

Theorem 4.10. The discriminant of tn(p, x) with respect to x is

∆x(tn(p, x)) = 2(n−1)(n−2)
pn(2n− 1)n

(1 + p)(1− p)

{
Tn

(
−p

2(n− 1) + n

p(2n− 1)

)
+ pTn−1

(
−p

2(n− 1) + n

p(2n− 1)

)}
,

and the discriminant of s2n(p, x) with respect to x is

∆x(s2n(p, x)) = (−1)ns2n(p, 1)s2n(p,−1) (∆x(tn(p, x)))
2

where

s2n(p, 1) =
1

2

[{
(2 +

√
3)n + (2−

√
3)n
}

+ p
{

(2 +
√

3)n + (2−
√

3)n
}]

and

s2n(p,−1) =
1

2

[{
(2 +

√
3)n + (2−

√
3)n
}
− p

{
(2 +

√
3)n + (2−

√
3)n
}]

.

To prove Theorem 4.10, we need some properties of resultants and discriminants. Let

f(x) = a0x
n + a1x

n−1 + · · ·+ an−1x+ an,

g(x) = b0x
m + b1x

m−1 + · · ·+ bm−1x+ bm

be two given polynomials. And suppose that the zeros of f and g are α1, · · · , αn and β1, · · · , βm, respectively.
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Then we define the resultant of f and g by

Res(f, g) = am0 b
n
0

n∏
i=1

m∏
j=1

(αi − βj).

The most important properties are

Res(f, g) = am0

n∏
i=1

g(αi), (4.3)

Res(f, g) = (−1)nmRes(g, f), (4.4)

Res(f, pq) = Res(f, p)Res(f, q) (4.5)

where p and q are polynomials, and

Res(g, f) = bn−l0 Res(g, r) (4.6)

if we can write f(x) = q(x)g(x) + r(x) with polynomials q and r, and deg r = l.

We also need the resultant of two homogeneous polynomials

F (x, y) = a0x
n + a1x

n−1y + · · ·+ an−1xy
n−1 + any

n,

G(x, y) = b0x
m + b1x

m−1y + · · ·+ bm−1xy
m−1 + bmy

m.

Then their resultant with respect to x and y, denoted by Resx,y(F,G), is defined by the Sylvester determi-

nant:

Resx,y(F,G) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f0 f1 · · · · · · fn

f0 f1 · · · · · · fn

. . .
. . .

. . .

f0 f1 · · · · · · fn

g0 g1 · · · · · · gn

g0 g1 · · · · · · gn

. . .
. . .

. . .

g0 g1 · · · · · · gn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
The basic properties are analogous to those of Res(f, g). We will use the following chain rule for resultants

of homogeneous polynomials.

Lemma 4.11 (McKay and Wang, [21]). Let F (x, y), G(x, y), H(u, v), and K(u, v) be homogeneous polyno-
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mials of degree at least 1, and suppose that degH = degK. Then

Resu,v(F (H,K), G(H,K)) = [Resx,y(F,G)]
degH

[Resu,v(H,K)]
degF degG

.

Proof of Theorem 4.10. Since the discriminant ∆xf(x) of a polynomial f =
∑
k=0 akx

k can be given in

terms of a resultant of f and f ′ by

∆xf(x) =
(−1)n(n−1)/2

an
Res(f, f ′),

begin by considering

(1− x2)
d

dx
tn(p, x) = (1− x2) {nUn−1(x) + p(n− 1)Un−2(x)}

= −{nx+ p(n− 1)} tn(p, x) +
{
p(2n− 1)x+ p2(n− 1) + n

}
Tn−1(x).

This with (4.5) and (4.6) gives

Resx

(
tn(p, x), (1− x2)

d

dx
tn(p, x)

)
= 2n−1Resx

(
tn(p, x),

{
p(2n− 1)x+ p2(n− 1) + n

}
Tn−1(x)

)
= 2n−1Resx

(
tn(p, x), p(2n− 1)x+ p2(n− 1) + n

)
Resx (tn(p, x), Tn−1(x)) . (4.7)

The first resultant on the right side above can be computed by using (4.3),

Resx
(
tn(p, x), p(2n− 1)x+ p2(n− 1) + n

)
= (−1)np(2n− 1)tn

(
p,−p

2(n− 1) + n

p(2n− 1)

)
.

In [10], Theorem 3.1 shows that

Resx(Tn(x)+kTn−1(x), Tn−1(x)+hTn−2(x)) = (−1)n(n−1)/22n
2−3n−3hn

[
Tn

(
1 + hk

2h

)
− kTn−1

(
1 + hk

2h

)]

where Tn(x) are the Chebyshev polynomials of the first kind. So, the second resultant on the right-hand

side of (4.7) is

Resx (tn(p, x), Tn−1(x)) = 2(n−1)(n−2)(−1)n(n−1)/2.
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On the other hand, we have

Resx

(
tn(p, x), (1− x2)

d

dx
tn(p, x)

)
= Resx

(
tn(p, x),

d

dx
tn(p, x)

)
Resx

(
tn(p, x), (1− x2)

)
by (4.3)

=
{

(−1)
n(n−1)

2 2n−1∆x (tn(p, x))
}{

(−1)2n(−1)2tn(p, 1)tn(p,−1)
}

= (−1)
n(n+1)

2 2n−1(1 + p)(1− p)∆x (tn(p, x)) .

Therefore,

∆x(tn(p, x)) = 2(n−1)(n−2)
pn(2n− 1)n

(1 + p)(1− p)

{
Tn

(
−p

2(n− 1) + n

p(2n− 1)

)
+ pTn−1

(
−p

2(n− 1) + n

p(2n− 1)

)}
.

For the discriminant of s2n(p, x), consider
d

dx
s2n(p, x) as before;

xs′2n(p, x) = ns2n(p, x) + xn−1
d

dx
tn (p, x+ 1/x) (x2 − 1).

From (4.5) and (4.6), we can get

Resx

(
s2n(p, x), x

d

dx
s2n(p, x)

)
= Resx

(
s2n(p, x), ns2n(p, x) + xn−1

d

dx
tn (p, x+ 1/x) (x2 − 1)

)
= Resx

(
s2n(p, x), xn−1

d

dx
tn (p, x+ 1/x) (x2 − 1)

)
= Resx

(
s2n(p, x), (x2 − 1)

)
Resx

(
s2n(p, x), xn−1

d

dx
tn (p, x+ 1/x)

)
= s2n(p, 1)s2n(p,−1)Resx

(
s2n(p, x), xn−1

d

dx
tn (p, x+ 1/x)

)
.

To examine Resx
(
s2n(p, x), xn−1 d

dx tn (p, x+ 1/x)
)
, set

f(w) := tn(w) = f0w
n + f1w

n−1 + · · ·+ fn

and

g(w) := f ′(w) = g0w
n−1 + g1w

n−2 + · · ·+ gn−1.

Then define the homogeneous functions F and G by

znf

(
z2 + 1

z

)
= f0(z2 + 1)n + f1(z2 + 1)n−1z + · · ·+ fnz

n = F (z2 + 1, z)
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and

zn−1g

(
z2 + 1

z

)
= g0(z2 + 1)n−1 + g1(z2 + 1)n−2z + · · ·+ gn−1z

n−1 = G(z2 + 1, z).

And let H(z, u) = z2 + u2 and K(z, u) = zu. Then, by Lemma 4.11, we have

Resz
(
F (z2 + 1, z), G(z2 + 1, z),

)
= Resz,u (F (H,K), G(H,K))

= [Resx,y (F (x, y), G(x, y))]
2

[Resz,u (H(z, u),K(z, u))]
n(n−1)

= [Resx (F (x, 1), G(x, 1))]
2

[Resz (H(z, 1),K(z, 1))]
n(n−1)

=
[
(−1)n2n−1∆x(tn(p, x))

]2
(−1)n(n−1)

= 22(n−1) [∆x(tn(p, x))]
2
.

On the other hand,

Resz
(
F (z2 + 1, z), G(z2 + 1, z)

)
= Resz

(
s2n(p, z), zn−1

d

dx
tn

(
p,
z2 + 1

z

))
.

Hence,

Resx

(
s2n(p, x), x

d

dx
s2n(p, x)

)
= s2n(p, 1)s2n(p,−1)22(n−1) (∆x(tn(p, x)))

2
.

Since

Resx

(
s2n(p, x), x

d

dx
s2n(p, x)

)
= Resx

(
s2n(p, x),

d

dx
s2n(p, x)

)
Resx (s2n(p, x), x)

= (−1)n2(n−1)∆x(s2n(p, x)),

we can represent the determinant of s2n(p, x) in terms of the determinant of tn(p, x):

∆x(s2n(p, x)) = (−1)ns2n(1)s2n(−1) (∆x(tn(p, x)))
2
.

Here,

s2n(p, 1) =
1

2

[{
(2 +

√
3)n + (2−

√
3)n
}

+ p
{

(2 +
√

3)n + (2−
√

3)n
}]

and

s2n(p,−1) =
1

2

[{
(2 +

√
3)n + (2−

√
3)n
}
− p

{
(2 +

√
3)n + (2−

√
3)n
}]

.

39



Chapter 5

Distance Sums for Points on the Unit
Circle

5.1 Sums for the Vertices of the Stretched N-gon

Let {p1, · · · , pN} be the vertices of a regular N -gon with center at 0, i.e. pj = ei
2πj
N for j = 1, · · · , N . Define

stretching factors {qa1 , qa2 , · · · , qaN } where q > 0 is a real number and the aj are nonnegative integers such

that a1 + a2 + · · · + aN = N . The stretched N -gon is the N -gon with vertices {qa1p1, qa2p2, · · · , qaN pN}.

This also can be considered as the q-analogue of a regular N -gon. For the stretched N -gon and λ > 0, let

Sλ(q, {aj}Nj=1) :=
∑

1≤j<k≤N

|qajpj − qakpk|λ.

We consider the question of when the smallest sums occur and when the largest sums occur in a neighborhood

of q = 1. Naturally, we can conjecture that the smallest sum occurs for {aj}Nj=1 = {1, 1, · · · , 1} and the

largest sum occurs for {aj}Nj=1 = {N, 0, · · · , 0}.

If we consider this question for the regular simplex, then we have the complete answer from the theory

of majorization. We begin with the definition of majorization and a theorem.

Definition 5.1. Let a = (aj)
m
1 and b = (bj)

m
1 be two real sequences. Let â and b̂ be these sequences,

reordered to be decreasing. If

n∑
j=1

âj ≤
n∑
j=1

b̂j , n = 1, 2, · · · ,m and

m∑
j=1

âj =

m∑
j=1

b̂j ,

then a is majorized by b. This is denoted by a ≺ b.

Theorem 5.2 (4.B.1 [20]). Let a, b ∈ Rm. The inequality

m∑
j=1

f(aj) ≤
m∑
j=1

f(bj)

holds for all continuous convex function f : R→ R if and only if a ≺ b.
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From this theorem, we have the complete answer for sums of squared distances between vertices on the

stretched regular simplex in RN .

Theorem 5.3. Let {vj}N1 be the vertices of a regular N − 1 dimensional simplex in RN where vj is the

jth row of the identity matrix IN . Consider the stretched regular simplex {qa1v1, qa2v2, · · · , qaN vN} with the

stretching parameters a ∈ RN and q ∈ R. If a ≺ b for a, b ∈ RN , then

∑
j<k

|qajvj − qakvk|2 ≤
∑
j<k

|qbjvj − qbkvk|2.

Proof. For a ∈ RN , the sum of squared distances between the vertices of a stretched regular simplex is

∑
j<k

|qajvj − qakvk|2 =
∑
j<k

(
q2aj + q2ak

)
= (N − 1)

N∑
j=1

q2aj .

Since f(x) = q2x is convex on R for q ∈ R, by Theorem 5.2,

∑
j<k

|qajvj − qakvk|2 ≤
∑
j<k

|qbjvj − qbkvk|2 if a ≺ b.

In addition, if we have
N∑
j=1

aj = N , then the stretching factor {N, 0, · · · , 0} gives the largest sum and

the stretching factor {1, 1, · · · , 1} gives the smallest sum. However, for the regular N -gon, majorization

cannot give the full answer. The main reason is lack of full symmetry in the mutual distances. The

theory of majorization is invariant under permutations. However, the sum of distances between vertices on

the stretched regular N -gon is affected by permutations of the stretching factors. Consider the following

example.

Example 5.4. Consider the vertices of the square {1, i,−1,−i} on the unit circle. Then we have the

following inequalities for the stretching factor {2, 11/10, 9/10, 0} � {2, 1, 1, 0}:

S2(q, {2, 9/10, 11/10, 0}) ≥ S2(q, {2, 1, 1, 0}) ≥ S2(q, {2, 11/10, 9/10, 0})

≥ S2(q, {2, 11/10, 0, 9/10}) ≥ S2(q, {2, 1, 0, 1}).
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The sum of squared distances S2(q, {aj}Ni ) on the stretched N -gon is

S2(q, {aj}N1 ) = N

N∑
j=1

q2aj −

∣∣∣∣∣∣
N∑
j=1

qajei
2πj
N

∣∣∣∣∣∣
2

.

The first sum can be handled with majorization theory since f(x) = q2x is convex on R. However, for the

second sum, we need to consider the permutations. If q is close to 1 and N is large, then the first sum is

much larger than the second sum. Hence, we can expect that majorization still can give the solution for

some special cases provided that the majorization is sufficiently large. We shall give specific results rather

than a quantification of majorization in this context.

Our results are as follows. In Section 5.1.1, for λ = 2, we will find the smallest and the largest sum for

some stretching factors. For example, when N = 23, we consider A0 = {1, · · · , 1}, A1 = {2, 0, 2, 0, 2, 0, 2, 0},

A2 = {22, 0, 0, 0, 22, 0, 0, 0}, and A3 = {23, 0, · · · , 0} for {aj}2
3

j=1. Then we obtain S2(q, A0) ≤ S2(q,A1) ≤

S2(q, A2) ≤ S2(q, A3). And, for a fixed {aj}Nj=1, the closer the center of mass of {qa′1p1, qa
′
2p2, · · · , qa

′
N pN}

is from the origin where {a′j} is a permutation of {aj}, the larger the sum is. From this, we have

S2(q, {4, 4, 0, · · · , 0}) ≤ S2(q, {4, 0, 4, 0, · · · , 0}) ≤ S2(q, {4, 0, 0, 4, 0, · · · , 0}) ≤ S2(q,A2). Next, we prove

that S2(q,A1) < S2(q, {4, 4, 0, · · · , 0}). Hence we can list the stretching factors in the order of larger sums.

In Section 5.1.2, we will prove that for any λ > 0, the difference between sums of any two stretching factors

{aj} and {a′j} is O((q − 1)2) as |q − 1| → 0.

5.1.1 The Sums for Some Special Stretching Factors

In this section, we will consider the case when λ is 2, i.e. S2(q, {aj}Nj=1).

Lemma 5.5. Let {aj}Nj=1 be fixed. For any permutation σ of {j}Nj=1,

S2(q, {aσ(j)}Nj=1) ≤ N
N∑
j=1

q2aj .

Also the center of mass of {qajpj}Nj=1 is at the origin, i.e.
N∑
j=1

qajpj = 0, if and only if

S2(q, {aj}Nj=1) = N

N∑
j=1

q2aj .
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Proof. Use |p− q|2 = |p|2 + |q|2 − 2〈p, q〉, where p, q ∈ R2 and 〈·, ·〉 is the inner product in R2, to get

S2(q, {aj}Nj=1) =
1

2

N∑
j=1

N∑
k=1

∣∣∣qajei 2πjN − qakei 2πkN ∣∣∣2
=

1

2

N∑
j=1

N∑
k=1

(∣∣∣qajei 2πjN ∣∣∣2 +
∣∣∣qakei 2πkN ∣∣∣2 − 2〈qajei

2πj
N , qakei

2πk
N 〉
)

= N

N∑
j=1

q2aj −
N∑
j=1

N∑
k=1

〈qajei
2πj
N , qakei

2πk
N 〉

= N

N∑
j=1

q2aj − 〈
N∑
j=1

qajei
2πj
N ,

N∑
k=1

qakei
2πk
N 〉

= N

N∑
j=1

q2aj −

∣∣∣∣∣∣
N∑
j=1

qajei
2πj
N

∣∣∣∣∣∣
2

. (5.1)

Hence, for a permutation σ,

S2(q, {aσ(j)}Nj=1) = N

N∑
j=1

q2aσ(j) −

∣∣∣∣∣∣
N∑
j=1

qaσ(j)ei
2πj
N

∣∣∣∣∣∣
2

= N

N∑
j=1

q2aj −

∣∣∣∣∣∣
N∑
j=1

qaσ(j)ei
2πj
N

∣∣∣∣∣∣
2

≤ N

N∑
j=1

q2aj .

Also the center of mass of {qajpj}Nj=1 is at the origin, i.e.
N∑
j=1

qajpj = 0, if and only if

S2(q, {aj}Nj=1) = N

N∑
j=1

q2aj . (5.2)

Let N = bn for some integer b ≥ 2. For l = 0, · · · , n, we consider the following sequences Abl = {al,j}b
n

j=1

where

al,j =


bl, if j ≡ 1 mod bl,

0, otherwise.
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Theorem 5.6. For q > 0,

S2(q, Ab0) ≤ S2(q, Ab1) ≤ S2(q, Ab2) ≤ · · · ≤ S2(q, Abn).

Proof. Since the center of mass is at the origin for l = 0, 1, · · · , n− 1, by (5.2), we have

S2(q, Abl ) = N

N∑
j=1

q2aj = N

{
N

bl
q2·b

l

+

(
N − N

bl
q2·0
)}

=
N2

bl

(
q2b

l

+ bl − 1
)
. (5.3)

And, for l = n, from (5.1),

S2(q, Abn) = (N − 1)q2N + 2qN + (N2 −N − 1).

Hence, for l = 0, · · · , n− 2, the difference between S2(q, Abl+1) and S2(q, Abl ) is

S2(q, Abl+1)− S2(q, Abl ) =
N2

bl+1

(
q2b

l+l

+ bl+1 − 1
)
− N2

bl

(
q2b

l

+ bl − 1
)

=
N2

bl+1

(
q2b

l+1

− bq2b
l

+ b− 1
)

=
N2

bl+1

(
q2b

l

− 1
)(

q2b
l(b−1) + q2b

l(b−2) + · · ·+ q2b
l

+ 1− b
)
≥ 0

and the last difference is

S2(q, Abn)− S2(q, Abn−1) = (N − 1)q2N + 4qN + 2(N2 −N − 1)− N2

bn−1

(
q2b

n−1

+ bn−1 − 1
)

= (bn − 1)q2b
n

+ 2qb
n

− bn+1q2b
n−1

+ (b− 1)bn − 1 ≥ 0.

Theorem 5.7. For l = 0, · · · , n− 2,

S2(q,Abl ) < S2(q, {aj}Nj=1)

where a1 = · · · = abn−l−1 = bl+1 and abn−l−1+1 = · · · = aN = 0.
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Proof. By Lemma 5.5 and (5.3),

S2(q, {aj}Nj=1)− S2(q,Abl )

=
N2

bl+1

(
q2b

l+1

+ bl+1 − 1
)
−

∣∣∣∣∣∣
N∑
j=1

qajei
2πj
N

∣∣∣∣∣∣
2

− N2

bl

(
q2b

l

+ bl − 1
)

=
N2

bl+1

(
q2b

l

− 1
)(

q2b
l(b−1) + q2b

l(b−2) + · · ·+ q2b
l

+ 1− b
)
−

∣∣∣∣∣∣q2bl
bn−l−1∑
j=1

ei
2πj
N +

N∑
j=bn−l−1+1

ei
2πj
N

∣∣∣∣∣∣
2

=
N2

bl+1

(
q2b

l

− 1
)(

q2b
l(b−1) + q2b

l(b−2) + · · ·+ q2b
l

+ 1− b
)
−

∣∣∣∣∣ ei
2π
N

1− ei 2πN

(
q2b

l

− 1
)(

1− ei
2π

bl+1

)∣∣∣∣∣
2

=
(
q2b

l

− 1
)2{ N2

bl+1

(
q2b

l(b−2) + 2q2b
l(b−3) + · · ·+ (b− 2)q2b

l

+ (b− 1)
)
−
(

sin π
bl+1

sin π
N

)2
}
.

Since 0 ≤ π

bl+1
≤ π

N
≤ π

2
, (

sin π
bl+1

sin π
N

)2

≤
( π
bl+1

2
N

)2

.

From this with q2b
l(b−2) + 2q2b

l(b−3) + · · ·+ (b− 2)q2b
l

+ (b− 1) ≥ b− 1 ≥ 1, it follows that

S2(q, {aj}Nj=1)− S2(q, Abl ) ≥
(
q2b

l

− 1
)2{ N2

bl+1
−
( π
bl+1

2
N

)2
}

=
(
q2b

l

− 1
)2{(N

bl

)2

−
(
π

2b

N

bl

)2
}
> 0.

Theorem 5.6 and Theorem 5.7 show that if a ≺ a′ then S2(q, a) ≤ S2(q, a′) when we consider the

stretching factors a and a′ consisting of bl or 0.

5.1.2 Sλ(q, {aj}Nj=1)− Sλ(q, {a′j}Nj=1) = O((q − 1)2)

Theorem 5.8. For any λ > 0 and any pair {aj}Nj=1 and {a′j}Nj=1 where a1+· · ·+aN = N and a′1+· · ·+a′N =

N , we have

Sλ(q, {aj}Nj=1)− Sλ(q, {a′j}Nj=1) = O((q − 1)2).
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Moreover,

Sλ(q, {aj}Nj=1)

= 2λ/2
∑

1≤j<k≤N

∣∣∣∣sin π(j − k)

N

∣∣∣∣λ +

{
λ2λ/2N

n−1∑
l=1

(
sin

πl

N

)λ}
(q − 1) +O((q − 1)2)

where the constant term and the coefficient of (q − 1) are independent of the choice of {aj}Nj=1.

To prove the theorem, we need the following proposition.

Proposition 5.9. Let f be a function and {aj}Nj=1 be a sequence. If f(−m) = f(m) and f(N −m) = f(m),

then
N∑
j=1

N∑
k=1

f(j − k)(aj + ak) = 2

N−1∑
l=0

f(l)

N∑
j=1

aj .

Proof. Here either j − k = l or j − k = l −N or j = k. Call these terms of the 1st, 2nd, and 3rd kind. The

sum over terms of the 3rd kind is clearly 2f(0)
∑N
j=1 aj . For the terms of the 1st kind, we have the summand

f(l)(ak+l + ak) where j = k + l so 1 ≤ k ≤ N − l.

For the terms of the 2nd kind, we have the summand

f(l −N)(ak+l−N + ak) where j = k + l −N so N + 1− l ≤ k ≤ N.

Since f(−m) = f(m) and f(N −m) = f(m), f(l −N) = f(N − l) = f(l) so that the terms of 1st kind are

{al+1, al+2, · · · , aN} and {a1, a2, · · · , aN−l} (5.4)

while those of the 2nd kind are

{a1, a2, · · · , al} and {aN+1−l, aN+2−l, · · · , aN}. (5.5)

Since each aj occurs exactly twice in (5.4) and (5.5), we obtain

N∑
j=1

N∑
k=1

f(j − k)(aj + ak) = 2

N−1∑
l=0

f(l)

N∑
j=1

aj .

46



Proof of Theorem 5.8. For any {aj}Nj=1, we have

Sλ(q, {aj}Nj=1) =
∑

1≤j<k≤N

|qajvj − qakvk|λ

=
∑

1≤j<k≤N

{
q2aj + q2ak − 2qaj+ak cos

2π(j − k)

N

}λ/2

so that, for q = 1, it follows that

Sλ(1, {aj}Nj=1) =
∑

1≤j<k≤N

{
2− 2 cos

2π(j − k)

N

}λ/2
= 2λ/2

∑
1≤j<k≤N

∣∣∣∣sin π(j − k)

N

∣∣∣∣λ .
Since the derivative of Sλ(1, {aj}Nj=1) with respect to q is

∂Sλ
∂q

(q, {aj}Nj=1) =
λ

2

∑
1≤j<k≤N

{
q2aj + q2ak − 2qaj+ak cos

2π(j − k)

N

}λ/2−1
×
{

2ajq
2j−1 + 2akq

2k−1 − 2(aj + ak)qaj+ak cos
2π(j − k)

N

}
,

∂Sλ
∂q

(1, {aj}Nj=1) = λ2λ/2−1
∑

1≤j<k≤N

{
1− cos

2π(j − k)

N

}λ/2
(aj + ak)

= λ2λ−2
∑

1≤j,k≤N

∣∣∣∣sin π(j − k)

N

∣∣∣∣λ (aj + ak).

If we let f(l) =
∣∣sin πl

N

∣∣λ, then it satisfies f(−l) = f(l) and f(N − l) = f(l). By Proposition 5.9, we obtain

∂Sλ
∂q

(1, {aj}Nj=1) = λ2λ−22

N−1∑
l=0

∣∣∣∣sin πlN
∣∣∣∣λ N∑
k=1

ak = λ2λ−1N

N−1∑
l=1

(
sin

πl

N

)λ
.

Hence, for any {aj}Nj=1 such that a1 + · · ·+ aN = N , the expansion of Sλ(q, {aj}Nj=1) about q = 1 is

Sλ(q, {aj}Nj=1) = 2λ/2
∑

1≤j<k≤N

∣∣∣∣sin π(j − k)

N

∣∣∣∣λ +

{
λ2λ−1N

N−1∑
l=0

(
sin

πl

N

)λ}
(q − 1) +O((q − 1)2)

and therefore, for any pair {aj}Nj=1 and {a′j}Nj=1 such that a1 + · · ·+ aN = N and a′1 + · · ·+ a′N = N ,

Sλ(q, {aj}Nj=1)− Sλ(q, {a′j}Nj=1) = O((q − 1)2).
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Remark 5.10. For λ = 2, we have the simpler expression

S2(q, {aj}Nj=1) = N2 + 2N2(q − 1) +O((q − 1)2).

for any {aj}Nj=1 where a1 + · · ·+ aN = N .

5.2 Squared Distance Sum

In [25], Stolarsky studied the sum of the distances to N points on a sphere with the following question: if

p1, · · · , pN be points on the unit sphere Sm−1, for what p ∈ Sm−1 is

N∑
j=1

|p− pj |λ, 0 < λ < 2

maximal? When is the sum minimal? By introducing the concept of uniform power maxima, he determined

the maximum or minimum for a regular m-dimensional octahedron, cube, simplex, and a regular N -gon on

the unit circle. We generalize the latter as follows. Let {pj}Nj=1 be the N vertices of a regular N -gon with

vertex charges {cj}Nj=1 on the unit circle. We will obtain the maximum of
∑N
j=1 cj |eiθ − pj |2. For a certain

set of charges, we study the minimal polynomial of the maximum value and its generating function.

5.2.1 On the Set of Charged Vertices on the Regular N-gon

Consider {p1, · · · , pN}, the vertices of a regular N -gon on the unit circle, i.e. pj = ei
2π
N j for j = 1, · · · , N .

Let cj be a charge on the pj . We define

S(N, {cj}Nj=1, e
iθ) :=

N∑
j=1

cj |eiθ − e
2πi
N j |2

to be the sum of squared distances from a point on the unit circle to charged vertices on the regular N -gon.

Then it is easy to show that

S(N, {cj}Nj=1, e
iθ) =

N∑
j=1

cj − 2 cos θ

N∑
j=1

cj cos
2π

N
j − 2 sin θ

N∑
j=1

cj sin
2π

N
j.
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By considering ∂S
∂θ = 0, we have that the maximal sum of squared distances is

M(N, {cj}Nj=1) := max
θ
S(N, {cj}Nj=1, e

iθ)

= 2

 N∑
j=1

cj +

∣∣∣∣∣∣
N∑
j=1

cje
i 2πN j

∣∣∣∣∣∣


where

sin θ = ±
∑N
j=1 cj sin 2π

N j∣∣∣∑N
j=1 cje

i 2πN j
∣∣∣ and cos θ = ±

∑N
j=1 cj cos 2π

N j∣∣∣∑N
j=1 cje

i 2πN j
∣∣∣ .

The case when N = 2n and cj = 1 for 1 ≤ j ≤ n, cj = −1 for n + 1 ≤ j ≤ 2n

In this case, it is easy to see that

N∑
j=1

cj = 0 and

N∑
j=1

cje
i 2πN j =

2i

ei
π
N sin π

N

.

Thus, the maximum squared distance sum is

M(2n, {cj}2nj=1) = 4 csc
π

2n
where θ = i

(3n+ 1)π

2n
.

If n is odd, the maximal value M(2n, {cj}2nj=1) is the root of an irreducible monic polynomial of degree

φ(n)/2 since 2 sin
(
2π kl

)
is an algebraic integer of degree φ(l)/2 or φ(l) according as l is or is not a multiple

of 4 by Lehmer’s Theorem [16]. Now, we determine the minimal polynomial of this maximal value.

Lemma 5.11. Let n = 2m+ 1 and

Pm(t) =


(−1)k4m cos((m+ 1

2 ) sec−1 t
4 )

cosm(sec−1 t
4 ) cos( 1

2 sec−1 t
4 )

, m = 2k − 1,

(−1)k4m sin((m+ 1
2 ) sec−1 t

4 )

cosm(sec−1 t
4 ) sin( 1

2 sec−1 t
4 )

, m = 2k.

then Pm

(
M(2(2m+ 1), {cj}2(2m+1)

j=1 )
)

= 0 for m ≥ 1, ∆tPm(t) = 23m(m−1)(2m+ 1)m−1, and

P (x, t) =
(1 + tx)(1− 8t− t2x2)

1 + (64− 2t2)x2 + t4x4
=

∞∑
m=0

Pm(t)xm where degPm(t) = m.

Proof. The degree of Pm(t) is m and its leading coefficient is 1. Now, consider the case when m = 2k − 1,
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k ≥ 1. For j = 0, · · · ,m− 1,

Pm

(
4 csc

4(j − k + 1) + 1

2m+ 1

π

2

)
= Pm

(
4 sec

2πj

2m+ 1

)
=

(−1)k4m cos((m+ 1
2 ) (2j+1)π

2m+1 )

cosm (2j+1)π
2m+1 cos( 1

2
(2j+1)π
2m+1 )

= 0.

Similarly, when m = 2k and k ≥ 1, Pm

(
4 csc 4(j−k)+1

2m+1
π
2

)
= 0 for j = 0, · · · ,m− 1. Therefore,

Pm(t) =

m−1∏
j=0

(
t− 4 csc

4(j − [m/2]) + 1

2m+ 1

π

2

)
.

In particular, Pm

(
M(2(2m+ 1), {cj}2(2m+1)

j=1 )
)

= Pm

(
4 csc π

2(2m+1)

)
= 0 for m ≥ 1.

Next, we compute ∆tPm(t) by using the following formula for the discriminant:

∆xf(x) =
(−1)n(n−1)/2

an
Res(f, f ′)

where the degree of f is n and an is its leading coefficient. When m is even, m = 2k, the derivatives of

Pm(t) at its roots are, for j = 1, · · · ,m,

P ′m(4 sec
2πj

2m+ 1
) =

(−1)k+j22m−3(2m+ 1)

cosm−2
(

2πj
2m+1

)
sin
(

2πj
2m+1

)
sin
(

πj
2m+1

) .
Thus, we get the discriminant of Pm(t), namely

∆tPm(t) = (−1)m(m−1)/2
m∏
j=1

P ′m

(
4 sec

2πj

2m+ 1

)
= 2m(2m−3)(2m+ 1)m−1,

by using
N−1∏
k=1

sin
πk

N
= 21−NN and

N−1∏
k=1

cos
πk

N
= 21−N sin

Nπ

N
.

Similarly, for the case when m is odd, we will obtain ∆tPm(t) = 23m(m−1)(2m+ 1)m−1.

By considering Pm(4 sec θ), we have the following recurrence relation:

Pm(t) = (2t2 − 64)Pm−2(t)− t4Pm−4(t), m ≥ 4
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with the initial conditions

P0(t) = 1, P1(t) = t− 8, P2(t) = t2 − 8t− 64, and P3(t) = t3 − 16t2 − 64t+ 512.

From this recurrence relation, we obtain the generating function of Pm(t):

P (x, t) =

∞∑
m=0

Pm(t)xm

=

3∑
m=0

Pm(t)xm +

∞∑
m=4

{
(2t2 − 64)Pm−2(t)− t4Pm−4(t)

}
xm

= (1 + tx)(1− 8x− t2x2) +
{

(2t2 − 64)x2 − t4x4
}
P (x, t).

Hence, P (x, t) =
(1 + tx)(1− 8t− t2x2)

1 + (64− 2t2)x2 + t4x4
.

By Lemma 5.11, the minimal polynomial Ψm(t) of M(2n, {cj}2(2m+1)
j=1 ) is a divisor of Pm(t). Often Pm(t)

is reducible. However, when 2m+ 1 is prime, Pm(t) is irreducible so that the minimal polynomial is Pm(t).

In fact, Pm(t) has the same factorization pattern as
t2m+1 − 1

t− 1
as follows: let

P lm(t) =

m−1∏
j=0

(j,2m+1)=l

(
t− 4 csc

4(j − [m/2]) + 1

2m+ 1

π

2

)
.

Here, all P lm(t) are irreducible since 2 sin
(

2πl
2(2m+1)

)
is an algebraic integer of degree φ ((2m+ 1)/l) /2. Then

Pm(t) =
∏

l|(2m+1)

P lm(t) and Ψm(t) = P 1
m(t).

5.2.2 With the Charged Point on the Unit Circle

We consider the sum of squared distances from a charged point to charged vertices on the regular N -gon as

follows:

S(N, {cj}Nj=1,me
iθ) :=

N∑
j=1

cj |meiθ − e
2πi
N j |2.

Then

M(N, {cj}Nj=1,m) := max
θ
S(N, {cj}Nj=1,me

iθ)

= (m2 + 1)

N∑
j=1

cj + 2m

∣∣∣∣∣∣
N∑
j=1

cje
i 2πN j

∣∣∣∣∣∣ .
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The case when N = 2n + 1 and c2n+1 = 0 , cn+1 = −1 , and cj = 1 for the other j’s

Since

N∑
j=1

cj = (2n− 2) and

N∑
j=1

cje
i 2π
2n+1 j = −2ei

π
2n+1 − 1,

we have

M(2n+ 1, {cj}2n+1
j=1 ,m) = 2(m2 + 1)(n− 1) + 2m

√
5 + 4 cos

π

2n+ 1
.

Let Ψ2n+1(x) be the minimal polynomial of 4 cos π
2n+1 . i.e.

Ψ2n+1(x) =

n∏
j=1

(j,2n+1)=1

(
x− 4 cos

jπ

2n+ 1

)
.

Then the degree of Ψ2n+1(x) is φ(2n+ 1)/2. Define

Hn(p, y) := (−p)φ(2n+1)/2Ψ2n+1(−5− y/p).

It is a polynomial of p and y, degpHn(p, y) = degyHn(p, y) = φ(2n+ 1)/2, and

Hn

(
−4m2,

(
M(2n+ 1, {cj}2n+1

j=1 ,m)− 2(m2 + 1)(n− 1)
)2)

= 0.

Finally, Hn(p, y) has positive coefficients since

Hn(p, y) = pφ(2n+1)/2
n∏
j=1

(j,2n+1)=1

(
y/p+ 5 + 4 cos

jπ

2n+ 1

)
.
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