(© 2013 Jacob S Tolar

A DIRECTORY ENHANCED NETWORK ON CHIP FOR FPGA

BY

JACOB S TOLAR

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering
in the Graduate College of the
University of Illinois at Urbana-Champaign, 2013

Urbana, Illinois

Adviser:

Associate Professor Deming Chen

ABSTRACT

This thesis presents and evaluates a directory enhanced network on chip
for FPGA, with the goal of improving the performance of cores generated
by FCUDA, a translation tool enabling CUDA code to be run on FGPAs.
NoCs are an inherently scalable platform, as aggregate system bandwidth
increases with the number of nodes in the system. This work enhances an
existing NoC to include a directory protocol capable of tracking the location
of on-chip data stored in core-local BRAMs. By tracking the location of
on-chip data, requests that would normally be satisfied by off-chip memory
can be fulfilled by on-chip sources, allowing performance gains. Simulation
results show a directory-enhanced NoC gains of up to 40% in speed over an
ordinary NoC for some applications. In addition, simulation and synthesis
results show potential for increased overall application performance over a

bus-based system, despite the significant area overhead of NoC routers.

i

ACKNOWLEDGMENTS

The completion of this thesis and my graduate work at Illinois would not have
been possible without the support and assistance of the following individuals

and groups.

[am especially grateful to my advisor, Dr. Deming Chen, for his contin-
ued support, encouragement, and guidance throughout my time as a student
in his research group. Many thanks also to former student Alexandros Pa-
pakonstantinou, who invested significant time and energy into helping my
project succeed. I would also like to thank Swathi Gurumani of ADSC and
Dr. Kyle Rupnow of NTU for their advice and suggestions on this project,
as well as Dr. Rakesh Kumar for his help and guidance during my time as a

teaching assistant.

I would like to acknowledge both Intel Corporation and the Gigascale Systems

Research Center for their generous support of this work.

Thanks to Leslie Hwang, Wenxun Huang, and Liana Nicklaus for their con-

tributions to the work presented in this thesis.

[am also indebted to the other members of Dr. Chen’s research group for
ideas, comradery, and quite a few sugary snacks. In particular, thanks to

Wei Zuo and Keith Campbell, who were occasional sounding boards for my

iii

project. Many thanks to as well as to JP, our wonderful secretary who ensures

that everything runs smoothly in our group.

Finally: T am forever grateful to my family, for helping to keep me sane; to
my friends, for helping me to enjoy my time as a graduate student; to my
girlfriend, Abby, for her constant love and encouragement; and to my Lord,

for life itself.

v

TABLE OF CONTENTS

LIST OF ABBREVIATIONS vi
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 BACKGROUND 3
21 FPGAs. o 3
2.2 High-Level Synthesis and FCUDA 5
2.3 Network-on-Chips, . 5
2.4 Coherence 7
CHAPTER 3 IMPLEMENTATION 12
3.1 Baseline Open-Source NoC 13
3.2 NoC Enhancements 14
3.3 Directory System 16
3.4 Directory Enhancements 26
3.5 Integrating FCUDA with the NoC 32
3.6 NoC Tool Flow 40
3.7 Examples 47
CHAPTER 4 EXPERIMENTAL RESULTS 53
4.1 Synthesis Results 53
4.2 Simulation Results 57
4.3 Performance Model 63
CHAPTER 5 CONCLUSION 67
5.1 Future Studies.o 68
REFERENCESo 70

LIST OF ABBREVIATIONS

ASIC Application specific integrated circuit
BRAM Block RAM

CUDA Compute Unified Device Architecture
DSP Digital signal processing

FIFO First in, first out

FPGA Field programmable gate array

GPU Graphics processing unit

HLS High-level synthesis

LUT Look-up table

NoC Network on chip

NRE Non-recurring engineering [costs]
PLD Programmable logic device

SM Streaming multiprocessor

SoC System on chip

vi

CHAPTER 1

INTRODUCTION

In the past several years, there has been a dramatic shift in computing trends
toward concurrent computation. For decades, integrated circuits scaled in
size according to Moore’s law [1], with manufacturers cramming an ever-
increasing number of ever-shrinking transistors onto a single integrated cir-
cuit. While Moore’s law continues to hold true, manufacturers have faced
significant challenges in power [2] and heat dissipation due to the breakdown

of Dennard scaling [3].

In an attempt to continue to deliver improved performance despite an in-
creasingly constrained power budget, in the last decade manufacturers have
turned to multicore processors [4], [5], [6] (which, notably, do not solve the
fundamental problem of reaching the limits of Dennard scaling [7], [8]). Un-
fortunately, multithreaded programs for multicore processors are notoriously
difficult to write [9] and require additional cost and effort when compared to

sequential programming models [10].

In light of this, new programming models have emerged in order to allow pro-
grammers to more easily exploit the performance offered by highly parallel

hardware. Nvidia’s CUDA [11], [12] provides a programming model for their

massively parallel GPUs; similarly, OpenCL [13] has emerged as a frame-
work for exploiting parallelism in heterogeneous systems. FCUDA [14] is a
design flow that enables CUDA programmers to easily exploit the inherent

parallelism of an FPGA using ordinary CUDA code.

This thesis presents an automatically generated, intrinsically scalable net-
work on chip (NoC) for FCUDA, which enables efficient point-to-point com-
munication both among cores and between cores and other devices (such as
off-chip memory). A directory system has been added to the NoC, which
allows requests for off-chip data to be fulfilled by on-chip sources if possi-
ble. The goal of this work is to improve overall application performance
in FCUDA by improving communication efficiency and enabling automatic

exploitation of data locality.

CHAPTER 2

BACKGROUND

This chapter provides some brief background on several relevant topics: FP-

GAs, FCUDA, NoCs, and coherence protocols.

2.1 FPGAs

ASICs, or application-specific integrated circuits, have long been the manu-
facturing technology of choice for custom digital hardware. With hundreds
of millions of gates, an ASIC can be designed to implement any arbitrary
design, with the benefits of low cost at very high scale. However, ASICs face
many limitations, including high NRE costs, increasing mask costs [15], and
long turnaround time and time-to-market. Additionally, ASICs are high-
risk: if a bug is found in an ASIC after fabrication, there is no recourse -

completely new devices must be fabricated and shipped to angry customers.

Field programmable gate arrays, or FPGAs, are a class of programmable logic
device (PLD) that originally became commercially viable in the mid-1980s
[16]. FPGAs overcome many of the barriers of ASIC design by enabling users

to quickly design and reconfigure hardware, without the high initial cost (in

3

terms of both man-hours and dollars) of ASIC designs. FPGAs do have some
disadvantages when compared to ASICs, such as higher unit cost at volume,
significant power/area drawbacks, and lower speed. However, they are be-
coming increasingly popular for prototyping and low-volume products due to

their advantages in turnaround time, startup cost, and reconfigurability [17].

For designers, the architecture of FPGAs forces difficult trade-offs. Certain
hardware structures in FPGAs are plentiful, while others are limited to a
significant degree. Thus, a designer must take care to take advantage of the

strengths of the FPGA platform while working around the weaknesses.

For example, FPGAs are generally over-provisioned with wire and register
resources. However, an FPGA generally has a limited number of DSP blocks
or slices [18], [19]. These hard macros have significant performance and
power advantages over equivalent circuits implemented in LUTs. However,
they are both limited in number and flexibility, and careful trade-off analysis

is required to get optimal performance.

Similarly, FPGAs contain hard memory blocks known as block rams (BRAMs)
[20], [21]. These BRAMs are significantly more efficient than synthesized
memories, but are limited in number and are inflexible: even the newest
FPGA designs from popular vendors are limited to 2-port RAMs. Expensive

custom techniques must be used to achieve greater numbers of ports [22].

2.2 High-Level Synthesis and FCUDA

High-level synthesis (HLS) is a technique for translating a high-level design
description (for example, in the C programming language) into a synthe-
sizable RTL (Verilog or VHDL) hardware description [23]. HLS aims to
improve designer productivity by increasing the abstraction level at which
the designer works [24], although this often has a significant performance

cost when compared to a manual design [25].

FCUDA [14], [26] is a design flow that enables CUDA [11] kernels to be
mapped onto FPGAs using a high-level-synthesis tool, Vivado [27] (previ-
ously AutoPilot [28]). Using FCUDA, programmers familiar with the CUDA
programming model can quickly explore a large design space and efficiently
utilize the resources of the FPGA. The output of the FCUDA flow is a set
of computation cores at the RTL level (with a core roughly performing the

role of a CUDA SM) onto which the original computation is mapped.

2.3 Network-on-Chips

Network-on-chips (e.g., see Figure 2.1), or NoCs, have become increasingly
popular in both academia and industry as transistor size has decreased. De-
signer productivity has not kept pace with the exponentially increasing num-
ber of transistors that fits on a single chip [29]. Additionally, traditional

communication architectures (such as shared buses) do not scale well as the

NI NI NI NI

R R R R
NI NI NI NI

R R R R
NI NI NI NI

R R R R
NI NI NI NI

R R R R

Figure 2.1: Sample network of 16 routers and 16 compute nodes.

number of nodes increases. A network-based fabric provides potential solu-

tions to both of these issues.

First, NoCs provide a regular, structured, on-chip communications fabric.
This means that NoCs offer potential for improved designer productivity
and design predictability [30], which is extremely important as transistor

count continues to increase.

Additionally, NoCs are inherently scalable [31], allowing multiple clients to
communicate simultaneously and with greater aggregate bandwidth than a
bus [32]. When additional nodes are added, additional network resources can

be added as well, increasing aggregate bandwidth. Shared buses, on the other

hand, scale poorly by definition, as a bus simply shares the same resource
among more devices as additional nodes are added to the design [33]. Thus,
buses are generally limited to a small number of masters until arbitration

becomes very costly [31].

NoCs offer other advantages as well. For example, NoCs have been shown to
use less power-per-bit than buses [34]. The regular structure of a NoC can
make factors like crosstalk easier to predict and design around [32]. Similar
to bus protocols such as AMBA, CoreConnect, or Wishbone, NoCs also offer
modularity by defining a standard interface with which modules may com-
municate. In industry, both Intel [35] and Tilera [36] have fabricated chips
based on NoCs.

While some of this reasoning applies specifically to ASICs, NoCs are also
attractive on FPGAs for many of the reasons previously listed, including
potential for improved productivity, greater design regularity, greater band-
width, and better scalability. Several designs have been proposed for future
hard FPGA architectures based on the NoC paradigm [37], [38]. Others have
proposed soft NoCs for current FPGA architectures [39], [40], [41], [42].

2.4 Coherence

In a multiprocessor system in which each processor has its own cache in
front of a shared memory, it is possible for several copies of the same data

to exist: for example, one copy in the main memory and one copy in each

7

local cache. When one processor changes its local copy of the data, the other
caches containing this data should eventually be updated. The process of
ensuring that all caches contain updated data is known as cache coherence,

and can be implemented in a variety of ways.

2.4.1 Snoopy coherence

In a snoopy coherence protocol [43], [44], [45], [46], a bus is shared between
all processors in the system. Each processor monitors the bus for activity in
order to update the coherence state of its local cache, as shown in Figure 2.2.
However, as with any shared bus solution, scaling problems begin to appear

as the number of processors increases.

processor processor processor processor

Figure 2.2: System using a bus-based snoopy coherence scheme.

2.4.2 Directory coherence

Directory-based cache coherence, introduced separately by Tang [47] and
Censier and Feautrier [48], is a method of ensuring coherence that does not
require snooping on a shared bus. Thus, directory coherence becomes sig-
nificantly more efficient than snoopy coherence at scale, as it communicates

using point-to-point traffic rather than a shared-bus broadcast.

The earliest directory coherence protocols are known as full-bit and consist
of extra status bits as well as per-processor presence bits for every block in
main memory (where a block is the size of a cache block). The purpose
of a directory is to track owners of a block within a system. When a read
miss occurs, data can be fetched from an owning cache on chip; writes cause
invalidations to be sent to only sharing processors. The directory can be
either centralized or distributed; if distributed, each address in the system
has a statically defined “home node” which tracks the directory information

for that address.

processor processor

directory memory directory memory

Figure 2.3: System with two nodes using full-bit directory coherence.

Full-bit directory coherence has scaling issues with large numbers of nodes, as
the storage overhead required for the directory increases with each additional
processor in the system. With enough nodes, this scheme eventually becomes

untenable: the size of the directory could exceed the total size of memory!

Several studies have shown that a write generally causes very few invalida-
tions (that is, a given block of memory is normally shared between only a
small number of nodes when a write occurs) [49], [50]. This indicates that the
full-bit directory is significantly over-provisioned (most bits in the presence
vector will be set). To reduce overhead, limited pointer directory scheme
[51] tracks only a small set of sharers per block. Instead of a bit per pro-
cessor per line, the limited pointer scheme tracks a small number of sharers
by node ID. For example, a limited pointer directory scheme may choose to
keep track of 3 sharers; in a system with 256 nodes, this means a total of 24
bits of storage required per line, as opposed to 256 bits/line for the full-bit
scheme. When the directory reaches capacity for a given cache line, there
are two basic strategies: (1) force the line to broadcast on invalidation, or
(2) invalidate a single share (eviction). Other proposals have been made that

attempt to improve on these methods [52], [53].

Other directory coherence proposals include dynamic and sparse directories.
A dynamic directory stores pointer to an entry in a pool [54] for each block in
memory, along with additional status bits. Instead of preallocating directory
space to track every block in memory - which will likely go underutilized -

a smaller amount of dynamically allocatable space is used. The goal is to
allocate less total space for the directory, while improving the utilization of

the available space (as not all blocks in memory will be present in cache all

10

the time). A sparse directory [55], [56] stores tracking data within the cache
itself. Sparse directories exploit the fact that caches are much smaller than
main memory and that directory tracking is only required for data that is

present in the cache.

11

CHAPTER 3

IMPLEMENTATION

For this work, an initial open-source packet-switched NoC for FPGA [41]
was chosen to be used as a baseline system. This NoC was first enhanced
to be more easily configurable, and a generator was written to automatically

create a mesh network.

A directory system was added to the network to enable routers to track
the location of on-chip data. The directory system can be used to improve
performance by allowing some requests to be handled on-chip rather than

off-chip.

Several enhancements were made to the directory system in order to improve
performance. These enhancements include allowing bypassing of directory
stages to improve latency, as well the ability to track outstanding memory

requests and capture duplicate requests.

Finally, a set of scripts and hardware modules were designed to enable
FCUDA cores to communicate with the NoC, as well as to aid the user

in designing a complete system.

12

3.1 Baseline Open-Source NoC

As an initial step, an open-source packet-switched NoC was chosen to be
used as an initial implementation [41]. This NoC was designed for synthesis
on FPGAs (specifically, the Xilinx Virtex IV) and was thus ideal for this

application.

This NoC uses statically generated routing tables to route packets through
the network. Given a specific router within the network, an arrival port,
and a destination, there is only a single entry in the routing table specifying
the next hop the packet should take. Critically, the next hop is actually
generated one hop ahead of time (the next hop computed in a given router

determines the output port to be chosen at the nezt router along the path).

The chosen NoC supports flow control via back-pressure status bits sent
through the network. Each router has (for example) N inputs and N outputs.
A given output port can transmit a maximum of one packet per cycle; thus, if
all N input ports attempt to communicate with the same output port, some
buffering will be required. When buffers reach a high-water point (almost
full), neighboring routers are notified to stop sending packets via a back-

pressure signal.

13

3.2 NoC Enhancements

The original open-source implementation of the NoC lacked configurability;
almost all aspects of the NoC were statically defined. Of the essential aspects

of the NoC router, only the data width of a packet was configurable.

For this work, the original NoC was enhanced to be almost entirely config-
urable via a single user-provided header file. Thus, the NoC can now be
configured with a variable data width, variable FIFO sizes, variable number
of router inputs, and more. The original implementation was limited to 32
total nodes in the system; that limitation has been removed (there is no limit

to the size of the network).

In addition, the NoC was enhanced to remove the use of Xilinx primitives
in the design. Previously, the use of vendor-specific components used meant
the design could only be used for Xilinx FPGAs. All vendor-specific portions
of the design were rewritten in generic Verilog, enabling the design to be

synthesized on other platforms.

Finally, a script is provided that produces a connected NoC from an input
network topology. In addition to setting up all connections between routers
and nodes, the script generates correct routing tables for each router, a task

that is quite painstaking to do manually.

14

3.2.1 NoC packet format

In order to support additional features at the network level, the original NoC

packet format was expanded to include several additional fields. A packet in

the system includes the fields shown in Table 3.1.

Table 3.1: Listing of all possible NoC packet types

Type | Description

sendokbit | Backpressure bit; implements congestion control
sendbit | Valid bit: set to 1 if the packet is valid
nexthop | The output port this packet should be routed to
lastbit | 1 if the packet is the last in a sequence of flits
dest | The destination node of the packet
src | The source node of the packet
type | The type of the packet (see Table 3.2
data | Data payload of the packet
addr | Memory address for data requests / responses

Each packet sent through the network specifies a packet type, indicating

the function of the packet; these packet types are listed in Table 3.2. Of

these types, only memory reads (TYPE_REQUEST) and directory updates

(TYPE_RESPONSE_ADDR) require access to the directory; all other pack-

ets pass through the directory unchanged.

Table 3.2: Listing of all possible NoC packet types

Type

Description

TYPE REQUEST
TYPE_RESPONSE_ADDR
TYPE_RESPONSE_DATA
TYPE_C_REQ
TYPE_WRITE
TYPE_OUTSTANDING

A memory read request

A directory update

A response containing requested data

A request that has been redirected to a core
A memory write

An outstanding request match (see

Section 3.4.1)

15

3.3 Directory System

The NoC provides a framework and platform on top of which services may be
provided to the system. As the goal of implementing the NoC is to improve
overall performance, several services which provide potential performance
enhancements were considered. This thesis presents a directory system added
to the NoC in order to improve memory access time. This directory protocol
is similar in spirit to the directory schemes discussed above, but has several
key distinctions. Significantly, unlike ordinary coherence schemes, the NoC

directory is not required for correctness.

Coherence is not required because this project uses cores which adhere to the
CUDA programming model [11]. CUDA programmers have no expectation
of coherence between threadblocks in the same kernel; thus, there is no need
for a coherence protocol to track multiple active sharers of data. Thus, by
implementing a simpler protocol, some key savings can be achieved over a
true coherence protocol. The implementation and protocol are described in

the following sections.

3.3.1 Directory protocol

As in a distributed directory coherence protocol, each unique address in the
system is statically assigned a home node, which is a router within the system.

The home node of an address defines which directory is used to track the state

16

of that address. For example, if a given address has a home node with ID 7,

then the directory within router 7 tracks the state of that address.

Each directory consists of a RAM (implemented by one or more BRAMs on
the FPGA) of configurable size. Each directory is similar in principle to a
direct-mapped cache. An input address is split into tag, index, and offset
fields; the resulting index maps each address in the system to a single direc-
tory index. An update to the directory simply erases the prior information

that was stored at a given index.

Each directory entry contains three fields: a tag field, a data field, and a
valid bit. As in a cache, a tag field is needed to distinguish between distinct
addresses which happen to map to the same directory index. The data field
contains the network address of the core containing a given address. The
valid bit simply indicates whether or not the entry contains valid data and

is set to 0 initially.

When a read request for a given address is made by a compute node, the
request is first routed to the home node for that address (a router). Upon
arrival at the home node, the directory is accessed using the index field of
the input address. By comparing the tag field of the input address with the
tag in the accessed directory entry, the router can determine whether or not
a copy of the data corresponding to the given address resides on chip. If the
data is on chip (there is a tag match), then the packet is redirected to the
node expected to have a copy of the data (that is, the node specified by the

directory data field). If there is no tag match, then there is no known copy

17

of the data on chip and the request is routed to the memory controller to be

fulfilled by the off-chip memory.

Cooperation from the memory controller is required in order to update the
directory. When the memory controller is ready to respond to a request with
the requested data, it is required to return two packets to the network. The
first packet, which contains the data, is routed directly to the destination
compute node. Since this packet is not necessarily routed through the home
node for the requested address, an additional packet is sent from the memory
controller directly to the home node for the requested address. This second
packet is used to update the directory to point to the on-chip location of the

data that has just arrived from memory.

Note that no invalidations or updates are ever sent based on actions that
occur at the compute nodes themselves; updates only occur when data re-
turns from the memory controller. This means that requests for missing data
could easily arrive at compute nodes. Therefore, a compute node must be
able to determine, given an input address, whether or not it contains the

data corresponding to that address.

3.3.2 Advantages vs. true coherence

The purpose of the directory system, as in a directory used in a more typi-
cal coherence scheme, is to track the location of on-chip data. In this case,

however, the data tracked is not in a cache but rather in FCUDA scratchpad

18

memories: BRAMSs local to individual FCUDA cores which serve as tem-
porary storage or as CUDA __shared__ memory blocks. These scratchpad
memories are often used as fast user-directed local caches of memory: for
example, to store a single tile of input in a tiled computation like matrix

multiplication.

Conceptually, the protocol is similar to a limited pointer scheme: sharers are
tracked by ID and only a limited number of sharers are tracked; an eviction
policy applies once the directory can track no more sharers. Savings achieved

by the simpler version of the protocol are described in detail here.

First, note that the directory system is able to completely ignore memory
writes: because CUDA cores have no notion of coherence between thread-
blocks, programmers do not expect writes to propagate from one core to an-
other. Specifically, if a CUDA program reads and writes the same memory
location from two separate threadblocks, the behavior is undefined. Mem-
ory writes can quite obviously not be ignored in a true coherence scheme;
these schemes exist solely to update or invalidate sharers in case a shared line
is written. The ability to ignore writes immediately simplifies the protocol
(no updates or invalidates are ever sent) as well as significantly reduces the

hardware cost of implementing the directory scheme.

The directory system is used solely as a means to exploit data locality: the
directory tracks data locations on chip and enables memory requests to be
satisfied from on-chip sources instead of off-chip DDR. Because the directory

is used simply as a performance optimization and not for correctness, the di-

19

rectory structures themselves can be much more flexible. Several advantages

are gained from this:

1. The system assumes that the cost any on-chip access is significantly
less than that of an off-chip access. Therefore, unlike a limited bit
directory scheme which tracks a small number of sharers and reverts
to broadcast or eviction when the directory entry is full, this scheme

tracks only a single on-chip sharer.

2. The directory size is configurable and need not cover the entire memory
space. This significantly expands the available design space by allowing
the designer to trade directory precision for total overhead of the direc-
tory system. If desired, these directories can be implemented as small

caches which only track a small portion of the total address space.

For varying numbers of nodes, Figure 3.1 shows that a large directory
for the proposed protocol (512 entries) compares quite favorably in
terms of storage requirements to both full-bit and limited-pointer tra-
ditional directory schemes. For example, note that with 256 nodes and
4 GB of addressable memory, the proposed directory scheme requires
around 122 kB of storage, while the smallest traditional scheme (dy-
namic) requires 8 MB as a [ow minimum bound (this does not include
the size of the directory entry pool). Memory resources are scarce on
the FPGA; avoiding the cost of the traditional coherence schemes is

very beneficial!

Of course, ordinary directory schemes and the proposed scheme are not

20

Total bytes to implement directory

227 : ;:::7; i —— :::E’i:::i' . Proposed scheme
226| —— — ::j::t::::i'szf — Dynamic pointer
224 : . Limited—1ptr
pesls @ Limited-2ptr

21 I @ Limited-3pur
2201 Full bit

Number of nodes

4 8 16 3 64 128 256

Figure 3.1: Log-log plot showing combined comparison graph. Proposed
scheme uses 512 entries in each directory.

truly comparable; the proposed scheme has significantly less precision.
For example, it may not be possible to track the state of all on-chip
data with the proposed scheme. However, in this system, that simply
means slightly longer request latency and does not lead to incorrect
behavior. Of course, the designer may always choose to increase the

directory size in order to improve performance.

3. Finally, in this scheme, it is not problematic for the directory to con-
tain incorrect information. This is clearly in contrast with traditional
coherence protocols using directories for the purpose of correctness.
Allowing incorrect data in the directory grants additional savings in
terms of the simplicity of the protocol. For example, no invalidations
need to be sent to update directories when data is evicted from local
core memories, reducing network traffic and preventing excess load on

the directory.

21

3.3.3 Design

The directory system was designed to be overlaid on top of the existing
NoC: the core NoC router design does not change. Instead, the (optionally
enabled) directory is integrated into a router at its input ports; thus, a packet
flows through the directory on its normal path through the network. The
directory can redirect a packet by updating the packet’s routing information

before it reaches the core of the router.

Only two types of packets may access the directory: address requests and
directory updates. Additionally, each memory address in the system has a
home directory; a given packet only accesses the directory at its home node.
Thus, a given packet will require access to at most one directory on its path

through the network.

Each router has a single directory module, shared by all input ports. The
directory is implemented as a three-stage pipeline just before each router
input; Figure 3.2 shows a simplified block diagram of the directory pipeline

for a single router port.

The first pipeline stage is for directory access. The directory—configurable
in size and implemented using BRAM resources on the FPGA—is similar
in principle to a direct-mapped cache. The directory contains three fields:
a valid bit, a tag field, and a data field. These arrays are indexed simulta-
neously using a bit field of the memory address carried in the packet. As

in a cache, the valid and tag fields are used to determine whether a given

22

A\ 4

orig_nhop

mem_nhop

new_nhop

orig_dest

S

input_pkt sy |
R reg p > reg
<
VS.
idx
> tag
v
access_dir?
reg
idx i
> valid
> nhop
idx
> data
> reg

mem_dest

-

- reg —

reg

>
>

new_dest

Q
S
>
S
S
1
>
>

reg

v
To Router

Figure 3.2: Simplified block diagram of a single directory port. Logic to

update directory not shown.

directory entry matches the address requested by the input packet. The data

field contains the directory mapping and corresponds to the system node ID

of the compute node expected to contain the requested data.

Updates to the directory also occur in the first pipeline stage; the directory

write signal is generated based on the packet type (must be

TYPE_RESPONSE_ADDR) and the packet home node (must be the current

node). When a write occurs, information previously stored at the specified

directory index is simply overwritten.

The second directory pipeline stage is used for route lookup. NoC routers

expect routing information to be generated by the previous hop; thus, in

23

order for the packet to be correctly redirected on a directory hit, the next
hop information must be generated and updated before the packet enters the

router core.

The final stage is a selection stage, seen on the far right of Figure 3.2. Based
on whether the directory had a hit or miss, and whether or not the packet ac-
tually accessed the directory, the packet destination and next hop are chosen

to be one of three possible sources:

1. The original values, if the directory was not accessed;

2. The next hop and destination address of the memory controller, if the

directory was accessed but no on-chip source was found; or

3. The next hop and destination address of the compute node expected

to contain the data.

3.3.4 Directory BRAM arbitration

The NoC directory implementation described above requires BRAMs to im-
plement the directories in each router; a directory BRAM is central to all
input ports of the router. A router generally contains 5 input ports; thus, the
directory should ideally have 5 read/write ports so that each input port can
read or write concurrently. Unfortunately, as discussed in Section 2.1, this

is simply not possible: BRAMs have a maximum of 2 ports. A workaround

24

must be implemented or the system will be unsynthesizable for existing hard-

ware.

Instead of emulating multiple-ported BRAMs [22] (a possible future direc-
tion), BRAM port access is arbitrated to multiple input ports using a simple
round-robin scheme. The router inputs are divided into two groupings; for
a five-port router, this results in one group of two ports and one group of

three. Each group is allocated a single BRAM port to share.

Within a single group, two access priorities exist: read and write. Write re-
quests are always given priority over read requests; that is, if a read request
and write request arrive simultaneously, the write request is allowed to access
the directory and the read request is dropped (note that dropping requests
does not cause incorrect results in this scheme). When two requests of equal
priority arrive at the same time, priority between the requests is determined
by a small round-robin counter. Thus, over time, each port gets approxi-
mately equal priority. This priority logic is quite complex to encode for even
a small number of ports and thus is generated by a Boolean minimizer, Bfunc

[57], not unlike the Espresso logic minimizer [58].

A simplified block diagram of this priority scheme is shown in Figure 3.3. By
partitioning the inputs into two separate sets, the arbitration logic overhead
decreases; however, it can cause arbitration to be imperfect. For example, in
a router with five ports, each port in the grouping of two has a significantly
better chance of accessing the directory in a given cycle than the ports in
the grouping of three. The arbitration is also potentially wasteful: if both

13 and 74 in Figure 3.3 require access to the directory in a given cycle while

25

none of 0, il,or 12 require access, one of the BRAM ports is wasted and a

directory action is needlessly dropped.

Arbitration Round-robin

Logic

counter

outO

outl

Round-robin
counter

Arbitration
Logic

Figure 3.3: Simplified block diagram of directory arbitration scheme for a
router with 5 NoC input ports.

3.4 Directory Enhancements

As described in Section 3.3.3, the directory system has no issues with cor-
rectness; it is used only to improve performance by exploiting read-only shar-
ing data between cores. However, the protocol adds significantly to request
latency and has no capability of capturing and redirecting outstanding re-
quests. The following sections describe methods to handle both of these

1ssues.

26

3.4.1 Merging outstanding requests

Consider a tiled matrix multiplication kernel. In this kernel, separate cores
will often make requests for the same address at very nearly the same time,

as shown in Figure 3.4.

This presents a problem: the directory system only tracks data that is cur-
rently on chip. If multiple requests for the same address occur simultaneously,
no directory hits will occur and all requests will be fulfilled by off-chip mem-
ory. To solve this problem, the directory system can be augmented to track

information about outstanding requests.

For example, when the first request for a given address is redirected to mem-
ory by its home node, the home node directory can be updated (using an extra
bit within the directory) to indicate that the given address is not presently
on chip but is expected to return from memory soon. Additional requests
for that address can be either retried shortly in the future, or enqueued to

wait for the original request to return.

Unfortunately, as discussed in Section 3.3.4, directories within the network
are significantly limited by the number of ports available on a BRAM. Thus,

extra reads and writes to the directory should be avoided if at all possible.

An alternate solution is to add additional state to routers to mimic greater

directory port count without actually requiring additional utilization of the

27

(1] @) (1)
X =
(2)
(a) Order of tile requests for core #1 of tiled matrix
multiplication.
A X B = C
(1]) (1)
X -
(2)

(b) Order of tile requests for core #2 of tiled matrix

multiplication.
Core 1 Core 2
Req A1[0] Req A1[0]
Req B1[0] Req B2[1]
Req A1[1] Req A1[1]
Req B1[1] Req B2[1]
Req A1[255] Req A1[255]
Req B1[255] Req B2[255]
/I compute // compute
Req A2[0] Req A2[0]
Req B3[0] Req B4[0]
/l pattern continues // pattern continues

(c) Timeline of requests made from the two cores, with concurrent requests for
the same data highlighted.

Figure 3.4: Tile request patterns for a sample tiled matrix multiplication
kernel. Cores #1 and #2 both request the same tile of matrix A at the
same time. Because the two cores execute concurrently, both cores request
identical addresses at very nearly the same time.

28

directory BRAMs. This state can instead be implemented with a small set

of registers, as shown in Figure 3.5.

For each input port to a router, a single register is added, used to track
outstanding requests that arrive on that port. When a request arrives at
its home node, all of the outstanding registers at that router are checked to
see if any matching requests (requests to the same address) are currently
outstanding. If there are no outstanding requests found, routing continues
as normal (directory lookup occurs, packet is redirected to either memory or
to compute node containing data). If there is an outstanding request for the
same address, the current request is immediately redirected to the compute

node where the data is expected to arrive.

. " ep | tag0_out >
tag0_in L >
Dk
OD .
@ destO_in J
d_)estO_in 5 destO_out
z out0
ort0 we | = destO_out > s
pé (@) —
S destN_out
tagN_out

Figure 3.5: Basic block diagram showing a single port of the outstanding
register scheme.

Once requests are arrive at the destination compute node, an important
issue arises: How long should the request wait for the outstanding data to
be returned? For instance, it is possible that upon arrival, the data has
already been evicted from the compute node; this would cause the request to

wait indefinitely. In a pathologically bad situation involving stale directory

29

information, two compute nodes could deadlock by waiting on each other for

the same data that neither has requested.

A simple approach is taken to solve this problem. When a packet is redirected
to wait for an outstanding request, it snoops on the input channel of the
destination for a configurable number of cycles. After reaching a maximum
wait time, the packet times out and is redirected to main memory, effectively
preventing deadlock in the system. The queueing and snooping logic at each

core is shown in Figure 3.6.

I_' cur_reg

FIFOFSM — FIFO

pkt_tag “

pkt_reg l ‘\
input_pkt)
d
08 g pran — | — o
pkt_data

. — to_NoC
idx

data_ BRAM

Figure 3.6: A simplified block diagram showing snooping and queuing at a
core for outstanding requests.

3.4.2 Directory bypassing

The latency of a NoC can be critically important to application performance.
Thus, it is important to reduce system latency as much as possible. Direc-

tories add a nontrivial delay of 3 cycles to the path of a router; incurring

30

this additional delay at every router on a path can thus significantly impact

performance.

However, packets need not always access a given router’s directory. Note,
for example, that memory read requests only need to access the directory of
the home node; no directory access is needed in other routers. Some packets
(e.g., memory writes) never access the directory system. In general, a given
packet will require access to at most one directory on its path from source

to destination.

input_pkt

re re re >

———to_router

pkt_valid 1

Figure 3.7: Directory bypassing for a single port.

Thus, by adding bypass paths for packets to skip the directory (shown in
Figure 3.7), the latency of an individual packet can be significantly improved.
A packet requires 3 cycles to pass through an uncongested router; thus, there
is potential for a 50% improvement in latency (from 6 to 3 cycles) for packets
that do not access directories. Packets which do require directory access incur

only a 3-cycle penalty at a single router.

Bypassing is quite simple to implement. Upon arrival at the router, combi-
national logic is used to determine whether or not the packet needs to access
the directory; this depends on the destination, type, and home node of the

packet. If the packet does not need to access the directory and there is no

31

valid packet at the final directory stage, the packet is immediately forwarded.
Note that the packet must also be cancelled at the input (logic not shown in

Figure 3.7) in order to avoid sending duplicate packets through the network.

3.5 Integrating FCUDA with the NoC

As stated previously, the goal of this work is to integrate this NoC with the
FCUDA compilation flow. This is much easier said than done; the cores
generated by FCUDA require several changes in order to be connected to
the NoC and make use of the directory system. As an artifact of using a
high-level synthesis tool to perform the transformation from C to RTL, the
generated cores can only implement what can be described at the C level.
However, in order to interact with the NoC, cores must be able to handle
behavior that cannot be described in synthesizable C code: specifically, the
NoC makes asynchronous requests for data that the cores must be able to
respond to. Transformations to the cores are made at the C level and external
logic is added to each core in order to make integration with the network and
directory possible. The major changes required are detailed in the following

sections.

3.5.1 Memory port combining

FCUDA cores almost always read and write memory in the course of kernel

execution. For example, in an implementation of matrix multiplication, the

32

two input matrices and single output matrix will be stored in memory. A
programmer implementing matrix multiplication in CUDA would therefore

use three pointer parameters in the device function, as seen in Figure 3.8.

void matrixMul (float * A, float * B, float * C) {
// use A, B, C to do matrix multiplication

}

Figure 3.8: Ordinary matrix multiplication kernel.

FCUDA utilizes Vivado to translate CUDA cores to synthesizable RTL. Thus,
each portion of the original C code (including function parameters) must
eventually be translated into physical hardware. Vivado can translate func-
tion parameters into several different defined interface types; for memory
ports, we choose to use the ap_bus protocol, a simple and general bus com-
munication protocol that can be trivially connected to a NoC router port.
Since Vivado implements each memory parameter as a separate ap_bus port,
a kernel with three memory parameters will require a total of three NoC ports
for every core in the system. This effectively triples the number of NoC that
must be available in the system. Unfortunately, NoC routers do not scale
well with the number of input ports per router, and get significantly more

expensive with even a single additional port.

There are two potential solutions to this problem. One solution is to build a
custom arbiter and multiplexor system that sits just outside of the FCUDA
core. This extra logic could arbitrate access from many memory ports to
a single NoC router port. Thus, to the high-level synthesis tool, the three
interfaces are separate; outside of HLS, custom hardware is implemented in

order to reduce the number of required router ports. As custom hardware

33

is generally difficult to design, debug, and maintain, a software solution is

instead chosen.

Instead of a hardware solution, a second solution is to take advantage of the
high-level synthesis tool—already used as part of the FCUDA flow—and of-
fload the work of arbitration to Vivado. A simple source-level transformation
is sufficient to combine several memory ports into one. The matrix multipli-
cation kernel shown above can trivially be transformed into the code seen in

Figure 3.9.

void matrixMul (float * memport) {

float * A = &memport [0];
float * B = &memport [4096];
float * C = &memport [8192];
// use A, B, C

Figure 3.9: Code transformed to use a single memory port.

3.5.2 Making BRAMs visible

FCUDA translates CUDA shared memory to BRAMs on the FPGA. The
directory system is built to take advantage of those BRAMs by redirecting
off-chip requests to on-chip sources: FCUDA BRAMs that cache read-only

memory.

Unfortunately, the cores generated by high-level synthesis are a black box:
there is no way to access the data structures within a core. This is expected:

it corresponds to the notion of scope in C. And indeed, in CUDA, shared

34

memory is visible only across a single threadblock, not multiple threadblocks.

An example of C code using local memories can be seen in Figure 3.10.

In addition to the problem of the FCUDA BRAMs being completely hidden
from external view, there is also the problem of asynchronous access: in order
for the directory system to work properly, the core must accept requests
at any time for its data and respond immediately. In order to model this
behavior at the C level, techniques such as interrupts or threads with shared
memory must be used; none of these constructs are synthesizable by high-

level synthesis tools.

void matrixMul (float * memport) {
float s_al[16][16]; // store one tile of A
float s_b[16][16]; // store one tile of B
// compute

}

Figure 3.10: Code using local, hidden BRAMs.

Therefore, an additional software transformation is needed. Instead of using
local BRAMs, described at the C level as local arrays, these arrays are trans-
formed into function parameters, as seen in Figure 3.11. Using the ap_mem
interface pragma, Vivado will synthesize a fast interface to these BRAMs

while allowing outside logic to also access them.

void matrixMul (float * memport, float s_al[16][16],
float s_b[16][16]) {
// compute

}

Figure 3.11: Code using external BRAMs.

35

3.5.3 Address mapping

There is a slightly more subtle issue than allowing external access to local
memories. Cores generated by Vivado do not need to keep track of a mapping
from BRAM index to memory system address; this mapping is inherent in
the structure of the program. For example, if a core copies data from off-
chip memory into a local BRAM, the exact memory contents that reside in
the local BRAM are simply a function of the state of the program; no extra
information is required to be stored in order to retrieve and/or verify this

data.

However, the NoC does require this mapping information for correct opera-
tion. The NoC directory requires two major features to be implemented by
each core: First, given an address, at what index would it be stored within
the core’s BRAM? Second, is the data within a BRAM valid for a particular
address (or does it correspond to some other address which happened to map

to the same index)?

The second issue of verification can be solved by storing a tag entry for each
data BRAM entry. When a memory request returns to the core, external
logic can store which address was requested in a small FIFO. On the next

core BRAM write, the association between BRAM index and tag is stored.

The first issue (mapping) is somewhat more difficult to solve. The mapping
of an index to address could depend on both parameters of the kernel (e.g.

number of threadblocks, threadblock dimensions, etc.) as well as the precise

36

current state of the core. For example, if a BRAM is written multiple times in
a single kernel, then it could be impossible to determine a mapping function
statically. There are two potential solutions to this problem: the mapping
can be determined using extra combinational logic, or extra memory could

be used to track the mapping.

We first consider using extra memory to track the mapping as the data
within the FCUDA BRAM changes. This solution requires an additional data
structure to track the mapping of address to index. For example, an address
bit field could be used to index into a secondary array; the secondary array
stores the index into the data array. However, using an extra BRAM to store
this mapping is not ideal: BRAMs are limited on an FPGA. Additionally,
this scheme can lose information over time: for example, if multiple addresses
map to the same ‘tag BRAM’ entry but separate data BRAM indexes, this

scheme will only be able to track the most recently update address.

For some kernels, we can instead determine a static mapping function that
can be trivially implemented in logic. This scheme is less general as it does
not work for all kernels, but is advantageous because it avoids the extra
memory cost and is able to perfectly map a memory address to a BRAM
index (with no loss of information). As an example, the mapping function

for matrix multiplication is given in Figure 3.12.

37

int get_index(int address) {
return (address % BLOCKDIM_X) + BLOCKDIM_X *
(((address) /
(BLOCKDIM_X * GRIDDIM_X)) % BLOCKDIM_Y);

Figure 3.12: Mapping function from memory address to BRAM index for
tiled matrix multiplication.

3.5.4 Decentralized control

The final transformation that must occur involves the way that FCUDA
generates multicore kernels. The output of FCUDA is a single C file, which
is eventually synthesized by HLS into a single opaque top-level module that
includes several core instantiations. These core instantiations are internal
to the top-level module and cannot be accessed. Thus, in order to connect
these cores to the NoC, they need to be split into separate files at the C
level and synthesized separately; an image showing the necessary changes is
presented in Figure 3.13. While the top-level module originally generated
by FCUDA includes centralized control (this control logic is used to map
the computation onto the separate cores), for decentralized cores the control
must be distributed - each core must have its own control, able to operate

completely independently.

This transformation can be implemented by simply generating a single C file
per core, rather than a single monolithic C file. A sample of the source-level
conversion that this transformation entails is given in Figure 3.14 (original

code) and Figure 3.15 (transformed code).

38

core in core out

(a) Centralized cores: ordinary output of FCUDA

core core core
- .

) Set of individual cores, as required by FCUDA+NoC

Figure 3.13: Cores before and after transformation.

39

// matmul.c
void matrixMul (/* args */) {

//

for(i = 0; i < gridDim.x; i += 3) {
maskl = i + 0 < gridDim.x ;
mask2 = 1 + 1 < gridDim.x ;
mask3 = 1 + 2 < gridDim.x ;

core (maskl);
core (mask2) ;
core (mask2) ;

Figure 3.14: Kernel with centralized control.

3.6 NoC Tool Flow

In order to enable improved programmer productivity, the solutions pre-
sented above have all been automated and integrated into a single cohesive
toolchain. Figure 3.16 shows the work flow for a user of the system from
CUDA code to a running simulation or synthesis. This section details the
transformations that are made and what is required of the user in order to

complete the flow.

3.6.1 CUDA code

The input to the system, as with FCUDA, is CUDA code, written to be
executed on an NVIDIA GPU. No extra annotations are required on the

part of the programmer in order to use the flow.

40

// corel.c
void matrixMul_corel (/* args */) {
for(i = 0; i < gridDim.x; i += 3) {
mask = 1 + 0 < gridDim.x ;
core (mask) ;

b
// core2.c
void matrixMul_core2(float * memport, float
s_al[16]1[16], float s_bl[16]1[16]) {
for(i = 0; i < gridDim.x; i += 3) {
mask = i + 1 < gridDim.x ;
core (mask) ;
}
}
// core3.c
void matrixMul_core3(float * memport, float
s_al[16][16], float s_bl[16][16]) {
for(i = 0; i < gridDim.x; i += 3) {
mask = 1 + 2 < gridDim.x ;
core (mask) ;

Figure 3.15: Kernel with decentralized control.

41

C level

HDL level

Figure 3.16: System flow. Orange tasks are completely automated; blue
tasks require some user intervention.

3.6.2 FCUDA

Given a few required user inputs, such as the input kernel name and the
number of cores desired, FCUDA is automatically launched and generates C

code suitable for high-level synthesis.

3.6.3 Automated code changes

In order to support communication with the NoC, several changes must be
made to the code prior to synthesis. With minimal user input, these changes
can be made automatically. For example, BRAMs are automatically con-

verted from local memories to top-level function parameters (see Section

42

3.5.2); this requires the user to specify which BRAMs need to be external-

ized.

These changes are currently made by programs external to FCUDA and were
written in this way for convenience and development speed; integrating these

changes into FCUDA itself will make the process significantly more stable.

3.6.4 Manual code changes

At this point in the flow, a small number of manual code changes are required

to be done by the user. The following changes are required at the C level:

1. The user must create the memory access pointers necessitated by com-

bining memory ports (see Section 3.5.1).

2. The user must delete existing local BRAM instantiations.

Note that once the changes mentioned in Section 3.6.3 are integrated into
the FCUDA source-to-source compiler, the manual changes listed here will

no longer be necessary; the process will flow completely automatically.

43

3.6.5 Generate cores

As discussed in Section 3.5.4, in order to connect FCUDA cores to the NoC,
the cores must be separated into independent cores rather than contained in

a single module. This transformation is done automatically.

3.6.6 Run Vivado

After cores are generated at the C level, a high-level synthesis tool, Vivado, is
automatically run, generating several RTL cores. This process is completed

with no user intervention.

3.6.7 Network configuration

Almost all parameters of the NoC are configured via a Verilog header file.
While most parameters are automatically generated, the user must provide
some key parameters in order for the system to work correctly. The user is
also required to specify the BRAM indexing function as discussed in Section

3.5.3. Finally, the user must also specify the network topology and layout.

44

3.6.8 Core wrappers

RTL-level wrappers are automatically generated for each compute core gen-
erated by Vivado. This is required in order to enable the cores to com-
municate with the NoC. Each core wrapper instantiates the required shared
BRAMSs for that core, instantiates the required network interface and arbitra-
tion hardware, and connects all these together in a single top-level module.
A high-level block diagram of a wrapper is shown in Figure 3.17; the two
critical portions are the BRAM controller (BCTRL), which allows the NoC
to access the core BRAMs, and the network interface arbiter (NARB), which
arbitrates access to the output NoC line between the core and the BCTRL

module.

3.6.9 Top-level network

The final step before simulation or synthesis is to generate a top-level net-
work. Using the user-provided topology, an entire network is generated,
including the necessary routing tables for packets to flow correctly. All com-
pute cores are connected to the network, as well as a memory controller. The
top-level module additionally includes the necessary pinouts for a connection

to off-chip DDR memory.

45

Wrapper

!

Router

Figure 3.17: High-level block diagram of single core and wrapper.

3.6.10 Simulate

The simulation flow is essentially complete and requires little user inter-
vention. A basic testbench instantiates the network and connects it to a
simulated off-chip memory. The user may specify data in order to initialize
memory; then, all necessary files are compiled automatically and the simu-

lation is launched.

46

3.6.11 Synthesis

The synthesis portion of the flow is still incomplete; as such, the process of
synthesis must be completed by the user. However, the critical portion of the
system - the NoC router and directory - has been confirmed to pass through
low-level synthesis, place and route, mapping, and timing analysis. Thus,
synthesis should be a fairly straightforward process (and, given time, can be

automated).

3.6.12 Ideal flow

Requiring user intervention in the NoC project flow is obviously not ideal;
the flow should be as automatic as possible. Given enough time, almost all
of the tasks required to be completed by the user can be automated. With
additional development on the NoC toolchain, the user will eventually only
be required to insert a small number of annotations in the original source
code, and define the BRAM indexing functions mentioned in Section 3.6.7.

All other portions of the flow can be automated.

3.7 Examples

Included here are a few walk-through examples detailing the operation of the

directory protocol.

47

3.7.1 Directory miss

Consider a small system with three compute nodes, one memory node, and
four routers. Let one node be connected to each router, and the routers be

connected in a 2x2 mesh. Such a system can be seen in Figure 3.18.

Figure 3.18: Sample network of 4 routers and 3 compute nodes, with 1
memory node

This example will walk through the sequence of events that occurs when a

request is made and the request cannot be resolved by the NoC directory.

1. Node A requests an address, say, address 0x1234. This request is trans-
lated from a Vivado HLS ap_bus request [27] to a NoC packet with an
initial destination of the home node of address 0x1234. Note that the
home node of a given address is determined statically; in this case, as-
sume the home node is determined by the bit field address[3:2], or

01 - router 1 - in this case.

48

2. The packet is placed on the output network interface of node A, where
it is accepted by one of the five network inputs of router 0. Because
the packet is destined for router 1, router 0 simply forwards the packet
to the next output port and no directory actions occur. In this case,
the eastern output port of router 0 will be chosen, placing the packet

at the input of router 1.

3. The packet arrives at router 1. The first step in routing is the directory
check; by dividing the address into index/tag fields, the directory veri-
fies whether or not the requested data is on chip. In this case, it is not
and the packet destination is changed to the memory node (node M).
The packet is then routed through router 1 and router 3 on its path to
reach M.

4. At node M (the memory controller), the request is enqueued, sent to
the off-chip memory, and data eventually returned. In order to update
the directory system and tag BRAMs, the response from the memory
controller must include the address corresponding to that data. For
this reason, a FIFO stores the memory address, along with the eventual

NoC destination port, to send the request back through the network.

5. When the data returns from off-chip memory, the memory controller
finally sends two packets in response to the network. Ome packet is
destined for the source node — the node that requested the data in
the first place. The second packet is sent to the home node for the

requested address so that the directory may be updated.

49

3.7.2 Directory hit

This example walks through the process of a directory hit.

1. As in the above example, say node A requests address 0x1234. The

initial request is sent to the home node.

2. At the home node, the directory lookup occurs as above. In this case,
the directory returns a 'hit’. Instead of being redirected to memory,
the request is instead redirected to the node containing the data corre-

sponding to address 0x1234 (as returned from the directory).

3. Say the directory specifies that node C contains the data. The packet
destination and next hop is changed to direct the packet through the

network to node C.

4. When the packet arrives at node C, the packet expects the node to
contain the data corresponding to address 0x1234. However, the data
could potentially not be at this node; it could have been very recently
overwritten, for example. Thus, a lookup involves: (1) determining
the BRAM index to look up (see Section 3.5.3) and (2) comparing the

resulting tag to the input tag.

5. If there is a tag match (hit), then the data has been found on-chip. A
response can be sent to the originating node (A) containing the data.
If there is no hit at the node, the packet is simply redirected to memory

and the request continues as in the previous example.

50

3.7.3 Outstanding array hit

This example discusses the sequence of events that occurs when two requests

for the same address are issued at nearly the same time.

1. As above, assume core A requests address 0x1234. At the same time,

core B requests the same address.

2. The request from core B arrives at the home node (router 1) first. As
described previously, each input port to the router has a correspond-
ing register which tracks outstanding requests which arrived on that
port. Because router 1 is the home node for this request, the register
corresponding to the port on which the request from core B arrived
is updated to denote an outstanding request for address 0x1234. The
request travels through the router and is eventually rerouted to the

memory node to fetch the data.

3. The request from core A arrives at home node - also router 1. When a
request arrives at its home node, the registers which track outstanding
requests are all checked for outstanding requests of the same address.
In this case, the packet sent by core B has set one of these registers to
denote that there is an outstanding request for address 0x1234. The
packet from core A is then redirected to core B; at core B, the request

snoops on the input bus until a fixed timeout is reached.

4. The memory controller sends its response to core B, containing the

data at address 0x1234. The request from core A notices this response

o1

on the NoC input to core B and uses the data in the response packet

to respond to core A.

52

CHAPTER 4

EXPERIMENTAL RESULTS

Experimental results were gathered in several ways in order to quantify the
characteristics of the NoC and directory system. First, area and frequency
results were obtained using reports from ISE 14.1, Xilinx’s synthesis tool.
Cycle-accurate simulation results were obtained using ModelSim simulations
of small systems for two benchmarks. Finally, comparisons to previous work
are calculated for a larger system using area and performance models. Bench-
marks used include tiled matrix multiplication and 1D convolution. For RTL
simulations, input sizes are limited to 48x48; in the calculated portion of the

results, the input size is significantly larger.

4.1 Synthesis Results

ISE 14.1 was used to synthesize, map, place, and route the design for a
Xilinx Virtex 7 690T FGPA, a large FPGA with 106,000 slices, 3600 DSP
blocks, and 2940 18Kb BRAMs. Because portions of the tested system are
not designed to be synthesized (in particular, the memory controller), the

main components of the system were synthesized separately.

53

10

9
8
7

Z 6

o

2

S 5
o
S
s 4
(8]

4.726 4.768 4.882 4.749

Baseline Dir Dir+0A Dir+BP

(a) Change in clock period with various directory features
enabled. Baseline has no directory.

240

200

160

120

clock frequency (MHz)

80

40

211.59
209.73 204.83 210.57

Baseline Dir Dir+0A Dir+BP

(b) Variation in frequency with directory features
enabled/disabled.

Figure 4.1: Router operating frequency and period with various features
enabled. Key: Baseline: No directories; Dir: basic directories enabled; OA:
Outstanding request tracking enabled; BP: Bypass enabled.

o4

4.1.1 Router synthesis

First, extensive results for synthesis of the NoC routers are presented. Figures
4.1a and 4.1b show the variation in clock period and frequency with various
directory parameters enabled in the synthesized router. ISE is able to exceed
the target clock period constraint of 5 ns on every design explored; there is
very little variation. When this design was synthesized for a smaller Virtex
5 FPGA, the synthesis tool had less freedom to trade area for speed; on the
Virtex 5, the router required significantly fewer slices but also had a much

lower maximum frequency.

1200

1117

1000

800

600

400

200

Baseline Dir Dir+BP Dir+0OA

Figure 4.2: Number of slices required to implement baseline router,
compared to router with directory and various enabled features.

Figure 4.2 shows the area overhead of various features for directory-based
routing for a 5-input router. The baseline shown is a NoC router with no

directory system; this router requires 493 slices. A basic directory system

95

Table 4.1: Area and Frequency results for router

System | Slices | Registers | LUTs | BRAMSs | Min. period

baseline | 493 944 1370 0 4.726 ns
dir128 | 1002 1751 2480 1 4.86 ns
dir256 | 933 1746 2464 1 4.768 ns
dirb12 | 956 1741 2483 1 4.964 ns

(256 entries), with no support for request bypassing or for handling out-
standing requests, comes at a cost of 440 additional slices, almost double the
original number of slices required. Both bypassing and tracking outstanding
requests are also expensive, costing 184 and 51 additional slices respectively.
Both additional features require a large number of muxes to be added to
the design; unfortunately, wide muxes on FPGAs require a large number of
LUTs. Not included in the slice results are the additional BRAMs required
by directory-based implementations; a 256-entry directory requires a single

BRAM, while the baseline router does not require any BRAM resources.

Finally, Table 4.1 shows variation in synthesis results as the directory size
changes; all are within 10% of each other. This is expected: increased direc-
tory size requires increased memory utilization, but the design is essentially
the same. In this case, a single BRAM is large enough even for a 512-entry

directory.

4.1.2 Core synthesis

Table 4.2 shows the area overhead for two versions of a single matrix mul-

tiplication core, again synthesized for the same Virtex 7 FPGA. The first is

56

a baseline FCUDA core with no NoC support. The second version supports
interfacing with the NoC, including the external logic required to respond
to incoming network requests. The area overhead to enable network support

for a single core is approximately 6% in terms of the number of slices.

Note that the version supporting NoC requests requires significantly more
BRAM resources than the baseline design; this is for two reasons. First,
in order to allow concurrent access to BRAMs by the core and the NoC,
dual-ported BRAMs are used to replace single-ported BRAMs in the orig-
inal design. Single-ported BRAMs could be used with a slight decrease to
performance due to arbitration. Second, the NoC-capable design is required
to track the tag of every entry in every scratchpad memory; this essentially
doubles the original BRAM requirement of the core. For this kernel on this
FPGA, the factor limiting the number of cores will be the number of slices,
not the number of BRAMs; thus, no efforts were made to decrease BRAM

utilization.

Table 4.2: Area overhead for separating FCUDA cores

Version | DSP | LUT | Registers | Slices | BRAM
Baseline | 17 3474 1774 1320 5
NoC support 17 3873 1949 1399 19
Difference | 0 11.48% 9.86% 5.98% | 280%

4.2 Simulation Results

This section presents some cycle-accurate simulation results for some small
benchmarks; it aims to show the benefit of the directory system by comparing

to a baseline NoC without directories enabled.

o7

4.2.1 Impact of directories

Figures 4.3 and 4.4 show the results of 3 and 9-core simulation runs for two
small benchmarks: 1D convolution and matrix multiplication. Each graph
shows a baseline system (NoC without directory) compared to a directory-
enabled system; results are shown for various off-chip memory latencies. In
orange, the percentage improvement of the directory-enabled system over the

non-directory system is shown.

For the 1D convolution kernel shown in Figure 4.3, the sharing pattern is
quite simple; halo data from a neighboring core is almost guaranteed to be
found on-chip. For this kernel, relative performance improves as memory
latency increases: the cost of a directory hit stays constant while the cost of

a MmMemory access increases.

Figure 4.4a shows the impact of directories on a 3-core matrix multiplica-
tion kernel; the improvement is limited (and is even slightly negative for a
5-cycle memory latency). The sharing pattern of matrix multiplication is
significantly more complex than that of 1D convolution. Thus, while a 3-
core convolution implementation saw significant improvement with directory
tracking, 3-core matrix multiplication sees little improvement—with so few
cores, there is little locality to be exploited. In contrast, Figure 4.4b shows
very significant performance improvements due to directory tracking. The
9 cores act together as a 3x3 “super-tile” and are able to share essentially

every request.

58

50

2.5x106 | Baseline mmmmm
With Directory
Percentage improvement m==m
4 40
2.0x106 |-
Q
£
o
w ©
%]
QO
£ 6 130 o
o 1.5x106 | o
£
£ o
c =
(]
S 5
& 1.0x106 L 12 %
X sl
Q a
E
B3
5.0x105 | 1 10
0.0x10° 0

5 20 50 100
memory latency (cycles)

(a) Execution time vs. memory latency: 3 core 1D convolution.

3.0x106 : 50
Baseline mmm
With Directory
Percentage improvement m==m=
2.5x106 |
4 40
Q
£
. 2.0x106 |- &
v 8
< 130 %
£ s
T 1.5x10° =
o Q
S 5
g 1208
o 1.0x106 | 5
E
2
4 10
5.0x10° -
0.0x10° 0

5 20 50 100
memory latency (cycles)

(b) Execution time vs. memory latency: 9 core 1D convolution.

Figure 4.3: Execution time vs. memory latency for 48x48 tiled 1D
convolution.

59

9.0x10° , 50

Baseline mmmmm
With Directory
8.0x106 | Percentage improvement

7.0x106
6.0x106
5.0x106

4.0x106

execution time (ns)

3.0x106

% improvement over baseline

2.0x106

1.0x106

0.0x10°

5 20 50 100
memory latency (cycles)

(a) Execution time vs. memory latency: 3 core matrix
multiplication. Note that when latency is 5, the directory
implementation is slightly slower!

8.0x10° J ‘ 50
Baseline
With Directory
7.0x106 - Percentage improvement
— {1 40
6.0x106 | T o
£
o
Y 5.0x106 |- E
= 7 130 &
Q N
E . 3
Y 4.0x10° | =
5 :
Fi 120 ¢
2 3.0x10° 5
® £
2.0x10% |- L
4 10
1.0x10% |
0.0x10° 0

5 20 50 100
memory latency (cycles)

(b) Execution time vs. memory latency: 9 core matrix
multiplication.

Figure 4.4: Execution time vs. memory latency for 48x48 tiled matrix
multiplication.

60

Table 4.3: Impact of bypassing and outstanding request tracking on
performance

kernel bypassing | outstanding requests | time
convld-3core no no 877989
convld-3core yes no 863544
convld-3core no yes 877071
convld-3core yes yes 851454
matmul-3core no no 3746578
matmul-3core yes no 3743777
matmul-3core no yes 3531429
matmul-3core yes yes 3469686

Table 4.3 describes the impact that bypassing and handling outstanding re-
quests has on the performance of the directory system. Interestingly, bypass-
ing is not particularly effective. While bypassing does decrease the latency
of individual packets, it provides little overall benefit: reaching the mem-
ory controller several cycles earlier is not helpful if there are already several

enqueued requests!

The memory access pattern significantly affects the impact of outstanding
request tracking. For example, in the convolution kernel, requests for iden-
tical addresses rarely overlap; thus, tracking outstanding requests provides
almost zero performance improvement. In contrast, in matrix multiplication,
it is common for requests for the same data to occur at the same time; thus,

tracking outstanding requests can be quite beneficial.

In order to examine the impact of tracking outstanding requests more closely,
the time a packet may spend waiting for an outstanding request to return
was made configurable. The result of sweeping the maximum timeout from
50 to 1000 cycles is shown in Figure 4.5. With 3 cores, there is relatively

little benefit to a higher timeout; cores quickly become unsynchronized and

61

outstanding requests cannot be merged. With 9 cores, there is significant
latency improvement as the timeout increases: this means that the cores
generally stay synchronized and a significant number of outstanding requests

are merged in-network.

4e+06 T T T T
matmul-3core —e—
matmul-9core —e—
3.5e+06 .M’
3e+06 e
m
£
o 2.5e+06 ¢ 4
E
S
2 2e+06 4
3
()
Q
3 3
et 1.5e+06 b
3
e
le+06 e
500000 e
0 L L I 1 L I 1 1
50 75 100 125150 300 400 500600 1000

Timeout (cycles)

Figure 4.5: Execution time vs. outstanding request timeout. X axis shown
on log scale.

Finally, Figure 4.6 shows the impact of directory size on the performance
of the convolution kernel. For the 3-core implementation, increasing the di-
rectory size beyond 32 is not beneficial; the row-wise synchronization of the
kernel means that for a 3-core system using 16x16 output tiles, only 48 ad-
dresses are relevant in the system at a given time. A 4-router NoC with
32-entry directories can track 128 total addresses, more than meeting the ca-
pacity required for optimum performance. For the 9-core system, a 128-entry
directory is the optimal size. While the directory is significantly overprovi-
sioned (1152 total entries; only 144 addresses are relevant), smaller directory

sizes lead to aliasing and loss of information about on-chip addresses.

62

Directory size has very little impact on the performance of the matrix mul-
tiplication kernel and is not shown here; most requests in this kernel are

handled by the outstanding request mechanism.

convid-3core —e—

1e406 - convld-Score —e— |

800000 :

600000 f B

400000 - B

Execution latency (ns)

200000 E

0 I L L L 1 I L L
8 16 32 64 128 256 512 1024

Directory size (entries)

Figure 4.6: Execution latency as a function of directory size for 3 and
9-core versions of the 1D convolution kernel.

4.3 Performance Model

In order to gain a more complete picture of the performance of the NoC-
based system, a performance and area model was derived from the previous
simulation and synthesis results for the matrix multiplication kernel. This

model was used to compare with results achieved by a bus-based model of

FCUDA.

A large 2048x2048 matrix multiplication computation is considered on the

Virtex 7 690T FPGA. This particular kernel is limited by slices; DSPs and

63

BRAMSs are both plentiful, as shown in Table 4.2. The computation latency
for a single tile can be derived from a simulation of a smaller system; with a

16x16 tile, the latency is 765,056 cycles.

Using the synthesis results from above and leaving a small amount of area
for a memory controller, 81 baseline FCUDA cores can fit into the 108,000

available slices on the Virtex 7 FPGA.

With a 5-input router size of 1021 slices for the Virtex 7, 55 cores can fit onto
the NoC. This assumes an arrangement of 29 routers filling the remaining
slices; routers on the edge of the mesh have either 2 or 3 available free ports;
utilizing these ports allows more slices to be allocated to computation instead

of the network.

Memory latency is modeled slightly differently for the two systems. For the
bus-based system, the total latency includes the memory latency, the latency
for reading and writing to the bus, and the delay of a memory controller.
The NoC-based model includes the memory controller and DRAM latencies

as well as the latency required to traverse the network.

The results are shown in Figure 4.7, which shows total execution time as a
function of increasing memory latency. For low memory latencies, the bus-
based solution is faster than the NoC-based solution. This is mainly due
to the overhead required for packet switching of 3 cycles per router; in this
29-node network, the cost of an average directory hit is approximately 50

cycles. For increased latencies, the NoC-based solution shows significantly

64

better performance than the bus-based solution; the crossover point is when

directory hits become cheaper than memory accesses.

Three NoC systems are shown. The orange line depicts an ideal NoC which
has a 100% directory hit rate - it never incurs the memory delay. For this
kernel, the expected directory hit rate is approximately 98% (blue): as with
the 9-tile case, the cores essentially act together as a “super-tile” of approx-
imately 7x8 regular tiles. These cores essentially remain in sync, allowing
them to achieve a significant amount of temporal locality. Finally, an NoC

with a hit rate of only 50% is shown in green.

In a sense, this is intuitive: if memory accesses are free, there is no need
to cache any data on chip; it can be found with zero latency off-chip. As
memory accesses get more expensive, it is more attractive to keep data on-
chip despite the added area cost. This inflection point occurs significantly
sooner when the NoC router latency is reduced to 2 cycles, as shown by the

purple line in Figure 4.7.

65

Execution time (cycles)

1.6e+11 .

FCUDA-bus

FCUDA-NoC-98

FCUDA-NoC-50
lde+ll - FCUDA-NoC-100 1

FCUDA-NoC-2cycle-router
1.2e+11 - -
le+11 - -
8e+10 - -
6e+10 - -
4e+10 / .
2e+10 4 -

O 1 | | | | |
0 20 40 60 80 100 120

Memory latency (cycles)

Figure 4.7: Computed comparison with bus-based system.

66

140

CHAPTER 5

CONCLUSION

This thesis developed a simplified directory protocol that is readily inte-
grated into an existing open-source Network-on-Chip. The protocol can be
used to exploit the spatial and temporal locality implicit in CUDA kernels
that exhibit read-only sharing, and can deliver improved overall application
performance via interconnected FCUDA cores on an FPGA. The wide range
of configurability of the NoC enables users to explore a large design space of
directory sizes and enhancements in order to reach the best area-performance

trade-off point.

Results show that replacing a traditional bus-based system with directory-
enhanced NoC can yield improved system performance when memory latency
is high. Network latency is critically important to this conclusion; reducing
latency at each router can yield a very significant performance benefit. In
addition, the pattern of requests can have a large impact on performance:
organizing a group of four cores into a 2x2 square rather than a 4x1 row

yields far better locality.

67

5.1 Future Studies

The Network-on-Chip presents a broad platform for potential future work.

There are several interesting avenues that have yet to be explored:

e Clustering of cores within the NoC for improved locality. Similarly,
attempt to place directories near to nodes that will access them often;
this can reduce round trip time within the network and improve overall

performance.

e Shared memory between cores. If two cores access the same data (for
example, the same tile in a tiled computation), the data can be stored
only a single time in a shared memory. Cores access the shared memory

quickly through the network via the directory.

e Additional design space exploration of the directory system. For exam-
ple, all directories in this work are direct-mapped; what effect would

associativity have on performance?

e Explore additional network hierarchies to reduce average path length.
For example, a 2D torus topology significantly reduces the cost to cross

the network.

e Cache directory information within nodes. For example, on a request,
instead of directing the request to the home node first, direct the re-

quest to the last node that data was received from.

68

e Selective directory lookup: in a large network, directory requests may

be expensive; is there a benefit to ignoring far-away directory lookups?

69

1]

REFERENCES

G. Moore, “Cramming more components onto integrated circuits,” Pro-
ceedings of the IEEFE, vol. 86, no. 1, pp. 82-85, 1998.

N. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. Hu, M. Irwin,
M. Kandemir, and V. Narayanan, “Leakage current: Moore’s law meets
static power,” Computer, vol. 36, no. 12, pp. 68-75, 2003.

R. Dennard, F. Gaensslen, V. Rideout, E. Bassous, and A. LeBlanc,
“Design of ion-implanted MOSFET’s with very small physical dimen-
sions,” Solid-State Circuits, IEEE Journal of, vol. 9, no. 5, pp. 256268,
1974.

D. Geer, “Chip makers turn to multicore processors,” Computer, vol. 38,
no. o5, pp. 11-13, 2005.

H. Sutter, “The free lunch is over: A fundamental turn toward
concurrency in software,” Mar. 2005. [Online]. Available: http:
//www.gotw.ca/publications/concurrency-ddj.htm

J. Parkhurst, J. Darringer, and B. Grundmann, “From single core to
multi-core: preparing for a new exponential,” in Proceedings of the 2006
IEEE/ACM international conference on Computer-aided design, ser.
ICCAD ’06. New York, NY, USA: ACM, 2006. [Online]. Available:
http://doi.acm.org/10.1145/1233501.1233516 pp. 67-72.

M. B. Taylor, “Is dark silicon wuseful?: harnessing the four
horsemen of the coming dark silicon apocalypse,” in Proceedings
of the 49th Annual Design Automation Conference, ser. DAC
'12. New York, NY, USA: ACM, 2012. [Online]. Available:
http://doi.acm.org/10.1145/2228360.2228567 pp. 1131-1136.

70

8]

[11]

[12]

[13]

[14]

H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in
Proceedings of the 38th annual international symposium on Computer
architecture, ser. ISCA "11. New York, NY, USA: ACM, 2011. [Online].
Available: http://doi.acm.org/10.1145/2000064.2000108 pp. 365-376.

H. Sutter and J. Larus, “Software and the concurrency revolution,”
Queue, vol. 3, no. 7, pp. 54-62, Sep. 2005. [Online]. Available:
http://doi.acm.org/10.1145/1095408.1095421

L. Hochstein, J. Carver, F. Shull, S. Asgari, V. Basili, J. K.
Hollingsworth, and M. V. Zelkowitz, “Parallel programmer productivity:
A case study of novice parallel programmers,” in Proceedings of the 2005
ACM/IEEE conference on Supercomputing, ser. SC '05. Washington,
DC, USA: IEEE Computer Society, 2005. [Online|. Available:
http://dx.doi.org/10.1109/SC.2005.53 p. 35.

NVIDIA, “CUDA C Programming Guide,” 2012. [Online]. Available:
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel
programming with CUDA,” Queue, vol. 6, no. 2, pp. 40-53, Mar. 2008.
[Online]. Available: http://doi.acm.org/10.1145/1365490.1365500

J. Stone, D. Gohara, and G. Shi, “OpenCL: A parallel programming
standard for heterogeneous computing systems,” Computing in Science
Engineering, vol. 12, no. 3, pp. 66-73, 2010.

A. Papakonstantinou, K. Gururaj, J. Stratton, D. Chen, J. Cong, and
W.-M. Hwu, “FCUDA: Enabling efficient compilation of CUDA kernels
onto FPGASs,” in Application Specific Processors, 2009. SASP '09. IEEE
Tth Symposium on, July, pp. 35—42.

P. Zuchowski, C. Reynolds, R. Grupp, S. Davis, B. Cremen, and
B. Troxel, “A hybrid ASIC and FPGA architecture,” in Computer Aided
Design, 2002. ICCAD 2002. IEEE/ACM International Conference on,
2002, pp. 187-194.

71

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

I. Kuon, R. Tessier, and J. Rose, “FPGA architecture: Survey and
challenges,” Found. Trends FElectron. Des. Autom., vol. 2, no. 2, pp.
135-253, Feb. 2008. [Online|. Available: http://dx.doi.org/10.1561/
1000000005

S. Brown and J. Rose, “FPGA and CPLD architectures: A tutorial,”
IEEE Des. Test, vol. 13, no. 2, pp. 42-57, June 1996. [Online].
Available: http://dx.doi.org/10.1109/54.500200

Xilinx Inc., “Virtex-6 FPGA DSP48E1 slice user guide,” Feb. 2011.
[Online]. Available: http://www.xilinx.com/support/documentation/
user_guides /ug369.pdf

Altera Corp., “Enabling high-performance = DSP applica-
tions with Stratix V variable-precision DSP blocks,” May
2011. [Online]. Available: http://www.altera.com/literature/wp/
wp-01131-stxv-dsp-architecture.pdf

Xilinx Inc., “7 Series FPGAs memory resources user guide,” Oct. 2012.
[Online]. Available: http://www.xilinx.com/support/documentation/
user_guides/ugd73_7Series_Memory_Resources.pdf

Altera Corp., “Internal memory (RAM and ROM) user guide,”
Nov. 2012. [Online]. Available: http://www.altera.com/literature/ug/
ug_ram_rom.pdf

C. E. LaForest and J. G. Steffan, “Efficient multi-ported memories
for FPGAs,” in Proceedings of the 18th annual ACM/SIGDA
international symposium on Field programmable gate arrays, ser.
FPGA ’10. New York, NY, USA: ACM, 2010. [Online]. Available:
http://doi.acm.org/10.1145/1723112.1723122 pp. 41-50.

M. C. McFarland, A. C. Parker, and R. Camposano, “Tutorial
on high-level synthesis,” in Proceedings of the 25th ACM/IEEE
Design Automation Conference, ser. DAC ’88. Los Alamitos, CA,
USA: IEEE Computer Society Press, 1988. [Online|. Available:
http://dl.acm.org/citation.cfm?id=285730.285784 pp. 330-336.

72

[24]

[25]

[27]

[28]

[30]

[31]

D. D. Gajski and L. Ramachandran, “Introduction to high-level
synthesis,” IEEE Des. Test, vol. 11, no. 4, pp. 44-54, Oct. 1994.
[Online]. Available: http://dx.doi.org/10.1109/54.329454

K. Rupnow, Y. Liang, Y. Li, D. Min, M. Do, and D. Chen, “High level
synthesis of stereo matching: Productivity, performance, and software
constraints,” in Field-Programmable Technology (FPT), 2011 Interna-
tional Conference on, 2011, pp. 1-8.

A. Papakonstantinou, K. Gururaj, J. A. Stratton, D. Chen, J. Cong,
and W.-M. W. Hwu, “High-performance CUDA kernel execution
on FPGASs,” in Proceedings of the 23rd international conference on
Supercomputing, ser. ICS ’09. New York, NY, USA: ACM, 2009.
[Online]. Available: http://doi.acm.org/10.1145/1542275.1542357 pp.
515-516.

Xilinx Inc., “Vivado Design Suite User Guide,” July 2012.
[Online]. Available: http://www.xilinx.com/support/documentation/
sw_manuals/xilinx2012_2 /ug902-vivado-high-level-synthesis.pdf

Z. Zhang, Y. Fan, W. Jiang, G. Han, C. Yang, and J. Cong,
“Autopilot: A platform-based ESL synthesis system,” in High-Level
Synthesis, P. Coussy and A. Morawiec, Eds. Springer Netherlands,
2008, pp. 99-112. [Online]. Available: http://dx.doi.org/10.1007/
978-1-4020-8588-8_6

A. Hemani, A. Jantsch, S. Kumar, A. Postula, J. Oberg, M. Millberg,
and D. Lindqvist, “Network on chip: An architecture for billion
transistor era,” in Proceeding of the IEEE NorChip Conference,
Nov. 2000. [Online|. Available: http://www.imit.kth.se/\~axel/papers/
2000 /norchip-noc.pdf

M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Rabaey, and
A. Sangiovanni-Vincentelli, “Addressing the system-on-a-chip intercon-

nect woes through communication-based design,” in Design Automation
Conference, 2001. Proceedings, 2001, pp. 667-672.

L. Benini and G. De Micheli, “Networks on chips: a new SoC paradigm,”
Computer, vol. 35, no. 1, pp. 70-78, 2002.

73

[32]

[33]

[35]

[38]

[39]

W. J. Dally and B. Towles, “Route packets, not wires: on-chip
inteconnection networks,” in Proceedings of the 38th annual Design
Automation Conference, ser. DAC '01. New York, NY, USA: ACM,
2001. [Online]. Available: http://doi.acm.org/10.1145/378239.379048
pp. 684-689.

P. Guerrier and A. Greiner, “A generic architecture for on-chip
packet-switched interconnections,” in Proceedings of the conference
on Design, automation and test in Furope, ser. DATE ’00.
New York, NY, USA: ACM, 2000. [Online]. Available: http:
//doi.acm.org/10.1145/343647.343776 pp. 250-256.

P. Wolkotte, G. J. M. Smit, N. Kavaldjiev, J. Becker, and J. Becker, “En-
ergy model of networks-on-chip and a bus,” in System-on-Chip, 2005.
Proceedings. 2005 International Symposium on, 2005, pp. 82-85.

S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Fi-
nan, P. Iyer, A. Singh, T. Jacob, S. Jain, S. Venkataraman, Y. Hoskote,
and N. Borkar, “An 80-tile 1.28tflops network-on-chip in 65nm cmos,” in
Solid-State Circuits Conference, 2007. ISSCC 2007. Digest of Technical
Papers. IEEFE International, 2007, pp. 98-589.

D. Wentzlaff, “Transferring data in a parallel processing environment,”
US Patent US 7461236, 12 02, 2008. [Online]. Available: http:
//www.patentlens.net/patentlens/patent /US_7461236 /en/

R. Gindin, I. Cidon, and I. Keidar, “NoC-based FPGA: Architecture and
routing,” in Networks-on-Chip, 2007. NOCS 2007. First International
Symposium on, 2007, pp. 253-264.

M. E. S. Elrabaa and A. Bouhraoua, “A hardwired NoC infrastructure
for embedded systems on FPGAs,” Microprocessors and Microsystems
- Embedded Hardware Design, vol. 35, no. 2, pp. 200-216, 2011.

T. Marescaux, A. Bartic, D. Verkest, S. Vernalde, and R. Lauwereins,
“Interconnection networks enable fine-grain dynamic multi-tasking on
FPGAs,” in Proceedings of the Reconfigurable Computing Is Going
Mainstream, 12th International Conference on Field-Programmable
Logic and Applications, ser. FPL ’02. London, UK, UK: Springer-
Verlag, 2002. [Online]. Available: http://dl.acm.org/citation.cfm?id=
647929.740058 pp. 795-805.

74

[40]

[41]

[43]

[44]

[45]

B. Sethuraman, P. Bhattacharya, J. Khan, and R. Vemuri, “LiPaR:
A light-weight parallel router for FPGA-based networks-on-chip,” in
Proceedings of the 15th ACM Great Lakes symposium on VLSI, ser.
GLSVLSI '05. New York, NY, USA: ACM, 2005. [Online]. Available:
http://doi.acm.org/10.1145/1057661.1057769 pp. 452-457.

A. Ehliar and D. Liu, “An FPGA based open source network-on-chip
architecture,” in Field Programmable Logic and Applications, 2007. FPL
2007. International Conference on, 2007, pp. 800-803.

C. Hilton and B. Nelson, “PNoC: a flexible circuit-switched NoC for
FPGA-based systems,” Computers and Digital Techniques, IEE Pro-
ceedings -, vol. 153, no. 3, pp. 181-188, 2006.

M. S. Papamarcos and J. H. Patel, “A low-overhead coherence solution
for multiprocessors with private cache memories,” in Proceedings of
the 11th annual wnternational symposium on Computer architecture,
ser. ISCA '84. New York, NY, USA: ACM, 1984. [Online]. Available:
http://doi.acm.org/10.1145/800015.808204 pp. 348-354.

R. H. Katz, S. J. Eggers, D. A. Wood, C. L. Perkins, and R. G. Sheldon,
“Implementing a cache consistency protocol,” in Proceedings of the 12th
annual international symposium on Computer architecture, ser. ISCA
'85. Los Alamitos, CA, USA: IEEE Computer Society Press, 1985.
[Online]. Available: http://dl.acm.org/citation.cfm?id=327010.327237
pp. 276-283.

L. Rudolph and Z. Segall, “Dynamic decentralized cache schemes
for MIMD parallel processors,” in Proceedings of the 11th annual
international symposium on Computer architecture, ser. ISCA
'84. New York, NY, USA: ACM, 1984. [Online]. Available:
http://doi.acm.org/10.1145/800015.808203 pp. 340-347.

J. R. Goodman, “Using cache memory to reduce processor-memory
traffic,” in Proceedings of the 10th annual international symposium on
Computer architecture, ser. ISCA ’83. New York, NY, USA: ACM,
1983. [Online]. Available: http://doi.acm.org/10.1145/800046.801647
pp. 124-131.

75

[47]

[49]

[50]

[51]

[53]

C. K. Tang, “Cache system design in the tightly coupled multiprocessor
system,” in Proceedings of the June 7-10, 1976, national computer
conference and exposition, ser. AFIPS '76. New York, NY, USA: ACM,
1976. [Online|. Available: http://doi.acm.org/10.1145/1499799.1499901
pp. 749-753.

L. Censier and P. Feautrier, “A new solution to coherence problems
in multicache systems,” Computers, IEEE Transactions on, vol. C-27,
no. 12, pp. 1112-1118, 1978.

W. Weber and A. Gupta, “Analysis of cache invalidation patterns in
multiprocessors,” in Proceedings of the third international conference
on Architectural support for programming languages and operating
systems, ser. ASPLOS III. New York, NY, USA: ACM, 1989. [Online].
Available: http://doi.acm.org/10.1145/70082.68205 pp. 243-256.

S. J. Eggers and R. H. Katz, “A characterization of sharing
in parallel programs and its application to coherency protocol
evaluation,” in Proceedings of the 15th Annual International Symposium
on Computer architecture, ser. ISCA ’88. Los Alamitos, CA,
USA: IEEE Computer Society Press, 1988. [Online]. Available:
http://dl.acm.org/citation.cfm?id=52400.52442 pp. 373-382.

A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz, “An evaluation of
directory schemes for cache coherence,” in Computer Architecture, 1988.
Conference Proceedings. 15th Annual International Symposium on, 1988,
pp- 280-289.

D. Chaiken, J. Kubiatowicz, and A. Agarwal, “Limitless directories:
A scalable cache coherence scheme,” in Proceedings of the fourth
international conference on Architectural support for programming
languages and operating systems, ser. ASPLOS IV. New York, NY,
USA: ACM, 1991. [Online]. Available: http://doi.acm.org/10.1145/
106972.106995 pp. 224-234.

A. Gupta, W. dietrich Weber, and T. Mowry, “Reducing memory
and traffic requirements for scalable directory-based cache coherence
schemes,” in International Conference on Parallel Processing, 1990, pp.
312-321.

76

[54]

[55]

R. Simoni and M. Horowitz, “Dynamic pointer allocation for scalable
cache coherence directories,” in In International Symposium on Shared
Memory Multiprocessing. IPS Press, 1991, pp. 72-81.

K. Alnaes, E. Kristiansen, D. Gustavson, and D. James, “Scalable co-
herent interface,” in CompFEuro '90. Proceedings of the 1990 IEEE In-
ternational Conference on Computer Systems and Software Engineering,
1990, pp. 446-453.

M. Thapar and B. Delagi, “Distributed-directory scheme: Stanford
distributed-directory protocol,” Computer, vol. 23, no. 6, pp. 78-80,
1990.

A. Costa, “Boolean functions simplification (logic minimization),” July
2009. [Online]. Available: http://www4.dei.isep.ipp.pt/acc/bfunc/

R. L. Rudell, “Multiple-valued logic minimization for PLA synthesis,”
EECS Department, University of California, Berkeley, Tech. Rep.
UCB/ERL MS86/65, 1986. [Online]. Available: http://www.eecs.
berkeley.edu/Pubs/TechRpts/1986/734.html

77

