
c© 2013 Babak Behzad

AUTO-TUNED OPTIMIZED PARALLEL I/O FOR GISCIENCE AND
SPATIAL APPLICATIONS

BY

BABAK BEHZAD

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2013

Urbana, Illinois

Advisers:

Professor Marc Snir
Associate Professor Shaowen Wang

ABSTRACT

Reading and writing big data is increasingly becoming a major bottleneck

of using high-performance computing systems as we are heading towards the

Exascale era. An unprecedented amount of data is being produced everyday

by different sources. On the other hand, the computation power of HPC

systems is getting scaled to hundreds of thousands cores. However, for an

application to be able to utilize this much data and computation power, using

I/O effectively is a must. One of the fields dealing with huge amount of data

is geographic information science. In this thesis, we have implemented a

parallel I/O library specialized for spatial data analysis in GIScience, capable

of treating different I/O patterns such as Row-Wise, Column-Wise and Block-

Wise I/O. We then establish an auto-tuning framework for finding optimal

parallel I/O configurations. This auto-tuning framework is based on genetic

algorithm and works on a range of configurations from the parallel file system

all the way up to spatial data-analysis applications. The results and findings

of a set of I/O intensive experiments executed on large HPC systems are also

presented to demonstrate the effectiveness of the framework.

ii

To my parents and my beloved sister, for their love and support.

iii

ACKNOWLEDGMENTS

I would like to thank my advisor professor Marc Snir for his help and sup-

port and my co-advisor professor Shaowen Wang whose help and insight in

geospatial context was vital to get this work done.

I also should thank The HDF Group and Lawrence Berkeley National

Laboratory for supporting me as a summer intern in The HDF Group in

developing a framework for Auto-tuning of parallel I/O parameters for HDF5

applications.

iv

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 OVERVIEW OF PARALLEL I/O 5
2.1 Lustre File System . 7
2.2 MPI-IO . 9
2.3 HDF and NetCDF . 10

CHAPTER 3 A PARALLEL I/O LIBRARY FOR SPATIAL DATA
ANALYSIS . 12
3.1 A Parallel I/O Library for Data-Intensive Spatial Analysis . . 12
3.2 Different Methods of Conducting Parallel I/O 13
3.3 Parameterized Methods of Conducting Parallel I/O 17

CHAPTER 4 AUTO-TUNING OF PARALLEL I/O PARAME-
TERS FOR HDF5 APPLICATIONS 19
4.1 H5Tuner . 20
4.2 Parameters Space . 21
4.3 Optimization Framework . 23

CHAPTER 5 EXPERIMENT RESULTS 25
5.1 A Simple Write Benchmark 25
5.2 Experimental Platform . 25
5.3 Results of Running GA Framework on the Write Benchmark . 26

CHAPTER 6 CONCLUSION AND SUMMARY 40

REFERENCES . 42

v

LIST OF TABLES

3.1 Values of count and start for conducting Row-Wise par-
allel I/O . 14

3.2 Values of count and start for conducting Column-Wise
Parallel I/O . 15

3.3 Values of count and start for conducting Block-Wise Par-
allel I/O . 16

3.4 Values of count and start for conducting parameterized
Row-Wise Parallel I/O . 18

3.5 Values of count and start for conducting parameterized
Column-Wise Parallel I/O . 18

4.1 A list of the tuned parameters in the search space, the
range of values, and the number of discrete values allowed.
One of the parameters with * is being auto-tuned at a time. . 22

5.1 Minimum, maximum and the converged value of the run-
ning time of our Genetic Algorithms framework for the
Write Benchmark . 26

5.2 Configuration of the top 3 I/O performance of block-based
spatial pattern . 35

vi

LIST OF FIGURES

2.1 Having a single processor responsible for I/O operations in
a parallel application, adopted from [12]. 6

2.2 Having each processor handle I/O of its own file in a par-
allel application, adopted from [12]. 6

2.3 Having each processor perform its I/O to a shared single
file in a parallel application, adopted from [12]. 7

2.4 Current I/O Stack of an application, adopted from [12]. 8

3.1 Row-wise Parallel I/O on a 2D raster dataset by n cores . . . 14
3.2 Column-wise parallel I/O on a 2D raster dataset by n cores . . 15
3.3 Block-wise parallel I/O on a 2D raster dataset by n cores . . . 16

4.1 A functional schematic of the HDF5 AutoTuning project . . . 20
4.2 An example of an H5Tuner XML configuration file 21
4.3 An example of an H5Tuner XML configuration file with

different settings for different file names 21
4.4 The design of the genetic algorithms used for this work. 24

5.1 Evolution of Running Time of pGIOLibrary write bench-
mark for a 16GB dataset on 128 processor cores 27

5.2 Sorted running time of the experiments with respect to the
evolution of number of rows written by each processor. 28

5.3 Sorted running time of the experiments with respect to the
evolution of Lustre stripe count. 29

5.4 Sorted running time of the experiments with respect to the
evolution of Lustre stripe size. 30

5.5 Application running time for the experiments sorted by the
value of the second dimension of blocks. Block-Wise write
benchmark for a 16GB dataset on 128 processor cores 32

5.6 Evolution of the value of the second dimension of blocks
with respect to the sorted running time. Block-Wise write
benchmark for a 16GB dataset on 128 processor cores 33

5.7 A configuration file for H5Tuner library in which for a vari-
able named variable 2 chunks of size 16× 8192 has been
set . 34

vii

5.8 Application running time for the experiments sorted by the
value of the second dimension of blocks. Block-Wise write
benchmark with HDF5 chunked layout for a 16GB dataset
on 128 processor cores . 35

5.9 Evolution of the value of the first dimension of blocks
with respect to the sorted running time. Block-Wise write
benchmark with HDF5 chunked layout for a 16GB dataset
on 128 processor cores . 36

5.10 Sorted running time of the experiments with respect to the
evolution of Lustre stripe count. Block-Wise write bench-
mark for a 16GB dataset on 128 processor cores 37

5.11 Sorted running time of the experiments with respect to the
evolution of Lustre stripe size. Block-Wise write bench-
mark for a 16GB dataset on 128 processor cores 38

viii

CHAPTER 1

INTRODUCTION

One of the biggest challenges scientists are facing is dealing with the huge

volume of data, often called the data deluge [1]. In addition to theory and

the experiments, computation and computer simulation has been accepted

as the third pillar of science and as the data needed for these simulations are

increasing with unprecedented rates, the fourth paradigm is being shaped:

data-intensive sciences [2]. Geographic Information Science (GIScience) is

one of the interdisciplinary fields facing big data challenges in some unique

ways.

Improvements in technology make instrumentes such as remote sensing

satellites, GPS devices, etc. generate spatial (i.e. geographically referenced)

data with higher spatial and temporal resolutions. Storing, searching, man-

aging, analyzing and sharing of big spatial data poses a significant challenge

in GIScience. An important approach to data-intensive challenges such as

those in GIScience is High Performance Computing (HPC), in particular par-

allel computing. As a general technological trend of computing architecture,

single-core and sequential computing architecture has been replaced by mul-

ticore parallel computers. Furthermore, high performance computers based

on parallel computing architecture have been increasing used for enabling

data-intensive computation for spatial analysis and modeling.

Parallel computing is a well accepted approach for solving data-intensive

scientific problems across numerous fields. Particular to parallel computing

for spatial data analysis, typically, a problem is divided into a number of

parts and each part is treated by an element within a computer will all

of the involved elements coordinated to achieve a cohesive solution to the

original problem. Spatial domain decomposition is an important strategy in

parallel computing of geographic information analysis and has been widely

employed. An important question in spatial domain decomposition is how

to determine the sizes of data partitions for efficiently matching with specific

1

computing elements. This question is especially challenging when massive

data require to be decomposed. Another challenge related to big spatial

data lies at regular and intensive workload pertaining to input and output

(I/O) of data partitions within individual computing elements and across the

elements.

As the parallelism used in the applications grows, there is no way to do

the I/O operations sequentially. As parallelism is exploited in the compu-

tation aspects of the parallel computer, there is a need for a mechanism to

support parallelism in I/O. Nowadays, parallel I/O is an unavoidable part

of modern high-performance computing (HPC), however, unfortunately cur-

rently there is a large gap between I/O technology and other components

of a supercomputer both from hardware and software perspective. This gap

is of orders of magnitude and is still growing with a rapid pace of the ad-

vancement in processor technology, which is way ahead of the advancement

in the storage and I/O technologies. The rate of producing data highlights

this gap as we can see a big mismatch between the ability to produce and

store/analyze data [3].

A unique characteristic of parallel I/O is that the software has a layered

structure often regarded as the HPC I/O stack, each components with their

own settings; This system-wide dependencies has eluded optimization across

platforms and applications and makes parallel I/O the bottleneck of the HPC

applications, especially as they become increasingly data-driven. The good

news is that various studies [4] [5] [6] have shown that dramatic improvements

are possible when each of these I/O stacks parameters are set appropriately.

However, having multiple layers in the HPC I/O stack, each with its own

optimization parameters, makes finding the optimal parameter values a very

complex problem. Additionally, optimal sets do not necessarily translate

between use cases, since tuning I/O performance can be highly dependent on

the individual application, the problem size, and the compute platform being

used. In particular, various typically encountered I/O patterns can have very

different demands on the system to achieve adequate throughput [7].

Tunable parameters are exposed primarily at three levels in the I/O stack:

the file system, middleware, and high-level data-organization layers. HPC

systems need a parallel file system, such as Lustre [8], to store data in a paral-

lelized fashion. Middleware communication layers, such as MPI-IO, support

this kind of parallel I/O and offer a variety of optimizations, such as collec-

2

tive buffering. Scientists and application developers often use HDF5 [9] and

NetCDF [10], high-level cross-platform I/O libraries that offer hierarchical

object-database representation of scientific data.

There are two approaches to effectively tune I/O parameters. One is

model-driven optimization: develop an analytical model for the process and

optimize this model for the tunable parameters. Unfortunately, this model

is a specific to each platform and the complex I/O stack makes extremely

nontrivial. The second approach is an empirical optimization technique, also

called auto-tuning. Since auto-tuning can potentially be an autonomous and

portable approach, it has been investigated as a solution to similar problems

such as compiler optimization [11]. In order to auto-tune an application, it

is necessary to match the I/O demands with high-performing configuration

sets for similar use cases. Traversing the search space of possible configura-

tions is intractably costly; the number of permutations is huge, and a test

run takes a nontrivial amount of time (sometimes on the order of minutes).

Additionally, the timing results have serious nondeterministic contributions

(e.g. bandwidth contention from other jobs), making the application of tra-

ditional optimization techniques very difficult. As such, heuristic approaches

offer an attractively simple approach, albeit one without formal guarantees

on convergence or result quality.

In order to solve the challenge of finding the optimal parameters for par-

allel I/O, this research uses auto-tuning in parallel I/O context. Addition-

ally, another novel contribution of this research deals with taming the data-

intensive nature of GIScience applications, by conducting this auto-tuning

not only on the I/O stack but at the application level, given the knowledge

about the domain of the application. We have developed a simple paral-

lel I/O library specific to data-intensive raster-based GIScience applications,

abstracting the frequent I/O access patterns of these applications, related

to the decomposition of these applications, namely Row-based parallel I/O,

Column-based parallel I/O and Block-based parallel I/O. Our auto-tuning

approach framework tunes the parameters of the parallel I/O stack as well as

determining the sizes of data partitions of each processing element conduct-

ing I/O, providing a solution for both of the challenges introduced above.

To our knowledge, there has not been any kind of auto-tuning work that

covers this much variety of space ranging from parallel file-system configu-

rations all the way up to the I/O pattern of the application. In this general

3

auto-tuning framework, based on the platform that the application is being

run on and the number of processors it is using, a genetic algorithm tries

to optimize file system properties, middle-ware settings, high-level I/O li-

brary settings and the parameters of the I/O pattern of the application. The

authors believe this framework will be very useful as we make progress in

data-intensive scientific world.

This thesis is organized as the following: Chapter 2 reviews the literature

and introduces the definitions and backgrounds needed for the rest of the

thesis. After describing the background, in chapter 4 we describe the parallel

auto-tuning framework that we have developed. 3 describes the parallel I/O

library that we have developed specifically for Geospatial applications and the

results of using the auto-tuning framework are shown in chapter 5. Finally,

we conclude our work in Chapter 6.

4

CHAPTER 2

OVERVIEW OF PARALLEL I/O

There are several ways to address I/O needs of an application. Sequential

applications use POSIX I/O, a common way of performing I/O in applica-

tions, in which files are treated as sequences of bytes [12]. POSIX I/O works

well in sequential applications in which there is only one processor reading

and writing files.

Parallel applications in which multiple processors are used, however, need

a different way of performing I/O operations as they are not able to efficiently

conduct concurrent POSIX I/O operations on a single file. Researchers have

come up with different ways of conducting parallel I/O. The most straight-

forward way is to have one processor to do the I/O after collecting (or dis-

tributing data in case of a read operation) to a single file sequentially as

shown in Figure 2.1. A problem with this approach is that a single processor

easily becomes the I/O performance bottleneck.

In order to address the scalability issue of the single-processor I/O ap-

proach, all the processors can perform their I/O independently using POSIX

I/O as shown in Figure 2.2. As every processor conducts its I/O in parallel

this approach seems to be working better than the previous approach. How-

ever, a drawback to this approach is that when we use it with a large number

of processors, handling many files becomes difficult and time-consuming. The

third approach is to use parallel I/O libraries, which means that all processors

perform I/O operations on a single shared file as shown in Figure 2.3.

As shown in Figure 2.4, parallel I/O capabilities are often organized into

multiple layers of system software and libraries. At the bottom of this I/O

stack, a parallel file system handles all the low-level activities and managing

storage devices. As opposed to common serial file systems such as NTFS

and ext2, parallel file systems are optimized to be used within a parallel

application performing parallel I/O. One of the widely used, open-source

parallel file systems is Lustre [8]. The internals of Lustre are discussed in

5

P0 P1 Pn

Pi

...

Single
File

Storage
System

Serial Data Library

Figure 2.1: Having a single processor responsible for I/O operations in a
parallel application, adopted from [12].

P0 P1 Pn...

File 0

Storage
System

I/O
Library

...File 1 File n

I/O
Library

I/O
Library...

Figure 2.2: Having each processor handle I/O of its own file in a parallel
application, adopted from [12].

6

P0 P1 Pn...

Single File

Storage
System

Parallel Data Library

Figure 2.3: Having each processor perform its I/O to a shared single file in
a parallel application, adopted from [12].

section 2.1. In the middle layer, I/O middleware is in charge of the interface

between groups of processes and the file system. MPI-IO is widely used as

I/O middleware that is provided in the MPI programming model. A brief

description of MPI-IO is in section 2.2. Using MPI-IO is not trivial and

getting high I/O performance out of it requires expertise. Therefore, it is

common to use higher-level I/O libraries on top of the middleware layer.

The data model that these high-level I/O libraries provide often match well

with the application-level data models. As examples, HDF and NetCDF

high-level libraries are discussed in section 2.3.

2.1 Lustre File System

Parallel file systems provide high-speed concurrent file access to more than

one node of a computer cluster. The state-of-the art parallel file systems

including Lustre [8] and GPFS [13] are scalable to thousands of nodes con-

necting to peta-byte storages with very high throughput. In order to come

7

Figure 2.4: Current I/O Stack of an application, adopted from [12].

up with an efficient parallel I/O library, one needs to understand the details

of the underlying file system, its components, the concepts and how to set

their settings. Since Lustre is an open source file system and is being widely

used, we are going to concentrate on its design and parameters in this thesis.

2.1.1 Lustre File System Components

The Lustre file system has two important components. It divides data oper-

ations into the Object and Metdata operations. Object operations deal with

the data itself and the Metadata operations deal with the metadata (i.e file-

names, directories, permissions, etc.). For the Object operations, there are

two components: Object Storage Servers (OSSs) which are the I/O servers

and the Object Storage Targets (OSTs) which are the storage devices. File

metadata is controlled by a Metadata Server (MDS) and stored on Metadata

Target (MDT). This separation of operations is one of the key feature of

Lustre’s scalability.

Being able to stripe the files is another important feature of the Lustre file

system which basically means dividing a single file across multiple disks by

separating its sequence of bytes into chunks. The reason to do this is to have

the read and write operations done in parallel by accessing multiple OSTs

increasing the available I/O bandwidth. Also, file striping makes available

space for very large files, which can not be fit into a single OST. In order to

do file striping, Lustre defines two parameters as follows:

• Stripe count: The number of OSTs that the file is striped on.

8

• Stripe size: The number of bytes written in each stripe

2.2 MPI-IO

The MPI-2 standard provides a parallel I/O interface with the portability

goal. ROMIO [14] is the major implementation of MPI-IO and is distributed

through different MPI libraries. However, since the MPI-IO interface is hard

to use, higher level libraries are developed on top of it such as NetCDF and

HDF5.

Similar to sequential I/O, before the I/O operations, programmers have to

either open(an existing file) or create a file in MPI-IO using MPI File Open()

or MPI File create() function calls. These function calls have different

arguments that one has to pass to them, but we are not going to get into

those details here. Gropp et al. [15] has the full description of how to use

MPI-IO interface. At the end of the I/O operations, programmers should

close the file by using MPI File close() function call of the MPI interface.

MPI-IO has an important concept named file view, which is used to de-

termine the section of the file accessible processors [15]. File views should

be set by the programmer using MPI file set vew() function. If the file

view is not set by the programmer, the whole file will be accessed by the

processors [12]. MPI file set vew() has several arguments including one

to specify the unit of data in the file called etype. It also includes filetype

as an argument, a MPI derived datatype or a basic datatype used by the

programmer to assign each part of the file to each processors doing the I/O.

Once the file view is set, programmer may use different read and write

functions such as MPI File read() and its variants and MPI File write()

and its variants.

ROMIO has implemented a couple of optimizations which have made

parallel I/O much more efficient. Parallel I/O can be of two general types:

(1) Independent I/O operations in which MPI-IO user specifies what each of

the processors should do. (2) Collective I/O which is like a more coordinated

way of doing I/O by a subset of processors. [16]. One of the algorithms

that we are going to tune its parameters later in this thesis is the collective

buffering algorithm implemented in the MPI-IO library. Collective buffering

is an optimization for I/O, in which instead of having all the processors to

9

do the I/O, a subset of them perform the I/O operations. This is an effort

to combine I/O requests of all the processors into a subset of I/O requests.

The processors in this subset are called aggregators [12]. The reason of doing

this mainly is to reduce the pressure on the I/O subsystem by having smaller

number of nodes doing the I/O operations. Note that the data exchange

between the nodes that are conducting I/O and the ones that are requesting

them are done by MPI communication.

2.3 HDF and NetCDF

NetCDF(Network Common Data Form), developed by the Unidata program

at the University Corporation for Atmospheric Research (UCAR). It provides

a set of libraries for creating, reading and writing a machine-independent data

format for scientific data having structured datasets, which are basically set

of multidimensional arrays. It is used by a variety of sciences and since

2009, the Open Geospatial Consortium(OGC) has standardized the NetCDF

format as an open standard. The goal of this standardization effort is to have

the NetCDF with CF (Climate and Forecast) conventions recognized as an

international standard for encoding georeferenced data in binary form.

Before getting into the details of the georeferenced data in NetCDF, an

introduction to NetCDF is required. NetCDF format has three main com-

ponents namely, dimensions, variables and attributes. It is made up of two

parts: file header and the data. File header contains the metadata informa-

tion about the dimension, attributes and variables, whereas the data section

contains the value of each variable. A dimension has a name and a length

and variables are based on them. For instance, latitude and longitude can

be two dimensions of a georeferenced data, containing the dimensions of the

grid. Variables are for storing data and look like multidimensional arrays.

As stated earlier, a variable is defined by a list of dimensions. Therefore, a

variable has a name, the type of the data stored in that variable and a list

of dimensions. Last but not least, attributes are used to store information

about the variables.

At around 2005, Unidata released NetCDF-4 which uses HDF5 in order

to have more optimized I/O by supporting parallelism and several optimiza-

tions. HDF(Hierarchical Data Format) is also a portable file format, de-

10

veloped at National Center for Supercomputing Applications (NCSA). It is

currently being maintaned by The HDF Group. HDF5, the latest version of

HDF, has a hierarchical structure for storing the data and supports reading

and writing the data in parallel making use of MPI-IO.

The primary reason that we have chosen NetCDF-4 over all the other

GIS data formats for raster-based data formats(such as GeoTiff, etc.) is that

NetCDF-4 supports parallel I/O and therefore can be used in data-intensive

GIScience using parallel I/O capabilities. To our knowledge, NetCDF-4 is

the only one supporting parallel I/O and also accepted as a standard in

OGC(Open Geospatial Consortium). GDAL [17] has recently anounced its

support for NetCDF-4.

11

CHAPTER 3

A PARALLEL I/O LIBRARY FOR SPATIAL
DATA ANALYSIS

As parallel processing has been increasing used in data-intensive spatial anal-

ysis, various spatial domain decomposition methods have been developed. A

large number of these methods are based on 2-dimensional spatial represen-

tations that are often classified as field-based and object-based [18]. In the

case of field-based representation, basic spatial units such as row, column,

and block(either regular or irregular) are often used to determine the granu-

larity and size of decomposed spatial sub-domains for parallel processing [19].

This section describes a parallel I/O library tailored to spatial data analysis

based on NetCDF.

3.1 A Parallel I/O Library for Data-Intensive Spatial

Analysis

I/O is often regarded as a bottleneck of exploiting high-performance and

parallel computing resources in data-intensive spatial analysis and modeling.

In order to be able to analyze large datasets by efficiently taking advan-

tage of high performance computing, it is imperative to establish effective

I/O strategies tailored to spatial characteristics. However, using low-level

libraries requires in-depth understanding of MPI and parallel I/O and, thus,

is not suitable for GIScientists and programmers. This research aims to es-

tablish a simple to use library of parallel processing functions for reading and

writing spatial data based on NetCDF-4 library.

This library is named pGIOLibrary and is written in C programming lan-

guage and aims to abstract the features of NetCDF-4 that are used in spatial

data analysis. These features include dimensions, variables and attributes.

For each of these features, the library provides simple functions to read and

write, and uses the NetCDF API functions internally.

12

In addition to interfacing these elementary types, pGIOLibrary, uses

NetCDF API functions for conducting I/O with an additional option to

configure a small set of parameters for spatial domain decomposition. The

patterns currently supported in the library are: ROW WISE, COLUMN WISE,

and BLOCK WISE. Corresponding methods and their implementations of the

library are discussed as follows.

3.2 Different Methods of Conducting Parallel I/O

A straightforward way to conduct I/O for a raster spatial data is row-wise.

In case of sequential I/O, one processor may start from the first row of a

raster and issue reads/writes with buffers equal to the size of one row or

multiples of rows. Buffers are arrays in memory containing the data. This

scheme can also be applied as a parallel I/O strategy by dividing the rows of

the raster into different chunks for each processor of the parallel system and

have each of the processors do the I/O for its own section.

NetCDF-4 does parallel read/write to/from variables by making use of

two arrays called count and start. The NetCDF-4 function declaration of

a typical variable write looks like the following:

int nc put vara type (int ncid, int varid, const size t start[],

const size t count[], const type *valuesp);

Based on NetCDF-4 documentation, start is an array of integers spec-

ifying the index in the variable where the first of the data values will be

written. count is an array of integers specifying the edge lengths along each

dimension of the block of data values to be written. The length of count is

the number of dimensions of the specified variable.

Given the rank of each processors in a parallel computing system and us-

ing appropriate start and count variables, we have implemented three popular

I/O schemes as explained in this section.

3.2.1 Row-Wise Parallel I/O

Figure 3.1 shows how pGIOLibrary conducts Row-wise parallel I/O. Each

processor in the parallel computer is in charge of reading/writing one chunk

13

of rows of the 2D raster. These methods are not restricted to just 2D data

and can be used for any number of dimensions.

P1

Pn-1

Pn

...

...

...

P0

Dim 0

Dim 1

Figure 3.1: Row-wise Parallel I/O on a 2D raster dataset by n cores

The way pGIOLibrary implements Row-wise parallel I/O is simply using

general formulas for count and start arrays based on the mpi size and

mpi rank variables of a parallel program. The values of these arrays for 2D

rasters are provided in Table 3.1.

Array Name Element 0 Element 1

count dim 0 length
mpi size

∗mpi rank dim 1 length

start dim 0 length
mpi size

0

Table 3.1: Values of count and start for conducting Row-Wise parallel I/O

14

3.2.2 Column-Wise Parallel I/O

As it can be seen in Figure 3.2, Column-wise parallel I/O is the transpose

of Row-wise and therefore its start and count arrays are going to be the

transpose of Row-wise as shown in Table 3.2.

P1 Pn

...

...

...
P0Dim 0

Dim 1

Figure 3.2: Column-wise parallel I/O on a 2D raster dataset by n cores

Array Name Element 0 Element 1

count dim 0 length dim 1 length
mpi size

∗mpi rank

start 0 dim 0 length
mpi size

Table 3.2: Values of count and start for conducting Column-Wise Parallel
I/O

3.2.3 Block-Wise Parallel I/O

Implementing Block-wise parallel I/O using start and count variables, how-

ever, is more complicated. One restriction is on the dimension of a raster.

15

This implementation just supports 2D rasters. Also, another restriction of

this implementation is that the number of processors should be a complete

square. This way, we can divide each of the two raster dimensions into
√
mpi size. If the values of count and start variables are set to the values

shown in Table 3.3, each processor with id in range 0, ...,
√
mpi size − 1 is

going to write the first row of blocks, processors with id
√
mpi size, ..., 2 ×

√
mpi size − 1 will write the second row of blocks and so on. This concept

is illustrated in Figure 3.3.

...

...

...

Dim 0

Dim 1

P0 PmP1 ...

Pm+1 ...Pm+2 P2m

Pn-m ...Pn-m+1 Pn

Figure 3.3: Block-wise parallel I/O on a 2D raster dataset by n cores

Array Name Element 0 Element 1

count dim 0 length√
mpi size

dim 1 length√
mpi size

start (mpi rank√
mpi size

) ∗ count[0] (mpi rank%
√
mpi size) ∗ count[1]

Table 3.3: Values of count and start for conducting Block-Wise Parallel
I/O

16

3.3 Parameterized Methods of Conducting Parallel I/O

As it is stated in the Introduction, the goal of this work is to optimize par-

allel I/O settings from system settings such as the file-system all the way

up to application-specific characteristics. To this end, the common I/O pat-

terns seen in spatial data analysis (row-wise, column-wise and block-wise)

have been implemented as a library. However, in order to optimize these

application-specific patterns, they should be parameterized. Methods dis-

cussed in last section are useful when a user does not want to get her hands

dirty with the parameters capturing these characteristics, i.e. she does not

want to specify how many rows should a processor core read/write. In this

case, the library calculates the number of rows that each processor should

deal with. But this may not be the most optimal configuration. In order to

give users the opportunity of changing these settings, some new capabilities

have been added to the pGIOLibrary by which users can specify the settings

of each of the patterns. The following sections review the implementation of

each of these parameterized methods for doing I/O.

3.3.1 Parameterized Row-Wise Parallel I/O

In this case, the number of rows is equal to the length of dimension 0

(dim len 0) and the number of rows that each of the processors should

read/write is given by the user as a parameter we call num 0 per PE. The

first thing to calculate is the number of rounds that all the processors should

do in order to finish all the rows. This number can be calculated as the

floor of the result of dividing dim len 0 by num 0 per PE. The remainder of

this division is what is known as padding and there are several strategies to

write those paddings. After finding the value of number of rounds, a loop of

size this value is necessary to write each of the stripes that are written by

the processors. The count and start of these stripes (which is equal to the

number of rows) given to the NetCDF-4 write function is provided in table

3.4. k is the index of the loop.

17

Array Name Element 0 Element 1
count num 0 per PE dim 1 length
start num 0 per PE × (k ∗mpi size + mpi rank) 0

Table 3.4: Values of count and start for conducting parameterized Row-
Wise Parallel I/O

3.3.2 Parameterized Column-Wise Parallel I/O

The case of Parameterized Column-Wise I/O is again similar to Row-wise

except for the fact that the elements are transposed. dim len n is used

instead of dim len 0 since the nth dimension is the dimension that is going

to be divided between the processors, Table 3.5 shows the values for this kind

of I/O. k is the index of the loop that is conducting these I/O operations

and is equal to the number of rounds.

Array Name Element 0 Element 1
count dim 0 length num 0 per PE
start 0 num 0 per PE × (k ∗mpi size + mpi rank)

Table 3.5: Values of count and start for conducting parameterized Column-
Wise Parallel I/O

3.3.3 Parameterized Block-Wise Parallel I/O

In order to implement parameterized Block-Wise I/O operations, pGIOLi-

brary uses a slightly different approach. At first, we introduce a notion of

a block as a structure which has three elements: start 0, start 1 and id.

Since the width and height of each block is known, the end of each block is

not stored. Same as in parameterized row-wise and column-wise the number

of blocks in each row and column are determined. An array of blocks of size
dim len 0×dim len 1

num 0 per PE×num 1 per PE
is then created and the starts of each of the blocks

along with their id are set. In order to write, this array should be divided

among processors and each processor can write each of its blocks. There are

several ways to partition this array between processors and some of them are

implemented in pGIOlibrary. The most notable one is a circular division in

which processor i get block number (i % mpi size).

18

CHAPTER 4

AUTO-TUNING OF PARALLEL I/O
PARAMETERS FOR HDF5

APPLICATIONS

Numerous tunable parameters exist at each level of the current state-of-the-

art I/O stack and they greatly affect the I/O performance of HPC applica-

tions. The lack of application-specific tools available to determine optimal

values for these parameters has caused scientists either to use the default

values(sometimes with a very bad I/O performance!) or guess the values

of these parameters based on their experience and hardcode them into the

application. Hardcoding the values of these parameters into an application

means that adjusting these values and also porting the application to a new

platform requires recompiling the application.

In this research we have impelemented an auto-tuning framework that can

be used to identify appropriate HDF5/NetCDF-4 parameters, MPI-IO pa-

rameters and Lustre settings on a given platform. This framework eliminates

the need of recompiling the application by using dynamic libraries and a con-

figuration file from which the application reads the values of the parameters

and set them before the I/O operation of the application. This way, there is

no need to hard-code the parameters in the application. We have developed

the H5Tuner library, a shared library that can be preloaded before the HDF5

library and executes before HDF5 is invoked, read the configuration file and

set the values before calling the HDF5 function.

A diagram of the application functional schematic is shown in Figure

4.1; the contributions of this work are primarily the middle section: collect-

ing performance statistics and refining the parameter search process using a

genetic algorithm approach. As [20] shows, this work as part of the HDF5

AutoTuning project is a joint research between the HDF group and Lawrence

Berkeley Lab to develop an auto-tuning framework for parallel I/O of scien-

tific applications based on the HDF5 library.

19

Run experiments, log results

Executable

I/O
Parameter
Control File

H5Tuner H5PerfCapture+ +

HPC
System

Execute

Collection of
Experimental

Inputs & Results

H5Evolve

HDF5
filesHDF5

files

Start

Performance
Statistics

Application,
I/O benchmark,
Appl. I/O kernel

Adjust

Figure 4.1: A functional schematic of the HDF5 AutoTuning project

4.1 H5Tuner

The H5Tuner dynamic library is developed as a tool to set the parameters

of different levels of the I/O stack (i.e. HDF5 level, MPI-IO level, File

system level). In order to accomplish this task, it makes use of the dynamic

linking concept. The H5Tuner gets preloaded before the HDF5 library, once

a HDF5 function is called in the application, H5Tuner’s function will get

executed first. In the execution of this function, all the parameters to be

tuned are set. After setting these variables, the original HDF5 function is

called with the arguments that the user has specified. The values for the

parameters are specified by the user or as we will see in the next section

can be specified by an optimization framework. The values for each of the

parameters are written in an XML file with different sections for different

I/O stack levels. This XML configuration file resides in the user’s home

directory, so that H5Tuner can open it and read each of the sections of it

and calls the appropriate functions for setting the values. An example of this

configuration files is shown in figure 4.2. MiniXML [21] library, a small XML

library to read and write XML data files, is used in the H5Tuner library.

Another capability of H5Tuner is to set these parameters on a per file

basis in order to have a finer granularity in setting these parameters. In

order to achieve this goal, each of the elements in the configuration file can

have an attribute named FileName as shown in figure 4.3. H5Tuner library

checks this FileName value with the name of the file being used and sets the

20

Figure 4.2: An example of an H5Tuner XML configuration file

corresponding configuration only if these names match. In case no FileName

is provided, the configuration will be set for all the files.

Figure 4.3: An example of an H5Tuner XML configuration file with different
settings for different file names

4.2 Parameters Space

The benchmarks will be run with differing configurations of 5 parameter

values (although the framework developed can be readily expanded to include

different parameters):

21

Parameter Min Max # Values
strp fac 4 156 10
strp unt 1 MB 128 MB 8
cb nds 1 256 12
cb buf siz 1 MB 128 MB 8
*num rows 1 1024 9
*num columns 1 1024 9
*num blks (1,4096) (8192,32768) 48

Table 4.1: A list of the tuned parameters in the search space, the range of
values, and the number of discrete values allowed. One of the parameters
with * is being auto-tuned at a time.

• Lustre stripe factor (strp fac)

– number of OSTs over which a file is distributed

• Lustre stripe unit (strp unt)

– number of bytes written to an OST before cycling to the next

• MPI-IO number of collective buffering nodes (cb nds)

– max number of aggregators for collective buffering

• MPI-IO collective buffer size (cb buf siz)

– size of the intermediate buffer for collective I/O

• Geo-Spatial parameters

– Row-wise: Number of rows assigned to each processor

– Column-wise: Number of columns assigned to each processor

– Block-wise: Size of the blocks, containing the size in x axis and y

axis

Table 4.1 shows the range and number of possible values for each of the

parameters. Based on these numbers the entire configuration space ranges

from 69120 to 368640 configurations. Considering that each of the runs take

a long time to finish, it is clear that a brute-force approach is not feasible.

22

4.3 Optimization Framework

4.3.1 Genetic Algorithms

Genetic Algorithms are heuristics for approximating optimal solutions in

complex search spaces, particularly those that are ill-suited for traditional

exact or approximation methods [22].

Genetic algorithms work with a population of solutions in each generation

as they evolve. The evolution process is by crossing over two members of the

population or mutating one. The goal is that this process converges to an

optimal or near-optimal solution. In the first step of the genetic algorithm

an initial population is generated randomly and each configuration of this

initial population is evaluated. A set of intermediate configurations is then

chosen based on their evaluation fitness value and in order to create the

next population this set goes through mutation and recombination. This

process continues iteratively until convergence to a near-optimal solution [23].

Unfortunately, there is no guarantee on this convergence by the GA, however,

it has been shown to converge to a near-optimal after some time. There are

different methods for doing each of the selection, mutation and recombination

operations. [24] describes fifteen different crossover operators.

4.3.2 H5Evolve

Our use of Genetic Algorithms is a component in our framework called

H5Evolve; It is shown in Figure 4.4 and is built off the Pyevolve [25] library,

which provides a framework for performing genetic algorithm experiments

in Python. We use swap mutator as our mutation operator and one-point

crossover as the crossover operator. As we have discussed previously, each

of the members of the populations represents a member of the parameter

space containing Lustre stripe settings, Collective Buffering settings and I/O

patterns settings. The way that the fitness function is defined in H5Evolve

is that it first creates an XML file with the values of the member that GA

wants to evaluate. It then starts a timer and defines the H5Tuner library as

the library to be preloaded in the application and then runs the application.

This way, H5Tuner library will make sure that the parameters are set in the

application. Once the application is finished, H5Evolve ends the timer and

23

returns the difference of the timers as the fitness value. Genetic algorithm

tries to minimize this fitness value as it makes progress.

Figure 4.4: The design of the genetic algorithms used for this work.

In our experiments, we have used population size of 15 and a generation

number of 40 to sample the space. Mutation rate of 15% and crossover rate

of 90%. The three elite members (i.e. configurations with the best evalua-

tion result) were directly taken to the next generation. Based on our initial

experiments, these numbers have shown the best performance. However, we

leave the study of other approaches to this optimization problem as a future

work.

Note that since our runs is structured in a way that a large batch job

is submitted for the duration of the experiment on the HPC platform, this

batch job calls H5Evolve which is our main Python script making use of

PyEvolve. The fitness function as explained earlier runs the code containing

parallel I/O operations. Since each of the runs of the application takes a

considerable amount of time, and we do not want to run the GA for a really

long time, we had to use relatively small numbers for our GA parameters.

In practice, we found that a smaller population (15) with a greater number

of generations (40) provided a sufficient span of the sample space and a

reasonable convergance time (less than 10 hours).

24

CHAPTER 5

EXPERIMENT RESULTS

5.1 A Simple Write Benchmark

In order to evaluate this framework we have developed a simple write bench-

mark which writes different-size 2D rasters using pGIOLibrary. An extension

to H5Evolve is also developed so that in addition to setting the I/O stack

parameters such as Lustre stripe size and strip count, it can set the I/O

access pattern parameters such as the size of each blocks to be assigned to

processors.

This write benchmark creates two NetCDF dimensions X and Y of different

sizes based on the size of the file requested. For example for an output file

size of 16GB, we have selected a 2D raster of dimension x=65536 by y=32768

is written. After defining these dimensions and the corresponding variables,

the write benchmark calculates the size of the array each processor ought

to write. For example for this 16 GB 2D raster data, each processor should

allocate an array of size 65536×32768
#ofprocessors

of a specific type such as double. Each

processor then fills in its array with random numbers and calls a pGIOLibrary

write function with the I/O pattern and I/O pattern options read from the

configuration file (which is provided by the user or in case of auto-tuning by

the Genetic Algorithm).

5.2 Experimental Platform

All of the following experiments were run on Ranger supercomputer that is a

Sun Constellation cluster at the Texas Advanced Computing Center(TACC).

It contains 3,936 16-way SMP compute nodes providing 15,744 AMD Opteron

processors. Ranger contains 62,976 compute cores, 123 TB of memory and

25

1.7 PB of raw global disk space with theoretical peak performance of 579

TFLOPS. It uses a Lustre [8] parallel distributed file system for storing data

on disc and relies on the MPI-IO communication standard for I/O commu-

nication among the system components.

5.3 Results of Running GA Framework on the Write

Benchmark

In this section, different results of running the Genetic Algorithm framework

for the write benchmarks described in the previous section are presented:

5.3.1 Row-Wise Pattern of a 16GB Raster Dataset Write
using 128 processors

The set of experiments in this section were run on 128 cores of Ranger.

Figure 5.1 shows the evolution of running time of pGIOLibrary write

benchmark. As GA makes progress, the trend of running time of the write

application decreases. Please note that since GA is a search algorithm and

has to explore different parts of the space, it does not always decrease the

objective (running time in our case). However, after several generations it

keeps the parameters leading to the minimum running time and the trend of

running time decreases as the algorithm makes progress. The total number

of 144 experiments were done by the GA in this case in a course of 4 hours.

In spite of a little number of spikes in the evolution of our genetic algorithm

(due to the searching nature of GA), the decrease in running time is clear.

Table 5.1 shows the minimum, maximum and the converged set of these

experiments in order to the influence of each of these tunable parameters on

the performance of the write application.

Exp. ID Gen. # Strp Fac Strp buf size CB Nodes CB buf size Num 0 per PE Time(s)
MIN 110 7 32 32 MB 256 8 MB 512 62.33
MAX 18 1 128 64 MB 96 2 MB 256 181.81
LAST EXP 144 9 48 32 MB 8 128 MB 512 66.74

Table 5.1: Minimum, maximum and the converged value of the running time
of our Genetic Algorithms framework for the Write Benchmark

Figure 5.2 shows how better performance is gained as the number of rows

26

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

200	

1	
 4	
 7	
 10
	

13
	

16
	

19
	

22
	

25
	

28
	

31
	

34
	

37
	

40
	

43
	

46
	

49
	

52
	

55
	

58
	

61
	

64
	

67
	

70
	

73
	

76
	

79
	

82
	

85
	

88
	

91
	

94
	

97
	

10
0	

10
3	

10
6	

10
9	

11
2	

11
5	

11
8	

12
1	

12
4	

12
7	

13
0	

13
3	

13
6	

13
9	

14
2	

Ap
pl
ic
a'

on
	
 R
un

ni
ng
	
 T
im

e(
s)
	

GA	
 Experiment	
 ID	

Figure 5.1: Evolution of Running Time of pGIOLibrary write benchmark for
a 16GB dataset on 128 processor cores

written by each processor is changed corresponding to the sorted running

time. It can be concluded from this plot that having each processor core

write 512 rows (and 256 rows after that) is among the best options for this

write benchmark. The plot also shows that having a very small number of

rows per processors such as 1 or 2 is not a good candidate.

Figure 5.3 shows the evolution of Lustre stripe count metric with respect

to the sorted running time. Again, it can be concluded that having large

values for the stripe count such as 128 is not a perfect candidate neither

having very small stripe counts such as 2 and 4 (the default Lustre stripe

count is 4, which is not the optimum value for many parallel I/O tasks!).

The good candidates for stripe count in this case are 16, 32, and 48 with

32 leading to the minimum running time. Figure 5.4 shows the evolution

of Lustre stripe size in MB with respect to the decreased running time. It

is very clear in the plot that GA has converged to the value of 32 MB for

Lustre stripe size for this I/O pattern.

27

-­‐200	

0	

200	

400	

600	

800	

1000	

1200	

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

200	

	
 T
he

	
 n
um

be
r	
 o

f	
 r
ow

s	
 a
ss
ig
ne

d	

to
	
 e
ac
h	

pr
oc
es
so
r	
 t
o	

w
rit
e	

Ap
pl
ic
a7

on
	
 R
un

ni
ng
	
 T
im

e(
s)
	

GA	
 Experiments	
 Sorted	
 by	
 Running	
 Time	

Run	
 Time(s)	
 num_0_per_PE	

Figure 5.2: Sorted running time of the experiments with respect to the evo-
lution of number of rows written by each processor.

28

-­‐20	

0	

20	

40	

60	

80	

100	

120	

140	

160	

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

200	

Th
e	

Lu
st
re
	
 st
rip

e	

co
un

t	
 p
ar
am

et
er
	

	

Ap
pl
ic
a3

on
	
 R
un

ni
ng
	
 T
im

e(
s)
	

GA	
 Experiments	
 Sorted	
 by	
 Running	
 Time	

Run	
 Time(s)	
 	
 strp_count	

Figure 5.3: Sorted running time of the experiments with respect to the evo-
lution of Lustre stripe count.

29

-­‐20	

0	

20	

40	

60	

80	

100	

120	

140	

160	

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

200	

Th
e	

Lu
st
re
	
 st
rip

e	

si
ze
(M

B)
	

	

Ap
pl
ic
a5

on
	
 R
un

ni
ng
	
 T
im

e(
s)
	

GA	
 Experiments	
 Sorted	
 by	
 Running	
 Time	

Run	
 Time(s)	
 	
 strp_size_MB	

Figure 5.4: Sorted running time of the experiments with respect to the evo-
lution of Lustre stripe size.

30

5.3.2 Block-Wise pattern of a 16GB Raster Data Write using
128 processors

Row-wise pattern showed a very good speedup as the genetic algorithms

evolves. However, a subsequent set of experiments on block-wise I/O showed

an interesting behavior: The first experiments done, showed not only good

speedup, but also a huge gap between the running time of the experiments

with blocks which have smaller size in their second dimension. This means

that as we go forward to Column-wise I/O, the performance decreases. Figure

5.5 shows the running time of a set of experiments on the Y-axis in seconds.

The X-axis shows the size of the second dimension of the blocks (Blk size y)

of each experiment. As it can be seen in this figure, 9 experiments out of 27

experiments used 4096 columns for each block and all of these experiments

took more than 1000 seconds to be done! This time, compared to the time

that the Row-wise I/O was taking, is very high. However, the figure shows

that in several experiments for those blocks with 32768 as the size of their

second dimension, 70 seconds time could be achieved. These are the experi-

ments where each block contained all of the columns of the whole raster data,

i.e. Row-wise pattern (with different numbers of rows such as 256, 512, and

1024). Figure 5.6 shows the same data with sorted time. Note that the Y-

axis in Figure 5.6 is logarithmic; Therefore, the performance of column-wise

I/O is much worse than row-wise I/O. In the following discussion, we will

try to find the reason of this bad performance.

Prior to focusing on the genetic algorithms and how H5Evolve can op-

timize the performance of parallel I/O, an investigation is required for this

bad performance. Exploring HDF library documentation brought us to the

concept of file layout in the HDF library. According to the documenta-

tions, datasets are stored as a 1-dimensional array in the file and file layout

is defined as the mapping of these higher-dimension datasets to a sequen-

tial 1-dimensional file. The default layout of HDF files is called contiguous

which is a row-major layout. HDF5 supports other kinds of layouts as well.

One of them, related to the Block-wise pattern of this work, is called the

chunked layout. In the chunked layout, the datasets are split into different

chunks and these chunks can be read and written individually and there-

fore the operations can be done in parallel. In order to enable chunk layout

a HDF5 function call such as H5Pset chunk((hid t plist, int ndims,

31

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

1800	

0	
 5	
 10	
 15	
 20	
 25	
 30	
 35	

Ap
pl
ic
a'

on
	
 R
un

ni
ng
	
 T
im

e(
s)
	

Size	
 of	
 the	
 second	
 dimensions	
 of	
 Blocks(Blk_Size_y)	

Thousands	

Figure 5.5: Application running time for the experiments sorted by the value
of the second dimension of blocks. Block-Wise write benchmark for a 16GB
dataset on 128 processor cores

32

1	

10	

100	

1000	

10000	

100000	

1	

10	

100	

1000	

10000	

Th
e	

si
ze
	
 o
f	
 t
he

	
 x
	
 d
im

en
si
on

	
 o
f	
 t
he

	
 b
lo
ck
s	

	

Ap
pl
ic
a6

on
	
 R
un

ni
ng
	
 T
im

e(
s)
	

GA	
 Experiments	
 Sorted	
 by	
 Running	
 Time	

Running	
 Time(s)	
 	
 blk_size_y	

Figure 5.6: Evolution of the value of the second dimension of blocks with
respect to the sorted running time. Block-Wise write benchmark for a 16GB
dataset on 128 processor cores

33

const hsize t *dim) can be used, in which plist is the id of the dataset,

ndims is the number of the dimensions of each chunk and dim is an array

defining the size of each chunk. For testing this kind of layout, a new option

has been added to the XML configuration file named chunk with the vari-

able name of the dataset to be used for as an attribute. Figure 5.7 shows an

example of this new option.

Figure 5.7: A configuration file for H5Tuner library in which for a variable
named variable 2 chunks of size 16× 8192 has been set

34

After adding two new parameters to H5Evolve named blocks dim 0 var 2

and blocks dim 1 var 2, a set of new experiments were run on Ranger and

Figure 5.8 shows the same kind of plot as in Figure 5.5 but with HDF5 chun-

ked layout. As it can be seen, a small amount of running times have been

achieved for block sizes with different values for their second dimensions and

not just for those blocks of shape of a row-wise pattern. Based on these

experiments, Table 5.2 shows the top three I/O performance achieved for a

2D raster dataset of size 65536× 32768 in a block-based fashion achieved.

Strp Fac Strp size CB Nodes CB buf size Blk size x Blk size y Time(s)
24 4 MB 1 64 MB 256 16384 75.36
48 32 MB 24 32 MB 32 32768 80.95
64 16 MB 24 16 MB 256 4096 83.82

Table 5.2: Configuration of the top 3 I/O performance of block-based spatial
pattern

Figures 5.10 to 5.11 show the evolution of the Lustre parameters for this

Block-Wise I/O operations using HDF5 chunked layout.

0	

200	

400	

600	

800	

1000	

1200	

0	
 5	
 10	
 15	
 20	
 25	
 30	
 35	

Ap
pl
ic
a'

on
	
 R
un

ni
ng
	
 T
im

e(
s)
	

Size	
 of	
 the	
 second	
 dimensions	
 of	
 Blocks(Blk_Size_y)	

Thousands	

Figure 5.8: Application running time for the experiments sorted by the value
of the second dimension of blocks. Block-Wise write benchmark with HDF5
chunked layout for a 16GB dataset on 128 processor cores

35

0.1	

1	

10	

100	

1000	

10000	

1	

10	

100	

1000	

Th
e	

si
ze
	
 o
f	
 t
he

	
 x
	
 d
im

en
si
on

	
 o
f	
 t
he

	
 b
lo
ck
s	

	

Ap
pl
ic
a6

on
	
 R
un

ni
ng
	
 T
im

e(
s)
	
 	

GA	
 Experiments	
 Sorted	
 by	
 Running	
 Time	

Running	
 Time(s)	
 	
 blk_size_x	

Figure 5.9: Evolution of the value of the first dimension of blocks with respect
to the sorted running time. Block-Wise write benchmark with HDF5 chunked
layout for a 16GB dataset on 128 processor cores

36

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

500	

550	

600	

650	

700	

Lu
st
re
	
 st
rip

e	

co
un

t	
 p
ar
am

et
er
	
 	

Ap
pl
ic
a1

on
	
 R
un

ni
ng
	
 T
im

e(
s)
	

GA	
 Experiments	
 Sorted	
 by	
 Running	
 Time	

Running	
 Time(s)	
 	
 strp_count	

Figure 5.10: Sorted running time of the experiments with respect to the
evolution of Lustre stripe count. Block-Wise write benchmark for a 16GB
dataset on 128 processor cores

37

-­‐20	

0	

20	

40	

60	

80	

100	

120	

140	

160	

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

500	

550	

600	

650	

700	

	
 L
us
tr
e	

St
rip

e	

si
ze
(in

	
 M
B)
	

	

Ap
pl
ic
a5

on
	
 R
un

ni
ng
	
 T
im

e(
s)
	

GA	
 Experiments	
 Sorted	
 by	
 Running	
 Time	

Running	
 Time(s)	
 strp_size(MB)	

Figure 5.11: Sorted running time of the experiments with respect to the
evolution of Lustre stripe size. Block-Wise write benchmark for a 16GB
dataset on 128 processor cores

38

As it can be seen in these sets of plots, we could achieve the same perfor-

mance as row-wise performance using HDF5 chunked layout in our library.

This means that based on the application’s characteristics and the way it

needs to conduct I/O operations, pGIOLibrary can achieve near-optimal I/O

performance. Proving the optimality of this I/O performance requires devel-

oping a model for I/O subsystem of an HPC platform which due to complex

structures of current platform is a tedious task and we leave it for future

work.

39

CHAPTER 6

CONCLUSION AND SUMMARY

As scientists are dealing with a data deluge, parallel computing has been

playing a major role in taming this amount of data. One of the fields facing

this problem is Geographic Information Science (GIScience). Two impor-

tant challenges in dealing with large amount of data in GIScience has been

addressed in this thesis: Determining the optimal configurations of parallel

I/O stack and, Determining the size of data partitions in spatial domain

decomposition.

Current I/O stack of a HPC supercomptuer has three levels: the file

system (e.g. Lustre), middleware (e.g. MPI-I/O), and high-level data-

organization layers (HDF5 and NetCDF), each of which has different pa-

rameters and configurations with a big impact on the performance of the

I/O operations. An auto-tuning framework, using Genetic Algorithms has

been developed to find the best performing configurations in this stack for

each HPC platform and applications. This framework is applicable to any

data-intensive application using parallel I/O on any HPC platform.

Conducting this auto-tuning not only on the I/O stack but at the appli-

cation level addresses the second challenge which is more specific to data-

intensive spatial analysis and GIScience. Having developed a simple parallel

I/O library specific to data-intensive GIScience applications which abstracts

the frequent I/O access patterns of these applications, related to the decom-

position of these applications and using auto-tuning approach to tune the

parameters of data partitions of each processing element conducting I/O,

this research encourages the use of domain knowledge to increase the perfor-

mance of different tasks in parallel computing.

The auto-tuning framework that we have developed contains two XML

configuration files. One containing parallel I/O configurations including Lus-

tre stripe factor, Lustre stripe unit, MPI-IO number of collective buffering

nodes and MPI-IO collective buffering buffer size(and HDF5 chunking pa-

40

rameters, in case of parallel Block-wise I/O). The other configuration file is

specific to the parallel I/O library and the write benchmark developed in

which for each of the variables an I/O pattern and its configurations are

specified. A dynamic library named H5Tuner reads in the first XML config-

uration at runtime and sets the parameters accordingly on the fly without a

need of recompilation of the application. Summing up all of these parameters

(Lustre settings, MPI-IO setting, HDF5 settings and the size of Row-Wise,

Column-Wise or Block-Wise I/O) leads to a large space of configurations one

need to tune for. Genetic Algorithms is used to find the optimal values for

each of these parameters in a certain amount of time.

Several experiments in Chapter 5 done on a leading-edge HPC computer

show the effectiveness of this approach in finding optimal parameters in dif-

ferent layers of parallel I/O and even at the application layer. The spatial

parallel I/O library that has been developed in this research can now be used

by GIScientists to conduct the I/O operations of their parallel application

based on the way they have decomposed their problem and as the results

show get the same optimal performance by using the I/O parameters that

our auto-tuning framework specifies.

41

REFERENCES

[1] G. Bell, T. Hey, and A. Szalay, “Beyond the data deluge,”
Science, vol. 323, no. 5919, pp. 1297–1298, 2009. [Online]. Available:
http://www.sciencemag.org/content/323/5919/1297.short

[2] T. Hey, S. Tansley, and K. Tolle, Eds., The Fourth Paradigm:
Data-Intensive Scientific Discovery. Redmond, Washington: Microsoft
Research, 2009. [Online]. Available: http://research.microsoft.com/en-
us/collaboration/fourthparadigm/

[3] S. Lang, P. Carns, R. Latham, R. Ross, K. Harms, and W. Allcock,
“I/o performance challenges at leadership scale,” in Proceedings of
the Conference on High Performance Computing Networking, Storage
and Analysis, ser. SC ’09. New York, NY, USA: ACM, 2009.
[Online]. Available: http://doi.acm.org/10.1145/1654059.1654100 pp.
40:1–40:12.

[4] S. Byna, Y. Chen, X.-H. Sun, R. Thakur, and W. Gropp, “Parallel
I/O prefetching using MPI file caching and I/O signatures,” in
Proceedings of the 2008 ACM/IEEE conference on Supercomputing, ser.
SC ’08. Piscataway, NJ, USA: IEEE Press, 2008. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1413370.1413415 pp. 44:1–44:12.

[5] A. Uselton, M. Howison, N. Wright, D. Skinner, N. Keen, J. Shalf,
K. Karavanic, and L. Oliker, “Parallel i/o performance: From events
to ensembles,” in Parallel Distributed Processing (IPDPS), 2010 IEEE
International Symposium on, april 2010, pp. 1 –11.

[6] Y. Yin, S. Byna, H. Song, X.-H. Sun, and R. Thakur, “Boosting
Application-Specific Parallel I/O Optimization Using IOSIG,” in Clus-
ter, Cloud and Grid Computing (CCGrid), 2012 12th IEEE/ACM In-
ternational Symposium on, may 2012, pp. 196–203.

[7] J. Lofstead, M. Polte, G. Gibson, S. Klasky, K. Schwan, R. Oldfield,
M. Wolf, and Q. Liu, “Six degrees of scientific data: reading patterns
for extreme scale science IO,” in Proceedings of the 20th international
symposium on High performance distributed computing, ser. HPDC ’11.
New York, NY, USA: ACM, 2011.

42

[8] T. Zhao, V. March, S. Dong, and S. See, “Evaluation of a Performance
Model of Lustre File System,” in ChinaGrid Conference (ChinaGrid),
2010 Fifth Annual, july 2010, pp. 191 –196.

[9] M. Folk, G. Heber, Q. Koziol, E. Pourmal, and D. Robinson,
“An overview of the hdf5 technology suite and its applications,” in
Proceedings of the EDBT/ICDT 2011 Workshop on Array Databases,
ser. AD ’11. New York, NY, USA: ACM, 2011. [Online]. Available:
http://doi.acm.org/10.1145/1966895.1966900 pp. 36–47.

[10] R. Rew and G. Davis, “Netcdf: an interface for scientific data access,”
Computer Graphics and Applications, IEEE, vol. 10, no. 4, pp. 76 –82,
july 1990.

[11] A. Tiwari, C. Chen, J. Chame, M. Hall, and J. K. Hollingsworth,
“A scalable auto-tuning framework for compiler optimization,”
in Proceedings of the 2009 IEEE International Symposium on
Parallel&Distributed Processing, ser. IPDPS ’09. Washington,
DC, USA: IEEE Computer Society, 2009. [Online]. Available:
http://dx.doi.org/10.1109/IPDPS.2009.5161054 pp. 1–12.

[12] A. Ching, K. Coloma, J. Li, and A. Choudhary, “High-performance
techniques for parallel I/O,” in Handbook of Parallel Computing: Mod-
els, Algorithms, and Applications. CRC Press, December 2007.

[13] F. Schmuck and R. Haskin, “Gpfs: A shared-disk file system
for large computing clusters,” in Proceedings of the 1st USENIX
Conference on File and Storage Technologies, ser. FAST ’02.
Berkeley, CA, USA: USENIX Association, 2002. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1083323.1083349

[14] R. Thakur, W. Gropp, and E. Lusk, “Data sieving and collective i/o
in romio,” in Proceedings of the The 7th Symposium on the Frontiers of
Massively Parallel Computation. Washington, DC, USA: IEEE Com-
puter Society, 1999.

[15] W. Gropp, E. Lusk, and R. Thakur, Using MPI-2: Advanced Features
of the Message-Passing Interface. Cambridge, MA, USA: MIT Press,
1999.

[16] R. Thakur, W. Gropp, and E. Lusk, “Data sieving and collective
i/o in romio,” in Proceedings of the The 7th Symposium on the
Frontiers of Massively Parallel Computation, ser. FRONTIERS ’99.
Washington, DC, USA: IEEE Computer Society, 1999. [Online].
Available: http://dl.acm.org/citation.cfm?id=795668.796733 pp. 182–.

43

[17] GDAL Development Team, GDAL - Geospatial Data Abstraction
Library, Version x.x.x, Open Source Geospatial Foundation, 201x.
[Online]. Available: http://www.gdal.org

[18] S. Wang and M. P. Armstrong, “A theoretical approach to the use of
cyberinfrastructure in geographical analysis,” International Journal of
Geographical Information Science, vol. 23, no. 2, pp. 169–193, 2009.

[19] Q. Guan and K. C. Clarke, “A general-purpose parallel raster
processing programming library test application using a geo-
graphic cellular automata model,” Int. J. Geogr. Inf. Sci.,
vol. 24, no. 5, pp. 695–722, May 2010. [Online]. Available:
http://dx.doi.org/10.1080/13658810902984228

[20] B. Behzad, J. Huchette, H. Luu, R. Aydt, S. Byna, M. Chaarawi, Prab-
hat, Q. Koziol, and Y. Yao, “Poster: Auto-tuning of parallel i/o param-
eters for hdf5 applications,” SC’12, 2012.

[21] M. Sweet, “Mini-XML, a small XML parsing library,” 2003-2011.
[Online]. Available: http://www.easysw.com/ mike/mxml

[22] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Ma-
chine Learning, 1st ed. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1989.

[23] D. Whitley, “A genetic algorithm tutorial,” Statistics and Computing,
vol. 4, pp. 65–85, 1993.

[24] P. Pongcharoen, D. J. Stewardson, C. Hicks, and P. M.
Braiden, “Applying designed experiments to optimize the per-
formance of genetic algorithms used for scheduling complex
products in the capital goods industry,” Journal of Applied
Statistics, vol. 28, no. 3-4, pp. 441–455, 2001. [Online]. Avail-
able: http://EconPapers.repec.org/RePEc:taf:japsta:v:28:y:2001:i:3-
4:p:441-455

[25] C. S. Perone, “Pyevolve: a Python open-source framework for genetic
algorithms,” SIGEVOlution, vol. 4, no. 1, pp. 12–20, 2009. [Online].
Available: http://dx.doi.org/10.1145/1656395.1656397

44

