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ABSTRACT 
 

 A direct borohydride fuel cell stack with a novel integrated manifold, along with a 

control system, was designed, manufactured and studied. Two fuel cell stacks were built and 

demonstrated. The main objective was to build these stacks to achieve a power level of 100 

watts. The control system was designed to allow for fuel cell startup and to self-sustain the stack. 

One 12 cell stack was able to achieve 168 Watts at 14 W/cell or 140 mW/cm
2
, with the second 9 

cell stack only able to achieve 5.6 W/cell , 56 mW/cm
2
, or 54 W. A design flaw was encountered 

which did not allow for extended operation of the stack. A quick “fix” solution to this problem 

was attempted in the second stack. The solution, however, introduced several new issues which 

resulted in degraded performance. Nevertheless, the control system showed the cell stack can 

operate independently. This study has provided valuable information about the cell stack and 

control system performance which will be extremely helpful in future designs. 
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CHAPTER 1: INTRODUCTION 
 

 This thesis is concerned with the design and performance of a direct borohydride fuel cell 

and control system which is aimed to provide a high energy, high power density alternative 

option to several existing fuel cell technologies. 

 The increasing demand for clean and efficient fuels has recently led to the widespread 

development of fuel cell technologies. Market volatility and the ever decreasing resources of oil-

based fuels such as gasoline have further accelerated research in this area. Fuel cells are believed 

to have the potential to supply power for a wide range of applications from large buildings to 

portable laptops and cell phones. The current prohibitive cost of fuel cells has prevented 

widespread use, but stringent goals and increased research efforts across the world are aimed at 

decreasing this cost. 

1.1 Overview of Fuel Cells 
 

 A fuel cell is an electrochemical device which produces electricity as long as a fuel and 

oxidizer are provided [1]. The basic operation of a fuel cell was discovered in 1839 by lawyer 

and scientist, William Grove. Today several types of fuel cells are under development, each 

design with its advantages and disadvantages. These fuel cells vary by operating temperature, 

fuels, catalyst selections, and other parameters. The most common type of cell is the hydrogen – 

oxygen fuel cell which is seen as a promising solution to replace gasoline as the fuel for 

automobiles. 

 This type of fuel cell employs a Proton Exchange Membrane (PEM) and hydrogen as the 

fuel with oxygen as the oxidizer. Although this type of fuel cell is relatively simplistic in its 
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operation, compared to other fuels, there are significant disadvantages with the storage of 

hydrogen. Hydrogen has the highest energy density of any known fuel, but in ambient conditions 

it is a gas and needs to be stored under high pressure to achieve any practical volumetric energy 

density. However, the compression process is energy intensive and requires costly equipment.  

 Due to the storage limitations, liquid fuels whose chemical structure is composed of 

hydrogen are being sought as alternatives to the pure gas form. For example, methanol (CH3OH) 

and sodium borohydride (NaBH4) are both being considered as viable alternatives. The 

advantage of these fuels is that they are stored in a liquid form, which significantly reduces the 

logistical burden associated with their storage and transport. Furthermore, both provide high 

energy densities. 

 Recent research has shown that direct borohydride/air fuel cells provide higher open 

circuit voltages than both hydrogen/oxygen and methanol/air fuel cells [2]. With the high 

theoretical energy density of sodium borohydride (9.3 Wh/g), this type of fuel cell is promising. 

Sodium borohydride is usually found in a solid form and results in a highly exothermic and 

unstable reaction in water. However, sodium borohydride is highly soluble in aqueous sodium 

hydroxide solutions of approximately 10 to 15% (which act as a stabilizer) and can therefore be 

stored in a liquid form, which is advantageous due to ease of storage and transport. Another 

benefit of this fuel is that the byproduct of the fuel cell reaction is sodium metaborate (NaBO2) 

which is environmentally friendly and can be potentially recycled into sodium borohydride [3].  

There is significant motivation to use hydrogen peroxide (H2O2) as the oxidizer instead of 

air at the cathode. It is widely known that the oxygen reduction process on the cathode is 6 

orders of magnitude lower than that of the hydrogen oxidation process at the anode [4]. 
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Therefore, the limiting kinetics of the cathode affects overall fuel cell performance. The oxygen 

reduction reaction is as follows: 

O2 + 4H
+ 

+ 4e
- 
 2H2O     (1) 

The hydrogen peroxide reduction reaction is as follows: 

H2O2 + 2H
+
 + 2e

-
  2H2O     (2) 

As seen, the oxygen reduction requires the transfer of 4 electrons and therefore has a reduced 

probability of occurrence, due to the higher activation over potential, when compared to the 

peroxide reduction which requires the transfer of two electrons. Thus, utilizing hydrogen 

peroxide at the cathode will yield improved cell performance characteristics. 

 There are additional benefits for using hydrogen peroxide as an oxidant. Firstly, in 

applications where oxygen/air is not freely available, such as in underwater vehicles, this 

combination provides an effective alternative. Secondly, hydrogen peroxide is environmentally 

friendly and is in a liquid form which makes it easier to handle. Although there are some safety 

considerations due to its high oxidation potential, its handling is nevertheless simpler than that of 

gases. Additionally, its wide use in the chemical industry has led to high production volumes and 

low cost. 

 This thesis will discuss the design and performance characteristics of a direct borohydride 

fuel cell (DBFC) which utilizes sodium borohydride as a fuel and hydrogen peroxide as the 

oxidizer. It will also discuss the design of a prototype control system for this application. 
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1.2 Background of Direct Borohydride Fuel Cells 
 

 The construction of a borohydride fuel cell was initiated by Dr. George Miley and Dr. 

Nie Luo at NPL Associates, Inc. in Champaign, IL in 2002. Some of the research was conducted 

at the University of Illinois and was originally aimed at high power density space applications. 

This project was aimed to develop a fuel cell for Underwater Autonomous Vehicles (UAVs). 

The objective was to build and demonstrate a high power density 100-watt cell capable of 

operating for extended times with a power management control system. The cell was built using 

a new bi-polar plate design and cheaper, easy-to-fabricate materials. 

 Two types of direct borohydride fuel cells have been reported in literature. These include 

borohydride/air fuel cells [5–7] and borohydride-hydrogen peroxide [8–10] fuel cells. Typically 

the two types of cells are further distinguished based on the composition of the membrane 

electrode assembly (MEA) and catalyst selection. For example, a borohydride-air fuel cell 

reported by Amendola et al. [7] has attained greater than 60 mW/cm
2
 at 70 

o
C.  An alkaline 

direct borohydride – hydrogen peroxide cell utilizing AB5 and AB2 alloys was able to achieve 

150 mW/cm
2
 [9]. Various other direct borohydride-hydrogen peroxide cells have been able to 

achieve power densities of 50 mW/cm
2
 [11] and 130 mW/cm

2 
[12]. One of the highest power 

densities reported has used acidified H2O2, with palladium as the anode catalyst and gold as the 

cathode catalyst. This combination resulted in a power density of 680 mW/cm
2
 [13]. 

 A NaBH4 / H2O2 fuel cell is composed of several pieces including endplates, diffusion 

layers, electrodes, catalysts, membrane (PEM) and bipolar plates. The fuel cell employed here is 

a direct borohydride fuel cell whereby the liquid fuel is directly fed into the cell where the 

necessary reactions take place. Indirect borohydride fuel cells require a reformer where the fuel 
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undergoes a reaction with water to produce hydrogen gas which is then pumped to the cell. The 

direct borohydride fuel cell is advantageous because it requires less ancillary equipment with 

minimal cell modifications to account for a liquid fuel instead of a gas. Previous work has 

resulted in the demonstration of a 1 kW cell utilizing a non-optimized bi-polar plate and fuel 

distribution design. Additionally, more work has been previously conducted in identifying 

suitable catalysts and various parameters, all of which have been instrumental in the current 

design, and are discussed later. 

The relevant reactions at the anode and cathode, respectively, are as follows: 

NaBH4 + H2O  NaBO2 + 8H
+ 

+ 8e
-
  E= 1.776 V   (3) 

4H2O2 + 8H
+
 + 8e

-
  8H2O  E= -0.471 V   (4) 

Thus the overall reaction is:  

NaBH4 + 4H2O2  NaBO2 + 6H2O  E= 2.247 V   (5) 

Although there is additional water used to create aqueous solutions of the sodium 

borohydride and hydrogen peroxide, it is largely unused and generally not considered a part of 

the reaction. An overall balance shows that the primary byproducts are sodium metaborate and 

water. However, in most cases, due to the less than 100% utilization of the hydrogen, some will 

inevitably exist as a byproduct. Cleary, the theoretical OCV of 2.25 V is much higher than the 

theoretical voltage of H2/O2 cells, which is 1.23 V. The overall fuel cell reactions are depicted in 

Figure 1 below.  
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Figure 1: Fuel Cell Basic Operation [16]
 

 

1.3 Controls of Fuel Cell Systems 
 

Control systems used with gaseous fuels and liquid fuels need to carefully consider the 

needs and operating principles of their respective systems. Gaseous fuel cell control systems are 

generally simpler due to the ease of gas regulation. Figure 2 depicts the components of a 

hydrogen gas based fuel system. 

In this type of system, the gas is compressed and stored in a high pressure cylinder. A 

pressure regulator is used to decrease the incoming pressure to that necessary for the fuel cell. 

Typically, most hydrogen gas based systems have between one to three passes of reactants 

through the fuel cell. The fuel is introduced to the fuel cell by opening a solenoid which allows a 

flow from the high pressure region to the low pressure (atmospheric region). Once the fuel cell 

channel volume has been filled, the solenoid is closed to allow the fuel to react with the catalyst. 

In the case of hydrogen-air fuel cell systems, only the valuable hydrogen feed is controlled by a 
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solenoid. The cathode side is subjected to a continuous stream of air due to the need of waste 

heat and water vapor removal. The continuous blowing of air across the cathode is also 

beneficial to fuel cell performance because the oxidation is rate limiting. On the anode, the 

hydrogen is decomposed into protons across the catalyst. The solenoid remains closed until a 

prescribed hydrogen concentration is reached for the required power level. Alternatively, the 

hydrogen is recirculated until it is sufficiently utilized. At this point, the solenoid reopens to 

allow fresh hydrogen to enter the cell stack, and the process repeats. Thus in the case of such a 

gas fuel cell, the control of the fuel feed is primarily obtained through a simple solenoid 

actuation process which is determined by the fuel concentration and power needs [14]. 

 On the contrary, a liquid based fuel cell almost always requires a recirculation loop. 

Unless stored at a high pressure, a pump is required to distribute the liquid. In many cases, this is 

logistically simpler and more energy efficient than using high pressures. However, there is a 

significant disadvantage in that pumps cannot be actuated quickly in the same manner as a 

solenoid. In fact, depending on the type of pump, operating a pump in this way can be extremely 

detrimental to its performance and lifetime.  

 In the case of the borohydride fuel cell, there are further disadvantages to using a stop–

start type of control system. Firstly, according to equation (5), one of the main byproducts of the 

anode reaction is sodium metaborate (NaBO2) which is a solid under normal room conditions. 

Although this byproduct is soluble in water, there is a potential for it to condense out of the 

solution at lower temperatures. If allowed to condense, the metaborate would clog the carbon 

cloth electrode and reduce the active area which then resulted in lower cell performance. 

Secondly, the decomposition of sodium borohydride over the palladium catalyst [15] leads to 

generation of gases which can result to an unsafe buildup of pressure. Although this is less of a 



8 
 

concern on the cathode side, there is still some gas generation due to the decomposition of 

hydrogen peroxide on the gold catalyst. However, gold has been shown to be significantly better 

at directly reducing hydrogen peroxide [16].  Such a buildup of gas can cause an undesired and 

detrimental stress on the cell components and is a potential explosion hazard. Therefore, it is 

vital that this gas is released from the cell as it is generated. A one-pass-through or closed-loop 

system utilizing a solenoid would not allow for this.  

 The exothermic nature of the reactions means that heat is generated as a product. As the 

fuel cell heats up, the cell performance increases. However, after certain temperatures, the 

Nafion membrane and carbon cloth electrodes will be susceptible to degradation [17]. Therefore, 

it is vital to remove heat from the system as well. In the case of this fuel cell, the bipolar plates 

are constructed of a stainless steel separation layer (discussed in section 3) and stainless steel 

channels. This construction is conducive to heat transfer and heat generated at the anode can be 

transferred to the cathode. If only heat transfer is considered, it would be adequate to have a 

continuous flow across either only the anode or cathode. However, because of the gas generation 

reasons mentioned above, this is not advisable.  

 It becomes clear that a recirculation of the fuel and oxidizer is needed. It is important to 

note that when the fuel or oxidizer is re-circulated, each pass through slowly decreases the 

overall concentration. During fuel cell operation, the maximum possible power generation will 

slowly decrease due to the reduced overall concentration. This is opposite to the once-pass-

through systems which introduce fresh fuel in each cycle and are therefore able to achieve 

maximum stack power at all times. This typically also results in better fuel utilization for 

hydrogen gas systems. 
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CHAPTER 2: DESIGN OF DIRECT BOROHYDRIDE FUEL CELL 
 

2.1 General Design Considerations 
 

The design of the bipolar plate is of vital importance to the performance characteristics of 

the fuel cell. There are several important features that a bipolar plate needs in order to function 

properly. A bipolar plate is the backbone of any fuel cell stack, and has several important 

purposes. The plate distributes the fuel and oxidizer evenly across its surface via the use of 

channels. The reactant then comes into contact with a catalyst layer where the reactions occur 

and generate electrons in addition to other products. In any fuel cell, electricity is generated 

through the transfer of electrons from the anode to the cathode or vice versa. Therefore, the 

bipolar plate needs to be electrically conductive [18]. In the case of borohydride or hydrogen fuel 

cells, the electrons generated on the anode of the bipolar plate need to be transferred across to the 

cathode where the reduction reaction occurs. 

 Depending on the application, there are several design options which need to be taken 

under consideration. These include material selection, channel design, sizing, cost, and 

manufacturability, to name a few. When a fuel cell stack is assembled, several bipolar plates are 

connected in series and tightly fastened such that there are no leaks at the interface of the 

membrane electrode assembly (MEA) and the bipolar plate. As a result, plate material cannot be 

too soft and needs adequate strength to withstand the fastening pressures. In addition to electrical 

conductivity, it is also beneficial for the plates to have good thermal conduction [18]. Good 

thermal conductivity aids in heat removal from the cell and also avoids local hotspots which can, 

over time, cause premature failure. 
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2.2 Fuel Cell Structure and Assembly 
 

 The bipolar plates used in this fuel cell are unique in that they are constructed from two 

separate materials. Traditional plates are often manufactured from only graphite which acts both 

to distribute fuel and conduct electricity. Some advantages to using these plates include ease of 

machining, low contact resistance, and excellent corrosion resistance. However, a major 

drawback of graphite plates is that the machining process is expensive. Furthermore, the brittle 

nature of graphite means that the plates need to be thick and handled with care. By increasing the 

thickness, the contact resistance also increases, which is detrimental to the fuel cell [19]. Figure 2 

shows an example of a graphite bipolar plate used in hydrogen-based fuel cells. 

 

Figure 2: Graphite Bipolar Plate [20] 

 

In hydrogen gas based systems, where the reactants do not typically react at ambient 

conditions or unless a catalyst is present, a single material plate is adequate. However, in this 

direct borohydride fuel cell, the fuel and oxidizer undergo a violent exothermic reaction when 

mixed. Therefore, it is imperative to ensure that the two are kept separate. In a graphite bipolar 
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plate with an integrated manifold design, which is commonly used with hydrogen/air fuel cells, 

leakage does not pose a huge problem. The graphite plates are often injected with a resin to 

prevent hydrogen diffusion through the plates [18]. However, if a single material-integrated 

graphite manifold design was used with a liquid fuel cell, adjacent cells would experience 

shorting and violent reactions could potentially cause rapid heat buildup. A previous version of 

the direct borohydride fuel cell developed at the University of Illinois utilized graphite bipolar 

plates but did not have an integrated manifold design. Instead, the novel manifold design 

supplied the fuel to each oxidizer plate separately. One objective of the current design was to 

develop an integrated manifold design to reduce complexity of the pumping system, weight, and 

associated balance-of-plant components. To the author’s knowledge, this bipolar manifold design 

is the first being demonstrated with a direct borohydride fuel cell. 

Figure 3 shows the original design of the bipolar plate. One important feature of this plate 

was that the flow channel manifold is made from an electrically resistive material while the main 

flow section of the plate is composed of stainless steel. It is vital to have this distinction because 

a short can easily be caused within the cell, which could cause decomposition of the fuel and 

oxidizer. As seen, the bipolar plate is composed of several different layers of materials. 
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Figure 3: Design of Bipolar Plate
 
[21] 

The main structure of the cell consists of a polymer plate. This blue material is a polymer 

composite which provides excellent durability, machinability, and strength. The holes and 

channels were machined using water jet cutting. A thin sheet of stainless steel was sandwiched 

between two of these plates. Using stainless steel channels, the components were affixed using 

epoxy sheets in a high temperature baking process at a pressure of 5,000 psi. The thin sheet of 

steel was used to provide low electrical resistance between the two sides of the bipolar plate and 

as a support for the stainless steel channels. The plates have small openings in order to transfer 

the fuel and oxidizer to the channels. Figure 4 shows the actual manufactured plates. 

Polymer Bipolar Plate Frame 

Epoxy Glue Sheet 

Stainless Steel Channel 
Structure

  Stainless Steel Bipolar Plate 
Sheet 
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Figure 4: Manufactured Bipolar Plates [21]
 

 

In order to assemble the complete fuel cell, two end plates were also manufactured. The 

end plates are very similar to the bipolar plates except that they have a flow path only on one 

side. One end plate is used as the last anode, whereas the other is used as the last cathode. The 

end plates also function as the inlets and outlets for the fuel and oxidizer.  As seen, each end 

plate is manufactured in a similar manner to the bipolar plate. Using a polymer as the base 

material, the stainless steel channels were again affixed using epoxy sheets at a high temperature 

baking process. Holes were then drilled and tapped to allow for plugs and fuel distribution 

nozzles.  
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From previous designs and experience, the 100 watt requirement of the fuel cell meant 

that at least a 10 cell stack is required, which translates to nine bipolar plates and the two 

endplates. However, to be safe a 14 cell stack was constructed. On one side of the bipolar plate, 

the relevant electrode layer was added which contained the catalysts. A Nafion 115 membrane 

was added using rubber gaskets to ensure a leak free seal. A second electrode was then added 

followed by another bipolar plate. The two electrodes and a Nafion membrane are referred to as 

the MEA. In this manner, the whole cell was assembled and bound by simple bolts and nuts. The 

electrode layers consisted of a carbon cloth with the relevant catalysts implanted within. Figures 

5, 6, and 7 show the assembly view of the stack, a partially assembled stack and a completely 

assembled stack, respectively. 

 

 

 

 

 

Figure 5: Assembly View of Stack [21] 
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Figure 6: Partially Assembled Stack 

 

 

Figure 7: Fully Assembled Stack 
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2.3 Catalyst and Membrane Selection 
 

The selection of the anode and cathode catalyst is extremely vital to the successful 

operation of the fuel cell. Previous research shows that palladium is effective for the anode 

oxidation reaction [22]. On the cathode side, gold has been shown as the ideal catalyst for the 

hydrogen peroxide oxidation reaction [16]. The catalysts were obtained in power form and 

deposited onto carbon cloth layers. The anode catalyst layer required electrodeposition of 

Palladium Chloride (II) whereas the cathode carbon cloths were simply dipped into the Gold 

Sodium Dichloride (AuNaCl4) – water solution. Depending on the various parameters, different 

amounts of catalyst would have been deposited. The deposition amounts and exact surface 

composition was not studied since it was assumed that there was sufficient coverage.  

The selection of an appropriate Nafion membrane also plays a role in the performance of 

the fuel cell. Nafion is fragile and easily susceptible to tearing and/or degradation in the presence 

of high temperatures. For this reasons, a thicker Nafion membrane will make the cell more stable 

and flexible. However, a thicker membrane also causes increased contact resistance, which is 

unfavorable. Therefore the selection of the most suitable membrane is a tradeoff between 

stability and contact resistance of the cell. For this fuel cell, a 127-µm thick Nafion 115 

membrane was used because previous experience has shown that it can withstand corrosion from 

the fuel and oxidizer as well as the expected temperature levels within the stack. 

2.4 Testing Setup 
 

 The testing setup (Figure 8) used to determine the performance of the cell was relatively 

simple. It was composed of the fuel cell, two beakers containing the fuel and oxidizer, a 4-

channel laboratory pump capable of flow rates up to 166 ml/min and a DC load bank. The pump 
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was used to circulate the fuel and oxidizer, while the load bank was used to vary current. For 

each current, the relevant voltage was recorded. The power was obtained by multiplying the 

voltage and current. 

 

 

Figure 8: Test Setup 
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CHAPTER 3: TESTING AND RESULTS 
 

3.1 Testing of First Cell Stack 
 

The first fuel cell, which was designed and built in the above discussed manner, attained 

a maximum power level of 140 mW/cm
2
 or 169 W for the complete 12 cell stack. The power 

curve for this fuel cell stack is provided below in Figure 9. This power density is similar to those 

reported in previously mentioned literature [5-10]. 

 

Figure 9: Performance of First Cell Stack 
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During operation of the stack it was observed that the fuel, which is usually clear or 

slightly opaque, became extremely dark. Furthermore, there seemed to also be a high amount of 

gas generation in both the anode and cathode sides of the stack. This gas generation rate was 

much higher than seen in previously developed fuel cells. For this first test, the fuel cell was run 

for approximately 20 minutes without any noticeable power loss or cell degradation. 

A few days later, a second test on this same cell stack did not achieve the previous power 

levels. Since the cell was not disassembled within that time period, it was assumed that part of 

the reason for decreased cell performance could be wash-out of the catalyst. Because the anode 

catalyst is palladium chloride (II), this could also explain the black color of the fuel after being 

circulated through the fuel cell. By allowing the spent fuel to cool, it becomes evident that the 

blackening is due to small, micron-scale suspended particles. Although explicit testing was not 

conducted on the composition of the fuel, it was assumed that these particles were palladium. 

Based on this assumption, an in-situ electroplating procedure was done to coat catalysts 

back onto the carbon cloth layers. The in-situ electroplating is extremely convenient as it does 

not require disassembly of the fuel cell. A palladium solution was prepared for both the anode 

and cathode of the fuel cell. The solution was then pumped through the anode while applying a 

small voltage and current. This method allows electrodeposition onto the carbon cloth. The same 

procedure was then conducted for the cathode side. Although gold is a more suitable catalyst for 

the cathode, previous experience has shown that palladium is still effective. Although the 

palladium participates in the cathode reduction reaction, it also increases the oxygen gas 

generation rate [16]. This unwanted side-effect introduces additional pressure to the system 

while increasing the depletion rate of the oxidizer due to the hydrogen generation. 
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Once the electrodeposition process was complete on both sides, a test was then carried 

out. Unfortunately, this test did not produce the expected power levels which were achieved in 

the first test. Because the cell performance was not adequate, the results implied that washout of 

the catalysts was not the cause of the problem. The black coloration of the fuel and the excessive 

gas generation can be explained by another hypothesis. Internal leaking within the cell can cause 

crossover of the fuel to the cathode side and/or crossover of the oxidizer to the anode side. 

Because the reaction between the fuel and oxidizer is exothermic and relatively violent, even a 

small amount of crossover can have drastic effects. Proof of this phenomenon was found after 

the bipolar plates were disassembled. Generally, the fuel and/or oxidizer should only enter one 

side of each bipolar plate. However, as Figures 10 and 11 show, there are clear flow marks on 

both channels. This implies that there is crossover within the plate. 

 

  

Figure 10: Flow Marks on Side 1 
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Figure 11: Flow Marks on Side 2 

 

Another reason for poor cell performance could be inadequate flow to the channels. 

When the fuel cell stack was disassembled, there were additional flow marks on the thin steel 

sheet, part of the bipolar plate. In a proper flow, the fuel and/or oxidizer should very closely 

follow the serpentine stainless steel channel patterns. This commonly used flow pattern allows 

good utilization of the fuel per pass while simultaneously yielding good power density [23]. The 

flow marks seen in the channels, however, indicated that the fuel flow does not follow the 

serpentine path. The flow pattern simply enters the channel and flows straight down to the 

bottom via a path under the stainless steel channels. In fact, the path indicates that roughly only 

10% of the available flow area was utilized. This does not mean, however, that only 10% of the 

available power density is achieved. The diffusion carbon layer allow for better distribution of 

the reactants. 
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Although there was no indication of such a flow path occurring on the cathode side, the 

flow path is also the same on the other side of the cell. To confirm this, the directions of the 

bipolar plates were reversed. A test was run and visible marks, similar to earlier results, were 

discovered. This showed that the issue of inadequate fuel flow affects both sides of the bipolar 

plates.  

During the high temperature process which attaches the stainless steel channels to the 

bipolar plate, the channels change shape. Because the cooling process is uneven, the channels 

become slightly warped. The deformed channels do no lie flat against the steel sheet, which 

results in a poor flow path. Figure 12 shows the stainless steel channels after they undergo the 

high temperature process. Clearly, the channels are no longer lie flat and are deformed. 

 

 

Figure 12: Deformed Stainless Steel Channels 
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Ideally, the channels should be spot welded to the plate in multiple locations. However, 

Because the stack was producing enough power, and due to time concerns, this solution was not 

implemented. The black discoloration could also be caused due to internal mixing. A high gas 

and heat production rate is further evidence that the two reactants are mixing. Because there 

appeared to be black discoloration only in the anode, it was evident that the oxidizer was 

crossing over to the anode in the stack.  

The reason for the crossover was determined to be the flexibility of the rubber gaskets. 

When the fuel cell is assembled, the rubber gaskets are compressed and supported by the bipolar 

plates. However, there is no support for the gasket in the channel openings. While liquid fuel is 

being pumped, and in the presence of heat, the rubber gasket becomes even more flexible and 

deforms. This allows the flow to enter both sides of the plate. The solution, therefore, is to 

provide a rigid backing for two channels on each side of the bipolar plate. These two channels 

are the ones which don’t require a flow.  

In order to combat the issue, a layer of epoxy was first added to the plates. To ensure that 

the epoxy would not “melt” into the channel gap, a small Teflon backing layer was added to 

support the epoxy during the heating process and then later removed. A five cell stack was again 

put through a test. However, as the test progressed, there were elevated levels of gas and heat. 

The stack was disassembled, and showed similar signs indicating crossover. The normally rigid 

epoxy had deformed and no longer provided a leak-proof seal between each successive bipolar 

plate. Figure 13 shows the sheets of epoxy which are deformed around the channel area.  
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Figure 13: Deformed Channel Area in Epoxy Sheet 

An alternative solution in the form of Teflon sheets was sought as a fix to the leaking 

channels. Teflon sheets were used as gasket material instead of rubber and a test of a 2 cell stack 

showed no issues with internal mixing. However, a larger 10 cell stack again showed signs of 

leaking from the cells. This is because a larger stack size produces more heat which cannot be 

dissipated as quickly as the two cell stack. Therefore, the heating causes deformation of the 

Teflon sheets and can be attributed to the changes seen in the epoxy sheets.  

3.2 Modifications to First Cell Stack 
 

To make the required changes, it was necessary to add a second polymer plate to each 

side of the existing bipolar plates. These new “cover plates” consisted of support for both 

channels and were also intended to block any flow entering those channels as well (Figure 14). 
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3.3 Testing and Further Modifications to Second Stack 

As before, the cover plates were attached via epoxy sheets. As a result of these 

modifications, the thickness of the bipolar plates increased to twice the original design. This is 

shown in Figure 15. 

In order to compensate for the gap between the channels and the membrane, a filler 

material was needed to both support the catalyst layer as well as provide an electrical pathway. A 

thin layer of carbon felt was used for this purpose, shown in Figure 16. Although carbon felt is 

electrically conductive, it has a higher resistance than the single carbon cloth layer present in the 

original design. 

 

Figure 14: Design modifications [21] 
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Therefore, a slightly lower cell performance was expected using this filler material. 

However, tests conducted using this material showed severely degraded cell performance. Both 

Teflon and rubber gaskets were tried, with neither having a positive effect on the cell. 

The carbon felt was then replaced with nickel foam sheets on both sides of the cell. 

Nickel foam provides a more rigid support layer and has a much lower electrical resistance 

compared to the felt. Although the test results showed a power density of 140 mW/cm
2
, there 

were still high amounts of gas generation and black discoloration of the fuel. Furthermore, over 

the duration of the test, the hydrogen peroxide solution slowly turned a turquoise/green color. In 

a normal cell, this discoloration should not occur in the cathode. The only difference between 

this test and previous efforts was the addition of the nickel layers instead of the carbon felt. This 

indicates that a side reaction occurs in the nickel foam causing discoloration of the peroxide. 

Figure 15: Actual modified plate [21] 
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Figure 16: Carbon Felt Filler 

 Although specific tests were not conducted, the turquoise compound is most likely due to 

nickel sulfate. A color similar to that shown in Figure 17 was observed. 

 

Figure 17: Color of Peroxide Solution Post Testing [24] 

The formation of this product can also cause heat generation as well as decomposition of the 

peroxide which in turn leads to a lower energy density of the system. Although the 

decomposition was more prominent in the cathode side, the sodium borohydride is also subject 
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to the similar effects at the anode. According to its Material Safety Data Sheet (MSDS), sodium 

borohydride is reactive to transition metals and can undergo a decay process in their presence. 

Visual evidence of such a phenomenon in the borohydride was not present. 

 Nevertheless, there was some evidence that the aforementioned decomposition was 

occurring on both sides of the cells. As the cell underwent several tests, the thickness of the 

nickel foam began slowly decreasing. Although the initial compression is due to the assembly of 

the stack, the foam became significantly thinner over time. Figure 18 shows the degraded nickel 

foam after the tests. This reduction in thickness was noticeable on both the anode and cathode 

foams indicating that side reactions were occurring, causing gradual decomposition of the foam. 

The individual anode and cathode thicknesses were not tested and thus there is no information on 

the rate of foam removal. 

 

Figure 18: Nickel Foam Degradation 

 To counter this issue, the cathode nickel foam layer was replaced with an additional 

stainless steel channel layer. This was done to still allow for adequate contact between the 
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various layers of the cell while simultaneously preventing decomposition of the hydrogen 

peroxide. Using a spot welder, the stainless steel channels were welded to the cathode side of the 

existing bipolar plates. A 2 cell test showed decreased cell performance over the desired 14 

W/cell test. 

One explanation for this can be found in the increased thickness of the channels. Because 

the channel volume was essentially doubled, the fluid layer would not be thick enough to come 

into contact with the carbon cloth/catalyst layer. A 2 cell test utilizing this setup did not yield an 

adequate power level. In this case, the end plates did not have a double channel layer, but instead 

had one nickel foam layer. A channel was then added to the cathode end plate instead of the 

foam layer. This double channel setup did not seem to produce the required power levels, either. 

Adding stainless steel channels to the stack was determined to not have any effect on its output.  

 After these unsuccessful tests stainless steel channels, a decision was made to use the 

control system. By using the control system with the fuel cell, the team could determine if the 

overall system performance is enhanced or hindered. Because the pumping flow rate of the 

system was higher than that of the experimental pump used in Figure 8, the performance of the 

fuel cell was expected to increase. 

In order to do this, however, the original stack with the nickel foam had to be 

reassembled because it had produced the desired power level. Upon reassembly, using one layer 

of nickel foam on the cathode and anode, a 2 cell test was conducted. This test, however, did not 

achieve the original power level. In an attempt to correct this issue, the stack was laid in a 

horizontal position. This position of the stack would allow the stack to fill up from top to bottom 

and allow all of the fuel/oxidizer to come into contact with the catalyst layer. Because the 
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cathode reaction is the limiting reaction of the system, it is crucial that the oxidizer is more 

readily accessible to the cathode catalyst layer. Nevertheless, the anode layer is also exposed to 

an increased flow of fuel. This setup achieved the 140 mW/cell power output. This originally 

indicated that the horizontal setup is more effective at distributing the fuel over the internal 

channel area. 

However, when a larger cell stack was assembled, the fuel cell did not achieve this power 

density. This was most likely due to the compression of the nickel foam layers which led to 

inadequate surface contact between the channels, foam, and electrode layers and thus increased 

the contact resistance while reducing cell performance. 

In this configuration, the cell was placed horizontally which had previously yielded good 

results. Because the nickel foam layer was suspected as the reason for the degradation in 

performance, an additional nickel foam layer was added to both the anode and cathode sides of 

the stack to counter any issue with high contact resistance. The additional nickel foam layer did 

not help and the 10-cell stack was only able to produce a maximum of 50 W, shown in Figure 19 

below.  
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3.4 Leak Testing 

 The inconsistency between this result and previous tests indicate that something else was 

causing deterioration within the stack. Based on the severity of the gas generation, it is safe to 

assume this was due to crossover which could also cause a short within the stack. Between each 

of these tests, and when the stack was disassembled and reassembled, a leak test was conducted 

to check for any crossover within the cell. 

 The leak test consisted of submerging the fuel cell in water. Then, using some tubing, air 

was blown through the inlet of the fuel channel while the exit of the fuel and oxidizer channels 

was blocked. If there was any internal leaking within the cell, bubbles would be seen escaping 

from the inlet of the oxidizer channel. Once one side of the fuel cell underwent this test, the 

opposite side was exposed to the same procedure. In other words, the inlets of the fuel and 

Figure 19: Second Stack Performance 
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oxidizer channels were closed while the exit of the fuel channel was left open. Meanwhile, air 

was blown through the exit port of the oxidizer. 

 If any of these tests showed signs of leaking, the cell was disassembled. Then, each 

bipolar plate was reassembled one by one to determine which bipolar plate was the cause of the 

leaking. Of course, any other issues which contributed to leaking such as torn membranes, faulty 

gaskets, etc. were corrected as well. Although the leak test was not originally used, most 

experiments using the “thicker” bipolar plates did use the test. The leak test proved extremely 

useful in identifying faulty bipolar plates. 

 A goal of the leak test was to identify these faulty plates and remove/repair them before 

running a test with fuel and oxidizer. If a faulty plate is left within the stack, internal mixing 

causes undesired heat and gas generation, which can potentially damage other bipolar plates 

within the stack. Although the leak test may have been partially successful at avoiding this, it did 

not completely prevent damage of the plates. In several tests, a pre-experiment leak test showed 

no internal leaks within the stack. However, after the experiment, a leak test would show leaking. 

This indicates that the leaking was created during the experiment. 

 Because the leak test involved a person blowing air through the stack, the associated 

pressure was not very high. However, reactions at the anode and cathode while the fuel cell was 

running could cause a buildup of pressure which is higher than the leak test pressure. This higher 

pressure can induce a failure in one plate which results in small amounts of internal mixing. 

Then, the pressure buildup affects other plates and causes a cascading effect. During 

experiments, it was visually evident that the pressure within the stack was much higher than that 
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used in the leak tests. By adding pressure relief vents, as discussed in the recommendations 

section, this issue can potentially be avoided. 
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CHAPTER 4: CONTROL SYSTEM OF FUEL CELL 
 

4.1 Control System Objectives 
 

 As mentioned earlier, the design of a control system for a borohydride fuel cell is 

especially challenging given the liquid nature of the fuel and sometimes gaseous byproducts. 

This fuel cell was developed for an Underwater Autonomous Vehicle (UAV). Because air is not 

readily available, a hydrogen/air fuel cell is not a viable option. Although hydrogen/oxygen fuel 

cells could potentially meet power requirements, storing them under pressure requires large 

space and adds unnecessary weight to the vehicle. A sodium borohyride/hydrogen peroxide fuel 

cell offers excellent power and energy density and is ideal for this application. There is no need 

for high pressure tanks and the liquid fuel and oxidizer are easy to handle and non-toxic. 

 The control system developed for this purpose had several main objectives: 

1) The whole system was to run on a nominal 12 V DC. 

2) A battery will be used for initial fuel cell startup. Then, the fuel cell will provide power for 

the control system and prescribed loads. 

3) The control system will monitor fuel cell voltage and automatically start/shut system down 

requiring only an initial user input. 

4) The balance of plant (BOP) will allow safe fuel cell operation while employing the best 

strategy to minimize fuel and oxidizer consumption. 

5) The voltage from the fuel cell shall be regulated to allow for some fluctuations. 
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4.2 Components and Original Control Algorithm 
 

The control system has a relatively simple algorithm which allows the fuel cell to startup, 

monitor its performance, and shut down once the cell loses its potential. Figure 20 shows the 

main controller and Figure 21 shows the original design for the balance of plant and electrical 

components for the fuel cell. The final prototype of the system closely matches this design with 

some changes which will be discussed later. First, however, the original intent of the system will 

be described. Because the fuel and oxidizer sides of the system are identical, only the fuel side 

will be discussed with operation on the oxidizer being exactly the same. 

 A 12 V DC, 4.5Ah Lithium Ion battery was chosen to be used for the initial startup of the 

fuel cell. Upon user input, the system would power the fuel pump the solenoid valve from the 

sodium borohydride tank. The solenoid valve going into the tank is kept closed. This would 

allow the fuel to circulate through the fuel cell and fill the recirculation loop consisting of the 

mixer, pump, and fuel cell stack. An identical process occurs on the oxidizer side of the system. 

At this point, both the fuel and oxidizer are passing through the stack, resulting in power 

production. The voltage of the fuel cell increases until the desired operating voltage is reached. 

 The controller module continuously monitors this voltage until a preset point is reached. 

At this operating voltage, the controller module then transfers all components to draw power 

from the fuel cell instead of the battery. As the fuel cell is loaded and its voltage drops, the 

regulator is turned on and functions to keep the voltage steady. A 150 Watt DC-DC converter 

capable of accepting input voltages from 9–14 V was chosen for this purpose. The converter 

regulates the output to 13.8 V through Pulse Width Modulation (PWM). Power generated from 
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the fuel cell is used to power the control system, an external load, and charge the battery via the 

charging controller. 

 The controller module, shown in Figure 20, is composed of a micro controller which 

monitors all relevant inputs and outputs. The second part of the module consists of relays and 

other power distribution electronics. 

 

Figure 20: Controller Module 
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Figure 21: Control System Schematic 
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 The charging controller also regulates incoming voltages via the use of PWM. However, 

it can only act as a step-down regulator and therefore there is a need for the step-up DC-DC 

converter. While the system is running, a prescribed load is applied to the fuel cell, further 

causing the voltage of the fuel cell to decrease. The fuel cell was designed such that a maximum 

external load of 100 Watts can be applied while still allowing the cell voltage to remain above 

the 9 V limit of the regulator. 

 As discussed earlier, the maximum possible power generation capabilities of a fuel cell 

decrease over time due to gradual reduction in fuel and oxidizer concentration. In order to avoid 

this, a separate recirculation loop was set up. When the system begins operating, the fuel is first 

drawn through the tank and re-circulated in the “mixer” loop until the voltage of the cell is too 

low. At this point, the solenoid valve going back to the tank is then opened such that old fuel is 

purged and new fuel is injected into the loop. Within the fuel tank, there is another expandable 

storage bladder which holds the spent fuel. As the quantity of fresh fuel decreases, the amount of 

spent fuel will linearly increase. This “tank-within-tank” design reduces the need for storage 

space associated with a second spent fuel tank. The one way valves are installed to ensure there 

is no back flow of fuel and/or oxidizer when the pumps are turned off. 

 The water tank is used to clean the fuel cell after each run. This is necessary because the 

fuel-side byproduct (sodium metaborate) can condense out in the solid phase at room conditions. 

This can lead to obstruction of channels within the fuel cell and piping. Pumping water through 

the system also ensures that the sensitive membrane remains hydrated.  

 The above described operation of the fuel cell ensures that there is always adequate fuel 

for maximum power production. From equations 3 and 4, it is clear that for every mole of fuel, 
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four moles of oxidizer are required. Similarly, on a mass basis, the equivalent ratio is NaBH4: 

4H2O2. However, for the purposes of this project, a 20% NaBH4 solution and 30% H2O2 

hydrogen peroxide solution was used. On such a volume basis, however, each liter of fuel 

solution requires one liter of oxidizer solution. 

 The fuel solution contains 15% sodium hydroxide (NaOH) and 15% ammonium 

hydroxide (NH4OH) with the remainder of the solution being water. The percentages are listed 

on a mass basis. In the presence of only water, the reaction between water and sodium 

borohyride is extremely exothermic and causes severe decomposition of the fuel [25].  For 

stability reasons, a base such as sodium hydroxide is required to prevent this reaction. The 

Ammonium Hydroxide is required for further stability of the fuel as it undergoes reactions in the 

fuel cell. The oxidizer solution contains 30% hydrogen peroxide (H2O2), 8% sulfuric acid 

(H2SO4) and 5% phosphoric acid (H3PO4). Although hydrogen peroxide will not readily 

dissociate in water under room conditions, it can at elevated temperatures and under the presence 

of a current. Therefore, the two acids are added for stability of the oxidizer under normal fuel 

cell operating conditions. 

4.3 Actual Control Algorithm 
 

 The desired operational characteristics of the control system and fuel cell have been 

described. However, due to unseen circumstances, the actual operation of the current control 

system is different. The fuel cell design had to be modified several times over the course of the 

project as described in earlier sections. Due to the high generation rate of gases, it was not 

possible to have a completely closed “mixed” recirculation loop due to internal pressure 

generation. Thus, only one open circulation loop was utilized. Several holes were drilled in the 
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top of the fuel and oxidizer containers so that any gases could be expelled to the atmosphere. 

Due to the generation of these gases, it was not possible to have a “tank-within-tank” design for 

depositing the spent fuel. Because the “mixed” recirculation loop was removed, it no longer 

made sense to have such a separation of fresh fuel and spent fuel. Besides, the presence of gas in 

the waste would mean that the inner bladder would expand too quickly compared to the rate of 

decrease of fresh fuel. Therefore, the proposed design would not work correctly. The use of one-

way valves was deemed unnecessary because the gas generation in the fuel cell creates a high 

pressure and will naturally flow to the low pressure location in the storage tanks even if the 

pumps are turned off.  

 Figure 22 shows the system with the fuel cell and all the ancillary equipment. The current 

operation of the fuel cell begins by a manual switch which opens both solenoid valves leading 

into and out of the storage tanks. The fuel and oxidizer pumps are turned on at which point, the 

fuel cell voltage begins rising. At the preset voltage, the controller automatically switches power 

for the ancillary equipment to begin drawing from the fuel cell instead of the battery. The 

external load is applied and the fuel cell keeps running until a minimum of 5 V is reached under 

load. The minimum set point is arbitrary because the DC-DC converter cannot regulate voltages 

lower than 9V. However, at lower voltages, the pumps and solenoids will still operate. The 

solenoids will stay open, but the pumps will have a reduced flow rate. At this point, the pumps 

are stopped and the external load is disconnected. The ball valves leading to the water tanks are 

immediately opened to allow any release of pressure while the second switch is activated to 

allow circulation of water. This will remove any residual chemicals and heat while ensuring 

enough water is supplied to the membranes. Current testing results show that every liter of fuel 

and oxidizer only allows for thirty minutes of continuous operation before the voltage level is too 
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low. This, as discussed, is due to the nickel foam which is theorized to cause rapid 

decomposition of the hydrogen peroxide and to a much lesser extent, the sodium borohydride. 
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Figure 22: Complete System 
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4.4 Performance of Second Cell with Control System 
 

The control system was demonstrated with the second fuel cell stack. At 12 volts, the 

control system will draw approximately 3 amps of current. Therefore, for a normally operating 

stack, it needs to produce a minimum of 136 watts. The control system was not ready for testing 

with the first stack, and because the team was not able to replicate its performance, the second 

stack was used instead. 

First, the pumps and solenoids were started using battery power. The fuel cell voltage 

reached 15 V at which point the control system power was switched to the fuel cell. No external 

load was applied at this point. The power requirements of the control system dropped the voltage 

of the stack to 8.7 V. This low voltage is below the 9 V threshold for the DC-DC converter. 

Therefore, the pumps were now operating at 8.7 V instead of the 12 Volts that the converter 

could have provided. Thus, the pumping rate was decreased. Nevertheless, it was still enough to 

keep the fuel and oxidizer moving through the stack. Figure 23 shows the performance of the cell 

with the control system. The stack achieved 54 W at 4.5 Volts and 12 Amps. 
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Thus, with the control system, the fuel cell can still provide 54 W to an external load, or 5.6 

W/cell which is a 60% reduction in performance over the original stack. Although the exact 

power requirements of the controls are not known, they are estimated to consume an additional 

10–15 watts. This lower power requirement, as compared with the 36 watts mentioned earlier, is 

because solenoids and pumps scale down their power draw as a function of voltage. At the peak 

power of 54 W at 4.5 V, the solenoids remain open but pumping power is drastically reduced. 

This low flow cannot remove heat and gas adequately. Therefore, the cell cannot be run for too 

long under these conditions. The same stack showed a maximum power of 50 W without a 

control system. However, the stack was not heated up during this test and thus did not achieve its 

maximum performance. 

Figure 23: Second Stack Performance with Control System 
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CHAPTER 5: FUTURE DESIGN RECOMMENDATIONS 
 

There are several ways to improve the control system and fuel cell to account for the gas 

generation and allow for better fuel utilization of the system assuming that the improved fuel cell 

design does not use nickel foam as a supporting layer. Although there will be some small gas 

generation due to side reactions, this effect will not be as pronounced.  

5.1 Fuel Cell Stack and Liquid Distribution Network  
 

To alleviate problems seen within the stack a proposed solution has been developed and 

shown in Figure 24. The secured manifold should prevent crossover within the stack. Because 

both the cover and bipolar frames are thinner, the overall bipolar plate should remain the same 

thickness. 
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Figure 24: Proposed Bipolar Plate Redesign [21] 
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Instead of the plugs used on the current cell, hydrophobic vents will be installed. These vents are 

typically composed from a hydrophobic material such as Teflon and are micro-porous to allow 

gas to escape. The vents are designed with threads and can be easily incorporated into the fuel 

cell. Any small amount of gas which is generated should escape the cell via these vents. In this 

manner, it will be possible to employ a double recirculation loop, as shown in Figure 21, without 

negatively affecting the cell. 

 Due to the size of the stack and the control system, the peak power produced by the fuel 

cell resulted in a voltage drop that was too low for the DC-DC converter. This is primarily due to 

the capacity of the converter (150 watts). The original intent of this voltage converter was to also 

regulate the voltage of the external applied load. However, upon further consideration, it was 

deemed unnecessary to regulate this external load. There are two possible solutions for this issue. 

The first is to add additional bipolar plates such that the voltage level is high enough at the 

required power. However, this results in additional mass of the system and inadequate utilization 

of the stack. Alternatively, the use of a smaller capacity power converter provides a simple and 

effective solution. The control system and balance of plant only requires approximately thirty 

watts of power to operate. This level of power is adequate for larger stacks since the pumps used 

for this setup have a flow rate capacity which is more than twice the required amount. A smaller 

capacity power converter has the ability to accept a wider range of incoming voltages. This 

method will allow for greater flexibility in operation of the stack. 

 The production of gas within the current system resulted in problems after the solenoids 

were deactivated. When the solenoids are shut, the gas cannot escape and pressure builds up 

within the system. The weakest point, usually the tubing connection, will burst and potentially 

release the chemicals and hot gases. To counter this, the connections and fittings should be able 
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to withstand higher pressures. Ideally, stainless steel should be used because compression fittings 

made from this material are capable of withstanding pressures greater than 5000 psi. 

Furthermore, it is also resistant to corrosion which is extremely important when hot corrosive 

gases and hydrogen peroxide is present. As suggested before, hydrophobic vents should alleviate 

this problem as well. 

 One of the most important components that need to be added to the system is a heat 

exchanger. The nickel foam used in the fuel cell results in exothermic reactions on both the 

anode and cathode sides. This is favorable for cell reaction kinetics to a certain extent. However, 

after some time, the increased temperature results in reaction rates which produce more gas and a 

greater amount of heat. These two effects simultaneously increase the pressure within the 

system. The high temperature can be detrimental to components of the cell. Because each bipolar 

plate is thermally conductive, the fuel and oxidizer both experience similar temperature 

increases. Therefore, a heat exchanger should be able to cool both the anode and cathode. 

Careful consideration is required in the design of such a heat exchanger. The temperature needs 

to be kept high enough such that sodium metaborate does not condense and remains soluble 

within the fuel solution.  

5.2 Control System 
 

 When used in UAV applications, there may be a need for instantaneous peak power. This 

could occur due to the need of sudden acceleration or the use of some other component. Because 

fuel cells cannot generally handle fast transient loads due to their slow internal electrochemical 

and thermodynamic responses [26], a hybrid architecture become necessary. The control system 

proposed here needs to be modified to be capable of handling these transient loads. Depending 
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on the system’s needs, a battery and/or super capacitors can be considered. Using appropriate 

methods, the control system should use the fuel cell for base load energy generation with the 

battery and/or super capacitors being used for transient and peak loads. The system should be 

analyzed for dynamic load response, mass, and volume. Various fuel cell hybrid systems have 

been previously studied for UAV applications [27–28] and can provide deeper insight for future 

design considerations. 

To successfully integrate the control system into a hybrid architecture, the capability to 

measure current is necessary. During operation of the current system, it was not possible to 

accurately determine the power needed. This could easily be achieved through an induction type 

current measurement sensor. These types of sensors are commercially available, and can be 

easily implemented into the current system using a variable voltage output.  
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CHAPTER 6: CONCLUSIONS 
 

In summary, the team was able to develop a novel and unique integrated manifold direct 

borohydride fuel cell stack and control system capable of providing 100 Watts at 140 mW/cm
2
. 

The first stack was able to provide adequate power. However, due to internal mixing, 

deterioration within the stack resulted in decreased performance. Due to funding limitations, a 

“quick” patch correction was tried in a revised second cell. The fix, however, required a thick 

filler layer which ultimately decreased cell performance by 60%. Nevertheless, the successful 

operation of this stack with the control system was demonstrated. A redesign has been identified 

that should remove the problems seen in the second stack and achieve the power levels seen in 

the original stack. 
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