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Abstract

The propagation of premixed flames in confined channels is investigated. In the unconfined

case, the structure of the flame and the flame speed for the adiabatic planar flame have

been numerically obtained and confirmed with the existing theory. It is seen that in the

unconfined case, the flame propagates in nearly isobaric conditions with a constant flame

speed whereas in the confined case there is pressure buildup which affects the flame speed. In

the confined case, the time evolution of the flame is solved to obtain properties like the mass

burning rate, pressure and flame location as a function of time, velocity field in the channel

and propagation speed. Also the temperature and concentration profiles are obtained which

give an insight in to the thickness of the flame region as the flame propagates through the

entire channel. Effect of the Lewis number on the time taken for the flame to propagate the

channel is examined. A non-linear analytical model that treats the flame as a discontinuity is

also used to compare with the obtained numerical solution. This model requires only solving

the hydrodynamic equations along with the Hugoniot jump relations across the flame front.

The main difference between the numerical and the analytical solution is that the numerical

solution takes into consideration a finite rate chemistry whereas in the analytical solution

the reaction rate modeled as a delta function. Differences between the analytical and the

numerical solution are compared.
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Chapter 1

Introduction

The propagation of premixed flames in confined channels has been a problem of great interest

owing to their applications in diverse devices such as gas turbines for power generation and

IC engines in automobiles. They also provide a deep insight into the interaction of the flame

with the flow field. In the case of premixed flames in unconfined vessels, the flame freely

propagates at a constant speed with no pressure build-up. The confined case is different

from the unconfined one in the sense that there is a continuous build up of pressure and

temperature. Also properties like the flame speed, mass burning rate are functions of the

flame position and time.

Combustion in general involves several processes like heat transfer, mass transfer, chem-

ical reactions that happen simultaneously over multiple temporal and spatial scales. The

spatial scales include the flame thickness and the length of the channel within which com-

bustion occurs. The reaction zone is a very thin region of the same order or smaller than

the flame thickness, whereas the flame propagates through the entire channel whose length

is a measure of the hydrodynamic scale making it imperative to consider both the length

scales in our problem. Resolving such a multi-scale problem numerically requires in general

a lot of computational resources which makes it difficult and expensive. By making appro-

priate assumptions, theoretical models have been developed which make use of the disparate

nature of scales and through asymptotic analysis, lead to simplified problems which help in

understanding the underlying physics of the problem.

The present analysis includes a combination of numerical and analytical techniques to

describe the propagation of premixed flames in confined channels. In the case of unconfined
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channels, one of the earliest asymptotic theories was suggested by Bush and Fendell [1,

2] in which the structure of a steady 1-D isobaric deflagration is studied for a one step

chemical reaction. They also discussed a two-term asymptotic expression for the eigenvalue

problem and obtained the laminar propagation speed for Lewis numbers of order unity with

large activation energies. Following their work there has been a large number of studies

that have exploited the largeness of the activation energy to understand flame behavior

[3, 4, 5]. Exploring the multi-scale nature of the problem, Matalon and Matkowsky [6]

treated the flame as a density discontinuity and through rigorous asymptotics, examined its

propagation into an arbitrary flow that varies over distances comparable to the channel’s

length. They obtained an expression for the flame speed which depends upon the local

curvature of the flame sheet and the hydrodynamic strain experienced by the flame. Cui et

al. [7] obtained asymptotic expressions for the burning rate and flame shape by imposing a

Poiseuille flow in a channel. They showed that the mass burning rate has a strong dependence

on the Lewis number in the case of wide channels. Benkhaldoun, Larrouturou and Denet

[8] performed 2-D numerical simulations for propagation of premixed curved flames in a

tube with heat losses and also examined premixed flame extinction limits due to the heat

losses. Daou and Matalon [9] studied the effect of the flow field (Poiseuille flow) on the

propagation of premixed flames in a channel for a constant density model with no heat losses

and discussed the flashback conditions and the long-term evolution of an ignition kernel.

They also examined the propagation of pre-mixed flames in 2-D channels by accounting for

heat losses by conduction to the channel walls assuming a Poiseuille flow in [10]. The problem

of a flame propagating in long unconfined channels for a one step second order chemical

reaction has been numerically studied by Kurdyumov and Matalon [11]. They examined

the structure of the planar flame and also evaluated properties like pressure correction in

the channel, the flow field and the time taken by the flame to propagate through the entire

channel of given length.

In the case of premixed flames in confined channels, the pressure build up in the tube

causes the temperature to rise continuously and its evolution in time has been studied by
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various authors. Bradley and Mitcheson [12] presented a simple numerical model to eval-

uate the pressure in the closed vessel as a function of time. They have also studied the

influence of temperature and pressure change with time on the burning velocity. Sivashin-

sky [13] proposed a hydrodynamic model of slow flame propagation in an enclosed volume

including transport effects and chemical kinetics. Kooker [14, 15] solved the compressible

Navier Stokes equation and developed a model for ignition and propagation of premixed

flame in a confined chamber. The solution accounts for multi-species diffusion, finite rate

chemical reactions and is restricted to ozone/oxygen mixtures. Fink, Fendell and Bush [16]

numerically examined a 1-D premixed flame propagating into an enclosure whose volume

was kept constant by varying the right wall boundary condition similar to what is actually

experienced in SI engines. They have also taken non-adiabatic walls into consideration. Mc-

greevy and Matalon [17] studied the effect of Lewis number on the propagation of premixed

flames in confined channels. It was based on the hydrodynamic model similar to the one

proposed by Sivashinsky [13]. Quantities such as temperature and flow fields on either side

of the flame discontinuity, instantaneous location of the flame, the time taken by the flame

to propagate through the channel have been calculated. They have also discussed the quali-

tatively different behaviors that occur with different Lewis numbers. Matalon and Metzener

[18] discussed the stability of planar flames based on the Markstein parameter. A flat flame

is obtained if the value of the Markstein parameter is greater than the critical Markstein pa-

rameter. Otherwise, the flame assumes cellular structure or a tulip shape. Also a non-linear

evolution equation has been derived from the general conservation equations that describes

the propagation of premixed flames in closed tubes. The formation and propagation of tulip

flame structures is also discussed in [19, 20].

This thesis is organized as follows. In chapter 2, the non-dimensionalised form of the

governing equations for a planar premixed flame are presented. In chapter 3, the structure

of the flame and properties like the flame speed are obtained by solving the eigenvalue

problem for a steady, unconfined flame. This solution is confirmed with the existing theory

and the temperature, concentration profiles are used as an initial condition for the confined
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case. In chapter 4, the problem of premixed flame in a confined channel is treated and

two different methods used to analyze the problem are presented, namely the numerical

solution and the analytical solution (Hydrodynamic model). In the case of the numerical

solution, the ignition phase is not modeled and it is assumed that a steady planar flame

under isobaric, adiabatic conditions has already been established a small distance away from

the left boundary. The time evolution of this flame is studied and the findings are presented.

The temperature field, concentration field, velocity fields have been shown. Also properties

like the flame speed, propagation speed are calculated. This solution is further compared

with the hydrodynamic solution which essentially treats the flame as an interface. This

model requires solving the hydrodynamic equations along with the Hugoniot jump relations

across the flame interface. The differences between these two solutions is that the numerical

solution takes into consideration a finite rate chemistry whereas the hydrodynamic solution

models the chemical reaction term as a delta function. In chapter 5, the differences in

mass burning rate vs time and the flame location for these two methods are presented. For

simplicity we ignore gravitational effects and heat losses in this discussion.
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Chapter 2

Formulation

2.1 General form of the governing equations

The following work studies the propagation of a flame in a long channel of length l. The

channel consists of a pre-mixed mixture of fuel and oxidizer which is ignited at the left end

of the channel. A flame is considered to be established at the left boundary of the channel at

time t = 0 and propagate to the right leaving hot products behind. In the following analysis,

the chemistry is represented by a global one step reaction given by

Fuel + ν Oxidizer → Products,

where ν is the stoichiometric ratio of the reaction.

The mixture is assumed to be lean in fuel and the mass fraction of the oxidizer remains

nearly constant. It is therefore sufficient to follow the evolution of the fuel only, with mass

fraction Y . The walls are assumed to be adiabatic, that is no heat transfer can take place

across it.

2.1.1 Subscripts used in this discussion

0 reference state at an initial time

e reference state at the ending time when the flame is at the end of the channel.

5



Figure 2.1: Propagation of a flame front in a channel closed at both ends

2.1.2 Nomenclature

l length of tube

t time

p dynamic pressure

ρ density

T temperature

P mean pressure level in the tube

~v velocity

Ma Mach number

M mass burning rate

R universal gas constant

cp mixture specific heat at constant pressure

cv mixture specific heat at constant volume

γ cp/cv

6



λ mixture thermal conductivity

W mean molecular weight of the mixture

B pre-exponential factor

Y reactant (fuel) mass fraction

E activation energy

Q heat of combustion per unit mass of the reactant

V volume of the tube

Vf normal velocity of the front

D binary diffusivity of the defined reactant (fuel) into the bulk

2.1.3 General form of the governing equations

For simplicity, we have assumed equal specific heats and molecular weights for all species and

that the molecular weight of the mixture W , viscosity coefficient µ, thermal conductivity λ

and diffusion coefficient ρD are all constants.

The mass conservation equation is

Dρ

Dt
+ ρ∇ · ~v = 0.

The momentum equation is

ρ
D~v

Dt
= −∇p+ µ(∇2~v +

1

3
∇(∇ · ~v)).

The energy conservation equation is

ρcp
DT

Dt
− λ∇2T =

Dp

Dt
+QB

ρY

W
e−E/RT .
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The equation for the concentration of species is given as

ρ
DY

Dt
− ρD∇2Y = −BρY

W
e−E/RT .

The equation of state is

P =
ρRT

W
.

2.2 Non-dimensionalization form of the governing equations

2.2.1 Non-dimensionalization parameters

The parameters used to non-dimensionalize the general form of the equations are described

below (∗ denotes dimensionless quantities):

x∗ =
x

lf
, ρ∗ =

ρ

ρ0

, p∗ =
p

P0

, T ∗ =
T

T0

, Y ∗ =
Y

Y0

, L∗ =
l

lf
, u∗ =

u

SL
and t∗ =

SLt

lf
.

In the non-dimensionalization parameters mentioned above, x is the longitudinal coordi-

nate, u is the velocity component in the x direction. ρ0 is the density of the fresh mixture,

lf = Dth/SL is the flame thickness, Dth = λ/ρucp is the thermal diffusivity of the mixture

where cp is the specific heat at constant pressure of the mixture, Y0 is the mass fraction of

fuel in the fresh mixture, P0 is the initial pressure in the channel (e.g. equal to the atmo-

spheric pressure), T0 is the temperature of the fresh mixture and SL is the laminar flame

speed (under isobaric, adiabatic conditions).

The adiabatic flame temperature Ta and laminar flame speed SL are properties of the

given mixture. Under the adopted simplification, the adiabatic flame temperature takes the

form

Ta = T0 +
QY0

cp
, (2.1)

but the flame speed SL needs to be determined numerically. An approximation to SL for

8



β → ∞ is given by

(SL)Asym =

√
2DthB

σβ2Le−1
e−E/2RTa . (2.2)

2.2.2 Low Mach number approximation

The propagation speed of ordinary deflagration waves is in the range of 1-100 cm/s, which

is much smaller than the speed of sound (in air c= 34000 cm/s). The representative Mach

number is therefore very small (Ma << 1 ). The consequence of this assumption is that

pressure (p) may be expressed as p = P (t)+γMa2 p′(x, t)+ ..... The pressure in the channel

is equalized instantaneously everywhere with small spatial correction (p′) on the order of

Ma2 only. In an unconfined channel P (t) = 1, corresponding to the atmospheric pressure

conditions. In the case of confined channels the mean pressure in the channel P (t) varies

with time.

2.2.3 Non-dimensionalized form of the governing equations in Cartesian

coordinates

While describing the non-dimensionlized form of the equations from now onwards, we will

represent all the terms without a star (∗) for the sake of simplicity. We have also removed

the prime (′) in the pressure correction term which appears in the momentum equation. The

governing equations in the non-dimensional form in one dimension are as follows:

The mass conservation equation is

∂ρ

∂t
+

∂

∂x
(ρu) = 0. (2.3)

The momentum conservation equation is

ρ

(
∂u

∂t
+ u

∂u

∂x

)
= −∂p

∂x
+

4

3
Pr

∂2u

∂x2
. (2.4)
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The energy conservation equation is

ρ

(
∂T

∂t
+ u

∂T

∂x

)
=
∂2T

∂x2
+

(
γ − 1

γ

)
dP

dt
+ qω. (2.5)

The equation for the concentration of species is given as

ρ

(
∂Y

∂t
+ u

∂Y

∂x

)
=

1

Le

∂2Y

∂x2
− ω. (2.6)

The equation of state is

P (t) = ρT. (2.7)

The reaction rate term ω is given by

ω(T, Y ) =
β2

2s2
LLe

ρY eβTa(Ta−1)/(Ta−1)T .

Here the adiabatic flame temperature in non-dimensional form obtained from equation (2.1)

is

Ta = 1 + q, (2.8)

where q is the heat release parameter given by
QYF0

cpT0

and β is the Zel’dovich number defined

as β =
E(Ta − T0)

RTa
2 . The parameter sL is the ratio of the laminar flame speed (SL) to the

flame speed in the asymptotic limit (SL)Asym,

sL =
SL

(SL)Asym
, (2.9)

which has to be calculated numerically.

The Lewis number is defined as the ratio of the thermal diffusivity to the mass diffusivity,

that is Le = Dth/D. The Prandtl number is the ratio of the viscous to the thermal diffusivity

of the mixture and defined as Pr = µcp/λ .
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Chapter 3

Unconfined planar flame

In this topic, we will be discussing the propagation of a planar premixed flame in an uncon-

fined environment. The mean pressure in the channel equals the atmospheric pressure and

in non-dimensional form is given by P = 1.

3.1 Constant density model

3.1.1 Governing equations for the constant density model

In this model, the density doesn’t vary in space and time. The value of density in the non-

dimensional form is ρ = 1 an equation that replaces the equation of state.

The continuity equation is

∂u

∂x
= 0 (3.1)

and in a frame attached to the flame, u = 1 everywhere in the channel.

The energy conservation equation is conveniently written as

∂θ

∂t
+
∂θ

∂x
=
∂2θ

∂x2
+ ω, (3.2)

where θ =
T − 1

Ta − 1
=
T − 1

q
.

The equation for the concentration of species is given as
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∂Y

∂t
+
∂Y

∂x
=

1

Le

∂2Y

∂x2
− ω, (3.3)

where

ω =
β2

2s2
LLe

Y eβσ(θ−1)/1+(σ−1)θ,

The thermal expansion constant (σ) is defined as the ratio of the density of the unburnt gas

to density of the burnt gas mixture.

σ =
Ta
Tu

=
ρu
ρb

(3.4)

such that σ > 1. Note also that σ = 1 + q.

3.1.2 Boundary conditions

The boundary conditions are as follows:

At x = −∞ (burnt state)

θ = 1,

Y = 0,

∂Y

∂x
= 0,

∂θ

∂x
= 0.

At x =∞ (unburnt state)

θ = 0,

Y = 1,

∂Y

∂x
= 0,

∂θ

∂x
= 0.
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Equations (3.1) - (3.4) and the BC’s mentioned above constitute a problem that need to be

solved subject to appropriate IC’s. We are interested in numerically calculating the flame

speed parameter sL as the function of the Lewis number and the Zel’dovich number (β).

3.1.3 Numerical procedure and Results

The time-derivative term is set to 0 in the above equations and the governing equations are

then solved to obtain a steady state solution. A boundary value problem solver BVP4C in

MATLAB was used to solve the above system of ODE’s and to determine the eigenvalue

(flame speed parameter sL) in the above problem.

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

 

 
θ
Y
ω

Figure 3.1: Profiles for θ, Y and ω obtained for Le = 1, σ = 6− constant density model
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Figure 3.2: Comparison of the flame speed parameter sL between the 2-term asymptotic result and the
numerical solution : sL vs. β plotted for Le = 0.6, 1, 1.4, 3 and σ = 5

In figure 3.1, the profiles obtained for the temperature, concentration and reaction rate

are shown for a Lewis number of 1 . The Zel’dovich number (β) is taken to be equal to 10.

In the figure 3.2, different curves corresponding to different Lewis numbers are shown

by different colors. For each of these Lewis numbers, the value of β was varied and the

corresponding value of flame speed parameter sL plotted on the y - axis. These correspond

to the solid lines which, as noted were normalized wrt to the one term expression for (SL)Asym

given by equation 2.2 specifically

sL =
SL

(SL)Asyms
, (SL)Asym =

√
2DthB

σβ2Le−1
e−E/2RTa .
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The broken curves are the two-term asymptotic result described in [1] for approximating

the asymptotic flame speed (SL)Asym in the limit of large activation energy [21, 5] which is

given by:

(SL)Asym =

[
1− β−1

(
3
σ − 1

σ
− (1− Le)− 1.344045

)]√
2DthB

σβ2Le−1
e−E/2RTa . (3.5)

It is seen that the two curves approach each other in the limit β → ∞ and that the value

of sL → 1 in this limit. These results have been presented for a value of σ = 5 in order to

compare with the results shown in [21].

3.2 Variable density model

3.2.1 Governing equations for the variable density model

We now consider density variations. The governing equations are as follows:

The mass conservation equation is

∂ρ

∂t
+

∂

∂x
(ρu) = 0. (3.6)

The energy conservation equation is

ρ
∂θ

∂t
+ ρu

∂θ

∂x
=
∂2θ

∂x2
+ ω. (3.7)

The equation for the concentration of species is given as

ρ
∂Y

∂t
+ ρu

∂Y

∂x
=

1

Le

∂2Y

∂x2
− ω. (3.8)

The equation of state is

ρ =
1

1 + (σ − 1)θ
, (3.9)
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where

ω =
β2

2s2
LLe

(
σ

1 + (σ − 1)θ

)
Y eβσ(θ−1)/1+(σ−1)θ.

3.2.2 Boundary conditions, Numerical procedure

The boundary conditions remain the same as specified above. The steady state problem (by

setting ∂
∂t

= 0 in equations (3.6) - (3.8) and using the equation of state equation (3.9)) is

solved using a similar numerical procedure (Boundary value solver - BVP4C in MATLAB)

as mentioned in the constant density model.

3.2.3 Plots and Results
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Figure 3.3: Profiles for θ, Y and ω obtained for Le = 1, σ = 6− variable density model
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Figure 3.4: Density profile obtained for Le = 1 and σ = 6
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Figure 3.5: Flame speed parameter sL defined in equation (2.9) vs. β plotted for Le = 0.6, 1, 1.4, 3 and
σ = 6

Figure 3.6: Flame speed parameter sL defined in equation (2.9) vs. Le plotted for σ = 4, 5, 6
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The profiles of temperature, concentration and reaction rate are plotted in figure 3.3 for

Le = 1, Zel’dovich number (β) of 10 and the ratio of unburnt to burnt density ratio (σ) of 6.

Figure 3.4 is the density profile shown for the same parameters. In figure 3.5, sL is plotted

as a function of β for different values of the Lewis numbers, but the unburnt to burnt density

ratio is fixed (σ = 6). As the Zel’dovich number becomes higher, the value of sL approaches

1 as shown in the figure. In figure 3.6, sL is plotted with Lewis number for different values

of the unburnt to burnt density ratios and are plotted for a fixed value of the Zel’dovich

number (β=10).

3.2.4 Steadily propagating flame

A steadily propagating flame can be obtained using the calculated value of flame speed pa-

rameter sL from above. To obtain this, an additional expression for the velocity field is used

which is derived as mentioned below.

Multiplying the mass conservation equation (3.6) by (1 + (σ − 1)θ), we get

(
1 + (σ − 1)θ

)∂ρ
∂t

+
(

1 + (σ − 1)θ
) ∂
∂x

(ρu) = 0.

By multiplying the energy equation (3.7) by (σ − 1), we get

(σ − 1)ρ
∂θ

∂t
+ (σ − 1)ρu

∂θ

∂x
= (σ − 1)

∂2θ

∂x2
+ (σ − 1)ω.

Adding these two expressions together, we get

∂
(
ρ(1 + (σ − 1)θ)

)
∂t

+
∂

∂x

(
ρu(1 + (σ − 1)θ)

)
= (σ − 1)

∂2θ

∂x2
+ (σ − 1)ω.

Using the equation of state (3.9) we have,

∂u

∂x
= (σ − 1)

∂2θ

∂x2
+ (σ − 1)ω.
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This expression is further integrated to get the velocity field by using the conditions that

the unburnt gas far to the right end is at rest, giving

u(x, t) = (σ − 1)
∂θ

∂x

∣∣∣∣
x

− (σ − 1)

∫ ∞
x

(ωdx), (3.10)

where −∞ < x <∞.

In the previous subsection, the plots are obtained for the steady state problem where the

flame is maintained stationary via a constant unburnt gas velocity. A steadily propagating

flame can also be obtained where the unburnt gas is stationary and the flame moves from

left to right. The time evolution problem consisting of equations ((3.6) - (3.9) and (3.10))

are solved by using a 4th order spatial discretization scheme and a time marching Adams

Bashforth method. Figure 3.8 is an example of the temperature profile of a steadily propa-

gating flame in an unconfined environment. Figure 3.9 shows the concentration profile of the

steadily propagating flame. If the location of flame vs time is plotted, the slope is obtained

to be equal to 1 as in figure 3.7 which means that the non-dimensional flame speed is equal

to 1.
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Figure 3.7: Flame location vs time of a steadily propagating planar unconfined flame
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Figure 3.8: Temperature profile of a steadily propagating planar unconfined flame
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Figure 3.9: Concentration profile of a steadily propagating planar unconfined flame
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Chapter 4

Confined planar flame

In this topic, we will be discussing the propagation of premixed flames in a confined channel

of length L where L = l
lf

, L is the non-dimensionalized length of the channel. Two different

models to solve the problem of propagation of premixed flames in a confined channel are

discussed below. The first model is a numerical solution to the full form of the governing

equations with finite rate chemistry. The second model is the hydrodynamic model - an

analytical solution to the governing equations by making the simplifying approximation of

a thin flame with a reaction rate approximated by a delta-function.

4.1 Flame propagation in a confined channel - Numerical

solution

4.1.1 Governing equations for the numerical model

The governing equations are solved here numerically. The equations are:

The mass conservation equation is :

∂ρ

∂t
+

∂

∂x
(ρu) = 0.

The energy conservation equation is

ρ
∂T

∂t
+ ρu

∂T

∂x
=
∂2T

∂x2
+

(
γ − 1

γ

)
dP

dt
+ qω.
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The equation for the concentration of species is given as

ρ
∂Y

∂t
+ ρu

∂Y

∂x
=

1

Le

∂2Y

∂x2
− ω.

The equation of state is

P (t) = ρT.

4.1.2 Boundary conditions and expression for the velocity field

The boundary conditions are as follows:

At x = 0 and x = L

∂Y

∂x
= 0,

∂θ

∂x
= 0,

u = 0.

An expression for the velocity field can be obtained as obtained as follows. Multiplying the

mass conservation equation by T , then adding it to the energy conservation equation and

using the equation of state we get ,

∂u

∂x
=

1

P

(
−1

γ

dP

dt
+
∂2T

∂x2
+ qω

)
.

If the above equation is integrated w.r.t x and after applying the boundary condition for u

at x = L, an expression for the velocity field is obtained as

u(x, t) =
1

P

(
1

γ

dP

dt
(L− x) +

∂T

∂x
− q

∫ L

x

(ωdx)

)
. (4.1)

The reaction rate is given as

ω(T, Y ) =
β2

2s2
LLe

ρY eβTa(Ta−1)/(Ta−1)T .
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An equation for change in pressure with time can be obtained by multiplying the

mass conservation equation by T , and adding the energy conservation equation and further

using the equation of state. This gives,

1

γ

dP

dt
+

∂

∂x
(Pu− ∂T

∂x
) = qω.

The above equation can be integrated w.r.t to x. Then by making use of the boundary

conditions which are mentioned above, we get

dP

dt
=
γq

L

∫ L

0

(ωdx). (4.2)

4.1.3 Numerical Procedure

In the above equations sL is the known flame speed parameter which has been computed in

the unconfined channel case - variable density model described in the previous chapter.

The numerical methodology used to solve the propagation of premixed flames in a confined

channel is explained here. The grid is divided into N equally spaced points and numbered

as 1, 2.... N − 1, N .

The 1st order derivatives were calculated using a 4th order accurate spatial discretization

scheme mentioned below.

For the 1st node, the boundary condition is applied.

(
∂T

∂x

)
1

= 0
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For the 2st node,

(
∂T

∂x

)
2

=
1

12∆x
(−3T1 − 10T2 + 18T3 − 6T4 + T5)

For the inner nodes from i = 3 to N − 2, central differencing spatial discretization scheme

is used. (
∂T

∂x

)
i

=
1

12∆x
(−Ti+2 + 8Ti+1 − 8Ti−1 + Ti−2)

For the 2nd last node,

(
∂T

∂x

)
N−1

=
1

12∆x
(3TN + 10TN−1 − 18TN−2 + 6TN−3 − TN−4)

For the last node, the boundary condition is applied.

(
∂T

∂x

)
N

= 0

The 2nd order derivatives were calculated using a 4th order accurate spatial discretization

scheme mentioned below.

For the 1st node, one-sided finite difference spatial discretization scheme is used.

(
∂2T

∂x2

)
1

=
1

12∆x2 (11T5 − 56T4 + 114T3 − 104T2 + 35T1)

For the 2st node,

(
∂2T

∂x2

)
2

=
1

12∆x2 (11T1 − 20T2 + 6T3 + 4T4 − T5)

For the inner nodes from i = 3 to N − 2, central differencing spatial discretization scheme

is used (
∂2T

∂x2

)
i

=
1

12∆x2 (−Ti−2 + 16Ti−1 − 30Ti + 16Ti+1 − Ti+2)
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For the 2nd last node,

(
∂2T

∂x2

)
N−1

=
1

12∆x2 (11TN − 20TN−1 + 6TN−2 + 4TN−3 − TN−4)

For the last node, one sided spatial discretization scheme is used.

(
∂2T

∂x2

)
N

=
1

12∆x2 (11TN−4 − 56TN−3 + 114TN−2 − 104TN−1 + 35TN)

The time integration is done using a three-step Adams Bashforth method where n denotes

the current time instant.

Tn+3 = Tn+2 + ∆t(
23

12
F (tn+2, Tn+2)− 4

3
F (tn+1, Tn+1) +

5

12
F (tn, Tn)).

In this model, the value of ∆x = 0.008. The value of ∆t = 10−6. Also since the region of

interest is very very small compared to the actual size of the actual domain, it was necessary

to use a non-uniform grid. Hence it was necessary to use the technique of Adaptive Mesh

Refinement (AMR) which helped in reducing the time it took for the actual simulation to

run. As the flame propagates from left to right , the entire mesh is modified with time, so

that the fine portion of the mesh is always in the region where the reaction zone is located.

With the AMR, the smallest value of ∆x = 0.004 in the region of the flame and the largest

value of ∆x = 0.01 . The value of ∆t = 10−6. It was also verified that by taking smaller

values of ∆x and ∆t, the results obtained were almost identical.

In-order to find the location of the flame, a Taylor series expansion is used to evaluate the

location of the flame from the grid point where the value of ω is maximum.

xf = xi −

(
∂ω

∂x

)
i(

∂2ω

∂x2

)
i

,

where xi indicates the location of the maximum value of ω. Once the value of xf is computed,

the propagation speed is calculated as the derivative of
∂xf
∂t

.
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4.1.4 Results and plots:
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Figure 4.1: Temperature vs. x− axis for q = 5 at consecutive time steps
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Figure 4.2: Concentration vs. x− axis for q = 5 at consecutive time steps
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Figure 4.3: Density vs. x− axis for q = 5 at consecutive time steps
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Figure 4.4: Velocity vs. x− axis for q = 5 at consecutive time steps
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Figure 4.5: Pressure vs time
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Figure 4.6: Mass burning rate vs. time
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Figure 4.7: Propagation and flame speed vs. time
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The parameters for the plots are : L = 100, β=10, γ=1.4. In the temperature field plot

(4.1), as the flame propagates from left to right, the flame thickness reduces as the pressure

increases in the confined channel. The adiabatic compression also causes the temperature

of the fresh mixture to increase with time. From the plot of the velocity field figure (4.4),

the fresh mixture is compressed and pushed to the right whereas the burnt products are

pushed away from the region of the flame towards the left end of the channel. There is a

small error which is seen in the plot of the flame speed (4.7) because of the initial location of

the flame which is not exactly at x=0. Also the flame has a definite thickness. This causes

the non-dimensionalized flame speed to be not equal to 1 exactly at time t = 0. In the last

plot(4.8), the effect of Lewis number on the time it takes for the flame to propagate the

entire length of the channel is shown. The non-dimensionalization of t depends on Le and

hence the time axis is rescaled such that t∗ =
tSL0

lf
, where SL0 is the laminar flame speed for

an unconfined planar flame under isobaric, adiabatic conditions for Le = 1.

31



4.2 Flame propagation in a confined channel - Analytical

solution

In the general form of the governing equations mentioned before, it is found that the viscosity,

thermal and mass diffusion terms and the reaction terms are of O(δ) where δ =
lf
l

= 1
L
<< 1.

The length of the flame lf is very small compared to the length of the channel l.

4.2.1 Hydrodynamic model

The full form of the governing equations can be rescaled to see the similarity between the

hydrodynamic model and the numerical solution described above. The rescaling is done as

follows. Let the time be rescaled as t̂ =
t

L
and the spatial coordinate as x̂ =

x

L
where

1

L
<< 1.

For the sake of simplicity the symbolˆis dropped from all the terms below.

By this rescaling factor, 0 ≤ x ≤ 1.

The mass conservation equation becomes

∂ρ

∂t
+

∂

∂x
(ρu) = 0.

The energy conservation equation becomes

ρ
∂T

∂t
+ ρu

∂T

∂x
=

1

L

∂2T

∂x2
+

(
γ − 1

γ

)
dP

dt
+ qLω.

The equation for the fuel mass fraction is

ρ
∂Y

∂t
+ ρu

∂Y

∂x
=

1

L

1

Le

∂2Y

∂x2
− Lω.
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The equation of state is

P (t) = ρT.

Also we have (as derived in the numerical model),

∂u

∂x
=

1

P

(
−1

γ

dP

dt
+

1

L

∂2T

∂x2
+ Lqω

)
. (4.3)

In the limit L >> 1 and away from the flame, where ω ≈ 0 the equations simplifies as follows

The mass conservation equation is

∂ρ

∂t
+

∂

∂x
(ρu) = 0.

The energy conservation equation becomes

ρ
∂T

∂t
+ ρu

∂T

∂x
=

(
γ − 1

γ

)
dP

dt
.

The equation for the concentration of species becomes

ρ
∂Y

∂t
+ ρu

∂Y

∂x
= 0.

The equation of state is

P (t) = ρT.

From (4.3) we also have,

∂u

∂x
=

1

P

(
−1

γ

dP

dt

)
. (4.4)

Using the equation of state, the energy equation can be rewritten as

ρ
∂

∂t
(
P

ρ
) + ρu

∂

∂x
(
P

ρ
) =

γ − 1

γ

dP

dt
.
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Since P is only a function of t, the above relation can be simplified as follows

γ
P

ρ

Dρ

Dt
=
DP

Dt
.

This equation can be written as

D

Dt
(ρ−1P 1/γ) = 0. (4.5)

Thus

Ds

Dt
= 0, (4.6)

where

s = ρ−1P 1/γ

s is defined as the entropy function.

These equations need to be solved subject to the Rankine Hugoniot jump relations across

the interface - the flame front. ~n is unit normal pointing forward towards the burnt gas i.e

~n = î and the flame front is given by F (x, t) = 0, or explicitly by x = xf (t). The Rankine

Hugoniot relations are:

[ρ(~v.~n− ẋf )] = 0, (4.7)

[~v × ~n] = 0, (4.8)

[p+ ρ(~v.~n− ẋf )(~v · ~n)] = 0, (4.9)

[T ] = q. (4.10)
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where [ ] denotes the jump in the value, i.e burnt side minus the unburnt side.

Recall that the relation for pressure rise with time was derived as

dP

dt
=
γq

V

∫
ωdV,

where V is the volume of the vessel. When the flame shrinks to a surface this relation is also

equal to

dP

dt
=
γq

V
lim

∆n→0

∫
∆n

∫
surface

ω′δ(n)dSdn,

where δ is the Dirac δ function and n is measured along the normal to the flame surface and

ω′ is the surface reaction rate such that ω′ = ω′(t).

Thus the pressure rise can be determined from

dP

dt
=
γq

V

∫
ω′dS.

Integration of the equation for fuel mass fraction across the flame surface (similar to the

derivation of the Rankine Hugoniot relations) gives

[ρ(v · n− ẋf )Y ] = −ω′,

which can be further rewritten as

M [Y ] = ω′,

such that

ω′ = M.

The relation for pressure rise in the channel becomes

dP

dt
= γqM.
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The dependence of the mass burning rate (M) on pressure and flame temperature is asssumed

of the form

M = P 1/2

(
Tf
Ta

) 3
2

e

(
β0
2

(
1
Ta
− 1
Tf

))
, (4.11)

which is a generalization of the analytical expression derived for unconfined planar flames

(see section 4.2.7), where Tf is the flame temperature. Here β0 is the activation energy

parameter given by β0 =
E

RT0

. We note that a relation between β and β0 is β0 = β
(q + 1)2

q
.

The Euler equations are now solved analytically in order to obtain the solution of the vari-

ables like pressure, velocity, temperature and density in the unburnt and burnt side of the

gas.

4.2.2 Boundary Conditions

The boundary conditions along the walls of the channel are

∂T

∂x
=
∂Y

∂x
= 0. (4.12)

4.2.3 Summary of the governing equations for the Hydrodynamic model

The mathematical problem involves solving the following time dependent one -dimensional

equations.

∂u

∂x
= − 1

γP

dP

dt
,

P = ρT,

Ds/Dt = 0 where s = ρ−1P
1
γ ,

dP/dt = γqM,

where

M = P 1/2

(
Tf
Ta

) 3
2

e

(
β0
2

(
1
Ta
− 1
Tf

))
.
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Across x = xf (t):

[ρ(u− ẋf )] = 0, (4.13)

[p+ ρu(u− ẋf )] = 0, (4.14)

[T ] = q. (4.15)

4.2.4 Analytical solution to the 1-D planar flame

This part discusses the analytical solution to the 1-D planar flame problem to compute

the value of properties like pressure, temperature, velocity and density.

Velocity for burnt and unburnt gas:

For the burnt gas the following boundary condition is applicable.

At x = 0, u = 0 (Boundary condition at the wall)

Integrating (4.4) w.r.t the variable x and applying the above boundary condition, we get

ub = − ṗ

γP
x. (4.16)

For the case of unburnt gases the following boundary condition is applicable.

At x = 1, u = 0 (Boundary condition at the wall) Integrating (4.4) wrt the variable x and

applying the above boundary condition, we get

uu =
ṗ

γP
(1− x). (4.17)

Thus,

u(x, t) =


− ṗ

γP
x if x < xf ,

ṗ

γP
(1− x) if x > xf .
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Density and temperature for unburnt gas:

From equation (4.6) we have

Ds

Dt
= 0

or s is a constant along a streamline.

s = ρ−1P
1
γ .

We have the initial conditions P = P0 and ρ = ρ0.

Thus we get

ρ−1P
1
γ = 1.

The density of the unburnt gas is

ρu = P
1
γ (4.18)

and the temperature of the unburnt gas is

Tu =
P

ρ
= P

γ−1
γ . (4.19)

Temperature and density at xf -, at the flame in the burnt gas side:

Using the temperature jump relation, the temperature at the flame on the burnt side at

xf - is

Tf - = P
γ−1
γ + q (4.20)

and the density at the flame on the burnt side at xf - is
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ρf - =
P

Tf -
=

P

P
γ−1
γ + q

. (4.21)

Applying the jump relation as mentioned in (4.13), we have

ρ(u− ẋf )]xf− = ρ(u− ẋf )]xf+. (4.22)

Substituting the obtained expressions from equations (4.16), (4.17), ( 4.18) and ( 4.21) into

(4.22), we get

P

P
γ−1
γ + q

(−1

γ

Ṗ

P
xf − ẋf ) = P

1
γ (

1

γ

Ṗ

P
(1− xf )− ẋf )

which is simplified as

d

dt
(−PL+ γq(P

1
γ (xf − 1))) = 0

or

(−PL+ γq(P
1
γ (xf − 1))) = constant = C(say). (4.23)

Applying the initial condition, at t = 0 we have P = 1 and xf =0.

1 + γq = −C

Also at xf =1, P = Pe, which gives

−Pe = C

. Thus we get the end pressure in the confined channel Pe as

Pe = 1 + γq = −C = constant. (4.24)

39



Combining equations (4.23) and (4.24), we get a relation for the position of the flame as

a function of the pressure P and the end pressure Pe as follows,

xf = 1− (
Pe − P
Pe − 1

)P
1
γ . (4.25)

Temperature and density distribution in burnt gas

From equation (4.6) we have

Ds

Dt
= 0,

that is

∂s

∂t
+ u

∂s

∂x
= 0,

where

s = TP
1−γ
γ .

Substituting (4.17) in the above equation, we get

∂s

∂t
− 1

γ

Ṗ

P
x
∂s

∂x
= 0.

The general solution to this equation is given by

s = ψ(xP
1
γ ),

where the functional form of ψ remains to be determined.

From ( 4.20), we have

Tf = P
1−γ
γ + q.

Thus

TfP
1−γ
γ = 1 + qP

1−γ
γ ,
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sf = 1 + qP
1−γ
γ .

Thus we get

ψ(xfP
1
γ ) = 1 + qP

1−γ
γ .

Substituting the value of xf as obtained from ( 4.25), we get

ψ

(
P

1
γ − Pe − P

Pe − 1

)
= 1 + qP

1−γ
γ .

Thus

ψ(η) = 1 + qP
1−γ
γ ,

where

η = (P
1
γ − Pe − P

Pe − 1
).

As the pressure as a function of time is known, by plotting the above function for different

values of η, the density and the temperature in the burnt side of the gas can be found.

Thus,

T (x, t) =


P

γ−1
γ if x > xf ,

P
(γ−1)
γ s(x, t) if x < xf .

ρ(x, t) =


P

1
γ if x > xf ,

P
1
γ

s(x, t)
if x < xf .
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4.2.5 Results and plots
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Figure 4.9: ψ vs. η for q = 1, 3, 5 and 10

4.2.6 Comparison of the numerical and the analytical solution

The pressure in the channel when the flame is at the end of the channel should ideally be

Pe = 1 + γq as derived for the hydrodynamic model, but this value differs with the plot

of the numerical solution (4.5) as the flame is assumed to have an initial thickness and its

initial location is at a small distance away from the left end of the channel and not exactly

at x = 0.

We compare the plots of the mass buring rate that were obtained from the numerical

and the analytical solution. (Figures 4.17, 4.16 are shown for Le = 1 and q = 5). The

parameters for the numerical model have been rescaled to those of the hydrodynamic model

so that the plots for the numerical solution and analytical solution can be plotted on the

same graph. These plots show that the plots obtained by the numerical solution agree very

well with those of the analytical solution.

42



0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

7

8

9

10

x−axis

Te
mp

era
tur

e

Figure 4.10: Temperature vs. x− axis for time t =0.005, 0.05, 0.1, 0.2 and 0.3, q = 5
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Figure 4.11: Density vs. x− axis for time t =0.005, 0.05, 0.1, 0.2 and 0.3, q = 5
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Figure 4.12: Velocity field vs. x− axis for time t =0.005, 0.05, 0.1, 0.2 and 0.3, q = 5
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Figure 4.13: Pressure vs. location of flame for q = 1, 3, 5 and 10
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Figure 4.14: Pressure vs. time for q = 1, 3, 5 and 10
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Figure 4.15: Mass burning rate vs. time for q = 1, 3, 5 and 10
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Figure 4.16: Mass burning rate vs. time comparison for the numerical model and Hydrodynamic model

4.2.7 Expression for mass burning rate

In the dimensional form (* is not written for convenience), the burning rate of an unconfined

adiabatic planar flame is given by

M0 = ρuSL =

√
2ρb(λ/cp)B

β2Le−1
e−E/2RTa ,

where

β =
E

RTa
2 (Ta − T0) =

E

RTa
2

QY0

cp
.

We make the proposition that the burning rate (M) of a confined adiabatic flame takes the

form similar to the above expression (M0) but the burning rate (M) now depends on the

flame temperature Tf instead of the the adiabatic flame temperature Ta.

M = ρuSL =

√
2ρf (λ/cp)B

βnew
2Le−1

e−E/2RTf ,

where βnew is the Zel’dovich parameter for the confined case. We also have the equation of

state P (t) =
ρfRTf
W

for the confined case and P0 =
ρbRTa
W

for the unconfined case where P0

is the atmospheric pressure.
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Figure 4.17: Mass burning rate vs. location of flame comparison for the numerical model and Hydrodynamic
model
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Figure 4.18: Location of flame vs. time comparison for the numerical model and Hydrodynamic model
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Two different cases for βnew can be argued.

Case 1: βnew doesn’t depend on the local flame temperature, i.e βnew = β:

If βnew doesn’t depend on the local flame temperature, then mass burning rate can be written

as

M =

(
P

P0

) 1
2
(
Tf
Ta

)− 1
2

e

(
E

2RTa
− E

2RTf

)
M0. (4.26)

If we non-dimensionalize equation (4.26) as outlined in chapter 2, we get an expression for

the mass burning rate in a confined channel as,

M = P
1
2

(
Tf
Ta

)− 1
2

e

(
β0
2

(
1
Ta
− 1
Tf

))
, (4.27)

where β0 = E/RT0.

Case 2: βnew depends on the local flame temperature:

If βnew depends on the local flame temperature, we can write

βnew = β

(
Ta
Tf

)2

, then mass burning rate in the dimensional form can be written as

M =

(
P

P0

) 1
2
(
Tf
Ta

) 3
2

e

(
E

2RTa
− E

2RTf

)
M0. (4.28)

If we non-dimensionalize equation (4.28), we get an expression for the mass burning rate in

a confined channel as,

M = P
1
2

(
Tf
Ta

) 3
2

e

(
β0
2

(
1
Ta
− 1
Tf

))
. (4.29)

We compare equations (4.27) and (4.29) with the obtained numerical solution to determine

which expression represent the mass buring rate in a confined channel. From the plots (4.19)
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and (4.20), it is seen that the mass burning rate given by equation (4.29) agrees well with

that of the mass burning rate computed numerically. Equation (4.29) has therefore been

used in this thesis as the expression to the mass buring rate in the the hydrodynamic model;

see equation (4.11).
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Figure 4.19: Comparison of the analytical expression of mass burning rate with the numerically obtained
mass burning rate: Mass burning rate vs. flame location
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Figure 4.20: Comparison of the analytical expression of mass burning rate with the numerically obtained
mass burning rate: Mass burning rate vs. time
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Chapter 5

Conclusion

For the case of premixed flames in unconfined channels, the steady state solution to the

planar flame problem was studied numerically. The structure of the flame and the flame

speed parameter sL (which is directly related to the flame speed) were obtained numerically

for various values of the Lewis number and the Zel’dovich number. The time dependent

problem was also studied showing that indeed the flame propagates steadily at a constant

speed. The plot of flame location vs. time is a straight line with a slope that agrees well

with the results obtained by solving the steady equations.

For the case of premixed flames in confined channels, the problem is intrinsically unsteady.

As a result of confinement there is pressure buildup and the flame accelerates as it moves

from one end of the channel to the other end. This problem was addressed in two different

ways:

The first is a hydrodynamic model where the entire flame is treated as a surface and flow

field solved subject to the Hugoniot jump conditions across the flame. The reaction rate

is therefore considered as a delta - function with a strength suggested by the asymptotic

solutions of unconfined flames. Analytical expressions for the location of the flame sheet ,

flame temperature as a function of time have been obtained.

The second approach is a numerical solution of the complete governing equations that

correspond therefore to finite rate chemistry. The pressure, propagation speed, flame speed,

gas velocity as well as the temperature and density profiles agree well with the solution to

the Hydrodynamic model. Further the numerical solution gives an insight into the thickness

of the flame as it varies through the channel. It is seen that with the pressure build-up in the
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channel, the thickness of the flames reduces as the reaction zone becomes becomes thinner

due to significant increase in temperature.

It should be noted that the mass burning rate that was calculated numerically, matches

with the analytical solution presented in the hydrodynamic model extremely well, suggesting

that treating the flame as a discontinuity with the proposed delta-function expression for

the reaction rate represents a good approximation to the problem.
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